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Abstract
For a long time, natural language processing (NLP) has relied on generative models with task

specific and manually engineered features. Recently, there has been a resurgence of interest

for neural networks in the machine learning community, obtaining state-of-the-art results in

various fields such as computer vision, speech processing and natural language processing.

The central idea behind these approaches is to learn features and models simultaneously, in

an end-to-end manner, and making as few assumptions as possible. In NLP, word embeddings,

mapping words in a dictionary on a continuous low-dimensional vector space, have proven

to be very efficient for a large variety of tasks while requiring almost no a-priori linguistic

assumptions.

In this thesis, we investigate continuous representations of segments in a sentence for the

purpose of solving NLP tasks that involve complex sentence-level relationships. Our sequence

modelling approach is based on neural networks and takes advantage of word embeddings. A

first approach models words in context in the form of continuous vector representations which

are used to solve the task of interest. With the use of a compositional procedure, allowing

arbitrarily-sized segments to be compressed onto continuous vectors, the model is able to

consider long-range word dependencies as well.

We first validate our approach on the task of bilingual word alignment, consisting in finding

word correspondences between a sentence in two different languages. Source and target words

in context are modeled using convolutional neural networks, obtaining representations that

are later used to compute alignment scores. An aggregation operation enables unsupervised

training for this task. We show that our model outperforms a standard generative model.

The model above is extended to tackle phrase prediction tasks where phrases rather than

single words are to be tagged. These tasks have been typically cast as classic word tagging

problems using special tagging schemes to identify the segments boundaries. The proposed

neural model focuses on learning fixed-size representations of arbitrarily-sized chunks of

words that are used to solve the tagging task. A compositional operation is introduced in this

work for the purpose of computing these representations. We demonstrate the viability of the

proposed representations by evaluating the approach on the multiwork expression tagging

task.
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The remainder of this thesis addresses the task of syntactic constituency parsing which, as

opposed to the above tasks, aims at producing a structured output, in the form of a tree, of

an input sentence. Syntactic parsing is cast as multiple phrase prediction problems that are

solved recursively in a greedy manner.

An extension using recursive compositional vector representations, allowing for lexical infor-

mation to be propagated from early stages, is explored as well. This approach is evaluated on a

standard corpus obtaining performance comparable to generative models with much shorter

computation time. Finally, morphological tags are included as additional features, using a

similar composition procedure, to improve the parsing performance for morphologically rich

languages. State-of-the-art results were obtained for these task and languages.

Key words: Neural Networks, Deep Learning, Natural Language Processing, Bilingual Word

Alignment, Tagging, Syntactic Parsing
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Résumé
Le traitement automatique des langues (TAL) a longtemps été fondé sur des modèles générat-

ifs utilisant des données d’entrée conçues pour refléter nos connaissances linguistiques et

spécifiques aux tâches traitées. Récemment, les réseaux de neurones artificiels ont connu un

net regain d’intérêt de la part de la communauté scientifique; cela a engendré d’excellents

résultats dans des domaines aussi divers que la vision par ordinateur, le traitement de la parole

ou le traitement automatique des langues. L’originalité de ces approches réside dans le fait

d’apprendre les représentations d’entrée en même temps que les paramètres du modèle, et

ce en utilisant le moins de connaissances a priori possibles. En TAL, cette idée se traduit par

l’utilisation de représentations vectorielles continues de petite dimension appelées “word

embeddings” et elle s’est révélée être très efficace pour une grande variété de tâches, tout en

ne nécessitant que très peu d’hypothèses linguistiques.

Nous étudions dans cette thèse des représentations continues de segments de phrases, dans

le but de résoudre des tâches impliquant des relations complexes et distantes entre les mots.

L’approche proposée utilise des réseaux de neurones artificiels, prenant comme entrées des

représentations continues de mots. Nous présentons dans un premier temps une méthode

de modélisation de mots en contexte sous forme de représentations vectorielles continues.

Les représentations obtenues sont utilisées pour résoudre diverses tâches de TAL. Nous pro-

posons ensuite une procédure compositionnelle permettant de représenter des segments de

différentes tailles sous forme de vecteur de taille fixes Cette nouvelle procédure permet au

modèle de considérer des relations longue distance entre les mots d’une phrase.

Notre approche est tout d’abord validée sur une tâche d’alignement de mots dans un corpus

bilingue consistant à établir des correspondances entre les mots d’une phrase exprimée dans

deux langues différentes. Nous utilisons pour cela un réseau de neurones convolutionnel dans

le but d’extraire des représentations continues de mots en contexte. Ces représentations sont

ensuite utilisées pour calculer des scores d’alignement. Une opération d’agrégation permet au

modèle d’être entraîné de manière non supervisée. Nous observons que notre modèle obtient

des résultats supérieurs à ceux d’un modèle génératif populaire.

Ce modèle est ensuite étendu dans le but de résoudre des problèmes dans lesquels il s’agit

d’annoter des phrases plutôt que des mots. Ces problèmes sont généralement perçus comme

des problèmes de classification de mots en utilisant un système d’annotation permettant
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d’identifier les extrémités des segments à annoter. L’approche que nous proposons permet

d’extraire des représentations vectorielles de tailles fixes à partir de segments de phrases

de tailles variables. Pour obtenir ces représentations, nous introduisons une opération de

composition. La viabilité de cette procédure est démontrée empiriquement sur une tâche de

de détection et d’annotation d’expressions multi-mots.

La suite de la thèse traite une tâche d’analyse syntaxique. Cette tâche, par opposition aux

précédentes, vise à produire une sortie structurée, sous forme d’arbre, à partir d’une phrase

d’entrée. Cette analyse est abordée comme une suite de problèmes d’annotation de segments

de phrase, résolus récursivement de manière gloutonne.

Nous mettons ensuite en place une procédure récursive tirant parti d’une opération de compo-

sition, dans le but de propager de l’information syntaxique et sémantique durant la procédure

gloutonne. Une évaluation sur une tâche d’analyse syntaxique standard nous montre que

notre approche permet d’obtenir des résultats équivalents à ceux d’un modèle génératif popu-

laire, tout en étant plus rapide. Nous proposons enfin une procédure similaire dont le but est

de propager de l’information morphologique, dans le cadre de l’analyse syntaxique de langues

morphologiquement riches. Nous parvenons grâce à cette procédure aux meilleurs résultats

jamais obtenus pour cette tâche pour la majorité des langues prises en compte.

Mots clefs: Réseaux de Neurones, Apprentissage Profond, Traitement Automatique des Langues,

Alignement de Mots dans un Corpus Bilingue, l’Étiquetage, Analyse syntaxique
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1 Introduction

Human beings interact with each other using what we call “natural language”, i.e. sequences

of words expressing concepts willing to be shared. While the term “natural” can give an

impression of simplicity, natural language is, in fact, highly complex. First of all, in order to

communicate, people need to use the same language, i.e. the same vocabulary and the same

syntax. Yet, even in these conditions, natural language remains ambiguous in many situations

and it requires a-priori knowledge about the interlocutors and the context. Misinterpretations

and misunderstandings are not only possible but frequent.

The idea of interacting with a computer in natural language quickly raised interest of computer

scientists. This interaction requires converting a piece of text into a representation intelligible

for the machine. However, despite many efforts from the computational linguistic community,

no consensus has emerged on the possibility of an unique representation, nor on what form

it should take. Instead, researchers have proposed several specific sub-tasks to extract infor-

mation reflecting our knowledge about natural language. Each of them consists in extracting

semantic information, e.g. in “named entity recognition” and “word sense disambiguation”

tasks, as well as syntactic information, e.g. in the “syntactic parsing” and “part-of-speech

tagging” tasks. The knowledge obtained is then used to perform higher level natural language

processing (NLP) for tasks such as machine translation or information retrieval.

Historically, NLP tasks have been mainly tackled with generative models using task specific and

manually engineered features or linear models such as linear support vector machines (SVM)

trained over very high-dimensional sparse feature vectors. On the other hand, recent works in

NLP using neural networks have focused on learning dense input representations, referred to

as embeddings, using minimal a-priori knowledge. By learning these representations on large

unlabeled databases, these models have been shown to yield state-of-the art performance for

various NLP tasks.

Given the success of these methods, this thesis aims at exploring how to take advantage of

word embeddings to build continuous representations of sentence segments, in order to

solve NLP tasks involving complex relations at the sentence level. We investigate a neural
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network-based approach modeling sequences of words in the form of continuous vector

representations, that are used to perform the task of interest. Our approach is validated on

different natural language processing tasks, both supervised and unsupervised, from simple

tagging tasks (multiword expression tagging) to more challenging prediction tasks exploiting

structure (constituency parsing).

1.1 Motivations and Objectives

Generative models are at the core of a majority of NLP systems. In the context of classifica-

tion, they model the joint distribution between the observations and labels (classes). This

distribution is often inferred by counting the number of times events occur simultaneously.

For instance, language modeling, which is a crucial component in machine translation and

information retrieval, still relies on generative models. This task consists in assigning a prob-

ability that a sentence is a legal string in a language. This probability is estimated based on

the relative frequency of word sequences observed in a training corpus. Similarly, most of the

syntactic parsing systems rely on context free grammars (CFG) and assign probabilities to each

of the rules by counting their occurrences in a training corpus [Magerman, 1995, Collins, 2003,

Charniak, 2000], prior to decoding using chart algorithms. Another example is the machine

translation task. The popular IBM machine translation alignment model is generative and

based on counting of word co-occurrences [Brown et al., 1990].

Despite being conceptually attractive, generative models face several shortcomings. First,

since there are a combinatorial number of possible observations, many rare combinations

that are never observed on the training data are assigned zero probability. These models thus

need to be carefully smoothed in order to deal with unseen events. Second, generative models

tend to make independence assumptions to enable efficient estimation and decoding. This

makes difficult to incorporate arbitrary or structured features. Finally, they often rely on task

specific features (such as bag-of-words for information retrieval), or hand crafted features

carrying linguistic knowledge (such as the head words for syntactic parsing).

On the other hand, discriminative models directly learn the conditional probability distri-

bution of the output classes given the input observations. As they do not model the joint

probability between the observations and labels but rather focus on solving a particular task,

they tend to obtain better accuracy [Klein and Manning, 2002]. In particular, neural network

based models allow for arbitrary input features without the need to make independence

assumptions. Nevertheless, it is worth noting that discriminative models also face several

issues. They are much more subject to overfitting and they are often more complex that their

generative counterparts. They also tend to require more data in order to obtain comparable

performance.

Recent advances in machine learning have made it possible to train systems in an end-to-end

manner. As discussed in Collobert et al. [2011], this enables minimal use of prior knowledge

when applied to NLP. In this study, the authors propose a deep neural network architecture
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that learns word representations (the features) and infers tags discriminatively in an end-

to-end manner. This architecture is applied to various NLP tasks such as part-of-speech

tagging, name entity recognition or semantic role labeling, and it achieves state-of-the-art

performance in all of them. More recently, several other works have taken advantage of word

embeddings in various NLP domains such as machine translation [Cho et al., 2014b] and

question answering [Bordes et al., 2014].

These techniques offer many advantages:

1. they are trained in an end-to-end manner, including the features, by back-propagating

the error gradient. This allows to learn relevant representations for the task of interest,

while using minimal prior knowledge;

2. they are smoothed by design: even if an example has not been seen in the training

corpus, its representation is close to similar examples;

3. these representations can be trained on large unlabeled corpora.

In this thesis, we investigate continuous representations of sentence segments for the purpose

of solving NLP tasks involving complex relations at the sentence level. This approach uses word

embeddings and models words in context in the form of continuous vector representations.

This approach is applied on various NLP tasks from simple tagging tasks (multiword expression

detection) to more challenging prediction tasks exploiting structure (constituency parsing).

Modeling long-range word dependencies is made possible by the introduction of a novel

compositional operation that compute continuous phrase representations of arbitrarily sized

segment of sentences.

1.2 Contributions

The contributions of this thesis are summarized as follows:

• Introducing an unsupervised discriminative word alignment model for machine trans-

lation which outperforms a standard generative baseline on English-Romanian, Romanian-

English and Czech-English.

Word alignment is the task of finding the correspondences between words in a pair of

sentences that are translations of each other. We propose a neural network model that

extracts context information from the source and target sentences and then computes

simple dot products to estimate alignment links. The model can be easily trained on

unlabeled data via a simple aggregation operation. The aggregation combines the scores

of all source words for a particular target word. The network is trained using a soft-

margin criterion, which promotes source words which are likely to be aligned with a

given target word according to the knowledge the model has learned so far. At test time,
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the aggregation operation is removed and source words are aligned to target words by

choosing the highest scoring candidates. Results on three different pairs of languages

show that our model significantly outperforms a standard generative model. This work

has been published in Legrand et al. [2016].

• Investigating a novel chunk-based approach for phrase-prediction. Phrase prediction

problems consist in identifying and labeling phrases in a sentence. These problems

are often cast as word classification problems by prefixing every possible tag using the

standard BIOES scheme (Begin, Intermediate, Other, End, Single), in order to identify

the segment boundaries. A coherent path of tags is then recovered using a constrained

transition graph. In this thesis, we propose a novel architecture which models arbitrarily

sized chunks into fixed-size representations. These representations are used to perform

the chunk classification without going through the intermediate word tagging stage. The

architecture is based on neural networks and is trained using a sentence-discriminative

objective function based on Conditional Random Fields. We evaluate our approach

on the task of multiword expression tagging and compare our performance with a

BIOES-based model. We show that the proposed approach performs on par with this

state-of-the-art baseline. Furthermore, we show that our system outperforms the system

currently obtaining the best results on a standard shared task for MWE tagging. This

work has been published in Legrand and Collobert [2016b].

• Introducing a greedy discriminative constituency parser using words embeddings.

We propose a bottom-up greedy and purely discriminative syntactic parsing approach

that relies only on a few simple features. The core of the architecture is a word sequence

modeling architecture which performs a phrase-prediction task, as described in the

previous chapter. This is done by leveraging continuous word vector representations

to model the conditional distributions of context-aware syntactic rules. The learned

distribution rules are naturally smoothed, thanks to the continuous nature of the input

features and the model. The tree is built in a greedy manner by recursively applying

the model over the new inputs, taking into account the previous node predictions. By

successively merging the predicted node to build the new input, our approach allows to

reduce the input size and thus enables the model to consider a larger context. Despite

the greedy nature of our approach, generalization accuracy compares favorably to

existing generative or discriminative non-reranking parsers, while being faster. This

work has been published in Legrand and Collobert [2014].

• Introducing a new compositional procedure based on recursive neural networks per-

forming a summarization of sub-trees in the form of continuous vectors.

We introduce a compositional procedure which outputs a vector representation summa-

rizing sub-trees, both syntactically (parsing/POS tags) and semantically (words). This

procedure is jointly trained in an end-to-end manner along with the greedy parser intro-

duced in the previous chapter. The composition is achieved over continuous (word or

tag) representations using recursive neural networks. This compositional representation
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allows to obtain performance on par with well-known existing parsers, while being faster

due to the greedy nature of the parser. We provide a fully functional implementation of

this parser1. This work has been published in Legrand and Collobert [2015].

• Extending the RNN-based greedy parser to morphologically rich languages by com-

posing morphological information.

Morphologically rich languages (MRL) are languages in which much of the structural

information is contained at the word level, resulting in many forms of word variation.

Unlike English, they can have complex word structure as well as flexible word order. We

extend our model for syntactic parsing of MRL by learning morphological embeddings.

We take advantage of a recursive composition procedure similar to the one used in the

previous chapter, to propagate morphological information during the parsing process.

We evaluate our approach on the SPMRL (Syntactic Parsing of MRL) Shared Task 2014.

We show that integrating morphological features improves performance dramatically,

beyond the state-of-the-art for a majority of languages. This work has been published

in Legrand and Collobert [2016a].

1.3 Organization of the thesis

The reminder of the thesis is organized as follows:

• Chapter 2, Background, presents the machine learning background underlying the

whole thesis and introduces the notation used in this work. We then introduce the

neural network formalism, including feed-forward, recursive and convolutionnal neural

networks. Finally, we provide a review of the natural language processing literature

using deep neural network techniques.

• Chapter 3, Sequence Processing for Bilingual Word Alignment, presents the sequence

modeling approach, based on convolutionnal neural networks, applied to the task of

bilingual word alignment.

• Chapter 4, Phrase Prediction: a Chunk-based Approach, introduces the compositional

operation which computes fixed size continuous vectors of arbitrarily sized chunks as

well as an extension of the sequence processing approach for phrase prediction applied

to the task of multiword expression tagging.

• Chapter 5, Sequence Processing for Structural Inference: Syntactic Parsing, introduces

the greedy parser which recursively applies a word sequence modeling approach.

• Chapter 6, RNN-Based Phrase Composition for Syntactic Parsing, extends the greedy

parser introduced in Chapter 5 with the compositional operation introduced in Chapter

1The parser can be downloaded at joel-legrand.fr/parser.
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4 recursively applied to summarize the contents of sub-trees in the form of a continuous

vectors.

• Chapter 7, Syntactic Parsing of Morphologically Rich Language, extends the greedy

parser from Chapter 6 with the morphological composition procedure in the context of

morphologically rich languages.

• Chapter 8, Conclusion, summarizes the main contributions of this thesis and discusses

future research directions.
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This chapter presents the machine learning background underlying the whole thesis and

introduces the notation used in this work. We introduce the neural network formalism,

including feed-forward, convolutional and recursive neural networks as well as a review of the

natural language processing literature using deep neural networks. Note that the related work

specific to each task tackled in this thesis is discussed in the corresponding chapters.

2.1 Machine learning

Machine learning is a field in computer science that explores how machines can learn to solve

problems from experimental data rather than being explicitly programmed. The behavior of

most machine learning algorithms is conditioned by a set of parameters that define a model.

The goal of machine learning is to estimate the parameters of this model to learn regular

patterns from data observations while avoiding learning the training samples “by heart”. In

practice, given a database of training samples an algorithm is expected to learn how to solve

a specific task. Note that non-parametric approaches do memorize training examples by

heart while generalizing well to unseen examples. This thesis only covers parametric machine

learning approaches.

The following section introduces the mathematical formalism that concerns the machine

learning algorithms used in the rest of the thesis.

2.1.1 Supervised learning

Supervised learning is a machine learning paradigm that aims at inferring a function from

labeled training data. Let X and Y be the input and output spaces respectively. We define the

set of N training samples {(x1,y1), . . . , (xi ,yi ), . . . , (xN ,yN )}, where xi ∈X and yi ∈Y . Given a set

of functions, F :X →Y , we define a loss function (the “measure of performance”):

Q :Y ×Y →R (2.1)
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Using this notation, supervised learning consists in finding a function f ∈F which minimizes

the empirical risk

R = 1

N

N∑
n=1

Q( f (xn),yn) (2.2)

Supervised learning mainly addresses two types of problems:

Classification, with the output space being defined by a finite set of categories Y called

classes. Training consisting in finding a function f which assigns an input vector x to its

corresponding category y. An example of loss function is:

Q( f (x), y) =
⎧⎨
⎩0 if f (x) = y

1 otherwise
(2.3)

Regression, with the output space being defined as a real vector space Y . Training consists

in finding a function f which minimizes the distance D( f (x),y), D being an arbitrary

metric function. The most common loss function is the Mean Square Error (MSE),

defined as

Q( f (x),y) = || f (x)−y||2, (2.4)

where ||.|| denotes the L2 norm.

2.1.2 Unsupervised learning

Unsupervised learning is a machine learning paradigm that aims at discovering hidden struc-

ture from unlabeled data. Formally, given a set of N training samples, {(x1), . . . , (xi ), . . . , (xN )},

unsupervised learning finds a function f which minimizes the empirical risk

R = 1

N

N∑
n=1

Q( f (xn)) (2.5)

where Q( f (x)) is a loss function. Note that unlike supervised learning, Q does not depend on

any target label y but only on the input x.

Unsupervised learning techniques are used to discover intrinsic regularities in data for which

no labels are available. They include diverse techniques such as clustering (K-means) and di-

mensionality reduction (principal component analysis (PCA) . They can be trained in different

ways such as predicting the next input in a sequence or minimizing the reconstruction error.
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2.1.3 Semi-supervised learning

Semi-supervised learning makes use of unlabeled data along with labeled data. Typically, semi-

supervised systems take advantage of large amounts of unsupervised data, which are available

at low cost, to overcome the lack of labeled data, requiring expensive human annotations.

2.2 Neural networks

In this thesis, we use artificial neural networks (ANN) as the set of functions F . Neural

networks, as the name indicates, are computational mechanisms inspired by the neural cells

in the brain. The following section introduces the notation used in the rest of the thesis

for three types of ANN, namely the multi-layer perceptron (MLP), the convolutional neural

network (CNN) and the recursive neural network (RNN).

2.2.1 Feed forward neural networks

perceptron is the most elementary neural processing unit. First introduced in Rosenblatt

[1957], it mimics a computation unit in a brain. Considering a set of training samples

{(x1, y1), . . . , (xi , yi ), . . . , (xN , yN )} where the label yi ∈ {−1,1}, the perceptron is a linear classifier

defined as

fθ(x) = w ·x+b (2.6)

where θ = (w,b) are the parameters to be trained, w being a real-valued vector of weights and

b being a real-valued scalar bias. The training procedure considers every training sample

(xi , yi ) successively and updates the weights for misclassified samples for which yi · fθ(xi ) ≤ 0

using the following rules:

w ← w+ yi ·xi b ← b + yi (2.7)

This update increases the score yi · fθ(xi ). In the case of linearly separable classes, the conver-

gence towards the optimal solution has been proven in Novikoff [1963].

Multi-Layer Perceptrons (MLP) are combinations of perceptron units, organized in successive

layers, with non-linear transfer functions being applied at the output of each perceptron. MLPs

are known to be universal function approximators [Cybenko, 1989, Hornik et al., 1989]. This

means that given a finite number of training samples (xi , yi ) and a target function g (x), there

exists an MLP that can approximate g (x) with arbitrary precision for all (xi , yi ). Figure 2.1

illustrates this neural network.

While MLPs were historically inspired from neuroscience studies [McCulloch and Pitts, 1988],

they can be mathematically modeled using algebraic operations. An MLP can be seen as a
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Figure 2.1: Illustration of a 2-layer neural network.

stack of matrix-vector multiplications, followed by point-wise non-linear operations. Formally,

an MLP with L layers can be defined as the function

fθ(x) =ΦL(ΦL−1(. . .Φ2(Φ1(x)))) (2.8)

with

Φl (x) : Rd i n
l →Rd out

l = h(Wl ·x+bl ) (2.9)

for layer l , where x ∈ Rd i n
l is an input vector, Wl ∈ Rd out

l ×d i n
l a matrix of weights, bl ∈ Rd out

l a

vector of biases and h(·) a point-wise non-linear function such as the hyperbolic tangent

or the sigmoid function. d i n
l and d out

l denote the input and output dimensions of layer l

respectively.

Training an MLP: Many techniques exist to train an MLP neural network [Battiti, 1992].

Amongst them, the most popular remains the back-propagation algorithm. First applied

to MLP in Le Cun [1985] and Rumelhart et al. [1986], it consists in back-propagating the error

at the network output, computed using the loss function Q, towards the previous layers using

chained derivatives. In this thesis, we use the stochastic gradient descent [Bottou, 1991] which

has proven to be very effective in the case of large-scale machine learning problems [Bousquet

and Bottou, 2008]. Gradient descent updates every parameter of the network according to its

influence on the criterion error. For this purpose, the partial derivatives Δi of the criterion

function with respect to every parameter θi are computed, as

Δi (x) = δQ( fθ(x), y)

δθi
(2.10)
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Each parameter is updated according to this error derivative:

θi ← θi −λΔi (x) (2.11)

where λ is an update coefficient.

2.2.2 Softmax layer

In the context of classification, it is often useful to obtain the posterior probability of an input

vector being assigned a given class. If we denote f i
θ

(x) the i th output of the network, we can

give this score a probabilistic interpretation by applying a softmax operation over all possible

classes [Bridle, 1990]:

P (i |x,θ) = e fi (x)∑
j e f j (x)

(2.12)

2.2.3 Recursive neural networks

First introduced in Pollack [1990], recursive neural networks (RNN) are neural networks in

which the same set of weights is applied recursively over a graph describing a particular

structure. They can be applied on arbitrary structures, by using fixed size representations of

variable-length input elements. Training is done using the back-propagation through structure

(BPTS) algorithm [Goller and Küchler, 1996]. Note that recurrent neural networks are recursive

neural networks with the recursion being performed over time.

x1 x2 x3

concat

r1

concat

r2

concat

r3

W1 W2

W2

r1 = h(W1 ·x1 +b1)

r2 = h(W2 · [x2 x3]+b2)

r3 = h(W2 · [r1 r2]+b2)

Figure 2.2: Example of recursive neural network applied on a tree structure.
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Figure 2.2 presents an example of structure (a tree) on which a RNN is applied. We define

[x1 x2] the concatenation of vectors x1 and x2. x1, x2 and x3 are three input vector ∈Rd (where

d is the input dimension). r1, r2 and r3 are three vectorial representations of tree nodes. W1

is a matrix of weight of size d ×d . W2 is a matrix of weight of size 2 ·d ×d . The output of the

network is obtained by computing all the node representation recursively, using their child’s

representations as input. This implies that the node computation order is imposed by the

structure of the graph.

2.2.4 Convolutional neural networks

While “classical” linear layers in standard MLPs accept a fixed-size input vector, a convolution

layer is assumed to be fed with a sequence of N vectors {x1, . . . ,xi , . . . ,xN }. A temporal convolu-

tional layer applies the same linear transformation over each successive (or interspaced by

d frames) windows of k frames, as illustrated in Figure 2.3. The transformation at frame i is

formally written as

W

⎛
⎜⎜⎝

xi−(k−1)/2
...

xi+(k−1)/2

⎞
⎟⎟⎠ , (2.13)

where W is a d out ×d i n matrix of parameters, d i n denotes the input dimension and d out

denotes the dimension of the output frame.
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Convolution
W × ·

din

dout

kd

Figure 2.3: Illustration of a convolutional layer.

2.3 Deep Learning for NLP

Deep learning is a branch of machine learning which aims at learning successive levels of

representations, using multiple levels of non-linear information processing, from low-level to

abstract high-level ones, in order to model complex relationships. These representations are

often trained on unlabeled data using unsupervised training techniques to be later used to

solve a particular task in a supervised fashion. In NLP, deep learning methods are typically

based on neural networks and rely on continuous word vector representations referred to as

word embeddings. This section first introduces the concept of word embeddings as well as

different unsupervised techniques to produce such representations. NLP applications taking

advantage of words embeddings are described at the end of the section.

2.3.1 Word embeddings

Natural language must deal with a large number of words that span a high dimensional

and sparse space of possibilities. However, as discussed in Harris [1954], Firth [1957] and

Wittgenstein [1953], words that occur in similar contexts tend to have similar meanings. This

suggests that the underlying structure of such high dimensional space can be represented in

a more compact way. One of the first approaches to capture linguistic knowledge in a low-

dimensional space is the Brown clustering algorithm [Brown et al., 1992], grouping words into

clusters assumed to be semantically related. A word is then represented by a low-dimensional

binary vector representing a path in a binary tree.
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Unsupervised training: Word embeddings are usually trained on large unlabeled datasets.

Unsupervised training methods generally fall into one of the following categories:

• Spectral methods: Several methods based on the spectral decomposition of the word

co-occurrence matrix has been developed to produce words embeddings e.g. using the

singular value decomposition (SVD) as in latent semantic analysis (LSA) [Landauer and

Dumais, 1997] or independent component analysis (ICA) [Väyrynen and Honkela, 2004].

A recent approach [Lebret and Collobert, 2014] proposed a principal component analysis

(PCA) of the word co-occurrence probability matrix while minimizing the reconstruction

error using the Hellinger distance instead of the usual Euclidean distance. In this last

study, low-dimensional representations were evaluated on several NLP tasks showing

significant improvements over existing word embeddings.

• Neural network methods: A method to learn dense word representations using a neural

network based language model was proposed in Bengio et al. [2003]. This work inspired

other techniques such as a multi-task learning variant [Collobert and Weston, 2008],

showing generalization improvements for several tasks, a hierarchical distributed lan-

guage model [Mnih and Hinton, 2009] producing better word representations while

reducing training time, and the skip-gram model [Mikolov et al., 2013a], a conceptually

simple and performing neural network architecture for computing continuous vector

representations of words. For the latter, the words surrounding a given input word are

predicted from a sentence. All of these methods use large unlabeled corpora as training

data.

Many tools either using factorization of word co-occurrence statistics, such as GloVe [Pen-

nington et al., 2014] and HPCA [Lebret and Collobert, 2014] or using neural network models,

such as those implemented in word2vec [Mikolov et al., 2013a] have been proposed. Several

studies have been conducted in order to distinguish the characteristics of the embeddings

obtained using these different publicly released methods. For instance, Chen et al. [2013]

proposed several tasks designed to evaluated how well embeddings capture different types

of information. It was concluded that, depending on their design, training corpus size and

choice of objective function, some embedding techniques perform better than others on

certain tasks. They suggested that the application domain should determine the embedding

method. Later on, Hill et al. [2014] re-emphasized that no embedding approach is the best for

all tasks. Recently, several works have demonstrated both theoretically and empirically the

correspondence between spectral and neural network-based methods [Levy and Goldberg,

2014, Pennington et al., 2014].

Evaluation of word embeddings: The first attempts to evaluate the ability of word embed-

dings to capture linguistic information were mainly qualitative and consisted in manually

inspecting the closest embeddings, according to a given metric (e.g. cosine distance, Euclidean

distance). Aside from providing a subjective evaluation of the quality of the embeddings, such
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method provides a valuable insight into the nature of the learned embeddings. For instance,

in Levy and Goldberg [2014], the authors proposed a generalization of the skip-gram model

considering syntactic contexts derived from automatically produced dependency parse-trees.

Their qualitative study showed that different kinds of contexts produce noticeably different

embeddings, and induce different word similarities. In particular, they stated that the bag-of-

words nature of the contexts in the “original” skip-gram model yield broad topical similarities

(as in lion:zoo), while the dependency-based contexts yield more functional similarities (as in

lion:cat).

Quantitative evaluations of word embeddings can be classified into intrinsic and extrinsic tasks.

Intrinsic tasks mostly include predicting human judgments of semantic relations between

words. For instance, the corpus WordSim-353 [Finkelstein et al., 2001] contains two sets of

English word pairs along with human-assigned similarity judgements. Extrinsic tasks include

various real NLP tasks, such as coreference resolution and sentiment analysis. While intrinsic

evaluation is still widely used, mainly due to ease of use, their correlation with results on

extrinsic evaluations is not very reliable [Schnabel et al., 2015, Tsvetkov et al., 2015]. Despite

the rapidly growing interest of the NLP community, research on word embeddings is still

young. As expressed in Levy et al. [2015], this domain is still lacking controlled variables as

well as transparent and reproducible experiments in order to fairly compare the different

embeddings methods.

2.3.2 Deep Learning for word sequence processing

Modeling natural language sequences using neural networks and continuous vector repre-

sentations has a long history. Early work on distributed representations includes Hinton et al.

[1986] and Elman [1990, 1991]. More recently, Bengio et al. [2001] was able to outperform

n-gram language models in terms of perplexity by training a neural network using contin-

uous word vectors as inputs. This idea was then taken up in Collobert and Weston [2008]

to learn word embeddings in an unsupervised manner. They showed that jointly learning

these embeddings, and taking advantage of the large amount of unlabeled data in a multitask

framework improved the generalization on all the considered tasks obtaining state-of-the-art

results. Word embeddings obtained by predicting words given their context tend to capture

semantic and syntactic regularities. They have been shown to preserve semantic proximity in

the embedded space, leading to better generalization for unseen words in supervised tasks.

Such word embeddings have been reported to improve performance on many NLP tasks

[Collobert et al., 2011, Turian and Melamed, 2006]. The study in Turian et al. [2010] used

unsupervised word representations as extra word features to further improve system accuracy.

This section introduces different approaches for sequence modeling using continuous repre-

sentations, including convolutional neural networks, recurrent neural networks and recursive

neural networks.
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Convolutional neural networks for sequence modeling

The order of the words of a sentence are essential for its comprehension. For NLP tasks such

as sentiment analysis which consists in identifying and extracting subjective information from

pieces of text, taking the word order into account is critical. Classical NLP features such as

bag-of-words do not conserve this information and would assign the sentences “it was not

good, it was actually quite bad” and “it was not bad, it was actually quite good” the exact same

representation.

Convolutional neural networks (CNN), first introduced in the computer vision literature

[Lecun, 1989] and described in Section 2.2.4 allow for the extraction of contextual information

and focus on relevant information regardless of its position in the input sequence. In NLP, CNN

were first introduced by the pioneering work of Collobert et al. [2011] for the task of semantic

role labeling. In this task, the tag of a word depends on a verb (or, more correctly, predicate)

chosen beforehand in the sentence. The tagging of a word requires the consideration of

the whole sentence. As illustrated in Figure 2.4, the authors introduced an architecture that

extracts local feature vectors using a convolutional layer. These features are then combined

using a pooling operation in order to obtain a global feature vector. The pooling operation

is a simple max-over-time operation which forces the network to capture the most useful

local features produced by the convolutional layer. This procedure results in a fixed-size

representation independent of the sentence length, so that subsequent linear layers can be

applied.

Convolutional and pooling architectures have shown promising results on many tasks, in-

cluding document classification [Johnson and Zhang, 2014], short-text categorization [Wang

et al., 2015], sentiment classification [Kalchbrenner et al., 2014], classification of relation type

between entities [Zeng et al., 2014, dos Santos et al., 2015], event detection [Chen et al., 2015,

Nguyen and Grishman, 2015], paraphrase identification [Yin and Schütze, 2015], question

answering [Dong et al., 2015], predicting box revenues of movies based on critic reviews [Bitvai

and Cohn, 2015] modeling text interestingness [Gao et al., 2014], and modeling the relation

between character-sequences and part-of-speech tags [dos Santos and Zadrozny, 2014].

Recurrent neural networks for sequence modeling

Convolutional networks encode a sequence into a fixed-size vector. However, order sensitivity

is constrained to mostly local patterns while disregarding the order of these patterns. On the

other hand, recurrent neural networks allow to represent arbitrarily sized linearly structured

inputs into a fixed-size vector, while taking the structured properties of the input into account.

We can identify three different recurrent neural networks, simple recurrent neural networks

(SRNN), long short term memory (LSTM) and gated recurrent units (GRU).

SRNN were first introduced in Elman [1990] and have proven to be effective for sequence

modeling tasks. As illustrated in Figure 2.5 a SRNN is a three-layer feed-forward neural
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Figure 2.4: Convolutionnal architecture for SRL [Collobert et al., 2011].

network where a part of the input consists of a copy of the network’s own hidden units at the

previous time step. On the task of language modeling, SRNN have been shown to provide

better perplexities than traditional models [Mikolov et al., 2010, Mikolov, 2012]. SRNN have

been successfully applied to sequence tagging tasks in [Xu et al., 2015, Irsoy and Cardie, 2014].

The SRNN is hard to train effectively because of the vanishing gradients problem (see Hochre-

iter et al. [2001]), making it hard to capture long-range dependencies. Error signals (gradients)

back-propagated from the later steps tend to vanish quickly and do not reach earlier input

signals. The long short-term memory (LSTM) architecture [Hochreiter and Schmidhuber,

1997] was designed to solve this problem. The main idea is to introduce “memory cells” as

part of the state representation that can selectively preserve gradients for an arbitrary length

of time. The access to the memory cells is controlled by a smooth mathematical function that

simulates logical gates. LSTM were successfully applied to various NLP tasks such as language
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Figure 2.5: Simple recurrent neural network [Mikolov et al., 2010].

modeling [Sundermeyer et al., 2012] and syntactic parsing [Vinyals et al., 2015]. In particular

LSTM were shown to be surprisingly effective for machine translation [Sutskever et al., 2014].

While the LSTM architecture is very effective, it is also complex and computationally intensive,

making it hard to be analyze [Józefowicz et al., 2015]. The gated recurrent unit (GRU) was

recently introduced by Cho et al. [2014b] as an alternative to the LSTM. It was shown to

perform comparably to the LSTM on several tasks [Chung et al., 2014]. The GRU was also

shown to be effective for machine translation [Cho et al., 2014a].

Recursive neural networks for sequence modeling

While recurrent neural networks are useful for modeling sequences, natural language often

requires to take tree structures into account. For example, the syntactic structure of a sentence

can be represented as a tree of syntactic relations between sub-constituents. The recursive

neural networks (RNN) abstraction introduced in Pollack [1990] is a generalization of recurrent

neural networks which allows to deal with arbitrary data structures. In particular, they have

been popularized in NLP by the work of Socher et al. [2013a] for syntactic parsing. In this work,

the authors learn syntactico-semantic vector representations of tree nodes by recursively

applying a compositional operation, following the parse tree. As illustrated in Figure 2.6, the

leaves correspond to the sentence words and are assigned a continuous vector representation.

Node representations are computed in a bottom-up manner from the leaves to the top tree

node. These representations are trained to discriminate the correct parse tree from trees

18



2.3. Deep Learning for NLP

coming from a generative parser. The system is then used to re-rank the 200-best output of a

generative syntactic parser by computing the global score for each tree candidate.

Figure 2.6: Recursive neural network for syntactic parsing [Socher et al., 2013a].

Recursive models were successfully applied to structure prediction tasks such as constituency

parse re-ranking [Socher et al., 2013a], dependency parsing [Le and Zuidema, 2014, Chenxi

et al., 2015], discourse parsing [Li et al., 2014], semantic relation classification [Hashimoto

et al., 2013, Liu et al., 2015] political ideology detection based on parse trees [Iyyer et al., 2014b],

sentiment classification [Socher et al., 2013b, Hermann and Blunsom, 2013], target-dependent

sentiment classification [Dong et al., 2014] and question answering [Iyyer et al., 2014a].
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3 Sequence Processing for Bilingual
Word Alignment

In this chapter, we explore the modeling of words in context in the form of continuous vector

representations for a bilingual word alignment task. The chapter is organized as follows: We

first review the state-of-the-art literature for the task of bilingual word alignment. Further

on, we introduce the proposed convolutional neural network-based architecture. We then

evaluate several forms of our aggregation operation such as computing the sum, max and

LogSumExp over alignment scores. Finally, we provide a comparative evaluation on three

standard alignment tasks as well as an analysis of the representations learned by our model.

3.1 Introduction

Bilingual word alignment is the task of finding the correspondences between words in a pair

of sentences (the source and the target) that are translations of each other. Word alignment

is the first step of a majority of statistical machine translation systems. Even though the

best performing systems are phrase-based, the phrase translations are extracted using word

alignments most of the time. As illustrated in Figure 3.1, an alignment is a “many to many”

correspondence. A source word can be aligned with several target words and vice versa.

Furthermore, a source word may not be aligned with any target words. Historically, this task

has been mainly tackled using generative models [Brown et al., 1990, Vogel et al., 1996] which

still form the basis for many machine translation systems [Koehn et al., 2003, Chiang, 2007].

These models are trained in an unsupervised manner on sentence-aligned corpora although

there have been some extensions using small annotated corpora [Och and Ney, 2003].

In this chapter, we introduce a word alignment model based on neural network which extracts

context information from the source and target sentences in the form of continuous vector

representations. Dot products are computed to estimate alignment links. The model can

be easily trained on unlabeled data via a novel but simple aggregation operation which has

been successfully applied in the computer vision [Pinheiro and Collobert, 2015] and speech

recognition [Palaz et al., 2016] literatures. The aggregation combines the scores of all source

words for a particular target word, and together with the soft-margin criterion, it promotes
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Figure 3.1: Example of word alignment.

source words which are likely to be aligned with a given target word according to the knowledge

the model has learned so far. At test time, the aggregation operation is removed and source

words are aligned to target words by choosing the highest scoring candidates.

3.2 Related work

Historically, the task of word alignment has been handled by generative models. In Brown et al.

[1990], the authors introduced 5 generative models, ranked by increasing order of complexity,

each one being built on top of the previous one. IBM model 1 considers a word alignment

as a hidden variable with the probability of observed sentence pairs being maximized using

the expectation maximization (EM) algorithm. Model 1 does not consider the position of

words in a sentence to compute alignments, long-span alignments being as probable as short-

span alignments. Model 2 adds a position model to consider different position-dependent

alignment probabilities. Model 3 introduces a fertility model that enables one target word to be

aligned with several source words. Model 4 and 5 add a relative word order model which allows

the alignment to be considered globally, rather than considering each link independently.

Vogel et al. [1996] introduced a hidden Markov model (HMM)-based model applied on top

of IBM model 3, so that the alignment probabilities are made explicitly dependent on the

alignment position of the previous word. This model achieves performance comparable to

that of IBM model 4 while being much simpler.

While generative models are still widely use in practice, they face several drawbacks: First,

these models can theoretically be trained without supervision. However, Och and Ney [2003]

suggested that various parameters, including the probability of jumping to the empty word

in the HMM model as well as smoothing parameters for the distortion probabilities and

fertility probabilities, should be optimized on annotated data. Second, generative models

assume strong independence assumptions between features, making it difficult to incorporate

correlated features. To use such features in a generative model, explicit modeling of these

dependencies is required. As an example, Toutanova et al. [2002] added part-of-speech tags to
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the HMM-based model.

More recently, several discriminative models for word alignment have been proposed. Moore

[2005] introduced a discriminative model using a weighted linear combination of a small

number of features. The model weights are optimized using a modified version of the averaged

perceptron learning as described in Collins [2002]. Taskar et al. [2005] used a large margin

approach in which each pair of words is assigned a score reflecting the desirability of the

alignment of that pair. The alignment problem is translated into a graph matching problem.

Blunsom and Cohn [2006] used a conditional random field (CRF) for this purpose. All of

the models above are trained over arbitrary features such as co-occurrence information

(Dice coefficient), the distance to the diagonal in the alignment matrix and orthographic

features. While they match IBM model 4 performance, these models rely on annotated data.

Furthermore, the large-margin and CRF based approaches obtained state-of-the-art results by

including IBM model 4 predictions as input features.

In the last few years, several models taking advantage of word embeddings have been proposed.

Yang et al. [2013] presented a feed-forward network-based model trained on alignments

that were generated by a traditional generative model, potentially considering erroneous

alignments as ground truth. Tamura et al. [2014] overcomes this issue by resorting to negative

sampling to train a recurrent-neural network on unlabeled data. They both optimize a global

loss that requires an expensive beam search decoding procedure to approximate the sum over

all alignments. In contrast, our word alignment model is simpler in structure and relies on

a more tractable training procedure. Our objective function is word-factored and does not

require the expensive computation associated with global loss functions.

3.3 Aggregation Model

In the following, we consider a target-source sentence pair (e, f ), with e = (e1, . . . , e|e|) and

f = ( f1, . . . , f| f |). Words are represented by f j and ei , which are indices in source and target

dictionaries. For simplicity, we assume here that word indices are the only feature fed to

our architecture. Given a source word f j and a target word ei , our architecture embeds a

window (of size d f
wi n and d e

wi n , respectively) centered around each of these words into a

demb-dimensional vector space. The embedding operation is performed with two distinct

neural networks:

nete ([e]
d e

wi n

i ) ∈Rdemb (3.1)

and

net f (
[

f
]d f

wi n

j ) ∈Rdemb , (3.2)

where we denote the window operator as [x]d
i = (xi−d/2, . . . , xi+d/2) . The matching score
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Figure 3.2: Illustration of the alignment model. The two networks nete and net f compute
representations for source and target words. The score of an alignment link is a simple dot
product between those source and target word representations. The aggregation operation
summarizes the alignment scores for each target word.

between a source word f j and a target word ei is then given by the dot product:

s(i , j ) = nete ([e]
d e

wi n

i ) ·net f (
[

f
]d f

wi n

j ) . (3.3)

If ei is aligned to fai , the score s(i , ai ) should be high, while scores s(i , j ) ∀ j �= ai should be

low. Figure 3.2 illustrates the proposed approach.

3.3.1 Unsupervised Training

In this chapter, we consider an unsupervised setup where the alignment is not known at

training time. We thus cannot minimize or maximize matching scores (Equation (3.3)) in a

direct manner. Instead, given a target word ei we consider the aggregated matching scores

over the source sentence:

sag g r (i , f ) =
| f |

Aggr
j=1

s(i , j ) , (3.4)

where Aggr is an aggregation operator (see Section 3.3.2). Consider a matching (positive)

sentence pair (e+, f ) and a negative sentence pair (e−, f ). Given a word at index i+ in the

positive target sentence, we want to maximize the aggregated score sag g r (i+, f ) (1 ≤ i+ ≤ |e+|)
because we know it should be aligned to at least one source word.1 Conversely, given a word

1We discuss how we handle unaligned target words in Section 3.3.3. Also, depending on the decoding algorithm
the model can be used to predict many-to-many alignments.
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at index i− in the negative target sentence, we want to minimize sag g r (i−, f ) (1 ≤ i− ≤ |e−|)
because it is unlikely that the source sentence can explain the negative target word. Following

these principles, we consider a simple soft-margin loss:

L(e+, e−, f ) =
|e+|∑

i+=1
log(1+e−sag g r (i+, f ))

+
|e−|∑

i−=1
log(1+e+sag g r (i−, f )) . (3.5)

Training is achieved by minimizing Equation (3.5) and by sampling over triplets (e+, e−, f )

from the training data.

3.3.2 Choosing the Aggregation

The aggregation operation (Equation (3.4)) is only present during training and acts as a filter

which aims to explain a given target word ei by one or more source words. If we had the word

alignments, then we would sum over the source words f j aligned with ei . However, in our

setup alignments are not available at training time, so we must rely on what the model has

learned so far to filter the source words. We consider the following strategies:

• Max: encourage the best aligned source word f j , according to what the model has

learned so far. In this case, the aggregation is written as:

sag g r (i , f ) = |f|
max

j=1
s(i , j ) . (3.6)

• Sum: ignore the knowledge learned so far, and assign the same weight to all source

words f j to explain ei .2 In this case, we have

sag g r (i , f ) =
|f|∑

j=1
s(i , j ) . (3.7)

• LSE: give similar weights to source words with similar scores. This can be achieved with

a LogSumExp aggregation operation defined as:

sag g r (i , f ) = 1

r
log

( |f|∑
j=1

er s(i , j )

)
, (3.8)

where r is a positive scalar (to be chosen) controlling the smoothness of the aggregation.

For small r , the aggregation is equivalent to a sum, and for large r , the aggregation acts

as a max.

2This can be seen by observing that the gradients for all source words are the same.
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3.3.3 Decoding

At test time, we align each target word ei with the source word f j for which the matching

score s(i , j ) in (3.3) is highest.3 However, not every target word is aligned, so we consider only

alignments with a matching score above a threshold:

s(i , j ) >μ−(ei )+ασ−(ei ) , (3.9)

where α is a tunable hyper-parameter, and

μ−(ei ) = E
{ẽk=ei ∈ ẽ, f̃ j− ∈ f̃ −

}
[
s(k, j−)

]
(3.10)

is the expectation over all training sentences ẽ containing the word ei , and all words f̃ −
j be-

longing to a corresponding negative source sentence f̃ −, and σ−(ei ) is the respective variance.

3.4 Neural Network Architecture

Our model consists of two convolutional neural networks nete and net f as shown in Equation

(3.3). Both of them take the same form, so we detail only the target architecture.

3.4.1 Word embeddings

The discrete features [e]
d e

wi n

i are embedded into a d e
emb-dimensional vector space via a lookup-

table operation as first introduced in Bengio et al. [2001]:

xe
i = LTWe ([e]

d e
wi n

i )

= (LTWe (ei−d e
wi n /2), . . . , LTW e (ei+d e

wi n /2)) ,

where the lookup-table operation applied at index k returns the kth column of the parameter

matrix We :

LTWe (k) =W e
•,k . (3.11)

The matrix We is of size |We |×d e
emb , where We is the target vocabulary, and d e

emb is the word

embedding size for the target words.

3This may result in a source word being aligned to multiple target words.
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3.4.2 Convolutional layers

The word embeddings output by the lookup-table are concatenated and fed through two

successive 1-D convolution layers. The convolutions use a step size of one and extract context

features for each word. The kernel sizes ke
1 and ke

2 determine the size of the window d e
wi n =

ke
1 +ke

2 −1 over which features will be extracted by nete . In order to obtain windows centered

around each word, we add (ke
1 +ke

2)/2−1 padding words at the beginning and at the end of

each sentence.

The first layer cnne applies the linear transformation Me,1 exactly ke
2 times to consecutive

spans of size ke
1 to the d e

wi n words in a given window:

cnne (xe
i ) = Me,1

⎛
⎜⎜⎝

LTWe ([e]
ke

1
i−a)

...

LTWe ([e]
ke

1
i+a)

⎞
⎟⎟⎠ , (3.12)

where a = �ke
2

2 	, Me,1 ∈Rd e
hu×(d e

emb ke
1 ) is a matrix of parameters, and d e

hu is the number of hidden

units (hu). The outputs of the first layer cnne are concatenated to form a matrix of size ke
2 d e

hu
which is fed to the second layer:

nete (xe
i ) = Me,2 tanh(cnne (xe

i )) (3.13)

where Me,2 ∈ Rdemb×(ke
2 d e

hu ) is a matrix of parameters, and the tanh(·) operation is applied

element wise. The parameters We , Me,1 and Me,2 are trained by stochastic gradient descent to

minimize the loss (3.5) introduced in Section 3.3.1.

3.4.3 Additional Features

In addition to the raw word indices, we consider two additional discrete features which were

handled in the same way as word features by introducing an additional lookup-table for each

of them. The output of all lookup-tables was concatenated, and fed to the two-layer neural

network architecture.

Distance to the diagonal. This feature can be computed for a target word ei and a source

word f j :

di ag (i , j ) =
∣∣∣∣ i

|e| −
j

| f |
∣∣∣∣ , (3.14)
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This feature allows the model to learn that aligned sentence pairs use roughly the same word

order and that alignment links remain close to the diagonal. We use this feature only for

the source network because it encodes relative position information which only needs to be

encoded once. If we would use absolute position instead, then we would need to encode this

information both on the source and the target side.

Part-of-speech Words pairs that are good translations of each other are likely to carry the

same part of speech in both languages [Melamed, 1995]. We therefore add the part-of-speech

information to the model.

Char n-gram. We consider unigram character position features. Let K be the maximum size

for a word in a dictionary. We denote the dictionary of characters as C. Every character is

represented by its index c (with 1 < c < |C|). We associate every character c at position k with a

vector at position ((k −1) · |C|)+c in a lookup-table. For a given word, we extract all unigram

character position embeddings, and average them to obtain a character embedding for a given

word.

3.5 Experiments

3.5.1 Datasets

We use the English-French Hansards corpus as distributed by the NAACL 2003 shared task

[Mihalcea and Pedersen, 2003]. This dataset contains 1.1M sentence pairs and the test and

validation sets contain 447 and 37 examples respectively. We also evaluate on the Romanian-

English dataset of the ACL 2005 shared task [Martin et al., 2005] comprising 48K sentence pairs

for training, 248 for testing and 17 for validation. For English-Czech experiments, we use the

WMT news commentary corpus for training (150K sentence pairs) and a set of 515 sentences

for testing [Bojar and Prokopová, 2006].

3.5.2 Evaluation

Our models are evaluated in terms of precision, recall, F-measure and alignment error rate

(AER). We train models in each language direction and then symmetrize the resulting align-

ments using either the intersection or the grow-diag-final-and heuristic [Och and Ney, 2003,

Koehn et al., 2003]. We validated the choice of symmetrization heuristic on each language pair

and chose the best one for each model considering the two aforementioned types as well as

grow-diag-final and grow-diag.

Additionally, we train phrase-based machine translation models with our alignments using

the popular Moses toolkit [Koehn et al., 2007]. For English-French, we train on the news

commentary corpus v10, for English-Czech we used news commentary corpus v11, and for

Romanian-English we used the Europarl corpus v8. We tuned our models on the WMT2015

test set for English-Czech as well as for Romanian-English; for English-French we tuned on
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the WMT2014 test set. Final results are reported on the WMT2016 test set for English-Czech as

well as Romanian-English, and for English-French we report results on the WMT2015 test set

(as there is no track for this language-pair in 2016). We compare our model to Fast Align, a

popular log-linear reparameterization of IBM Model 2 [Dyer et al., 2013].

3.5.3 Proposed system setup

The kernel sizes of the target network nete (·) are set to ke
1 = ke

2 = 3 for all language pairs. The

kernel sizes of the source network net f (·) are set to k f
1 = k f

2 = 3 for Romanian-English as well

as English-Czech; and for English-French we used k f
1 = k f

2 = 1.

The number of hidden units are d e
hu = d f

hu = 256 and demb is set to 256, The source W f

and target We dictionaries consist of the 30K most common words for English, French and

Romanian, and 80K for Czech. All other words are mapped to a unique UNK token. The word

embedding sizes d e
emb and d f

emb , as well as the char-n-gram embedding size is 128. For LSE,

we set r = 1 in Equation (3.8).

We initialize the word embeddings with a PCA computed over the matrix of word co-occurrence

counts [Lebret and Collobert, 2014]. The co-occurrence counts were computed over the com-

mon crawl corpus provided by WMT16. For part of speech tagging we used the Stanford parser

on English-French data, and MarMoT [Mueller et al., 2013] for Romanian-English as well as

English-Czech.

We trained 4 systems for the ensembles, each using a different random seed to vary the weight

initialization as well as the shuffling of the training set. We averaged the alignment scores

predicted by each system before decoding. The alignment threshold variables μ−(ei ) and

σ−(ei ) for decoding (see Section 3.3.3) were estimated on 1000 random training sentences,

using 100 negative sentences for each of them. Words not appearing in this training subset

were assigned μ−(ei ) =σ−(ei ) = 0.

For systems where d e
wi n > 1 and d f

wi n > 1, we saw a tendency of aligning frequent words

regardless on if they appeared in the center of the context window or not. For instance, a

common mistake would be to align "the cat sat", with "PADDING le chat". To prevent such

behavior, we occasionally replaced the center word in a target window by a random word

during training. We do this for every second training example on average and we tuned this

rate on the validation set.

3.5.4 Results

We first explore different choices for the aggregation operators described in Section 3.3.2, fol-

lowed by an ablation to investigate the impact of the different additional features described in

Section 3.4.3. Next we compare to the Fast Align baseline. Finally, we evaluate our alignments

within a full translation system for all language pairs.
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Aggregation operation

Table 3.1 shows that the LogSumExp (LSE) aggregator performs best on all datasets for every

direction as well as in the symmetrized setting using the grow-diag-final heuristic. All results

are based on a single model trained with the ’distance to the diagonal’ feature detailed above.4

We therefore use LSE for the remaining experiments.

Max Sum LSE
En-Fr 18.1 23.0 15.1
Fr-En 20.7 26.9 15.8
symmetrized 14.8 24.1 12.8
Ro-En 42.2 42.0 37.6
En-Ro 40.4 40.2 35.7
symmetrized 36.4 35.6 32.2
En-Cz 27.9 35.6 24.5
Cz-En 26.5 33.6 24.5
symmetrized 21.8 32.7 21.0

Table 3.1: Alignment error rates for different aggregation operations in each language direction
and with grow-diag-final-and symmetrization.

Additional features

Table 3.2 shows the effect of the different input features. Both POS and the distance to the

diagonal feature significantly improve accuracy. Position information via the ’distance to the

diagonal’ feature is helpful for all language pairs, and POS information is more effective for

Romanian-English and English-Czech which involve morphologically rich languages. We use

the POS and ’distance to the diagonal feature’ for the remaining experiments.

English-French Romanian-English English-Czech
En-Fr Fr-En sym Ro-En En-Ro sym En-Cz Cz-En sym

words 22.2 24.2 15.7 47.0 45.5 40.3 36.9 36.3 29.5
+ POS 20.9 23.9 15.3 45.3 42.9 36.9 35.6 33.7 28.2
+ diag 15.1 15.8 12.8 37.6 35.7 32.2 24.8 24.5 21.0
+ POS + diag 13.2 12.1 10.2 33.1 32.2 27.8 24.6 22.9 19.9

Table 3.2: Alignment error rates using different input features in each language direction and
with grow-diag-final-and symmetrization.

Comparison with the baseline

In the following results we label our model as NNSA (neural network score aggregation). On

English-French data (Table 3.3) our model outperforms the baseline [Dyer et al., 2013] in each

4We use kernel sizes ke
1 = ke

2 = 3 and k
f
1 = k

f
2 = 1 for all language pairs in this experiment.
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individual language direction as well as for the symmetrized setting. With an ensemble of

four models, we outperform the baseline by 1.7 AER (from 11.4 to 9.7), and with an individual

model we outperform it by 1.2 AER (from 11.4 to 10.2). Note that the choice of symmetrization

heuristic greatly affects accuracy, both for the baseline and NNSA.

P R F1 AER
English-French

Baseline 49.6 89.8 63.9 16.7
NNSA 64.7 80.7 71.8 13.2
+ ensemble 61.5 85.8 71.6 11.6

French-English
Baseline 52.9 88.4 66.2 16.2
NNSA 61.7 86.3 72.0 12.1
+ ensemble 62.6 86.7 72.7 11.6

symmetrized
Baseline (inter) 69.6 84.0 76.1 11.4
NNSA (gdfa) 60.4 88.5 71.8 10.2
+ ensemble 59.3 89.9 71.4 9.7

Table 3.3: English-French results on the test set in terms of precision (P), recall (R), F-score
(F1) and AER; ensemble denotes a combination of four systems and we use the intersection
(inter) and grow-diag-final-and symmetrization (gdfa) heuristics.

On Romanian-English (Table 3.4) our model outperforms the baseline in both directions as

well. Adding ensembles further improves accuracy and leads to a significant improvement of

6 AER over the best symmetrized baseline result (from 32 to 26).

P R F1 AER
Romanian-English

Baseline 70.0 61.0 65.2 34.8
NNSA 75.1 65.2 69.8 30.2
+ ensemble 75.8 62.8 68.7 31.3

English-Romanian
Baseline 71.3 60.8 65.6 34.4
NNSA 78.1 61.7 69.0 31.1
+ ensemble 78.4 63.2 70.0 30.0

symmetrized
Baseline (gdfa) 69.5 66.5 68.0 32.0
NNSA (gdfa) 74.1 71.8 73.0 27.0
+ ensemble 73.0 74.5 73.7 26.0

Table 3.4: Romanian-English results (cf. Table 3.3).

On English-Czech (Table 3.5) our model outperforms the baseline in both directions as well.

We added the character feature to better deal with the morphologically rich nature of Czech

and the feature reduced AER by 2.1 in the symmetrized setting. An ensemble improved
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accuracy further and led to a 7 AER improvement over the best symmetrized baseline result

(from 22.8 to 15.8).

P R F1 AER
English-Czech

Baseline 68.4 73.3 70.7 26.6
NNSA 72.0 74.3 73.1 24.6
+ char n-gram 73.8 75.4 74.6 23.2
+ ensemble 78.8 77.2 78.0 20.0

Czech-English
Baseline 68.6 74.0 71.2 25.7
NNSA 74.1 74.0 74.0 22.9
+ char n-gram 78.1 74.1 76.1 21.4
+ ensemble 79.1 77.7 78.4 18.7

symmetrized
Baseline (inter) 88.1 66.6 76.0 22.8
NNSA (gdfa) 75.7 80.3 76.3 19.9
+ char n-gram 76.9 81.3 79.1 17.8
+ ensemble 78.9 83.2 81.0 15.8

Table 3.5: Czech-English results (cf. Table 3.3).

BLEU evaluation

Table 3.6 presents the BLEU evaluation of our alignments. For each language-pair, we select

the best alignment model reported in Tables 3.3, 3.4 and 3.5, and align the training data. We use

the alignments to run the standard phrase-based training pipeline using those alignments. Our

BLEU results show the average BLEU score and standard deviation for five runs of minimum

error rate training (MERT; Och 2003).

Our alignments achieve slightly better results for Romanian-English as well as English-Czech

while performing on par with Fast Align on English-French translation.

Baseline NNSA
French-English 25.4±0.1 25.5±0.1
Romanian-English 21.3±0.1 21.6±0.1
Czech-English 17.2±0.1 17.6±0.1

Table 3.6: Average BLEU score and standard deviation for five runs of MERT.

3.6 Analysis

In this section, we analyze the word representations learned by our model. We first focus on

the source representations: given a source window, we obtain its distributional representation

and then compute the Euclidean distance to all other source windows in the training corpus.
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Table 3.7 shows the nearest windows for two source windows; the closest windows tend to

have similar meanings.

the voting process in working together
the voting area for working together

the voting power with working together
the voting rules from working together

the voting system about working together
the voting patterns by working together
the voting ballots and working together

their voting patterns while working together

Table 3.7: Analysis of source window representations. Each column shows a window over the
source sentence followed by several close neighbors in terms of Euclidean distance (among
the 30 nearest).

We then analyze the relation between source and target representations: given a source

window we compute the alignment scores for all target sentences in the training corpus.

Table 3.8 shows for two source windows which target words have the largest alignment scores.

The example "in working together" is particularly interesting since the aligned target words

collabore, coordonés, and concertés mean collaborate, coordinated, and concerted, which all

carry the same meaning as the source window phrase.

the voting process in working together
vote travaillé

voteraient travailleront
votent collaboration
voter travaillant

votant oeuvrant
scrutin concertés
suffrage coordonés

procédure concert
investiture collabore
élections coopération

Table 3.8: Analysis of source and target representations. Each column shows a source window
and the target words which are most aligned according to our model.

3.7 Conclusion

In this chapter we presented a simple neural network alignment model trained on unlabeled

data. The proposed architecture computes alignment scores as dot products between repre-

sentations of windows around target and source words. We apply an aggregation operation

borrowed from the computer vision literature to make unsupervised training possible. The

aggregation operation acts as a filter over alignment scores and allows us to determine which
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source words explain a given target word. We improve over a popular log-linear reparame-

terization of IBM Model 2 [Dyer et al., 2013] by up to 6 AER on Romanian-English, 7 AER on

English-Czech data and 1.7 AER on English-French alignment. Furthermore, we evaluated the

proposed approach on a full machine translation task and showed that our alignment led to

significant improvements in terms of BLEU score compared to the baseline.
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4 Phrase Prediction: a Chunk-based
Approach

In the previous chapter we introduced a neural network architecture which extracts context

information from sentences, in the form of continuous vector representations. This is done by

applying a convolutional network which, given a fixed size input context around a given word,

outputs a fixed-size continuous representation. In this chapter, we investigate continuous

representations for arbitrarily-sized sentence segments. We introduce a model that takes

advantage of the proposed representations to address a phrase tagging task.

The chapter is organized as follows: we first introduce the concept of phrase tagging. We

then review the existing approach for phrase tagging as well as existing methods to obtain

continuous phrase representations. We finally introduce a new model for phrase tagging as

well as a comparative evaluation in the context of multiword expression tagging.

4.1 Introduction

Traditional NLP tasks such as part-of-speech (POS) tagging or semantic role labeling (SRL)

consist in tagging each word in a sentence with a tag. Another class of problems such as Named

Entity Recognition (NER) or shallow parsing (chunking) consists in identifying and labeling

phrases (i.e. groups of words) with predefined tags. Such tasks can be expressed as word

classification problems by identifying the phrase boundaries instead of directly identifying the

whole phrases. In practice, this consists in prefixing every tag with an extra-label indicating

the position of the word inside a phrase (at the beginning (B), inside (I), at the end (E), single

word (S) or not in a phrase (O)). Different schemes have been used in the literature, such as

the IOB2, IOE1 and IOE2 schemes [Sang and Veenstra, 1999] or BIOES scheme [Uchimoto

et al., 2000] with no clear predominance.

In this chapter, we propose to learn fixed-size continuous representations of arbitrarily-sized

chunks by composing word embeddings. These representations are used to directly classify

phrases without using the classical IOB(ES) prefixing step. The proposed approach is evaluated

on the task of multiword expression (MWE) tagging. Using the SPRML 2014 data for French
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MWE tagging [Seddah et al., 2013], we show that our phrase representations can capture

enough knowledge to perform on par with the BIOES-based model of Collobert et al. [2011]

applied to MWE tagging. Furthermore, we show that our system outperforms the winner of

the SPMRL (syntactic parsing of morphologically rich language) 2013 shared task for MWE

tagging [Constant et al., 2013] which is currently the best published system.

4.2 Related work

In the following sections, we review the literature on phrase prediction and phrase representa-

tion.

4.2.1 Phrase prediction

Phrase classification problems have been tackled using various machine learning methods

such as Support Vector Machines (SVM) for POS tagging [Giménez and Màrquez, 2004] or

chunking [Kudoh and Matsumoto, 2000], second order random fields for chunking [Sun et al.,

2008] or a combination of different classifiers for NER [Radu et al., 2003]. All these approaches

use carefully selected hand-crafted features. More recently, several studies introduced neural

network-based systems that can be trained in an end-to-end manner, using minimal prior

knowledge. These models take advantage of continuous representations of words. For ex-

ample, in Collobert et al. [2011] the authors proposed a deep neural network, which learns

the word representations (the features) and produces scores for BIOES-prefixed tags. Their

system is trained discriminatively in an end-to-end manner, using a conditional random field

[Lafferty et al., 2001] which allows the structure of the sentence to be taken into account.

This architecture has been applied to various NLP tasks, like POS tagging, NER or semantic

role labeling, and achieves state-of-the-art performance in all of them. As opposed to the

proposed approach, all the methods above cast the phrase prediction problem as a classic

word tagging problem using special tagging schemes to identify the segments boundaries.

Kim [2014] introduces a CNN-based model for sentence classification which applies multiple

filters (with varying window sizes) in order to obtain multiple features that are used to perform

the sentence classification task. This approach is similar to the one proposed in this thesis in

that it models arbitrarily-sized segments in a fixed-size vector space.

4.2.2 Continuous phrase representations

Given the success of word embeddings for NLP, several techniques have been proposed to

combine them in order to obtain phrase representations. Several models based on vector

addition or point-wise multiplication have been explored in [Mitchell and Lapata, 2010,

Blacoe and Lapata, 2012]. Such simple compositions have shown to perform competitively on

the paraphrase detection and phrase similarity tasks. More sophisticated approaches used

techniques from logic, category theory, and quantum information [Clark et al., 2008]. Other
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works used the syntactic relations between words to treat certain words as functions and

other as arguments such as adjective-noun composition or noun-verb composition [Baroni

and Zamparelli, 2010, Grefenstette et al., 2013]. Recursive neural network models have been

introduced for syntactic parsing [Socher et al., 2011b, 2013a] and sentiment classification

[Socher et al., 2013b]. In these models, word representations are composed using matrix-vector

operations, following a syntactic parse tree. Cho et al. [2014b] used recurrent neural networks

in the context of machine translation. One recurrent neural network is used to encode a

sequence of symbols into a fixed-length vector representation, and the other decodes the

representation into another sequence of symbols. Both are jointly trained in an end-to-end

manner. Mikolov et al. [2013b] extended the skip-gram model from Mikolov et al. [2013a] by

first identifying a large number of phrases using a data-driven approach, and then treating the

phrases as individual tokens during training.

4.3 Proposed model

The proposed model computes fixed-size continuous vectors of arbitrarily sized chunks which

are then used as inputs to a classifier. This is done by projecting every possible window of

sizes from 1 to K (K being the maximum size) in a common vector space (the same for all

k), using a different neural network for each size k. The representations obtained are given

to a classifier which output a score for every possible tag. To ensure that a word belongs to

one chunk at most, decoding is done using a structured graph decoding, using the Viterbi

algorithm.

4.3.1 Word representation

Given an input sentence S = {w1, . . . , wN }, each word is embedded into a D-dimensional vector

space by applying the lookup-table operation described in Section 3.4.1:

LTW(wn) = Wwn (4.1)

where the matrix W ∈ RD×|W | represents the parameters of the lookup layer. Each column

Wn ∈RD corresponds to the vector embedding of the nth word in the dictionary W .

Adding additional features (such as part-of-speech tags) can be done by adding a different

lookup table for each discrete feature. The input becomes the concatenation of the outputs of

all these lookup-tables. For simplicity, we consider only one lookup-table in the rest of the

architecture description.
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4.3.2 Phrase representation

We denote k-window a window of size k ∈ [1,K ] where K is the maximum window size. Phrase

representations for all k-windows within a given sentence are produced by looking, for all

sizes from 1 to K , at all successive windows of text, sliding over the sentence, from position 1

to N −K +1. Formally, if we denote

xn,k =[LTW(wn−c ), . . . ,LTW(wn)

, ...,

,LTW(wn+k−1), . . . ,LTW(wn+k−1+c )] (4.2)

the concatenated word representations corresponding to the nth k-window (c being the

context from each side of the the k-window), its representation is given by

rn,k = M1
k xn,k , (4.3)

where M1
k ∈ R(k+2c)D×nhu is a matrix of parameters and nhu the dimension of the phrase

representations (which is the same for all k). Words outside the sentence boundaries are

assign a special "PADDING" embedding.

4.3.3 Phrase scoring

We denote T the set of tag and Tk the set of tags for a k-window. We denote tk ∈ Tk the tag

t ∈ T for a k-window. The scores for all k-windows are computed by a linear layer, using their

corresponding representations as input. Formally, the score for the nth k-window are given by

sn,k = t anh(M2rn,k ), (4.4)

where M2 ∈ Rnhu×|T | is a matrix of parameters. We define sn,tk the score for the tag tk ∈ Tk

starting at the position n < N −k +1.

4.3.4 Structure tag inference

The scoring layer outputs a matrix of |Tk |× (N −k +1) scores for each window size k ∈ K . The

next module (see Figure 4.1) of our system is a structured graph G constrained in order to

ensure that a word is tagged only once. Each node Gn,tk is assigned the score sn,tk (the score of
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Figure 4.1: Constrained graph for structured inference. Each node is assigned a score from
the scoring layer. For instance, the first node of the line 2-NP correspond to the score for the
tag NP for the phrase "the cat". Nodes in gray represent final nodes.

the tag tk ∈ Tk starting at the position n < N −k +1) from the scoring layer. Only transitions

from a node Gn,tk to a node Gn+k,t ′
k′

(with n +k <= N ) are possible since a word cannot be

tagged twice in the same path. The Viterbi algorithm is then the natural choice to find the best

path in the lattice. The score for a sentence S of size N along a path of tags [t ]Nt
1 is then given

by the sum of the tag scores:

s(S, [t ]Nt
1 ,θ) =

Nt∑
n=1

sn,tk (4.5)

where θ represents all the trainable parameter.

4.3.5 Training

The proposed neural network is trained by maximizing the likelihood over the training data,

using stochastic gradient ascent. The score s(S, [t ]Nt
1 ,θ) can be interpreted as a conditional

probability by exponentiating this score and normalizing it with respect to all possible path

scores. Taking the log, the conditional probability of the true path [t ]Nt
1 is given by

log p(s(S, [t ]Nt
1 ,θ)) = s(S, [t ]Nt

1 ,θ) − log(
∑
u

s(S, [u]Nu
1 ),θ) (4.6)

Following Rabiner [1990], the normalization term, i.e. the second term of this equation, can

be computed in linear time thanks to a recursion similar to the Viterbi algorithm. The whole

architecture, including the input feature, phrase representations and scoring layer, is trained

through the graph in order to encourage valid paths of tags during training, while discouraging
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all other paths.

4.4 Experiments

In this section, we introduce the task of multiword expression detection used to evaluate the

proposed approach followed by a comparative evaluation.

4.4.1 Multiword expression

Multiword expressions are groups of tokens which act as single units at some level of linguistic

analysis. They cover a wide range of linguistic constructions such as idioms ("kick the bucket"),

noun compound ("traffic light") or fixed phrases ("ad hoc"). As they can carry meaning which

can not be derived directly from the meaning of individual constituents (as for idioms), they

are difficult to handle by automatic systems and represent a key issue for many NLP systems

addressing tasks such as machine translation or text generation.

4.4.2 Corpus

Experiments were conducted on the SPMRL french corpus provided for the Shared Task 2013

[Seddah et al., 2013]. This dataset provides 14.7k sentences (443k tokens) with 22.6k identified

MWE. A given MWE is defined as a continuous sequence of terminals, plus a POS tag among

the 10 possible POS tags. As presented in Table 4.1, a wide majority of the chunks are 2-chunks

or 3-chunks (91.2%).

Chunk size 2 3 4 5 5+
#chunk 11108 10188 1702 309 250
percentage 47.2 43.2 7.2 1.3 1.1

Table 4.1: Number of k-sized chunks in the training corpus

4.4.3 Evaluation

We evaluate the performance of the proposed network on MWE tagging using the three metrics

described in Seddah et al. [2013], reporting for each of them the recall, precision and F-score.

MWE correspond to the full MWEs, in which a predicted MWE counts as correct if it has the

correct span (same group as in the gold data). MWE+POS is defined in the same fashion,

except that a predicted MWE counts as correct if it has both correct span and correct POS tag.

COMP correspond to the non-head components of MWEs: a non-head component of MWE

counts as correct if it is attached to the head of the MWE, with the specific label that indicates

that it is part of an MWE.
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4.4.4 Baseline models

We compare the proposed model to our implementation of the BIOES-based model described

in Collobert et al. [2011], applied to MWE tagging. We also report the results of the LIGM-

Alpage architecture which obtained the best results for French SPMRL 2013 MWE recognition

shared task [Constant et al., 2013]. Their system is based on Conditional Random Fields (CRF)

and on external lexicons which are known to greatly improve MWE segmentation (Constant

and Tellier, 2012).

4.4.5 Setup

The network is trained using stochastic gradient descent over the training data, until conver-

gence on the validation set. Hyper-parameters are tuned on the validation set. The look-up

table size for the words is 64. Word embeddings are pre-trained by performing a simple PCA on

the matrix of word co-occurrences [Lebret and Collobert, 2014], using Wikipedia data. These

embeddings are fine-tuned during the training process. As additional features, we only use

the part-of-speech tags obtained using the freely available tool MarMoT [Mueller et al., 2013]1.

The POS-tag embedding size is 32. The context size is c = 2 The maximum size for a window is

K = 7. The common embedding size for the k-window is nhu = 300. We fix the learning rate

to 0.01. Following Legrand and Collobert [2015], to prevents units from co-adapting, we adopt

a dropout regularization strategy [Hinton et al., 2012] after every lookup-table, as the capacity

of our network mainly lies on the input embeddings.

For the BIOES-based model, we use the following parameters: the context size is 2, word and

tags feature sizes are 64 and 32 respectively, the hidden layer size is 300, the learning rate is

0.001. We use the same dropout regularization and the same word initialization as for the

proposed model.

4.5 Results

We first compare our approach with the BIOES-model from Collobert et al. [2011]. Table 4.2

presents the results obtained for the two models. We see that, our model performs on par

with the BIOES-based model. Interestingly, adding the POS features has little effect on the

performance for MWE identification but helps to determine the MWE POS-tags.

In Table 4.3, we compare our model with the winner of the SPMRL 2013 shared task for MWE

recognition [Constant et al., 2013]. Both the BIOES and chunk based models are obtained

using an ensemble of 5 models, averaging the scores obtained. We see that both our model

and the BIOES-based model outperform this state-of-the-art model.

1The tags used are available here: http://cistern.cis.lmu.de/marmot/models/CURRENT/

41



Chapter 4. Phrase Prediction: a Chunk-based Approach

COMP MWE MWE+POS
BIOES-model 79.4 78.5 75.4
+ WI 80.8 80.1 76.7
+ WI + POS 80.8 80.1 77.6
Chunk-model 79.1 78.3 75.2
+ WI 80.7 79.6 76.4
+ WI + POS 80.9 79.8 77.5

Table 4.2: Results on the test corpus (4043 MWEs) in terms of F-measure. WI stands for word
initialization.

COMP MWE MWE+POS
LIGM-Alpage 81.3 80.7 77.5
BIOES-model 81.4 80.7 78.2
Chunk-model 81.3 80.7 78.1

Table 4.3: Results on the test corpus (4043 MWEs) in terms of F-measure

4.6 Representation analysis

As the proposed chunk-based model produces continuous phrase representations, it allows

for phrase comparison. Table 4.4 presents some of the closest neighbors (in terms of Eu-

clidean distance) for some chosen phrases. We see that close representations correspond to

semantically close phrases.

président de la république
chef de l’état

présidence de la république
ministre de l’intérieur

évasion fiscale
fraude fiscale

détournements financiers
libéralisme sauvage

impôt sur le revenu
impôt sur la fortune

impôt sur le patrimoine
impôts sur la fortune

Table 4.4: Closest neighbors for three input phrases in terms of Euclidean distance.

4.7 Conclusion

In this chapter, we proposed a neural network model that learns fixed-size continuous repre-

sentations of arbitrarily-sized chunks by composing word embeddings. These representations

are used to directly identify and classify phrases. After evaluation on the task of multiword

expression tagging, our model performed on par with a baseline BIOES-based system. Fur-
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thermore, we showed that it outperforms the best performing model for this task published to

this date. The proposed approach does not use any external lexicon and relies on few input

features. As it computes phrase representations, it allows for direct comparison between

phrases. This composition procedure will be further exploited in Chapter 6.
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5 Sequence Processing for Structural
Inference: Syntactic Parsing

In this chapter, a word sequence modeling approach based on neural networks is proposed

to tackle the problem of syntactic parsing. As opposed to the tagging task performed in the

previous chapters, structural inference is required in order to solve the parsing task. In this

work, parsing is cast as a greedy succession of phrase prediction problems, the latter being

already addressed in the previous chapters.

The chapter is organized as follows: we first introduce the task of syntactic parsing and review

the existing methods for this task. We later propose a greedy approach to parsing using word

embeddings. Finally, we provide an experimental comparison with existing methods as well

as an analysis of our system.

5.1 Introduction

In natural language processing (NLP), the constituency parsing task aims at analyzing the

underlying syntactic structure of a natural language sequence of words, i.e. a sentence. As

illustrated in Figure 5.1 the analysis is expressed as a tree of syntactic relations between

sub-constituents of the sentence. In the linguistic world, Chomsky [1956] first introduced

formally the parsing task, by defining the natural language syntax as a set of context-free

grammar rules, i.e. a particular type of formal grammar, combined with transformations rules.

Automated syntactic parsing became rapidly a key task in computational linguistics. A parse

tree carries not only syntax information but might also embed some semantic information, in

the sense that it can disambiguate different interpretations of a given sentence. In that respect,

parsing has been widely used as an input feature for several other NLP tasks such as machine

translation [Zollmann and Venugopal, 2006], information retrieval [Alonso et al., 2002], or

semantic role labeling [Punyakanok et al., 2008].

In this chapter, we propose a greedy and purely discriminative parsing approach. In contrast

with most existing methods, it relies on few simple features. The core of our architecture

is a simple neural network which is fed with continuous word vector representations (as in
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S

VP

VP

NP

PP

NP

wallthe

on

NP

writingthe

seen

have

NP

I

Figure 5.1: Example on syntactic parse tree.

Collobert and Weston [2008] and Socher et al. [2013a]). It models the conditional distributions

of context-aware syntactic rules. The learned distribution rules are naturally smoothed due to

the continuous nature of the input features.

5.2 Related work

The first attempts to automatically parse natural language were mainly conducted using

generative models. A wide range of parser were, and still are, based on probabilistic context-

free grammar (PCFGs) [Magerman, 1995, Collins, 2003, Charniak, 2000]. These types of parsers

model the syntactic grammar by computing statistics of simple grammar rules (over parsing

tags) occurring in a training corpus. However, many language ambiguities cannot be caught

with simple tag-based PCFG rules. A key element in the success of PCFGs is to refine the rules

with a word lexicon. This is usually achieved by attaching to PCFGs a lexical information

called the head-word. Several head-word variants exist, but they all rely on a deterministic

procedure which leverages clever linguistic knowledge. Parsing inference is mostly achieved

using simple bottom-up chart parser [Kasami, 1965, Earley, 1970, Kay, 1986]. These methods

face a classical learning dilemma: on one hand PCFG rules have to be refined enough to

avoid any ambiguities in the prediction. On the other hand, too much refinement in these

rules implies lower occurrences in the training set and thus a possible generalization issue.

PCFGs-based parsers are thus judiciously composed with carefully chosen PCFG rules and

clever regularization tricks.
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5.2.1 State-Of-The-Art

Discriminative approaches from Henderson [2004], Charniak and Johnson [2005] outperform

standard PCFG-based generative parsers, but only by discriminatively re-ranking the K -best

predicted trees coming out of a generative parser. To our knowledge, the state of the art in

syntactic parsing is still held by McClosky et al. [2006], who leverages discriminative re-ranking,

as well as self-training over unlabeled corpora: a re-ranker is trained over a generative model

which is then used to label the unlabeled dataset. The original parser is then re-trained with

this new “labeled” corpus. Petrov and Klein [2007] introduced a method to automatically refine

PCFG rules by iteratively spliting them. This method leverages an efficient coarse-to-fine

procedure to speed up the decoding process. More recently, Finkel et al. [2008], Petrov and

Klein [2008] proposed PCFG-based discriminative parsers reaching the performance of their

generative counterparts. Conditional Random Fields (CRFs) are at the core of such approaches.

Carreras et al. [2008] currently holds the state-of-the-art among the (non-reranking) discrimi-

native parsers. Their parser leverages a global-linear model (instead of a CRF) with PCFGs,

together with various new advanced features. Huang et al. [2010] showed that jointly using

multiple self-trained grammars can achieve higher accuracy than an individual grammar.

In contrast to these existing approaches, our parser does not rely on PCFGs, nor on refined

features like head-words. Tagging nodes is achieved in a greedy manner, using only raw words

and part-of-speech (POS) as features.

5.2.2 Greedy Parsing

Many discriminative parsers follows a greedy strategy because of the lack (or the intractability)

of a global tree score for an entire derivation path which would combine independent node

decisions. Adopting a greedy strategy that maximize local scores for individual decisions

is then a solution worth investigating. One of the first successful discriminative parsers

[Ratnaparkhi, 1999] was based on maximum entropy classifiers (trained over a large number of

different features) and powered a greedy shift-reduce strategy. Henderson [2003] introduced a

generative left-corner parser where the probability of a derivation given the derivation historic

was approximated using a simple synchrony networks, which is a neural network specifically

designed for processing structures. Turian and Melamed [2006] later proposed a bottom-up

greedy algorithm following a left-to-right or a right-to left strategy and using a feature boosting

approach. In this approach, greedy decisions regarding the tree construction are made using

decision tree classifiers. Their model was nevertheless limited to short length sentences.

Zhu et al. [2013] proposed a shift-reduce parser which achieves results comparable to their

chart-based counterparts. This is done by leveraging several unsupervisely trained features

(word Brown clustering, dependency relations, dependency language model) combined with

a smart beam search strategy.
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5.2.3 Syntactic parsing using word embeddings

Several works leveraging continuous vector representations have been previously proposed for

syntactic parsing. Collobert [2011] introduced a neural network-based approach, iteratively

tagging “levels” of the parse tree where the full sentence was seen at each level. A complex

pooling approach was introduced to capture long-range dependencies, and performance only

matched early lexicalized parsers. Socher et al. [2011b] introduced a recursive approach, where

representations are “compressed” two by two to form higher-level representations. However,

the system was limited to bracketing, and did not produce parsing tags. The authors later

proposed an improved version in Socher et al. [2013a], where their approach was used to re-

rank the output of the Stanford Parser, approximately reaching state-of-the-art performance.

In contrast, our approach does not re-rank an external generative parser.

5.3 A greedy discriminative parser

5.3.1 Smoothed Context Rule Learning

PCFG-based parsers rely on the statistical modeling of rules of the form A → B , C , where

A, B and C are tree nodes. The context-free grammar is always normalized in the Chomsky

normal form (CNF) to make the global tree inference practical (with a dynamic programming

algorithm like CYK or similar). In general a tree node is represented as several features,

including for example its own parsing tags and head word (for non-terminal nodes) or word

and Part Of Speech (POS) tag (for terminal nodes) [Collins, 2003]. State-of-the-art parsers rely

on a judicious blending of carefully chosen features and regularization: adding features in

PCFG rules might resolve some ambiguities, but at the cost of sparser occurrences of those

rules. In that respect, the learned distributions must be carefully smoothed so that the model

can generalize on unseen data. Some parsers also leverage other types of features (such as

bigram or trigram dependencies between words [Carreras et al., 2008]) to capture additional

regularities in the data.

In contrast, our system models non-CNF rules of the form A → B1, ...,BK . The score of each

rule is determined by looking at a large context of tree nodes. More formally, we learn a

classifier of the form:

f (Cl e f t ,B1, ...,BK ,Cr i g ht ) = (s1, ..., s|T |) (5.1)

where the Bk are either terminal or non-terminal nodes, K is the size of the right part of the

rule, Cle f t and Cr i g ht are context terminals or non-terminals and st is the score for the parsing

tag t ∈ T . Each possible rule Ai → B1, ...,BK is thus assigned a score si by the classifier (with

Ai ∈ T ). These scores can be interpreted as probabilities by performing a softmax operation.

We used a Multi Layer Perceptron (MLP) as classifier. Formal details are presented in Section

5.4.2.
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It ’s a real dog .

NP NP

(a)

It ’s a real dog .

NP NP

PP

(b)

It ’s a real dog .

NP NP

PP

S

(c)

Figure 5.2: Illustration of the greedy algorithm: at each iteration (a)→(b)→(c), the classifier
sees only the previous tree heads (ancestors), shown here in italics. It predicts new nodes
(here in bold). New tree heads become the ancestors at the next iteration. All other previously
discovered tree nodes (shown in regular black here) will remain unchanged and ignored in
subsequent iterations.

The only tree node features considered in our system are parsing tags (or POS tags for termi-

nals), as well as the headword (or words for terminals). We overcome the problem of data

sparsity which occurs in most classical parsers by leveraging continuous vector representations

for all features associated to each tree node. In particular, word (or headword) representations

are derived from recent distributed representations computed on large unlabeled corpora

(such as Collobert and Weston [2008], Dhillon et al. [2011]). For instance, thanks to this ap-

proach, our system can naturally generalize a rule like N P → a, clever, g uy to a possibly

unseen rule like N P → a, smar t , g uy , as the vector representation of smar t and clever are

close to each other, given that they are semantically and syntactically related.

5.3.2 Greedy Recurrent Algorithm

Our parser follows a bottom-up iterative approach: the tree is constructed starting from the

terminal nodes (sentence words). Assuming that a part of the tree has been already predicted

(see Figure 5.2), the next iteration of our algorithm looks for all possible new tree nodes

which combine ancestors (i.e., heads of the trees predicted so far). New nodes are found by

maximizing the score of our context-rule classifier (equation 5.1), constrained in such a way so

that two new nodes cannot overlap, thanks to a dynamic programming approach. The system

is recurrent, in the sense that new predicted parsing labels are used in the next iteration of our

49



Chapter 5. Sequence Processing for Structural Inference: Syntactic Parsing

algorithm.

For each iteration, assuming N ancestors

X = [X1, ..., XN ] , (5.2)

finding all possible new nodes with K ancestors would require to apply

f (Cl e f t ,B1, ...,BK ,Cr i g ht ) (5.3)

over all possible windows of K ancestors in X . One would also have to vary K from 1 to

N , to discover new nodes of all possible sizes. Obviously, this could quickly become time

consuming for large sentence sizes. This problem of finding nodes with a various number

of ancestors can be viewed as the classical NLP problem of finding “chunks” of various sizes.

This problem is typically transformed into a tagging task: finding the chunk with label A in the

rule A → Xi , Xi+1, . . . , X j can simply be viewed as tagging the ancestors with B-A, I -A, . . .E-A,

where we use the standard BIOES label prefixing (Begin, Intermediate, Other, End, Single). See

Table 5.1 for a concrete example. The classifier outputs the “Other” tag, when the considered

ancestors do not correspond to any possible rule.

In the end, our approach can be summarized as the following iterative algorithm:

1. Apply a sliding window over the current ancestors: the neural network classifier (5.1) is

applied over all K consecutive ancestors X1, ..., XN , where K has to be carefully tuned.

2. Aggregate BIOES tags into chunks: a dynamic program (based on a CRF, as detailed in

Section 5.4.3) finds the most likely sequence of BIOES parsing tags. The new nodes are

then constructed by simply aggregating BIES tags

B-A, I -A, . . .E-A

into A (for any label A).

3. Ancestors tagged as O, as well as newly found tree nodes are passed as ancestors to the

next iteration.

The tree construction ends when there is only one ancestor remaining, or when the classifier

did not find any new possible rule (everything is tagged as O).

5.4 Architecture

In this section, we formally introduce the classification architecture used to find new tree

nodes at each iteration of our greedy recurrent approach. A simple two-layer neural network is

at the core of the system. It leverages continuous vector word representations. In this respect,
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Table 5.1: A simple example of a grammar rule extracted from the sentence “It ’s a real dog .”,
and its corresponding BIOES grammar. In both cases, we include a left and right context of
size 1. The middle column shows the required classifier evaluations. The right column shows
the type of scores produced by the classifier.

GRAMMAR CLASSIFIER EVALUATIONS SCORES

NP → ’S A REAL DOG . f (’S, A, REAL, DOG, .) sN P , ..., sV P , sO

B-NP → ’S A REAL f (’S, A, REAL)
I-NP → A REAL DOG f ( A, REAL, DOG) sB -N P , ..., sE -V P , sO

E-NP → REAL DOG . f ( REAL, DOG, .)

the network is clearly inspired by the work of Bengio et al. [2001] in the context of language

modeling, and later re-introduced in Collobert et al. [2011] for various NLP tagging tasks.

Given an input sequence of N tree node ancestors X1, ..., XN (as defined in Section 5.3.2),

our model outputs a BIOES-prefixed parsing tag for each ancestor Xi , by applying a sliding

window approach. These scores are then fed as input to a properly constrained graph on

which we apply the Viterbi algorithm to infer the best sequence of parsing tags. The whole

architecture (including transition scores in the graph) is trained in an end-to-end manner by

maximizing the graph likelihood. The system can be viewed as a particular Graph Transformer

Network [Bottou et al., 1997], or a particular non-linear Conditional Random Field (CRF) for

sequences [Lafferty et al., 2001]. Each layer of the architecture is presented in detail in the

following paragraphs. The objective function will be introduced in Section 5.4.4.

5.4.1 Words Embeddings

Given a sentence of N words, w1, w2, ..., wN , each word wn ∈ W is first embedded in a D-

dimensional vector space by applying the lookup-table operation described in Section 3.4.1:

LTW(wn) = Wwn , (5.4)

where the matrix W ∈RD×|W | represents the parameters to be trained in this lookup layer. Each

column Wn ∈RD corresponds to the vector embedding of the nth word in our dictionary W .

In practice, it is common to give several features (for each tree node) as input to the network.

This can be easily done by adding a different lookup table for each discrete feature. The input

becomes the concatenation of the outputs of all these lookup-tables:

LTW1,...,WK (wn) =(LTW1 (wn))T ,

...,

(LTW|F |(wn))T (5.5)
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where |F | is the number of features. For simplicity, we consider only one lookup-table in the

rest of the architecture description.

5.4.2 Sliding Window BIOES Tagger

The second module of our architecture is a simple neural network which applies a sliding

window over the output of the lookup tables, as shown in Figure 5.3. The nth window is

defined as

un = [LT (Xn− K−1
2

), ...,LT (Xn), ...,LT (Xn+ K−1
2

)] , (5.6)

where K is the size of window. The module outputs a vector of scores s(un) = [s1, ..., s|T |] (where

st is the score of the BIOES-prefixed parsing tag t ∈ T for the ancestor Xn). The ancestors with

indices exceeding the input boundaries (n − (K −1)/2 < 1 or n + (K −1)/2 > N ) are mapped to

a special padding vector (which is also learned). As any classical two-layer neural network, our

architecture performs several matrix-vector operations on its inputs, interleaved with some

non-linear transfer function h(·),

s(un) = M2 h(M1 un) , (5.7)

where the matrices M1 ∈RH×K |D| and M1 ∈R|T |×H are the trained parameters of the network.

The number of hidden units H is a hyper-parameter to be tuned.

As transfer function, we chose in our experiments a (fast) “hard” version of the hyperbolic

tangent:

h(x) =

⎧⎪⎨
⎪⎩

−1 if x <−1

x if −1 ≤ x ≤ 1

1 if x > 1

(5.8)

5.4.3 Aggregating BIOES Predictions

The scores obtained from the previous module of our architecture are in BIOES format. The

next module in our system aggregates these tags and finds the new tree nodes at each iteration

of our greedy recurrent approach. We introduce a graph G of scores as shown in Figure 5.4:

each node of the graph corresponds to a BIOES score produced for each ancestor by the neural

network module. This graph is constrained in such a way that only feasible sequences of tags

are possible (e.g. B-A tags can only be followed by I -A tags, for any parsing label A). Our graph

also includes a duration model: on each edge, we add a transition score At t ′ for jumping from

tag t ∈ T to t ′ ∈ T .

A score for a sequence of tags [t ]N
1 in the lattice G is obtained as the sum of scores along [t ]N

1
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Figure 5.3: Sliding window tagger. Given the concatenated output of lookup tables (here the
ancestor words/headwords and ancestor tags), the tagger outputs a BIOES-prefixed parsing
tag for each ancestor node. The neural network itself is a standard two-layer neural network.

in G :

S([t ]N
1 , [u]N

1 ,θ) =
N∑

n=1
(Atn−1tn + s(un)tn ) , (5.9)

where θ represents all the trainable parameters of the complete architecture. The sequence of

tags [t∗]N
1 for the input sequence of tree node ancestors X1, . . . , XN is then inferred by finding

the path which leads to the maximal score:

[t∗]N
1 = argmax

[t ]N
1 ∈T N

S([t ]N
1 , [u]N

1 ,θ) (5.10)

The Viterbi algorithm is the natural choice for this inference. From this optimal BIOES tag

sequence, we extract sub-sequences B-A, . . . , E-A and S-A as new nodes for the tree. O tags

are simply ignored. See Section 5.3.2 for more details.
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Figure 5.4: Constrained graph for tag inference. Only feasible sequences of tags are considered.
The nodes of the graph are assigned a score from the tagger shown in Figure 5.3. Edges of the
graph are assigned a transition score which is learned similarly to other parameters in the
architecture.

5.4.4 Training Likelihood

Our architecture sees sequences of ancestor tree nodes, and outputs new possible syntactic

tree nodes only from this history. Technically speaking, the training set can be prepared by

iterating over each tree in the training corpus, removing all possible leaves in an iterative

process so that all training rules are uncovered (see Figure 5.5). It implies that the system is

only trained on correct sequences of tree nodes. In that respect, it is not trained to recover

from past mistakes it could have made during the recurrent process.

The neural network is trained by maximizing a likelihood over the training data, using stochas-

tic gradient descent. The score for a path can be interpreted as a conditional probability over

this path by exponentiating score (thus making it positive) and normalizing it with respect

to all possible paths. We define P as the set of possible tag paths in the constrained graph G ,

as shown in Figure 5.4. The log-probability of a sequence of tags [t ]N
1 given the lookup table

representations [u]N
1 is given by:

logP ([t ]N
1 |[u]N

1 ,θ) = S([t ]N
1 , [u]N

1 ,θ) − logadd
∀[t ′]N

1 ∈P
S([t ′]N

1 , [u]N
1 ,θ)) (5.11)

where we adopt the notation logaddzn
= log(

∑
i ezi ).

Computing the log-likelihood efficiently is not straightforward, as the number of terms in the

logadd grows exponentially with the length of the sentence. Fortunately, it can be computed

in linear time with the Forward algorithm, which derives a recursion similar to the Viterbi al-
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S
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P : NP VDB PP
L : O B-VP E-VP
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P : NP VP
L : B-S E-S
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Figure 5.5: Iterative procedure (a)→(b)→(c)→(d) to generate the training data, which involves
cutting out all tree leaves at each step. The data fed to our network architecture is then easily
uncovered (H: ancestor headwords/words, P: ancestor POS/parsing tags, L: parsing labels to
be predicted).

gorithm (see Rabiner [1990]). The complete architecture is trained by simply backpropagating

through this recursion, up to the lookup layers. Note that the likelihood (5.11) corresponds to

a standard CRF model for sequences.
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5.5 Experiments

5.5.1 Corpus

Experiments were performed using the standard English Penn Treebank data set (Marcus et al.,

1993). We used the classical parsing setup, with sections 02-21 used to train our model, section

22 used as validation for choosing all our hyper-parameters, and section 23 used for testing.

We applied only a small subset of the typical pre-processing set over the data: (1) functional

labels, traces were removed, (2) the PRT label was replaced as ADVP [Magerman, 1995].

ADJP

SBAR

S

VP

VP

understand
VB

to
TO

easy
JJ

⇒

ADJP

SBAR#S#VP

VP

understand
VB

to
TO

easy
JJ

Figure 5.6: Training corpus pre-processing. Original Penn Treebank trees containing non-
terminal nodes with only one non-terminal node (left), and after concatenating those nodes
(right).

The Penn Treebank data set contains non-terminal tree nodes which only have one non-

terminal child, as shown in Figure 5.6. To avoid possible looping issues (called unary chain

issue in the literature) in our parsing algorithm (e.g. a node being repetitively tagged with

two different tags in our iterative process), we transformed the training corpus so that non-

terminal nodes having only one non-terminal child were merged together, and take as tag the

concatenation of all merged node tags (see Figure 5.6). This way, the system learns that a node

must contain at least two ancestors. The iterative process is thus guaranteed to converge. We

kept only concatenated labels which occurred at least 30 times (corresponding to the lowest

number of occurrences of the less common original parsing tag), leading to 11 additional

parsing tags. Added to the original 26 parsing tags, this resulted in 149 tags produced by our

parser (148 BIOES-prefixed tags + Other). At test time, the inverse operation is performed:

concatenated tag nodes are simply expanded into their original form.
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5.5.2 Features

We consider the following features to train our architecture:

• Words and headwords:

– For terminal nodes, the word itself, in low caps1. As in Collins [2003], words

occurring 5 times or less were mapped to an “UNKNOWN” word.

– For non-terminal nodes: headwords, following the procedure described in Collins

[2003].

• POS tags (for terminals) or parsing tags of the node’s ancestors (for non-terminals). POS

tags were produced with SENNA [Collobert et al., 2011].

• POS tags of headwords.

5.5.3 Setup

We train the network using stochastic gradient descent over the available training data, until

convergence on the validation set. We select the following hyper-parameters according to

the validation. Lookup-table sizes for the words and tags (part-of-speech and parsing) are

100 and 20, respectively. The window size for the tagger is K = 7 (3 neighbors from each side).

The size of the tagger’s hidden layer is H = 500. We used the word embeddings obtained from

Lebret and Collobert [2014] to initialize the word lookup-table. These embeddings were then

fine-tuned during the training process. Finally, we fixed the learning rate to λ= 0.025 during

the stochastic gradient procedure. The only “trick” used during training was to divide the

learning rate by the input size of each linear layer [Plaut and Hinton, 1987].

5.5.4 Results

Table 5.2 shows the importance of the different features we used. Even though the training pro-

cedure is non-convex, the variance of the F1 score over 20 different runs (for the architecture

Word + POS + hw + wi) was only 0.01.

Since our architecture performs the decoding very quickly, we additionally performed a voting

procedure using several models learned from different random initializations. We averaged all

neural network classifiers (ignoring their own respective CRF decoding part) and trained a

new CRF on top of it (without fine-tuning any of the neural network classifiers). The scores

obtained with 10 classifiers are shown in Table 5.3.

Results in Table 5.3 are reported in terms of recall (R), precision (P) and F1 score. Scores were

1Adding a capital feature had no impact on the performance of our parser. Note that POS tags were generated
with the original caps in the sentence.
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FEATURE F1
WORD + POS 85.1
WORD + POS + HW 86.9
WORD + POS + WI 86.2
WORD + POS + HW + WI 88.3

Table 5.2: Influence of different features. Results are given in terms of F1-score. POS =
part-of-speech, hw = head-word, wi = word initialization from Lebret and Collobert [2014].

MODEL (R) (P) F1 (R) (P) F1
MAGERMAN (1995) 84.6 84.9 84.8

GENERATIVE COLLINS (1999) 88.5 88.7 88.6 88.1 88.3 88.2
CHARNIAK (2000) 90.1 90.1 90.1 89.6 89.5 89.6

GENERATIVE HENDERSON (2004) 89.8 90.4 90.1
WITH CHARNIAK AND JOHNSON (2005) 92.0 91.1

RE-RANKING SOCHER ET AL (2013) 91.1 90.4
MCCLOSKY ET AL (2006) 92.1
PETROV AND KLEIN (2008) 90.0 89.4

PURELY CARRERAS ET AL. (2008) 90.7 91.4 91.1
DISCRIMINATIVE OUR MODEL 88.4 89.0 88.7 88.0 88.6 88.3

OUR MODEL ( VOTING) 90.0 90.1 90.1 89.6 89.7 89.6

Table 5.3: Results in terms of Precision (P), Recall (R), and F1 score. The reported time is the
time to parse the full WSJ test corpus.

obtained using the Evalb implementation2. We compare our system with several other parsers.

We chose to report the scores of the three main generative parsers, as well as those of known

re-ranking parsers. We also considered two major purely discriminative parsers.

5.5.5 Rule Prediction Analysis

Figure 5.7 shows the output of the classifier (applied on every possible window of size 7) for

the sentence "When the little guy gets frightened, the big guys hurt badly.". For this sentence,

the expected rule are the following:

WHADVP → When

NP → the little guy

ADJP → frightened

NP → the big guys

ADVP → badly

It is interesting to see that the network alone is able to predict all the rules of the sentence. The

CRF is however essential to produce a consistent output, by aggregating BIES prefixed chunks.

2Available at http://nlp.cs.nyu.edu/evalb/
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Figure 5.7: Normalized scores from the network classifier (black means high score) for the
sentence "When the little guy gets frightened, the big guys hurt badly.". Each tag is in BIOES
form (y axis). Each ancestor in the input is on the x axis.

5.6 Conclusion

We presented a simple model that is able to learn syntactic grammar rules surprisingly well,

considering the simple features employed. This parser achieves performance approaching

those obtained by state-of-the-art re-ranking systems and it performs almost the best amongst

purely discriminative parsers. Due to its simplicity, there are many possibilities for further

improvement. In particular, the use of the head-word procedure [Collins, 2003], selecting only

the most relevant word in a sub-tree, should be revisited.

In the next chapter, the proposed model is enhanced using a compositional procedure that

learns a higher-level sub-tree representation, in the spirit of Socher et al. [2013a].
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6 RNN-Based Phrase Composition for
Syntactic Parsing

In the previous chapter, we introduced a greedy approach to syntactic parsing in which the

task is cast as multiple phrase prediction problems that are solved recursively in a greedy

manner. In this chapter, this model is enhanced using the composition operation introduced

in Chapter 3. This procedure is recursively applied in order to perform a syntactic and semantic

summary of the contents of sub-trees in the form of fixed-size vector representations. Both

the composition and node prediction are trained jointly.

The chapter is organized as follows: We first present several related approaches making use

of recursive neural networks for syntactic parsing. We then introduce our novel composition

procedure. We finally provide an empirical evaluation of our models as well as an analysis of

our compositional vectors.

6.1 Related Work

RNN were seen very early [Elman, 1991] as a way to tackle the problem of parsing, as they can

naturally recur along the parse tree. A first practical application of RNN on syntactic parsing

was proposed by Costa et al. [2002]. Their approach was based on a left-to-right incremental

parser, where a recursive neural network was used to re-rank possible phrase attachments.

The goal of their contribution was, in their own terms, the assessment of a methodology rather

than a fully functional system. They demonstrated that RNNs were able to capture enough

information to make correct parsing decisions.

Collobert [2011] proposed a purely discriminative parser based on neural networks. This

model leveraged continuous vector representations from Collobert and Weston [2008], and

builds the full parsing tree in a bottom-up manner. To deal with the recursive structure

inherent to syntactic parsing, a very simple history was given to the network as a new vector

feature (corresponding to the nearest tag spanning the word being tagged).

Socher et al. [2011a] also leveraged continuous vectors from Collobert and Weston [2008],

combining them to build a tree in a greedy manner. However, this work did not tackle the full
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parse tree problem, but was restricted to unlabeled bracketing. Socher et al. [2013a] introduced

the compositional vector grammar (CVG) which combines PCFGs with a syntactically untied

recursive neural network (SU-RNN). Composition is performed over a binary tree, then used

to score the K -best trees coming out of a generative parser. For a given (parent) node of

the tree, the authors apply a composition operation over its child nodes, conditioned with

their syntax information. In contrast, we compose phrases (not limited to two words). Both

the words and syntax information of the child nodes are fed to each composition operation,

leading to a vector representation of each tree node carrying both some semantic and syntactic

information. We also do not rely on any generative parser as our model jointly trains the task

of node prediction, and the task of node composition.

Chen and Manning [2014] proposed a greedy transition-based dependency parser based

on neural networks, fed with dense word and tag vector representations. In contrast to our

approach, it does not integrate a compositional procedure over sentence sub-trees. The

network is only involved in predicting correct transitions at each step of the parsing process.

6.2 Greedy RNN Parsing

As introduced in Chapter 5, our parser is based on a neural network tagger, and performs

parsing in a greedy recurrent way. Our approach is a bottom-up iterative procedure: the tree

is constructed starting from the terminal nodes (sentence words), as shown in Figure 6.1.

Including the new composition procedure, our procedure can be summarized as the following

iterative algorithm. Note that the novelty resides in step 3:

1. We look for all possible new tree nodes merging input constituents (i.e., heads of the

trees predicted so far or leaves which have not been composed so far). For that purpose,

we apply a neural network sliding window tagger (as described in Section 5.4.2) over

input constituents X1, . . . , XN . Considering an arbitrary rule

A → Xi , Xi+1, . . . , X j

defining a new node with tag A, the tagger will produce prefixed tags B-A, I -A, . . .E-A, re-

spectively for constituents Xi , Xi+1, . . . , X j , following a classical BIOES prefixing scheme

2. A simple dynamic programming (as described in Section 5.4.3) is performed, only to

insure the coherence of the tag prediction (e.g., a B-A can be followed only by a I -A or a

E-A).

3. A neural network composition module computes vector representations of the new

nodes, according to the representations of the merged constituents, as well as the tag

predictions (see Figure 6.2).

4. New predicted nodes become input constituents and we go back to 1 (see Figure 5.2).
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IW : Look around and choose your own ground .

IT : VB RP CC VB PRP$ JJ NN .

O : O S-PRT O O B-NP I-NP E-NP O

IW : Look r1 and choose r2 .

IT : VB PRT CC VB NP .

O : B-VP E-VP O B-VP E-VP O

IW : r3 and r4 .

IT : VP CC VP .

O : B-VP I-VP E-VP O

IW : r5 .

IT : VP .

O : B-S E-S

Figure 6.1: Greedy parsing algorithm, on the sentence “Look around and choose your
own ground.”. IW , IT and O stand for input words (or composed word representa-
tions ri ), input syntactic tags (parsing or part-of-speech) and output tags (parsing), re-
spectively. See Figure 6.2 and Section 6.2.1 for the word composition procedure. The
tree produced after 4 greedy iterations (as shown here) can be reconstructed as the
following: (S (VP (VP (VB Look) (PRT (RP around))) (CC and) (VP (VB choose)
(NP (PRP$ your) (JJ own) (NN ground)))) (. .)).

Our system is recurrent in two ways: newly predicted parsing node labels as well as vector

representations obtained by composing these predicted nodes, are used in the next iteration

of our algorithm.

6.2.1 Word-Tag Composition

At each step of the parsing procedure, we represents each node of the tree as a vector represen-

tation, which summarizes both the syntax (predicted POS or parsing tags) and the semantic

(words) of the sub-tree corresponding to the given node. As shown in Figure 6.2, the vector

representation is obtained by a simple recurrent procedure, which involves several compo-

nents:

• Word vector representations for the leaves (coming out from a lookup table) (dimension

D).

• Tag (POS for the leaves, predicted tags otherwise) vector representations (also coming

out for another lookup table, as explained in Section 5.4.1) (dimension T ).

• Compositional networks Ck (). Each of them can compress the representation of a chunk

of size k into a D-dimensional vector.

63



Chapter 6. RNN-Based Phrase Composition for Syntactic Parsing

choose VB your PRP$ own JJ ground NN

C3

r2

C2

r4

Figure 6.2: Recurrent composition of the sub-tree (VP (VB choose) (NP (PRP$ your)
(JJ own) (NN ground))). The representation r2 is first computed using the 3-inputs mod-
ule C3 with your/PRP$ own/JJ ground/NN as input. r4 is obtained by using the 2-inputs
module C2 with choose/VB R1/NP as input

Compositional networks take as input both the merged node representations and predicted

tag representations. There is one different network Ck for each possible node with a number of

k merged constituent. In practice most tree nodes do not merge more than a few constituents1.

In our case, denoting z ∈R(D+T )×k the concatenation of the merged constituent representa-

tions (k vectors of tags and constituent representations), the compositional network is simply

a matrix-vector operation followed by a non-linearity

Ck (z) = h(Mk z) , (6.1)

where Mk ∈RD×(k(D+T )) is a matrix of parameters to be trained, and h() is a simple non-linearity

such as a pointwise hyperbolic tangent.

Note that node and word representations are embedded in the same space. This way, the

compositional networks Ck can compress indifferently information coming from leaves or

sub-trees. Implementation-wise, one can store new node representations into the word

lookup-table as the tree is created, such that subsequent composition or tagging operations

can be achieved in an efficient manner.

1Taking 1 ≤ k ≤ 5 covers already 98.6% of the nodes in the Wall Street Journal training corpus, and 1 ≤ k ≤ 7
covers 99.8%.
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6.2.2 Training Procedure

As introduced in Chapter 5, both the composition network and tagging networks are trained by

maximizing a likelihood over the training data using stochastic gradient ascent. As introduce

in section 5.4.4, we performed all possible iterations, over all training sentences, of the greedy

procedure presented in Figure 6.1 constrained with the provided labeled parse tree. This leads

to our training set of sequences of tree nodes. For every tree node, the sub-trees (structure

and tags) were also extracted during this procedure.

Training the system consists in repeating the following steps:

• Pick a random sequence of nodes extracted in the training set, as described above.

Consider the associated sub-trees for each node which is not a leaf.

• Perform a forward pass of the word-tag composer (see Section 6.2.1) along these sub-

trees.

• For all nodes in the sequence, perform a forward pass of the tagger according to word

(or sub-tree) representations, as well as constituent tags.

• Compute a likelihood of the right sequence of BIOS-prefixed tags (as described in Section

5.4.4), given the scores of the tagger.

• Backward gradient through the tagger up to the word (or sub-tree) and tag representa-

tions.

• Backward gradient through the word-tag composer up to the word and tag representa-

tion.

• Update all model parameters (from compositional networks Ci , tagger network, and

lookup tables) with a fixed learning rate.

6.3 Experiments

Experiments were conducted using the corpus and preprocessing described in Chapter 5. This

section describes the setup used for our experiments and introduces the dropout regulariza-

tion used to prevent overfitting. Finally, we present an experimental comparison with existing

methods as well as an analysis the sub-tree representations learned by our model.

6.3.1 Detailed Setup

Our systems were trained using a stochastic gradient descent over the available training data

until convergence on the validation set. Hyper-parameters were chosen according to the

validation. Lookup-table sizes for the words and tags (part-of-speech and parsing) are 200

and 20, respectively. The window size for the tagger is K = 7 (3 neighbours from each side).

The size of the tagger’s hidden layer is H = 500. We used the word embeddings obtained
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from Lebret and Collobert [2014] to initialize the word lookup-table. These embeddings were

then fine-tuned during the training process. We fixed the learning rate to λ= 0.15 during the

stochastic gradient procedure. As suggested in Plaut and Hinton [1987], the learning rate was

divided by the size of the input vector of each layer. The part-of-speech tags were obtained

using the freely available software SENNA2.

6.3.2 Word Embedding Dropout Regularization

We found that our system was easily subject to overfitting (training F1-score increasing while

the validation curve was eventually decreasing as shown in Figure 6.3). As the capacity of our

network mainly lies on the words and tag embeddings, we adopted a dropout regularization

strategy [see Hinton et al., 2012] for the lookup tables. The key idea of the dropout regulariza-

tion is to randomly drop units (along with their connections) from the neural network during

training. This prevents units from co-adapting too much. In our case, during the training

phase, a “dropout mask” is applied to the output of the lookup-tables: each element of the

output is set to 0 with a probability 0.25. At test time, no patch is applied but the output is

re-weighted, scaling it by 0.75. We observed a good improvement in F1-score performance, as

shown in Figure 6.4.
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6.3.3 Performance comparison

F1 performance scores are reported in Table 6.1. Scores were obtained using the Evalb imple-

mentation3. We compared our system is compared with a range of different state-of-the-art

parsers. In addition to the the four main generative parsers, we report the scores of well known

re-ranking parsers (including the state-of-the-art from McClosky et al. [2006]) as well as for

2http://ml.nec-labs.com/senna
3Available at http://nlp.cs.nyu.edu/evalb
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two major purely discriminative parsers. Detailed error analysis compared against a subset of

these parsers is reported in Table 6.2, using the code provided by Kummerfeld et al. [2012].

Performance with respect to sentence length is reported in Figure 5.

We included a voting procedure using several models trained starting from different random

initializations. The voting procedure is achieved in the following way: at each iteration of the

greedy parsing procedure, given the input sequence of constituents, (1) node representations

are computed for each model by composing the sub-tree representations corresponding to

the given model and using its own compositional network (2) each model computes tag scores

using its own tagger network (3) tag scores are averaged (4) a coherent path of tag is predicted

using the Viterbi algorithm.

< 40 FULL

MODEL (R) (P) F1 (R) (P) F1 TIME

MAGERMAN (1995) 84.6 84.9 84.8
GENERATIVE COLLINS (1999) 88.5 88.7 88.6 88.1 88.3 88.2 1247

CHARNIAK (2000) 90.1 90.1 90.1 89.6 89.5 89.6
PETROV AND KLEIN [2007] 90.7 90.5 90.6 90.2 98.9 90.1 307

GENERATIVE HENDERSON (2004) 89.8 90.4 90.1
WITH CHARNIAK & JOHNSON (2005) 92.0 91.1

RE-RANKING MCCLOSKY ET AL (2006) 92.1
SOCHER ET AL (2013) 91.1 90.4 390
CARRERAS ET AL. (2008) 90.7 91.4 91.1

DISCRIMINATIVE CHAPTER 5 (V10) 90.0 90.1 90.1 89.6 89.7 89.6
CHAPTER 5 + DROPOUT (V10) 90.6 90.1 90.4 90.2 89.7 89.9
THIS WORK 88.8 89.1 89.0 88.2 88.6 88.4
THIS WORK + DROPOUT 89.7 90.3 90 89.1 89.9 89.5 30
THIS WORK + DROPOUT (V4) 90.5 90.8 90.7 90.1 90.4 90.3 120

Table 6.1: Performance comparison of different state-of-the-art parsers, in terms of Precision
(P), Recall (R), and F1 score, for sentences of size ≤ 40 words, and on the full WSJ test set. Vx

denotes a voting procedure with x models. The reported time (in seconds) is the time to parse
the full WSJ test corpus.

Finally, we report a brief quantitative evaluation of our compositional representations in

Table 6.3. Random phrases were picked in the WSJ corpus, and closest neighbors (according

to the Euclidean distance) with other phrases of the corpus are reported.

PP CLAUSE DIFF MOD NP 1-WORD NP
ATTACH ATTACH LABEL ATTACH ATTACH CO-ORD SPAN UNARY INT. OTHER

MCCLOSKY ET AL (2006) 0.60 0.38 0.31 0.25 0.25 0.23 0.20 0.14 0.14 0.50
SOCHER ET AL (2013) 0.79 0.43 0.29 0.27 0.31 0.32 0.31 0.22 0.19 0.41
CHAPTER 5 0.74 0.45 0.27 0.25 0.34 0.38 0.24 0.22 0.20 0.57
THIS WORK + DROPOUT 0.78 0.44 0.29 0.27 0.36 0.42 0.24 0.21 0.20 0.60
THIS WORK + DROPOUT (V4) 0.71 0.43 0.25 0.24 0.35 0.38 0.23 0.21 0.19 0.56

Table 6.2: Detailed parser comparison. We report the average number of bracket errors per
sentence for different error categories.
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brendan barba , chairman of the moonachie , n.j. , maker of plastic film products
edmund edelman , chairman of the los angeles county board of supervisors
esther dyson , editor of release 0.0 , an industry newsletter that spots new developments
michael slater , editor of the microprocessor report , an industry newsletter
bruce miller , president of art funding corp. , an art lender
jeffrey nichols , president of apms canada , toronto precious metals advisers ,

eli lilly & co. , indianapolis ,
john kinnard & co. , minneapolis ,
procter & gamble co. , cincinnati ,
anb investment management co. , chicago ,
scimed life systems inc. , minneapolis ,
rjr nabisco inc. ’s french cracker subsidiary , belin ,

mr. engelken ’s sister , martha , who was born two days before the home run ,
the company ’s president , n.j . nicholas , who will eventually be co-chief executive of time warner alongside mr. ross ,
claudio ’s sister , isabella , a novitiate in a convent ,
her daughter , elizabeth , an attorney who is vice chairman ,
his brother , parkhaji , whose head is swathed in a gorgeous crimson turban ,
mrs. coleman ’s husband , joseph , a physician ,

chairman and chief executive officer
president and chief executive officer
president and chief operating officer
chairman and chief executive
executive vice president and chief financial officer
executive vice president and chief operating officer

Table 6.3: Nearest neighbors (in terms of vector representation Euclidean distance) for several
phrases in the WSJ corpus. For every node in the corpus, the sub-tree representations were
computed. Then, for the selected phrases, we computed all Euclidean distances. The first
phrase is the reference and we report below the 5 top closest phrases in WSJ.

6.4 Conclusion

In this chapter, we introduced a novel RNN-based compositional representation of parsing

sub-trees, encoding both the syntactic (tags) and semantic (words) information. The pars-

ing procedure is tightly integrated with the composition operation, and allows us to reach

performance of very well-known parsers while (1) adopting a greedy and fast procedure, and

(2) avoid standard refined features such as headwords.
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7 Syntactic Parsing of Morphologically
Rich Language

In chapter 5, we approach syntactic parsing as a succession of phrase prediction problems that

are solved recursively in a greedy manner. In chapter 6, this model was enhanced using a novel

compositional feature that performed a syntactic and semantic summary of the contents of

sub-trees. In this chapter, we introduce a similar composition procedure for the purpose of

including morphological information in the context of morphologically rich languages (MRL).

The chapter is organized as follows: we first review the existing methods for parsing MRL.

We then describe the proposed morphological composition procedure. We finally provide a

comparative evaluation of our approach on a standard parsing task for 9 different languages.

7.1 Introduction

Morphologically rich languages (MRL) are languages for which important information con-

cerning the syntactic structure is expressed through word formation, rather than constituent-

order patterns. Unlike English, they can have complex word structure as well as flexible word

order. A common practice when dealing with such languages is to incorporate morphological

information explicitly [Tsarfaty et al., 2013]. However this poses two problems to the classical

generative models: (1) they assume input features to be conditionally independent which

makes the incorporation of arbitrary features difficult and (2) refining input features leads to a

data sparsity issue.In the other hand, neural network-based models using continuous word

representations as input have been able to overcome the data sparsity problem inherent in

NLP [Huang and Yates, 2009]. Furthermore, neural networks allow to incorporate arbitrary

features and learn complex non-linear relations between them.

In this chapter, we propose to enhance this model for syntactic parsing of MRL, by learning

morphological embeddings. We take advantage of a recursive composition procedure similar

to the one introduced in Chapter 6 to propagate morphological information during the parsing

process. We evaluate our approach on the SPMRL (syntactic parsing of MRL) Shared Task 2014

[Seddah et al., 2013] which provides standardized datasets, evaluation metrics and baseline
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results for nine different languages. Each of them comes with a set of morphological features

allowing to augment words with information such as their grammatical functions, relation

with other words in the sentence, prefixes, affixes and lemmas. We show that integrating

morphological features allows to increase dramatically the average performance and yields

state-of-the-art performance for a majority of languages.

7.2 Related work

Both the baseline (Berkeley parser) and the current state-of-the-art model on the SPMRL

Shared Task 2014 [Björkelund et al., 2014] rely on probabilistic context free grammar (PCFG)-

based features. The latter uses a product of PCFG with latent annotation based models [Petrov,

2010], with a coarse-to-fine decoding strategy. The output is then discriminatively re-ranked

[Charniak and Johnson, 2005] to select the best analysis. In contrast, the parser used in this

chapter constructs the parse tree in a greedy manner and relies only on word, POS tags and

morphological embeddings.

Several other papers have reported results for the SPMRL Shared Task 2014. Hall et al. [2014]

introduced an approach where, instead of propagating contextual information from the leaves

of the tree to internal nodes in order to refine the grammar, the structural complexity of the

grammar is minimized. This is done by moving as much context as possible onto local surface

features. This work was refined in Durrett and Klein [2015], taking advantage of continuous

word representations. The system used in this chapter also leverages words embeddings but

has two major differences. First, it proceeds step-by-step in a greedy manner where Durrett

and Klein [2015] is using structured inference (CKY). Second, it leverages a compositional

node feature which propagates information from the leaves to internal nodes, which is exactly

what is claimed not to be done in Durrett and Klein [2015].

Fernández-González and Martins [2015] proposed a procedure to turn a dependency tree

into a constituency tree. They showed that encoding order information in the dependency

tree makes it isomorphic to the constituent tree, allowing any dependency parser to produce

constituents. Like the parser we used, their parser do not need to binarize the treebank as

most of the others constituency parsers. Unlike this system, we do not use the dependency

structure as an intermediate representation and directly perform constituency parsing over

raw words.

7.3 Recurrent greedy parsing

In this chapter, we used the model presented in introduced in Chapters 5 and 6. Each iteration

of the procedure merges input constituents into new nodes by applying the following steps.

Note that the novelties reside in step 1 and 4:

• 1. Node tagger: a neural network sliding window (see Figure 7.2) is applied over the
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input sequence of constituents (leaves or heads of trees predicted so far) taking into

account the syntactic tags (POS and parsing tags) as well as the morphological tags. This

procedure outputs for each constituent a score si for each BIOES-prefixed parsing tag

t ∈ T (T being the parsing tags ensemble).

• 2. Dynamic programming: a coherent path of BIOES tags is retrieved by decoding over

a constrained graph. This insures (for instance) that a B-A can be followed only by a

I -A or a E-A (for all parsing tag A).

• 3. Compositional procedure: new nodes are created, merging input constituents, ac-

cording to the dynamic programming predictions. A neural network composition mod-

ule is then used to compute vector representations for the new nodes, according to the

representations of the merged constituents, as well as their corresponding tags (POS or

parsing).

• 4. Morphological compositional procedure: for each new node, a morphological repre-

sentation is computed for each morphological category. The procedure used to perform

this operation is described in Section 7.4.

The procedure ends when the top node is produced.

7.4 Parsing Morphologically Rich Languages

7.4.1 Morphological features

Morphological features enable the augmentation of input tokens with information expressed

at a word level, such as grammatical function or relation to other words. For parsing MRL, they

have proven to be very helpful [Cowan and Collins, 2005]. The SMPRL corpus provides a differ-

ent set of morphological features associated to the tree terminals (tokens) for every language.

These features include morphosyntactic features such as case, number, gender, person and

type, as well as specific morphological information such as verbal mood, proper/common

noun distinction, lemma, grammatical function. They also include many language-specific

features. For more details about the morphological features available, the reader can refer to

Seddah et al. [2013].

7.4.2 Morphological Embeddings

The parser introduced in Chapter 5 and 6 relies only on word and tag embeddings. Besides

these features, the proposed model takes advantage of additional morphological features.

As illustrated in Figure 7.2, each additional feature m is assigned a different lookup table

containing morphological feature vectors of size dm . The output vectors of the different

morphological lookup-tables are simply concatenated to form the input of the next neural

network layer.
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IW : Did you hear the falling bombs ?

(a) IT : VBD PRP VB DT VBG NNS .

O : O S-NP O B-NP I-NP E-NP O

IW : Did r1 hear r2 .

(b) IT : VBD NP VB NP .

O : O O B-VP E-VP .

IW : Did r1 r3 ?

(c) IT : VDB NP VP .

O : B-SQ I-SQ I-SQ E-SQ

Did you hear the falling bombs ?
VBD PRP VB DT VBG NNS .

NP NP(R1) (R2)

(a)

Did R1 hear R2 ?
VBD NP VB NP .

VP (R3)

(b)

Did R1 R3 ?
VBD NP VP .

SQ

(c)

Figure 7.1: Greedy parsing algorithm (3 iterations), on the sentence “Did you hear the
falling bombs ?”. IW , IT and O stand for input words (or composed word representa-
tions Ri ), input syntactic tags (parsing or part-of-speech) and output tags (parsing), re-
spectively. The tree produced after 3 greedy iterations can be reconstructed as the follow-
ing: (SQ (VBD Did) (NP (PRP you)) (VP (VB hear) (NP (DT the) (VBG falling)
(NNS bombs))) (. ?)).

7.4.3 Morphological composition

Morphological features are available only for leaves. To propagate morphological information

to the nodes, we take advantage of a composition procedure similar to the one used in Chapter

6 for words and POS. As illustrated in Figure 7.3, every morphological feature m is assigned a set

on composition modules Cmi which take as input i morphological embeddings of dimension

dm . Each composition module perform a matrix-vector operation followed by a non-linearity

Cmi (x) = h(Mi
mx) (7.1)
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Xi−2Xi−1XiXi+1Xi+2
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.. POS tags
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h(M1 × .)

M2 × .

s1 s2 st. . .

Figure 7.2: A constituent Xi (word or node previously predicted) is tagged by considering a
fixed size context window of size K (here K = 5). The concatenated output of the compositional
history and constituent tags is fed as input to the tagger. A standard two-layers neural network
outputs a score si for each BIOES-prefixed parsing tag. Additional features can be easily fed to
the network. Each category is assigned a new lookup table containing a vector of feature for
every possible tag.

where Mi
m ∈Rdm×i dm is a matrix of parameters to be trained and h(·) a pointwise non-linearity

function. x = [x1 . . .xi ] is the concatenation of the corresponding input morphological embed-

dings. Note that given a morphological feature we have a different matrix of weight for every

possible size i . In practice most tree nodes do not merge more than a few constituents (see

Section 6.2.1).

7.5 Experiments

7.5.1 Corpus

Experiments were conducted on the SPMRL corpus provided for the Shared Task 2014 [Seddah

et al., 2013]. It provides sentences and tree annotations for 9 different languages (Arabic,

Basque, French, German, Hebrew, Hungarian, Korean, Polish and Swedish) coming from

various sources. For each language, gold part-of-speech and morphological tags are provided.
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Cgen3

Cgen2

...

hear n/a

...

the f

...

falling f

...

bombs f

g2

g4

Figure 7.3: Recursive composition of the morphological feature gender (male (m) / female (f)
/ not applicable (n/a)). Cg eni are the corresponding composition modules. The representation
g2 is first computed using the 3-inputs module Cg en3 . g4 is obtained by using the 2-inputs
module Cg en2 .

Results for two baseline baseline system are provided in order to evaluate our models.

7.5.2 Setup

The model was trained using a stochastic gradient descent over the available training data.

Hyper-parameters were tuned on the provided validation sets. The word embedding size and

POS/parsing tag size were set to DW = 100 and DT = 30, respectively. The morphological

tag embedding size was set to 10. The window size of the tagger was set to K = 7 and its

number of hidden units to 300. All parameters were initialized randomly (including the words

embeddings). As suggested in Plaut and Hinton [1987], the learning rate was divided by the

size of the input vector of each layer. We applied the same dropout regularization as in Legrand

and Collobert [2015].

7.5.3 Results

Table 7.1 presents the influence of adding morphological features to the model. We observe

significant improvement for every languages except for Hebrew. On average, morphological

features allowed to overcome the original model by 2 F1-score.

Table 7.2 compares the performance in F1-score (obtained with the provided EVALB_SPMRL

tool) of different systems, using the provided gold POS and morphological features. We

compare our results with the two baselines provided with the task: (1) Berkeley parser with

provided POS Tags (Berkeley+POS), (2) Berkeley Parser in raw mode where the parser do its
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language Words + POS + morph
Arabic 80.7 82.9
Basque 82.7 90.6
French 81.1 85.0
German 81.5 83.1
Hebrew 91.6 91.5
Hungarian 89.6 90.3
Korean 86.1 86.7
Polish 93.2 93.7
Swedish 81.1 81.5
AVG 85.3 87.3

Table 7.1: Influence of the additional morphological embeddings in terms of F1-score

own POS tagging (Berkeley RAW). We also report the results of the current state-of-the art

model for this task [Björkelund et al., 2014]. We included the same voting procedure as in

Chapter 6, using 5 models trained starting from different random initializations. At each

iteration of the greedy parsing procedure, the BIOES-tag scores are averaged and the new

node representations (words+POS and morphological composition) are computed for each

model by composing the sub-tree representations corresponding to the given model, using

its own compositional network. One can observe that the proposed model outperforms the

best model by 1.1 F1-score on average. Moreover, it yields state-of-the art performance for 6

among the 9 available languages.

Model Ara. Bas. Fre. Ger. Heb. Hun. Kor. Pol. Swe. AVG

Berkeley+POS 80.8 76.2 81.8 80.3 92.2 87.6 82.9 88.1 82.9 83.7
Berkeley RAW 79.1 69.8 80.4 79.0 87.3 81.4 73.3 79.5 78.9 78.7
Björkelund et al. [2014] 82.2 90.0 84.0 82.1 91.6 92.6 86.5 88.6 85.1 87.0
Proposed approach 84.1 91.0 85.7 84.6 91.7 91.2 87.8 94.1 82.5 88.1

Table 7.2: Results for all languages in terms of F1-score, using gold POS and morphological
tags. Berkeley+POS and Berkeley RAW are the two baseline system results provided by the
organizers of the shared task. Our experiments used an ensemble of 5 models, trained starting
from different random initializations.

Finally, Table 7.3 compares the performance of different systems for a more realistic parsing

scenario where the gold POS and morphological tags are unknown. For these experiments,

we use the same tags as in Björkelund et al. [2014]1, obtained using the freely available tool

MarMoT [Mueller et al., 2013]. We compare our results with the same model as for the gold

tags experiences. Additionally, we compare our results with two recent models reporting

results for the SPMRL Shared Task 2014. We see that the proposed model yields state-of-the

art performance for 4 out of 9 available languages.

1The tags used are available here: http://cistern.cis.lmu.de/marmot/models/CURRENT/
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Model Ara. Bas. Fre. Ger. Heb. Hun. Kor. Pol. Swe. AVG

Berkeley+POS 78.7 74.7 79.8 78.3 85.4 85.2 78.6 86.7 80.6 80.9
Berkeley RAW 79.2 70.5 80.4 78.3 87.0 81.6 71.4 79.2 79.2 78.5
Durrett and Klein [2015] 80.2 85.4 81.2 80.9 88.6 90.7 82.2 93.0 83.4 85.1
Fernández et al. [2015] n/a 85.9 78.7 78.7 89.0 88.2 79.3 91.2 82.8 84.2
Björkelund et al. [2014] 81.3 87.9 81.8 81.3 89.5 91.8 84.3 87.5 84.0 85.5
Proposed approach 80.4 87.5 80.8 82.0 91.6 90.0 84.8 93.0 80.5 85.6

Table 7.3: Results for all languages in terms of F1-score using predicted POS and morphological
tags. Berkeley+POS and Berkeley RAW are the two baseline system results provided by the
organizers of the shared task. Our experiments used an ensemble of 5 models, trained starting
from different random initializations.

7.6 Conclusion

In this chapter, we proposed to extend the parser introduced in Chapter 6 by learning morpho-

logical embeddings. We take advantage of a recursive procedure to propagate morphological

information through the tree during the parsing process. We showed that using the morpho-

logical embeddings boosts the F1-score and allows the current state-of-the-art model on the

SPMRL Shared Task 2014 corpus to be outperformed. Furthermore, our approach obtains

state-of-the art performance for a majority of languages.
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8 Conclusion

The work in this thesis has addressed some of the challenges in natural language processing

(NLP). Automatic understanding of natural language is especially difficult due to the many

ambiguities that are encountered as well as the complex reasoning and general knowledge

about the world that are required. The number of possible sentences is virtually unlimited and

the same idea can be expressed in many different ways. Conversely, the same sentence may

be interpreted in different ways. While the first attempts to capture the meaning of natural

language sentences using computers were based on sets of hand-crafted rules, it is infeasible

to cover all possibilities using such rules.

With the advent of statistical modeling, rules came to be automatically learned through the

analysis of a large corpora of examples. These techniques offer many advantages compared to

hand-crafted rules, e.g. learning commonly and rarely occurring rules which would otherwise

require an enormous effort from language experts. However, these approaches mostly rely on

hand-crafted input features.

This thesis has approached natural language processing using neural networks that simulta-

neously learn how to solve a given NLP task and how to extract relevant information for that

task. This is possible using models that learn to predict outputs from inputs in an end-to-end

manner. A key element in our work has been to use continuous representations, known as

word embeddings, rather than discrete representations of words.

Throughout our work, continuous representations are used to represent words as well as

sentence segments for the purpose of solving several NLP tasks. In Chapter 3, we have

investigated convolutional neural networks (CNN) to extract locally-relevant representations

of words from a fixed-size context window. In Chapter 4, we have introduced a compositional

procedure that maps sentence segments of arbitrary size into fixed-size representations. In

Chapter 5, we have introduced a novel greedy approach to syntactic parsing casting the task

as a succession of phrase classification tasks. Finally, this approach has been enhanced in

Chapters 6 and 7 using the compositional procedure introduced in Chapter 4 to represent

sub-trees as continuous vectors.
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Chapter 8. Conclusion

The key contributions of this thesis can be drawn along three axes:

• End-to-end training:

We have empirically established that end-to-end training of neural networks is effective

at solving various NLP tasks with minimal use of prior knowledge. The proposed neural

network models using few basic features as inputs were found to obtain performance

comparable to traditional NLP statistical approaches across the several tasks explored

in the thesis. As an example, we showed that the deterministic head-word procedure

can be replaced by a smooth vector representation that is learned along with the model

obtaining better performance. The end-to-end approach was validated on several NLP

tasks such as multiword expression tagging, constituency parsing obtaining state-of-

the-art results in all of them.

• Sequence segment representations:

We have shown that word embeddings can be combined in order to produce effective

continuous representations of sequence segments. This approach has been explored

for two types of neural networks:

– CNN-based representations: A CNN has been used to extract fixed-sized continuous

representations that locally focus on different regions of a sentence. A standard

generative model, namely FastAlign, has been outperformed by this approach on a

bilingual word alignment task.

– RNN-based representations: A novel compositional operation enables the repre-

sentation of arbitrarily-sized sentence segments as fixed-size vectors. By applying

such operation recursively, parsing trees can be represented as fixed-size vectors

as well. We showed that such representations are able to produce state-of-the-art

performance for a syntactic parsing task. These vectors are likely to summarize

syntactic and semantic information.

In the context of morphologically rich languages, a similar compositional operation

has been successfully applied to propagate morphological information through

the parsing process. This approach has obtained state-of-the art performance for

a majority of the 9 languages considered.

• Task-oriented evaluation:

In this thesis, we approached several NLP tasks using the proposed deep neural network

models. The conclusion for each of these tasks is detailed below:

– Bilingual word alignment for machine translation.

We have presented a simple neural network alignment model trained on unlabeled

data based on an aggregation operation borrowed from the computer vision lit-

erature. The proposed architecture extracts representations of windows around

target and source words using CNN, obtaining alignment scores using simple dot
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products between representations. This approach has outperformed the popu-

lar FastAlign model significantly. On a full machine translation task, significant

improvements in terms of BLUE score have been obtained.

– Multiword expression: We have introduced a novel approach to the phrase predic-

tion task. The proposed approach learns fixed-size continuous representations of

arbitrarily-sized chunks by composing word embeddings. These are then used to

directly identify and classify phrases. We showed that our approach outperforms

the best performing model for this task published to this date.

– Syntactic parsing: We have proposed a greedy approach that casts syntactic pars-

ing as a succession of phrase prediction problems. This approach uses a RNN-

based compositional representation of parsing sub-trees. We have shown that

our approach achieves performance comparable to that of popular parsers while

avoiding standard refined features, e.g. headwords, on a task of syntactic parsing of

English sentences. A full implementation of our approach has been made available

online1. In the context of morphologically rich languages, a similar procedure

that learns morphological embeddings has been shown to obtain state-of-the art

performance for a majority of languages.

In summary, this thesis has shown that neural network architectures can be successfully used

for a wide range of NLP tasks and applications without using expert linguistic knowledge.

Furthermore, architectures have been shown to be mostly reusable across tasks. We believe

that the representation power of continuous vectors has contributed to this goal to a large

extent.

8.1 Future research

Word alignment model:

In statistical machine translation, the state-of-the-art system in machine translation use

phrase-based techniques [Koehn et al., 2003]. A research direction would explore phrase

alignments exploiting both aggregation and continuous phrase representations. This would

enormously simplify the computation of phrase alignments. Better phrase alignments, leading

to better phrase translations, would be possible as well. The composition procedure intro-

duced in Chapter 4 and further exploited in Chapters 6 and 7, along with an alignment model

similar to the one introduced in Chapter 3 could be readily used.

Syntactic Parsing:

The proposed parsing system could be improved along the following directions:

• Improving sub-tree-representations: Auto-encoder techniques [Vincent et al., 2008]

1http://joel-legrand.fr
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might be explored to improve the quality of sub-tree vector representations. In our case,

sub-tree representations could be trained to recover the words spanned. This idea could

be further developed by asking the autoencoder to recover both sub-tree structure and

parsing tags.

• Exploring self-training techniques: State-of-the-art parsing systems such as McClosky

et al. [2006] exploit self-training techniques in which a parser is used to tag unlabeled

dataset first to be used as ground truth later. Such techniques allow a large amount of

unlabeled data to be exploited.

• Exploring “less greedy” methods: One of the strengths of our parsing system resides

in its greedy nature. Nonetheless, less greedy methods considering multiple decoding

paths during training would be worth exploring. For this purpose, global scores for trees

would be required in order to discriminate between different solutions, in the spirit of

Socher et al. [2013a] as performed for a parse re-ranking task.
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