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Résumé

On prouve l’existence d’un pavage affine pour le schéma de Hilbert

Hilbn,n+1,n+2(0) :=
{
C[[x, y]]⊃ In ⊃ In+1 ⊃ In+2 : Ii idéaux avec dimC

C[x, y]
/

Ii
= i
}

des drapeaux de longueur trois des sous schémas 0-dimensionels qui sont supportés
à l’origine de C2. On atteint ce résultat en montrant que l’espace est stratifié par des
sous variétés lisses, les strata de Hilbert-Samuel. On montre que chacun de ces strata
a un pavage affine en cellules de dimension connue et indexées par des diagrammes
de Young marqués. Le pavage affine nous permet de montrer que les polynômes de
Poincaré de Hilbn,n+1,n+2(0) sont tels que:

∑
n≥0

Pq

(
Hilbn,n+1,n+2(0)

)
zn = q+1

(1− zq)(1− z2q2)

∏
k≥1

1

1− zk qk−1
. (1)

Dans la preuve de (1) on construit une correspondance combinatoire entre l’homologie
de nos espaces et l’homologie des certains sous espaces connus de Hilbn+1,n+3(0). On
obtient comme corollaire un pavage affine et une formule pour la série génératrice
des polynômes de Poincaré de Hilbn,n+2(0) pour tous les n ∈N.

Mots-clés. Schéma de Hilbert, homologie, drapeaux d’idéaux, strata de Hilbert-
Samuel, pavage affine.
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Abstract

We prove the existence of an affine paving for the three-step flag Hilbert scheme

Hilbn,n+1,n+2(0) :=
{
C[[x, y]]⊃ In ⊃ In+1 ⊃ In+2 : Ii ideals with dimC

C[x, y]
/

Ii
= i
}

of 0-dimensional subschemes that are supported at the origin of C2. This is done by
showing that the space stratifies in smooth subvarieties, the Hilbert-Samuel’s strata,
each of which has an affine paving with cells of known dimension, indexed by marked
Young diagrams. The affine pavings of the Hilbert-Samuel’s strata allow us to prove
that the Poincaré polynomials for Hilbn,n+1,n+2(0) satisfy:

∑
n≥0

Pq

(
Hilbn,n+1,n+2(0)

)
zn = q+1

(1− zq)(1− z2q2)

∏
k≥1

1

1− zk qk−1
. (2)

In the process of proving (2) we relate combinatorially the homology of our spaces
with that of known subspaces of Hilbn+1,n+3(0). As a corollary we find an affine paving
and a formula for the generating function of the Poincaré polynomials of Hilbn,n+2(0)

for all n ∈N.

Keywords. Hilbert scheme, homology, flags of ideals, Hilbert-Samuel’s strata, affine
paving.
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Introduction

The Hilbert scheme of points of a smooth surface is one of the most beautiful
and most studied examples of a moduli space. It is an algebraic geometric object that
relates to many branches of mathematics: symplectic geometry, representation the-
ory, combinatorics and, recently, theoretical physics. This special position is ensured
on one hand by the relative simplicity and naturalness of its definition, and, on the
other hand, by the many interesting structures it is equipped with. Curiously these
structures are of two natures: some are directly inherited from the base surface, oth-
ers appear from the moduli problem.

Given a smooth surface X , the Hilbert scheme of n points of X , denoted as
Hilbn(X ), parametrizes 0-dimensional subschemes of X of length n. The most generic
example is a collection of distinct points of X : in this case the length is the number
of points. However it is when the points start colliding together that the spectrum
of possible scheme structures becomes more and more complicated and its geome-
try more and more interesting. For example when two points are infinitely close the
Hilbert scheme remembers the direction along which they came together, i.e. a tan-
gent vector at the collision point. Subschemes that are entirely supported on a single
point form a subvariety sometimes called the punctual Hilbert scheme and denoted
by Hilbn(0). This space is the same for every surface and every point. It is singular,
not even normal, but projective, reduced and irreducible (Haiman [Hai98] and Brian-
con [Bri77]). It precisely measures the difference between Hilbn(X ) and X (n) the n-th
symmetric power of X that parametrizes n-tuples of points up to order. In this sense
the punctual Hilbert scheme is of key importance for those structures of Hilbn(X ) that
are inherited from X : smoothness for example (Fogarty [Fog68]), or an holomorphic
symplectic form if X has one (Beauville [B+83]). In fact Hilbn(0) is the most singular
fiber of the natural forgetful map Hilbn(X ) → X (n) that turns out to be a crepant res-
olution of singularities. The study of the geometry of Hilbn(0) is also an important
step in the work of Haiman [Hai01] to prove the combinatorial conjecture of n!. In an-
other sense, Hilbn(0) is interesting as it contains a lot of the topological information of
Hilbn(X ). One can prove that Hilbn(0) is a deformation retract of Hilbn(C2), and, since
X is covered by open subvarieties diffeomorphic to C2, Hilbn(X ) is covered by open
subvarieties diffeomorphic to Hilbn(C2).

xi
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In 1987 Ellingsrud and Stromme [ES87] coronated the efforts of many pre-
senting a neat description of the Borel-Moore homology of Hilbn(C2) by exploiting a
natural torus action on it. The exact form for the Poincaré polynomial of Hilbn(C2)

became more relevant when Goettsche [Göt90] considered all of the Hilbert schemes
Hilbn(C2) for different n at once and proved the formula that bears his name

+∞∑
n=0

∑
i≥0

dim Hi
(
Hilbn(C2)

)
qi zn =

+∞∏
k=1

1

1−q2k−2zk
.

Bundling all the Hilbn(C2) together, not only produces prettier formulas, but it is the
starting point for the study of those additional and somewhat mysterious structures
that we mentioned above. Motivated by Goettsche formula (that holds more gener-
ally [GS93]) Witten and Vafa [VW94] related the study of Hilbert schemes to string
theory; Nakajima [Nak97] constructed a geometric representation of products of the
Heisenberg and Clifford algebras on the homology of

⊔
n Hilbn(C2); Lehn [Leh99] used

a Vertex Algebra structure to study the product in cohomology. This just to cite some
examples.

An important geometric player in studying all the Hilbert schemes together is
a space that has also an intrinsic interest: the flag Hilbert scheme. This parametrizes
flags of 0-dimensional subschemes of specified lengths. Its global geometry deteri-
orates quickly: Hilbn,n+1(C2) is the last one to be smooth, as Cheah [Che98] proves.
Again, if we ask for all subschemes to be concentrated in only one point we get quite
interesting varieties. For longer flags we get varieties with many irreducible compo-
nents of different dimensions. The case we are most interested in in this thesis is
Hilbn,n+1,n+2(0). The main goal is to prove the following result.

Theorem 0.0.1. For every n ∈N the space Hilbn,n+1,n+2(0) has a cellular decomposition
with cells that are isomorphic to affine spaces. These affine cells are indexed by Young
diagrams of size n+2 with two marked boxes. The dimension of each affine cell is read-
able from its label and the homology classes of the closures of these cells give a graded
basis for the homology of Hilbn,n+1,n+2(0). The Poincaré polynomials of Hilbn,n+1,n+2(0)

for all n fit into a generating function:

+∞∑
n=0

∑
i≥0

dim Hi

(
Hilbn,n+1,n+2(0)

)
qi zn = q+1

(1− zq2)(1− z2q4)

+∞∏
k=1

1

1−q2k−2zk
.

The techniques we utilize are by now classical in this area of studies. They were first
used by Ellingsrud and Stromme [ES87, ES88] , perfected by Goettsche [Göt90, Göt94]
and used by Cheah [Che98] to treat the case of Hilbn,n+1(0). To give some more details
on the strategy of the proof we explain the structure of the different chapters.

In Chapter I, after the general definitions, we quickly focus on flag Hilbert sche-
mes of subvarieties concentrated at one point. Here we introduce a stratification due
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to Iarrobino [Iar72, Iar77] that is key to understand the geometry of Hilbn(0) (and sim-
ilar spaces). Every point of Hilbn(0) is an ideal I ⊂ C[[x, y]] and as such has a Hilbert-
Samuel’s type T (I ) ∈ Nn . The Hilbert-Samuel’s strata MT are indexed by the possible
Hilbert-Samuel’s type T ∈ Nn and contain all ideals I such that T (I ) = T . It turns out
that the Hilbert-Samuel’s strata are smooth, as Iarrobino [Iar72] proves. In the last
section we introduce the famous technique of Bialynicki-Birula [BB73] to prove that
a smooth space with a torus action has, under some conditions, an affine cell de-
composition with cells labeled by torus fixed points. A result of Fulton [Ful13] tells
us that the closures of these cells give a graded basis for the Borel-Moore homology
of the space. We show that Hilbn(C2) and all related varieties carry a natural two di-
mensional torus action that comes from rescaling the coordinates of C2. We finish the
chapter by studying the torus fixed points of Hilbn(0), Hilbn,n+1(0) and Hilbn,n+1,n+2(0)

and by relating these fixed points with marked Young diagrams.

In Chapter II we study the Zariski tangent spaces of Hilbn(C2), Hilbn,n+1(C2)

and Hilbn,n+1,n+2(C2) at their fixed points. In particular, we find a basis of eigenvec-
tors for the two dimensional torus action at each fixed point and we interpret these
eigenvectors as combinatorial gadgets of the marked Young diagram that labels the
fixed point. The bases for the tangent spaces of Hilbn,n+1,n+2(C2), that are our origi-
nal contributions, are constructed extending the classical study of the similar bases
for Hilbn(C2) and Hilbn,n+1(C2). The use of these bases is far reaching. We prove that
Hilbn(C2) is smooth and thus we describe a cell decomposition of Hilbn,n+1(0) and its
homology (Fogarty [Fog68], Ellingsrud-Stromme [ES87]). We prove that all Hilbert-
Samuel’s strata MT ⊂Hilbn(C2) are smooth and describe their cell decomposition and
homology (Iarrobino[Iar77, IY03], Goettsche [Göt94]). We prove that Hilbn,n+1(C2)

is smooth and thus describe a cell decomposition of Hilbn,n+1(0) and its homology
(Cheah [Che98]). We prove that all Hilbert-Samuel’s strata MT1,T2 ⊂ Hilbn,n+1(0) are
smooth and describe their cell decomposition and homology (Cheah [Che98]). All of
this crucially relies on smoothness and is possible thanks to the result of Bialynicki-
Birula. Recall that unfortunately Hilbn,n+1,n+2(C2) is not smooth. We end the section
by giving an original description of the tangent spaces of the Hilbert-Samuel’s strata
MT1,T2,T3 of Hilbn,n+1,n+2(0).

In Chapter III we prove that the Hilbert-Samuel’s strata MT1,T2,T3 are smooth.
To do so we use results of Iarrobino [Iar77] on special opens that cover MT1 and whose
points have especially nice generators. We are then able to study the dimension of
MT1,T2,T3 relating it with that of MT1 . This, thanks to the knowledge acquired in Chap-
ter 2 on the tangent spaces, is enough to prove smoothness. We can then apply
Bialynicki-Birula decomposition to describe their cell decompositions and homolo-
gies, and ultimately the cell decomposition and the homology of Hilbn,n+1,n+2(0). In
the last section we show that for longer flag cases, i.e. starting at Hilbn,n+1,n+2,n+3(0),
smoothness of the Hilbert-Samuel’s strata no longer holds. This means that the case
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of Hilbn,n+1,n+2(0) is the last case where the classical techniques we described yield in-
teresting results.

In Chapter IV we prove the formula for the generating function. The fact
that Hilbn,n+1,n+2(C2) is not smooth implies that the cell decomposition we obtained
in Chapter 3 might depend on the single appropriate choice of a one dimensional
subtorus action. The resulting combinatorics of the Poincaré polynomials is not well
suited to prove the formula for the generating function. In the case of Hilbn(0) and
Hilbn,n+1(0), smoothness of the ambient space guarantees that we are free to use any
one dimensional subtorus. In fact we obtain many different cell decompositions that
give rise to different combinatorial expressions of the same Poincaré polynomials
Pq
(
Hilbn(0)

)
and Pq

(
Hilbn,n+1(0)

)
. Understanding better the details of these cases is

crucial to prove, combinatorially, that also in the case of Hilbn,n+1,n+2(0) we can rewrite
Pq

(
Hilbn,n+1,n+2(0)

)
more conveniently. Once this is done we actually do not need to

sum the results. In fact it turns out that Nakajima and Yoshioka [NY08] already consid-
ered the same generating function by studying a different family of smooth subspaces
Hilbn−1,n+1(C2)tr ⊂Hilbn−1,n+1(C2). Thus we only need to match the combinatorics. It
remains unclear if there is also a geometrical connection between their spaces and
ours. However we manage to deduce a last original result: an affine cell decomposi-
tion of the spaces Hilbn,n+2(0) and a generating function for their Poincaré polynomi-
als.



Chapter 1

Fundamental Facts

In this chapter we introduce the geometrical spaces we are interested in and
the techniques that will allow us to describe some of their geometrical properties.

The starting point is the definition of the Hilbert scheme of 0-dimensional sub-
schemes of length n on a smooth surface X . This variety parametrizes configurations
of n points of X . We define the punctual Hilbert scheme Hilbn(0) that measures the
local difference between the Hilbert scheme Hilbn(X ) and the n-th symmetric power
of X that parametrizes lists of n points of X up to order.

We then define the flag version of the Hilbert scheme, that parametrizes flags
of subschemes of specified length. Again we will be interested in the case where the
support of all the subschemes is a single point of X and thus we define the punctual
flag Hilbert scheme. Following Iarrobino [Iar77], we will stratify these spaces accord-
ing to the Hilbert-Samuel’s type of the ideals that compose the flags.

To study the topological properties of the spaces introduced we use the natural
torus action induced by the rescaling action on the local coordinates of the plane C2.
An action with isolated fixed points on a smooth variety Y has attracting sets that
are affine cells thanks to the theorem of Bialynicki-Birula [BB73]. A result of Fulton
[Ful13] shows that in this situation the homology groups are freely generated by the
homology classes of the affine cells.

1.1 Hilbert scheme of points

We start with some rather general definitions and then quickly specialize them
to single out the spaces we are interested in. We give concrete presentations for them
and work with these for the rest of the thesis.

Let T be a locally noetherian scheme, X a quasiprojective variety over T and L

1



2 CHAPTER 1. FUNDAMENTAL FACTS

a very ample invertible sheaf on X over T .

Definition 1.1.1. [Gro60] Let Hilb(X /T ) be the contravariant functor from the cate-
gory of locally noetherian T -schemes to the category of sets, which, for locally noethe-
rian T -schemes U ,V and a morphism f : U →V , is given by:

Hilb(X /T )(U )= {Z ⊂ X ×U closed subscheme, flat over U
}

,

Hilb(X /T )( f ) : Hilb(X /T )(V )→Hilb(X /T )(U ); Z �→ Z ×U V.

For U a locally noetherian T -scheme and Z ⊂ X ×T U closed subscheme, flat over U ,
let p : Z → X and q : Z →U be the two projections and u ∈U . Define the Hilbert poly-
nomial of Z in u as

Pu(Z )(m) :=χ(OZu (m))=χ
(
OZu ⊗OZ

p∗(L m)
)

, m ∈Z

where χ is the Euler characteristic and Zu = q−1(u). One can prove that Pu(Z )(m) is a
polynomial in m, independent of u, if U is connected. Then we can fix the Hilbert
polynomial to create a subfunctor. Let P ∈Q[x] and define HilbP (X ) to be the subfunc-
tor given by

HilbP (X /T )(U )=
{

Z ⊂ X ×U

closed subscheme

∣∣∣∣∣ Z is flat over U and
Pu(Z )= P for all u ∈U

}
.

Theorem 1.1.2. [Gro60] Let X be projective over T . For every P ∈ Q[x] the functor
HilbP (X /T ) is representable by a projective T -scheme HilbP (X /T ). For an open sub-
scheme Y ⊂ X the functor HilbP (Y /T ) is represented by an open subscheme

HilbP (Y /T ) ⊂ HilbP (X /T ).

Definition 1.1.3 (Hilbert scheme of points). From now on we will be interested in the
case where T = spec(C), and we will write HilbP (X ) for HilbP (X /T ). Moreover we will
only be interested in the case where P = n ∈N is a constant polynomial. Then we will
write either X [n] or Hilbn(X ), and call it the Hilbert scheme of n points over X . In fact we
can identify the closed X [n](C) points with the closed zero-dimensional subschemes
of length n of X which are defined over C. In the most simple case such a scheme is
just the set of n distinct points of X with the reduced induced structure, hence the
name.

Definition 1.1.4. Let Sn be the symmetric group in n letters acting on X n by permut-
ing the factors. The geometric quotient X n/Sn exists and is called the n-th symmetric
power of X , and is denoted as X (n). We denote the quotient map as follow:

Φn : X n → X (n).

The n-th symmetric power parametrizes effective zero-cycles of degree n of X , i.e.



1.1. HILBERT SCHEME OF POINTS 3

formal linear combinations of points of X with nonnegative integer coefficients that
sum to n:∑

i
ni [xi ] ∈ X (n) with xi ∈ X ,ni ∈N and

∑
i

ni =n.

We have a stratification into locally closed subsets given by prescribing how many of
the points in the support of the zero-cycle actually coincide.

Definition 1.1.5. Let ν= ν0 ≥ ·· · ≥ νr be a partition of n. Denote the diagonals of X n by

Δνi := {(x1, . . . , xνi )
∣∣x1 = ·· · = xνi

}⊂ X νi

and define

X n
ν :=∏

i
Δνi ⊂

∏
i

X νi ⊂ X n .

Then we set

X (n)
ν :=Φn

(
X n
ν

)
and X (n)

ν := X (n)
ν \

⋃
μ>ν

X (n)
μ ,

where μ > ν means that μ is a coarser partition than n. The geometric points of X (n)
ν

are

X (n)
ν =

{∑
i

ni [xi ] ∈ X (n)
∣∣ the points xi are pairwise distinct

}
.

Given Z a subscheme of X of length n its support is precisely an effective zero-cycle
of degree n. This gives the following celebrated relation between Hilbn(X ) and X (n).

Theorem 1.1.6. [MFK94, §5.4] There is canonical morphism called the Hilbert-Chow
morphism

πn : Hilbn(X )→ X (n)

that at the level of points is given by

Z �→ ∑
x∈X

len(Zx )[x],

where len(Zx ) is the multiplicity of Z at the point x.

The above stratification of X (n) induces a stratification of Hilbn(X ). Define its strata as
X [n]
ν :=π−1

n (X (n)
ν ), for each ν� n. Along a strata of X (n) the fibers of πn are constant and

depend only on the dimension of X , if X is smooth. For example, in the open smooth
strata X (n)

(1n ) where all the points are distinct πn is an isomorphism.
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Example 1.1.7. Let C be a smooth curve. Then the Hilbert-Chow morphism is actually
an isomorphism that shows C [n] ∼=C (n). In fact there is only a single scheme structure
on n points. Suppose that X = C, then X (n) ∼= X n as Newton’s theorem on symmetric
functions

C[x1, . . . , xn]Sn ∼=C[e1, . . . ,en]

proves. Here ei is the i -th elementary symmetric function. One can also show that
(P1)(n) =Pn .

We will only be interested in the case of a smooth surface X . In this case the
symmetric power is singular: as soon as at least two points coincide the stabilizer is
not trivial. Famously it turns out that in this case the Hilbert scheme is smooth, as we
will see.

From now on we will focus on the case where X =C2. Observe that the Theorem
of existence 1.1.2 proves that for every X , with a covering of opens isomorphic to C2,
there is an open cover of Hilbn(X ) with opens that are isomorphic to Hilbn(C). This
is true also in the category of complex analytic spaces thanks to the definition of the
Duady space. We do not need this but we give as a reference [dCM00].

Example 1.1.8. Consider the case X =C2. Denote R =C[x, y] its ring of functions. Then
we can identify

(C2)[n] = {I ⊂R
∣∣ I is an ideal such that dimC (R/I )=n

}
.

We call the dimension of the vector space R/I the length of I . For example if p1 =
(x1, y1), . . . , pn = (xn , yn) are n distinct points of C2, then there is a unique ideal I of
length n of functions that vanish exactly at p1, . . . , pn . These ideals represent the generic
examples. At the other end of the spectrum of examples there are the powers of the

maximal ideal (x, y)d that live in Hilb
d(d+1)

2 (C2) for every d ∈N.

Observation 1.1.9. [Nak99, Chapter 1] A possibly more explicit description of (C2)[n]

is the one of Nakajima in terms of commuting matrices. Consider Mx , My ∈ End(Cn),
and v ∈HomC(C,Cn). Then define

H̃ :=
{(

Mx , My , v
) ∣∣∣∣∣ Mx My −My Mx = 0,〈

M k
x M l

y (v(1)) | k, l ≥ 0
〉
=Cn

}
.

The first condition says that the actions of Mx and My commute. The second condi-
tion, that is a stability condition, says that there does not exist an Mx , My invariant
subspace of Cn that contains the vector v(1) ∈ Cn , 1 ∈ C. There is an action of GLn(C)

on such triples given by

g · (Mx , My , v
)

:= (g Mx g−1, g My g−1, g v
)



1.1. HILBERT SCHEME OF POINTS 5

for g ∈GLn(C). The action turns out to have closed orbits and trivial stabilizers. Naka-
jima [Nak99, Theorem 1.9] proves that we have the following isomorphism:

Hilbn(C2)∼= H̃
/

GLn(C) .

The above map is given by the following procedure on closed points. If I ⊂ C[x, y] is
an ideal of length n we define Mx as the multiplication action of x on the n dimen-
sional vector space C[x, y]/I . Similarly for My . The homomorphism v ∈HomC(C,Cn)

is given by v(1) = 1 mod I . It is clear that Mx and My commute since the multiplica-
tion in C[x, y] is commutative. The stability condition follows from the fact that 1 is
a C[x, y] generator of C[x, y]. Conversely given a triple

(
Mx , My , v

) ∈ H̃ we can define
a map φ : C[x, y] → Cn as φ( f ) = f (Mx , My )v(1). Stability of the triple proves that φ is
surjective and that I :=Ker(φ) is an ideal of length n.

Since the two matrices commute we can always simultaneously conjugate
both matrices to upper triangular matrices. Call (λ1, . . . ,λn) and (μ1, . . . ,μn) the ele-
ments on the diagonal of Mx and My respectively. Then the Hilbert Chow map sends
the triple

(
Mx , My , v

)
to {(λ1,μ1), . . . , (λn ,μn)} ∈ (C2)(n) .

For a more general surface X , not only smoothness, but most of the topolog-
ical and geometrical properties of X [n] are a mixture of the corresponding properties
of the base surface X and of the most singular fiber of the Hilbert-Chow map, some-
times called the punctual Hilbert scheme.

The punctual Hilbert scheme, and its flag versions, are the object of our study.

Definition 1.1.10. Consider the Chow morphism π : (C2)[n] → (C2)(n), and denote 0 =
(0, . . . ,0) ∈ (C2)(n). Then the punctual Hilbert scheme is

Hilbn(0) :=π−1(0)

with the induced scheme structure.

The closed points of Hilbn(0) are the schemes of length n whose support is concen-
trated at the origin 0 ∈ C2. An example is (x, yn) ∈ (C2)[n]. If m = (x, y) is the maximal
ideal in R =C[x, y] and R̂ =C[[x, y]] is the completion of R in m, then we will see that

Hilbn(0)=Hilbn(R)r ed =Hilbn(R/mn )r ed ⊂Gras(n,R/mn ) .

In terms of the description of commuting matrices:

Hilbn(0)=
{(

Mx , My , v
) ∈ H̃

∣∣ (Mx )n = (My )n = 0
}/

GLn
.

Example 1.1.11. Pose n = 2. Then Hilb2(0) is isomorphic to P1. In fact all ideals of
length two of functions with zeros only in (0,0) are of the form (ω1x+ω2 y)+ (x2, x y, y2)
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as ideals of C[x, y], with [ω1 : ω2] ∈P1. The intuition behind this is that when two points
collide at the origin (0,0) ∈ C2 we remember the direction along which they collided
i.e. the vector [ω1 : ω2] ∈P(T(0,0)C

2), where T(0,0)C
2 is the tangent space at the origin.

The global Hilbert scheme Hilb2(C2) is then stratified as follow

(C2)[2]
(1,1)

⊔
(C2)[2]

(2) (C2)[2]

(C2)(2)
(1,1)

⊔
(C2)(2)

(2) (C2)(2)

π2 π2

where the vertical arrow is the Hilbert-Chow map and has fiber P1 = Hilb2(0) over
(C2)(2)

(2), where two points coincide, and a single point { pt } over (C2)(2)
(1,1), where two

points are distinct. In fact, in this case, it is easy to see that the Hilbert scheme is the
blow up of the 2-symmetric product of C2 at the diagonal, that is its singular locus.

Example 1.1.12. Pose n = 3. Then the punctual Hilbert scheme Hilb3(0) is a cone
over P1 with an isolated singular point. The singular point is the ideal m2 = (x2, x y, y2).
It is different from all the others in the sense that, if we call Z∞ the corresponding
subscheme, then T(0,0)Z∞ is two dimensional, whereas all the other points of Hilb3(0)

have tangent spaces that are one dimensional. Said in another way, the other points
correspond to those subschemes that are contained in the germ of a smooth curve.
They are called curvilinear. They are of the form I = (y3, x +ω2 y +αy2) plus the ide-
als I = (x3, y +αx2). It is clear that these curvilinear ideals form an affine bundle over
Hilb2(0)= (ω1x+ω2 y)+ (x2, x y, y2), and that the bundle is compactified with the point
m2 at infinity. One can write down explicitly a model for Hilb3(0): consider in P4 =
Proj(C[a,b,c,d ,e]) the projective cone over a rational normal cubic given by equations
ac−b2, ad −bc,bd − c2. Then the family of subschemes of C2 parametrized by Hilb3(0)

is the zero set of the ideal (ax+by +ex2,bx+c y +ex y,cx+d y +e y2).

The global Hilbert scheme Hilb3(C2) is then stratified as follow:

(C2)[3]
(1,1,1)

⊔
(C2)[3]

(2,1)

⊔
(C2)[3]

(3) (C2)[3]

(C2)(3)
(1,1,1)

⊔
(C2)(3)

(2,1)

⊔
(C2)(3)

(3) (C2)[2]

π3 π3

where the Hilbert Chow map π3 has fibers that are respectively isomorphic to a point
over (C2)(3)

(1,1,1), i.e. where the three points are distinct, to Hilb2(0) over (C2)[3]
(2,1), i.e.

where two points coincide and the third is different, and to Hilb3(0) over (C2)[3]
(3) i.e.

where the three points coincide. We will give a description of Hilb4(0) in the following
section.
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The induced scheme structure of π−1
n (0) is reduced as a result of Haiman proves.

A celebrated result of Briançon proves irreducibility and tells us the dimension of the
punctual Hilbert scheme. Irreducibility is equivalent to say that the curvilinear ideals
of the form (yn , x+ω2 y +α1 y2+·· ·+αn−2 yn1 ) are dense in every Hilbn(0), n ∈N.

Theorem 1.1.13. [Bri77, Theorem II.2.3], [Hai98, Poposition 2.10] The punctual Hilbert
scheme Hilbn(0) is projective and irreducible of dimension n−1. It is a locally complete
intersection.

The fact that Hilb2(C2) is a resolution of (C2)(2) is not accidental. In fact for every n the
Hilbert scheme is in some sense the best resolution of singularities of the symmetric
product of C2.

Theorem 1.1.14. [Fog68, Theorem 2.4], [B+83, Theorem 3] The Hilbert-Chow mor-
phism πn : (C2)[n] → (C2)(n) is a symplectic resolution of singularities.

We are only interested in smoothness and not in the symplectic structure. Nowadays
there are many different proofs of smoothness for (C2)[n]. We will show it by describ-
ing the Zariski tangent space and giving its dimension at each point.

We now define the flag Hilbert scheme that parametrizes flags of ideals of points.

Definition 1.1.15 (Flag Hilbert scheme). For n = (n1, . . . ,nk ) ∈ Nk , with n1 < ·· · < nk ,
define the flag Hilbert scheme and the flag punctual Hilbert scheme to be, respectively,

Hilbn(C2) := {Ini ∈Hilbni (C2)|In1 ⊃ ·· · ⊃ Ink

}⊂ k×
i=1

Hilbni (C2),

Hilbn(0) := {Ini ∈Hilbni (0)|In1 ⊃ ·· · ⊃ Ink

}⊂ k×
i=1

Hilbni (0) .

It is clear that we have an Hilbert-Chow map also for the flag Hilbert scheme and thus
a corresponding stratification according to the multiplicities of the supports of the
schemes in the flag. In particular the dimension of Hilbn(C2) is 2nk . The geometry
of Hilbn(0) becomes more complicated even for short flags. For example irreducibility
holds only in the case where n= (n,n+1), see [CE12, Prop. 18, Thorem 19]. The homol-
ogy of Hilbn(0) is known for n=n and n= (n,n+1). We will give a basis of the homology
for the case n= (n,n+1,n+2).

1.2 Hilbert-Samuel’s strata

In the rest of the thesis we want to understand basic geometrical properties of Hilbn(0),
of Hilbn,n+1(0) and of Hilbn,n+1,n+2(0). In order to do so we introduce a stratification of
these spaces due to Iarrobino.
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Definition 1.2.1 (Hilbert-Samuel type). Let R̂ =C[[x, y]], m= (x, y) be its maximal ideal
and R̂i =mi/

mi+1 be the space of forms of degree i . Suppose I ⊂ R̂ is an ideal of length
n. Then we define T (I )= (ti (I ))i≥0 ∈N∞, the Hilbert-Samuel type, of I as:

ti (I ) := dim
(
mi/I ∩mi +mi+1

)
= dim R̂i

/
Ii where Ii := I ∩mi/I ∩mi+1 .

Denote |T | =∑i≥0 ti . Call initial degree of I the first index d = d(I ) such that td < d +1.

Example 1.2.2. Let I = (x, yn)⊂ R̂. Then I has length n. We have ti (I )= 1 for 0≤ i ≤ n−1

and ti (I ) = 0 for i ≥ n. Its initial degree is 1. Let md ⊂ R̂. Then the length of md is
N = d(d+1)

2 . We have ti (md ) = i + 1 for 0 ≤ i ≤ d , and ti (md ) = 0 for d + 1 ≤ i . Its initial
degree is d .

Lemma 1.2.3. Let I ⊂ R̂ be an ideal of length n and T = (ti (I ))i≥0, then

(1) dimm j/I ∩m j =∑i≥ j ti for all j ≥ 0, in particular |T | = n.

(2) I ⊃mn.

Proof. Call Z = R̂/I and Zi the image of Z under the projection map R̂ → R̂
/

Ii . Of
course we have that

⋂
i≥0 Zi = 0. Since Z is finite dimensional, there must exist i0 such

that Zi0 = 0, i.e. mi0 ⊂ I . There are isomorphisms of vector spaces:

Zi =mi/
mi ∩ I ∼=

i0−1⊕
j=i

R̂ j

/
I j .

Then if we choose i0 to be minimal we have R̂i
/

Ii �= 0 for i < i0. This proves (1). Since
t j = 0 implies mi ⊂ I , (2) is a consequence of |T | = n.

Remark 1.2.4. Since every length n ideal of R̂ contains mn , we can see it as an ideal
in R̂/mn . Thus the Hilbert scheme Hilbn (R̂/mn

)
also parametrizes the ideals of length

n in R. For the same reason all the reduced schemes
(
Hilbn (R̂/mk

))
red are naturally

isomorphic for k ≥ n. We will denote one of these by
(
Hilbn(R̂)

)
red. Here

(
Hilbn(R̂)

)
red

is the closed subscheme with the reduced induced structure of the Grassmannian
Grass(n, R̂/mn ) of n dimensional quotients of R̂/mn whose geometric points are the
ideal of length n in R̂/mn . Of course the intuition is that, since a point in Hilbn(C2)

that is supported only at the origin is an ideal of I ⊂C[x, y] such that m⊂ I we can see
it as a point of

(
Hilbn(R̂)

)
red and vice-versa. To be more precise we state the following

Lemma that can be found in Goettsche [Göt94, Chapter 2].

Lemma 1.2.5. [Göt94, Lemmas 2.1.2, 2.1.4] The natural morphism that maps a sub-
scheme of length n supported at a point to this point π : (C2)[n]

(n) →C2 factors through the
Hilbert Chow map and is a locally trivial fiber bundle in the Zariski topology with fiber(
Hilbn(R̂)

)
red =Hilbn(0).

We can regroup ideals according to their Hilbert-Samuel function to get a strat-
ification of Hilbn(R̂)red.
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Definition 1.2.6 (Hilbert-Samuel’s strata). Let T = (ti )i≥0 be a sequence of nonnega-
tive integers, with |T | = n, we define the Hilbert-Samuel’s stratum MT and the homoge-
nous Hilbert-Samuel’s stratum GT to be, respectively,

MT := {I ∈Hilbn(0) | T (I )= T
}⊂Hilbn(0),

GT := {I ∈Hilbn(0)
∣∣ T (I )= T, I is homegenous

}⊂Hilbn(0).

Let ρT : MT →GT be the surjective morphism that associates to an ideal I the associ-
ated homogenous ideal, i.e. the ideal generated by all the initial forms of f ∈ I . It is
surjective and the natural embedding GT ⊂MT is a section. The fact that such a map is
well defined is a classical observation, and can be proved, for example, by reasoning
a way similar to the proof of Lemma 1.3.8. If T= (T1, . . . ,Tk ) is a k-tuple of sequences of
nonnegative integers Ti = (ti , j ) j≥0 satisfying |Ti | = ni then we define

MT :=Hilbn(0)∩ (MT1 ×·· ·×MTk

)
,

GT :=Hilbn(0)∩ (GT1 ×·· ·×GTk

)
.

Again we have a morphism ρT : MT →GT with section GT ⊂MT. It is clear that the strata
MT which are not empty stratify Hilbn(0).

Lemma 1.2.7. [Iar77, Lemma 1.3] Let T = (ti )i≥0 be a sequence of nonnegative integers
with |T | = n, then MT and GT are not empty if and only if

T = (1,2, . . . ,d , td , td+1, . . . , tn−1,0, . . . ) with d +1> td ≥ td+1 ≥ ·· · ≥ tn−1 ≥ 0.

Moreover, if n = (n,n+1, . . . ,n+k −1), given T = (T1, . . . ,Tk ) with |Ti | = ni , GT and MT are
not empty if and only if

(1) Ti = (1,2, . . . ,di , ti ,d , ti ,d+1, . . . ) with di +1> ti ,d ≥ ti ,d+1 ≥ ·· · ≥ ti ,ni−1 ≥ 0

(2) For all j = 2, . . .k there exists and index m j such that t j ,m j = t j−1,m j +1.

From now on, we call such a k-tuple of Ti admissible.

Example 1.2.8. Let T = (ti )i≥0 be with ti = 1 for 0 ≤ i ≤ n−1 and ti = 0 for i ≥ n, with
n ∈N. Then GT is isomorphic to P1 and it is parametrized as follow:

GT = (ω1x+ω2 y)+mn , [ω1,ω2] ∈P1.

On the other hand MT fibers on GT with affine fibers of dimension n − 2 given, for
example on the affine chart {(x+ω2 y)+mn |ω2 ∈C}⊂GT , by{

(x+ω2 y +α1 y2+·· ·+αn−2 yn−1, yn) |ω2,αi ∈C i = 1, . . .n−2
}

.

One can work out the transition functions on the intersection with the affine chart
{(ω1x + y)+mn |ω1 ∈ C} ⊂ GT to check that ρT is an affine bundle that is not a linear
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bundle. The ideals in MT are called curvilinear as they arise when n points collide
following a trajectory that describes a smooth curve. This is equivalent of saying that
the initial degree is one. The Theorem of Briançon 1.1.13 proves that MT ⊂Hilbn(0) is
a Zariski open and dense subset. In terms of commuting matrices these points can be
parametrized as follow:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 . . . 0
...

...
0 0 . . . 0 1

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 a2 . . . an

0 0 a1 . . . an−1
...

...
0 0 . . . 0 a1

0 0 0
... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...
0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Example 1.2.9. Pose n = 4. The possible admissible types for an ideal I ∈Hilb4(0) are
T = (1,1,1,1) and T ′ = (1,2,1). As we have seen in the above example MT is an affine
bundle over P1 with fiber of dimension 2. Instead MT ′ =GT ′ ∼=P2 as one can check with
the following parametrization:

MT ′ = {(φ1,φ2)+m3
∣∣ dimC2 〈φ1,φ2〉

/
m3 = 2, φi ∈m2 } .

Remark 1.2.10. All of the points of MT ′ are singular in Hilb4(0), even though not all
points of MT ′ are analytically equivalent in Hilb4(0): in fact one can see that there
are two possibilities that give rise to different geometrical behaviors. Interestingly
enough the two different behaviors can be describe like this: one set of points is the
set of points I of MT ′ such that there exists at least a point JI in M(1,2,1,1) with (I , JI ) ∈
Hilb4,5(0). The other set is the complementary in MT ′ . Of all the examples we wrote
up for small n (say n ≤ 11) similar criteria to identify the analytical type of points in
Hilbn(0) always hold. The tangent spaces at points of Hilbn(0) is the subject of the
recent paper [BS16].

The admissible types for flags of two ideals (I1, I2) ∈Hilb4,5(0) are the following:
T1,T2 = (1,1,1,1,0), (1,1,1,1,1,0), T1,T ′

2 = (1,1,1,1,0), (1,2,1,1,0), T ′
1,T ′

2 = (1,2,1,0), (1,2,1,1,0)

and T ′
1,T ′′

2 = (1,2,1,0), (1,2,2,0). We describe an open chart of the Hilbert-Samuel’s
strata, an obvious change of coordinates of the plane shows how to cover the cor-
responding stratum with such charts.

MT1,T2 =Bundle with fiber A3 over P1 ⊃
{

(y4, x+ω2 y +α1 y2+α2 y3)⊃
(y5, x+ω2 y +α1 y2+α2 y3+α3 y4)

}
,

MT1,T ′
2
=Bundle with fiber A2 over P1 ⊃

⎧⎪⎨⎪⎩
(y4, x+ω2 y +α1 y2+α2 y3)⊃(

y4, x2+ω2x y +α1x y2+α2x y3,

x y +ω2 y2+α1 y3+α2 y4

)⎫⎪⎬⎪⎭ ,
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MT ′
1,T ′

2
=Bundle with fiber A2 over P1 ⊃

⎧⎪⎨⎪⎩
(y3, x2+ω2x y, x y +ω2 y2)⊃(

y4, x2+ω2x y +α1 y3

x y +ω2 y2+α2 y3

) ⎫⎪⎬⎪⎭ ,

MT ′
1,T ′′

2
=Bundle with fiber P1 over P2 ⊃

{
(y3, x2+α1 y2, x y +α2 y2)⊃

(y3, x2+θx y + (α1+θα2)y2)

}
.

The admissible types for flags of three ideals (I1, I2, I3) ∈Hilb4,5,6(0) are

T1,T2,T3 = (1,1,1,1), (1,1,1,1,1), (1,1,1,1,1,1) , T1,T2,T ′
3 = (1,1,1,1), (1,1,1,1,1), (1,2,1,1,1),

T1,T ′
2,T ′

3 = (1,1,1,1), (1,2,1,1), (1,2,1,1,1) , T1,T ′
2,T ′′

3 = (1,1,1,1), (1,2,1,1), (1,2,2,1,0),

T ′
1,T ′

2,T ′
3 = (1,2,1), (1,2,1,1), (1,2,1,1,1) , T ′

1,T ′
2,T ′′

3 = (1,2,1), (1,2,1,1), (1,2,2,1)

T ′
1,T ′′

2 ,T ′′
3 = (1,2,1), (1,2,2), (1,2,2,1) , T ′

1,T ′′
2 ,T ′′′

3 = (1,2,1), (1,2,2), (1,2,3) .

As the list starts to be too long we give a description of only some of Hilbert-Samuel’s
strata.

MT1,T2,T3 =Bundle with fiber A4 over P1,

MT ′
1,T ′

2,T ′
3
=Bundle with fiber A3 over P1,

MT ′
1,T ′′

2 ,T ′′
3
=Bundle with fiber P1 over a bundle with fiber P1 over P2

MT ′
1,T ′′

2 ,T ′′′
3
=Bundle with fiber P0 = { pt } over MT ′

1,T ′′
2

.

Proposition 1.2.11. [Iar77, Theorem 3.13] Let T = (ti )i≥0 be an admissible sequence of
nonnegative integers. Then MT is smooth, and GT is smooth and projective. The map
ρT : MT →GT is an affine fibration, Zariski locally trivial. The dimensions of MT and of
GT are given in 2.1.16.

We will see later a proof of this proposition. The techniques used are central to many
of the discussions in this thesis.

1.3 Torus action and Borel-Moore homology

In this section we describe the techniques used to compute the basic topological
properties of the spaces we introduced. There are two main ingredients. The first is a
result of Fulton that tells us that if we find an affine cell decomposition for a variety the
homology classes of the closure of the cells form a graded basis for the Borel-Moore
homology of the variety. The second is a result of Bialynicki-Birula that finds for us an
affine cell decomposition for varieties with a nice enough torus action. In the rest of
the section we describe a torus action on the relevant spaces and we study the fixed
points.

Borel-Moore homology is historically the preferred homological theory to study
the topology of Hilbert schemes. We will only need Proposition 1.3.2 below, and we re-
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fer at Fulton [Ful13, Chapter 19] and reference therein for more details. Borel-Moore
homology, indicated with H∗, is singular homology with locally finite supports and
integer coefficients. For a space X that is imbedded as a closed subspace of Rn one
can see that

Hi (X )∼=H n−i (Rn ,Rn \ X )

where the group on the right is relative singular cohomology with integer coefficients.
For a complex scheme X there is a cycle map

cl : A∗(X )→H∗(X )

where A∗ is the Chow group of X .

Definition 1.3.1. Let X be a scheme over C. A cell decomposition of X is a filtration

X = Xn ⊃ Xn−1 ⊃ ·· · ⊃ X0 ⊃ X−1 =�

such that Xi \ Xi−1 is a disjoint union of schemes Ui , j isomorphic to affine spaces Ani , j

for all i = 0, . . . ,n. We call Ui , j the cells of the decomposition. Often we stress the
adjective affine and say that X has an affine cell decomposition.

Proposition 1.3.2. [Ful13, Exercise 19.1.11] Let X be a scheme over C with a cell de-
composition. Then

(1) H2i+1 (X )= 0 for all i .

(2) H2i (X ) is the free abelian group generated by the homology classes of the closure
of the i -dimensional cells, for all i .

(3) The cycle map cl : A∗(X )→H∗(X ) is an isomorphism.

Definition 1.3.3. We will only study the Borel-Moore homologies of varieties that
have an affine cell decomposition. In particular all odd dimensional homology groups
will be zero so that we will denote bi (X ) ∈ N, and call it the i -th Betti number of the
variety X , the dimension of H2i (X ). Moreover we define Pq (X ) ∈ N[q], the Poincaré
polynomial of X , as:

Pq (X ) :=∑
i

qbi (X ) =∑
i

qdim H 2i (X ). (1.1)

Let X be a smooth projective variety over C with an action of the multiplicative group
T = C∗. Denote this action with a dot " · ". If x ∈ X is a fixed point for this action, the
torus acts also on the tangent space at x, denote it Tx X . Let T+

x X ⊂ Tx X be the linear
subspace on which all the weights of the induced action of T are positive.

Theorem 1.3.4. [BB73, Theorem 4.4] Let X be a smooth projective variety over C with
an action of T. Assume that the set of fixed points is the finite set { x1, . . . , xm }. For all



1.3. TORUS ACTION AND BOREL-MOORE HOMOLOGY 13

i = 1, . . . ,m we define the attracting set at the fixed point xi as:

Xxi = Xi :=
{

x ∈ X

∣∣∣∣ lim
t→0

t · x = xi

}
.

Then we have:

(1) X has an affine cell decomposition whose cells are the Xi .

(2) Txi Xi = T+
xi

X .

Remark 1.3.5. The condition of projectivity is only needed to ensure that all the limits
limt→0 t · x, x ∈ X actually exists. The theorem remains true if we replace the latter
condition with the hypothesis of projectivity of X .

We have a two dimensional torus action on Hilbn(0) that comes from the rescal-
ing action on R̂ =C[[x, y]].

If τ= (τ1,τ2) ∈T2, f = f (x, y) ∈C[x, y], then τ · f = f (τ1x,τ2 y)

I ∈Hilbn(C2), τ · I = (τ · f
∣∣ f ∈ I

)
.

Of course this action is the restriction of the two torus action on Hilbn(C2).

The following observation is well known and clear.

Lemma 1.3.6. The fixed points for the T2 � Hilbn(C2) action are the monomial ideals
in Hilbn(C2). In particular we have a bijection of sets:{

fixed points of T2 �Hilbn(C2)
}←→ {monomial ideals in Hilbn(C2)

}
Let n ∈Nk for some k ∈N. The fixed points for the T2 � Hilbn(C2) action are the flags of
monomial ideals in Hilbn(C2).

Every one-parameter subgroup of T2 will then act on Hilbn(0).

Definition 1.3.7. Let n= (n1, . . . ,nk ) ∈Nk . Let φ : Gm →T2 be a one-parameter subgroup
of the form φ(τ)= (τw1 ,τw2 ) with w1, w2 ∈Z. We say that it is generic with respect to the
action on Hilbn(C2) if it has the same fixed points as T2. This means avoiding a finite
set of given hyperplanes in the lattice of one-parameter subgroups of T2. We define
two generic one-parameter subgroups that we will use, for different goals, in the rest
of the thesis:

T∞ generic, with weights w1, w2 such that 0<w1 <w2 and 1� w2
w1

,

T1+ generic, with weights w1, w2 such that 0<w1 <w2 and nk ·w1 > (nk −1) ·w2.
(1.2)

Here 1� w2
w1

is relative to nk and in fact it is enough that nk < w2
w1

.

The action of T1+ behaves especially well with respect to the stratification in
Hilbert-Samuel’s strata.
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Lemma 1.3.8. [Göt90, Lemma 2.2.9] Let T be an admissible sequence of nonnegative
integers as in 1.2.7. Suppose that we are considering the T1+ torus action on Hilbn(0),
i.e. with weights w1, w2 such that 0<w1 <w2 and nw1 > (n−1)w2. Then we have that:

(1) MT is a union of attracting sets that are attracting sets of Hilbn(0).

(2) ρT : MT →GT is equivariant with respect to the T1+ action.

(3) The T1+ action induces an attracting sets decomposition of GT . The attracting sets
are the intersection of the attracting sets of MT with GT .

The same is true for n = (n1, . . . ,nk ), T = (T1, . . . ,Tk ) admissible k-tuple of sequences of
nonnegative integers, and the T1+ action with weights w1, w2 such that 0<w1 <w2 and
nk w1 > (nk −1)w2.

Proof. We prove it in the case of Hilbn(0) since the proof is the same and we do not
want to complicate it with indexes. Let then I ∈ Hilbn(0) be with Hilbert function T .
For j ∈N call s j = j +1− t j the dimension of I j , the space of initial forms of I of degree
j . Call J = limt→0 t · I . We need to prove that J ∈ MT . Suppose that the Hilbert func-
tion of J is T ′ = (t ′i )i≥0. Choose f1, . . . , fs j ∈ I such that their initial forms g1, . . . , gs j are a
basis for I j , so that the gi are homogenous of degree j . We can assume, up to linear
combinations, that the gi are of the form:

gi = xl (i ) y j−l (i )+ ∑
m>l (i )

gi ,m xm y j−m gi ,m ∈C

with l (1) > l (2) > ·· · > l (s j ). Then by the choice of weights we have that limt→0 t · fi =
xl (i ) y j−l (i ), in fact other terms of fi either must have higher degree than j and then go
to 0 faster, either have degree j i.e. are in the support of gi , and then have higher y

degree that forces them to go to zero faster. This proves that all the xl (i ) y j−l (i ) ∈ J j , and
then

t ′j = j + i −dim J j ≥ t j .

Since J ∈Hilbn(0), it is still true that |T ′| = n, and thus T ′ = T .

Observation 1.3.9. In the case of Hilbn(C2)⊃MT all the attracting sets are, as we will
see, affine cells. This follows from smoothness of Hilbn(C2), that implies smoothness
of Hilbn(P2) and the fact that its attracting sets are affine. It is then an easy observation
that the attracting sets for MT are some of the attracting sets for Hilbn(P2). This is
the only case Goettsche was interested in. For the case Hilbn,n+1(C2) ⊃ MT1,T2 , always
thanks to smoothness, the attracting sets are affine cells. The main geometric result
of this thesis is that it is still true that the attracting cells are affine for MT1,T2,T3 , since
these spaces are smooth, even though the ambient space Hilbn,n+1,n+2(C2) it is not.

To better deal with the fixed points of the torus action we need to introduce
some notations.
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Definition 1.3.10 (Partitions and Young diagrams). Let ν= ν0 ≥ ν1 ≥ . . . be a partition
of n, i.e. the νi ∈N are nonnegative integers weakly decreasing that sum to n. We will
write ν� n to say that ν is a partition of n. We will also write |ν| = n. The length of the
partition ν, denoted �(ν), is the minimum index i for which νi = 0. We will also write a
partition ν�n as

ν= (1α1 ,2α2 , . . . ,nαn ) where
∑

i
αi i =n and αi ∈N

if the parts of ν are αn times n, . . . , α1 times 1. We will confuse the n-tuple of integers
(α1, . . . ,αn) with ν.

Consider the first quadrant of R×R as covered by square (boxes) with vertices the
points of integer coordinates, side 1, and indexed by the coordinate of their left-lower
vertex. We denote this set of boxes Δ. A Young diagram Γ is a finite set of boxes of
Δ such that if (i , j ) ∈ Γ then (i − 1, j ) and (i , j − 1) are either in Γ or have negative co-
ordinates. Young diagrams are also called Ferrers diagrams, and they are in bijection
with partitions of integers. The Young diagram of ν, Γ(ν), is the set of boxes labeled by
(0,0), (0,1), . . . (0,ν0−1), (1,0), (1,1), . . . (1,ν1−1), . . . , i.e. is the Young diagram with νi boxes
in the i -th column.

The Young diagram Γ(ν) associ-
ated to ν = (5,4,3,1). We think of
Γ as living in the lattice N×N, that
we called Δ.

Conversely if we are given a Young diagram we write the partition associated to it
as ν = #{boxes in 0-th column} ≥ ·· · ≥ #{boxes in i-th column} ≥ . . . . This is a bijection
between Young diagrams and partitions. From now on we will confuse the two and
write Γ�n. For example the length of a Young diagram is the number of its columns.

The diagonal sequence of ν is T (ν)= (t0(ν), . . . , t j (ν), . . . ), where

ti (ν) := #
{

(l , j ) ∈ Γ(ν)
∣∣ l + j = i

}
.

3
4
3
2

t0 = 1

The diagonal sequence of Γ is
the number of boxes on each
antidiagonal. In this case is
T (Γ) = (1,2,3,4,3). Of course
|T | :=∑i ti = |Γ|.

The hook difference of a box (u, v) ∈ Γ(ν), denoted as hu,v (ν) or simply as hu,v , is

hu,v := # { (l , v) ∈ Γ(ν)| l >u}−#
{

(u, j ) ∈ Γ(ν)
∣∣ j > v

}
.
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It is the difference between the number of boxes in Γ(ν) in the same row and to the
right of (u, v) and the number of boxes in the same column and above (u, v).

0
−1
0 1 0
−1 0 −1
2 3 2 3 2 1 0

The boxes of Γ are each
marked with their hook dif-
ference.

Definition 1.3.11 (Bijection between Young diagrams and torus fixed points of Hilbn(0)).
We can interpret each box in N×N as a monomial in R = C[x, y]: to the box labeled
by (i , j ) we associate the monomial xi y j . Then we can associate to each partition a
monomial ideal. Explicitly if ν= ν0 ≥ ν1 ≥ . . . ,νn−1 ≥ 0 is a partition of n, we define Iν as

Iν =
(

yν0 , x1 yν1 , . . . , xi yνi , . . . , x�(n)
)

.

Observe that the monomials that are not in Iν are exactly the monomials labeled by
boxes in Γ(ν), so it is clear that Iν ∈ Hilbn(0). Moreover to each I ∈ Hilbn(0) we can
associated a partition of n by defining

νi := min
{

k
∣∣∣ xi yk ∈ I

}
.

This gives a bijection between monomial ideals and partitions. When we look at it as
a bijection between Young diagrams and monomial ideals we write IΓ or I (Γ).

For a monomial ideal in I ∈Hilbn(0) we define the standard monomial genera-
tors (α0, . . . ,αs) as the list of minimal monomial generators of I ordered with decreas-
ing x power. If Γ = Γ(I ) is the corresponding Young diagram, its standard monomial
generators are the boxes (i , j ) ∈ Δ \Γ such that (i − 1, j ) (and (i , j − 1)) is either in Γ or
i −1< 0 (or j −1< 0). These are the external corners of Γ.

α4

α3

α2

α1

α0

The standard monomial generators of the
represented torus fixed point of Hilbn(C2).
The indexes are labelled so that to a
lower index corresponds a monomial with
higher x degree.

Lemma 1.3.12. Let ν = ν0 ≥ ν1 ≥ . . . be a partition of n. Then the monomial ideal I

associated to the partition ν, i.e. I = (yν1 , . . . , xi yνi , . . . , x�(ν)
)
, satisfies T (I )= T (ν).

Proof. Let T (I )= (ti )i≥0. The monomials xi y j with i + j = l and j ≥ νi are a basis of the
space Il of homogenous polynomials of degree l in I . Then we have

tl = l +1−#
{
(i , j ) ∈N2

∣∣ i + j = l , j ≥ νi
}= #

{
(i , j ) ∈ Γ(I )

∣∣ i + j = l
}= tl (Γ(I )).
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Definition 1.3.13. Let Γ1 and Γ2 be two Young diagrams of size, respectively, n and
n+1, such that Γ1 ⊂ Γ2. Then the monomial ideals associated satisfy

IΓ1 ⊃ IΓ2

and the couple represents a fixed point of Hilbn,n+1(0). In this case we will use the
following notation:

Γ= (Γ1,Γ2)� [n,n+1].

Clearly there is a bijection between fixed points of Hilbn,n+1(0) and couples (Γ1,Γ2) �
[n,n+1].

Let Γ1, Γ2 and Γ3 be three Young diagrams of size, respectively, n, n+1 and n+2,
such that Γ1 ⊂ Γ2 ⊂ Γ3. Then the monomial ideals associated satisfy

IΓ1 ⊃ IΓ2 ⊃ IΓ3

and the triple represents a fixed point of Hilbn,n+1,n+2(0). In this case we will use the
following notation:

Γ= (Γ1,Γ2,Γ3)� [n,n+1,n+2].

Clearly there is a bijection between fixed points of Hilbn,n+1,n+2(0) and triples (Γ1,Γ2,Γ3)�
[n,n+1,n+2].





Chapter 2

Tangent spaces at torus fixed points

In this chapter we study the Zariski tangent space of the spaces Hilbn(C2),
Hilbn,n+1(C2) , and Hilbn,n+1,n+2(C2) at a torus fixed point.

The stepping stone is an homological interpretation of the tangent spaces as
spaces of R-homomorphisms, where R = C[x, y], that dates back to Grothendieck.
Then one can interpret these R-homomorphisms in terms of the combinatorial data
that describe a torus fixed point.

The chapter is divided in three sections: one for each of the spaces Hilbn(C2),
Hilbn,n+1(C2) , and Hilbn,n+1,n+2(C2). The goal of each section is to define a pure weight
basis for the tangent space at each fixed point and to study the weights of the elements
of these bases. The study of these weights will also help to understand the tangent
spaces of the Hilbert-Samuel’s strata of our Hilbert schemes.

In the cases of Hilbn(C2) and Hilbn,n+1(C2) we will then be able to show that the
spaces are smooth, and we will thus give graded bases for the homologies of Hilbn(0)

and Hilbn,n+1(0).

As we will see the space Hilbn,n+1,n+2(C2) is not smooth. However we will prove
in the next chapter that the Hilbert-Samuel’s strata are still smooth, thus allowing us
to use the same techniques to give graded bases for their homologies and for that of
Hilbn,n+1,n+2(0).

The rough strategy is the following: given a fixed point of Hilbn(C2) labelled by
Γ1 we define a basis B(Γ1) for the tangent space at IΓ1 . Then we will use B(Γ1) to build
a basis B(Γ1,Γ2) for the tangent space at the fixed point (IΓ1 , IΓ2 ) ∈ Hilbn,n+1(C2) with
Γ2 � n+1. The modifications we need to perform on B(Γ1) depend on the combina-
torics of the couple of Young diagrams (Γ1,Γ2). Then we start by B(Γ1,Γ2) to build a
basis B(Γ1,Γ2,Γ3) for the tangent space of Hilbn,n+1,n+2(C2) where Γ3 � n + 2. Most of
the modifications needed will only depend on the couple (Γ2,Γ3), exactly as in passing
from B(Γ2) to B(Γ2,Γ3). In fact only few (in the general case only one) modifications
will actually depend on the full triple (Γ1,Γ2,Γ3). This is really the key philosophi-
cal point of most of the arguments in this thesis: the geometrical or combinatorial

19
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properties of a flag of three ideals (I1, I2, I3) can be understood by looking at the corre-
sponding properties for two flags of two ideals, i.e. (I1, I2) and (I2, I3), independently,
and then taking into account some, in our cases always manageable, properties that
are truly intrinsic to the triple.

We start the chapter with the interpretation of the tangent spaces of the various
Hilbert schemes in terms of R-homomorphisms.

Lemma 2.0.1. [Gro60] Let I ∈Hilbn(C2) be a fixed point and denote with TI
(
Hilbn(C2)

)
the Zariski tangent space of Hilbn(C2) at I . Then we have a natural T2-equivariant
isomorphism

TI Hilbn(C2) ∼= HomR (I ,R/I ).

Let n= (n,n+1,n+2, . . . ,n+k). Let I= (I1, I2, . . . , Ik ) ∈Hilbn(C2) be a fixed point, and denote
TI
(
Hilbn(C2)

)
the Zariski tangent space of Hilbn(C2) at the point I. For 1 ≤ i < j ≤ k we

have Ii ⊃ I j so that we can define the obvious maps:

φi j : HomR (Ii ,R
/

Ii )→HomR (I j ,R
/

Ii ), ( f : Ii →R
/

Ii ) �→ ( f
∣∣

I j
: I j →R

/
Ii ),

ψi j : HomR (I j ,R
/

I j )→HomR (I j ,R
/

Ii ), ( f : I j →R
/

I j ) �→ (p ◦ f : I j →R
/

I j �R
/

Ii ) .

Define also the projection maps

πi j :
k⊕

l=1
HomR (Ii ,R

/
Ii )→HomR (Ii ,R

/
Ii )⊕HomR (I j ,R

/
I j ) .

Then we have a T2-equivariant isomorphism

TI
(
Hilbn(C2)

) ∼=
⋂

1≤i< j≤k

(
Ker(φi j −ψi j )◦πi j

)
.

Now that we know what the tangent spaces are, we only need to find weight
bases for them.

2.1 A weight basis for TI Hilbn(C2)

Suppose that I ∈ Hilbn(C2) is a torus fixed point. The tangent space TI Hilbn(C2)

at I is then equipped with the torus action. The goal of this section is to understand
the tangent space TI Hilbn(C2) in terms of R-homomorphisms HomR (I ,R/I ), and in
particular of those R-homomorphisms that are of pure weights with respect to the
torus action. The goal is to visualize them as arrows of boxes of Γ(I ).

It is clear that, to describe an f ∈ HomR (I ,R/I ) we need only to prescribe the
images of the generators of I , and we need only to describe these images in terms of
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linear combinations of monomials in Γ(I ). It is good to visualize the situation in terms
of Young diagrams: on the left we have, in black, the set of standard monomial gener-
ators of I and on the right we have, in gray, the elements of Γ(I ) i.e. those monomials
that are not in I .

In black the standard monomial
generators of I .

In gray the elements of Γ(I ).

If we only look for maps f of pure weight, the image of a generator α must be
itself a scalar multiple of a monomial β in Γ(I ), so graphically α moves p boxes to the
left and q boxes upward, where p and q can be negative, and reaches β inside Γ(I ). In
terms of monomials f (α) = cβ = cxp y qα with xp y q ∈ C[x±1, y±1], c ∈ C. If the scalar c

is not zero, the fact that f is an R-homomorphism forces every other α′ ∈ I to be sent
either to cxp y qα′ or to zero; graphically they must move by the same exact translation,
or they must go to zero. For α a standard monomial generator of I , and β ∈ Γ(I ), call

Sα,β := { f ∈HomR (I ,R/I )| f (α)=β
}

.

It can happen that Sα,β = �. For example, if I =m2 = (x2, x y, y2) ∈Hilb3(0), then
there does not exist f ∈HomR (I ,R/I ) that sends x2 �→ 1.

y2

x y x2 y

1 x2

If x2 �→ 1 then x2 y �→ y , but then x y �→ γ

cannot be defined. In fact its image γ ∈
R/I should be such that xγ= y . This is
impossible.

To understand for which α and β we have that Sα,β �= � we introduce the following
notations.

Definition 2.1.1. Let ν = ν0 ≥ ν1 · · · ≥ νn−1 be a partition of n, let Γ be the associated
Young diagram and let I = IΓ = (α0, . . . ,αs) be the monomial ideal associated to Γ, i.e.
I = (yν1 , . . . , xi yνi , . . . , x�(ν)

)
. We define

pi := degy αi+1−degy αi = vertical distance between αi and αi+1, ps :=∞,

qi := degx αi −degx αi−1 = horizontal distance between αi and αi−1, q0 :=∞.
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For each α=αi we also define

Pα = Pαi := {β ∈ Γ∣∣degx β< degx α and βy pi ∈ I
}

, Pαs :=�,

Qα =Qαi :=
{
β ∈ Γ∣∣degy β< degy α and βxqi ∈ I

}
, Qα0 :=�.

Example 2.1.2. Let I be the monomial ideal represented by the diagram below. Let
α= α3 be the generator of I marked in the picture with its name. We have that p3 = 2

and q3 = 3. The elements of Pα are indicated with a p while the elements of Qα are
indicated with a q.

p
p p

p p
p

p p p
p p p p

p α
q q q
q q q

q q q
q q q

The fact that β ∈ Pα∪Qβ implies that there exists an f ∈ Sα,β, as the next Lemma proves.

Lemma 2.1.3 (definition). Let I = (α0, . . . ,αs) be a monomial ideal of length n, and let
α = αi be one of its standard monomial generators. Let β ∈ Pα∪Qα. Then Sα,β �= �. In
this case we define fα,β ∈ Sα,β as follow:

If β ∈ Pα, then β ∈ Γ(I ) is q boxes to the left and p boxes above α, where p, q ≥ 0.
We define fα,β by prescribing the images of each of the generators of I as:

if β ∈ Pαi ,β=αi

(
y p

xq

)
, then fαi ,β(αk )=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αk

(
y p

xq

)
if k < i ,

β if k = i ,

0 if i < k.

If β ∈Qα, then β ∈ Γ(I ) is q boxes to the right and p boxes below α, where p, q ≥ 0.
We define fα,β by prescribing the images of each of the generators of I as:

if β ∈Qαi ,β=αi

(
xq

y p

)
, then fαi ,β(αk )=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if k < i ,

β if k = i ,

α j

(
xq

y p

)
if i < k.

Proof. Suppose that α = α3 is the one depicted below and that β ∈Qα is the box two
boxes below it and one to the right, i.e. the box marked with the 3. Then fα,β is the
homomorphism depicted in the picture, where with the index k we denote the box
inside Γ(I ) that is the image of αk if and only if this image is not zero.
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α8

α7

8 α6

7

6 α5

5

α3 x3α3

3 x3 f (α3)

Of course fαi ,β(αk ) is well defined if k > i since it will be a monomial in C[x, y] (graph-
ically it will not fall out of the positive quadrant). The condition β ∈ Qα3 precisely
makes sure that we can send all generators with lower index to zero: the element of I

with lowest degree that is both divisible by αi and αk with k < i is xqi αi = y pi−1αi−1, but,
by definition of Qαi , xqi β ∈ I , and then 0 mod I . If β ∈ Pα the argument is completely
analogous.

Observation 2.1.4. This is slightly different from the construction of Cheah [Che98],
and it is the choice of Goettsche [Göt90]. In the case of Cheah, fα,β is chosen to be the
element in Sα,β that sends the biggest possible number of generators to zero.

Definition 2.1.5 (B(I )). For I = (α0, . . . ,αs) a monomial ideal with standard monomial
generators αi ’s, we define B(I ) to be the finite subset of TI Hilbn(C2)) that contains all
the fα,β as defined in Lemma 2.1.3 :

B(I ) := { fα,β
∣∣ α standard monomial generator and β ∈ Pα∪Qα

}
. (2.1)

Lemma 2.1.6. Let I = (α0, . . . ,αs) be a monomial ideal of length n with prescribed stan-
dard monomial generators. The set B(I ) defined in 2.1.5 has cardinality 2n.

Proof. By definition it is clear that fα,β = fα′,β′ if and only if (α,β) = (α′,β′). Moreover
for a fixed α, Pα and Qα are disjoint. Then #B(I ) = ∑s

i=0(#Pαi + #Qαi ). Suppose that
ν0 ≥ ν1 ≥ ·· · ≥ νs−1 > νs = 0 is the associated partition of n, i.e. the number of columns
of Γ(I ). Then for a generator αi the distance pi = νs−i−1 −νs−i (for i = s we can put
ps =∞, but it does not matter since Pαs = 0). The number of elements in Pαi is equal
to pi times the number of columns in Γ(I ) that are on the left of αi . Thus we have that

#Pαi = (νs−i−1−νs−i )(s− i )= ∑
i≤k<s

(νs−i−1−νs−i ). (2.2)
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Then we have∑
0≤i≤s

#Pαi =
∑

0≤i≤s

∑
0≤k<s−i

(νs−i−1−νs−i )= ∑
0≤i≤ j≤s

(νs−i−1−νs−i )= ∑
0<i≤s

νs−i = n,

since νs = 0. By transposing we prove the same for
∑

i #Qαi .

Lemma 2.1.7. Let I = (α0, . . . ,αs) be a monomial ideal of length n with prescribed stan-
dard monomial generators. The set B(I ) is a basis for TI Hilbn(C2).

Proof. We prove first that the fα,β are linearly independent. Let
∑

(α,β) cα,β fα,β = 0 with
cα,β ∈C, and suppose by contradiction that at least one coefficient is not zero. We can
suppose that the left hand side term is of pure weight, otherwise we can study it taking
all the terms of given weight. If there is a couple (α,β) with cα,β �= 0 and β ∈ Pα (resp.
β ∈ Qα), then, for all the other couples (α′,β′) with cα′,β′ �= 0, we have β′ ∈ Pα′ ( resp.
β′ ∈ Qα′). Suppose then β ∈ Pα for one couple. Then take α the standard generator
with cα,β �= 0 that is on the highest row, then (

∑
(α,β) cα,β fα,β)(α) �= 0 since every other

generator of I is sent to a lower row. This is absurd as the combination was zero.
Now we prove that B(I ) generates TI Hilbn(C2). Since we know that TI Hilbn(C2)

is generated by pure weight elements we only need to prove that every f ∈HomR (I ,R/I )

of pure weight is in the span of B(I ). Let n( f )= #{αi | f (αi ) �= 0} be the number of gener-
ators of I that f does not send to 0. We use induction on n( f ).

If n( f )= 0, then f = 0, and there is nothing to prove.
Suppose now that all f̃ with n( f̃ )< t are in the span of B(I ), and suppose f has

n( f )= t . Since f is of pure weight we know that either:

1) we have ı̄ :=max{i | f (αi ) �= 0} is strictly smaller than s and f (αı̄ ) ∈ 〈β〉 with β ∈ Pαı̄ ,
or

2) we have ı̄ :=min{i | f (αi ) �= 0} is strictly bigger than 0 and f (αı̄ ) ∈ 〈β〉 with β ∈Qαı̄ .

Suppose we are in the first case. Renormalize f so that f (αı̄ )=β.
Then thanks to the definition of ı̄, since y pı̄β ∈ I , we have that f − fαı̄ ,β is well defined
and sends strictly more generators to 0 mod I , i.e. n( f − fαı̄ )< t . By induction we have
that f ∈ span(B(I )) as desired.

The case 2), is completely analogous.

Proposition 2.1.8. [Fog68, Theorem 2.4] The Hilbert scheme Hilbn(C2) is smooth.

Proof. We just proved that at every torus fixed point I the Zariski tangent space has
dimension equal to the dimension of Hilbn(C2), Lemma 2.1.6 and Lemma 2.1.7. How-
ever since every point in Hilbn(C2) is attracted by a fixed point, and the dimension of
the tangent space can only be greater at a fixed point, we have that the same state-
ment holds for every point. Thus every point of Hilbn(C2) is smooth.
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Theorem 2.1.9. [ES87, Theorem 1.1] The space Hilbn(0) has an affine cell decomposi-
tion given by the attracting sets at its torus fixed points for every generic one dimen-
sional torus acting with weights 0<w1 <w2. If we chose the T∞ action of C∗ on C[x, y],
i.e. the action with weights w1, w2 such that 0<w1 <w2 and 1� w2

w1
, then the affine cell

attracted by a monomial ideal I has dimension n−d where d =min{i |xi ∈ I } = �(Γ(I )).
In particular the Betti numbers for the Borel-Moore homology of Hilbn(0) satisfy:

bi = # {ν�n | �(ν)= n− i } .

The Poincaré polynomial of Hilbn(0) is

Pq
(
Hilbn(0)

)= ∑
Γ�n

qn−�(Γ).

Proof. Consider P2 with homogenous coordinates [Z : X : Y ]. Observe that Hilbn(P2)

is smooth since there is an open cover with opens that are isomorphic to Hilbn(C2)

that is smooth thanks to Proposition 2.1.8. Consider the T action on it given by t · [Z :

X : Y ] = [tW0 Z : tW1 X : tW2 ], with W0 +W1 +W2 = 0, and W0 < W1 < W2. It has finitely
many fixed points, so we can apply Theorem 1.3.4 to obtain a cell decomposition of
Hilbn(P2). Consider the subvariety Hilbn(P0) ⊂ Hilbn(P2) parametrizing subschemes
that have support in P0 = [1 : 0 : 0]. Since under the T action every point of P2 flows
away from P0 we have that

Z ∈Hilbn(P0) ⇐⇒ lim
t→0

(t ·Z ) ∈Hilbn(P0).

This shows that Hilbn(P0) is a union of some of the cells of the Bialynicki-Birula cell
decomposition of Hilbn(P2) and we need only to calculate their dimension to find a
graded basis for the BM homology of Hilbn(0). Choose W1 = 2w1−w2

3 and W2 = 2w2−w1
3

and use the identifications

x := X

Z
y := Y

Z
R :=C[[x, y]],

we have Hilbn(P0)=Hilbn(R)red with the torus action described in the statement.

In particular T+
I Hilbn(0) = T+

I Hilbn(P2) = T+
I Hilbn(C2). Let then I = (α0, . . . ,αs)

be a monomial ideal of length n, with prescribed standard monomial generators. We
want to study the positive part of the tangent space T+

I Hilbn(C2). Given the choice
of torus, the weight of fα,β is positive if and only if β ∈ Pα and β lies in a row strictly
higher than the one of α. We know that

∑
i #Pαi = n from (2.2), and we know that the

only β ∈ Pα that are not on a row higher than α are those on the same row of α. It is
clear, by projecting down, that these are as many as the boxes in the first row, i.e. the
number of columns. Then we have that dimT+

I Hilbn(C2)= n−d as wanted.

Then thanks to Theorem 1.3.4 we know that Hilbn(0) has an affine cell decom-
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position with cells labeled by monomial ideals and of dimensions dimT+
I Hilbn(0).

Moreover, thanks to Proposition 1.3.2 we know that the cycles associated to these cells
give us a graded basis for the homology of Hilbn(0).

Theorem 2.1.10. [Göt90, Theorem 0.1] The generating function for the Poincaré poly-
nomials of Hilbn(0) as n varies is

+∞∑
n=0

Pq
(
Hilbn(0)

)
zn =∏

k≥1

1

1− zk qk−1
. (2.3)

Proof. Call p(n,k) the number of partitions of n with l parts. Then we know bi (Hilbn(0))=
p(n,n− i ), thanks to Theorem 2.1.9. The formula in the statement then is simply the
well known combinatorial identity

+∞∑
n=0

+∞∑
i=0

p(n,n− i )qi zn =
+∞∏
k=1

1

1−qk−1zk

that follows easily from the famous Euler identity for the generating function of the
number of partitions of an integer n.

Remark 2.1.11. Goettsche proves a more general formula that holds for every smooth
surface X . It is worth mentioning its ground breaking result even though we do not
use it. We need to admit non zero odd homology groups to work in this generality,
and the formula is:

+∞∑
n=0

+∞∑
j=0

dim H j
(
Hilbn(X )

)
q j zn =

+∞∏
k=1

4∏
i=0

(
1− zk q2k−2+i

)(−1)dim Hi (X )

.

2.1.1 The tangent space to the Hilbert-Samuel’s strata, case n= n

Now that we know a weight basis for the tangent space TI Hilbn(C2) at each fixed
point I , we can study the tangent spaces TI MT (resp. TI GT ) for those fixed points I ∈
MT i.e such that T (I )= T . Here we suppose that T = (ti )i≥0 is an admissible sequence of
nonnegative integers as in 1.2.7. The key observation for this study is due to Goettsche
and is the following .

Observation 2.1.12. [Göt94, Chapter 2] Let I be a monomial ideal with T (I ) = T and
standard monomial generators (α0, . . . ,αs). With the choice of weights T1+ , we have
the natural identifications:

TI MT =
〈

fα,β
∣∣ fα,β preserves or raises the degree

〉= 〈 fα,β
∣∣ degβ≥ degα

〉
;

TI GT =
〈

fα,β
∣∣ fα,β preserves the degree

〉= 〈 fα,β
∣∣ degβ= degα

〉
.
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Moreover we can determine the subspace of the tangent space where the weights of
the torus action are positive simply as

T+
I MT =

〈
fα,β

∣∣ fα,β raises the degree, or preserves it and strictly raises it in the y
〉

=
〈

fα,β

∣∣∣ degβ> degα, or degβ= degα and degy β> degy α
〉

;

T+
I GT =

〈
fα,β

∣∣ fα,β preserves the degree and strictly raises it in the y
〉

=
〈

fα,β

∣∣∣ degβ= degα,degy β> degy α
〉

.

Lemma 2.1.13. [Göt94, Lemma 2.2.11] The dimension of the subspace T+
I MT of TI MT

where the weights of the action are positive is:

dim(T+
I MT )= n−#

{
(u, v) ∈ Γ(ν)|hu,v = 0 or hu,v = 1

}
. (2.4)

Proof. We give the proof of Goettsche. Call ν= ν0 ≥ ·· · > νs = 0 the partition associated
to I . Call λ and μ two linearly independent characters of the two torus T2 acting on
R̂ as t · x = λ(t )x and t · y = μ(t )y . Then the existence of the basis B(I ) shows that as
representation of T2 we have the identity

TI Hilbn(C2) = ∑
0≤i≤ j<s

ν j−1∑
k=ν j+1

(λi− j−1μνi−k−s +λi− jμk−νi ) (2.5)

as each addendum is the weight of one of the fα,β ∈B(I ).

The action of T1+ has positive weight on λaμb if and only if a+b > 0 or a+b=0
and b > 0. Then the term (λi− j−1μνi−k−s) has positive weight if and only if i+νi > j+k+1

and the term (λi− jμk−νi ) has positive weight if and only if i +νi < j +k. Denote with
ν̂ the transpose partition of ν, i.e. ν̂i = #{(m, i )|(m, i ) ∈ Γ(ν)}. Then it is clear that ν̂k

is the smallest j satisfying k ≥ ν j , so that ν̂k − 1 is the smallest j satisfying k ≥ ν j+1.
Notice also that we can reformulate the definition of the hook difference in terms of
the transpose partition as

hu,v (ν)= νu −u− ν̂v + v.

Then we have that

dimT+
I MT =

∑
0≤i≤ j<s

(
ν j −ν j+1−#

{
k ∈Z

∣∣∣∣∣ ν j+1 ≤ k < ν j ;

0≤ j +k− i −νi +1≤ 1

})
= ∑

0≤i<s
(νi −# {k ∈Z |0≤ k < νi , 0≤ νi + i − ν̂k −k ≤ 1 })

= n−#
{
(u, v) ∈ Γ(ν)

∣∣ 0≤ hu,v (ν)≤ 1
}

.
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For the homogenous Hilbert-Samuel’s stratum GT Goettsche shows, with similar ar-
guments, the following Lemma of which we omit the proof.

Lemma 2.1.14. [Göt94, Lemma 2.2.12] The dimension of the subspace T+
I GT of TI GT

where the weights of the action are positive is:

dim(T+
I GT )= n−#

{
(u, v) ∈ Γ(ν)|hu,v = 1

}
.

Thanks to smoothness, Proposition 1.2.11, we can apply Theorem 1.3.4 and Proposi-
tion 1.3.2 to immediately get the following.

Theorem 2.1.15. [Göt94, Theorem 2.2.7] Let T = (ti )i≥0 be a sequence of nonnegative
integers, with |T | = n as in 1.2.7. Then we have that:

(1) The Hilbert-Samuel’s strata MT and GT have an affine cell decomposition.

(2) The Betti numbers of MT satisfy

bi (MT )= #

{
ν� n

∣∣∣∣∣ T (ν)= T

#
{
(u, v) ∈ Γ(ν) | hu,v ∈ {0,1}

}= n− i

}
.

(3) The Betti numbers of GT satisfy

bi (GT )= #

{
ν�n

∣∣∣∣∣ T (ν)= T

#
{
(u, v) ∈ Γ(ν) | hu,v = 1

}= i

}
.

We can then utilize smoothness of the Hilbert-Samuel’s strata and their homogenous
counterparts to give their dimensions.

Corollary 2.1.16. [Iar77, Theorem 2.12] Let T = (ti )i≥0 be a sequence of nonnegative
integers, with |T | = n as in 1.2.7. The dimension of MT and GT are:

dim MT =n−∑
j

(t j−1− t j )
(t j−1− t j +1)

2
,

dimGT =
∑
j≥d

(t j−1− t j +1)(t j − t j+1).

Remark 2.1.17. As an immediate consequence we obtain that the Poincaré polyno-
mial for Hilbn(0) can be written as

Pq
(
Hilbn(0)

) = ∑
Γ�n

q
posT1+ (Γ)

where posT1+ (Γ) is the quantity described in formula (2.4). Just looking at it combina-
torially, it is not immediately clear that this formula coincides with the one we wrote
in Theorem 2.1.9, nor that these polynomials can be summed to give the same gen-
erating function as in Proposition 2.1.10. In the last chapter we devote a section to
explain in some details how this is working.



2.2. A WEIGHT BASIS FOR TI1,I2 HILBN ,N+1(C2) 29

2.2 A weight basis for TI1,I2Hilbn,n+1(C2)

Now that we defined a basis for the tangent space of Hilbn(C2) at each of its
fixed points, it is time to do the same for the tangent spaces of Hilbn,n+1(C2) at its fixed
points. If I1, I2 is such a fixed point, the vector space we want to understand, thanks
to Lemma 2.0.1, is

TI1,I2 Hilbn,n+1(C2)=Ker(φ12−ψ12)⊂HomR (I1,R
/

I1 )⊕HomR (I2,R
/

I2 ).

In the previous section we saw how to define a weight basis for HomR (I1,R
/

I1 )

and for HomR (I2,R
/

I2 ). The idea is that the two bases share a lot in common, since I1

and I2 differ by a small amount. There is only one monomial in I1 but not in I2, call it
α j .

In the weight basis B(I1, I2) there will be two types of vectors: The first type un-
derlines the similarities between HomR (I1,R

/
I1 ) and HomR (I2,R

/
I2 ): more precisely

these are vectors of the form ( fα,β, �) with fα,β ∈ B(I1) and � some appropriate vector
in TI2 Hilbn+1(C2) that looks like fα,β so that the difference is zero for φ12 −ψ12. The
second type underlines the differences between I1 and I2: more precisely these are
vectors of the form (0,(α �→ α j )), where we use the fact that α j is 0 mod I1 and not 0

mod I2.

Lets dive into the details.

Notation 2.2.1. Let (I1, I2) be a fixed point of the T2 action on Hilbn,n+1(C2), i.e. I1, I2

are monomial ideals of lengths n and n+1 respectively, with I1 ⊃ I2. Call (α1, . . . ,αs) the
standard monomial generators of I1 and (α′1, . . . ,α′s′) the standard monomial genera-
tors of I2. Call Γi = Γ(Ii ), then call j the index for which

Γ2 = Γ1∪ {α j }.

We will denote this configuration also as Γ= (Γ1,Γ2)� [n,n+1].

Call pi and qi , as before, the distances between generators of I1, and p ′i and q ′i
the distances between generators of I2:

pi := degy αi+1−degy αi ps :=∞, qi := degx αi −degx αi−1 q0 :=∞,

p ′i := degy α
′
i+1−degy α

′
i p ′s′ :=∞, q ′i := degx α

′
i −degx α

′
i−1 q ′0 :=∞.

Analogously we call Pα = Pαi and Qα =Qαi the relevant sets for α = αi a generator of
I1, and Pα′ = Pα′i

and Qα′ =Qα′i
the relevant sets for α′ =α′i a generator of I2. Whenever

confusion is possible we will clarify if fα,β is seen as an element in the basis B(I1) of
TI1 Hilbn(C2) or as an element in the basis B(I2) of TI2 Hilbn+1(C2), and so on.
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Definition 2.2.2 (Cases). Let I1 = (α1, . . . ,αs), I2 = (α′1, . . . ,α′s′) be ideals with prescribed
standard monomial generators, such that (I1, I2) is a fixed point for Hilbn,n+1(C2), and
such that Γ(I2)= Γ(I1)∪ {α j }. There are four possible different cases we need to distin-
guish. In the following pictures we will indicate with a bullet • those standard mono-
mial generators of I2 that are not already standard monomial generators of I1.

Cases 1a), 1b) (s = s′)

The number of generators s+1 and s′ +1 is the same for I1 and I2. This can only hap-
pen if p j = 1 or q j = 1 but not both. Then we distinguish the two possibilities, and we
look at the generators of I2 in terms of those of I1:

Case 1a) ,

q j = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′1 =α1

. . .

α′j = yα j

. . .

α′s′ =α′s =αs .

Case 1b) ,

p j = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′1 =α1

. . .

α′j = xα j

. . .

α′s′ =α′s =αs .

•
α j

α j •

Case 2) (s′ = s+1)

This happens if and only if p j > 1, q j > 1, or j = 0 and p0 > 1, or j = s and qs > 1. Then
we have

Case 2) ,

p j , q j > 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′1 =α1

. . .

α′j = xα j

α′j+1 = yα j

α′j+2 =α j+1

. . .

α′s′ =α′s+1 =αs .

•
α j •

Case 3 (s′ = s−1)

This happens if and only if p j = 1, q j = 1. Then we have
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Case 3) ,

p j , q j = 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α′1 =α1

. . .

α′j−1 =α j−1

α′j =α j+1

α′j+1 =α j+2

. . .

α′s′ =α′s−1 =αs .

α j

We now focus on the task of understanding for which fα,β ∈B(I ) there exists h ∈
HomR (I2,R

/
I2 ) such that ( fα,β,h) ∈ TI1,I2 Hilbn,n+1(C2), i.e. φ12( fα,β)−ψ12(h) = 0 mod I1.

Such an h does not always exist, as the following example shows.

Example 2.2.3. Let the following diagram represents the fixed point of Hilb3,4(C2) with
I1 = (x2, x y, y2), I2 = (x2, x y, y3), and α j = y2. Let fα,β be the map fx2,y ∈ B(I ). Then there
does not exist a map h ∈HomR (I2,R

/
I2 ) such that φ12( fα,β)−ψ12(h) = 0, because such

a map would send x2 �→ y and x2 y �→ y2 �= 0 mod I2 which is absurd since it should also
be x y �→ 0 =⇒ x2 y �→ x ·0= 0.

y3

α j

x y x2 y

x2

If f (x2)= y then h(x2)= y ,
but then h(x y) cannot be defined as
we discussed before.

Definition 2.2.4. Let I1 = (α1, . . . ,αs), I2 = (α′1, . . . ,α′s′) be a fixed point for Hilbn,n+1(C2),
such that Γ(I2)= Γ(I1)∪{α j }, with prescribed standard monomial generators. We define
a subset of indexes (α,β) of the basis B(I1)= { fα,β|(α,β)

}
and we denote it Obs(I1, I2). We

will see that these correspond to those fα,β ∈B(I1) that we do not want to try to extend
to elements ( fα,β,h) ∈ TI1,I2 Hilbn,n+1(C2). The definition of Obs(I1, I2) varies according
to the possible cases of Definition 2.2.2.

Case 1a)

Obs(I1, I2) :=
{

(αi ,
α j

xqi ) for i > j ,

(αi ,
α j

y pi ) for i < j −1.

} Case 1b)

Obs(I1, I2) :=
{

(αi ,
α j

xqi ) for i > j +1,

(αi ,
α j

y pi ) for i < j .

}

Case 2)

Obs(I1, I2) :=
{

(αi ,
α j

xqi ) for i > j ,

(αi ,
α j

y pi ) for i < j .

} Case 3)

Obs(I1, I2) :=
{

(αi ,
α j

xqi ) for i > j +1,

(αi ,
α j

y pi ) for i < j −1.

} (2.6)

Example 2.2.5. The pictures below represent some of elements of Obs that we de-
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fined. For each picture there are two fα,β represented: the one represented with stars
sends the generator of I1 marked with a star to the element of Γ1 marked with a star.
The other is represented in a similar way with two bullets.

Case 1a)

•

• α j

�

�

Case 1b)

•

• α j

� �

Case 2)

•

• α j

� �

Case 3)
•

• α j

�

�

Observation 2.2.6. Observe that in terms of s′ = s2, the highest index of a standard
generator of I2, the set Obs(I1, I2) has the same number of elements for all cases.

Case 1a)
#Obs(I1, I2)= s1+1−2= s2+1−2.

Case 1b)
#Obs(I1, I2)= s1+1−2= s2+1−2.

Case 2)
#Obs(I1, I2)= s1+1−1= s2+1−2.

Case 3)
#Obs(I1, I2)= s1+1−3= s2+1−2.

Lemma 2.2.7 (definition). Let I1 = (α1, . . . ,αs), I2 = (α′1, . . . ,α′s′) be ideals with prescribed
standard monomial generators, such that (I1, I2) is a fixed point for Hilbn,n+1(C2), and
such that Γ(I2)= Γ(I1)∪{α j }. Let fα,β be one of the elements of the basis B(I1) of TI1 Hilbn(C2)

such that (α,β) ∉Obs(I1, I2). Then we define

Suiv( fα,β)(α′k )= fα,β(α′k ), for all k = 0, . . . , s′. (2.7)

Then Suiv( fα,β) is well defined as an element of HomR (I2,R
/

I2 ). Moreover it is such that(
fα,β,Suiv( fα,β)

) ∈ TI1,I2 Hilbn,n+1(C2) .

Proof. Suppose α �= α j , then α is also a generator of I2. Moreover the hypothesis that
(α,β) is not an element of Obs(I1, I2) ensures that β ∈ P ′α ∪Q ′

α so that we can define
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f ′
α,β ∈B(I2) and we have that f ′

α,β = Suiv( fα,β). Of course

φ12( fα,β)−ψ12(Suiv( fα,β))= 0

since it is zero on each generator α′k of I2. Similarly if α=α j but xα (or yα) is a gener-
ators of I2, we have that Suiv( fα,β) = f ′xα,xβ ∈ B(I2) (or Suiv( fα,β) = f ′yα,yβ ∈ B(I2)) so that
it is well defined and it is, again obviously, in the kernel of φ12−ψ12. If, finally, α= α j

and we are in case 3) of 2.2.2 then, if β ∈Qα, y β

xq j+1 ∈Qα′ and, if β ∈ Pα, x β

xp j−1 ∈ Pα′ and
we have that

If β ∈Qα, then Suiv( fα,β)= f ′
α′j ,y β

x
q j+1

,

If β ∈ Pα, then Suiv( fα,β)= f ′
α′j−1,x β

x
p j−1

.

This shows that also in this case Suiv( fα,β) is well defined. Again it is clear that the
vector ( fα,β,Suiv( fα,β)) is in Ker(φ12−ψ12).

Definition 2.2.8. For every generator α′i of I2 define:

hα′i ,α j
∈HomR (I2,R

/
I2 ) as hα′i ,α j

(α′k )=
⎧⎨⎩0 if k �= i ,

α j if k = i .

Observation 2.2.9. The hα′i ,α j
as above are well defined. Moreover

(0,hαi ,α j ) ∈Ker(φ12−ψ12)

are linearly independent vectors, as it follows recalling that α j
∼= 0 mod I1 but α j �

0 mod I1.

Definition 2.2.10. Let I1 = (α1, . . . ,αs), I2 = (α′1, . . . ,α′s′) be a fixed point for Hilbn,n+1(C2),
such that Γ(I2)= Γ(I1)∪ {α j }, with prescribed standard monomial generators. Then we
define the set:

B(I1, I2) :=
{(

0,hα′i ,α j

) ∣∣ i = 0, . . . , s′
}
∪ (2.8)

∪ {( fα,β,Suiv( fα,β)
) ∣∣ fα,β ∈B(I1), (α,β) ∉Obs(I1, I2))

}
⊂ HomR (I1,R

/
I1 )⊕HomR (I2,R

/
I2 ).

Observation 2.2.11. Observe that #B(I1, I2) = 2n+2. In fact #B(I1) = 2n, #Obs(I1, I2) =
s′ +1−2 thanks to Observation 2.2.6, and #

{
(0,hα′i ,α j

)|i = 0, . . . , s′
}
= s′ +1.

Lemma 2.2.12. With the notations as in Definition 2.2.10, we have that B(I1, I2) is a
basis for TI1,I2 Hilbn,n+1(C2).

Proof. First of all we observe that by definition all elements of B(I1, I2) are in the Ker(φ12−
ψ12), and are of pure weights. Abbreviate Obs(I1, I2) to Obs.
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Let us now prove that they are linearly independent. Suppose

s′∑
i=0

ci (0,hα′i ,α j
)+ ∑

(α,β)∉Obs
cα,β ( fα,β,Suiv( fα,β))= (0,0).

Then in particular
∑

(α,β)∉Obs cα,β fα,β = 0 as an element of HomR (I1,R
/

I1 ) where we
know that the vectors fα,β are linearly independent, so that cα,β = 0 for each (α,β).
Then, also

∑s′
i=0 ci hα′i ,α j

∈ HomR (I2,R
/

I2 ), which again implies that ci = 0 for all i =
0, . . . , s′.

Let us then prove that B(I1, I2) generates TI1,I2 Hilbn,n+1(C2). Since we know that
TI1,I2 Hilbn,n+1(C2) is generated by pure weight elements we only need to prove that
every g = ( f ,h) ∈ Ker(φ12 −ψ12) of pure weight is in the span of B(I1, I2). Let n( f ) be
the number of generators of I1 that the first coordinate of g does not send to 0 i.e
n( f )= #{αi | f (αi ) �= 0}. Then we use induction on n( f ).

If n( f ) = 0, then f = 0, and then g = (0,h) is such that h(α′i ) = 0 mod I1 so that
h(α′i ) ∈ 〈α j 〉. Then, clearly h ∈ 〈hα′i ,α j

|i = 0, . . . s′〉. Suppose now that all g̃ = ( f̃ , h̃) with
n( f̃ ) < t are in the span of B(I1, I2), and suppose g = ( f ,h) with n( f ) = t . Since f is of
pure weight we know that either:

1) we have ı̄ :=max{i | f (αi ) �= 0} is strictly smaller than s and f (αı̄ ) ∈ 〈β〉 with β ∈ Pαı̄ ,
or

2) we have ı̄ :=min{i | f (αi ) �= 0} is strictly bigger than 0 and f (αı̄ ) ∈ 〈β〉 with β ∈Qαı̄ .

Suppose we are in the first case. Renormalize g = ( f ,h) so that f (αı̄ ) = β. First of all
notice that (αı̄ ,β) ∉Obs, otherwise we would be in the situation where

ı̄ ≤ j and β= α j

y pı̄

with f (αi )= 0 for all i > ı̄. But all θ ∈HomR (I2,R
/

I2 ) such that θ(αı̄ )= α j

y pı̄ have θ(αı̄+1) �=
0, if not

y pı̄αı̄ = xqı̄+1αı̄+1 =⇒ α j = y pı̄
α j

y pı̄
= θ(y pı̄αı̄ )= θ(xqı̄+1αı̄+1)= 0.

This equality mod I2 is absurd since α j ∉ I2. Then, always thanks to the definition of ı̄,
we have that y pı̄β ∈ I1, and thanks to the fact that (αı̄ ,β) ∉Obs, we have that

( f − fαı̄ ,β,h−Suiv( fαı̄ ,β)) ∈Ker(φ12−ψ12)

is well defined and has first coordinate that sends strictly more generators to 0 mod
I1, i.e. n( f − fαı̄ )< t . By induction we have that g ∈ span(B(I1, I2)) as desired.
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The case 2) is completely analogous.

Theorem 2.2.13. [Che98, Theorem 3.2.2, 3.3.3] The space Hilbn,n+1(C2) is smooth. The
space Hilbn,n+1(0) has an affine cell decomposition given by the attracting sets at torus
fixed points. Moreover if the T1 action on R has weights 0 < w1 < w2 and 1 � w2

w1
then

the affine attracting cell in Hilbn,n+1(0) of the point (I1, I2) has dimension n+1−d where
d =min{i |xi ∈ I2} i.e. d = �(Γ(I2)). In particular the Betti numbers of Hilbn,n+1(0) satisfy:

bi = #
{
(Γ1,Γ2)

∣∣Γ1 � n, Γ2 � n+1, Γ1 ⊂ Γ2 and �(Γ2)= n+1− i
}

.

The Poincaré polynomial of Hilbn,n+1(0) is

Pq

(
Hilbn,n+1(0)

)
= ∑

(Γ1,Γ2)� [n,n+1]
qn+1−�(Γ2).

The generating function for these polynomials is

+∞∑
n=0

Pq

(
Hilbn,n+1(0)

)
zn =

(
1

1− zq

) ∏
k≥1

1

1− zk qk−1
. (2.9)

Proof. The proof of smoothness follows immediately from Observation 2.2.11 and
Lemma 2.2.12 that tell us that the dimension of the tangent space at each torus fixed
point is the same as the dimension of the variety.

The proof on the Betti numbers goes exactly as the proof of Theorem 2.1.9.
First of all Hilbn,n+1(P2) is smooth since Hilbn,n+1(C2) is. Then Theorem 1.3.4 gives us
a cell decomposition with the dimension of the cells specified by the positive part
of the tangent spaces at fixed points. Call P0 ∈ P2 the fixed points with zero dimen-
sional attracting cells for the T action on P2; since the limiting process preserves the
support for subschemes with support concentrated in P0 we have that Hilbn,n+1(0) =
Hilbn,n+1(P0) is union of cells of Hilbn,n+1(P2).

We do not include the proof of the statement on the generating function. Cheah
[Che98, pp 69-70] proves it directly in one page. In [NY08, Chapter 5] the authors give
a slightly more indirect and more geometrical proof whose ingredients are more sim-
ilar to the discussion we will give in the last section of Chapter 4.

2.2.1 The tangent space to the Hilbert-Samuel’s strata, case n= (n,n+1)

For T1,T2 two admissible sequences of nonnegative integers as in 1.2.7, we
want to study the tangent space of MT1,T2 ( resp. of GT1,T2 ) at a flag of monomial ideals
(I1, I2) with T (Ii )= Ti .

Thanks to Observation 2.1.12 we can reduce this to the study of the weights of
the elements of the basis B(I1, I2). Moreover to understand the cellular decomposi-
tion of MT1,T2 induced by the action of the torus T1+ we are interested in studying the
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positive parts of these tangent spaces.

We divide the study of elements of B(I1, I2) into two observations, according to
their type.

Observation 2.2.14. To study the weight of the first kind of elements

(0, hα′i ,α j
), with i = 0, . . . , s′

we need only to compare the degree of a generator of I2 with that of α j the only
monomial in I1 but not in I2. More precisely, we have that the (0,hα′i ,α j

) ∈ B(I1, I2) is
tangent to MT (I1),T (I2) if and only if degα′i ≤ degα j ; tangent to GT (I1),T (I2) if and only if
degα′i = degα j ; tangent to MT (I1),T (I2) and with positive weight if and only if degα′i ≤
degα j and degy α

′
i < degy α j ; tangent to GT (I1),T (I2) and with positive weight if and only

if degα′i = degα j and degy α
′
i < degy α j .

Example 2.2.15.

m, g

m, g

α j

m+, g+

m+

With m (resp. g ) we indicate a
generator of I2 that produces
a tangent vector to

MT (I1),T (I2)( resp. GT (I1),T (I2))

The plus is added if the vector
produced has positive weight.

Observation 2.2.16. We want now to analyze the second type of elements of the basis
B(I1, I2):{(

fα,β,Suiv( fα,β)
) ∣∣ fα,β ∈B(I1), (α,β) ∉Obs(I1, I2))

}
.

From the definition of Suiv( fα,β) we have that ( fα,β,Suiv( fα,β)) has the same weight as
fα,β. So ( fα,β,Suiv( fα,β)) ∈ B(I1, I2) is tangent to MT (I1),T (I2) if and only if fα,β is tangent
to MT (I1) i.e. if and only if degα ≤ degβ. Similarly for the positive part, and for the
tangent to GT (I1),T (I2) and its positive part. In fact it is enough to understand when fα,β

with (α,β) ∈Obs(I1, I2) is raising or preserving degree, and so on, and then understand
the dimension of the appropriate vector spaces by difference: if (α,β) ∈Obs(I1, I2), fα,β

does not extend to an element of B(I1, I2).
Looking at definition 2.2.4 we have that f = fα,β with (α,β) ∈ Obs(I1, I2) is such that
either

case1) f (αi )= α j

y pi with i < j or
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case2) f (αi )= α j

xqi with i > j .

In case1) we have the weight of fα,β is equal to deg
α j

y pi −degαi = degα j − y pi degαi . The

same formula holds for the y-degree. In case 2), similarly, we have: wt( fα,β)= deg
α j

xqi −
degαi = degα j −xqi degαi .
Notice also that for each αi generator of I1 there is at most one β such that (αi ,β) ∈
Obs(I1, I2). Then to know for whichαi , i = 0, . . . , s there is aβ such that fα,β ∈ TI1 Hilbn(C2)

does not produce an element of the basis B(I1, I2) of TI1,I2 Hilbn,n+1(C2) but that is, say,
raising degree (i.e. fα,β is tangent to MT (I1)), the relevant check on degrees is be-
tween α j and y pi αi if i ≤ j and between α j and xqi αi if i ≥ j . Notice that we do not
need to distinguish cases as in the definition of Obs(I1, I2) 2.2.4, since for the indexes
i = j −1, j , j +1, where there is actually a difference in the definition of Obs(I1, I2), we
have degα j < deg y pi αi or degα j < deg xqi αi so that we would not consider them any-
way, since the corresponding fα,β is of negative weight. We can then summarize and
say

fαi ,β ∈ TI1 MT (I1) but (αi ,β) ∈Obs(I1, I2) ⇐⇒
⎧⎨⎩deg y pi αi ≤ degα j if i ≤ j ,

deg xqi αi ≤ degα j if i ≥ j .
(2.10)

Remark once more that these are the vectors we will need to exclude. Similarly for all
the other vector spaces we are interested in. Let us visualize it in an example:

α j

m+g+

m+

With m (resp. g ) we indicate
y p times a generator of I1 that
produce a tangent vector to
MT1 (resp. GT1 ) that cannot be
extended to a tangent vector
of MT1,T2 (resp. GT1,T2 ). The
plus as exponent is there if the
tangent to MT1 (resp. GT1 ) is
also attracting.

Definition 2.2.17. We put together what we remarked in the last two observations to
give a combinatorial rule of how the dimension of the tangent space at the two step
flag case grows with respect to the one step flag case.

Let Γ2 = Γ1∪{α j } be the Young diagrams associated to monomial ideals (I1, I2) in
Hilbn,n+1(C2). Then put a • at each box occupied by a standard monomial generators
of I2, and a � at each vertex of Γ2, i.e. wherever on the same column below and on the
same row on the left there is a •, and no others marked boxes in between.
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• �
• �

• �

• �
• �

α j

• �
• �
•

Define Λi the i -th antidiagonal of the positive quadrant, i.e. all boxes (k,m) with k +
m = i for i ≥ 0. Say that Λi <Λk if i < k, i.e. if Λi is a lower antidiagonal than Λk . Call
Λα j the antidiagonal that passes through α j . Then define the following numbers:

• M(Γ1,Γ2) := #{• ∈Λi
∣∣Λi <Λα j }+#{• ∈Λα j }

•G(Γ1,Γ2) := #{• ∈Λα j }

•M+(Γ1,Γ2) := #{• ∈Λi
∣∣Λi <Λα j }+#{• ∈Λα j

∣∣• to the right of α j }

•G+(Γ1,Γ2) := #{• ∈Λα j

∣∣• to the right of α j }

� M(Γ1,Γ2) := #{� ∈Λi
∣∣Λi <Λα j }+#{� ∈Λα j }

� G(Γ1,Γ2) := #{� ∈Λα j }

�M+(Γ1,Γ2) := #{� ∈Λi
∣∣Λi <Λα j }+#{� ∈Λα j

∣∣� to the right of α j }

�G+(Γ1,Γ2) := #{� ∈Λα j

∣∣� to the right of α j }.

Lemma 2.2.18. [Che98, Lemma 3.4.9] Suppose that (I1, I2) ∈ GT1,T2 ⊂ MT1,T2 is a fixed
point of the T1+ action on Hilbn,n+1(0) with generic weights w1 <w2 and (n+1)w1 >nw2.
Call (Γ1,Γ2) the couple of Young diagrams associated to (I1, I2). Then:

1) The dimension of the tangent space to MT1,T2 at (I1, I2) is equal to

dim MT1 +•M(Γ1,Γ2)−�M(Γ1,Γ2).

2) The dimension of the tangent space to GT1,T2 at (I1, I2) is equal to

dimGT1 +•G(Γ1,Γ2)−�G(Γ1,Γ2).

3) The dimension of the positive part of tangent space to MT1,T2 at (I1, I2) is equal to

dimT+
I1

MT1 +•M+(Γ1,Γ2)−�M+(Γ1,Γ2).

4) The dimension of the positive part of the tangent space to GT1,T2 at (I1, I2) is equal
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to

dimT+
I1

GT1 +•G+(Γ1,Γ2)−�G+(Γ1,Γ2).

Proof. The proof is immediate thanks to the definition of B(I1, I2) 2.2.10 and Observa-
tions 2.2.14 and 2.2.16.

In the next chapter we will see that these strata are smooth, and we will talk about
their dimension and about their homology.

2.3 A weight basis for TI1,I2,I3Hilbn,n+1,n+2(C2)

If (I1, I2, I3) is a fixed point of Hilbn,n+1,n+2(C2) we denote by α j the only mono-
mial in I1 but not in I2, and by α′l the only monomial in I2 but not in I3. We need to
find a weight basis for

TI1,I2,I3 Hilbn,n+1,n+2(C2)∼=
⋂

1≤i< j≤3

(
Ker(φi j −ψi j )◦πi j

)
.

Trying to mimic what we did for the two step flag case, we want to find elements in
HomR (I1,R

/
I1 )⊕HomR (I2,R

/
I2 )⊕HomR (I3,R

/
I3 ) of the form

(0,0,(α �→α′l )),

(0, (α �→α j ),Suiv((α �→α j )),

( fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))).

As before, then, most of the work is to understand for what elements we can
actually define the Suiv. For example, we know already that for the last kind of vectors
we need to take fα,β ∈ B(I1) with (α,β) ∉ Obs(I1, I2). Presumably we need to take care
about the problem of extending vectors from B(I2) to B(I2, I3). For this reason we will
define 2.3.6. In fact the real twist of the three flag case is Definition 2.3.9: this tackles
the problem of making sure that we pick out those vectors of B(I2) that do not extend
to vectors in B(I2, I3) but that actually matter for the construction of B(I1, I2, I3). Philo-
sophically we are trying to define B(I1, I2, I3) by using twice, and independently, the
two flag case and then slightly correcting with some information that is intrinsic to
the three flag case.

Notation 2.3.1. Let (I1, I2, I3) be a fixed point of Hilbn,n+1,n+2(C2), i.e. each Ii is a mono-
mial ideal with dimR

/
Ii =n+ i −1 and I1 ⊃ I2 ⊃ I3. We assume that:

I1 = (α0, . . . ,αs), I2 = (α′0, . . . ,α′s′), I3 = (α′′0, . . . ,α′′s′′),

Γ(I3)= Γ(I2)∪ {α′l }= Γ(I1)∪ {α j }∪ {α′l },
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where the αi s are standard monomial generators of I1, the α′i s are standard monomial
generators of I2, the α′′i s are standard monomial generators of I3 and there are s′′ +1=
s3+1 of them. In the first step we add the box α j to Γ(I1) that was a generator of I1. In
the second step we add α′l to Γ(I2) that was a generator of I2.

Definition 2.3.2. We distinguish two cases based on the relative position of α j and α′l .
The corresponding fixed points will have different geometrical properties.

case a)

The second box we add, α′l , is a minimal generator
also of I1. This is always the case unless α′l is imme-
diately above or on the right of α j . In this case we
often drop the prime and call the second box sim-
ply αl .

αl

α j

case b)

The second box we add, α′l , is not a minimal gener-
ator of I1. This can happen only if α′l is immediately
above or to the right of α j , i.e. α′l = yα j or α′l = xα j .
We will keep the prime in α′l in this case.

αl
α j

Notation 2.3.3. Call pi and qi , as before, the distances between generators of I1, and
p ′i and q ′i the distances between generators of I2, and p ′′i and q ′′i the distances between
generators of I3:

pi := degy αi+1−degy αi ps :=∞, qi := degx αi −degx αi−1 q0 :=∞,

p ′i := degy α
′
i+1−degy α

′
i p ′s′ :=∞, q ′i := degx α

′
i −degx α

′
i−1 q ′0 :=∞,

p ′′i := degy α
′′
i+1−degy α

′′
i p ′′s′′ :=∞, q ′′i := degx α

′′
i −degx α

′′
i−1 q ′′0 :=∞.

Analogously we call Pα = Pαi and Qα =Qαi the relevant sets for α = αi generator of I1,
Pα′ = Pα′i

and Qα′ =Qα′i
those for the generators of I2 and Pα′′ = Pα′′i

and Qα′′ =Qα′′i
those

for the generators of I3. Whenever confusion is possible we will clarify if fα,β is seen
as an element in the basis B(I1) of TI1 Hilbn(C2) or as an element in the basis B(I2) of
TI2 Hilbn+1(C2), and so on.

Definition 2.3.4. We need to distinguish between the possible cases of Definition
2.2.2 on s, s′ and s′′. To give a name to all possible cases we will combine the name
of the case as in 2.2.2 and the name of the boxes it refers to. For example the case l1a)

means that, we do not care about the position of α j , and when we add α′l we add it as
a minimal generator of I2 that has p ′ > 1 and q ′ = 1. Another example: j 1a), l3) means
that p j ≥ 2, q j = 1 and p ′l = 1= q ′l .
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It is clear that, between these cases and the cases for the relative position of α j

and αl of 2.3.2, we have quite a few possible cases.

Example 2.3.5. Before introducing Obs(I2, I3), we show with an example why we need
to care about extending vectors from TI2 Hilbn+1(C2) to TI2,I3 Hilbn+1,n+2(C2) in order to
define vectors of the third type

(
fα,β,Suiv( fα,β)),Suiv(Suiv( fα,β)

)
.

αl

• α j

•

Let fα,β ∈ B(I1) be the map depicted by the bullets,
i.e. that sends the bullet outside Γ1 to the bullet in-
side and is zero on the other generators of I1. Then
( fα,β,Suiv( fα,β)) ∈ B(I1, I2), but there does not exist g ∈
TI3 Hilbn+2(C2) such that ( fα,β,Suiv( fα,β), g ) is tangent to
TI1,I2,I3 Hilbn,n+1,n+2(C2), simply because there does not
exist a map g ∈ TI3 Hilbn+2(C2) that sends • to •.

Definition 2.3.6. We need to define Obs(I1, I2) and Obs(I2, I3). We define them only
according to the respective cases of the last box added, and not on the relative position
of α j and αl . Thus, for example, Obs(I2, I3) depends only on p ′l and q ′l and not on p j

and q j .

For Obs(I1, I2), then, the definition is exactly as in 2.6. The definition of Obs(I2, I3)

is completely analogous but we add it for convenience.

Case l 1a)

Obs(I2, I3) :=
{

(α′i , αl
xqi ) for i > l

(α′i , αl
y pi ) for i < l −1.

} Case l 1b)

Obs(I2, I3) :=
{

(α′i , αl
xqi ) for i > l +1

(α′i , αl
y pi ) for i < l .

}
Case l 2)

Obs(I2, I3) :=
{

(α′i , αl
xqi ) for i > l

(α′i , αl
y pi ) for i < l .

} Case l 3)

Obs(I2, I3) :=
{

(α′i , αl
xqi ) for i > l +1

(α′i , αl
y pi ) for i < l −1.

}

Observation 2.3.7. Again observe that in terms of s′′ = s3, where s′′ +1 is the number
of generators of I3, the set Obs(I2, I3) has the same number of elements along all cases.

Case l 1a)
#Obs(I1, I2)= s2−2= s3+1−2

Case l 1b)
#Obs(I2, I3)= s2−2= s3+1−2

Case l 2)
#Obs(I2, I3)= s2−1= s3+1−2

Case l 3)
#Obs(I2, I3)= s2−3= s3+1−2

However, as suggested at the beggining of the section, not all elements of Obs(I2, I3)

are relevant. The next example shows why this can happen.

Example 2.3.8.
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αl

• α j

•

Let f•,• ∈ B(I2) be the map depicted by the bullets,
i.e. that sends the bullet outside Γ2 to the bullet in-
side and is zero on other generators of I2 that are
above the bullet outside (but is not zero on the re-
maining generators of I2, α′0 and α′1). Notice that
p ′• = 2. Then (α,β) ∈ Obs(I2, I3), but there does not
exist f ∈ TI1 Hilbn(C2) such that fα,β = Suiv( f ) since
p• = 1. Then the couple (α,β) in B(I2, I3) is actually
irrelevant to our purposes.

To avoid counting unnecessarily obstructions at the second step we introduce this
definition.

Definition 2.3.9. We define a set of indexes NotP = NotP(Γ1,Γ2,Γ3) := {(α′i ,β)} whose

corresponding elements
{

fα′i ,β

}
are in HomR (I2,R

/
I2 ). In the general case there will

be only one of these, and it will be such that fα′i ,β ∈ Obs(I2, I3) but there is not f an
R-homomorphism in HomR (I1,R

/
I1 ) with Suiv( f ) = fα′i ,β. We need to distinguish be-

tween the two cases a) and b) of 2.3.2.

case a)
αl not immediately above or to the right of α j

The definition is according to the cases 2.2.2 for α j .

Case j 1a)

If ( j < l ) then NotP :=
{(

α j−1, αl

y
p′

j−1

)}
If ( j > l ) then NotP := {(yα j , αl

x

)}
.

Case j 1b)

If ( j < l ) then NotP :=
{(

xα j , αl
y

)}
If ( j > l ) then NotP :=

{(
yα j+1, αl

x
q′

j+1

)}
.

Case j 2)

If ( j < l ) then NotP :=
{(

xα j , αl
y

)}
If ( j > l ) then NotP := {(yα j , αl

x

)}
.

Case j 3)

If ( j < l ) then NotP :=
{(

α j−1, αl

y
p′

j−1

)}
If ( j > l ) then NotP :=

{(
α j+1, αl

x
q′

j+1

)}
.

case b)
α′l is immediately above or to the right of α j .

If α′l = yα j we define

NotP := {(α′i ,α j )
∣∣i < j , and p ′i = 1

}
.

If α′l = xα j we define

NotP := {(α′i ,α j )
∣∣i > j , and q ′i = 1

}
.

Observation 2.3.10. In case a), i.e. αl not immediately above or on the right of α j ,
there is always only a single element in NotP.

Example 2.3.11. In the example below we depict four possible cases of nested triples
of monomial ideals, and the corresponding NotP ∈HomR (I2,R

/
I2 ), which is just a sin-

gleton. As usual we represent an R-homomorphism with a couple of corresponding
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symbols, the one outside Γ2 represents the generator of I2, the one inside represents
its image.

•
α j

�

α j

� • αl

�
�

α j

�

α j �

Lemma 2.3.12 (definition). Let (α′,β′) ∈ Obs(I2, I3) be such that (α′,β′) ∉ NotP. Then
there exists fα,β ∈B(I1) such that ( fα,β, fα′,β′) ∈Ker(φ12−ψ12) and (α′,β′)= (xa ybα, xa ybβ)

with (a,b)= (0,0), (0,1) or (1,0). We define fα,β :=Prec( fα′,β′) and

PObs(I1, I2, I3)=PObs= {(α,β)
∣∣ fα,β =Prec( fα′,β′) for (α′,β′) ∈Obs(I2, I3) \ NotP

}
Proof. It is enough to notice that, under the hypothesis on (α′,β′), eitherα is a minimal
generator of I1 (or one of α

xa yb with (a,b) = (0,1), (1,0) is), and β ∈ Pα∪Qα (or β

xa yb is in
P α

xa yb
∪Q α

xa yb
).

Lemma 2.3.13. Let ( f ,h, g ) ∈HomR (I1,R
/

I1 )⊕HomR (I2,R
/

I2 )⊕HomR (I3,R
/

I3 ) be such
that ( f ,h) ∈ Ker(φ12−ψ12) and (h, g ) ∈ Ker(φ23−ψ23), then ( f , g ) ∈ Ker(φ13−ψ13), so that
( f ,h, g ) ∈⋂1≤i< j≤3

(
Ker(φi j −ψi j )◦πi j

)
.

Proof. It is enough to check that

( f
∣∣

I3
− h|I3 )+ ( h|I3 − g )= 0 mod I1

since the two terms in parenthesis are 0: the first directly by hypothesis, the second
because by hypothesis is 0 mod I2 and I1 ⊃ I2.
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Lemma 2.3.14 (definition). Let (α,β) with fα,β ∈ B(I1) and (α,β) ∉ Obs(I1, I2)∪PObs.
Then we can define(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
) ∈ ⋂

1≤i< j≤3

(
Ker(φi j −ψi j )◦πi j

)
.

Proof. The proof is completely analogous to the proof of Lemma 2.2.7.

Now that we have dealt with vectors of type
(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
)
, we will

deal with vectors of type
(
0,(α �→α j ),Suiv(α �→α j )

)
. The situation is easier: if we are in

case a) of 2.3.2 Suiv(α �→α j ) always exists, and the definition is as below. In case b) we
still need some care as it might happen that (α′i ,α j ) ∈Obs(I2, I3).

Definition 2.3.15. Let (α′0, . . . ,α′s′) be the list of standard monomial generators of I2.

case a)
αl is not immediately above or to the right of α j .

Let hα′i ,α j
∈ B(I2) be the vector already defined in (2.2.8), i.e. the map that takes α′i ∈ I2

to α j ∈ Γ2 and sends all other generators of I2 to zero. Then we define Suiv(hα′i ,α j
) ∈

HomR (I3,R
/

I3 ) by specifying the image of each generator of I3 as:

Suiv(hα′i ,α j
)(α′′k )=

⎧⎨⎩hα′i ,α j
(α′′k ) if α′′k = xa ybα′i , with a,b ≥ 0,

0 otherwise.

This works for all α′i exactly because (α′i ,α j ) ∉Obs(I2, I3). The hα′i ,α j
we just defined are

clearly linearly independent.

case b)
α′l is immediately above or to the right of α j .

In this case we define hα′i ,α j
:= fα′i ,α j

∈ B(I2), i.e. through the usual Definition 2.1.3.
Then, if (α′i ,α j ) ∉ Obs(I2, I3), we also define Suiv(hα′i ,α j

) with the usual definition, i.e.
through Lemma 2.2.7.

Definition 2.3.16. Let (α′′0, . . . ,α′′s′′) be the list of standard monomial generators of I3.
We define hα′′i ,α′l

∈HomR (I3,R
/

I3 ) as

hα′′i ,α′l
(α′′k )=

⎧⎨⎩α′l if α′′k =α′′i ,

0 otherwise.

We have s′′ +1= s3+1 of these and they are linearly independents.

Definition 2.3.17. (B(I1, I2, I3)) Let (I1, I2, I3) be a fixed point of Hilbn,n+1,n+2(C2) with
α j the only monomial in I1 but not in I2 and α′l the only monomial in I2 but not in I3.
Then we define the subset

B(I1, I2, I3)⊂HomR (I1,R
/

I1 )⊕HomR (I2,R
/

I2 )⊕HomR (I3,R
/

I3 )



2.3. A WEIGHT BASIS FOR TI1,I2,I3 HILBN ,N+1,N+2(C2) 45

as

B(I1, I2, I3) :=
{

(0,0,hα′′i ,α′l
) | i = 0, . . . , s′′

}
∪

∪
{(

0,hα′i ,α j
,Suiv(hα′i ,α j

)
)
| (α′i ,α j ) ∉Obs(I2, I3)

}
∪ (2.11)

∪{( fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
) ∣∣ (α,β) ∉Obs(I1, I2)∪PObs

}
Observation 2.3.18. In case a), i.e. αl is not immediately above or to the left of α j , we
have that:

#B(I1, I2, I3)= 2n+5.

To see this, start observing that we have s′′ +1 elements in the first set. Then (α′i ,α j ) ∉
Obs(I2, I3) for all i = 0, . . . , s′, so that we have s′ +1 elements in the second set.

#
{

(0,0,hα′′i αl
) | i = 0, . . . , s′′

}
= s′′ +1

#
{(

0,hα′i ,α j
,Suiv(hα′i ,α j

)
)
| i = 0, . . . , s′

}
= s′ +1

Moreover Obs(I1, I2) and PObs are distinct sets of cardinality s′ + 1− 2 and s′′ + 1− 3

respectively. So

#
{(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
) ∣∣ (αβ) ∉Obs(I1, I2)∪PObs

}= #B(I1)−(s′+1−2)−(s′′+1−3).

Finally remembering #B(I1)= 2n and putting together the results we have #B(I1, I2, I3)=
2n+5.

Observation 2.3.19. In case b), i.e. α′l is immediately above or to the left of α j , we
have that:

#B(I1, I2, I3)= 2n+4.

Suppose, for example that α′l = yα j . Then we have s′′ + 1 elements in the first set.
Moreover (α′i ,α j ) ∉Obs(I2, I3) if and only if i < j and p ′i = 1 i.e. if and only if (α′i ,α j ) ∈
NotP, so that we have s′ +1−#NotP elements in the second set.

#
{

(0,0,hα′′i αl
) | i = 0, . . . , s′′

}
= s′′ +1

#
{(

0,hα′i ,α j
,Suiv(hα′i ,α j

)
)
| (α′iα j ) ∉Obs(I2, I3)

}
= s′ +1−#NotP

Finally Obs(I1, I2) and PObs are distinct sets of cardinality s′+1−2 and s′′+1−2−#NotP
respectively. So that

#
{(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
) ∣∣ (αβ) ∉Obs(I1, I2)∪PObs

}= #B(I1)−(s′+1−2)−(s′′+1−3).

Again #B(I1)= 2n, and putting together the results we have #B(I1, I2, I3)= 2n+4.
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Lemma 2.3.20. Let (I1, I2, I3) be a fixed point of Hilbn,n+1,n+2(C2). The set B(I1, I2, I3) as
defined in 2.3.17 is a weight basis for TI1,I2,I3 Hilbn,n+1,n+2(C2)

Proof. We prove first that they are all linearly independent. Let

s′′∑
i=0

c ′′i
(
0,0,hα′′i ,α′l

)
+

s′∑
i=0

c ′i
(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)
+

+ ∑
(α,β)∉Obs(I1,I2)∪Pobs

cα,β
(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
)= (0,0,0).

Then we have
∑

α,β cα,β
(

fα,β
) = 0 ∈ HomR (I1,R

/
I1 ) that implies cα,β = 0 for all (α,β).

Then also
∑s′

i=0 c ′i
(
hα′i ,α j

)
∈HomR (I2,R

/
I2 ), that in turns implies c ′i = 0 for all i = 0, . . . , s′;

and finally
∑s′′

i=0 c ′′i
(
hα′′i ,α′l

)
= 0 implies c ′′i = 0 for all i = 0, . . . , s′′.

We prove that they actually generate TI1,I2,I3 Hilbn,n+1,n+2(C2). As we know, we
can generate the tangent space with elements of pure weight, thus it is enough to
show that all such elements are in the span of B(I1, I2, I3). Let τ= ( f ,h, g ) be a tangent
vector of pure weight. We will prove that it belongs to span(B(I1, I2, I3)) by induction
on n( f ) the number of generators of I1 that f does not send to 0.

If n( f ) = 0, then f = 0, and τ = (0,h, g ). Since in particular (0,h) ∈ Ker(φ12−ψ12)

we have that h(α′i ) ∈ 〈α j 〉 for all i = 0, . . . , s′. Then we argue by induction on n(h), the
number of generators of I2 that h does not send to 0.

Either n(h)= 0, i.e. h = 0 and, reasoning in the same way, g ∈ 〈hα′′i αl
|i = 0, . . . , s′′〉 ⊂

TI3 Hilbn+2(C2), or n(h)= a.
If we are in case a) of cases 2.3.2, we have immediately that h ∈ 〈hα′i ,α j

|i = 0, . . . , s′〉 ⊂
TI2 Hilbn+1(C2) and we can subtract

(h−hα′kα j
, g −Suiv(hα′kα j

)) with h(α′k ) �= 0

to be able to use the induction step.
If we are in case b), we need to be slightly more careful and use the same rea-

soning as the induction step in Lemma 2.1.7. In particular if we suppose, say, α j ∈ P ′
α′i

and ı̄ :=maxk {k|h(α′k )= 0}, we see that (α′ı̄ ,α j ) ∉Obs(I2, I3) and we subtract

(h−hα′ı̄α j
, g −Suiv(hα′kα j

))

to be able to use the induction step. If α j ∈Q ′
α′i

the reasoning is similar.

Suppose now the statement true for all τ′ = ( f ′,h′, g ′) with n( f ′)< t , and suppose
that τ= ( f ,h, g ) has n( f )= t . Since f is of pure weight we know that either:

1) we have ı̄ :=max{i | f (αi ) �= 0} is strictly smaller than s and f (αı̄ ) ∈ 〈β〉 with β ∈ Pαı̄ ,
or
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2) we have ı̄ :=min{i | f (αi ) �= 0} is strictly bigger than 0 and f (αı̄ ) ∈ 〈β〉 with β ∈Qαı̄ .

Suppose we are in the first case. Renormalize τ= ( f ,h, g ) so that f (αı̄ )=β.

First of all notice that (αı̄ ,β) ∉Obs(I1, I2)∪PObs. In fact if (αı̄ ,β) ∈Obs(I1, I2) we would
be in the situation where

ı̄ ≤ j and β= α j

y pı̄

with f (αi )= 0 for all i > ı̄. But all θ ∈HomR (I2,R
/

I2 ) such that θ(αı̄ )= α j

y pı̄ has θ(αı̄+1) �= 0,
if not

y pı̄αı̄ = xqı̄+1αı̄+1 =⇒ α j = y pı̄
α j

y pı̄
= θ(y pı̄αı̄ )= θ(xqı̄+1αı̄+1)= 0

that mod I2 is absurd, since α j ∉ I2. Then, indeed, (αı̄ ,β) ∉Obs(I1, I2). Suppose, now,
(αı̄ ,β) ∈ PObs. This can happen only in the case a). Moreover, by definition, it means
that

ı̄ ≤ l and β= α j

y p ′ı̄
.

Then, since ( f ,h) ∈Ker(φ12−ψ12)

h(αı̄ )=β, and h(α′i ) ∈ 〈α j 〉 for all i ≥ ı̄ .

So that we can suppose that h(α′i ) = 0 for all i ≥ ı̄ by changing τ = ( f ,h, g ) with appro-
priate combinations of (0,hα′i ,α j

,Suiv(hα′i ,α j
)) ∈ B(I1, I2, I3). But then, exactly as before,

it is impossible that there exists a g ∈ HomR (I3,R
/

I3 ) such that (h, g ) ∈ Ker(φ23−ψ23).
So, in fact, (αı̄ ,β) ∉Obs(I1, I2)∪PObs.

Then, always thanks to the definition of ı̄, we have that y pı̄β ∈ I1, and thanks to the
fact that (αı̄ ,β) ∉Obs(I1, I2)∪PObs, we have that(

f − fαı̄ ,β,h−Suiv( fαı̄ ,β), g −Suiv(Suiv( fαı̄ ,β))
) ∈ ⋂

1≤i< j≤3

(
Ker(φi j −ψi j )◦πi j

)
is well defined and has first coordinate that sends strictly more generators to 0 mod
I1, i.e. n( f − fαı̄ )< t . So that by induction we have that τ ∈ span(B(I1, I2, I3)) as desired.

The case 2) is completely analogous.

Lemma 2.3.21 (Cheah). The spaces Hilbn,n+1,n+2(C2) are singular for all n ≥ 1.

Proof. We always have a fixed point of type described in case a) of Definition 2.3.2. For
that fixed point Observation 2.3.18 and Lemma 2.3.20 tell us that the tangent space is
2n+5 dimensional, whereas we know that the dimension of the space is 2n+4.
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2.3.1 The tangent to the Hilbert-Samuel’s strata, case n= (n,n+1,n+2)

We can now study the weights of the elements of the basis B(I1, I2, I3) in order to
understand the tangent space at (I1, I2, I3) of MT (I1),T (I2),T (I3) and of GT (I1),T (I2),T (I3), and
their respective positive parts. We divide this task in three observations, one for each
type of vectors in the basis B(I1, I2, I3).

Observation 2.3.22. Let us look first at the first kind of elements in B(I1, I2, I3) i.e.{
(0,0,hα′′i ,α′l

) | i = 0, . . . , s′′
}

.

For these we only need to compare the degree of a generator of I3 with that of α′l the
only monomial in I2 but not in I3. More precisely, we have that (0,0,hα′′i ,α′l

) ∈B(I1, I2, I3)

is tangent to MT (I1),T (I2),T (I3) if and only if degα′′i ≤ degα′l ; tangent to GT (I1),T (I2),T (3) if and
only if degα′′i = degα′l ; tangent to MT (I1),T (I2),T (I3) and with positive weights if and only if
degα′′i ≤ degα′l and degy α

′′
i < degy α

′
l ; tangent to GT (I1),T (I2),T (I3) and with positive weight

if and only if degα′′i = degα′l and degy α
′′
i < degy α

′
l . So everything is perfectly analogous

to the case described in Observation 2.2.14 and its graphic interpretation.

•
•

α′l
•
α j

•
•

•
The bullets are generators of I3.

The first set of elements of B(I1, I2, I3) contains
as many vectors tangent to MT (I1),T (I2),T (I3) as bul-
lets on the same anti-diagonal of α′l or on lower
anti-diagonals. They are positive if they are on a
strictly lower anti-diagonal or are on the right of
α′l . Similarly for GT (I1),T (I2),T (I3). The relative posi-
tion of α′l and α j does not matter here.

Observation 2.3.23. Let us look now at the second kind of elements in B(I1, I2, I3) i.e.{(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)
| i = 0, . . . , s′, and (α′i ,α j ) ∉Obs(I2, I3)

}
.

We need to distinguish cases of Definition 2.3.2. In case a), i.e. αl is not immedi-
ately to the left or above α j we have that (α′i ,α j ) ∉Obs(I2, I3), for all i = 0, . . . , s′. Again
(0,h,Suiv(h)) has the same weight as h, so that we can study the weight of the triple
only by comparing the degree of α′i , a generator of I2, with that of α j the only mono-

mial in I1 but not in I2. More precisely, we have that
(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)
∈ B(I1, I2, I3)

is tangent to MT (I1),T (I2),T (I3) if and only if degα′i ≤ degα j ; tangent to GT (I1),T (I2),T (3) if
and only if degα′i = degα j ; tangent to MT (I1),T (I2),T (I3) and with positive weights if and
only if degα′i ≤ degα j and degy α

′
i < degy α j ; tangent to GT (I1),T (I2),T (I3) and with positive

weights if and only if degα′i = degα j and degy α
′
i < degy α j . Graphically:

case a)
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•
•

•
•
α j

•
•

•
The bullets are the generators of I2.

Here the position of αl does not matter, as long
as it is not immediately above or to the left of α j .
The second set of elements of B(I1, I2, I3) contains
as many vectors tangent to MT (I1),T (I2),T (I3) as bul-
lets on the same anti-diagonal of α j or on lower
anti-diagonals. They are positive if they are on a
strictly lower anti-diagonal or are on the right of
α j . Similarly for GT (I1),T (I2),T (I3).

In case b) i.e. if α′l = yα j or α′l = xα j we have, instead, that some of (α′i ,α j ) are actually
in Obs(I1, I2). Precisely these are

{
(αi ,α j )|i < j and p ′i = 1

}
if α′l = yα j , (resp. {(αi ,α j )|i >

j and q ′i = 1} if α′l = xα j ).
However instead of not counting them we do like this: we count them, and we

consider their weight as usual by comparing degα′i with degα j if i < j (resp. degα′i
with degα j if i > j ), but then we subtract their contribution considering their weight
by comparing deg yα′i with deg yα j =α′l if i < j (resp. deg xα′i with deg xα j =α′l if i > j ).
Graphically:

case b)

•
•

α′l
α j

•

• �

• p ′0 = 1

The bullets are some generators of I2.

Here α′l = yα j . The second set of elements
of B(I1, I2, I3) contains as many vectors tangent
to MT (I1),T (I2),T (I3) as bullets on the same anti-
diagonal of α j or on lower anti-diagonals. They
are positive if they are on a strictly lower anti-
diagonal or are on the right of α j . But we should
have not counted those on the right of α j with
p ′i = 1 (in this case only α′0). Then we subtract all
the � for these, according to their weight that we
calculate by comparing the degree of the star with
the degree of α′l = yα j . Similarly for GT (I1),T (I2),T (I3).

Observation 2.3.24. Finally let us look at the third type of elements of B(I1, I2, I3),
those of the form(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
)

with (αβ) ∉Obs(I1, I2)∪PObs.

Again we need only to consider the weight of fα,β. In particular ( fα,β,Suiv( fα,β),

Suiv(Suiv( fα,β))) ∈B(I1, I2, I3) is tangent to MT (I1),T (I2),T (I3) if and only if fα,β is tangent to
MT (I1) i.e. if and only if degα≤ degβ. Similarly for the positive part, and for the tangent
to GT (I1),T (I2),T (I3) and its positive part.
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In fact we need to record when fα,β with (α,β) ∈Obs(I1, I2)∪PObs is raising or
preserving degree, and so on, and then understand the dimension of the appropriate
vector spaces by difference.

Suppose first (α,β) ∈ Obs(I1, I2), then everything goes as in Observation 2.2.16, and
for each αi generator of I1 there is at most one β such that (αi ,β) ∈Obs(I1, I2) and the
relevant checks on degree are between either y pi αi and α j or between xqi αi and α j ,
so that

fαi ,β ∈ TI1 MT (I1) but (αi ,β) ∈Obs(I1, I2) ⇐⇒
⎧⎨⎩deg y pi αi ≤ degα j if i ≤ j ,

deg xqi αi ≤ degα j if i ≥ j
(2.12)

and similarly for all the other spaces we are interested in. Graphically:

α j

�

�

The stars are in correspondence with

Obs(I1, I2).

Here the position αl does not matter.
We want to understand who are those
(α,β) such that fα,β ∈ B(I1) but (α,β) ∈
Obs(I1, I2), and study their weights. Then
exactly as in the Observation 2.2.16, we
need to subtract a star according to the
anti-diagonal it is in relative to the anti-
diagonal of α j .

Suppose now that (α,β) ∈PObs, then necessarily (xa ybα, xa ybβ) ∈Obs(I2, I3) with (a,b)=
(0,0), (0,1) or (1,0) and xa ybα = α′i a minimal generator of I2. Then we can focus on
Obs(I2, I3). For these we can reproduce, completely analogously, the same reasoning
we did in the case of Obs(I1, I2), replacing, though, generators of I1 with generators of
I2, and α j with αl .

Case a). Remember that there is only one element in NotP and it corresponds to the
index of Obs(I2, I3) that is not relevant, because there is not fα,β ∈ B(I1) that realizes it
as Suiv( fα,β). Recall that NotP is either

If ( j < l ) then NotP=

⎧⎪⎨⎪⎩
(
α j−1, αl

y
p′

j−1

)
or(

xα j , αl
y

)
.

If ( j > l ) then NotP=

⎧⎪⎨⎪⎩
(
yα j , αl

x

)
or(

α j+1, αl

x
q′

j−1

)
.

Now look first at one case, say ( j < l ). Then interestingly enough, the relevant test
on the degrees is between y p ′j−1α j−1 and αl or between y xα j and αl but in any case
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y p ′j−1α j−1 or y xα j is the box one to the left and one above of α j , so that in the graphical
visualization of 2.2.17 the relevant check is always the same. The same is true if ( j > l ).
Thus, in all cases, the Obs(I2, I3) that we need not to consider, is the one represented
by the box one to the right and one above α j . This starts to be relevant only if it is on
the same anti-diagonal as α′l or on a lower one, i.e. only if α j is on an anti-diagonal at
least two steps lower than the one of αl . Graphically we can summarize as follow:

Case a)

αl

�

�
α j

�

�

The stars are in correspondence with

the Obs(I2, I3) that matter.

We need to subtract those (α,β) with fα,β ∈ B(I1)

and the correct weight, such that (α,β) ∈ PObs.
For each such, there is an (α′i ,β′) ∈ Obs(I2, I3).
We can then proceed by studying this (α′i ,β′) ∈
Obs(I2, I3) i.e. comparing the associated star with
αl . However we need not consider NotP, the cor-
ner of α j , that is the box one to the left and one
above of α j , is represented as a � in the picture.

Case b) Now either α′l = yα j or α′l = xα j . Suppose to be in the first case. When we list
the elements fα,β ∈B(I1) according to their weight, we have still to exclude all those for
which (α,β) ∈ PObs. The PObs are in one to one correspondence with the Obs(I2, I2)

except for NotP= {(α′i ,α j )
∣∣i < j and p ′i = 1

}
.

case b)

�

α′l
α j

�

©

The stars represent Obs(I2, I3) \ NotP

The © represents NotP.

Here α′l = yα j . We need to subtract Obs(I2, I3) \

NotP according to their weights, i.e. according to
the relative position of the anti-diagonal they are
in and α′l . The elements in NotP are the © above
the α′i with p ′i = 1.

Observation 2.3.25. The elements in NotP, the © of the picture above, are exactly
those stars we subtracted in the Observation 2.3.23 case b). This insures that the final
formula is the same along all cases.
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We are now ready to write combinatorial formulas for the dimensions of the tangent
spaces at MT1,T2,T3 GT1,T2,T3 and their positive parts. To state them we need to recall
Definition 2.2.17. We will apply it to the two couples of Young diagrams (Γ1,Γ2) and
(Γ2,Γ3). Each couple is considered independently from the other. The only extra bit of
information that remembers that we are actually dealing with a triple of nested Young
diagrams is given by the following.

Definition 2.3.26.

Let

Γ3 = Γ2∪ {α1}= Γ1∪ {α2}∪ {α1}

be a triple of nested Young diagrams. Then if α2 is not im-
mediately above or on the right of α1 put a diamond � in the
box immediately above and to the right of α1 i.e. in position
x yα1.

α2

�
α1

Then define, in all cases,

� M(Γ1,Γ2,Γ3) := #{� ∈Λi
∣∣Λi <Λα2 }+#{� ∈Λα2 }

� G(Γ1,Γ2,Γ3) := #{� ∈Λα2 }

�M+(Γ1,Γ2,Γ3) := #{� ∈Λi
∣∣Λi <Λα2 }+#{� ∈Λα2

∣∣ � to the right of α2 }

�G+(Γ1,Γ2,Γ3) := #{� ∈Λα2

∣∣ � to the right of α2 }.

Lemma 2.3.27. Suppose that (I1, I2, I3) ∈ GT1,T2,T3 ⊂ MT1,T2,T3 is a fixed point of the T1+

action on Hilbn,n+1,n+2(0) with generic weights w1, w2 such that w1 <w2 and (n+2)w1 >
(n+1)w2. Call (Γ1,Γ2,Γ3) the triple of Young diagrams associated to (I1, I2, I3).

1) The dimension of the tangent space to MT1,T2,T3 at (I1, I2, I3) is equal to

dim MT1 +•M(Γ1,Γ2)+•M(Γ2,Γ3)−�M(Γ1,Γ2)−�M(Γ2,Γ3)+�M(Γ1,Γ2,Γ3).

2) The dimension of the tangent space to GT1,T2,T3 at (I1, I2, I3) is equal to

dimGT1 +•G(Γ1,Γ2)+•G(Γ2,Γ3)−�G(Γ1,Γ2)−�G(Γ2,Γ3)+�G(Γ1,Γ2,Γ3).

3) The dimension of the positive part of tangent space to MT1,T2,T3 at (I1, I2, I3) is equal
to

dimT+
I1

MT1+•M+(Γ1,Γ2)+•M+(Γ2,Γ3)−�M+(Γ1,Γ2)−�M+(Γ2,Γ3)+�M+(Γ1,Γ2,Γ3).

4) The dimension of the positive part of the tangent space to GT1,T2,T3 at (I1, I2, I3) is
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equal to

dimT+
I1

GT1+•G+(Γ1,Γ2)+•G+(Γ2,Γ3)−�G+(Γ1,Γ2)−�G+(Γ2,Γ3)+�G+(Γ1,Γ2,Γ3).

Proof. The statement follows immediately from the definition of B(I1, I2, I3) in 2.3.17
and Observations 2.3.22, 2.3.23, 2.3.24 and 2.3.25.

In the next chapter we will prove that the Hilbert-Samuel’s strata are smooth using
the first two points of Lemma 2.3.27 and studying the dimensions of the strata. Once
smoothness is proven the last two points of Lemma 2.3.27 will give us the homological
degrees of a basis for the homology of Hilbn,n+1,n+2(0).





Chapter 3

Smoothness of the Hilbert-Samuel’s
strata

In this chapter we prove the main geometric result we need, namely that the
Hilbert-Samuel’s strata for the Hilbert Scheme Hilbn,n+1,n+2(0) are smooth. This will
allow us to use the theorem of Bialynicki-Birula to study their cell decompositions,
and, ultimately, to study the homology of Hilbn,n+1,n+2(0) itself.

The strategy is the following. Now that we know the dimensions of the tan-
gent spaces at the fixed points we can prove that the spaces MT1,T2,T3 (and GT1,T2,T3 ) are
smooth by studying their dimensions. In particular we want to prove the following.

Proposition 3.0.1. Let T1,T2,T3 be three admissible sequences of nonnegative integers
as in 1.2.7. Then

dim MT1,T2,T3 ≥ dimTI1,I2,I3 MT1,T2,T3 dimGT1,T2,T3 ≥ dimTI1,I2,I3GT1,T2,T3

for all I1, I2, I3 fixed points of the T2 action on MT1,T2,T3 .

As a consequence of smoothness, we know that the attracting sets are affine
cells, and their dimensions are equal to the positive part of the tangent spaces that we
already calculated in the previous chapter.

To prove Proposition 3.0.1 we use the results of Iarrobino [Iar77]. For every
T , admissible sequence of integers, he defines a special Young diagram ΓT , whose
attracting set AT he proves being affine by giving explicitly a set of special generators
for each ideal in the cell. Moreover he proves that MT is covered by a finite union of
spaces isomorphic to this cell.

Then we see how this can be extended to MT1,T2 . More precisely we introduce
an affine space A•M(ΓT1 ,ΓT2 ) and �M(ΓT1 ,ΓT2 ) equations that cut out of AT ×A•M(ΓT1 ,ΓT2 )

exactly the attracting cell labeled by (ΓT1 ,ΓT2 ). This suffices to prove that the dimen-
sion of MT1,T2 is greater than or equal to the dimension of its tangent space at each
point.

55
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The previous step can be extended without problem to MT1,T2,T3 by iterating it
twice. However to get to the dimension of the tangent space in this case, we need
to gain an extra dimension whenever � (ΓT1 ,ΓT2 ,ΓT3 )= 1, recalling point (1) of Lemma
2.3.27. To do so we show that one of the �M(ΓT2 ,ΓT3 ) equations we mentioned above
is actually trivially satisfied.

We repeat all the arguments to prove similar statements for GT1,T2,T3 .

Finally, in the last section, we present some direct computations for attracting
sets of Hilbert schemes of longer flags. As a result we give sharp bounds for when
Hilbert-Samuel’s strata are no longer all smooth. We give the Poincaré polynomials
for those few remaining Hilbert schemes whose attracting sets are all affine.

3.1 Iarrobino’s standard generators

We need to recall the results of Iarrobino on the punctual Hilbert scheme. The
crucial step is that of the definition of normal pattern associated to a type T and a sys-
tem of parameters (u, v) = (ax +by,cx +d y). For an ideal with normal pattern we find
especially nice generators, the so called standard generators.

A system of parameters is simply a linear change of coordinates of the plane

(u, v)=
(

a b

c d

)(
x

y

)
with

(
a b

c d

)
∈GL2(C),

as GL2(C) acts by automorphisms on R = C[[x, y]]. Fixing coordinates (u, v), we con-
sider monomials in u and v . Let us begin to define a pattern for an ideal I ∈Hilbn(0).
This is a set of monomials, in some sense, as disjoint as possible from I .

Definition 3.1.1. Let P be a set of monomials in (u, v). We denote by P j the monomials
in P having degree j . By type T (P ) we mean the sequence

T (P ) = (t0, . . . , t j , . . . ), where t j = #P j .

Let I ∈Hilbn(0). We say that I has pattern P if one of the following equivalent condi-
tions is satisfied.

(i) For all j , 〈P ∩m j 〉⊕ I ∩m j =m j ,

(ii) For all j , 〈P j 〉⊕ I j =R j ,

(iii) 〈P〉∩ I = 0, and T (P )= T (I ).

Definition 3.1.2. Let T be an admissible type as in 1.2.7 and (u, v) = (ax +by,cx +d y)

a system of parameters. Define ΓT to be the only Young diagram that has diagonal
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sequence T (ΓT ) equal to T and is such that all its boxes have the lowest possible x

coordinate.
The normal pattern P = P ((u, v),T ) is the set of monomials in u, v with expo-

nents in ΓT . Explicitly, P =⋃ j P j , where

P j := { the t j monomials of degree j with highest v degree
}

=
{

u j−t j v t j+1, u j−t j−1v t j+2, . . . , uv j−1, v j
}

.

Once a system of parameters is chosen we define IT = I(u,v),T to be the mono-
mial ideal associated to ΓT in the parameters (u, v). Most of the time there will be no
possible confusion on the choice of parameters, so we simply write IT .

Example 3.1.3. Graphically we can see an example as follow. Let T = (1,2, . . . ,6,5,3,2,0).
Then ΓT is:

A Young diagram with normal pat-
tern T = (ti )i≥0 : all the anti-diagonals
Λi are filled with ti elements starting
from the left and without interrup-
tions.

Definition 3.1.4. Let P be a normal pattern for T and (u, v). Then we define

MP = MP ((u,v),T ) := {I ∈Hilb(0)
∣∣ I has pattern P

}⊂MT

and
GP = GP ((u,v),T ) := {I ∈Hilb(0)

∣∣ I is homogeneous and has pattern P
}⊂GT .

Remark 3.1.5. In the original choice of parameters (u, v) = (x, y) we have that MP is
exactly the attracting set of MT to IT , and GP is the attracting set of GT to IT . Fixing a
type T all MP (resp. GP ) for different systems of parameters are clearly isomorphic.

Proposition 3.1.6. [Iar77, Proposition 3.2] Fix an admissible type T . Let N =∑ j t j ( j +
1− t j ). Then whenever P runs through the normal patterns of type T in any sets of
distinct systems of parameters (x, y −a0x), . . . , (x, y −aN x) with ai ∈C we have

N⋃
j=0

MP (x,y−a j x) = MT , and
N⋃

j=0
GP (x,y−a j x) = GT .

In other words, each ideal I ∈ MT (resp. any I ∈GT ) fails to have normal pattern in at
most N systems of parameters of the specified sort. Observe that the MP (x,y−a j x) (resp.
the GP (x,y−a j x)) share the fixed point IT so that the above unions are connected.

Iarrobino then, in order to prove that MT is smooth, proves by brute force that
MP is isomorphic to an affine space by giving an explicit isomorphism. This isomor-
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phism specifies the coefficients of a fixed number of some polynomials that are a spe-
cial set of generators of ideals in MP . Even if remark 3.1.5 and the fact that the attract-
ing sets are affine cells (thanks to Byialinucky-Birula) already prove smoothness, the
explicitness of the work of Iarrobino is essential to have more informations on MT and
GT .

To go on we need to introduce more notations. We work for the rest of the
chapter only with the starting systems of parameter (u, v)= (x, y).

Suppose T = (ti )i≥0 is chosen. Observe that for IT , the only monomial ideal
of normal pattern, the standard monomial generators are especially easy. We have
I = (α0,α1, . . . ,αd ) where d is the initial degree of I and there exist ki ∈ N such that
k0 = 0< k1 < ·· · < kd and αi = xd−i yki .

ykd

x ykd−1

αi

. . .

xd−2 yk2

xd−1 yk1

xd

The standard monomial generators of the
monomial ideal IT with normal pattern are
especially easy:

• There are exactly d + 1 monomial
generators where d is that initial de-
gree of IT i.e. s = d following previous
notation.

• For all i = 1, . . . ,d we have qi = 1. Re-
call that qi is the x distance between
αi and αi+1.

• The ki are computable from the pt

for t ≤ i , where pt is the y distance
between αt and αt+1.

Definition 3.1.7. Let IT be the monomial ideal with normal pattern P (T ), and let
(α0, . . . ,αd ) be the list of its standard monomial generators. If α = αi is one of them,
then we define, using the notation of 2.1.1, the following:

P≥α := {β ∈ Pα|degβ≥ degα
}

,

P=α := {β ∈ Pα|degβ= degα
}

,

S≥α := {γ ∈ ΓT \ Pα|degγ≥ degα
}

, (3.1)

S=α := {γ ∈ ΓT \ Pα|degγ= degα
}

.
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We also set:

P M :=
d⋃

i=0
P≥αi

=
d⋃

i=0

{
(αi ,β)

∣∣β ∈ Pαi degβ≥ degαi
}

,

PG :=
d⋃

i=0
P=αi

=
d⋃

i=0

{
(αi ,β)

∣∣β ∈ Pαi degβ=α
}

,

SM :=
d⋃

i=0
S≥αi

=
d⋃

i=0

{
(αi ,γ)

∣∣γ ∈ ΓT \ Pα and degγ≥ degαi
}

,

SG :=
d⋃

i=0
S=αi

=
d⋃

i=0

{
(αi ,γ)

∣∣γ ∈ ΓT \ Pα and degγ= degαi
}

.

Theorem 3.1.8. [Iar77, Lemma 2.4, Prop. 2.5, Lemma 2.7, Prop. 2.8]
Let T be an admissible sequence of nonnegative integers.

(1) We have that dim MT = #P M and there is an isomorphism Adim MT ∼=MP . The iso-
morphism is explicitly constructed by determining the coefficients of certain poly-
nomials that will be generators of a point in MP . More precisely:

(2) For each (aα,β)(α,β)∈P M point in Adim MT there exist unique coefficients dα,γ ∈ C for
all (α,γ) ∈ SM such that the ideal I = I (aα,β) generated by the polynomials

fi =αi +
∑

β∈P≥
αi

aαi ,ββ+
∑

γ∈S+αi

dαi ,γγ (3.2)

is in MP . These polynomials are called the standard generators for I . The coeffi-
cients dαi ,γ are polynomial expressions in the aαk ,β’s, for k ≤ i .

(3) We have that dimGT = #PG and there is an isomorphism AdimGT ∼= GP . The iso-
morphism is explicitly constructed by determining the coefficients of certain poly-
nomials that will be generators of a point in GP . More precisely:

(4) For each (aα,β)(αβ)∈PG point in AdimGT there exist unique coefficients dα,γ ∈C for all
(α,γ) ∈ SG such that the ideal I = I (aα,β) generated by the polynomials

fi =αi +
∑

β∈P=
αi

aαi ,ββ+
∑

γ∈S=αi

dαi ,γγ (3.3)

is in GP . These polynomials are called the standard generators for I = I (aα,β). The
coefficients dαi ,γ are polynomial expressions in the aαk ,β’s, for k ≤ i .

Remark 3.1.9. We will not prove the theorem. However the arguments we use in the
next few lemmas can be easily adapted to prove it. As a matter of fact the arguments
that follow are adapted from the proof of Iarrobino.

Example 3.1.10. We would like to visualize more clearly the standard generators we
introduced in (3.2). Let then I (aα,β) be the ideal in MP defined as in (3.2). We focus for
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example on f1:

f1 =α1+
∑

β∈P≥
α1

aα1ββ+
∑

γ∈S≥α1

dα1γγ .

fd = ykd

a fd−1

d a

d fi

a

f2

f1

f0

The standard generators of an ideal with nor-
mal pattern: Here we concentrate on f1. The
boxes marked with an a correspond to the
monomial in P≥α1

, while the boxes marked with
a d correspond to monomials in S≥α1

. The a’s
are the free coefficients to be chosen in A

#P≥
α1

while the d ’s are the unique coefficients that
depend on the free choices made for the free
coefficients of f1 and f0. Notice in particular
that there are no monomials in the support of
f1 with degree lower than α1. Also, all other
monomials have strictly bigger y degree than
α1.

Let now T1 = (t1,i )i≥0,T2 = (t2,i )i≥0,T3 = (t3,i )i≥0 be three admissible sequences of non-
negative integers, nested as in (1.2.7), with |Ti | = n+ i −1. We call m,m′ the indexes of
where we have the jump, i.e. the indexes such that

t2,i =
⎧⎨⎩t1,i if i �=m,

t1,m +1 if i =m
and t3,i =

⎧⎨⎩t2,i if i �=m′,

t2,m +1 if i =m′ (3.4)

Let Γi = ΓTi be the standard Young diagram associated to Ti , and let IΓi be the mono-
mial ideal associated to Γi .

Observation 3.1.11. One of the gifts of working with the normal patterns is that most
of the cases of 2.2.2, among which we had to distinguish in the previous sections, will
simply not happen now. More precisely only case 1a) and case 2) are possible. This is
true at both steps j and l . Moreover case 2) is possible if and only if t1,d = d and α j =α0

or t2,d = d and αl =α′0.
Case 1a): possible.

α

Case 1b): not possible.

h
α

The boxes marked with the h for hole show why some of the cases of 2.2.2 are not
standard.
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Case 2): possible only with α=α0.

α

Case 3): not possible.

h
α

Observation 3.1.12. Observe that for IΓ1 and IΓ2 , nested monomial ideals with normal
patterns, the numbers we defined in 2.2.17 are also more explicit. In fact elements on
the same diagonal or on lower diagonals must all lie on their right. Explicitly:

•M(Γ1,Γ2)= #
{
i = 0, . . . ,d

∣∣degαi ≤ degα j
}= j , (3.5)

�G(Γ1,Γ2)= #
{
i = 0, . . . ,d

∣∣degαi = degα j
}=
⎧⎨⎩t1,m−1− t1,m +1 if m = d ,

t1,m−1− t1,m if m > d ,

�M(Γ1,Γ2)= #
{
i = 0, . . . ,d

∣∣degαi ≤ degα j −1
}=m−1∑

k=d
t1,k−1− t1,k , (3.6)

�G(Γ1,Γ2)= #
{
i = 0, . . . ,d

∣∣degαi = degα j −1
}= t1,k−2− t1,k−1.

(See next subsection for more details on the case for G(Γ1,Γ2)). If IΓ1 , IΓ2 and IΓ3 are
nested monomial ideals with normal patterns, the interesting observation is that:

�M(Γ1,Γ2,Γ3)=
⎧⎨⎩1 if degα j ≤ degαl −2,

0 otherwise.
�G(Γ1,Γ2,Γ3)=

⎧⎨⎩1 if degα j = degαl −2,

0 otherwise.

(3.7)

3.2 MT1,T2,T3 is smooth.

We start now to apply the results of Iarrobino. Thanks to Proposition 3.1.6 we
have that:

MP ((x,y),T1,T2,T3) =
{

(I1, I2, I3) ∈Hilbn,n+1,n+2(0)
∣∣ Ii ∩〈P ((x, y),Ti )〉 = {0}, i = 1,2,3

}
= attracting set of MT1,T2,T3 to the fixed point

(
IΓ1 , IΓ2 , IΓ3

)
.

is open in MT1,T2,T3 (and in fact MT1,T2,T3 is covered with a finite number of opens of the
form MP ((u,v),T1,T2,T3)). In particular dim MT1,T2,T3 = MP ((x,y),T1,T2,T3). Now MP ((x,y),T1,T2,T3)

has a unique fixed point, namely (IΓ1 , IΓ2 , IΓ3 ), and we already know the dimension
of the tangent space at this point thanks to Lemma 2.3.27. Thus, in order to prove
Proposition 3.0.1, we need only to prove the following.
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Proposition 3.2.1. For T1,T2,T3 three admissible sequences of nonnegative integers as
in 1.2.7, we have

dim MP ((x,y),T1,T2,T3) ≥ dimTIΓ1 ,IΓ2 ,IΓ3
MT1,T2,T3 .

Remark 3.2.2. As a consequence we have that for all I1, I2, I3 fixed points of the T2

action on MT1,T2,T3 the dimension of TI1,I2,I3 MT1,T2,T3 is the same. This can also be seen
as a combinatorial result.

Even if the possibilities for nested Young diagrams with normal patterns are fewer, we
still need to treat differently two possible cases.

Definition 3.2.3. Case i) For the three monomial ideals IΓ1 , IΓ2 and IΓ3 we have that
the initial degrees coincide d = d ′ = d ′′. This is the generic case. It happens if we are in
case j 1) and in case l1) of the cases discussed in Definition 2.3.4.
Case ii) All the other cases, i.e. either d+1= d ′ = d ′′ or d+1= d ′ +1= d ′′. This happens
if and only if we are, respectively, in case j 2) or in case l2):

Case j 2)
t1,d = d and m = d

αl

α j

Case l 2)
t2,d = d and m′ = d

α j

αl

We start by considering the case where d = d ′ = d ′′ as it is more interesting. In fact,
having understood that, we will be able to deal with the other cases with some simple
observations. Consider the parametrization of MP (T1)

∼= A#P M given in 3.1.8, and call
I (aα,β), (α,β) ∈ P M , the ideal I ((aα,β))= ( f0, . . . , fd ) generated by the standard generators
associated to (aα,β))(α,β)∈P M like in (3.2).

We want to see what kind of ideals J are such that (I , J ) ∈MP ((x,y),T1,T2). For each
θi ∈ C with i = 0, . . . , j −1 we define the ideal J (aα,β,θi ) giving its generators in terms of
those of I (aα,β):

J (aα,β,θi ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′0 = f0+θ0 f j

. . . . . .

f ′j−1 = f j−1+θ j−1 f j

f ′j = y f j

f ′j+1 = f j+1

. . . . . .

f ′d = fd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the fi , recall, are
fi =αi +∑β∈P≥

αi
aαi ,ββ+

∑
γ∈S≥αi

dαi ,γγ

and
I ((aα,β))= ( f0, . . . , fd ), aα,β,θi ∈C.

(3.8)
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Lemma 3.2.4. Call r =∗M(Γ1,Γ2). Then there exist r equations g0, . . . , gr−1 in the
((aα,β), (θi ))(α,β)∈P M ,i=0,..., j−1, defined as

y pi fi −x fi+1 = gi (aα,β,θs) f j mod ( f ′i+1, . . . , f ′d ), (3.9)

such that

(I (aα,β), J (aα,β,θi )) ∈MP ((x,y),T1,T2) ⇐⇒ gi (aα,β,θs)= 0 for all i = 0, . . . ,r −1.

Equivalently if we define Y to be the variety cut out by the gi ’s then we have

A#P M ×A j ⊃ Y := {(aα,β,θs)(α,β),s
∣∣ gi (aα,β,θs)= 0

}
�→MP ((x,y),T1,T2). (3.10)

Proof. We divide the proof in two parts: in the first part a division procedure will de-
fine for us the equations gi . In the second part we will prove that satisfying these
equations is a sufficient condition to be in MP ((x,y),T1,T2). The first part, or rather the
procedure that proves it, will be used also later, so we add a name for future reference.

Procedure 3.2.5. We want to prove that condition 3.26 actually defines r equations gi .
We do a reduction (division), reasoning by degree. For every element h ∈ R = C[[x, y]],
write iny (h) ∈N∪{+∞} to be the lowest degree of a y power appearing in the expansion
of h. Write y pi fi−x fi+1 as a linear combination of monomials: some will be in Γ1, some
will be outside Γ2 and one will be α j :

y pi fi −x fi+1 =
∑
β∈Γ1

cββ+
∑
γ∉Γ2

cγγ+cα j α j cβ,cγ,cα j ∈C. (3.11)

Now we will use the f ′s , s > i to eliminate the γ ∉ Γ2 in order, starting from the lowest
iny (γ). Precisely: let t = iny (y pi fi ). For p ≥ t order all monomials γ ∉ Γ2 with iny (γ)= p

by their ascending x degree. To eliminate them in order means to perform many suc-
cessive steps.

[step p = t] Looking at the definition of fi and fi+1 there are no γ ∉ Γ2 with cγ �= 0 and
p = iny (γ) in (3.11).
[step p = t +1( if < t +pi+1)] Looking at the definition of fi , fi+1 and f ′i+1, there is only
at most one γ ∉ Γ2 with cγ �= 0 and iny (γ) = p in the left hand side, and this is yαi+1.
Then eliminate it subtracting cyαi+1 y f ′i+1. Now we do not have any γ ∉ Γ2 with cγ �= 0

and inyγ≤ p. More specifically we are left with:

y pi fi −x fi+1−cyαi+1 y f ′i+1 =
∑
β∈Γ1

Gi ,β,p (aα,β,θs)β

+ ∑
γ∉Γ2,in(γ)>p

cγ,p γ+ gi ,p (aα,β,θs)α j .

Here Gi ,β,p (aα,β,θs), gi ,p (aα,β,θs) and cγ,p are polynomials in the aα,β,θs and depend on
the current step p. We repeat this step similarly until we reach p = t +pi+1.
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[...]
[step p = t +pi+1] Let (γ1, . . . ,γm) be the ordered (by ascending x degree) list of mono-
mials γ ∉ Γ2 with cγ �= 0 and iny (γ) = p. Multiply y pi+1 f ′i+1 by appropriate coefficients
and monomials in x to eliminate the γe starting from the last one. If needed eliminate
α j+2 by a linear multiple of f j+2. The result is:

y pi fi −x fi+1+h(x)y f ′i+1+c(aα,β,θs) f ′j+2 =
∑
β∈Γ1

Gi ,β,p−1(aα,β,θs)β+

+ ∑
γ∉Γ2,in(γ)>p

cγ,p−1γ+ gi ,p−1(aα,β,θs)α j .

Here again we have polynomial expressions in the (aα,β,θs), like c(aα,β,θs) ∈ C or the
coefficients of h(x). The sum on the γ ∉ Γ2 is now only on those γ with iny (γ) > p. We
repeat this step until we reach p = t+pi+1+pi+2, where we repeat this step but use also
f ′i+3 to eliminate, if necessary αi+3.
[...]
[step p = in(α j )= k j ] As all the previous steps but with the difference that we eliminate
multiple of α j with f j and not with f ′j .
[...]
[step p=kd or p = kd +1] Now we are left only with multiple of ykd , or ykd+1, depending
on whether j = d i.e. on whether f ′d = ykd , or ykd+1. Then we can eliminate all the
remaining γ ∉ Γ2 with appropriate multiples of fd (and not f ′d : cfr. step p = in(α j )= k j ,
if f ′d = y f d then j = d and we use fd , otherwise f ′d = fd so there is no difference) and be
left with an expression:

y pi fi −x fi+1+
∑
t>i

hi f ′i + gi (aα,β,θs) f j =
∑
β∈Γ1

Gi ,β(aα,β,θs)β. (3.12)

Here, again, the Gi ,β(aα,β,θs) and gi (aα,β,θs) are coefficients that depend polynomially
on aα,β,θs ∈A#PG ×A j , and, since this is the last step, we do not write the dependence
on the step p.
Now since the left hand side of (3.12) is in I (aα,β) and the right hand side is in 〈Γ1〉, and
by hypothesis I (aα,β) has T normal pattern, i.e.

I (aα,β)∩〈Γ1〉 = {0},

we know that the Gi ,β(aα,β,θs) must all vanish. Thus we are left with gi , the equation
we wanted.

Example 3.2.6 (Procedure, picture below). We want to see how the equation g0, relat-
ing f0 and f1, arises. The boxes marked with a1 (resp. a1,2) are the free coordinates for
f1 (resp. f1 and f2, of course these coefficients can be different one from the others),
and those marked with d1 are the possibly non-zero but constrained coefficients of
f1. All others are zero. When we multiply f0 by y2 the boxes of its potentially nonzero
coefficients move two steps up, and those of f1 multiplied by x move one to the right.
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First step p = t = 2: there are no boxes that get out of Γ1 on the 3-rd row (that of y degree
2). At the 4-th row (step p = 3) we eliminate what got out with y f ′1. Step p = t +p1 = 4,
row=5, we eliminate those that we can (i.e. above and to the right, in this specific case
none) with f ′1, the other, only that marked with f2, with f ′2. When we get to step=7= k j

we use f j instead of f ′j . We finish with fd .

fd = ykd

a1,2 fd−1

a1,2 a1,2 f j

d1 a1,2 a1,2

d1 a1,2 f2

d1 a1,2

a1 f1 y2 f0−x f1

a1

f0

End procedure

We have defined equations gi for all i = 0, . . . ,r − 1. Recall now that r − 1 =
max{i |degαi < degα j }. Then if we repeat the previous argument for i ≥ r we get that
the corresponding gi are identically zero on A#P M ×A j , for degree reasons. (This is a
big part of Iarrobino’s proof of Proposition 3.1.8). By the definition of J we have that

(J (aα,β,θi ), f j )= I (aα,β).

We also claim that

x f j ∈ J (aα,β,θi ). (3.13)

This can be seen by applying the above Procedure 3.2.5 to x f j and see that we do not
have a remainder outside J (aα,β,θi ). Then we have that either J (aα,β,θi )= I or (I (aα,β),

J (aα,β,θi )) ∈MP ((x,y),T1,T2) as we want.

To prove the lemma we then need to check that we are in the second case. Thus
it is sufficient to show that, whenever the coefficients ((aα,β)(α,β), (θi )i ) ∈ Adim MP ×A j

satisfy gi (aα,β,θs)= 0, we have that J (aα,β,θi ) has normal pattern P (T2). This amounts
to show that

J (aα,β,θi )∩〈Γ2〉 = 0.
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Suppose then that we have chosen (aα,β,θs) ∈A#P M×A j , such that gi (aα,β,θs)= 0 for all
i = 0, . . . ,r −1. Since by hypothesis I (aα,β)∩〈Γ1〉 = 0, we need to prove that

there does not exist f ∈ J (aα,β,θi ) such that f =α j +
∑
β∈Γ1

cββ,cβ ∈C.

Suppose by absurd that there exists such a f , and find a contradiction. Write f =∑
i≥0 hi f ′i for some polynomial hi ∈ R, and call inJ ( f ) the minimum index for which

hi �= 0. Then we will prove the statement by reverse induction on inJ ( f ).
We have a contradiction if inJ ( f )= d , because then

f = hd f ′d =
⎧⎨⎩hd fd = hd ykd if j < d

hd y fd = hd ykd+1 if j = d ,

does not contain in its expansion α j as a monomial, as the degree is strictly bigger.
This is indeed true for all inJ ( f )≥ j .
Suppose now the statement true for all inJ ( f ) > t , j > t and lets prove it for inJ ( f ) = t .
We write ht as a series in y

ht = ht ,0(x)+ht ,1(x)y1+·· ·+ht ,kd−1(x)ykd−1+ht ,kd (x)ykd + . . . , where ht ,s ∈C[[x]].

f = ht f ′t +
∑
i>t

hi f ′i =α j +
∑
β∈Γ1

cββ. (3.14)

Observe that if ht ,0(x) = ht ,1(x) = ·· · = ht ,kd−1(x) = ht ,kd (x) = 0 then we do arrive at a
contradiction since ykd+1 = f ′d (or ykd+1 = y f ′d ) and then we can rewrite f as

f = ∑
t<i<d

hi f ′i + (hd +ht (x, y/ykd+1) f ′t ) f ′d

i.e. as an element in ( f ′t+1, . . . , f ′d ) with inJ ( f )> t for which, by induction hypothesis, we
already know there is a contradiction.

We will then proceed by reverse induction on iny (ht ), the minimal index for
which ht ,s(x) �= 0. We just finished giving the base induction case when iny (ht )= kd +1,
and we proceed with the induction step. We observe that iny (ht ) cannot be 0, oth-
erwise the monomial xaα′t , for the appropriate a ∈ N, would appear only once in the
lefthand side of (3.14) and never in the righthand side. In fact, for the same reason, it
must be that ht ,m = 0 for all m ≤ p ′i . Observe that p ′i ≥ pi for i < j . Then we are finally
able to use the equations gi . In particular for i = t we have:

y pt ft −x ft+1 = gt (aα,β,θm) f j +
∑
i≥t

h′i f ′i (3.15)

and since we picked (aα,β,θs) ∈ A#P M ×A j , such that gi (aα,β,θs) = 0 for all i we can
substitute (3.15) into (3.14) to obtain an f with in(ht ) strictly larger. Then we are done.
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Corollary 3.2.7. Suppose that T1,T2 is an admissible nested couple of sequences of non-
negative integers. Then

dim MP ((x,y),T1,T2) ≥ dim MP ((x,y),T1)+•M(Γ1,Γ2)−�M(Γ1,Γ2). (3.16)

Proof. We have just proven the statement in case i), i.e. whenever d = d ′ in Lemma
3.2.4. We only need to deal with the other case. Suppose then d +1= d ′. This implies
α j =α0. Then there is actually only one ideal J (aα,β) such that(

I (aα,β), J (aα,β)
) ∈MP ((x,y),T1,T2)

and it is J (aα,β)= (x f0, y f0, f1, . . . , fd ) where the fi are the standard generators of I (aα,β).
Then it is still true that

dim MP ((x,y),T1,T2) ≥ dim MP ((x,y),T1)+•M(Γ1,Γ2)−�M(Γ1,Γ2).

In this case: •M(Γ1,Γ2) = �M(Γ1,Γ2)= 0 and dim MP ((x,y),T1,T2) ≥ dim MP ((x,y),T1).

Corollary 3.2.8. [Che98, Proposition 3.4.11.] Let T1 and T2 be two sequences of non-
negative integers as in 1.2.7. Call m the index such that t2,m = t1,m +1, and d the initial
degree of T1. Then MT1,T2 is smooth of dimension

dim MT1,T2 =n+∑
j≥d

(t j−1− t j )(t j−1− t j +1)

2
+ (tm−1− tm +1).

Proof. Lemma 3.2.4 and at Lemma 2.2.18 prove that dim MP ((x,y),T1,T2) ≥ dimTIΓ1 ,IΓ2
MT1,T2 .

This proves that MP ((x,y),T1,T2) is smooth: in fact all other points have Zariski tangent
space of dimension smaller or equal to that of the fixed point. The Proposition of Iar-
robino 3.1.6 proves that MT1,T2 is covered by opens that are isomorphic to MP ((x,y),T1,T2).
The formula for the dimension in terms of the t j ,i is clear by looking at Lemma 2.2.18
and Proposition 2.1.16 on the dimension of MT1 .

Remember that in this case that we do not need this proof: in fact as we know
Hilbn,n+1(P2) is smooth and has an affine paving. Moreover MT1,T2 is the union of some
of those cells, and MP ((x,y),T1,T2) is one of those cells. However, as already mentioned,
[n,n+1] is the last case where smoothness of the ambient space Hilbn,n+1(C2) holds.

Observation 3.2.9. Observe that as a consequence we get that the inclusion in (3.10)
is actually an isomorphism.

When we write the generators of J (aα,β,θi ) we actually do not write its standard
generators since the element f ′j = y f j could have expansion with non zero coefficient
for a monomial outside Γ2. We could easily remedy to this but it is not needed. In fact
to prove the key Lemma 3.2.4 we used the fact that the expansions of the standard
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generators fi has only terms of higher or equal degree than αi and the only one with
smallest possible y degree is exactly αi . This remains true for the set of generators we
gave for J (aα,β,θi ). This means that we are able to iterate Lemma 3.2.4 to find enough
ideals K (aα,β,θi ,ηs) such that (aα,β,θi ),K (aα,β,θi ,ηs) ∈MP ((x,y),T2,T3). That is exactly what
we are about to do.

Now that we understand how and why the dimension of MP ((x,y),T1,T2) changes with re-
spect to the dimension of MP ((x,y),T1), we can also understand how it changes adding a
further step and considering MP((x,y),T1,T2,T3). Lemma 2.3.27 shows that the dimension
of TIΓ1 ,IΓ2 ,IΓ3

MP ((x,y),T1,T2,T3 grows, with respect to dimTIΓ1
MP , exactly following the rule

(3.16) twice for the inclusions Γ1 ⊃ Γ2 and Γ2 ⊃ Γ3 except when degα j ≤ degαl −2. In
this case it grows by one more.

Let us iterate twice the results in Lemma 3.2.4. For this let I (aα,β) ∈ MP (T1)

with (aα,β)α,β ∈ A#P M be the ideal with standard generators ( f0, . . . , fd ) as in (3.2). Let
(θi )0≤i< j ∈A j , and (ηi )0≤i<l ∈Al . We define the ideals J (aα,β,θi ) and K (aα,β,θi ,ηs) mim-
icking the construction in (3.25)

J (aα,β,θi ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′0 = f0+θ0 f j

. . . . . .

f ′j−1 = f j−1+θ j−1 f j

f ′j = y f j

f ′j+1 = f j+1

. . . . . .

f ′d = fd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, K (aα,β,θi ,ηs) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′′0 = f ′0+η0 f ′l
. . . . . .

f ′′l−1 = f ′l−1+ηl−1 f ′l
f ′′l = y f ′l

f ′′l+1 = f ′l+1

. . . . . .

f ′′d = f ′d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The results of Lemma (3.2.4) tell us that there exists r =∗M(Γ1,Γ2) equations gi (aα,β,θs)

in A#P M ×A j and r ′ = ∗M(Γ2,Γ3) equations g ′i (aα,β,θt ,ηs) in A#P M ×A j ×Al such that:

(I (aα,β), J (aα,β,θi )) ∈MP ((x,y),T1,T2) ⇐⇒ gi (aα,β,θs)= 0 for all i = 0, . . . ,r −1,

and

(I (aα,β), J (aα,β,θi ),K (aα,β,θi ,ηs)) ∈MP ((x,y),T1,T2,T3) with gi (aα,β,θs)= 0 ∀ i = 0, . . . ,r −1

⇐⇒

g ′i (aα,β,θt ,ηs)= 0 for all i = 0, . . . ,r ′ −1.

(3.17)

Then, since j = •M(Γ1,Γ2) and l = •M(Γ2,Γ3) we have that

dim MP ((x,y),T1,T2,T3) ≥ dim MP ((x,y),T1+•M(Γ1,Γ2)+•M(Γ2,Γ3)−�M(Γ1,Γ2)−�M(Γ2,Γ3).

(3.18)
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This is good enough to prove dim MP ((x,y),T1,T2,T3) ≥ dimTIΓ1 ,IΓ2 ,IΓ3
MT1,T2,T3 in all cases

where �M(Γ1,Γ2,Γ3)= 0.

Thus the last step is to show that when �M(Γ1,Γ2,Γ3) = 1, one of the equations
we found is not necessary. More precisely.

Lemma 3.2.10. Utilize all notations as above. Suppose degα j ≤ degαl−2. Then j−1< r ′

and

g ′j−1(aα,β,θt ,ηs)= 0 for all
(
(aα,β)α,β, (θt )0≤t< j , (ηs)0≤t<l

) ∈A#P M ×A j ×Al

such that gi (aα,β,θs)= 0 ∀ i = 0, . . . ,r −1 and

g ′i (aα,β,θt ,ηs)= 0 ∀ i = 0, . . . ,r ′ −1, for i �= j −1.

In other words the equation g ′j−i is not necessary because trivially satisfied whenever
degα j ≤ degαl −2, even though it appears in the list (3.17), being j −1< r ′.

Proof. Since degα j ≤ degαl −2, necessarily j < l and j −1 < r ′. Then in particular we
have:

f ′′j−1 = f j−1+θ j−1 f j +η j−1 fl ,

f ′′j = y f j +η j fl ,

f ′′l = y fl .

(3.19)

The equations g ′i (aα,β,θt ,ηs) are defined by

y p ′i f ′i −x f ′i+1 = g ′i (aα,β,θt ,ηs) f ′l mod ( f ′′i+1, . . . , f ′′d ). (3.20)

In fact we will see that for i = j −1 we have

y p ′j−1 f ′j−1−x f ′j = 0 mod ( f ′′j , . . . , f ′′d ). (3.21)

This implies that g ′j−1(aα,β,θt ,ηs) is always equal to zero, as wanted.

Call αl
y = β ∈ Γ1. Consider an elimination procedure exactly as in 3.2.5 in the

proof of Lemma 3.2.4 to write, relative to I1,

y p j−1 f j−1−x f j =G j−1(aα,β)β mod ( f j , . . . , fd ).

Here G j−1(aα,β) is a polynomial expression in the coefficients (aα,β)α,β ∈Adim MP .

Since I1∩〈Γ1〉 = 0, G j−1(aα,β) = 0 identically on Adim MP , i.e. y p j−1 f j−1− x f j = ∑i≥ j hi fi .
Observe that iny (h j ) > 0. Multiply now both sides of the last equation by y , and add
and subtract few terms to get:

y p j−1
(
y f j−1+θ j−1 y f j −θ j−1 y f j

)−x y f j = h j y f j +·· ·+hl y fl +·· ·+hd y fd . (3.22)
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Observe that p ′j−1 = p j−1+1. Then rearranging we have:

y p ′j−1 f ′j−1−x f ′j =
(
θ j−1 y p j−1 +h j

)
y f j +·· ·+hl y fl +·· ·+hd y fd .

Since as observed iny (h j ) > 0, and p j−1 ≥ 1 we can factor a further y from the R-
multiple of y f j , add and subtract η j fl , to write:

y p ′j−1 f ′j−1−x f ′j =
(
θ j−1 y p j−1−1+ h̃ j

)
y(y f j +η j fl −η j fl )+·· ·+hl y fl +·· ·+hd y fd .

Now by substituting (3.19) in (3.22), we have (3.21), as desired.

Example 3.2.11.

fd = ykd

a1,2 fd−1

a1,2 a1,2 fl

d1 a1,2 a1,2 ←−β
d1 a1,2 f2

d1 a1,2 y f1 y3 f ′0−x y f1

a1 f1

a1

f0

In the situation depicted on the left α j is the green
box, marked f1, while αl is the box marked with fl .
Since degαl = degα j + 2 we need to prove that g ′0
is trivially satisfied. The idea is that this equation
was already satisfied since there must be a relation
for y2 f0− x f1. More explicitly in the proof we write
an equation G0 that represent the coefficient of β
(the gray box) once we apply the Procedure 3.2.5
to y2 f0− x f1: since β is in Γ1 we find that G0 must
be identically zero. Now the key point is that when
we do this we have an extra power of y in all the
interesting terms. This allows us to relate G0 to g0

with some manipulations.

Observation 3.2.12. Now we deal with case ii) of 3.2.3. If d +1= d ′ +1= d ′′ then there
is nothing new to prove, as �M(Γ1,Γ2,Γ3)= 0. Moreover, as we already observed there
exists only one K that sits inside J (aα,β,θi ), so the dimension is the expected one. If
d + 1 = d ′ = d ′′ then we still need to prove that: if degα j ≤ degαl − 2 then g ′0, the first
of the equations g ′i i = 0, . . . ,�M(Γ2,Γ3) is trivially satisfied. But this is obvious since in
this case g0 is the equation relating y x f0 and x y f0:

y p0 f ′0+x f ′1 = y x f0−x y f0 = 0.

Proposition 3.2.13. Let T1,T2,T3 be three admissible sequences of nonnegative integers
as in 1.2.7 that differ in the indexes m and m′ as in (3.4). Then the Hilbert-Samuel’s
strata MT1,T2,T3 is a smooth variety of dimension

dim MT1,T2,T3 = (n−1)+∑
j≥d

(t j−1− t j )
(t j−1− t j +1)

2
+ (tm−1− tm)+ (tm′−1− tm′)+

+
⎧⎨⎩1 if m′ ≥m+2,

0 otherwise.
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It has an affine cell decomposition with cells parametrized by nested Young diagrams
Γ1,Γ2,Γ3 that differ in only one box: Γ3 = Γ2  {αl } = Γ1  {αl } {α j } with Γ1 � n and
such that T (Γi ) = Ti . Call α j = (u j , v j ) and αl = (ul , vl ), then the affine cell indexed by
(Γ1,Γ2,Γ3) has dimension given by the following formula:

pos (Γ1,Γ2,Γ3)= #
{
(u, v) ∈ Γ1

∣∣ hu,v �= 0,1
}+

+#
{
(u, v) ∈ Γ1

∣∣ (hu,v = 0 and u =u j ) or (hu,v = 1 and v = v j )
}+

+#
{
(u, v) ∈ Γ2

∣∣ (h′u,v = 0 and u =ul ) or (h′u,v = 1 and v = vl )
}+ (3.23)

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ul + vl > u j + v j +2,

1 if ul + vl = u j + v j +2and vl > v j ,

0 otherwise.

Here hu,v is the hook difference of the box (u, v) with respect to the Young diagram Γ1,
and h′u,v is the hook difference of the box (u, v) with respect to the Young diagram Γ2.
The Poincaré polynomial of MT1,T2,T3 is

Pq
(
MT1,T2,T3

) = ∑
(Γ1,Γ2,Γ3)�[n,n+1,n+2], T (Γi )=Ti

qpos(Γ1,Γ2,Γ3) .

Proof. Thanks to equation (3.18) and Lemma 3.2.10 we know that the Hilbert-Samuel
stratum MT1,T2,T3 is covered by opens isomorphic to MP ((x,y),T1,T2,T3). One of these opens
is smooth since at his only torus fixed point it has dimension equal to the dimension
of the Zariski tangent space, thanks to equation (3.18), Lemma 3.2.10 and Lemma
2.3.27. Thanks to Theorem 1.3.4 we know that it has a cell decomposition with cells
whose dimensions are given by Lemma 2.3.27. Thanks to Theorem 1.3.2 the decom-
position in affine cells gives us a basis for the homology, and we can then calculate
the Poincaré polynomial.

As a consequence we immediately get the following.

Proposition 3.2.14. The space Hilbn,n+1,n+2(0) has an affine paving given by the attract-
ing sets at the fixed points for theT1+ action. The Poincaré polynomial of Hilbn,n+1,n+2(0)

is given by

Pq

(
Hilbn,n+1,n+2(0)

)
= ∑

(Γ1,Γ2,Γ3)�[n,n+1,n+2]
qpos(Γ1,Γ2,Γ3) (3.24)

where pos (Γ1,Γ2,Γ3) is as in (3.23).

Remark 3.2.15. The natural goal would now be to find a generating series for the
Poincaré polynomials of Hilbn,n+1,n+2(0) as n varies. However the above expression
appears hard to sum. We will deal with this problem in the next chapter.
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3.2.1 GT1,T2,T3 is smooth

We prove, with the same exact arguments, that the homogenous Hilbert-Samuel’s
strata GT1,T2,T3 are smooth. One of the main reasons why the proof is basically the same
as for the case of MT1,T2,T3 is the following lemma, that dates back to Iarrobino.

Lemma 3.2.16. [Iar77, Lemma 2.6.] Let I ∈ MP (T1) be an ideal with normal pattern.
Then I ∈ GP (T1) if and only if each standard generator is homogenous. If the standard
generators of I are ( f0, . . . , fd ) then the associated graded ideal ρT (I ) has standard gener-
ators (F0, . . . ,Fd ) where Fi is the initial form of fi , i.e. ρ( fi )= Fi .

For completeness we expand on notation and content. The complication on the ide-
als is inversely proportional to the complications on the indexes: even though ev-
erything is homogeneous so contains less terms, we need to distinguish those terms
with more complicated indexes. In fact basically only the definition of J (aα,β,θi ) of
3.25, and the form of the equations gi (aα,β,θs) of 3.26 are different but all the argu-
ments are the same.

Let T1,T2,T3 be admissible sequences of nonnegative integers. Let I (aα,β) ∈
GP (T1) be with standard generators ( f0, . . . , fd ) given by (3.3) for the point (aα,β)α,β ∈
AdimGT1 . Then we can read from the elements of T1 how many generators we have
of each degree: we have t1,d−1− t1,d +1 generators of degree d , and t1,k−1− t1,k genera-
tors of degree k with k > d , where d is the initial degree of I (aα,β).

Suppose now that α j , the box in ΓT2 \ΓT1 , is of degree d +k i.e.

T1 = (0,1,2, . . . ,d , t1,d , t1,d+1, . . . , t1,d+k , t1,d+k+1, . . . ),

T2 = (0,1,2, . . . ,d , t1,d , t1,d+1, . . . , t1,d+k +1, t1,d+k+1, . . . ).

Suppose first k > 0 so that α j does not have degree d and d ′ = d . This is the gen-
eral case, we will treat the others later. In particular it must be j = t1,d+k+1−1, since
we always want Young diagrams of standard normal form T2. Then for θi with i =
t1,d+k , . . . , t1,d+k+1−2 we can define the family of ideals J (aα,β,θi ) as

J (aα,β,θi ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′0 = f0

. . . . . .

f ′t1,d+k−1 = ft1,d+k−1

f ′t1,d+k
= ft1,d+k +θt1,d+k ft1,d+k+1−1

. . .

f ′t1,d+k+1−2 = ft1,d+k+1−2+θt1,d+k+1−2 ft1,d+k+1−1

f ′t1,d+k+1−1 = y ft1,d+k+1−1

f ′t1,d+k+1
= ft1,d+k+1

. . . . . .

f ′d = fd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with
(aα,β)α,β ∈AdimGT1

(θi )i ∈At1,d+k+1−t1,d+k−1.



3.2. MT1,T2,T3 IS SMOOTH. 73

(3.25)

We define this family because we are looking for enough J such that (I (aα,β), J ) ∈GP (T1,T2).

Example 3.2.17.

f4 = yk4

f3

ftk+d+1−1

f2

f1

f0

In this example: T1 = (1,2,3,4,5,5,2),
and T2 = (1,2,3,4,5,5,3). Here α j is
marked by f j = ftk+d+1−1, its degree is
d +k = d +2 = 7, j is 3 = tk+d+1−1, and
finally t1,d+k+1 − t1,d+k − 1 is 5− 2− 1 =
2. Every polynomial here is homoge-
neous, i.e. it contains monomials that
are only on its antidiagonal. Then,
when we add the box α j we can mod-
ify only f1 and f2.

Observation 3.2.18. As it was happening in the case MP the possible free new coordi-
nates we are adding are as many as •G(Γ1,Γ2). Now we look at the equations we have
to impose.

Lemma 3.2.19. Call r = ∗G(Γ1,Γ2). Then there exist r equations gt1,d+k−2 , . . . , gt1,d+k−1 in
the ((aα,β), (θi ))(α,β)∈PG ,i=t1,d+k ,...,t1,d+k+1−2 defined as

y pi−1 fi−1−x fi = gi (aα,β,θs) f j mod ( f ′i+1, . . . , f j−1), (3.26)

such that

(I (aα,β), J (aα,β,θi )) ∈GP ((x,y),T1,T2) ⇐⇒ gi (aα,β,θs)= 0 for all i = t1,d+k−2, . . . , t1,d+k−1.

Equivalently if we define Y to be the variety cut out by the gi then we have

A#PG ×At1,d+k+1−t1,d+k−1 ⊃ Y := {(aα,β,θs)|gi (aα,β,θs)= 0}
isom−−−→MP ((x,y),T1,T2).

Proof. The proof is exactly the same as for Lemma 3.2.4. The equations are in corre-
spondence, by multiplying by x, with the free boxes on the antidiagonal immediately
below α j since everything is homogenous and has to remain homogenous.

Corollary 3.2.20. With the notations as above we have that:

dimGP ((x,y),T1,T2) ≥ dimGP ((x,y),T1 +•G(Γ1,Γ2)−�G(Γ1,Γ2).

Proof. We need to consider the other cases i.e. when d �= d ′ and when degα j = d .
Observe that in the homogenous case the above expression actually sais that the di-
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mension of GP ((x,y),T1,T2) can be lower than that of GP ((x,y),T1 .

Suppose we are in the case d + 1 = d ′. Then α j = α0 degα j = d . Then there is
actually only one ideal J (aα,β) such that(

I (aα,β), J (aα,β)
) ∈GP ((x,y),T1,T2)

and it is J (aα,β)= (x f0, y f0, f1, . . . , fd ) where the fi are the standard generators of I (aα,β).
It is still true that

dimGP ((x,y),T1,T2) ≥ dimGP ((x,y),T1)+•G(Γ1,Γ2)−�G(Γ1,Γ2)

because •G(Γ1,Γ2) = �G(Γ1,Γ2)= 0 and dimGP ((x,y),T1,T2) ≥ dimGP ((x,y),T1).

Suppose finally d = d ′ and degα j = d . Then the reasoning for the case d = d ′

and degα j > d still works, the only difference being that there is one more standard
generator of I (aα,β) with degree d , i.e. f0. So up to a change of indexes everything is
the same.

Corollary 3.2.21. [Che98, Proposition 3.4.12] Let T1 and T2 be two admissible nested
sequences of nonnegative integers as in 1.2.7. Call m the index for which t2,m = t1,m +1

and d the initial degree of T1. Then GT1,T2 is smooth, and of dimension

dimGT1,T2 =
∑
j≥d

(t j−1− t j +1)(t j − t j+1)+ (tm−1− tm)− (tm−2− tm−1).

It has the affine cell decomposition given by the Bialynicki-Birula decompositions whose
cells have dimensions as specified in Lemma 2.2.18.

Proof. The proof is clear by looking at Lemma 3.2.4 and at Lemma 2.2.18 on the di-
mension of the tangent space and at Proposition 2.1.16 on the dimension of GT . Ob-
serve that in this case, contrary to the case MT1,T2 we actually need this proof, since it
is not true that GT1,T2 is union of affine cells for Hilbn,n+1(P2).

Having understood how to pass from GP (T1) to GP (T1,T2) we can understand how to go
from GP (T1,T2) to GP (T1,T2,T3).

We start by supposing that d = d ′ = d ′′ and degα j ,degα′l > d , in fact say degα j =
d +k and degα′l = d +k ′, k,k ′ > 0. Let again I (aα,β) ∈GP (T1) with (aα,β)α,β ∈A#PG be the
ideal with standard generators ( f0, . . . , fd ) as in (3.3). Let (θi )t1,d+k≤i≤t1,d+k+1−2 ∈At1,d+k+1−t1,d+k−1,
and (ηi )t2,d+k′≤i≤t2,d+k′+1−2 ∈ At2,d+k′+1−t2,d+k′−1. Then we define the ideals J (aα,β,θi ) as in
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(3.25) and the ideals K (aα,β,θi ,ηs) mimicking the construction in definition (3.25).

K (aα,β,θi ,ηs) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f ′′0 = f ′0
. . . . . .

f ′′t2,d+k′−1 = f ′t2,d+k′−1

f ′′t2,d+k′
= f ′t2,d+k′

+ηt2,d+k′ f ′t2,d+k′+1−1

. . .

f ′′t2,d+k′+1−2 = f ′t2,d+k′+1−2+ηt2,d+k′+1−2 ft2,d+k′+1−1

f ′′t2,d+k′+1−1 = y f ′t2,d+k′+1−1

f ′′t2,d+k′+1
= ft2,d+k′+1

. . . . . .

f ′′d = f ′d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.27)

The results of Lemma (3.2.19) tell us that there exists r =∗G(Γ1,Γ2) equations gi (aα,β,θs)

inA#PG×At1,d+k+1−t1,d+k−1 and r ′ = ∗G(Γ2,Γ3) equations g ′i (aα,β,θt ,ηs) inA#PG×At1,d+k+1−t1,d+k−1×
At2,d+k′+1−t2,d+k′−1 such that:

(I (aα,β), J (aα,β,θi )) ∈GP ((x,y),T1,T2) ⇐⇒ gi (aα,β,θs)= 0 for all i ,

and

(I (aα,β), J (aα,β,θi ),K (aα,β,θi ,ηs)) ∈GP ((x,y),T1,T2,T3) with gi (aα,β,θs)= 0 ∀ i

⇐⇒

g ′i (aα,β,θt ,ηs)= 0 for all i .

(3.28)

Then, since t1,d+k+1− t1,d+k −1= •G(Γ1,Γ2) and t2,d+k ′+1− t2,d+k ′ −1= •G(Γ2,Γ3) we have
that

dimGP ((x,y),T1,T2,T3) ≥ dimGP ((x,y),T1+•G(Γ1,Γ2)+•G(Γ2,Γ3)−�G(Γ1,Γ2)−�G(Γ2,Γ3) (3.29)

which is good enough to prove dimGP ((x,y),T1,T2,T3) ≥ dimTIΓ1 ,IΓ2 ,IΓ3
GT1,T2,T3 in all cases

where �M(Γ1,Γ2,Γ3)= 0.

The last step needed is then to show that when �M(Γ1,Γ2,Γ3) = 1, one of the
equations we found is not necessary. This is the content of the next Lemma.

Lemma 3.2.22. Utilize all notations as above, and suppose degα j = degα′l − 2. Then
t2,d+k ′ ≤ j ≤ t1,d+k+1−2 and

g ′j (aα,β,θt ,ηs)= 0 for all
(
(aα,β)α,β, (θt )t , (ηs)t

) ∈A#PG ×A•G(Γ1,Γ2)×A•G(Γ2,Γ3)

such that gi (aα,β,θs)= 0 ∀ i = t1,d+k , . . . , t1,d+k+1−2 and

g ′i (aα,β,θt ,ηs)= 0 ∀ i = t2,d+k ′ , . . . , t2,d+k ′+1−2, i �= j .
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In other words the equation g ′j is not necessary because trivially satisfied whenever
degα j = degαl−2, even though it appears in the list (3.28), being t2,d+k ′ ≤ j ≤ t1,d+k+1−2.

Proof. The proof is exactly as in the case of MP ((x,y),T1,T2,T3).

Observation 3.2.23. Now we will deal with the cases left aside on d ,d ′ and d ′′. If d+1=
d ′ + 1 = d ′′ then there is nothing new to prove, as observed in the proof of 3.2.20. If
d +1 = d ′ = d ′′ then we still need to prove that: if degα j ≤ degαl −2 then g ′0 the first of
the equations g ′i i = 0, . . . ,�M(Γ2,Γ3) is trivially satisfied. But this is obvious since, in
this case:

y p0 f ′0+x f ′1 = y x f0−x y f0 = 0.

Proposition 3.2.24. Let T1,T2,T3 be three admissible sequences of nonnegative integers
as in 1.2.7. Then the homogenous Hilbert-Samuel’s stratum GT1,T2,T3 is a smooth variety
of dimension

dim GT1,T2,T3 =
∑
j≥d

(t j−1− t j +1)(t j − t j+1)+

+ (tm−1− tm −1)− (tm−2− tm−1)+ (tm′−1− tm′)− (tm′−2− tm′−1)+

+
⎧⎨⎩1 if m′ ≥m+2,

0 otherwise.

It has an affine cell decomposition with cells parametrized by nested Young diagrams
Γ1,Γ2,Γ3 that differ in only one box: Γ3 = Γ2 {αl }= Γ1 {αl } {α j } with Γ1 � n and such
that T (Γi )= Ti . The affine cell indexed by (Γ1,Γ2,Γ3) has dimension given by the follow-
ing formula:

pos (Γ1,Γ2,Γ3)= #
{
(u, v) ∈ Γ1

∣∣ hu,v =−1
} + •G+(Γ1,Γ2) − �G+(Γ1,Γ2)+ (3.30)

+ •G+(Γ2,Γ3) − �G+(Γ2,Γ3) + �G+(Γ1,Γ2,Γ3).

The Poincaré polynomial of GT1,T2,T3 is

Pq
(
GT1,T2,T3

) = ∑
(Γ1,Γ2,Γ3)�[n,n+1,n+2], T (Γi )=Ti

qpos(Γ1,Γ2,Γ3) .

Proof. Thanks to equation 3.29 and Lemma 3.2.22 we know that the Hilbert-Samuel
stratum GT1,T2,T3 has everywhere dimension equal to the dimension of its Zariski tan-
gent space, then it is smooth. Thanks to Theorem 1.3.4 we know that it has a cell
decomposition with cells whose dimensions are given by Lemma 2.3.27. Thanks to
Theorem 1.3.2 the decomposition in affine cells gives us a basis for the homology,
and we can then calculate the Poincaré polynomial.
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3.3 Strata for longer flags are singular

In this section we deal with flags of more than three ideals, i.e. starting at
Hilbn,n+1,n+2,n+3(0). The goal is to prove that the Hilbert-Samuel’s strata in these cases
are not all smooth, so that the techniques we used until now will not yield results to-
wards the understanding of their homology. In fact we will show a bit more, namely
that there are attracting sets that are not smooth, in particular not isomorphic to
affine cells. We will specify at what n, the length of the biggest ideal, these singular
attracting sets start appearing, while for lower n we still have an affine cell decompo-
sition and a basis for the homology. Everything in this section is obtained by direct
computation.

3.3.1 Four flag case

Consider the punctual Hilbert scheme of flags of four nested ideals

Hilbn,n+1,n+2,n+3(0).

We will see that starting at n = 6 we can find an Hilbert-Samuel’s stratum

MT1,T2,T3,T4 ⊂Hilb6,7,8,9(0)

that is not smooth. We will see that it is not smooth by exhibiting an attracting cell
that is not smooth. We can also show, by direct computation that 6 is the smallest
integer for which this happens.

Lemma 3.3.1. For n = 1,2,3,4,5 all the Hilbert-Samuel’s strata MT1,T2,T3,T4 of the Hilbert
scheme Hilbn,n+1,n+2,n+3(0) are smooth. They have an affine paving that implies that
Hilbn,n+1,n+2,n+3(0) has an affine paving. The Poincaré polynomials of the total spaces
are given by:

Pq

(
Hilb1,2,3,4(0)

)
= 1+3q+4q2+2q3,

Pq

(
Hilb2,3,4,5(0)

)
= 1+4q+8q2+9q3+4q4,

Pq

(
Hilb3,4,5,6(0)

)
= 1+4q+10q2+14q3+13q4+6q5,

Pq

(
Hilb4,5,6,7(0)

)
= 1+4q+11q2+22q3+30q4+25q5+9q6,

Pq

(
Hilb5,6,7,8(0)

)
= 1+4q+11q2+24q3+42q4+51q5+36q6+11q7.

For all n ≥ 6 there is at least one Hilbert-Samuel’s stratum that is not smooth and with
an attracting set that is not isomorphic to an affine space.

For the proof of the first part we checked by hand that the all the attracting sets for
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n ≤ 5 are indeed affine, the computation is a bit long but straightforward.

We now show that for n = 6 we have an attracting cell that is not isomorphic
to an affine space, and thus proving that the corresponding Hilbert-Samuel’s strata is
not smooth. The fixed point is the following:

3

2

1

The fixed point represented on the left is the flag

(x2, x y2, y4)⊃ (x3, x2 y, x y2, y4)⊃
⊃ (x3, x2 y, x y3, y4)⊃ (x3, x2 y, x y3, y5).

It is the flag of monomial ideals with normal patterns
(1,2,2,1), (1,2,3,1), (1,2,3,2), (1,2,3,2,1).

The attracting cell is described as follow. Let I1 = ( f0, f1, f2) be in MP (T1) with standard
generators f0, f1, f2 given by

f0 = x2+a1x y +a2 y2+a3 y3,

f1 = x y2+b1 y3,

f2 = y4.

where a1, a2, a3 and b1 in C are
the free affine coordinates.

The attracting cell is

( f0, f1, f2)⊃ (x f0, y f0, f1, f2)⊃ (x f0+θ0 f1, y f0+θ1 f1, y f1, f2)⊃ (3.31)

⊃ (x f0+θ0 f1+η0 y4, y f0+θ1 f1+η1 y4, y f1+η2 y4, y5)

where in the last step we need to impose the equation

G
(
(a,b), (θ), (η)

)= 0 for (a1, a2, a3,b1,θ0,θ1,η0,η1,η2) ∈A9.

Here G is defined with a procedure similar to the Procedure 3.2.5 as

y g0−xg1 ≡G
(
(a,b), (θ), (η)

)
y4 mod (g1, g2, g3),

where we called g0, g1, g2, g3 the generators (that need not be standard) of the last ideal
in (3.31) in the order we have written them. Doing explicitly the computations we find

G
(
(a,b), (θ), (η)

)= η2(θ1(b1−a1)−θ0−θ2
1)+b1θ1(b1−a1)+a2θ1.

Taking partial derivatives we see that the points

a2 = b1(a1−b2),θ0 = θ1 = η2 = 0, a1,b1,η0,η1 ∈C

are all singular points for the equation G, so that the attracting cell is not isomorphic
to an affine space.
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Observe that we just proved that also the projective strata GT1,T2,T3,T4 is not smooth,
as the extra dimension of MT1,T2,T3,T4 , represented by the coordinate a3, does not play
a role in what we said. If n ≥ 7, the situation is slightly different as what we describe
is a phenomenon that belongs to the affine fiber of the projective map ρT1,T2,T3,T4 :

MT1,T2,T3,T4 →GT1,T2,T3,T4 . The reasoning is however completely similar. We give the de-
tails for completness.

3
...

n−7 boxes
...

2

1

The fixed point represented on the left is the flag

(x2, x y2, yn−2)⊃ (x3, x2 y, x y2, yn−2)⊃
⊃ (x3, x2 y, x y3, yn−2)⊃ (x3, x2 y, x y3, yn−2).

It is the flag of monomial ideals with normal patterns

(1,2,2,1,1, . . . ,1), (1,2,3,1,1, . . . ,1), (1,2,3,2,1 . . . ,1),

(1,2,3,2,1, . . . ,1,1).

The attracting cell is described as follow. Let I1 = ( f0, f1, f2) be in MP (T1) with standard
generators f0, f1, f2 given by

f0 = x2+a1x y +a2 y2+a3 y3+·· ·+an−3 yn−3,

f1 = x y2+b1 y3+b2 y5+·· ·+bn−5 yn−3,

f2 = yn−2.

Now a1, an−4, an−3 and b1,b2, . . . ,bn−5 inC are the free affine coordinates, while a2, . . . , an−5

depend polynomially on the previous coordinates according to equations that arise
imposing

y2 f0−x f1 ≡ 0 mod ( f1, f2). (3.32)

The attracting cell is

( f0, f1, f2)⊃ (x f0, y f0, f1, f2)⊃ (x f0+θ0 f1, y f0+θ1 f1, y f1, f2)⊃ (3.33)

⊃ (x f0+θ0 f1+η0 yn−2, y f0+θ1 f1+η1 yn−2, y f1+η2 yn−2, yn−1)

where in the last step we need to impose the equation

G
(
(a,b), (θ), (η)

)= 0 for ((ai )1≤i≤n−3, (bi )1≤i≤n−5,θ0,θ1,η0,η1,η2) ∈A2n−3.

Here G is defined with a Procedure similar to 3.2.5 as

y g0−xg1 ≡G
(
(a,b), (θ), (η)

)
yn−2 mod (g1, g2, g3).
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We called g0, g1, g2, g3 the generators (that need not be standard) of the last ideal in
(3.33) in the order we have written them. Doing explicitly the computations as in
Procedure 3.2.5, and using the equations coming from (3.32), we find

G((a,b), (θ), (η))= η2(θ1(b1−a1)−θ0−θ2
1)+bn−5(2θ1b1+θ1a1)+an−3θ1.

Taking partial derivatives we see that the points

an−3 = bn−5(a1−2b1),θ0 = θ1 = η2 = 0

are all singular points for the equation G, so that the attracting cell is not isomorphic
to an affine space.

3.3.2 Five, and longer, flag case

Consider the punctual Hilbert scheme of flags of five nested ideals

Hilbn,n+1,n+2,n+3,n+4(0).

We will see that starting at n = 3 we can find an Hilbert-Samuel’s stratum

MT1,T2,T3,T4,T5 ⊂Hilb3,4,5,6,7(0)

that is not smooth. Again we will see that it is not smooth by exhibiting an attracting
cell that is not smooth. We can also show, by direct computation, that 3 is the smallest
integer for which this happens.

Lemma 3.3.2. For n = 1,2 all the Hilbert-Samuel’s strata MT1,T2,T3,T4,T5 of the Hilbert
scheme Hilbn,n+1,n+2,n+3,n+4(0) are smooth. The spaces Hilbn,n+1,n+2,n+3,n+4(0) for n = 1,2

have an affine paving and their Poincaré polynomials are given by:

Pq

(
Hilb1,2,3,4,5(0)

)
= 1+4q+8q2+9q3+4q4,

Pq

(
Hilb2,3,4,5,6(0)

)
= 1+5q+13q2+22q3+23q4+11q5+q6.

For n ≥ 3 there is at least one Hilbert-Samuel’s stratum that is not smooth, and with
an attracting cell that is not isomorphic to an affine space. Let n ≥ 2, then at least one
of the Hilbert-Samuel’s stratum of Hilbn,...,n+5(C2) is not smooth, and has an attracting
cell that is not isomorphic to an affine space. For all k ≥ 6 and all n ≥ 1 at least one
of the Hilbert-Samuel’s stratum of Hilbn,...,n+k (C2) is not smooth, and has an attracting
cell that is not isomorphic to an affine space.

The only case left aside is Hilbn,...,n+5(C2) for n = 1. This is naturally isomorphic to
Hilb2,3,4,5,6(C2), so we know an affine paving for it. Again, to prove the first part of
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the Lemma we wrote down explicitly the attracting sets and checked that they are all
affine, in the cases where we claim that they are so.

We now show that for n = 3 we have an attracting cell that is not isomorphic to
an affine space, thus proving also that the corresponding Hilbert-Samuel’s stratum is
not smooth.

Example 3.3.3. The fixed point is the following:

4

3

2

1

The fixed point represented on the left is the flag

(x, y3)⊃ (x2,x y, y3)⊃ (x2, x y2, y3)⊃
⊃ (x2, x y2, y4)⊃ (x2, x y2, y5).

This is the flag of monomial ideals with normal patterns
(1,1,1), (1,2,1), (1,2,2), (1,2,2,1), (1,2,2,1,1)

Let us call (ω, a,θ,α,η,β1,β2) the coordinates of A7. The attracting set is isomorphic to
the subspace Y ⊂A7 cut out by the equation (η−ω)(η−θ)= 0 i.e. it is the intersection
of two linear spaces of dimension 6 in a linear space of dimension 5. The explicit
isomorphism between Y and MP is given by parametrizing MP as

(
x+ωy +ay2

y3

)
⊃

⎛⎜⎝x2+ωx y

x y +ωy2

y3

⎞⎟⎠⊃
⎛⎜⎝x2+ (ω+θ)x y +ωθy2

x y2

y3

⎞⎟⎠⊃

⊃

⎛⎜⎝x2(ω+θ)x y +ωθy2+αy3

x y2+ηy3

y4

⎞⎟⎠⊃
⎛⎜⎝x2(ω+θ)x y +ωθy2+αy3+β1 y4

x y2+ηy3+β2 y4

y5

⎞⎟⎠
and noticing that in the last inclusion we have to impose the equation

0= det

⎛⎜⎜⎜⎜⎜⎜⎝
1 ω+θ ωθ 0 0

0 1 ω+θ ωθ 0

0 0 1 ω+θ ωθ

0 0 1 η 0

0 0 0 1 η

⎞⎟⎟⎟⎟⎟⎟⎠ = (η−ω)(η−θ)= 0

because otherwise y4 ∈ I5.

Remark 3.3.4. The fixed point we just described is also a fixed point of Hilb1,2,3,4,5,6,7(0),
in the sense that the flag of five ideals we described can be uniquely extended to a flag
of seven ideals (combinatorially there is only one way to extend the above skew stan-
dard diagram to a Young standard diagram). Observe now that the projection map
p2 : Hilb1,2,3,4,5,6,7(0)→Hilb2(0) is a Zariski locally trivial fibration, as GL2 acts by auto-
morphisms on Hilb2(0)∼=P1 by changing the coordinates of the plane.
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One can then check that the attracting set described above in Example 3.3.3
is the only one that is not an affine cell. The checking is done by writing explicitly
all the remaining towhundredthirtyone cells. In particular all the sets attracted by

fixed points of the form
.. .
1 2 . . . are affine cells. This mean that the fiber p−1

2 ((y, x2)) ⊂
Hilb1,2,3,4,5,6,7(0) has an affine paving, and thus, since p2 is locally trivial on P1, that
the entire Hilb1,2,3,4,5,6,7(0) has an affine paving, even though it is not the one coming
from the attracting sets. Then we can compute by hand the Poincaré polynomial of
Hilb1,2,3,4,5,6,7(0) and the result is the following:

Pq

(
Hilb1,2,3,4,5,6,7(0)

)
= 1+6q+19q2+41q3+63q4+64q5+32q6+5q7.

For longer flags, or for flags of five ideals but of higher lengths, unfortunately this no
longer holds and I do not know if there is an affine cell decomposition.

Remark 3.3.5. One can still write a weight basis for the tangent spaces at the fixed
points of Hilb1,2,3,4,5,6,7(C2) and see if the weights with respect to the torus T1+ action
have some geometrical meaning. The positive part, however, fails to give the right
Poincaré polynomial, as direct computations show. This is why we didn’t investigate
it further for longer flag cases.

Now we show that for flags of ideals of higher lengths the analogous stratum is
not smooth, slightly differently, but in a similar way. We will also show that all longer
flags have the analogous stratum that is not smooth.

4

3
...

k−5 boxes
...

2

1

The fixed point represented on the left is the flag

(x, yk )⊃ (x2,x y, yk )⊃ (x2, x y2, yk )⊃
⊃ (x2, x y2, yk+1)⊃ (x2, x y2, yk+1)

that is the flag of monomial ideals with normal patterns

(1,1, . . . ,1), (1,2,1, . . . ,1), (1,2,2,1, . . . ,1),

(1,2,2,1, . . . ,1,1), (1,2,2,1, . . . ,1,1,1)

Here we call (ω, a1, . . . , ak−2,θ,β1,β2,γ1,γ2) the coordinates of Ak+4. Then the attracting
cell is isomorphic to the subspace Y ⊂Ak+4 cut out by the single equation

(ak3 −β2)(ω−θ)= 0.

Thus for every n ≥ 3 we have an Hilbert-Samuel’s stratum in Hilbn,n+1,n+2,n+3,n+4(0) not
smooth.

Observation 3.3.6. We now show that for all longer flags the analogous stratum is
not smooth. Consider the above picture. There is only one way to complete it to
a skew diagram with k boxes, i.e. we need to put the number 1,2, . . . ,k −5 in the first
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column. For the same reason there is only one attracting cell associated to this picture
in HilbN−k,N−k+1,...,N and its description is exactly as before. Then this proves that for
every k there is an Hilbert-Samuel’s stratum in HilbN−k,N−k+1,...,N with k ≤N that is not
smooth, thus showing the claim that the three step case is the last one where all the
Hilbert-Samuel’s strata are smooth.





Chapter 4

Generating function and
Hilbn,n+2(C2).

The goal of this chapter is to prove the formula for the generating function of
the Poincaré polynomials of Hilbn,n+1,n+2(0):

∑
n≥0

Pq

(
Hilbn,n+1,n+2(0)

)
zn = q+1

(1− zq)(1− z2q2)

∏
k≥1

1

1− zk qk−1
. (4.1)

To do so we will need three ingredients.

(1) Study the positive part of the tangent spaces at fixed points of Hilbn,n+1,n+2(C2)

with respect to the torus T∞ i.e. the generic one dimensional torus that has weights
w1, w2 such that w1 < w2 and 1 � w1

w2
. As it happens for previous cases the positive

part with respect to this torus is much easier to understand combinatorially. Observe,
however, that since Hilbn,n+1,n+2(C2) is not smooth we do not know that the attracting
sets for this torus character are affine varieties, nor do we have an immediate geomet-
ric interpretation of the positive part. This is why we need the following step.

(2) Prove that we can actually change the one dimensional torus and take weights
as described in the previous point but still obtain the same result for the Poincaré
polynomial. In the process we show that the attracting sets for this torus are still affine
cells.

(3) Study the space Hilbn,n+2(C2) and two associated spaces as described below.
One of them is smooth, the generating function for its Betti numbers is known, and we
claim it has the same Betti numbers as Hilbn,n+1,n+2(0). To prove the claim, we will only
need to match the combinatorial data of the fixed points and the respective positive
part of the tangent spaces to obtain the wanted result for Hilbn,n+1,n+2(0). This relation
is clear only at the combinatorial level, and not at the geometric one. As a byproduct
we will obtain the last result of the thesis i.e. a combinatorial formula for the Poincaré

85
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polynomials of Hilbn,n+2(0) and a closed expression for their generating function:

∑
n≥0

Pq

(
Hilbn,n+2(0)

)
zn = 1+q −qz

(1− zq)(1− z2q2)

∏
m≥1

1

1− zm qm−1 . (4.2)

4.1 A tale of two tori

We start motivating the work of this section by showing that, indeed, the pos-
itive part of the tangent spaces at fixed points of Hilbn,n+1,n+2(C2) for the torus with
weights 1� w1

w2
is combinatorially easier. Then we will prove that we can use the pos-

itive part with respect to this torus to write down the Poincaré polynomial.

Lemma 4.1.1. Consider the action of T∞ on R = C[x, y]. Let (Γ1,Γ2,Γ3) be three nested
Young diagrams representing a fixed point for this torus action on Hilbn,n+1,n+2(C2).
Then the positive part of the tangent space at (Γ1,Γ2,Γ3) is

pos∞ (Γ1,Γ2,Γ3)=
⎧⎨⎩n+2−�(Γ3)+1 if degy α

′
l ≥ degy α j +2,

n+2−�(Γ3) otherwise.
(4.3)

Here �(Γ3) is the number of columns of Γ3 and with the notations of the last chapter we
call α′l and α j the boxes such that

Γ3 = Γ2∪ {α′l }= Γ1∪ {α j }∪ {α′l }.

Proof. Observe that an eigenvector for T2 with eigenvalues λrμs , where λ and μ are
independent torus characters, is positive with respect to the chosen weights if and
only if s is positive.

Recall the definition of B =B(IΓ1 , IΓ2 , IΓ3 ) in 2.3.17.

B
(
IΓ1 , IΓ2 , IΓ3

) =
B
(
IΓ1

)
\
{

fα,β|(α,β) ∈Obs(IΓ1 , IΓ2 )
}

\
{

fα,β|(α,β) ∈PObs(IΓ1 , IΓ2 , IΓ3 )
}

∪
{(

0,hα′i ,α j
,Suiv(hα′i ,α j

)
)∣∣ (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 )

}
∪ (4.4)

∪
{(

0,0,hα′′i ,α′l

)∣∣ i = 0, . . . s′′
}

.

A vector v ∈ B is positive with respect to the chosen weights, if and only if it
represents a map from a box to a box that is in a strictly higher row. In terms of mono-
mials, if v is label by α �→β then v is positive if and only if degy β> degy α. Let us analyze
all the terms in (4.4).

It is clear, and we already know, that pos(B(Γ1))= n−�(Γ1).

Suppose for the moment that α′l is not on the same row or column of α j .
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Consider now what we exclude and what we add by removing the set of vectors
{ fα,β|(α,β) ∈Obs(IΓ1 , IΓ2 )} and by adjoining

{(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)∣∣ (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 )

}
.

In the latter set we do not need to exclude any term worrying about (α′i ,α j ) ∈Obs(IΓ2 , IΓ3 ),
thanks to the current hypothesis on the relative position of α′l and α j . Looking at def-
inition 2.3.6, we have that fα,β is such that (α,β) ∈Obs(IΓ1 , IΓ2 ) and positive if and only
if α=αi , β= α j

y pi with i ≤ j −1 since we have that

degy α j = degy αi +
j−1∑
k=i

pk (4.5)

for all i < j . Still looking at equation (4.5), we have that hα′i ,α j
is positive if and only if

i ≤ j . Thus the total contribution of these two sets to the positive part of B(Γ1,Γ2,Γ3) is

pos
({(

0,hα′i ,α j
,Suiv(hα′i ,α j

)
)∣∣ (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 )

})
+

−pos
({

fα,β|(α,β) ∈Obs(IΓ1 , IΓ2 )
}) =

⎧⎨⎩1 if 0< j ,

0 if 0= j .

Completely analogously for the contribution of
{

fα′,β|(α′,β) ∈Obs(IΓ2 , IΓ3 )
}

when we re-

move it, and of
{(

0,0,hα′′i ,α′l

)∣∣ i = 0, . . . s′′
}

when we add it.

The only term left to be considered is
{

fα′,β|(α′,β) ∈NotP(IΓ1 , IΓ2 , IΓ3 )
}
. This, un-

der the current hypothesis that α′l is not on the same row or column as α j , contains
only an element given by Definition 2.3.9, and this element is positive with respect to
the chosen torus action if and only if degy αl > degy α j +2.

Then noticing that

�(Γ3)= �(Γ1) +
⎧⎨⎩1 if 0< j ,

0 if 0= j
+

⎧⎨⎩1 if 0< l ,

0 if 0= l

we obtain exactly what we wanted.

If we now suppose that α′l = yα j we can say, analogously, that({(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)∣∣ (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 )

})
+

+pos
({(

0,0,hα′′i ,α′l

)∣∣ i = 0, . . . , s′′
})
+

−pos
({

fα,β|(α,β) ∈Obs(IΓ1 , IΓ2 )
})+ (4.6)

−pos
({

fα′,β|(α′,β) ∈Obs(IΓ2 , IΓ3 )
})+

+pos
({

fα′,β|(α′,β) ∈NotP
}) =

⎧⎨⎩2 if 0< j ,

1 if 0= j
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since in this case (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 ) if and only if (α′i ,
α j

y ) ∈NotP(IΓ1 , IΓ2 , IΓ3 ) (notice
also that, since α′l = yα j , we always have at least a positive vector as hα′′0 ,α′l

). Then the
statement is proved also in this case.

Finally if α′l = xα j then we do not have any positive vectors in either{
hα′i ,α j

∣∣ (α′i ,α j ) ∉Obs(IΓ2 , IΓ3 )
}

or in
{

fα′,β|(α′,β) ∈NotP(IΓ1 , IΓ2 , IΓ3 )
}
. So that the left hand

side of (4.6) is either 1 if 0< j or 0 if j = 0, that, noticing j = 0 iff �(Γ3)= �(Γ1)+2, is what
we wanted.

As promised formula (4.3) is much easier than the formula (3.23). Now we deal
with the more cumbersome task of proving that we get the same polynomial by using
one or the other. We will see that the main part of the work is to understand in more
details why we can use freely one formula instead of the other in the case of Hilbn(0)

and in the case of Hilbn,n+1(0). Then we will be able to tackle the case Hilbn,n+1,n+2(0).
We start by fixing some notation to better frame the problem.

Definition 4.1.2. We want to give names to the one dimensional subtori of T2 that
are most relevant for us. We will always assume that the weights w1, w2 are such
that w1 <w2. We will denote TW ⊂T2 the one dimensional subtorus given by putting
w2
w1
=W . Most of these tori are generic in the sense that the fixed points sets for their

action on Hilbn(C2), Hilbn+1(C2) and Hilbn+2(C2) are isolated. However we care also
about those special values of W that are not generic. So we say that W ∈Q is a wall for
n if the fixed point set of Hilbn(C2) is not discrete. Similarly we say that W ∈Q is a wall
for [n,n + 1] if the fixed point set of Hilbn,n+1(C2) is not discrete. Finally we say that
W ∈Q is a wall for [n,n+1,n+2] if the fixed point set of Hilbn,n+1,n+2(C2) is not discrete.
This typically happens for values like: m

k with 1≤m,k ≤n+1.

If W is a wall for n (resp. for [n,n + 1], resp. for [n,n + 1,n + 2]) we will denote
W + and W − two values in Q that are respectively bigger and smaller than W by a small
amount, small enough that between W + and W and between W and W − there are no
other walls for n (resp. for [n,n+1], resp. for [n,n+1,n+2]).

Recall the special names we gave the two extreme cases we are interested in
with respect to n ∈N:

T∞ :=
⎧⎨⎩w1 <w2 and

n+2< w2
w1

T1+ :=
⎧⎨⎩w1 <w2 and

n+2
n+1 > w2

w1
.

These two tori are generic. The torus T∞ is the one we would like to use, as it gives
formula (4.3). However only the second one i.e. T1+ is such that the Hilbert-Samuel
strata MT are union of attracting sets of Hilbn(P2), and so, in the case of Hilbn,n+1,n+2(0),
only for T1+ we know that the attracting sets are affine and that the positive parts of
the tangent spaces at a fixed point give the dimension of the affine cells that contracts
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to it.

Example 4.1.3. A typical wall for n happens for value like: m
k with 1≤m,k ≤ n+1.

For example: let n = 3, then the only wall is W = 2. For any generic torus the fixed point
sets of Hilb3(0) consists of the three isolated points given by the monomial ideals of
length 3, i.e. (x, y3), (y, x3) and (x2, x y, y2). If W = 2 then the fixed points set consists of
two components, one with all the points of the form (ω1 y+ω2x2)+m3 with [ω1,ω2] ∈P1

and the other with the isolated point (x, y3).

y2

x y

x2
ω1 y +ω2x2

−→
y

x3

The one dimensional fixed com-
ponents of the torus T2 acting on
Hilb3(0).

Example 4.1.4. Even when we know that a torus action gives an affine cell decom-
position, we cannot change freely the one parameter subgroup, hoping to still get an
affine cell decomposition, or hoping to extract useful informations by looking at the
positive part of the tangent spaces at the fixed points. We give an example. Consider
X the variety that consists of three P1 that meet at the point P so that the intersection
is planar, i.e. dimTP X = 2. Suppose that P is the point [1 : 0] for each of the P1 and that
all other points of X are smooth. Consider a T1

a action on X that restricts to each P1

as the usual rescaling action with weights 1 and a, i.e. t · [ω1 : ω2] = [tω1 : t aω2]. Then,
if a < 1, the T1

a action gives a decomposition of X in affine cells parametrized by fixed
points P = P1,P2,P3,P4 and given by Ai = {x ∈ X | limt→0 t · x = Pi } , each of which has di-
mension given by the positive part of the tangent space at the fixed point. However
if a > 1 this is not longer true, as the only attracting set that is not a point is A1 and
the positive part of the tangent space at P1 = P is only two dimensional thanks to the
planar hypothesis.

Notation 4.1.5. Denote with Δ the positive quadrant N×N seen as a union of boxes.
In the rest of the chapter we denote Γ � n, (Γ1,Γ2) � [n,n + 1] (or the shorter version
Γ � [n,n+1]) and (Γ1,Γ2,Γ3) � [n,n+1,n+2] (or the shorter version Γ � [n,n+1,n+2])
respectively Young diagram of size n, a couple of Young diagrams of size n and n +
1 that differ only in one box marked with a 1 , and a triple of Young diagrams of
sizes n,n+1 and n+2 that differ, in order, in one box marked with a 1 , and in one
box marked with a 2 . We identify these with fixed points of, respectively, Hilbn(C2),
Hilbn,n+1(C2) or Hilbn,n+1,n+2(C2). In this chapter all the objects we associated to the
latter we can consider as associated to the diagrams themselves. For example we will
often talk about the ideal Γ to mean the ideal IΓ. Also, for example, given Γ�n we will
talk about its outer corners as the standard monomial generators of the associated
monomial ideal IΓ, and we will denote B(Γ) the basis of the tangent space TΓHilbn(C2)

constructed in Chapter 2, and so on.

Definition 4.1.6. Let n ∈N and W be a wall for n or [n,n+1] or [n,n+1,n+2]. Then we
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define for Γ� n or Γ� [n,n+1] or Γ� [n,n+1,n+2] the following integers.

posW + (Γ) := #
{

v ∈B(Γ)
∣∣v is positive wrt to the weights of TW +

}
posW − (Γ) := #

{
v ∈B(Γ)

∣∣v is positive wrt to the weights of TW −
}

posW (Γ) := #
{

v ∈B(Γ)
∣∣v is positive wrt to the weights of TW

}
s+W (Γ) := #

{
v ∈B(Γ)

∣∣v has zero weight wrt toTW and is positive wrt to TW +
}

s−W (Γ) := #
{

v ∈B(Γ)
∣∣v has zero weight wrt to TW and is positive wrt to TW −

}
We also use the same operators to count the corresponding numbers of vectors of any
subset of one of the B(Γ).

Proposition 4.1.7. Let n ∈N and let W be a wall for n. Then for every k ∈N we have

#
{
Γ�n

∣∣posW + (Γ)= k
}= #

{
Γ� n

∣∣posW − (Γ)= k
}

.

In particular we have that the following two polynomials are the same:∑
Γ�n

qpos∞(Γ) = ∑
Γ�n

qpos1+ (Γ) .

Remark 4.1.8. The statement is equivalent to the existence of a bijection of sets

φW : {Γ�n}→ {Γ� n}

such that posW +(Γ)=posW +(φW (Γ)). We do not claim that there is a preferred such bi-
jection, as Example 4.1.23 shows.

As already said we could prove this fact simply by using smoothness of Hilbn(C2).
Smoothness, as we saw, implies that every generic one dimensional torus gives a de-
composition of Hilbn(0) in affine cell whose dimensions are given by the positive parts
of the tangent spaces at the attracting fixed points.

However we need to understand better what is going on in order to prove a sim-
ilar statement for Hilbn,n+1,n+2(0). In particular we will introduce some combinatorial
transformations on the set {Γ� n} so to give a better description of φW and prove that
a similar map, with similar properties exists for the set {Γ� [n,n+1,n+2]}. In 4.1.22 we
will give a more ad hoc proof of Proposition 4.1.7. Before introducing the definition
we present an example.

Example 4.1.9. Consider the case n = 3. There is only one wall W = 2. We depict below
the dimension of the positive parts (for the notation cfr. Definition 4.1.6 ) at the fixed
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points with respect to the two different tori TW + =T∞ and TW − =T1+ .

posW + = 2

posW 1 = 2

posW + = 1

posW − = 0

posW + = 0

posW − = 1

The two polynomials

q2+q+1= ∑
Γ�n

qpos∞(Γ) = ∑
Γ�n

qpos1+ (Γ) = q2+1+q

are clearly the same. We will see that in passing the wall W the last two fixed points
"exchange roles". In more details: observe that there are two tangent vectors of weight
W that are:

fx2,y ∈B

⎛⎝ ⎞⎠ and fy,x2 ∈B

⎛⎝ ⎞⎠ .

These are the two vectors that are, respectively, positive only for TW + and positive
only for TW − . They are also the tangent vectors to the TW fixed P1 that connects the
corresponding two fixed points: see Example 4.1.3. The plan is the following: we
will define combinatorial transformations of Young diagrams associated to these two
vectors that keep track of how the dimensions of the positive parts change in crossing
the wall. For example the transformation associated to the vector fx2,y is Tx2,y :

posW = 0,(s+W , s−W )= (1,0)

Tx2,y

−→
posW = 0,(s+W , s−W )= (0,1)

Definition 4.1.10 (Sliding boxes). Let n ∈N, W be a wall for n and Γ�n. For every fα,β ∈
B(Γ) that has zero weight with respect to TW we want to define a new partition Tα,β(Γ)

of n obtained from Γ by sliding down (or up) some boxes in the opposite direction of
the translation α �→β.

Example 4.1.11 (W = 4
2 ).

β

α

k

Tα,β

−→

Here only one of the boxes of Γ is
involved and the sliding is easily de-
scribed. In other cases we need to
slide in many steps. See Example
4.1.12 below.
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Recall that by definition fα,β ∈HomR (I ,R/I ) with I = IΓ and α is a minimal generator
for I and β ∈ Γ is such that either β ∈ Pα or β ∈ Qα. The Definition is at 2.1.3. We
consider fα,β as a set theoretic map of boxes of Δ.

Call l the horizontal distance in number of boxes between β and α, and m the
vertical distance in number of boxes between α and β, where a negative distance
means that we move either to the left or downwards, so that in Laurent monomials
ym

xl α=β and in terms of boxes β=α+(−l ,m). The choice is such that if β ∈ Pα then l > 0

and m > 0 whereas if β ∈Qα l < 0 and m < 0. Define

B 1 = {γ ∈ Γ ∣∣ ∃ δ ∈Δ\Γ with fα,β(δ)= γ
}

and B 1 =⊔
i

B 1
i

where the B 1
i ’s are the connected components of B 1, and two boxes are connected if

they share a side or a corner. We start numbering from top to bottom if β ∈ Pα and
from bottom to top if β ∈Qα. Call α1 the generators of IΓ such that fα,β(α1) ∈ B 1

1 in the
lowest row of B 1

1 if β ∈ Pα, resp. in the highest row of B 1
1 if β ∈Qα. Call β1 = fα,β(α1).

We define Tα,β(Γ) by performing different steps. Suppose now, for the rest of the
definition that β ∈ Pα. The case β ∈Qα is completely analogous, in fact one can pass to
the transpose Young diagram, perform Tα,β there, and re-transpose everything to get
the result.

At the step 1 we slide all of B 1
1 by (l ,−m). Call what we obtain

T 1
α,β(Γ)= Γ\ B 1

1  
{
γ+ (l ,−m)|γ ∈B 1

1

}
.

If T 1
α,β(Γ) is Young diagram we stop and we define it Tα,β(Γ). Otherwise we look at all

γ ∈ B 1
1 + (l ,−m) that are in a row strictly above β1+ (l ,−m) and such that γ+ (l ,−m) is

not already in B 1
1 + (l ,−m) and slide all of these by adding again (l ,−m). We call what

we obtain T 2
α,β(Γ), if it is a Young diagram we stop, otherwise we continue until all the

elements of B1 have been slid down the maximum, but always staying above α1. Call
this step T s1

α,β(Γ). If T s1

α,β(Γ) is a Young diagram, we stop. Otherwise we restart from the

generator immediately below of α1 call it α2 and call β2 = fα,β(α2). We define:

B 2 =
{
γ ∈ T 1

α,β(Γ)
∣∣∣ degy (γ)< degy (β1) and ∃ δ ∈Δ\ T 1

α,β(Γ) with fα,β(δ)= γ
}

, B 2 =⊔
i

B 2
i

where B 2
i are the connected components. We perform all the previous steps for B 2

1 ,
stopping the first time we get a Young diagram. Again if we do not get a Young diagram
when all the boxes above β2 have been slid down the most possible, we define α3 and
β3 and B 3 as in the step 2 and keep going until you do reach a Young diagram. Lemma
4.1.14 makes sure that this procedure actually creates a Young diagram Tα,β(Γ).

Example 4.1.12 (W = 4
2 ). A more complex example. Here we need to perform few

steps before getting to a Young diagram.
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•
�

•
�

Here (α,β)= (•,•). B 1 is in yellow, B 1
1

is the upper component of it.
(α1,β1)= (�,�).

T 1••
−→

T 1•,•(Γ) is not a Y diagram. To do the
next step we need to slide down the

orange part.

T 2••
−→

β2

α2

This is T 2••(Γ)= T s1•• (Γ). Since it is still
not a Y diagram we need to define

B 2, in light blue, and slide β2 to α2 .

T s1+1
••
−→

β3

α3

This is T 4••(Γ)= T s2•• (Γ). Since it is still
not a Y diagram we need to define

B 3, in violet, and slide β3 to α3 .

. . .

−→

�

�
This is T 6••(Γ)= T s4•• (Γ) the last step. It is a Young diagram. We put in yellow B 1 for (α′,β′)= (�,�).

If we were to perform Tα′,β′ we would get bet to the original Young diagram Γ. See Lemma
4.1.16 below.

One can check the affirmations of Lemmas 4.1.18 and 4.1.19 below in this example and
appreciate their geometrical and free of indexes proof.

Definition 4.1.10 [Sliding boxes continued] Suppose that Γ � n and β ∈ Pα ∪Qα, as
above, are fixed. Define Δn ⊂ Δ the first n ×n boxes in Δ, i.e. where all the Young
diagrams Γ � n live. It is convenient to see Tα,β as a bijection of Δn+2 to itself. To this
end we define Tα,β on Δn+2 \Γ referring to the same steps described in the first part of
the definition: if δ ∈Δn+2 \Γ and at any point t there is γ ∈ T t

α,β(Γ) such that T t+1
α,β (γ)= δ

and t was not the last step in the definition of Tα,β, then we pose T t+1
α,β (δ)= γ, otherwise

we leave δ invariant i.e. T t+1
α,β (δ)= δ.

Notation 4.1.13. Given Γ� n and v ∈ B(Γ) if v = fα,β we will denote, according to con-
venience and context, the transformation defined with any of the following notations
Tα,β = T = T fα,β = Tv , and we will say that it a transformation of weight W . We collect all
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such transformations in a set that we denote ΘW . Then we subdivide {Γ� n} in orbits
for the action of ΘW .

{Γ � n} = ⊔
i=1

Oi . (4.7)

Lemma 4.1.14. With the notations as in Definition 4.1.10, T u
α,β(Γ), the last step of the

procedure, is a Young diagram, so that the definition is well posed.

Proof. The fact that Tα,β is well defined is actually equivalent to the fact that fα,β

is an R = C[x, y] homomorphism fα,β : IΓ → R
/

IΓ , so it is equivalent to the fact that
β ∈ Pα∪Qα.

We can suppose that β ∈ Pα as the other case is completely analogous.

Call T = Tα,β, and let m, l ∈ N be such that α = (−l ,m)+β. At any step k of the
procedure described in Definition 4.1.10 we call a box (s, t ) outside T k (Γ) an exterior
corner if (s, t −1) and (s−1, t ) ∈ T k (Γ). Of course at each step the total number of boxes
is still n, and we have something that is connected. So we only need to prove that
whenever (i , j ) ∈ T u(Γ) then (i−1, j ) and (i , j−1) ∈ T u(Γ). Suppose now by contradiction
that there is (i , j ) ∈ T u(Γ) but, for example (i − 1, j ) ∉ T u(Γ). Observe that this force
(i − l , j +m) ∈ T u−s(Γ) for some s > 1. If (i − l − 1, j +m) ∉ T u−s(Γ) for any s > 0 we find
the contradiction, since then we would have (a multiple of) fα,β((i − 1, j )) = 0 but (a
multiple of) fα,β((i , j )) �= 0 which is absurd since fα,β is an R homomorphism. Then,
indeed, for an s′ > 0, (i − l − 1, j +m) ∈ T u−s′(Γ). Since by contradiction we supposed
(i −1, j ) ∉ T u(Γ) we have that either (i − l −1, j +m) is still there at the last step T u or it
must slide to (i −1, j ) and then to (i − l −1, j +m). But the latter scenario violates the
hypothesis that T u was the last step because it means that there is still an attracting
exterior corner to the right of (i , j ). Thus at the step T u , the box (i − l − 1, j +m) is
still there. Then lets look at (i − 2, j ). It cannot be in T u(Γ) otherwise (i − 1, j ) would
have been an attracting exterior corner. Repeating the above argument we find that
(i−l−1, j+m) ∈ T u(Γ). Then we can keep going, and we find that (i−l−N , j+m) ∈ T u(Γ)

for every N ∈N, that is absurd.

Example 4.1.15.

•
•

Suppose we want to mimic the procedure of Definition 4.1.10 for the couple (•,•) that does
not represent an f•,• ∈B(IΓ). The result is clearly not a Young diagram, as explained in the

proof.

Lemma 4.1.16. Given n ∈N, W a wall for n and Γ�n, every sliding Tα,β with fα,β ∈B(Γ)

of weight W has an inverse of the same form, meaning that there exists fα′,β′ ∈B(Tα,β(Γ))
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such that

Tα′,β′
(
Tα,β (Γ)

)= Γ.

If β ∈ Pα, then β′ ∈Qα′ and vice-versa. The weight of the inverse transformation is still
W .

Proof. The proof is immediate from the construction of Tα,β (Γ): suppose αu is, in Def-
inition 4.1.10, the last step we need to complete to obtain a Young diagram, then it is
sufficient to take α′ =βu = fα,β(αu) and β′ =αu .

Observation 4.1.17. If fα,β ∈ B(Γ) is of weight W , then it contributes to s+W (Γ) (resp. to
s+W (Γ) ) if and only if β ∈ Pα (resp. β ∈Qα).

We are now ready to prove the key properties of the transformations we de-
fined on the set of Young diagrams. These are combinatorial properties related to the
quantities defined in 4.1.6 even though we will give an easy geometric proof for them.

Lemma 4.1.18. Let n ∈N, W be a wall for n and Γ � n. Let T be a transformation of Γ
with weight W . Then the following two facts hold

(1) posW (Γ)=posW (T (Γ)),

(2) s+W (Γ)+ s−W (Γ)= s+W (T (Γ))+ s−W (T (Γ)) .

Lemma 4.1.19. Let n ∈N, W be a wall for n and Γ�n. Consider the division of {Γ� n} in
orbits for transformations of weight W as in (4.7). Then for every i ∈N and every k ∈N

we have

#
{
Γ ∈Oi

∣∣s+W (Γ)= k
}= #

{
Γ ∈Oi

∣∣s−W (Γ)= k
}

.

To prove the previous two lemmas we need the following.

Lemma 4.1.20. Let n ∈N, W be a wall for n and Γ� n. Consider the division of {Γ� n}

in orbits for transformations of weight W as in (4.7). Let(
Hilbn(C2)

)TW = ⊔
i

Fi

be the decomposition in connected components of the fixed points set of Hilbn(C2) for
the TW action. Then there is a bijective correspondence between the components (Fi )i

and the orbits (Oi )i given by:

Fi �→ {fixed points for the T+W action on Fi }.

Proof. Let Γ ∈Oi and Tα,β be a transformation of Γ of weight W . Without loss of gener-
ality we can assume that β ∈ Pα, otherwise we consider the inverse picture. We denote
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Tα,β simply T . Observe that γ ∈Δn then ω1γ+ω2T (γ) with [ω1 : ω2] ∈P1 is TW invariant
by definition of T . Define

ΔΓ,T := {
γ ∈Δn+3

∣∣γ ∉ Γ or γ ∉ T (Γ)
}

.

It is clear that all the generators of IΓ and of IT (Γ) are in ΔΓ,T . Then consider the follow-
ing P1 of ideals embedded in Hilbn(0)(

ω1γ+ω2T (γ)
∣∣γ ∈ΔΓ,T

)
[ω1 : ω2] ∈P1. (4.8)

The fact that it is actually a family of ideals in Hilbn(0) is a consequence of the results
of Iarrobino Theorem 3.2, by exchanging in the proposition the role of x and y and
using the fact that W > 1.

The fact that is a TW invariant family is clear since every generator of the ideal
is.

Finally observe that when [ω1 : ω2]= [0,1] ∈ P1 then we get IΓ and when [ω1 : ω2]

is the point [1,0] ∈P1 we get IT (Γ).
This proves that whenever two points are in the same orbit Γ,Γ′ ∈Oi , then they

are in the same connected component Fi . Observe however that we proved more:
we proved that locally around each fixed point Γ ∈ Oi the dimension of Fi is exactly
s+W (Γ)+ s−W (Γ) since the P1’s described in (4.8) are all different for different T ’s, and the
tangent space of

(
Hilbn(C2)

)TW at Γ has a basis formed by those vectors that contribute
to s+W (Γ)+ s−W (Γ). Then, this concludes the proof, and it is worth a separate statement
for future reference.

Corollary 4.1.21. With the notation of the previous Lemma we have that, locally, around
each point Γ ∈Oi the dimension of

(
Hilbn(C2)

)TW is equal to s+W (Γ)+ s−W (Γ).

Now we are ready to give the proof of two main lemmas.

Proof of Lemma 4.1.18 and 4.1.19. The two fixed points Γ and Tα,β(Γ) are in the same
O orbit, then they are, thanks to Lemma 4.1.20, fixed points in the same compo-
nent F . Since Hilbn(C2) is smooth, its fixed points components are smooth, so F is
smooth. Then the integers posW (Γ) and posW

(
Tα,β(Γ)

)
are the dimension of the pos-

itive normal bundle of F in Hilbn(C2), thus they are the same, and s+W (Γ)+ s−W (Γ) and
s+W (Tα,β(Γ))+ s−W (Tα,β(Γ)) are the dimension of the tangent space at, respectively, Γ and
Tα,β(Γ) in F , and since F is smooth they, also, are the same. This proves Lemma 4.1.18.

Consider F as ambient variety. It is smooth, as said before, and projective, since
contained in Hilbn(0). We have an action of T2 on it, and of all its one dimensional
subtori. Consider then the TW + action on F : it has finitely many fixed points i.e. the
elements of O . Then we can apply Theorem 1.3.4 to obtain an affine cell decompo-
sition, where each cell has dimension equal to the positive part of the tangent space
at Γ ∈ O of F ; this positive part is exactly s+W (Γ). Recall also that s+W (Γ)+ s−W (Γ) is the
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dimension of F . Then we can apply Poincaré duality to have for all k ∈N

#
{
Γ ∈O

∣∣s+W (Γ)= k
}= #

{
Γ ∈Oi

∣∣s+W (Γ)= s+W (Γ)+ s−W (Γ)−k
}

that, rearranging, is what we wanted to prove Lemma 4.1.19.

Proof 4.1.22 ( of Proposition 4.1.7). Now we can give a proof that is more convenient
for us, of the fact that we can compute the positive part of the tangent spaces at the
fixed points with respect to either the torus T∞ or the torus T1+ and obtain the same
total polynomials∑

Γ�n
qpos∞(Γ) = ∑

Γ�n
qpos1+ (Γ).

In fact we consider the polynomial on the left and we start taking smaller W to exam-
ine

∑
Γ�n qposW (Γ): nothing changes until we hit W1 the first wall for n. Then passing

on the other side only the vectors fα,β ∈ B(Γ) of weight W1, for Γ� n, are affected. Pre-
cisely those that contribute to s+W1

(Γ) stop contributing, i.e. they contribute only on
the left of the wall W1 and those that contribute to s−W1

(Γ) start contributing i.e. they
contribute only on the right of the wall. Observe that

posW +(Γ)=posW (Γ)+ s+W (Γ) and

posW −(Γ)=posW (Γ)+ s−W (Γ).

Then since we were able to group the Young diagrams of size n in sets where the
positive part that is not affected by passing the wall is fixed and the part that is ef-
fected by passing the wall is symmetric, we are sure that the results before and after
the wall are the same. We repeat this for all the walls until we reach W = 1+. Ob-
serve that in this way we prove the existence of a map φW on the set {Γ� n} such that
posW +(Γ)=posW −(φW (Γ)) even though we do not suggest that there is a preferred such
map, as Example 4.1.23 below shows.

Example 4.1.23. We look at a specific orbit O for n = 10 and the wall W = 2. We indicate
with a couple •,• (resp. �,� ) a vector fα,β ∈B(Γ) of weight W that contributes to s+W (Γ)

(resp. s−W (Γ)). In this example the same box can be marked with both, or with two
stars, meaning that two vectors are represented by maps that start or end there. We
have the three possibilities (l ,m)= (2,1), (4,2) and (6,3) correponding to W = 2

1 = 4
2 and

6
3 . For all Γ depicted we have posW (Γ)= 3 and s+W (Γ)+s−W (Γ)= 3. In every line the vector(
s+W (Γ), s−W (Γ)

)
is constant and its value is indicated under the corresponding line. On

the right we put the graph that represents the T•,• ’s, between the Γ’s, the T�,�, not
depicted, are the inverse arrows.
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•
• •
• •

•(
s+W (Γ), s−W (Γ)

)= (3,0)

• •
•,�

� •

• �
• �

•

�
• • �

•
•(

s+W (Γ), s−W (Γ)
)= (2,1)

•
�

�
� � •

�
•

•,�
� �

�
� •

� •(
s+W (Γ), s−W (Γ)

)= (1,2)

�,�
� �

� �(
s+W (Γ), s−W (Γ)

)= (0,3)

•

• • •

• • •

•

Observation 4.1.24. Observe that, through this wall crossing procedure, we just re-
proved the statements that says that the attracting sets of Hilbn(0) for the torus T∞ are
affine, by supposing that those for the torus T1+ are. In fact an attracting set is isomor-
phic to an affine space if and only if it is smooth, thanks to Bialynicki-Birula. Then our
wall crossing procedure tells us that locally around each fixed point the dimension of
the attracting set is always at least as big as the tangent space to the attracting set. In
fact to each linearly independent vector v ∈ B(Γ) of weight W we associated another
fixed point given by Tv (Γ) and an invariant P1 that connects the two fixed points and
this proves the claim on the local dimension. See also 4.1.21.

Remark 4.1.25. We divided the content of Lemma 4.1.18 and 4.1.19 in two different
statements to underline this fact: while the first Lemma has a combinatorial proof,
however less nice because full of indexes, we were not able to prove the second state-
ment only combinatorially.

Moreover observe that the fact that s+W (Γ)+ s−W (Γ) is constant along Γ ∈ Oi is
equivalent to the fact that Fi is smooth, so that Lemma 4.1.19 can be seen as a geo-
metric consequence of the results of Lemma 4.1.18 if this is proved combinatorially.
This is what we will do for the case [n,n+1,n+2].

Now we describe the little changes we need to implement to pass to the case
[n,n+1]. They are mostly about the definition of the sliding transformation associated
to elements of the basis of a tangent space: in fact we need to specified how we slide
the marked box 1 .
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Definition 4.1.26. [Sliding for [n,n + 1]] Let n ∈ N, W be a wall for [n,n + 1], and Γ =
(Γ1,Γ2)� [n,n+1] a fixed point for the TW + action on Hilbn,n+1(C2). As usual call α j the
box in Γ2 \Γ1 marked with a 1 .

We will either define T (Γ) by performing T (Γ1) and moving α j as an any other
element of Δn+1 \Γ1, or we will perform T (Γ2) and move α j as any other element of Γ2.
Let us see the details.

Suppose v ∈ B(Γ1,Γ2) is of weight W . Then either v is of type ( fα,β,Suiv( fα,β))

with fα,β ∈B(Γ1) or v is of type (0,hα′i ,α j
). In the latter case we define Tα′i ,α j

(Γ) simply by
sliding α j �→α′i , which is always possible since W > 1.

α′2

1

Tα′2,α j

−→

1 W = 3
2 , v ∈B(Γ1,Γ2) is of the form (0,h),

so it involves only two boxes: the slid-
ing and all its properties are immedi-
ate.

If v = ( fα,β,Suiv( fα,β)) we need to distinguish two cases: either α j is not involved in the
sliding, meaning that seen as generator of Γ1 it does not attract any box of Γ1 at any
step of the procedure that defines Tα,β(Γ1), or it does. In the first case we follow the
rules of Tα,β(Γ2): it must be α j �= α and α is still a minimal generator of Γ2 so we can
consider α j as any other box of Γ2 and we perform the sliding Tα,β on Γ2 and define

Tα,β(Γ1,Γ2)= Tα,β(Γ2)

with the marked box 1 in Tα,β(α j ) seen as any other element of Γ2.

1

•
•

T•,•
−→

1

W = 2
1 , v ∈B(Γ1,Γ2) is of the form ( f•,•,Suiv( f•,•)), and α j is not attracting any box in the sliding:

we simply treat it as another box of Γ2 and slide everything with the rule T•,•(Γ2).

In the second case, i.e. if Tα,β(Γ1) involves sliding a box β j onto α j , we preform
Tα,β(Γ1) as if α j was not there and then we put α j where β j was, i.e. we look at α j as
any other element of Δn+1.

•
� •

1

T•,•
−→ 1

As before Γ1 and f•,• are the same. However, here α j is attracting the box marked with a star,
so first we do the sliding T•,•(Γ1) then we put α j where there was the star.
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For Γ = (Γ1,Γ2) � [n,n + 1] and v ∈ B(Γ), we will denote the result of one of the
transformations defined with any of the following notations:

Tv (Γ)= T (Γ)= T (Γ1,Γ2)= (T (Γ1),T (Γ2))

depending on the aspect of the sliding we want to underline, and we see T as a bijec-
tion on Δn+1 to itself as in Definition 4.1.10.

Having clarified the transformations we perform in this case, all the remaining steps
are as before. The interpretation of the following Lemma 4.1.28 in equations (4.10)
and (4.11) is what we need to deal with the case [n,n+1,n+2].

Observation 4.1.27. Let n ∈ N and W be a wall for [n,n+1]. The transformations of
4.1.26 are well defined and every transformation is invertible. They partition the set
of (Γ1,Γ2)� [n,n+1] in orbits

{ (Γ1,Γ2) � [n,n+1] } = ⊔
i=1

Oi ; (4.9)

where an orbit Oi is closed under the action of transformations T of weight W .

Lemma 4.1.28. Let n ∈N, W be a wall for [n,n+1] and Γ� [n,n+1]. Let T be a transfor-
mation of Γ with weight W . Then the following two facts hold

(1) posW (Γ)=posW (T (Γ)),

(2) s+W (Γ)+ s−W (Γ)= s+W (T (Γ))+ s−W (T (Γ)) .

Lemma 4.1.29. Let n ∈ N, W be a wall for [n,n + 1] and Γ � [n,n + 1]. Consider the
division of {Γ� [n,n+1]} in orbits for transformations of weight W as in (4.9). Then for
every i ≥ 1 and every k ∈N we have

#
{
Γ ∈Oi

∣∣s+W (Γ)= k
}= #

{
Γ ∈Oi

∣∣s−W (Γ)= k
}

.

To prove the previous two lemmas we need the following.

Lemma 4.1.30. Let n ∈ N, W be a wall for [n,n + 1] and Γ � [n,n + 1]. Consider the
division of {Γ� [n,n+1]} in orbits for transformations of weight W as in (4.9). Let(

Hilbn,n+1(C2)
)TW = ⊔

i
Fi

be the decomposition in connected components of the fixed points set of Hilbn,n+1(C2)

for the TW action. Then there is a bijective correspondence between the components
(Fi )i and the orbits (Oi )i given by:

Fi �→ {fixed points for the T+W action on Fi }.
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Proof. The proof of the complete bundle of results is completely analogous to that for
Hilbn(C2).

In the proof of Lemma 4.1.30 for each v ∈B(Γ1,Γ2) with weight W we can, again,
easily write down a TW invariant P1 connecting (Γ1,Γ2) and Tv (Γ1,Γ2) with the same
exact recipe.

We can still use that the Fi are smooth, since the ambient space Hilbn,n+1(C2)

is. Then the quantity posW (Γ) is the dimension of the positive normal bundle, and
thus the same for each Γ ∈ Fi fixed point. The quantity s+W (Γ)+ s−W (Γ) is also the same
for every Γ since it is the dimension of the tangent space of Fi at Γ ∈ Fi . Moreover the
number of such Γ with given s+W (Γ) is equal to the number of such Γ with given s−W (Γ)

again thanks to Poincaré duality for the Fi ’s.

We want to spell out what points (1) and (2) of Lemma 4.1.28 mean in terms of
Definition 2.2.10 of B(Γ1,Γ2) .

Remark 4.1.31. Use the notation of Definition 4.1.26. Call αi , i = 0, . . . , s the generators
of Γ1, α j the box in Γ2 \Γ1 and βi , i = 0, . . . , t the generators of T (Γ1) and βh the box
in T (Γ2) \ T (Γ1). Since B(Γ1,Γ2) is constructed by elements of the form (0,hαi ,α j ) and
( fα,β,Suiv( fα,β)) for those α,β that are not in Obs(Γ1,Γ2) and analogously for T (Γ1,Γ2)

we have by Lemma 4.1.28

posW (Γ1)−posW (Obs(Γ1,Γ2))+posW ({hαi ,α j |i = 0, . . . , s})=
=posW (Γ1,Γ2)=posW (T (Γ1,Γ2))=

=posW (T (Γ1))−posW (Obs(T (Γ1,Γ2)))+posW ({hβi ,βh |i = 0, . . . , t }).

Since we know from Lemma 4.1.18 that posW (Γ1)=posW (T (Γ1)) we obtain that

posW (Obs(Γ1,Γ2))−posW ({hαi ,α j |i = 0, . . . , s})

=posW (Obs(T (Γ1,Γ2)))−posW ({hβi ,β j |i = 0, . . . , t }). (4.10)

Analogously, for s+W and s−W we obtain that

(s+W + s−W )
(
Obs(Γ1,Γ2)

)− (s+W + s−W )
(
{hαi ,α j |i = 0, . . . , s}

)
= (s+W + s−W )

(
Obs(T (Γ1,Γ2))

)− (s+W + s−W )
(
{hβi ,β j |i = 0, . . . , t }

)
. (4.11)

Observation 4.1.32. Notice this important fact: we can write (4.10) and (4.11) in terms
of the generators of Γ1 and T (Γ1) and not in term of the generators of Γ2 and T (Γ2)

because we are only interested in the positive part, and since W > 1 there is not differ-
ence in the two: for example if α j is of case 3), according to cases 2.2.2, then the list of
αi and that of α′i differ only around α j and in particular we have two new generators
xα j and yα j , but we have that

(
0,hxα j ,α j

)
and

(
0,hyα j ,α j

)
cannot be possibly positive
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for any W . Similarly for the other cases. This observation saves us a lot of work in
distinguishing cases later.

Now we are well placed to use equation (4.10) and (4.11) for the next step i.e.
[n,n + 1,n + 2]. We start by spelling out the definitions of the transformation associ-
ated to a vector of weight W in the tangent spaces of fixed points, even though the
definitions are, in this case, exactly as in the previous case.

Definition 4.1.33. Sliding for [n,n+1,n+2]

Let n ∈ N, W be a wall for [n,n+1,n+2], and Γ = (Γ1,Γ2,Γ3) � [n,n+1,n+2] be a fixed
point for the TW + action on Hilbn,n+1,n+2(C2). As usual call α j the box in Γ2 \Γ1 marked
with a 1 and α′l the box in Γ3 \Γ2 marked with 2 .

Suppose v ∈B(Γ1,Γ2,Γ3) is of weight W . We either have v of type (0,0,hα′′i ,α′l
) or v

of type
(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)

or, finally, v of type
(

fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
)

with
fα,β ∈B(Γ1).

In the first case we define Tα′′i ,αl
(Γ) simply by sliding αl �→ α′′i , which is always

possible since W > 1. This is exactly as if we were looking at the transformation of Γ3

without caring for the marked boxes.

α′′2
2

1

Tα′′2 ,α′l
−→

2

1

W = 3
1 , v ∈ B(Γ1,Γ2,Γ3) is of the form

(0,0,h), so it involves only two boxes:
the sliding and all its properties are
immediate.

If v =
(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)

we need to distinguish two cases: If α′i =α′l we sim-
ply switch α j and α′l as it would have happen following the rule described in 4.1.26:
we are performing the transformation for Γ2 and looking at α′l as any other element of
Δn+2 \Γ2. If α′i �=αl again we slide according to the transformation Tα′i ,α j

of Γ3 without
caring for the marked boxes. Observe that we move more than one box only if it it
happens that α′l is on the same row or column of α j . In this case we might need to
slide more than two boxes.

1 2

α′1

Tα′1,α j

−→
1 2

W = 2
1 , v ∈B(Γ1,Γ2,Γ3) is of the form

(
0,hα′i ,α j

,Suiv(hα′i ,α j
)
)
, we think of everything happening

for Γ3 without special meanings for 1 and 2 .

Finally v = ( fα,β,Suiv( fα,β),Suiv(Suiv( fα,β))
)
. Again the definition goes as for the

case [n,n+1]: we either perform T (Γ1) or T (Γ2) or T (Γ3) and look at α j as in Δn+2 \Γ1 or
in Γ2 and at α′l as in Δn+2 \Γ2 or in Γ3 depending on whether some box slide onto them
or not.
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1 2

•
•

T•,•
−→

1 2

W = 2
1 , v ∈B(Γ1,Γ2,Γ3) is of the form

(
f•,•,Suiv( f•,•),Suiv(Suiv( f•,•))

)
, and nor α j nor α′j are

attracting any box in the sliding: we simply treat them as any another boxes and slide
everything with the rule T•,•(Γ3).

•
•2

1

T•,•
−→

2

1

Same situation as before meaning that Γ1 and f•,• are the same. Here α j and α′l are each
attracting a respective box: first we do the sliding T•,•(Γ1) and then we put α j and α′l in the

boxes that occupied their respective old positions.

For Γ= (Γ1,Γ2,Γ3)� [n,n+1,n+2], and v ∈ B(Γ), we will denote the result of one
of the transformations defined with any of the following notation:

T (Γ)= Tv (Γ)= T (Γ1,Γ2,Γ3)= (T (Γ1),T (Γ2),T (Γ3))= . . .

depending on the aspect of the sliding we want to underline. Again we see Tv as a
transformation of Δn+2 as in definitions 4.1.10 and 4.1.26.

Now we are well placed to prove all the analogous results we proved in the pre-
vious cases.

Observation 4.1.34. Let n ∈N and W be a wall for [n,n+1,n+2]. The transformations
of 4.1.33 are well defined and every transformation is invertible. They partition the
set of (Γ1,Γ2,Γ3)� [n,n+1,n+2] in orbits

{ (Γ1,Γ2,Γ3) � [n,n+1,n+2] } = ⊔
i=1

Oi ; (4.12)

where Oi is closed under the action of transformations T of weight W .

Lemma 4.1.35. Let n ∈N, W be a wall for [n,n+1,n+2] and Γ� [n,n+1,n+2]. Let T be
a transformation of Γ with weight W . Then the following two facts hold

(1) posW (Γ)=posW (T (Γ)),

(2) s+W (Γ)+ s−W (Γ)= s+W (T (Γ))+ s−W (T (Γ)) .

Proof. We use Observation 4.1.32 to cut the number of possible cases we need to dis-
tinguish between: in fact we want to use equations (4.10) and (4.11) separately on α j

and α′l .
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Call αi , i = 0, . . . , s the generators of Γ1, α j the box in Γ2 \Γ1 and α′l the box in
Γ3 \Γ2. Call as well βi , i = 0, . . . , t the generators of T (Γ1), βh the box in T (Γ2) \ T (Γ1) and
β′k the box in T (Γ3) \ T (Γ3).

Suppose now that α′l is not on the same row or column as α j .

Suppose also j < l , the other cases is treated in a completely similar way (in fact
one can pass to the transpose to treat it.). Given the definition of B(Γ1,Γ2,Γ3) we can
write that

posW (Γ1,Γ2,Γ3)=
posW (Γ1)−posW

(
Obs(Γ1,Γ2)

)−posW

(
Obs(Γ1,Γ3)

) +
+ posW

(
{hαi ,α j |i = 0, . . . , s}

)+posW

(
{hαi ,α′l

|i = 0, . . . , s}
)

+

+
⎧⎨⎩posW

(
α j−1 �→ αl

y p j−1

)
if we are in case j 1a) or j3),

0 if if we are in case j 1b) or j2)
+

− posW {
(
α j �→αl

)
} +

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

posW

(
yα j �→αl

)
if we are in case j 1 a),

posW

(
xα j �→αl

)
if we are in case j 1 b),

posW

(
xα j �→αl

)+posW

(
yα j �→αl

)
if we are in case j 2),

0 if we are in case j 3).

The cases we refer to are from Definition 2.2.2.

The last three terms are there to compensate the choice of writing the other
terms only with respect to the generators of Γ1. Applying now Equation (4.10) twice to
α j and to αl and the fact that posW (Γ1)= pos(T (Γ1)), we see that we only need to deal
with the last 3 terms, and prove that they contribute the same amount before and
after the sliding T . Call this contribution A( j , l ). Since positiveness of A( j , l ) depends
only on the relative positions of α j and αl we can suppose that αl is fixed by T and
that only α j is affected by T . Then there are three cases: α′l is higher than α j and T (α′l )

is higher than T (α j ), or α′l is higher than α j but T (α j ) is higher than T (α′l ) and α j is
higher than αl and T (α j ) is higher than T (α′l ). We deal with the first case the others
are extremely similar.

There are three possibilities: if α j also is fixed by T but its case is different after
T ; if α j is slid by T as an element of Γ2; and finally if there is a β j ∈ Γ1 that slid to α j

with T . Since A( j , l ) now depends only on the case of α j we can reduce the cases we
need to analyze to 16: the cases of α j times the cases T (α j ). However, every single
case is immediate and ultimately they are all similar to one another.

We do for example the case j 2) and T ( j )1a). Here we have that the following
vectors have weights that coincide: (in the first column we look at Δn+2 before T , on
the second column we look at Δn+2 after T . We use the notation α− 1 to mean the
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generator immediately below α.)(
yα j �→αl

)←→ (yT (α j ) �→αl
)

;(
T (α j ) �→αl

)←→ (α j �→αl
)

; (4.13)(
xα j �→αl

)←→ (T (α j )−1 �→ αl

y pT (α j )−1

)
.

All other vectors remain the same before and after T . That proves that the weight of
A( j , l ) remains the same after the transformation T . All other cases are completely
similar.

αl

...

•
α j �

�

. . .

αl

...

�

•
α j

�

. . .

An example of the case j 2) T(j) 1a). The symbols are the generators that correspond to one
another in 4.13.

The proof for s+W and s−W is completely analogous. In fact if one applies equa-
tion (4.11) everything one needs to analyze is the the weight of the same term A( j , l )

as above. But then for every cases, there is a conservation of the total quantities of
weights of the vectors that change before and after T .

Lemma 4.1.36. Let n ∈N, W be a wall for [n,n+1,n+2] and Γ� [n,n+1,n+2]. Consider
the division of {Γ� [n,n+1,n+2]} in orbits for transformations T of weight W as in (4.7).
Let (

Hilbn,n+1,n+2(C2)
)TW = ⊔

i
Fi

be the decomposition in connected components of the fixed points set of Hilbn,n+1,n+2(C2)

for the TW action. Then there is a bijective correspondence between the components
(Fi )i and the orbits (Oi )i and it is given by:

Fi �→ {fixed points for the T+W action on Fi }.
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Moreover the Fi are smooth.

Proof. The proof that there is a bijection between orbits of transformations T of weight
W and fixed points components for TW goes exactly as before, since, as before, we can
construct for each such T a TW invariant P1 connecting Γ and T (Γ).

This time however, we already know that s+W (Γ)+ s−W (Γ) is constant for all Γ ∈Oi

thanks to the combinatorial proof of Lemma 4.1.35. Then we have smoothness of Fi ,
even though the ambient space is not smooth.

Lemma 4.1.37. Let n ∈N, W be a wall for [n,n+1,n+2] and Γ� [n,n+1,n+2]. Consider
the division of {Γ� [n,n+1,n+2]} in orbits for transformations of weight W as in (4.9).
Then for every i ≥ 1 and every k ∈N we have

#
{
Γ ∈Oi

∣∣s+W (Γ)= k
}= #

{
Γ ∈Oi

∣∣s−W (Γ)= k
}

.

Proof. Thanks to Lemma 4.1.36 we know that the Fi ’s are smooth. Then we can apply
Poincaré duality as in the proof of Lemma 4.1.19 to conclude.

Proposition 4.1.38. Let n ∈N and let W be a wall for [n,n+1,n+2]. Then for every k ∈N
we have

#
{
Γ � [n,n+1,n+2]

∣∣posW + (Γ)= k
}= #

{
Γ � [n,n+1,n+2]

∣∣posW − (Γ)= k
}

.

In particular we have that the following two polynomials are the same:∑
Γ� [n,n+1,n+2]

qpos∞(Γ) = ∑
Γ� [n,n+1,n+2]

qpos1+ (Γ) . (4.14)

Proof. The proof is exactly the same as the proof of 4.1.22, using Lemmas 4.1.35 and
4.1.37.

Observation 4.1.39. Observe that we just proved that the attracting sets for the torus
action T∞ are affine cells as well. This follows thanks to a reasoning completely similar
to the one presented in Observation 4.1.24.

Now we need to find a generating function for the polynomials on the left hand side
of (4.14) when we consider all n ∈N. This is the goal of the next section.

4.2 Hilbn,n+2(C2)

We turn now our attention to Hilbn,n+2(C2). By imposing a specific condition on the
two ideals of length n and n+2 of the flag, we define a smooth subspace Hilbn,n+2(C2)tr

of Hilbn,n+2(C2) whose cell decomposition is studied by Nakajima and Yoshioka [NY08,
Chapter 5]. It turns out that the generating function for the Poincaré polynomials
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of this smooth space resemble closely to the formula (4.1). The similarity was no-
ticed almost accidentally: the construction of the analogue subspace in the case of
Hilbn,n+1(C2) gives back the full Hilbn,n+1(C2) and reproduces the results originally of
Cheah.

To prove our formula (4.1) we thus simply need to match the combinatorics of
the formula proved by Nakajima and Yoshioka. The question about some geometrical
connections between the two families of spaces, however, remains mysterious .

From the affine cell decomposition we found for Hilbn,n+1,n+2(0), we are then
able to find an affine cell decomposition of Hilbn,n+2(0) and a generating function for
its Poincaré polynomials (4.21).

Definition 4.2.1. Let (J , I ) be a point of Hilbn,n+2(C2). We say that J , I are trivially re-
lated if J/I ∼=C2 as trivial C[x, y] modules. Said it otherwise

J/I ⊆ Ker

[
x

y

]
: C[x, y]/I →C2⊗C[x, y]/I ,

i.e. x f ∈ I and y f ∈ I for all f ∈ J . We then divide Hilbn,n+2(C2) into two parts, those
couples that are trivially related and those that are not

Hilbn,n+2(C2)=Hilbn,n+2(C2)tr
⊔

Hilbn,n+2(C2)N tr .

We will see below more details of the following proposition, but we state it here to
motivate the definition of this space.

Proposition 4.2.2. [NY08, Proposition 5.2, Corollary 5.4] The space Hilbn,n+2(C2)tr is
smooth for every n in N. Moreover it has a cellular decomposition given by the torus
action and the Poincaré polynomials have generating function:

∑
n≥0

Pq

(
Hilbn,n+2(0)tr

)
t n = 1

(1− t q)(1− t 2q2)

∞∏
d=1

1

1−qd−1t d
. (4.15)

We observe the following connection between Hilbn,n+1,n+2(0) and Hilbn,n+2(0). Note
however that this is not the connection that explains the similarities between the gen-
erating function: for that we would need to relate Hilbn,n+1,n+2(0) and Hilbn+1,n+3

tr (0)

Lemma 4.2.3. Consider the projection on first and third factor, i.e. the map that forgets
the middle element of a three steps flag

p1,3 : Hilbn,n+1,n+2(0)→Hilbn,n+2(0).

Then

p−1
1,3 ((J , I )) ∼=

⎧⎨⎩P1 if (J , I ) ∈Hilbn,n+2(0)tr

{pt} if (J , I ) ∈Hilbn,n+2(0)N tr .



108 CHAPTER 4. GENERATING FUNCTION AND HILBN ,N+2(C2).

We call Hilbn,n+1,n+2(0)tr those triples projecting to Hilbn,n+2(0)tr , and Hilbn,n+1,n+2(0)N tr

those triples projecting to Hilbn,n+2(0)N tr . The projection restricted to Hilbn,n+2(0)tr

p1,3 : Hilbn,n+1,n+2(0)tr →Hilbn,n+2(0)tr

is a Zariski locally trivial bundle.

Proof. Let (J , I ) ∈ Hilbn,n+2(0). Write I = 〈 f1, f2, . . . , fN 〉 for a linear basis of I seen as a
vector space, i.e. I ∈ Gras(N , R̂

/
mn+2 ), where R̂ = C[[x, y]], m is the maximal ideal of R̂

and N +n+2 = (n+2)(n+3)
2 . Extend the basis of I to one of J as J = 〈g1, g2, f1, . . . , fN 〉. We

look at the Grassmannian of possible vector spaces V of dimension N +1 such that

J ⊃V ⊃ I .

It is clear that this is isomorphic to a P1. We need to prove that if (J , I ) ∈Hilbn,n+2(0)tr

then all such vector spaces are actually ideals, and if (J , I ) ∈ Hilbn,n+2(0)N tr only one
such vector space is an ideal. Remember that an ideal is a subvector space of R̂ closed
by multiplication for x and y .

Suppose first (J , I ) ∈Hilbn,n+2(0)tr . Then by definition we have xgi ∈ I and y gi ∈ I

for i = 1,2. Then if V = 〈ω1g1+ω2g2, f1, . . . , fN 〉 we have that x(ω1g1+ω2g2) ∈ I ⊂ V and
y(ω1g1+ω2g2) ∈ I ⊂V , proving that all possible choices of V give an ideal.

Suppose now that (J , I ) ∈ Hilbn,n+2(0)N tr .Then by definition there must be a
choice of [ω1 : ω2] ∈ P1 such that x(ω1g1+ω2g2) ∉ I or y(ω1g1+ω2g2) ∉ I . Up to a linear
chang of coordinates on g1 and g2 we can then suppose that xg1 ∉ I while y g1, xg2, y g2 ∈
I . Then we see that the only choice of V that is an ideal is V = 〈g2, f1, . . . , fN 〉, as for all
ω2 ∈ C we have that 〈g1+ω2g2, f1, . . . , fN 〉 is not closed by multiplication or it would be
N +2 dimensional.

To prove the last claim observe that the map p1,3 is simply the restriction to
the space of ideals of the standard projection map defined at the level of flag varieties.
Then it is a Zariski fibration since the map between flag varieties is.

Remark 4.2.4. We now want to prove that the Betti numbers of Hilbn,n+1,n+2(0)tr co-
incide with those of Hilbn−1,n,n+1(0). Note the shift in the length of the ideals involved.
The geometric relationship between the two spaces remains unclear.

Observation 4.2.5 (Fixed points Hilbn,n+2(C2)tr ). The fixed points of Hilbn,n+2(C2)tr

are in bijection with Young diagrams Y of n + 2 with 2 removable boxes marked. A
removable box is a corner, i.e. a box (i , j ) ∈ Y such that (i + 1, j ) ∉ Y and (i , j + 1) ∉ Y .
We call such an object (Y ,S) where Y is the Young diagram and S is the set of marked
boxes of cardinality 2.
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C

A Young diagram of size n+2 with two
removable boxes marked in black. The
box with the C is the only box on the
same column and on the same row of
a marked box.

The fact that the two marked boxes cannot be in the same row or column is a conse-
quence of the fact that we ask the monomial ideals J , I to be trivially related.

We call relevant all the boxes of Y that are not marked and are not on the same row
and the same column of a marked box. In the picture above the relevant boxes are the
white, empty ones.

Proposition 4.2.6. [NY08, Corollary 5.3] Let T∞ acts on Hilbn,n+2(C2)tr . Then the pos-
itive part of the tangent space of Hilbn,n+2(C2)tr at a fixed point (Y ,S) has dimension
given by

pos∞ ((Y ,S)) = n+1−�(Y ). (4.16)

The Poincaré polynomial of Hilbn,n+2(C2)tr is

Pq

(
Hilbn,n+2(C2)tr

)
= ∑

(Y ,S)
qpos∞((Y ,S)),

where the sum is on all torus fixed points.

Observe that, even though Y is a partition of n+2, the formula compares the number
of its columns with n+1 and not n+2.

A combinatorial correspondence

We want to relate the parametrization of the fixed points of Hilbn−1,n,n+1(C2) with that
of Hilbn,n+2(C2)tr . More precisely consider the two sets An and Bn consisting of

An : Fixed points of Hilbn−1,n,n+1(C2), Γ = (Γ1,Γ2,Γ3). We keep the notations of the
previous chapters and we call the box Γ3 \Γ2 marked with 2 as α′l and the box
Γ2 \Γ1 marked with 1 as α j .

Bn : A couple (Y ,S) of a Young diagram Y of size n+2 and S a subset of marked re-
movable boxes of Y of size 2.

The goal is to construct a 2 to 1 map bn : An →Bn such that

if b−1
n ((Y ,S))= {Γ, H } and pos∞ ((Y ,S))= r then (4.17)

pos∞ (Γ)= r and pos∞ (H)= r +1
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where the integers pos∞ ((Y ,S)) and pos∞ (Γ) are calculated combinatorially as in for-
mulae (4.16) and (4.3) respectively.

To construct the map bn : An
2:1−−→Bn we actually start from an element of Bn and

create two elements of An with a procedure that we show is both injective and surjec-
tive.

Let λ�n be a Young diagram of size n. We consider all possible (Y ,S) ∈Bn with Y \S =λ.
We say that all such elements of Bn are at level λ. Call, as usual, α0, . . . ,αs the standard
monomial generators of Iλ. Then we denote with (αi ,αk ), with i > k, the element (Y ,S)

of Bn given by Y = λ∪ {αi }∪ {αk } and S = {αi }∪ {αk } i.e. with αi ,αk marked in black.
Observe that we have s(s+1)

2 such choices. We order the elements of Bn at level λ in this
way

(αi ,αk )> (αr ,αt ) with i > k,r > t if and only if

⎧⎨⎩i > r or,

i = r, k > t .

It is clear that varying λ� n we obtain all of the elements of Bn .

α3

α2

α1

α0

The Young diagram λ is in white and in
gray there are the αi s between which we

need to chose two boxes to create an
element of Bn of level λ.

>

The element of Bn represented as (α3,α0)

is bigger then the one represented as
(α2,α1)

Given λ�n we denote β0, . . . ,βs−1 the corners of λ. We start numbering from the right.

β2

β1

β0

The corners of λ � n. Recall that a corner is
box in a Young diagram λ such that there are
no other boxes of λ on its row to the right nor
on its column above.

We will denote (αi ,βr ) the element Γ= (Γ1,Γ2,Γ3) of An given by Γ1 =λ, Γ2 =λ∪{βr } and
Γ3 =λ∪ {βr }∪ {αi }. This is the same as marking with 1 the box βr and with 2 the box
αr . We say that all elements in An that arise in this way are at level λ. It is clear that
varying λ� n we obtain all of the elements of An .

Definition 4.2.7. Let λ � n. We utilize all the notations as specified above. Given a
couple of generators of Iλ , (αs−i ,αs−k ), with 0≤ i < k ≤ s, we associate to it a couple of
corners of λ, precisely (βk−i−1,βs−i−1) . Then to the element (αi ,αk ) ∈ Bn at level λ we



4.2. HILBN ,N+2(C2) 111

associate the two elements of An at level λ given by:

(αi ,αk ) ∈Bn
b−1

n−−→ {(αs−i ,βk−i−1), (αs−k ,βs−i−1)
}⊂ An . (4.18)

Observation 4.2.8. Maybe the above map is more clear if we interpret it in terms of
the order we have introduced on Bn . More precisely, if

(αs ,αs−1)> (αs ,αs−2)> (αs ,αs−3)> . . .> (αs ,α0)>
> (αs−1,αs−2)> (αs−1,αs−3)> . . .> (αs−1,α0)>

. . .

> (α2,α1)> (α2,α0)>
> (α1,α0)

is the ordered list of all elements of Bn of level λ, then we associate to them, respec-
tively,{

(αs ,β0), (αs−1,βs−1)
}

,
{
(αs ,β1), (αs−2,βs−1)

}
, . . . ,

{
(αs ,βs−1), (α0,βs−1)

}
,{

(αs−1,β0), (αs−2,βs−2)
}

, . . . ,
{
(αs−1,βs−2), (α0,βs−2)

}
,

. . .{
(α2,β0), (α1,β1)

}
,
{
(α2,β1)(α0,β1)

}
,{

(α1,β0)(α0,β0)
}

.

Example 4.2.9. Below we depict an example. On the left we have the first element of
Bn at level λ and on the right the two elements of An of level λ in its preimage along
bn . Observe that pos∞ ((α3,α2))=pos∞

(
(α3,β0)

)−1=pos∞
(
(α2,β2)

)
.

�→
2

1 ,

1 2

The example below, instead, shows b−1
n ((α2,α0))= {(α2,β1), (α0,β1)

}
. Observe that pos∞ ((α2,α0))

=pos∞
(
(α0,β1)

)=pos∞
(
(α2,β1)

)−1.

�→ 2
1

,

1

2

Lemma 4.2.10. The map bn : An → Bn of Definition 4.18 is two to one and satisfies the
condition (4.17).

Proof. It is clear that bn is well defined and two to one at level λ for each λ � n. It
is also clear that it is defined on all of An and surjective. In fact all elements of Bn
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and An arise in the way we described and are involved in the construction. To prove
that is well defined at different levels λ and μ it is sufficient to observe that if there
exist β1 corner of λ, β2 corner of μ, α1 generator of Iλ and α2 generator of Iμ such that
(α1,β1)= (α2,β2), then necessarily α1 =α2 and so λ=μ implying that we are actually at
the same λ level.

Then we only need to prove that condition (4.17) is satisfied. To do so observe that:

pos∞ ((αi ,αk ))=
⎧⎨⎩n+1−�(λ) for all i > k > 0,

n−�(λ) for all i > k = 0

whereas

pos∞
(
(αi ,βr )

)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n+1−�(λ) for all r ≥ i −1>−1,

n+1−�(λ)+1 for all i > 0, i −1> r,

n−�(λ) for all i = 0.

Then looking at the definition of b−1
n (αs−i ,αs−k ) in (4.18) it is clear that : either s−k = 0

so that k− i −1≥ s− i −1 and then

pos∞
(
(αs−i ,βk−i−1)

)=pos∞ ((αs−i ,α0))+1=pos∞
(
(αs−k ,βs−i−1)

)+1;

or s−k > 0 and then s− i > k− i −1 so that, again,

pos∞
(
(αs−i ,βk−i−1)

)=pos∞ ((αs−i ,α0))+1=pos∞
(
(αs−k ,βs−i−1)

)+1.

This completes the proof.

Proposition 4.2.11. The Poincaré polynomials of Hilbn,n+1,n+2(0) satisfy

∑
n≥0

Pq

(
Hilbn,n+1,n+2(0)

)
zn = q+1

(1− zq)(1− z2q2)

∏
m≥1

1

1− zm qm−1 . (4.19)

Proof. We proved in Proposition 3.2.14 that Hilbn,n+1,n+2(0) has an affine paving, given
by the attracting sets for the torus T1+ , and that the dimensions of these affine cells are
given by the positive parts of the tangent spaces. In the previous section, Proposition
4.1.38, we proved that the Poincaré polynomial for every Hilbn,n+1,n+2(0) can be com-
puted by using the positive parts of the tangent spaces at fixed points with respect to
the torus T∞ and given by formula (4.3). Then, the existence of map bn with property
(4.17), as proved in Lemma 4.2.10, shows that

Pq (Hilbn,n+1,n+2(0))= (q+1)Pq (Hilbn+1,n+3(0)tr )

thanks to Proposition 4.2.6. Finally we use equation (4.15) to conclude.
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Now we see how we get for free a cell decomposition of Hilbn,n+2(0), a combinatorial
formula for its Poincaré polynomial and a generating function for all the Poincaré
polynomials of Hilbn,n+2(0) for different n ∈N.

Lemma 4.2.12. Let Γ= (Γ1,Γ2,Γ3)� [n,n+1,n+2] be a fixed point of Hilbn,n+1,n+2(0)N tr .
Call AΓ ⊂Hilbn,n+1,n+2(0) the attracting affine cell with respect to the torus action T1+ . If
I = (I1, I2, I3) ∈AΓ, then I ∈Hilbn,n+1,n+2(0)N tr .

Proof. By hypothesis Γ = (Γ1,Γ2,Γ3) ∈ Hilbn,n+1,n+2(0)N tr . This means that either xα′l
or yα′l are not in IΓ3 , suppose xα′l ∉ IΓ3 . Since limt→0 t · I1 = IΓ1 there exists f ∈ I1 such
that limt→0 t · f =α′l . Since limt→0 t · x f = xα′l , if x f ∈ I3 we would have an absurd. Thus
I = (I1, I2, I3) is not trivially related.

Observation 4.2.13. Notice that a similar statement for Γ = (Γ1,Γ2,Γ3) fixed point of
Hilbn,n+1,n+2(0)tr is false. Consider for example the fixed point given by the nested
monomial ideals (x, y2)⊃ (x2, x y, y2)⊃ (x2, x y, y3). The attracting cell is parametrized as

AΓ
∼=A3 ∼=

{
(x+ωy, y2) ⊃ (x2, x y, y2)

⊃ (x2+αy2, x y +βy2, y3)

}
Γ=

2

1

One can see that all of the points in AΓ with α �= −ω2 or β �=ω are in Hilbn,n+1,n+2(0)N tr .

Lemma 4.2.14. Consider the T1+ action on R =C[x, y]. Let (Γ1,Γ3) with Γ1 � n and Γ3 �
n+2 be a fixed point of Hilbn,n+2(0)tr . Call {α j ,αl }= Γ3 \Γ1 with α j = limt→0 t · (α j +αl ).
We define

Γ := (Γ1,Γ2,Γ3) with Γ2 := Γ1∪ {α j }

and denoteAΓ ⊂Hilbn,n+1,n+2(0) the attracting affine cell of Γ. Then if AΓ1,Γ3 ⊂Hilbn,n+2(0)tr

is the attracting set of the fixed point Γ1,Γ3 we have that:

p1,3 : AΓ
∼= AΓ1,Γ3

where p1,3 : Hilbn,n+1,n+2(0)→Hilbn,n+2(0) is the projection on the first and third factor.

Proof. By Lemma 4.2.3 we have that

p−1
1,3(IΓ1 , IΓ3 )= {IΓ1 ⊃ IΓ1 +

(
ω1α j +ω2αl

)⊃ IΓ3

∣∣ [ω1 : ω2] ∈P1 }⊂Hilbn,n+1,n+2(0).

Since p1,3 : AΓ→ AΓ1,Γ3 is clearly surjective we only need to prove that it is injective. Let
I = (I1, I2, I3), J = (J1, J2, J3) ∈AΓ, with p1,3(I )= p1,3(J ). Then I = J . In fact let f j , fl ∈ I1 = I3

be such that f j , fl ∉ I3 = J3 and limt→0 t · fi =αi for i = j , l . Then ω1 f j+ω2 fl ∈ I2 if and only
if [ω1 : ω2]= [0 : 1]: otherwise the hypothesis α j = limt→0 t · (α j +αl ) implies α j ∈ IΓ2 that
is an absurd by definition. The same is true for J2 proving J2 = I2 and thus I = J .
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Definition 4.2.15. We write Γ = (Γ1,Γ3) � [n,n + 2] for a couple of nested Young dia-
grams of size n and n+2 respectively. We define a map

sn : {Γ � [n,n+2]}→ {Γ � [n,n+1,n+2]}

as sn(Γ1,Γ3)= (Γ1,Γ2,Γ3) where

Γ2 := Γ1∪
{
α ∈ Γ3 \Γ1

∣∣ α has minimal degree and minimal y degree in Γ3 \Γ1
}

.

Proposition 4.2.16. Let n ∈N. The space Hilbn,n+2(0) has an affine cell decomposition
indexed by Γ� [n,n+2]. Its Poincaré polynomial is given by:

Pq

(
Hilbn,n+2(0)

)
= ∑

Γ�[n,n+2]
qpos1+ (sn (Γ)) (4.20)

where the quantity pos1+ (sn(Γ)) is specified in Formula 3.23 of Proposition 3.2.13. The
Poincaré polynomials satisfy:

∑
n≥0

Pq

(
Hilbn,n+2(0)

)
zn = 1+q −qz

(1− zq)(1− z2q2)

∏
m≥1

1

1− zm qm−1 . (4.21)

Proof. Consider the action of T1+ on Hilbn,n+2(0): Lemma 4.2.12 and Lemma 4.2.14
show that the attracting sets are affine cells of the affine cell decomposition of
Hilbn,n+1,n+2(0). The dimensions of these cells were calculated in Proposition 3.2.13.
Then Proposition 1.3.2 proves the first equality for the Poincaré polynomial.

To prove the identity (4.21) for the generating function, thank to Lemma 4.2.3,
it is enough to use the generating functions (4.15) and (4.19).
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