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Abstract—It is a classic problem to estimate continuous-time
sparse signals, like point sources in a direction-of-arrival problem,
or pulses in a time-of-flight measurement. The earliest occurrence
is the estimation of sinusoids in time series using Prony’s method.
This is at the root of a substantial line of work on high resolution
spectral estimation. The estimation of continuous-time sparse sig-
nals from discrete-time samples is the goal of the sampling theory
for finite rate of innovation (FRI) signals. Both spectral estimation
and FRI sampling usually assume uniform sampling. But not all
measurements are obtained uniformly, as exemplified by a concrete
radioastronomy problem we set out to solve. Thus, we develop the
theory and algorithm to reconstruct sparse signals, typically sum of
sinusoids, from nonuniform samples. We achieve this by identifying
a linear transformation that relates the unknown uniform samples
of sinusoids to the given measurements. These uniform samples
are known to satisfy the annihilation equations. A valid solution
is then obtained by solving a constrained minimization such that
the reconstructed signal is consistent with the given measurements
and satisfies the annihilation constraint. Thanks to this new ap-
proach, we unify a variety of FRI-based methods. We demonstrate
the versatility and robustness of the proposed approach with five
FRI reconstruction problems, namely Dirac reconstructions with
irregular time or Fourier domain samples, FRI curve reconstruc-
tions, Dirac reconstructions on the sphere, and point source recon-
structions in radioastronomy. The proposed algorithm improves
substantially over state-of-the-art methods and is able to recon-
struct point sources accurately from irregularly sampled Fourier
measurements under severe noise conditions.

Index Terms—TFinite rate of innovation (FRI), approximation,
sparse reconstruction, irregular sampling, continuous-time spar-
sity, radio interferometry.

1. INTRODUCTION

ONSIDER a classic array signal processing problem in
C radio interferometry. The electromagnetic (EM) waves
emitted by celestial sources in the sky are collected by an array
of antennas. The received signals at two antennas differ by a
phase shift, which depends on the relative distance of the an-
tennas and the point source locations in the sky (Fig. 1). It can
be shown that the cross-correlation of the received EM waves
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Fig. 1. Schematic diagram of a radio interferometer. The cross-correlations
of the received signals at different antennas are related to the Fourier transform
of the sky image (see Table I) at certain non-uniform frequencies.

TABLE I
SUMMARY OF RADIO ASTRONOMY TERMS

Term
sky image

Meaning
Brightness distribution of the sky.

point sources Celestial sources that can be modeled as Dirac
delta distributions.

visibility Cross-correlations of the received signals at

different antennas. It is related to the Fourier

transform of the sky image.

Fourier domain coverage. A radio interferom-
eter can only cover part of the Fourier domain
at some irregular frequencies.

uv-coverage

dirty image Inverse Fourier transform of the irregularly

sampled Fourier transform of the sky image.

is related to the Fourier transform of the underlying sky image
(see Table I) sampled at non-uniform frequencies [4]. The goal
is to reconstruct these point sources, which are modeled as a
weighted sum of Dirac delta distributions, from the irregularly
sampled Fourier measurements in continuous space.

The classic approach in radioastronomy is to assume that
the point sources are located on a discrete grid (i.e., griding).
The associated discretized sky image is then reconstructed by
taking the inverse discrete Fourier transform (see e.g. Fig. 2(a))
followed by an iterative deconvolution process [5]. Recently,
it has been shown that the conventional discretized approach
is related to compressed sensing, where the ¢; norm of the
discretized sky image is minimized subject to the data-fidelity
constraint [6]—[8]. Note that the reconstruction accuracy of the
sky image is inherently limited by the resolution of the grid: In
order to obtain a more accurate reconstruction, a denser grid has
to be used. Additionally, the measurement matrix, which relates
the sky image to the Fourier measurements, is determined by the
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Fig. 2. Accurate reconstruction of point sources’ locations from partial

Fourier domain measurements (number of irregular Fourier samples: 8000,
SNR = 5 dB). (a) Spatial domain representation (a.k.a. “dirty image” in
radioastronomy) associated with the given partial Fourier measurements.
(b) Probability density of the reconstructed point source locations with the
FRI approach (number of independent noise realizations:1000; average estima-
tion error of Dirac locations: 8.07 x 10~*). For comparison with other methods
see Fig. 11.

layout of the antenna arrays. It does not necessarily satisfy the
restricted isometry property required in standard compressed
sensing theory.

Alternatively, we can address the point source reconstruc-
tion problem directly in continuous space by using algorithms
developed for signals with finite rate of innovation [3] (FRI).
A common feature of these signals is that they can either be
represented as or transformed to a weighted sum of sinusoids,
which is also the case for point source reconstruction (see (16) in
Section V). The key to the reconstruction of FRI-type signals [3],
[9]-[17] is the annihilating filter method, which is related to
Prony’s method [1] in spectrum estimation: We can build a fi-
nite length discrete filter (i.e., the annihilating filter) such that
its convolution with uniformly sampled sinusoids is zero. The
point source locations are then given by the roots of a polyno-
mial, whose coefficients are specified by the annihilating filter.
However, despite the ability to reconstruct the point sources di-
rectly in continuous-domain, the classic FRI approach cannot
deal with irregularly sampled data.

In this paper, we propose a robust reconstruction algorithm
that removes the uniform-sampling limitation from the FRI
framework. Therefore, it allows to reconstruct the point sources
in the continuous space with irregularly sampled Fourier mea-
surements. We achieve this by establishing a linear relation
between a set of unknown uniform Fourier samples, which can
be annihilated by a discrete filter, and the given measurements
(Fig. 3). We recast the point source reconstruction as an approxi-
mation problem, where we would like to find a sum of Dirac that
is consistent with the measurements: The discrepancy between
the measured and re-synthesized samples (based on the recon-

continuous domain sampled domain estimation domain
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Fig. 3. Any continuous domain signal, which can be represented as a sum of
sinusoids by applying a certain transformation 7, is an FRI signal. The classic
FRI framework reconstructs the continuous domain signal from a set of uniform
samples. Our focus in this paper is on cases where measurements are taken
irregularly. We will identify a linear mapping G that relates uniform samples to
these measurements with a good approximation.

struction) should stay within the (known or estimated) noise
level. A valid solution of the signal approximation problem is
obtained with a constrained optimization, where the approxi-
mation error is minimized subject to the annihilation constraint
(see Section III for details). Thanks to the new approach, point
sources are recovered accurately in continuous space even in
severe noise conditions (see Fig. 2 and Fig. 11). The proposed
approach shows a substantial improvement in both accuracy
and resolvability of closely located sources over a state of the
art method based on discrete ¢; minimization (see Fig. 11).

It turns out that our contribution is much more general than
the specific algorithm to solve the point source reconstruction in
radioastronomy: In fact, all FRI reconstruction problems can be
formulated concisely within the same algorithmic framework.
In the proposed approach, we work directly with the given sam-
ples, which themselves may not be annihilated right away. With
previous approaches [3], [18], [19], a linear transformation had
to be applied to the samples first [20], [21]. We not only simplify
the problem formulation but also can address cases that were
overlooked and considered very challenging to solve with FRI
(e.g., the Dirac reconstruction with non-uniform samples). We
demonstrate the versatility and robustness with several exam-
ples, including the important Dirac reconstructions with irregu-
lar time/Fourier domain samples (Section IV-A and IV-B), FRI
curve reconstructions (Section IV-C) and the recovery of Diracs
on the sphere (Section IV-D).

Our goal is to provide a unified algorithmic framework, which
is simple yet flexible so as to cope with various FRI sampling
problems. To facilitate future research and the applications of
the proposed algorithm, a Python implementation of all the
examples is made available online.'

Before proceeding, we briefly point to literature related to
sparse signal recovery. We shall not review various algorithms

The codes are available at http://lcav.epfl.ch/people/hanjie.pan
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for the classic spectrum estimation in detail but rather refer
readers to standard textbooks (e.g., [2]) for comprehensive re-
views. One notable algorithm in spectrum estimation is iterative
quadratic maximum likelihood (IQML) [22] and was an inspi-
ration for our approach. In a classical sparse recovery setting,
the signal is recovered by minimizing the ¢; norm of the target
sparse signal [23]. Recently, it has been extended to continuous
domain by minimizing the total variation [24] (or in general an
atomic norm [25]) of the continuous sparse signal. It has been
shown that the sparse signal can be reconstructed exactly pro-
vided that a minimum separation condition is met [24]-[28].
Alternatively, the optimal reconstruction can be formulated as a
structured low-rank approximation, where the rank of a data ma-
trix (typically of Toeplitz/Hankel structure) is minimized sub-
ject to a data fidelity constraint. This non-convex optimization
is then solved either heuristically [29]-[31] or via convex relax-
ation [32]-[34].

The paper is organized as follows. We briefly review the
classic sampling and reconstruction framework for signals with
finite rate of innovation in Section II. It serves as the basis for
Section III, where we propose a novel algorithmic framework.
Both the problem formulation and the implementation are de-
veloped. Next we demonstrate the versatility and the robustness
of the proposed approach by solving four different FRI prob-
lems in Section IV. Further, we illustrate in detail the applica-
tion to radio interferometry in Section V before we conclude in
Section VI.

II. THE CLASSIC FRI RECONSTRUCTION FRAMEWORK

From an algorithmic point of view, if a continuous domain sig-
nal is or can be transformed into a finite sum of sinusoids, then it
is a finite rate of innovation (FRI) signal [3], [18]. The FRI sam-
pling problem then boils down to estimating frequencies of the
sinusoids from the given measurements. From this perspective,
it coincides with the classic harmonic retrieval problem [35],
which is encountered in many applications [4], [36], [37].

One such example is point source reconstruction in radioas-
tronomy as discussed briefly earlier. Similar principles are used
for target localization in radar systems as well as in acoustic
source localization with microphone arrays.

Another example is X-ray crystallography, where the goal
is to determine the atom locations from measured diffraction
patterns. The diffraction patterns are the Fourier transform of an
autocorrelation function, which is a sum of sinusoids [36]. The
distances between atoms are directly related with the frequencies
of these sinusoids.

The classic FRI approach (Fig. 3) for solving the frequency
retrieval problem consists in sampling the continuous domain
signal uniformly. On the one hand, these uniform samples
have a one-to-one correspondence with uniformly sampled
sinusoids: by applying an inverse mapping (typically an
inverse DFT transformation) to the uniform samples, we get
an estimate of the sampled sinusoids. On the other hand, it
is easy to show that these sampled sinusoids satisfy a set of
annihilation equations [3], [18]: There exists a discrete filter
(ak.a. “annihilating” filter), which depends on the unknown

frequencies of the sinusoids, such that its convolution with the
sampled sinusoids is zero. The annihilating filter coefficients
are reconstructed uniquely (up to a scaling factor) by solving a
linear system of equations. The frequencies of the sinusoids
are obtained from the roots of a polynomial whose coefficients
are specified by the annihilating filter. Once we have recovered
the frequencies of the sinusoids, the reconstruction of the
sinusoids’ amplitudes amounts to a simple least square mini-
mization, which reverts to solving a linear system of equations.

Various reconstruction algorithms have been proposed to
improve the robustness, notably total least square minimiza-
tion [3], matrix pencil approach [21], [38] and the Cadzow
denoising [18], [39]. In the total least square minimization, one
obtains the filter that minimizes the /5 norm of the annihilation
error; the matrix pencil approach takes advantage of the shift-
invariant subspace property in the structured data matrix; the
Cadzow denoising method exploits the fact that the convolu-
tion matrix associated with the annihilating filter has a Toeplitz
structure and is rank deficient. The Cadzow method denoises
the data by iterating between a thresholding step (to ensure that
the matrix is singular) and a projection step (to make the matrix
Toeplitz). Recent works [30], [31] generalize such a strategy by
formulating the reconstruction problem explicitly as a structured
low-rank approximation.

For the rest of the paper, we focus on more general cases
where the continuous domain signal may not be sampled uni-
formly. In this case, we can no longer estimate the sampled si-
nusoids from the given measurements directly. We will develop
a generic approach to solve the FRI reconstruction problem in
this non-uniformly sampled case.

III. A GENERIC FRI RECONSTRUCTION ALGORITHM

In this section, we propose a robust reconstruction algorithm
for signals with finite rate of innovation from arbitrary sam-
ples. The reconstruction problem is recast as a constrained op-
timization (Section III-A). We discuss the essential ingredients
(Section III-B), the optimization strategy (Section III-C1) as
well as the implementation details (Section III-C2) of the pro-
posed algorithm.

A. FRI Reconstruction as a Constrained Optimization

We reformulate the generic FRI reconstruction question as
an approximation problem, where we would like to fit an FRI
model to the given measurements, or

Given a set of measurements, reconstruct an FRI signal that
is consistent with the measurements.

The consistency constraint requires that if we re-synthesize
the measurements based on the reconstructed FRI signal pa-
rameters, the difference with the given measurements should
stay within the noise level (or in general within the allowed
approximation error). But how can we ensure that the recon-
structed signal satisfies our FRI signal model? One key feature
of many FRI signals is that they can be transformed into a sum of
sinusoids. The uniform samples of sinusoids are known to be an-
nihilated by a filter with a specific structure that is related to the
FRI signal parametrization [3], [18]. Therefore, a signal being
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the annihilation constraint on the unknown sampled sinusoids b, which are related with a via a linear mapping G.

FRI is algorithmically equivalent to satisfying the annihilation
constraint, after some linear transformation (see Fig. 3).
Problem 1 (Constrained Minimization):

min la — Gb||3
b.ceC (P1)
subject to b xc =0,

where (Fig. 4)

® aisthe given set of measurements (sampled non-uniformly
in general);

® b is the vector of uniform samples of the sinusoids to be
annihilated. The convolution constraint guarantees that b
is effectively a sum of sinusoids;

® c is the annihilating filter coefficients, which belongs to a
certain feasible set C (see a precise discussion in the next
subsection);

The Generic FRI Reconstruction Problem

Goal: Reconstruct an FRI signal b that is consistent (up to
the noise level £2) with the given measurements a:

find b,ceC
subject to bxc =0,
la—Gb3 < &

/I bis FRI
/I consistency

Key: (i) The linear mapping G between a and b;

(i) Constrained minimization (P1);

(iii) Stopping criterion: compare ||a— Gb||2 with the
noise level €2 (Section ITI-B3);

(iv) Random initialization (Section I1I-B4).

¢ G models the linear mapping? between the measurements
a and the uniform sinusoid samples b. In general, in the
presence of noise, we need to increase the number of mea-
surements.

Superficially, the data term ||a — Gb||3 looks similar to the
one used in compressed sensing (CS) based approaches. Yet,
it arises from a completely different approach to resolution
(see Fig. 5):

® On the one hand, in CS-based sparse recovery the final

recoverable resolution is directly related to the step-size of
the uniform grid that supports the samples b (see e.g., [25]
Remark 1.2): Perfect reconstruction is obtained for Diracs
that are separated by a minimum distance that is propor-
tional to the grid step-size. The matrix G then encodes the
“non-uniform” down-sampling that provides the known
measurements a; for that reason, G is necessarily a fat
matrix.

ZFor simplicity, we will assume that the linear transformation G has full
column rank throughout the paper.

[ unknowns (CS) e measurements (CS) ]

flexible spacing
(resolution

G @ 11y 1173 _rte
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t/rse ‘ (b) i . . T. T T-. i g- %
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Fig. 5. Problem setup differences between compressed sensing and finite rate
of innovation (FRI). (a) In compressed sensing based approaches, the recover-
able resolution (commonly known as the minimum separation requirement in
compressed sensing) is related to the step-size of the underlying grid. (b) In FRI,
the reconstruction accuracy is independent of the spacing between the uniform
samples (see texts after (P1) in Section III-A).

® On the other hand, in FRI the final resolution is only re-
lated to the noise (or model mismatch) level. This error
is typically given by the Cramér-Rao lower bound, which
is reached by FRI-based reconstruction algorithms exper-
imentally [18], [31]. The samples b have to be taken on
a uniform grid in order for the annihilation equation to
be satisfied, but the step-size of the grid is flexible and is
unrelated to the resolution of the method. In that context,
the matrix G models a different type of linear relation
between arbitrary uniform samples b and arbitrary non-
uniform known measurements a than in compressed sens-
ing; for that reason, G can — and will, in this paper — be
a tall matrix.

Note that (P1) is non-convex with respect to (b, c) jointly.
Despite various attempts to solve similar constrained optimiza-
tions [22], [40], a reliable algorithm for finding the optimall
solution of (P1) has yet to be discovered. But do we actually
need to obtain the optimal solution of (P1)? In many cases, we
know (or can estimate accurately) the noise level present in the
given measurements. Hence, we may use this additional infor-
mation in validating whether a solution is feasible or not: we
claim that any solution b is valid as long as it satisfies both
the annihilation and consistency constraint for the given mea-
surements (up to the noise level £?), which we formalize as
Problem (P2).

Problem 2 (Constrained Approximation with Noise Level):

find b,ce(C
subjectto b*xc =0, (P2)

la—Gbl} <<

30ne would expected that a G matrix that maps too few uniform samples to
the non-uniformly sampled measurements, would lead to worse reconstruction.
However, this imbalance seems not to be critical experimentally (see examples
in Section IV-B and Section V-C).
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One way to find a valid solution of (P2) is to resort to the con-
strained minimization (P1). However, we should keep in mind
that it is not the optimal solution of (P1) that we seek but rather
a valid solution that satisfies the constraints in (P2). Indeed,
for any non-zero ¢, (P2) has infinitely many solutions, among
which one is the optimal solution of (P1). From an approxima-
tion point of view, all these solutions are valid because, for each
of them, the reconstructed parametric signal explains the given
measurements up to the noise level*. This subtle difference is
important, since it allows to develop a reliable algorithm in the
rest of this section.

B. Essential Ingredients

Before we present the algorithm that solves (P2), we want to
highlight five key elements of the proposed constrained formu-
lation.

1) “Bilinearity” of the Annihilation Constraint: The anni-
hilation equation is nonlinear with respect to the (b, c)-pair.
However, if we fix one variable (e.g., ¢), then the annihilation
constraint reduces to a linear constraint with respect to the other
variable (e.g., b here). Motivated by the bilinearity of the anni-
hilation constraint, we define a right dual operator.

Definition 1: Denote the annihilation constraint in (P2) as
T(b)c = 0, then the right dual of T(+) is an operator R(-) such
that R(c)b = T(b)c for all b, c.

In many FRI reconstruction problems, the annihilation equa-
tions are convolutions, which implies that T'(b) and R(c) are
Toeplitz-structured convolution matrices. We can justify the
right dual definition from the commutativity of the convolution:
bxc=cx*b.

Thanks to the bilinearity of the annihilation constraint, it can
be shown that the bivariate optimization (P1) is equivalent to a
constrained optimization with respect to c alone. This equivalent
formulation provides an iterative strategy for finding a valid
solution of (P2) (see Section III-C).

2) Forward Mapping: Unlike most annihilating filter based
reconstruction algorithms [3], [18], [19], we deal with the mea-
surements directly without pre-processing the given measure-
ments first (e.g., a truncated DFT transformation). The linear
mapping G, which links the measurements to a sequence that
can be annihilated, is integrated in the reconstruction algorithm.

Thanks to the new approach, we are not only able to extend
the FRI framework to cases with irregularly measured samples
but also streamline otherwise rather complicated FRI recon-
structions (see Section I1I-C2).

3) Stopping Criteria: Because of the non-convexity of (P1),
we should not expect the algorithm to always find the global
optimal solution in general. In fact, it is not the optimal so-
lution of (P1) that we should seek but rather a solution that
(1) satisfies the annihilation constraint and (ii) has a fitting error

“#Notice that & controls the approximation error with the ground truth: From
the triangle inequality, the difference (2-norm) between the re-synthesized mea-
surements with the ground truth signal and any one of the valid solution of (P2)

is at most 2¢. This corresponds to a maximum 2&/+/ Ayin (GH G) difference

between the reconstructed and the ground truth b, where A, iy (+) is the smallest
eigenvalue of a matrix.

||la — Gb||3 below the noise level [41]. After all, our goal is to
use the constrained minimization as a tool to find a valid solu-
tion of (P2) — any solution that meets the two criteria is a valid
one for the FRI reconstruction.

The criteria are constructive: If we can guarantee that the
reconstructed signal always satisfies the annihilation constraint,
which is the case with the proposed algorithm (see details in
Section III-C1), then we only need to check the fitting error in
order to decide whether to terminate the algorithm or not.

4) Random Initialization: Because of the non-convexity
of (P1), a commonly used strategy is to initialize the algorithm
with a “good” candidate solution, which is hopefully close to
the ground truth, e.g., the total least square reconstruction. In
our proposed algorithm, we choose to initialize the annihilating
filter coefficients ¢ with a random vector instead.

The randomness of the initialization actually gives the algo-
rithm the flexibility to have fresh restarts to increase the likeli-
ness of meeting the stopping criteria — if the algorithm fails to
find a solution that meets the aforementioned stopping criteria
(Section III-B3), we can always reinitialize the algorithm with
a different annihilating filter. The random initialization strat-
egy has been shown to result in a valid solution within a finite
number of initializations (typically less than 15) in extensive
tests [42].

5) Feasible Set C of the Annihilation Filter Coefficients: Ob-
serve that (P1) is scale invariant with respect to the annihilating
filter coefficients c. Without any normalization, we have a triv-
ial solution ¢ = 0. Experimentally, we have observed that the
most robust performance is achieved by restricting® cflc = 1,
where ¢ is the random initialization for the algorithm (see [19]
as well).

C. An Iterative Algorithm to Solve (P2)

1) Inspiration from (P1): For a given c, (P1) is a constrained
quadratic minimization with respect to b. By substituting the
solution b (in a function of c) to (P1), we end up with an
optimization over the annihilating filter coefficients c alone.
Denote the annihilation constraint in (P1) as a matrix vector
product: T(b)c = 0. It can be shown that (P1) is equivalent to
(see Appendix A):

min ¢ T (8)(R(c)(G"G) 'R (c)) "' T(B)c )

subject to cflc =1,

where 3 = (GHG)"'GHa, and R(-) is the right dual of T()
defined in Definition 1.

Then, the reconstructed FRI signal can be expressed in a
function of c as:

b=8-(G"G)"'R"(c)(R(c)(G"G)"'R" (C))_lR(C),?Z-)

50ther (natural, but less successful) normalization strategies [3], [18] include
a quadratic constraint ||c||2 = 1; or a linear constraint on one component of ¢,
e.g., eUHc =1, where ey = [1,0,...,0]T.
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In general, it is very difficult to solve (1). But we can draw inspi-
ration from this equivalent formulation and devise an iterative
algorithm for finding a valid solution of (P2).

More specifically, our strategy amounts to minimizing the
objective function in (1) iteratively: At each iteration, we build
the matrix (R(c)(G"G)"'RH(c))~! with c = ¢, 1, the filter
coefficients from the previous iteration. The updated c is then
obtained by solving a quadratic minimization:

min €T (R(e, )G R e, ) T B

subject to cllc = 1,

which has a simple closed form solution. For the consideration of
numerical stability, we are not going to implement the solution
of (3) directly but revert to solving an equivalent linear system of
equations instead (see Section III-C2). The uniform sinusoidal
samples b,, is updated based on (2) with the reconstructed c,,
at the current iteration.

Note that since (2) is obtained by solving (P1) for a given c,
by construction, b,, obtained this way will always satisfy the
annihilation constraint: R(c, )b, = 0. Hence, we only need
to compute the approximation error ||a — Gb,||3 and check
whether it is below the noise level in order to terminate the
iteration (see comments in Section I1I-B3).

The proposed approach may be judged similar to the iterative
quadratic maximum likelihood [22] method in the spectrum
estimation community, with the important difference: we only
use the constrained optimization as a way to find a valid FRI
reconstruction (P2). Hence, it is not the convergent solution
of (P1) that matters (as in [22]) but rather any solution that
meets the stopping criteria in Section III-B3. The randomness
in the initialization and the linear constraint give the algorithm
more flexibility and has been shown [42] to achieve more robust
reconstruction results for the FRI problems.

2) Efficient Implementation: A direct implementation of (3)
for the update of the annihilating filter coefficients involves
several nested matrix inverses and would not only be inefficient
(compared with solving linear system of equations) but also
numerically unstable even with double-precision accuracy.

We can obtain the solution of (3) by solving a larger (com-
pared with the dimension of c) linear system of equations with
a simple trick: We introduce an auxiliary variable as a substitute
of a matrix inverse applied to the input vector. Extra equations,
which only involve multiplication of the matrix (instead of its
inverse), are subsequently added to ensure that the resultant
problem is equivalent to the original one.

Proposition 1: The solution of (3) is given by solving a linear
system of equations

0 TH(B) 0 c | [cn 0
T(8) 0 ~R(c,-1) 0 0
0  -RYc,.) GiG 0 “ o]’
cl! 0 0 0 |2 1

(€]
where £, v, and A are newly introduced auxiliary variables.
Similarly, the reconstructed FRI signal b,, is updated as the

Algorithm 1: Robust FRI Signal Reconstruction.

Input : Measurements a of the FRI signal,
transformation matrix G, noise level 2

Output: Uniform sinusoid samples b, annihilating filter
coefficients ¢

for loop < 1 to max. initializations do

1 Initialize ¢ with a random vector cg;
for n < 1 to max. iterations do
2 Build the augmented matrix with c,,_; and
update c,, by solving (4);
3 Build the augmented matrix with c¢,, and update

b,, by solving (5);
if |a — Gb,||3 < &2 then
4 ‘ Terminate both loops;
end

end
end
5 b+ b,, c+ c,.

solution of

GG RY(c,)| |b, Gla 5)
R(c,) O e | |o ’
where £ is the auxiliary variable.
Proof: See Appendix B. ||

Instead of calculating several matrix inverses, we only need
to solve a larger linear system of equations and extract the
corresponding components of the solution in order to update c
and b from iteration to iteration. For a vector b of size L, the
computational complexity at each iteration is (’)(L3) (see [43]
Chapter 3).

In the actual implementation, we randomly initialize the algo-
rithm with a maximum number of iterations, e.g., 50. At each it-
eration, we compute the approximation error ||a — Gb,, ||3 with
the current reconstruction b,, and compare it with the noise level.
If the error is below the noise level, then the iteration is termi-
nated. In the case where the algorithm fails to find such a solution
after the maximum number of iterations is reached, we reinitial-
ize the algorithm with a different random vector. We summarize
the proposed algorithm in Algorithm 1. In [42], this strategy
(50 inner iterations and 15 random initializations) is shown
to succeed in 99.9% cases. Alternatively, we can always run
the algorithm with a (fixed) maximum number of random ini-
tializations and return the reconstructed (b, c)-pair that has the
smallest fitting error. This strategy is useful for cases where we
do not know (or do not have a good estimate of) the noise level a
priori, albeit less efficient than the approach used in Algorithm 1:
With a given (or estimated) noise level, Algorithm 1 usually ter-
minates much earlier before reaching the maximum number of
random initializations.

IV. FOUR ALGORITHMIC EXAMPLES FOR VARIOUS
TYPES OF FRI SIGNALS

In the previous section, we presented a generic reconstruc-
tion algorithm for signals with finite rate of innovation. To
demonstrate the versatility of the proposed algorithm, we
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showcase several FRI reconstruction problems, including the
Dirac reconstruction with non-uniform time/Fourier domain
samples (Section IV-A and IV-B), FRI curve reconstruction
(Section IV-C) and the reconstruction of Diracs on the sphere
(Section IV-D).

A common misconception on annihilating-filter based FRI
reconstruction algorithms is that they can only deal with uni-
formly taken samples, which have one to one correspondence
with uniform samples of a sum of sinusoids, e.g., the DFT co-
efficients in the reconstruction of the Dirac stream (6). Such an
artificial limitation is waived as soon as we are able to identify
the forward mapping (or an approximation of it) that links the
sequence to be annihilated and the given measurements, i.e.,
G in (P2). We show that we can either find the exact mapping
(Section IV-A) or approximate it by interpolation (Section I'V-
B). The new formulation is flexible in the choice of the objec-
tive function or a proper constraint: instead of being restricted
by the reconstruction algorithm, e.g., the Cadzow denoising
method, we can use a different formulation, which is simpler
and gives more robust reconstruction results (Section IV-C and
Section IV-D).

A. Stream of Diracs With Irregular Time Domain Samples

Consider a T-periodic stream of Diracs:

K
2(t) =D > apd(t—ty — k'), (6)

k'eZ k=1

where o, and t; are unknown signal parameters. The goal is
to reconstruct these parameters from a set of ideally low-pass
filtered samples that are taken at irregular (but known) time

instances t}, ...t}
K
ye=> app(ty —t;) forl=1,... L. (7)
k=1

Here ¢ is the Dirichlet kernel ¢(t) def %

bandwidth of the ideal lowpass filter.

e Uniform Samples of Sinusoids: Observe that () is a linear
combination of the same function with different shifts — if
we transform the signal to the Fourier domain, the spectrum
is a sum of sinusoids:

K
= 13 agertme
Ty = — ape T,
T
k=1

where Z,,, is the Fourier series coefficients of the periodic
signal x(t). Since &, is a uniformly sampled sum of si-
nusoids, we know that it can be annihilated by a discrete
filter.

® Relation with the Given Measurements: It is easy to show
that the given measurements are linearly related with z,,
via a truncated inverse DFT transformation:

1 L i2amog
w=g O dud TN (8)

\m|§L72nJ

and B is the

K =5, L =11, SNR = inf dB, ter = 3.05 x 10716
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(a) Noiseless Reconstruction

K =5, L =81, SNR = 5dB, ter = 1.30 x 1073
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(b) Noisy Reconstruction
Fig. 6. Reconstruction of a stream of Diracs (6) from ideally low-pass filtered

samples taken at irregular time instances (8). (a) Exact reconstruction in the
noiseless case (filter bandwidth B = 11, number of samples L = 11). (b) Ro-
bust reconstruction in the noisy case (SNR = 5 dB, filter bandwidth B = 81,
number of samples L = 81, average reconstruction error for ¢j,: 1.30 x 107%).

In terms of the reconstruction algorithm, we can rearrange the
samples y, and Z,, as column vectors a and b, respectively; the
linear mapping (8) between b and a is denoted by the matrix G.
Then the “denoised” FRI signal as well as the associated anni-
hilating filter ¢ = [cy, ..., cx ]t are given by Algorithm 1. The
Dirac locations are reconstructed by taking the roots of the poly-
nomial whose coefficients are specified by c; while the ampli-
tudes are reconstructed with least square minimization [3], [18].

We summarize the reconstruction results in Fig. 6 for both
the noiseless and noisy cases, where Gaussian white noise is
added to the lowpass filtered samples. Note that the irregular
sampling scheme does not change the minimum number of sam-
ples required in order to recover the original signal (Fig. 6(a)):
With at least 2K + 1 samples, the exact reconstruction (up to
numerical accuracies) is obtained. In the presence of noise, we
need to over-sample the signal. The proposed algorithm is ro-
bust enough to give a reliable reconstruction in the presence of
severe noise (SNR = 5 dB).

B. Weighted Sum of Diracs With Irregular Fourier Domain
Samples

In this example, we consider a slightly different Dirac recon-
struction problem than that in the previous section. In particular,
consider a sparse signal that consists of K weighted Diracs:

K
a(t) =Y ard(t —ty), ©)
k=1

with limited time support between —7/2to 7/2, i.e., |t| < 7/2.
Instead of taking the time domain samples (as in the previous
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example), the Fourier transform

K
X(w) = ape 9, (10)
k=1

is measured at some frequencies wy for ¢ = 1,..., L.

The question at hand is: Can we recover the original sig-
nal (9) from non-uniform Fourier samples X (wy)? In many
applications, e.g., magnetic resonance imaging [44], hologra-
phy [45], crystallography [36] and radio interferometry [46],
direct Fourier domain measurements are available thus making
the sparse reconstruction problem of particular interest.

e Uniform Samples of Sinusoids: Since the Fourier trans-
form (10) is a weighted sum of sinusoids, the uniformly
sampled Fourier transform on a grid: X (27m/7) for
m € Z, can be annihilated.

® Relation with the Given Measurements: In general, the
given Fourier measurements are taken non-uniformly.
Hence, we cannot apply the annihilating filter method
directly. However, not everything is lost: We may inter-
polate the Fourier transform over a finite interval, e.g.,

w € [-Mm, M~
2mm w
x (7)o (5o ) @

2
im|< | %= |
where 1)(+) is a certain interpolation kernel, e.g., a spline
function.

By evaluating (11) at wy, we establish a linear mapping
(i.e., G in the reconstruction algorithm) between the given
Fourier measurements a : X (wy) and the unknown sampled
sinusoids b : X (2rm/7). Provided that we have sufficiently
many measurements, i.e., L. > M, then we can reconstruct (9)
with Algorithm 1 (see [30] for a similar strategy in spectral
estimation).

We may justify such an approach by considering a specific
case, where the Fourier transform X (w) is periodic with pe-
riod 27 M for some M such that M7 is an odd number. It
is proved that we can represent X (w) exactly by interpolating
with the Dirichlet kernel ¥ (w) = #ﬁ%)
Appendix C and Fig. 7). o

Note that rather than enforcing the interpolation equation (11)
as a hard constraint on the reconstructed signal, we only use it to
derive a data-fidelity metric in (P2) that measures the approxima-
tion quality. The tradeoff is that we can no longer reconstruct the
signal exactly in general — We do not have the actual mapping
Gy (which depends on the unknown signal parameters oy
and t;) but only its approximation from the interpolation (11):
G = Gy + G.. Consequently, we will have a model mismatch
even in the noiseless cases® (Fig. 8(a)). As we have mentioned
in Section III-C2, one possible way to circumvent the difficulty
in choosing ¢ in (P2) is to run the algorithm with fixed random

X(w) =

in this case (see

®Equivalently, we can view the noiseless measurements a = G(b as being
“noisy” with respect to G, which is used in the data-fidelity constraint in (P2):
a = Gb + noise, with noise = —G_.b.

K =5,L=21,SNR =infdB, ter = 1.03 x 10716
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Fig. 7. Exact reconstruction of weighted Diracs (9) with periodic spectrum

from irregularly sampled Fourier measurements. Dirichlet interpolation kernel
is used to relate the uniform samples of sinusoids to the measurements (period
of the spectrum: 27 x 21; number of samples L = 21).
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Fig. 8. Reconstruction of weighted Diracs (9) from non-uniform Fourier

samples (10). The FRI framework makes use of the piecewise linear inter-
polation (11) with 21 uniform knots. (a) Reconstruction with noiseless Fourier
domain samples (number of samples L = 42, average reconstruction error for
t;:: 1.95 x 1073). (b) Robust reconstruction with noisy Fourier measurements
(number of samples L = 105, SNR = 5 dB, average reconstruction error for
tp:2.34 x 107%).
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initializations. The solution that gives the minimum fitting error
is taken as the reconstruction.

We demonstrate the effectiveness of the interpolation strat-
egy (11) in Fig. 8, where the interpolation kernel is the first order
B-spline:

1-w ifwel1),
Y(w)=<K1+w ifwe[-1,0),
0 otherwise.

We have chosen 21 interpolation knots located uniformly on the
interval [—217, 217], where the Fourier transform X (w) is ap-
proximated. Complex-valued Gaussian white noise is added to
the Fourier samples in the noisy case (SNR = 5 dB). Even with
such a coarse approximation, we still obtain robust and accurate
reconstruction of Diracs in the presence of noise (Fig. 8).

C. FRI Curves

As we mentioned in the introduction, the Cadzow denois-
ing algorithm [18] tries to find a structured matrix (typ.
Toeplitz/block-Toeplitz) that satisfies the rank constraint while
being as close as possible to the noisy data matrix. With the
Cadzow denoising method, we are restricted to work directly
with a sequence that can be annihilated (so that we can enforce
the rank constraint on the matrix). In comparison, we have more
freedom with the proposed algorithm in defining what is the un-
known data b other than the obvious choice as the sampled
sinusoids. We demonstrate this flexibility with an example of
curves with finite rate of innovation [16].

Consider an interior indicator image associated with a curve:

1 if (z,9) € C
IC (l‘, y) =
0 otherwise,

where Co’ denotes the interior of the curve C. Our goal is to
reconstruct the curve locations in the continuous domain from
a set of ideally lowpass filtered samples of the binary image
Ic (.’E ) y) .

o Uniform Samples of Sinusoids: We may treat the deriva-
tive of the indicator image as an infinite sum (in fact a
line integration) of Diracs along the curve. In the Fourier
domain, the Wirtinger derivative (i.e., 0 def % + j%) is
therefore a sum of sinusoids. Consequently, we know that
the Fourier transform of the derivative image on a uniform

grid
—~ 21k 2wl - [ 27k 2wl
iy, — (ﬂ Hﬂ) i (ﬂﬁ) (12)
T1 T2 T1 T2
satisfies the annihilation equations: ¢y, ; * 5.\7 k1 = 0. The

curve locations are specified by the roots of a 2D polyno-
mial with coefficients ¢, ;.

® Relation with the Given Measurements: Similar to the 1D
case in Section I'V-A, the Fourier transform of the indicator
image on a uniform grid is related with the ideally lowpass

10° T T T
G SRR EEE S RS EE S & EPT Total Least Square
I~ - Cadzow’s Method

B ~L Structured Low-rank
. Approximation E

= Proposed

1074 1 1 1 L L L L L 1
0 5 10 15 20 25 30 35 40 45 50

noise level (SNR in [dB])

Fig. 9. FRI curve coefficient error against different noise levels (curve co-
efficients ¢, ; size: 3 x 3, sample size: 45 x 45, bandwidth B = By = 25,
periods 71 = 7 = 1). The results are averaged over 500 independent noise
realizations.

filtered samples’ via a truncated inverse DFT. Combined

with (12), we have a linear mapping from the unknown

sampled sinusoids ol %1 to the measured spatial domain
samples.

In our original approach [16], we first obtain fc(QTle, QT—’ZZ)

by applying a truncated DFT transformation to the given sam-

ples. Then we apply Cadzow’s method to denoise ol k1> since

it is I %1 that satisfies the annihilation. Unfortunately, doing
so inevitably amplifies the high frequency noise components,
which explains the relatively limited performance of Cadzow’s
method for FRI curve reconstructions (Fig. 9).

In our new approach, we do not have such a restriction any-
more: in (P2), we can choose a directly as the pixel values I, ,,,
the unknown b as the Fourier transform I (%, 27—721) and the
linear mapping G as the truncated inverse DFT transformation.
The right dual matrix R(-) in this case is no longer the convolu-
tion matrix associated with the filter ¢;, ; alone — we should right
multiply the convolution matrix by a diagonal matrix whose en-
tries are specified by the corresponding frequencies (%, %l)
in (12).

We summarize the reconstruction results obtained with to-
tal least square minimization [3], [18], Cadzow’s method [18],
structured low-rank approximation [31] and the proposed
method in Fig. 9, where different levels of Gaussian white noise
is added to the ideally lowpass filtered samples. Since the annihi-
lating filter coefficients are invariant with respect to any non-zero
scaling, we measure the reconstruction error with a scale-
invariant standard deviation of the error between the ground
truth ¢ and the reconstructed coefficients ¢’: std(yc’ — c¢). Here
the scalar v is chosen in such a way that ||yc’ — c||3 is mini-
mized. An example at noise level SNR = 5 dB is also included
for visual comparisons (Fig. 10). The proposed algorithm is
more robust even in such a severe noise condition.

"Note that with the same argument as in Section IV-A, we can deal with
ideally lowpass filtered samples that are taken non-uniformly.
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(a) Noisy Samples
(SNR = 5dB)

(b) Cadzow’s Method [18]

(c) Structured Low-rank

Approximation [31] (d) Proposed Approach

Fig. 10. Visual comparisons of the reconstructed curves with Cadzow’s
method, structured low-rank approximation [31] and the proposed approach
(noise level: 5 dB, curve coefficients cj,; size: 3 x 3, sample size: 45 x 45,
periods 71 = T = 1). The solid black line is the reconstructed curve; while the
dotted red line is the ground truth.

D. Diracs on the Sphere

In most cases, the given measurements of an FRI signal can-
not be annihilated directly. With previous approaches, we had
to apply an inverse transformation in order to obtain a sequence
that can be annihilated. However, such an inverse transforma-
tion is not always easy to identify. Additionally, it makes the
reconstruction problem unnecessarily complicated.

We demonstrate how the proposed algorithmic frame-
work helps simplify the formulation of FRI problems.
Consider an example of Diracs defined on the 2-sphere

s2 {reR3rtr =1}
K
1(0,¢) = Z a6(cosf — cosb;)o(p — ¢r),
k=1
for0 < 6,0, <mand 0 < p, p; < 27. Here 6; and ;. are the
unknown angles of the colatitude and azimuth of the k-th Dirac
and «, is its amplitude.

Similar to the planar case, if we apply a Fourier-like transfor-
mation to Diracs, we will get a sum of sinusoids. More specif-
ically, the Fourier-like transformation on S? involves spherical
harmonics. It can be shown (see Appendix D) that the coeffi-
cients of the spherical harmonic decomposition is

I—|m| K
Il,m = Nl,m E pnﬁ\m| E Oék(COS ok)n (Sinek’)‘m‘eijmpk7
n=0 k=1

(13)
with |m| < land 0 <1 < Ly, for some fixed coefficients p,, ||
that can be precomputed. Here INV; ,,, is a normalization factor
associated with the spherical harmonics of degree [ and order m.

The FRI reconstruction problem that we want to solve is
as follows: Reconstruct (ay,, 0y, i) for k=1,..., K from a
given set of spherical harmonic coefficients (13). In an actual
setup, the measurements are spatial domain samples (on S?),
which have a linear relationship [15], [17] with the spherical
harmonic coefficients (13). With the proposed algorithm, we can

reconstruct the signal from the spatial domain samples directly.
But the complexity is beyond the scope of this section and hence
is omitted.
o Uniform Samples of Sinusoids: Complicated as it may ap-
pear, (13) is a linear combination of uniformly sampled

. . def K . im
sinusoids: by, ,, = > p_; ax(cos ;)™ (sin 6 )lmle—imen,

then
K K
bom =y alup =" allop, a4
k=1 k=1
where 6‘511}{- = ay(cos )", uj, = sin @y e 7¢+ form >0
and u; = ﬁe’(m for m < 0; dfj?k = oy, (sin@k)‘m‘

and v, = cos ;. Consequently, we know that there exist
two discrete filters such that

(2 =0 Vm.

by m j; 07(7:) =0Vn and b, :cn

® Relation with the Given Measurements: The expres-
sion (13) is nothing but a linear mapping from the sampled
sinusoids by, ,, to the given measurements (i.e., the spher-
ical harmonics I, Lm)-

Thanks to this analysis, we are now ready to formulate the
Dirac reconstruction problem on the sphere as two (for u;, and
vy, each) constrained approximations of the form (P2). Take the
reconstruction of vy, as an example:

® ais the given spherical harmonics fl,m;

® bisb, , as defined in (14);

c is the annihilating filter coefficients cﬁf);
G is the linear relation between the given measurements
Il,m and bmm in (13).

By reconstructing u;, and v, from the given spherical har-
monics, the angles ;. and 6, are uniquely specified. The Dirac
amplitudes oy, can be easily obtained using least square mini-
mization once we have reconstructed the values of ¢}, and 6.

One major challenge in the earlier work [17] was to find the
correct inverse transformation that should be applied to I I.m-1n
comparison, such an inverse mapping is no longer required with
the proposed framework, which leads to a significantly more
simplified formulation.

V. APPLICATION TO RADIO INTERFEROMETRY

In this section, we apply the proposed reconstruction al-
gorithm to a simplified radio interferometry problem. Cases
with more realistic settings will be considered in a follow-up
astronomy-oriented paper.

A. Data Acquisition and Signal Model

A radio interferometer consists of an array of antennas that
collect the electromagnetic (EM) waves emitted by celestial
sources in the sky. In a far field context, we can assume that
these sources are located on a hypothetical celestial sphere and
that the signals arriving at each antenna follow parallel lines
(Fig. 1). Consequently, the received signals at two different
antennas differ by a time delay, which is determined by the
relative locations of the antennas with respect to the celestial
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(d) Statistics of the
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Reconstruction of point sources from irregular Fourier measurements (SNR = 5 dB, number of Fourier measurements: L = 8500). (a) The given noisy

Fourier samples and their spatial domain representation via inverse FFT (a.k.a., the the dirty image in radioastronomy). (b) The compressed sensing result by
minimizing the ¢; norm of the sky image (estimation error for point sources’ locations: 7.34 x 1072). (c) The reconstructed point sources with FRI (estimation
error for point sources’ locations: 8.44 x 1072). (d) Probability density of the estimated point sources’ locations with FRI approach (number of independent noise

realizations: 1000; the average estimation error: 1.09 x 10‘2).

sources. It can be shown that under the assumption of a narrow
field-of-view, the cross-correlation between the received EM
waves at two different antennas (a.k.a. visibility in radioastron-
omy) is related to the Fourier transform of the underlying sky
image I (x, y) at a certain frequency (see [4] Chapter 3, equation
(3.10)). Since there is a finite number of antennas with fixed lo-
cations, the radio interferometer will only have a partial Fourier
domain coverage.

The conventional approach reconstructs the point sources in
the discrete space by de-convolving the dirty image iteratively,
which is the inverse discrete Fourier transform of the irregularly
sampled Fourier measurements. Alternatively, as we demon-
strate in the next section, we can directly address the recons-
truction problem in the continuous-domain. In particular, our
focus in this section is on the reconstruction of a sky image,
which consists of point sources within the field of view:

I(z,y) = 8z — zk,y — Yi) (15)

M-
2

Here 0(-, ) is the Dirac delta distribution or generalized func-
tion, (1, yx ) is the location of the k-th point source, and cy, > 0
is its intensity.

To summarize, the point source reconstruction problem in
radio interferometry is as follows: How can we reconstruct the
K Diracs on a 2D plane (15) from a given set of Fourier domain
measurements at irregular frequencies:

0 g —
2 :ake Jjw, T —jw

(RS 7 (16)

for ¢ =1,..., L? Note that in a realistic setting, these frequen-
cies (w£ ) wy)) should be based on the layout of the radio
telescope. We have considered a simplified experimental setup
here so as to be as close as possible to the algorithmic exam-
ples in the previous section. We leave the extra complications
encountered in practice for an ongoing work on the processing

of real data acquired with a radio telescope.

B. Reconstruction of Point Sources

Note that we have considered a similar 1D Dirac reconstruc-
tion problem in Section IV-B. Hence, we adopt the same strategy
and approximate the Fourier transform over a finite area, e.g.,
w) X wy € [-Mm, Mr] x [~ N, Nx|. For practical consider-
ations, we have chosen the Dirichlet interpolation kernel:

sin(mwy ) sin(rws)

%b(wl ) w2)

) )

for some M and N such that M7 and N7, are odd numbers.
The interpolation equation provides the link between the given
Fourier measurements [ (w§‘> , wy)) and the sampled sinusoids
I(2mm/mi,2mn/m) for |m| < [ 247 | and |n| < | 272 |, which
can be annihilated by a discrete 2D filter.

In general, the solution that satisfies the 2D annihilation equa-
tions is a curve instead of a few isolated Diracs [16]. In fact,
any Dirac that is located on the curve will satisfy the same set
of 2D annihilation equations. One way to overcome such a dif-
ficulty is to reconstruct the Dirac’s x and y locations separately
by enforcing the annihilation constraint along each direction.
Specifically, we would like to find two annihilating filters, whose

MNT 7 sin(g72-) sin( 2
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z-transforms are

K K
OV () =3V =) T - wez )
k=0 k=1

and
K K
CO () =Pt = o JT( - wezy!)
k=0 k=1
with u, = e 7 7 and v = ¢ 775V The rows and columns
of the Fourier transforms [(27m/7,27n /) are annihilated
by the filter [c(()l), e ,C(I?] and [052), e ,c(I?], respectively:
CS,}) s 1 (27rm7 27m> =0 and cff) « 1 <27rm, 27m> =0.
om L T2 n L T2

The Dirac locations are then reconstructed by solving two con-
strained approximation problems (P2). For the sake of brevity,
we detail the exact formulation for the reconstruction of the
Dirac vertical locations y;. only. The formulation for the recon-
struction of zj can be derived similarly.

Denote the annihilating filter coefficients ¢; and the given

. S0 (
Fourier measurements [ (w§ ),wé )

(2)
[CU ) ...

Fourier transform values I(27wm /71, 2wn/7) column by col-
umn as a vector b. Then the constrained minimization that we
would like to solve is:

) as column vectors ¢ =
, c(lf)]T and a, respectively. We rearrange the unknown

min [l — G|

subjectto  R(c)b =0,

H., _
cpc=1,

where G = [é(*U\JTI /2]) ... é([]\'ITl/QD] with [é(m)]é n =

)
(£)

w(;;rl/ﬂ —m, 2“;2? —n); and®
2| M7y /2] blocks
R(c) 0 - 0
0 R(c)
R(C) = )
0
0 - 0 R()

with f{(c) the convolution matrix associated with the filter c.
Once we have reconstructed the Dirac vertical and horizon-
tal locations with the proposed algorithm in Section III, we
still need to identify the correct associations — in principle,
the 2D Diracs can be located on any one of the K! possible
combinations. The naive way would be the exhaustive search,
where we try all the possible combinations and reconstruct the
Dirac amplitudes «;, with the least square minimization. If the

8 As pointed out by a reviewer, it is possible to write R.(c) compactly as the
Kronecker product between R (c) and an identity matrix of size 2| M1, /2]:

R(c) @ Idy|arry 2)-

re-synthesized Fourier samples (16) based on the reconstructed
parameters (o, x, Yy, ) are within the noise level, then we have
correctly identified the Dirac locations.

However, such a straightforward approach is only computa-
tionally feasible for cases with few Diracs. Experimentally, we
observed that we can find the correct associations of vertical and
horizontal locations with a simple trick: We first reconstruct the
amplitudes of the Diracs with the least square minimization by
pretending there were K2 Diracs (i.e., all the intersections of the
reconstructed {z; }X_, and {y; }/* ,). Among these K? possi-
ble locations, we select K of them with the largest amplitudes.
We should reconstruct oy, by solving the least square minimiza-
tion once more with the correctly identified K Dirac locations
on the 2D plane.

C. Simulation Results

We apply the algorithm to reconstruct 2D Diracs, which are
located randomly in [—0.5, 0.5] x [—0.5, 0.5]. The Dirac ampli-
tudes follow a log-normal distribution: o, ~ log NV (log 2, 0.5).
The Fourier transform is sampled at L = 8500 irregular frequen-
cies, which are randomly generated with higher concentrations
around low frequencies. This is because low frequency Fourier
measurements correspond to the cross-correlations between an-
tennas that are close to each other, a case that is more convenient
in practice. We have chosen 15 x 15 interpolation knots lo-
cated uniformly on the area [—127, 127] x [—12m, 127], where
the Fourier transform is approximated. Complex-valued Gaus-
sian white noise is added to the Fourier transforms so that the
signal-to-noise ratio is 5 dB. The algorithm is able to recon-
struct the Diracs correctly even in the presence of severe noise
(Fig. 11). With our current Python implementation (which can
be further optimized), it takes 42 seconds for the reconstruc-
tion on average with a Macbook Pro laptop. Following [47],
we also include the classical sparse recovery result obtained
when the ¢;-norm of the discretized sky image is minimized.
As evidenced in Fig. 11, this approach is not only less accurate
than the FRI method, but it also fails to resolve Diracs that are
closely located.

VI. CONCLUSION

Motivated by the point source reconstruction problem in radio
interferometry, we have developed a robust algorithmic frame-
work for FRI reconstruction with arbitrary measurements, in-
cluding the non-uniform sampling cases. We have unified all
FRI-based methods concisely with a constrained formulation
by establishing a linear relation between the given measure-
ments and a set of unknown uniform samples of sinusoids. We
have demonstrated the versatility of the proposed approach with
various FRI signal recoveries in addition to an application to ra-
dio interferometry. The algorithm out-performs state of the art
methods and is able to recover point sources accurately even in
severe noise conditions. For future work, it would be interesting
to consider an alternative (convex) formulation for FRI recon-
structions, where a properly chosen atomic norm (see e.g., [25])
is minimized subject to a data-fitting constraint.
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APPENDIX A
DERIVATION OF THE EQUIVALENT FORMULATION OF (P1)

The constrained optimization for the reconstruction of FRI
signals is

la — Gb]j3

min
b.,c

subjectto R(c)b =10 17

clle=1,
where ¢y is a random initialization for the annihilating filter
coefficients.

For a fixed c, (17) is a constrained quadratic minimization
with respect to b. The associated Lagrangian is:

L(b, ) = %Ha — Gb|3 + £'R(c)b,

where £ is the Lagrange multiplier. From the optimality condi-
tions, we have:

G"(Gb —a) +R"(c)t =0,

(18)
R(c)b=0.

Since G has full column rank (see footnote 2), from (18) we
have

b=p-(G"G)'R"(c)(R(c)(G"G)'R"(c)) 'R(c)8,

(19)

where 3 = (GHG)"'GHa.
We can substitute (19) into the objective function:

la— GbJ = B"R" (c)(R(c)(G"G) 'R (c)) 'R(c)8
+la—GBI3

W HTH () (R(c)(GHG) 'RY (c) ' T(B)e

+ terms independent of c,
where (a) results from the definition of the right dual matrix in

Definition 1.

APPENDIX B
EQUIVALENT FORM FOR THE SOLUTION OF (3)

The Lagrangian associated with the constrained optimiza-
tion (3) is

S TIB) (R (e, )(G1G) RN 6, ) T(B)e

+ Alcllc —1).

L(c,A) =

From the optimality conditions, we have

T (8)(R(c,)(G"G) R (¢, 1)) ' T(B)c + icy = 0,
cOHc =1
(20)
Denote an auxiliary variable

£=(R(c,-1)(G"G) 'R (c,-1)) ' T(B)c,

then (20) is equivalent to
TH(8)€ + rcy = 0,

R(c, 1)(G"G) 'R (c, 1)£=T(B)c, (D

c(})lc =1

We can apply the same manipulation again by introducing an-
other auxiliary variable v = (GYG) 'R (c,, _1)¥, then (21) is
equivalent to:
T"(8)£ + )co = 0,
R(c,-1)v="T(B)c,

° ° (22)
G"Gv=R"(c,_1)¢,
cgc =1

If we rearrange (22) in a matrix/vector form, we have (4).

Once we have the updated annihilating filter coefficients
c,, (5) is obtained directly by rewriting the optimality con-
ditions (18) with ¢ = c,, as a linear system.

APPENDIX C
EXACT INTERPOLATION WITH DIRICHLET KERNEL

Since x(t) has finite time support between — 7 and 7, we can
rewrite x(t) with its periodized version multiplied by a rectan-
gular window: z(t) = rect(t/7) >, .z «(t — n7). Hence, the

Fourier transform of z(t) is

X(w) = /jo rect(t/T) Z z(t —nr)eidt

e neZ
9 [ secttymer 2 30 x (2 ) o
e T T
meZ
2 1 t 2w
— Z ( 7rm)/ — rect (> e i tat
e T T
meZ
2 2
=Y x (”m> sinc (T (w - ”m>> NG5
T 2 T
meZ

where (a) is from the Poisson sum formula.
Further, from the periodicity of X (w), we can rewrite the
infinite summation in (23) as

1 Sy e
5 () o )

[m ‘< ”T nez
: Tw—=2Tm
B Z X 2mm sin (T )
. T M sin (7”'2_“?”” )
‘7”|§|_MZT Mt




834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 4, FEBRUARY 15, 2017

APPENDIX D
SPHERICAL HARMONICS OF DIRACS ON THE SPHERE

Conventionally, spherical harmonics of degree [ and or-
der m is defined as Y (0, ) = N Pl‘ml(cos 0)e’™?. Here

the normalization factor N; ,, = (—1)(’””’”‘)/2\/ 22;1 %,

and Pl‘m‘ is the Legendre polynomial of degree [ and order m
(Im[ < D)

[m|

|| _ (_1\Imlq _ £2\|m|/2

(®),

where P, (t) def ﬁ%(ﬁ — 1)!. The spherical harmonic coef-

ficient is given by the inner product between the signal and the
spherical harmonics basis on S?:

fl,m - <I(95 (P)a Yim (9, <p)>

27 T
= / / (0, )Ny 1, Pllm‘(cos 0)e™™¢ sin §dOdyp
o Jo
K

=Nm Z akPZ‘m‘(cos O )e Imer,
k=1
Note that the |mn/|-th order derivative of the Legendre polynomial
P,(t) is a polynomial of degree I — |m|. Hence, we may rewrite
Pllm‘ in terms of canonical polynomial bases as:

I—|m|
Pl\ml(t) _ (_1)|m\ (1 _ t2)|m\/2 Z pn.‘mltn’
n=0
for some coefficients p,, ,,,|, which are independent of where the
polynomial is evaluated, and can be precomputed. Consequently
the spherical harmonic coefficient of the Diracs is:

I—|m| K
L = Nim Z D jm| Z v (cos B),)" (sin B )™ le—dmen
n=0 k=1
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