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Abstract
Fluid flow in porous media is a multiscale process where the effective dynamics, which is often

the goal of a computation, depends strongly on the porous micro structure. Resolving the

micro structure in the whole porous medium can, however, be prohibitive. Novel numerical

methods that efficiently approximate the effective flow but resolve only a carefully selected

reduced portion of the porous structure are of great interest. In this thesis we propose new

numerical multiscale methods for Stokes flow in two- and three-scale porous media.

First, we propose the Darcy–Stokes finite element heterogeneous multiscale method (DS-FE-

HMM). The method is based on solving the Darcy equation on a macroscopic mesh using

the finite element method with numerical quadrature, where the unknown permeability is

recovered from micro finite element solutions of Stokes problems that are defined in sam-

pling domains centered at macroscopic quadrature points. An adaptive scheme based on

a posteriori error analysis is proposed, where micro-macro mesh refinement is driven by

residual-based indicators that quantify both the micro and macro errors.

Second, to address the increasing cost of solving the micro problems as the macroscopic mesh

is refined, we combine the DS-FE-HMM with reduced basis (RB) method and propose a new

multiscale method called the RB-DS-FE-HMM. Efficiency and accuracy of the method relies

on a parametrization of the micro geometries and on the Petrov–Galerkin RB formulation that

provides a stable and fast evaluation of the effective permeability. A residual-based adaptive

mesh refinement scheme is proposed for the macroscopic problem. To achieve a conservative

approximation we also combine and analyze a coupling of the RB method with a different

macroscopic scheme based on the discontinuous Galerkin finite element method (DG-FEM).

Finally, we consider a three-scale porous media model with macro, meso, and micro scale.

At the intermediate meso scale the medium is composed of fluid and porous parts and the

fluid flow is modeled with the Stokes–Brinkman equation. A three-scale numerical method

is derived and an efficient algorithm based on the RB method and empirical interpolation

method on the micro and meso scale is proposed.

Key words: multiscale, homogenization, porous media, Stokes flow, finite element, heteroge-

neous multiscale method, reduced basis, discontinuous Galerkin, adaptivity.
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Résumé
L’écoulement de fluide dans un médium poreux est un procédé multi-échelles où la dyna-

mique effective, qui est souvent le but du calcul, dépend fortement de la structure microsco-

pique. Néanmoins, résoudre la structure microscopique dans l’ensemble du médium peut

s’avérer prohibitif. De nouvelles méthodes qui approximent efficacement l’écoulement effectif

en ne résolvant qu’une partie limitée, selectionnée avec soin, de la structure poreuse sont d’un

grand intérêt. Dans cette thèse, nous proposons de nouvelles méthodes pour l’écoulement de

Stokes dans des média poreux à deux et trois échelles.

Premièrement, nous proposons la méthode d’élément finis hétérogène multi-échelles Darcy–

Stokes (DS-FE-HMM). La méthode est basée sur la résolution de l’équation de Darcy sur un

maillage macroscopique en utilisant la méthode des éléments finis avec quadrature numé-

rique. Aux points de quadrature, la perméabilité est calculée grâce à des problèmes de Stokes

à l’échelle microscopique, approximés avec des élément finis dans des domaines d’échan-

tillonnage. Un schéma adaptif basé sur une analyse d’erreur a posteriori est proposé, où un

affinement des maillages micro-macro est controlé par des indicateurs basés sur les résidus,

quantifiant à la fois l’erreur micro et macro.

Deuxièmement, pour entraver l’augmentation du coût de la résolution des micro problèmes

lors de l’affinement du maillage macroscopique, nous combinons DS-FE-HMM avec la mé-

thode des bases réduites (RB) et proposons une nouvelle méthode multi-échelles appelée

RB-DS-FE-HMM. L’efficacité et la précision de la méthode dépendent de la paramétrisation

des géométries microscopiques et de la formulation RB de Petrov–Galerkin, qui fournit une

évaluation rapide et stable de la perméabilité effective. Un schéma adaptif d’affinement du

maillage basé sur le résidu est proposé pour le problème macroscopique. Pour obtenir une

approximation conservative, nous combinons et analysons un couplage de la méthode RB

avec un schéma macroscopique différent basé sur la méthode d’élément finis de Galerkin

discontinue (DG-FEM).

Finallement, nous considérons un model de média poreux à trois échelles : macro, meso

et micro. À l’échelle intermédiaire meso, le médium est composé d’une partie poreuse et

d’une partie fluide, dont l’écoulement est modelisé avec l’équation de Stokes–Brinkman. Une

méthode numérique à trois échelles est dérivée et un algorithme efficace basé sur la méthode

RB et la méthode d’interpolation empirique aux échelles micro et meso est proposé.
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Notation
Problem setting.

d dimension of the problem, d ∈ {2,3};

ε fine scale size of the two-scale model, ε> 0;

Ω macroscopic domain in Rd ;

Y unit cube in Rd , Y = (−0.5,0.5)d ;

C generic constant whose value can change at any occurence;

Abbreviations.
PDE partial differential equation;

FE finite element;

FEM finite element method;

DOF degree of freedom;

DG discontinuous Galerkin;

SIP symmetric interior penalty;

HMM heterogeneous multiscale method;

RB reduced basis;

SCM successive constraint method;

EIM empirical interpolation method;

Common indices.

F fluid;

S solid;

P porous;

mac macro;

mic micro;

mes meso;

Standard sets of numbers.

N set of positive integers {1,2, . . .};

N0 set of non-negative integers {0,1,2, . . .};

Z set of integers;

R set of real numbers;
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Notation

Functional spaces.

C k (Ω) k-times continuously differentiable functions Ω→R, 0 ≤ k ≤∞;

C k
per(Y ) subset of Y -periodic functions in C k (Ω);

Lp (Ω) the usual Lebesgue space with 1 ≤ p ≤∞;

W k,p (Ω) the usual Sobolev space with k ∈N and p ∈ [1,∞];

H k (Ω) the Hilbert space W 2,p (Ω);

H 1
0 (Ω) subspace of H 1(Ω) with a vanishing trace on ∂Ω;

H 1
per(Y ) closure of C∞

per(Y ) in the norm H 1(Y );

X ′ dual space of a vector space X ;

‖ ·‖X standard norm in any normed linear space X ;

(·, ·)X standard inner product in any inner product space X ;

Finite element spaces.

TH a triangular or tetrahedral mesh consisting of elements K ∈TH ;

the mesh size H = maxK∈TH
diam(K );

P n(K ) vector space of polynomials in K of degree at most n ∈N0;

Sn(Ω,TH ) continuous finite element space in Ω on mesh TH of degree n

Sn(Ω,TH ) = {q H ∈ H 1(Ω); q H |K ∈P n(K ), ∀K ∈TH };

V n(Ω,TH ) discontinuous finite element space in Ω on mesh TH of degree n

V n(Ω,TH ) = {q H ∈ L2(Ω); q H |K ∈P n(K ), ∀K ∈TH };

EH set of all edges of a mesh TH ;

Vectors and matrices.
Ai j coefficients of a matrix A ∈Rn×m ;

‖A‖F Frobenius norm of a matrix A ∈Rn×m ;

bi elements of a vector b ∈Rn ;

|b| Euclidean norm of a vector b ∈Rd ;

ei the i -th canonical basis vector in Rd ;

Miscellaneous.
diam(Ω) diameter of a set Ω⊂Rd ;

[a,b] closed interval;

(a,b) open interval;
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1 Introduction

Mathematical models and their numerical approximations are powerful tools in studying

natural and human-made systems. Models are just an approximation of reality and for every

system it is important to choose a model that is of sufficient accuracy for the desired purpose.

For example, if we study a single protein, we should choose an appropriate model from

quantum electrodynamics or molecular dynamics. However, using such models to study

safety and properties of a bridge construction is a bad choice for several reasons. First, even

using the current supercomputers, it is impossible to run a simulation of such a vast amount

of molecules. Second, we are not really interested in a detailed behavior of every atom or

molecule in a bridge but only in some macroscopic behavior. Can the bridge withstand the

traffic? What magnitude of earthquake or hurricane makes the bridge collapse? How is the

bridge deformed in winter and summer based on the temperature? These questions can be

answered by studying models from mechanical engineering and material science. In these

models, the bridge is not divided into atoms and molecules but into larger parts (steel beams,

ropes, concrete blocks, etc.) that are considered homogeneous. Physical properties of these

parts are represented by effective parameters (elasticity, stiffness, heat conductivity, etc.) and

the models describe macroscopic behavior (displacement, strain, temperature, etc.). Standard

numerical techniques can be applied to simulate these models and assess behavior of the

bridge under different conditions. While we do not explicitly consider the micro structure of

the different materials, it reflected in the material properties. Hence, depending on the scale

of the problem, we might prefer different models.

With rapid advances in technology, there are new challenges in modeling and simulation.

There is an immense number of new chemicals, materials, nanostructures, etc. The systems

that are studied are increasingly complex and detailed, e.g., the human brain, entire ecosys-

tems, microchips, etc. Often we are interested in the macroscopic behavior but we cannot

ignore the microscopic structure of the system since it significantly affects the macroscopic be-

havior. This leads to multiscale modeling and multiscale numerical methods. In the simplest

case, we consider only two scales that are usually called the macroscopic and the microscopic

scale. Multiscale models are often recast into homogenization theory, where we consider

1



Chapter 1. Introduction

a micro model and use averaging techniques to arrive at the macro model and a coupling

mechanism between these models. While the macro model ignores the micro structure of the

system, it uses the micro model to extract the effective properties. Returning to the example

with bridge modeling, we could use the macroscopic model based on classical mechanics

while extracting material properties from, e.g., molecular dynamics model. This allows us to

run the simulation without a priori knowing the effective properties of the system.

Fluid flow in porous media

In this thesis we study fluid flow in porous media, which is an important process appearing

in a wide range of engineering and technical applications. It is present in the modeling

of subsurface contamination and filtration, textile design, biomedical materials, natural

reservoirs, and many more, see [61, 117, 110, 111] and the references therein. There are

various models and simulation methods for porous media flow, depending on the application.

We consider two basic models with physical processes at different scales that can be coupled

into a multiscale model as described below.

Let Ω⊂Rd be a connected bounded domain with d ∈ {2,3}. We divide Ω into two parts: a fixed

solid part and its complementary fluid part. The fluid part is fully saturated with and the solid

part is impermeable. We denote the fluid part by Ωε ⊂Ω, where ε> 0 denotes the length-scale

of the porous structure. A standard model such as the Navier–Stokes equation can be used to

model fluid flow in Ωε. The Reynolds number1 of fluid flow in porous media is usually small,

thus, the inertial forces can be neglected and the following Stokes equation is a suitable model

of fluid flow in Ωε. For a given force field f we search for the velocity field uε and pressure pε

such that
−Δuε+∇pε = f in Ωε,

div uε = 0 in Ωε,
(1.1)

with appropriate boundary conditions. For simplicity of notation we normalized the physical

units and constants to unity. The number of degrees of freedom and the computational cost

of any standard numerical discretization of (1.1) is at least of order O (vol(Ω)ε−d ), which can

easily become prohibitive for small ε.

A simpler and widely used model of porous media flow was discovered by Darcy [53]. In the

current notation, the Darcy equation is an elliptic partial differential equation (PDE) that

describes the effective pressure and velocity of a saturated fluid in a porous medium. The

Darcy equation reads as follows. For a given force field f and an effective permeability tensor

a0 : Ω→Rd×d find the pressure p0 such that

−∇·a0(∇p0 − f) = 0 in Ω, (1.2)

where we can again provide appropriate boundary conditions. The effective velocity field

1The Reynolds number is a dimensionless quantity that is defined as the ratio of inertial forces to viscous forces
and it is used an indicator of the relative importance of these two types of forces.

2



is defined by u0 = a0(f−∇p0). We used a formulation with no sink or source terms and the

physical units and constants are normalized to unity. Notice that the Darcy model does not

explicitly contain the porous structure of the medium. The effect of the porous structure is

hidden in the effective permeability a0, which needs to be provided. The problem (1.2) can be

thus discretized and solved with standard numerical methods, no matter how small ε is.

Homogenization of Stokes flow in porous media

Let us give a brief introduction to two- and three-scale porous media, homogenization theory,

and the corresponding multiscale models.

Two-scale model. The effective Darcy model (1.2) and the fine-scale Stokes model (1.1)

have been bridged with the homogenization theory that studies asymptotic properties of the

problem (1.1) for ε → 0+. First rigorous homogenization results for Stokes flow in porous

media appeared in [104] with a proof of convergence by Tartar [104, Appendix]. This proof

was later generalized by Allaire [24] to allow for a wider class of porous structures. These

results were provided for periodic porous media (see Figure 1.1(left)), where Ωε is obtained

by periodic perforation of Ω by εYS, where (YF,YS) is the reference porous geometry in a

unit square. It was shown that pε,uε can be extended from Ωε to the whole domain Ω and

that these extensions converge to the so-called homogenized pressure p0 and homogenized

velocity u0. The homogenized solutions p0,u0 are then shown to be the solutions to the Darcy

equation (1.2). The effective permeability a0 is a constant tensor whose value can be obtained

by averaging the velocity solutions of suitable micro problems, which are Stokes problems

defined in the reference micro domain YF. The homogenization theory was further expanded

by introducing correctors and ε-dependent error estimates [80, 78], locally periodic porous

media [41, 40], and to random stochastically homogeneous media [33].

− 1
2

− 1
2 1

2

1
2

YS

YF

periodic Ωε

ε − 1
2

− 1
2 1

2

1
2

Y x
S

Y x
F

ϕ(x, ·)

locally periodic Ωε

x1

x2

ε

Figure 1.1 – An illustration of periodic and locally periodic two-scale porous media Ωε ⊂Ω.

We will consider a two-scale model problem that is based on the homogenization theory in

locally periodic porous media, which is depicted in Figure 1.1(right). At the macro scale we

use again the Darcy equation (1.2). To any x ∈Ω we attribute a micro domain denoted by Y x
F

that represents the local fluid part of the porous structure at x. The effective permeability can

thus vary with x ∈Ω and its value a0(x) is obtained by averaging the velocity solutions of the

3



Chapter 1. Introduction

Stokes micro problems solved in Y x
F .

Three-scale model. There are porous materials that do not fit into the two-scale framework

because they contain porous structures at more than two scales. This is the case, for example,

in textile microstructures [69], flow in swelling colloids and polymers [83], etc. Homogeniza-

tion theory for n-scale periodic porous media was studied formally in [79]. Let us outline a

three-scale model based on [69].

ε1

Ωε1,ε2

Y x
F

ε2
ε1

− 1
2

− 1
2 1

2

1
2

Z x,y
S

Z x,y
F

− 1
2

− 1
2 1

2

1
2

Figure 1.2 – An illustration of the locally periodic three-scale porous media Ωε1,ε2 (left).

We consider a three-scale locally periodic porous medium that consists of macroscopic,

mesoscopic, and microscopic scale (see Figure 1.2). The porous medium is now denoted Ωε1,ε2 ,

where ε1 � ε2 > 0 are the characteristic length scales of meso and micro scales, respectively.

Let us describe the variation of the mesoscopic and microscopic structures. For any x ∈Ω

the local mesoscopic structure is given by a mesoscopic geometry (Y x
F ,Y x

P ), where Y x
F and

Y x
P represent the fluid and porous part, respectively. For any y ∈ Y x

P the local microscopic

structure is given by a microscopic geometry (Z x,y
F , Z x,y

S ), where Z x,y
F and Z x,y

S represent the

fluid and solid part, respectively.

Following [69], let us sketch a three-scale model of fluid flow in Ωε1,ε2 . The macroscopic

model is again the Darcy equation in Ω, where the effective macroscopic permeability a0(x) is

upscaled from the meso problems. At the meso scale we apply the Stokes model in Y x
F and

the Brinkman model in Y x
P . Averaging the velocities of the Stokes–Brinkman equation solved

in Y x
F ∪Y x

P gives a0(x). The effective mesoscopic permeability b0(x, y) that is needed in the

mesoscopic model is upscaled for any x ∈Ω and y ∈ Y x
P from the Stokes micro problems that

are solved in Z x,y
F by averaging the micro velocity solutions.

1.1 Literature overview

In this section we review the literature related to this thesis and give an overview of the

state-of-the-art in numerical multiscale methods for flow in porous media.
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Heterogeneous multiscale method

The heterogeneous multiscale method (HMM) is a framework that offers a systematic approach

to deriving numerical methods for multiscale problems. The HMM was introduced by E

and Engquist [58], see also [59, 14] and the references therein for a detailed overview. Given

a fine scale model such as the Stokes equation (1.1), we first identify an effective model.

Homogenization theory suggests to use the effective Darcy equation (1.2). Any standard

numerical method can now be used to solve (1.2), however, we need to provide the unknown

permeability where needed. An approximation of the effective permeability can be obtained by

sampling the fine-scale problem (1.1), numerically solving the micro problems, and averaging

the micro solutions. The generality of the HMM allows for different numerical methods at

macro and micro scales. While we opt for finite element and discontinuous Galerkin methods,

let us mention that other applications of the HMM exist that use finite differences, spectral

methods, etc., see [14] for references.

The HMM that uses finite elements as macro and micro solvers is often called the finite element

heterogeneous multiscale method (FE-HMM). The FE-HMM is based on a finite element

method with numerical quadrature that is used to solve the macroscopic problem while the

effective data are upscaled by computing micro problems at every macroscopic quadrature

point. There are various types of problems where the FE-HMM has been applied, e.g., elliptic

diffusion problems [58, 60, 82], parabolic diffusion problems [13], wave equation [15, 16], and

see also [2, 14] for additional references for nonlinear problems. Let us mention the a priori

and a posteriori error analysis of the FE-HMM for elliptic diffusion problems [1, 90, 20, 2],

which is important to the Darcy–Stokes settings as they share the same macroscopic problem.

Another macroscopic method used in HMM applications is the discontinuous Galerkin finite

element method (DG-FEM), yielding a method called the DG-FE-HMM. The DG methods

were initially introduced for a transport equation [71] and later extended for many different

problems. We refer to [27] for a unified analysis of DG methods for elliptic problems. The main

advantages of using the DG-FEM are a locally conservative scheme (without post-processing)

and possibility of using non-conforming meshes and non-uniform polynomial degree of

approximation (well-suited for hp-adaptive methods). The DG-FE-HMM has been already

derived for the elliptic diffusion problems [3] and the convection diffusion problems [17].

Although two-scale numerical methods can be already too complicated and computationally

demanding, there are methods that work on more than two scales. A numerical method for

n-scale elliptic diffusion problems with data oscillating at multiples scales has been proposed

in [4]. Related numerical method based on sparse tensor product FEM has been proposed

in [72].
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Chapter 1. Introduction

Multiscale methods for Stokes flow in porous media

When periodic porous media are considered, homogenization theory gives a direct way to ap-

proximate a (globally constant) effective permeability. Let us mention explicit analytic results

for simple geometries [106], permeability computation in textile micro geometries [116], and

validation of predicted permeability using micro-tomography [84].

When heterogeneous media are considered, homogenization theory can still be used to derive

multiscale numerical methods. Such methods are of practical interest in numerous areas, e.g.,

in textile modeling [69], resin transfer modeling [86], oil geology [74], etc. They are based on a

numerical solver for the macroscopic Darcy problem (1.2), where the effective permeability is

upscaled from numerically solved Stokes or Navier–Stokes micro problems where needed (e.g.,

quadrature points of a finite element method). Let us reviews some of the existing methods.

The multiscale FEM described in [40] assumes that the Stokes micro problems can be obtained

from a reference periodic domain by a known smooth map and numerically computes micro

problems with varying accuracy on nested grids of points. This method can be very efficient

due to the multigrid approach. However, the scope of this method is rather limited. First,

it relies on high regularity of the Stokes problems that excludes re-entrant corners in micro

domains. Second, this method is efficient for simple macroscopic domains (such as squares

or a union of squares) but more difficult to use for complicated macroscopic domains. The

two-scale finite element method proposed in [105] considers linear and non-linear Stokes flow

in heterogeneous and periodic porous media. The authors provided numerical experiments

comparing the linear and non-linear methods and also verified the homogenization of periodic

porous media. However, a priori analysis or balancing the micro and macro error was not

discussed. In [26] the control volume method was used to discretize the Darcy equation and

a Navier-Stokes model was used on the micro scale. The reduced regularity of non-convex

micro domains is taken into account and an appropriate estimate of the micro error is derived.

However, there are some limiting assumptions: piecewise periodic micro structure, alignment

of the micro structure to a coarse grid, and no volumetric forces. Numerical methods for flows

in highly deformable porous media [94, 41] are also based on the homogenization theory,

however, they use a different departing model that allows local deformations of the porous

structure.

Concerning numerical multiscale methods for Stokes flow in porous media with more than two

scales, we are only aware of the work of Griebel and Klitz, see [69] and the references therein.

They provide a three-scale porous media model and its discretization. Using numerical

experiments with periodic porous media they compute the macroscopic effective permeability

for different three-scale geometries and study the error with respect to the micro and meso

mesh sizes. Furthermore, a comparison with analytical and experimental data is provided.

6



1.1. Literature overview

Reduced basis method

The computational cost of numerical multiscale methods based on the HMM is usually

dominated by solving the micro problems. The amount of micro problems can easily become

too large and create a serious bottleneck, especially for three-dimensional problems or if high

accuracy is required at the micro scale. One way to speed up the computation is to solve

the micro problems in parallel. Another approach is to exploit the similarity (redundancy)

between micro problems. One can apply a model-order reduction method such as the reduced

basis (RB) method. The RB technique has been successfully applied in the elliptic FE-HMM

problems [37, 4, 5]. However, we are not aware of other works that have applied it in a Darcy–

Stokes multiscale method.

Let us describe the micro problems in the RB terminology. The effective permeability a0(x)

is defined for any x ∈Ω as an average of the velocity solutions of the Stokes micro problems

solved in the domain Y x
F . The micro problems are thus parameter-dependent Stokes problems

(with x ∈Ω as a parameter) with a low-dimensional output of interest a0(x) ∈ Rd×d . In two-

scale numerical methods we will need to evaluate a0(x) (or some approximation of a0(x)) for

many different values of x ∈Ω and we are not explicitly interested in the micro solutions. This

is exactly the setting where the RB method can bring significant improvement.

The RB methodology was pioneered in [62, 63, 87] and gained recently an increased interest,

see [101, 97, 96, 70] for recent reviews. The essence of the RB method is to project a parameter-

dependent problem into a low-dimensional solution space that is spanned by the solutions of

the original problem for a carefully selected set of parameters. The computation is divided

into two stages: the offline stage and the online stage. In the offline stage, performed only

once, the RB space is constructed. In the online stage, which can be performed repeatedly and

for any parameter, precomputed values from the offline stage are used for a fast evaluation of

the output of interest and a posteriori error estimates.

To apply the RB method for problems in parameter-dependent geometries, one has to define

a reasonable way to do linear combinations of solutions for different parameters. We map

the Stokes micro problems for any parameter x ∈Ω from Y x
F to the reference micro domain

YF. The mapped problems will have parameter-dependent coefficients. The RB methods for

indefinite problems need to consider two stability issues. We need to assure the approximation

stability (non-degeneracy of the inf-sup condition of the reduction) and the algebraic stability

(non-degeneracy of the condition number of the reduced system). Let us discuss how these

stability properties are addressed by different RB methods. The RB methods [100, 102, 65] use

a saddle-point formulation of the Stokes problem, where both velocity and pressure RB spaces

are constructed. Using an appropriate enrichment of the reduced pressure space both stability

requirements can be fulfilled. The resulting method can, however, be expensive in the online

stage. Alternative methods with smaller online systems can be constructed but their stability

can no longer be guaranteed. Another approach is to consider Petrov–Galerkin RB methods

that are defined for general linear non-coercive problems, see [99, 77] and the references
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Chapter 1. Introduction

therein. For such methods no assumption on the structure of the problem is required, only the

Babuška inf-sup condition is needed. Let us mention yet another technique of using double

greedy algorithm [52, 51], where the inf-sup stability is controlled in the offline process and

the reduced basis spaces are enriched accordingly.

In this thesis we opt for the Petrov–Galerkin RB formulation (see [99, 77]) where a fixed solution

space and a parameter-dependent test space is constructed in the offline stage. Another

advantage of this formulation is its flexibility to enforce additional Lagrange multipliers as

used in our formulation to normalize pressure.

An important assumption required for efficient usage of model order reduction techniques is

an affine decomposition of the parametrized problem. In situations when this assumption is

not met, the empirical interpolation method [31] has been applied to provide an approxima-

tion of the original problem that allows an affine decomposition, see for example [68, 56, 85]

and the references therein.

1.2 Main contributions and outline of the thesis

In this thesis we develop new numerical two- and three-scale methods for Stokes flow in

porous media. Our main goals were to provide general, efficient methods that do not have

too restrictive assumptions on the geometries and offer the possibility to use higher-order

finite element methods. Let us also stress the importance of error analysis since in multiscale

methods there are several sources of error that should be properly balanced to achieve a

reliable approximation.

In chapter 2 we recall the homogenization theory in periodic and locally periodic porous

media and define a two-scale model problem that is used in chapters 3–5. The macroscopic

equation is the Darcy problem (1.2) with the effective permeability a0(x) that is upscaled

from local Stokes micro problems solved in the domain Y x
F . In section 2.4 we study well-

posedness of the model problem and provide various generic criteria for uniform coercivity

and boundedness of a0. This chapter is based on the paper [6].

In chapter 3 we propose a new numerical homogenization method for Stokes flow in het-

erogeneous media called the Darcy-Stokes finite element heterogeneous multiscale method

(DS-FE-HMM). At the macroscopic scale we use the finite element method with numerical

quadrature to solve the Darcy problem (1.2). The effective permeability is approximated by

numerically solving and averaging the Stokes micro problems, which are defined in a local

snapshot of size δ≥ ε of the geometry Ωε around every macroscopic quadrature point. Com-

pared to [40, 26], the main strength of the DS-FE-HMM is that it can applied in any situation,

no explicit scale separation or locally periodic description of the porous medium are needed.

A multiscale method of similar generality was proposed in [105] but with little theoretical

analysis of the method. We derive a priori error estimates and identify three sources of error

named the macro, modeling, and micro error. In practice, the macro and micro errors often do
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1.2. Main contributions and outline of the thesis

not follow the optimal convergence rate since the accuracy of the numerical scheme suffers

from the low regularity of the micro and macro problems caused by the re-entrant corners. We

derive residual-based a posteriori error estimates and propose a fully adaptive method with

mesh refinement on both scales driven by residual-based indicators that quantify and balance

macro and micro errors. Two and three dimensional numerical experiments are performed to

study the three error contributions and confirm the robustness, accuracy, and efficiency of

the adaptive method. This chapter is based on the papers [6, 8].

The main bottleneck of the DS-FE-HMM consists in solving a large number of micro problems.

This was avoided in [26] by assuming a piecewise periodic micro structure. An efficient

solution was provided in [40], where similarity of micro problems in locally periodic porous

media was exploited by using a multigrid method. However, this approach severely limits

macroscopic domains (unions of squares) and variation of the micro structure must be smooth.

We propose a different solution that avoids such severe restrictions by applying reduced order

modeling on the micro scale.

In chapter 4 we propose a new numerical multiscale method named the reduced basis Darcy-

Stokes finite element heterogeneous multiscale method (RB-DS-FE-HMM). The macroscopic

approach is the same as in the DS-FE-HMM but the RB method is applied to speed up the

microscopic computations. While a variety of RB methods for Stokes problem has been

proposed, we opt for the Petrov–Galerkin RB method (reviewed in section 4.2). This RB

method has several interesting properties such as approximation and algebraic stability,

applicability to general indefinite problems, and acceptable time cost. We derive a fully-

discrete a priori error analysis of the RB-DS-FE-HMM that reveals the contribution to the error

of the various approximation steps: the macro, micro, and the RB error. We also provide an

adaptive strategy for the RB-DS-FE-HMM and derive a posteriori error estimates. Two- and

three-dimensional numerical experiments confirm the accuracy of the RB-DS-FE-HMM and

illustrate the speedup compared to the DS-FE-HMM. This chapter is based on the papers [9,

10].

In chapter 5 we present a new conservative multiscale method for Stokes flow in heteroge-

neous porous media. So far, none of the mentioned multiscale methods for Stokes flow in

porous can simultaneously accommodate:

• higher-order macroscopic methods on arbitrary macro domains,

• fast and accurate resolution of the micro scale,

• conservation of mass.

The DS-FE-HMM and the RB-DS-FE-HMM, use the standard FE approach on the macro scale,

hence, a mass conservative solution can be obtained only by post-processing. The only mass

conservative multiscale method that appeared in the literature for Darcy–Stokes multiscale

problem is the FVM derived in [26], which allows only first-order macroscopic approximation.

In our method we keep the microscopic approximation of the RB-DS-FE-HMM but use a

9



Chapter 1. Introduction

symmetric interior penalty discontinuous Galerkin finite element method SIP-DG-FEM at the

macro scale. We provide well-posedness and a priori error analysis of the multiscale method.

In the error analysis we use the classical decomposition of error depending on its source: the

macro, micro, and RB error. Compared to the DG-FE-HMM for elliptic diffusion problems [3],

where the same technique was used on the macro scale, we provide a more detailed analysis

of the penalty factor, which is robust with respect to scaling of the effective tensor. Numerical

experiments for two- and three-dimensional problems illustrate the efficiency and accuracy

of the proposed method. This chapter is based on the paper [7].

In chapter 6 we propose a new numerical homogenization methods for flow in three-scale

porous media. A three-scale homogenization based model was derived in [69]. However, the

proposed numerical method was only tested for prediction of effective permeabilities in peri-

odic porous structures with respect to analytical and experimental results. Our contribution is

an efficient three-scale numerical method with porous structures varying on meso and micro

scales. We first describe locally periodic three-scale porous media in section 6.1 and a three-

scale model problem in section 6.2. A direct application of the HMM framework yields the

three-scale numerical method derived in section 6.3, which works as follows. Finite element

method with numerical quadrature is used to solve the macroscopic Darcy equation, where

the effective macroscopic permeability is upscaled from mesoscopic computations at each

macroscopic quadrature point. At the meso scale we use a stable FE scheme (Taylor–Hood

FE) with numerical quadrature to solve the Stokes–Brinkman equation, where the effective

mesoscopic permeability is upscaled from micro problems at every quadrature point in the

porous subdomain. At the micro scale we use a stable FE scheme (Taylor–Hood FE) to solve

the Stokes micro problems. The a priori error analysis confirms that to avoid error saturation,

macro, meso, and micro meshes should be refined simultaneously, which limits the applicabil-

ity of the method due to its large time cost. To overcome this issue, we propose a model-order

reduction on micro and meso scale to speed up the three-scale method. The reduced basis

method is used at the micro scale, similarly to the RB-DS-FE-HMM. At the meso scale we

cannot use the RB method directly since an affine decomposition of the reaction term is not

available. This issue is solved by applying the empirical interpolation method. The a priori

error analysis shows all the different factors that influence the accuracy of the method: the

macro, meso, and micro mesh sizes, the RB size at the micro and meso scale, and the size of

the EIM interpolation. Numerical experiment that illustrate the different sources of error are

provided. This chapter is based on the papers [11, 12].
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2 Homogenization theory and model
problem

In this chapter we recall the homogenization theory for Stokes problem in porous media. We

introduce the two-scale model problem that is a starting point for chapters 3–5. In section 2.1

we recall the definition of periodic porous media and homogenization of Stokes flow leading

to an effective Darcy equation. In section 2.2 we discuss generalization of periodic porous

media and provide a corresponding model problem in section 2.3. Finally, we study the

well-posedness of the model problem in section 2.4. This chapter is essentially taken from [6].

2.1 Periodic porous media

Homogenization of Stokes flow was first considered in periodic porous media. It was pioneered

by Sánchez-Palencia and Tartar [107, 104] and refined and extended by many authors (see

[24, 80, 78] and references therein). We shortly recall the settings and conclusions of [24].

Let d ∈ {2,3} and Ω⊂ Rd be a bounded, connected, polygonal domain. We denote by Y the

d-dimensional open unit cube (−1/2,1/2)d . Let YS ⊂ Y and set YF = Y \YS. Here and subse-

quently, the subscripts F and S stand for the fluid and solid parts of the medium, respectively.

For any ε> 0 we define the periodic porous medium Ωε ⊂Ω with micro geometry (YF,YS) by

Ωε =Ω\
⋃

k∈Zd

ε(k +YS). (2.1)

For an illustration see Figure 1.1 and Figure 2.1.

Remark 2.1.1. Although Ω is connected, the definition (2.1) can lead to Ωε with small parts

near the boundary of ∂Ω that are disconnected from the main body. In what follows, we

will neglect these small parts and assume (without changing notation) that Ωε is connected.

Moreover, we observe that ∂Ωε does not necessarily have Lipschitz boundary. See Figure 2.1

for an illustration.
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(a) (b) (c)
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periodic pores, ∂Ω
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Figure 2.1 – An example that illustrates Remark 2.1.1: (a) porous geometry; (b) global pore
structure and ∂Ω; (c) Ωε given by (2.1) with two cusps and encircled disconnected parts (that
we drop from Ωε).

Homogenization of Stokes flow

Consider the stationary incompressible Stokes problem in Ωε with the velocity field uε, pres-

sure pε, and force field f, given by

−Δuε+∇pε = f in Ωε,

div uε = 0 in Ωε,

uε = 0 on ∂Ωε.

(2.2)

Homogenization theory examines the limit behavior of the solutions of (2.2) for ε→ 0+. We

introduce some minimal regularity assumptions that allow the homogenization results to be

obtained (see [24]).

Assumption 2.1.2. We say that the porous geometry (YS,YF) satisfies the basic assumptions

of the homogenization theory if:

(i) the set YS is closed in Y , and both YS and YF have positive measure,

(ii) the sets Rd \∪k∈Zd (k+YS) and YF have locally Lipschitz boundaries and the set are locally

located on one side of their boundary,

(iii) the sets Rd \∪k∈Zd (k +YS) and YF are connected.

Using Assumption 2.1.2 one can then extend the solutions uε, pε, which are functions in Ωε,

to Uε, Pε, which are functions in Ω so that a convergence analysis can be performed over Ω
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for decreasing values of ε> 0. We define the extensions by

Uε(x) =
⎧⎨
⎩uε(x) x ∈Ωε,

0 otherwise,

Pε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pε(x) x ∈Ωε,
1

|Z k |
∫

Z k pε(x̂)dx̂ x ∈ (Ω\Ωε)∩ε(k +Y ), where Z k =Ωε∩ε(k +Y )

and k ∈Zd such that ε(z +Y ) ⊂Ω,

0 otherwise.

(2.3)

It was proved in [24] that Uε/ε2 → u0 weakly in L2(Ω)d and Pε → p0 strongly in L2
loc(Ω)/R,

where p0 is the homogenized pressure given as the solution to the elliptic system

∇·a0(f−∇p0) = 0 in Ω,

a0(f−∇p0) ·n = 0 on ∂Ω.
(2.4)

The so-called homogenized velocity is given by u0 = a0(f−∇p0) and the homogenized perme-

ability tensor a0 is a d ×d matrix defined by

a0 =
∫

YF

(
u1 · · · ud

)
dy =

∫
YF

⎛
⎜⎜⎝

u1
1 · · · ud

1
...

. . .
...

u1
d · · · ud

d

⎞
⎟⎟⎠ dy,

where ui is indexed by i ∈ {1, . . . ,d} and is obtained as a solution of the following Stokes

problem. Find the velocity field ui and the pressure pi such that

−Δui +∇pi = ei in YF, ui = 0 on ∂YS,

div ui = 0 in YF, ui and pi are Y -periodic,
(2.5)

where ei is the i -th canonical basis vector in Rd .

Stronger results. A strong convergence result in the L2-norm was derived in [25]. If we

define

u0(x, x/ε) =∑d
i=1 ui (x/ε)(fi −∂i p0),

then

‖Uε/ε2 −u0(x, x/ε)‖L2(Ω) → 0.
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Furthermore, under more restrictive conditions on the regularity of Ω and YF, an additional

corrector ucor was defined in [78] allowing for convergence rates (in terms of ε)

∥∥Uε(x)/ε2 −u0(x, x/ε)−εucor(x, x/ε)
∥∥

H(Ω,div ) ≤Cε1/6,

‖Pε−p0‖L2(Ω)/R ≤Cε1/6,

where C does not depend on ε.

2.2 Locally periodic porous media

We provide a generalization to the periodic porous media from Section 2.1, where the local

geometry (solid vs. fluid part) can vary within the medium (see [41] for a related definition).

Definition 2.2.1. Assume that a reference porous geometry (YS,YF) is given, satisfying As-

sumption 2.1.2. Let ϕ : Ω×Y → Y be a continuous map such that for every x ∈ Rd the map

ϕ(x, ·) : Y → Y is a homeomorphism. For any x ∈ Ω we define the local porous geometry

(Y x
S ,Y x

F ) by Y x
S =ϕ(x,YS) and Y x

F = Y \Y x
S . For any ε> 0 we then define

Ωε =Ω\
⋃

k∈Zd

ε(k +Y εk
S ). (2.6)

For an illustration see Figure 1.1 and Example 2.2.3. In the following chapters we provide other

examples of ϕ in Example 4.3.2 and Example 4.3.3.

Remark 2.2.2. The definition (2.6) assumes that (Y x
F ,Y x

S ) and therefore ϕ(x, y) are defined for

many values x �∈Ω. If ϕ is not defined for those values, we can provide arbitrary extension

such as ϕ(x, y) ≡ y for x ∈Rd \Ω. This will only affect Ωε in a
�

dε-neighborhood of ∂Ω.

In addition, we require that the the following regularity assumptions on ϕ. We assume that

ϕ(x, ·),ϕ(x, ·)−1 ∈W 1,∞(Y )d and that there is a constant ΛJ such that

‖ϕ(x, ·)‖W 1,∞(Y )d ≤ΛJ , ‖ϕ(x, ·)−1‖W 1,∞(Y )d ≤ΛJ , ∀x ∈Ω. (2.7)

Following Remark 2.1.1, we also assume that Ωε is connected. We observe that if ϕ(x, y) ≡ y ,

then we obtain the definition (2.1).

Example 2.2.3. Consider the polynomial P (c, t ) = 4(1− c)t 3 + ct . The restricted polynomial

P (c, ·) : R → R induces a homeomorphism from the closed interval [−1/2,1/2] to itself for

0 < c < 3/2. For d = 2 and i ∈ {1,2} define ϕi (x, y) = P (max{5x2
i + 0.1,1.4}, yi ). Finally, we

set ε = 1/8 and define the solid part YS = [−1/4,1/4]2. The locally periodic porous media

construction with Ω= (−0.45,0.45)2\[0,1]2 is illustrated in Figure 2.2.

Other definitions of locally periodic porous media. There are other ways to define a perfo-

rated medium with varying microscopic structure. If ∂YS ∩∂Y �= �, the definition (2.6) can

14



2.3. Model problem

(a) (b) (c)
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Figure 2.2 – Locally periodic porous medium from Example 2.2.3: (a) the reference porous
structure, (b) a local porous structure, (c) the locally periodic porous medium Ωε.

lead to porous domains Ωε that have unnatural, sharp edges at the ε-grid. A simple solution

to this problem is to define

Ωε =Ω\
⋃

k∈Zd

{x; x ∈ ε(k +Y x
S )}. (2.8)

Another way to deal with this problem is to provide a function ϕ : Ω×Y ×R+
0 → Y and instead

of (2.6) use

Ωε =Ω\
⋃

k∈Zd

ε(k +ϕ(εk,YS,ε)). (2.9)

Dependence of ϕ on ε gives us some freedom to allow connected geometries. For an appli-

cation, see the 3D numerical experiment from section 3.5. The local geometries are then

defined as Y x
S =ϕ(x,YS,0) and Y x

F = Y \Y x
S . Naturally, we assume that ϕ(x,YS,ε) →ϕ(x,YS,0)

for ε→ 0+.

A completely different definition can be based on level sets, as is described in [43, 112]. Given

a function S : Ω×Rd →R that is Y -periodic in its second variable, we set

Ωε = {x ∈Ω | S(x, x/ε) > 0}.

For any x ∈ Ω we can then define the local geometries as Y x
S = {y ∈ Y | S(x, y) ≤ 0} and

Y x
F = Y \Y x

S . Compared to the definition we chose (see (2.6)) the local geometries (Y x
S ,Y x

F ) do

not have to be topologically equivalent to a single reference geometry (YS,YF).

2.3 Model problem

Following the homogenized problem in periodic porous media (2.4), (2.5), (2.11), we define

a model problem in the locally periodic setting. The effective pressure equation (2.4) stays

unchanged but we let a0 depend on x. For any x ∈Ω and i ∈ {1, . . . ,d} we solve the following
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Stokes micro problem. Find the velocity field ui ,x and the pressure pi ,x such that

−Δui ,x +∇pi ,x = ei in Y x
F , ui ,x = 0 on ∂Y x

S ,

div ui ,x = 0 in Y x
F , ui ,x and pi ,x are Y -periodic.

(2.10)

The variable effective permeability a0(x) ∈Rd×d is then defined for any x ∈Ω as

a0
i j (x) =

∫
Y x

F

ei ·u j ,x dy ∀i , j ∈ {1, . . . ,d}. (2.11)

Weak formulation. We provide a weak formulation to the model problem (2.4), (2.10). The

macro problem (2.4) is a standard elliptic problem with Neumann boundary conditions.

Hence, assuming that f ∈ L2(Ω)d the macro problem can be stated as follows. Find p0 ∈
H 1(Ω)/R such that

B0(p0, q) = L0(q) ∀q ∈ H 1(Ω)/R, (2.12)

where

B0(p, q) =
∫
Ω

a0∇p ·∇q dx,

L0(q) =
∫
Ω

a0f ·∇q dx.
(2.13)

The Stokes micro problem (2.10) can be written in a saddle-point formulation as follows. For

any x ∈Ω and i ∈ {1, . . . ,d} find ui ,x ∈W (Y x
F ) and pi ,x ∈ L2(Y x

F )/R such that

a(ui ,x ,v)+b(v, pi ,x ) = (ei ,v)L2(Y x
F ) ∀v ∈W (Y x

F ),

b(ui ,x , q) = 0 ∀q ∈ L2(Y x
F )/R,

(2.14)

where

W (YF) = {v ∈ H 1(YF)d ; v = 0 on ∂YS, v is Y -periodic}

and the bilinear forms are defined as

a(u,v) =
d∑

i , j=1
(∂i u j ,∂i v j )L2(Y x

F ), b(v, q) =−(q,div v)L2(Y x
F ).

Notice that the definitions of a(·, ·) and b(·, ·) depend on x even if it is not explicitly denoted.

Remark 2.3.1. The Stokes system (2.14) can be reformulated by excluding the pressure: find

ui ,x ∈V (YF) such that

a(ui ,x ,v) = (ei ,v)L2(Y x
F ) ∀v ∈V (Y x

F ), (2.15)

where

V (Y x
F ) = {v ∈W (Y x

F ); div v = 0 in Y x
F }.

Velocity solutions defined by (2.15) and (2.14) are identical, see for example [36].
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2.4. Well-posedness of the model problem

2.4 Well-posedness of the model problem

Assuming that ∂Y x
F is piecewise Lipschitz, there is a well-known theory [108, 67] that ensures

the existence and uniqueness of the micro problem (2.14). Consequently, the tensor a0 : Ω→
Rd×d is defined uniquely via (2.11). The well-posedness of the macro problem (2.12) can be

shown using the Lax-Milgram lemma if a0 ∈ L∞(Ω)d×d and if there are constants 0 < λ≤Λ

such that

a0(x)ξ ·ξ≥λ|ξ|2, |a0(x)ξ| ≤Λ|ξ| ∀x ∈Ω, ∀ξ ∈Rd . (2.16)

Let us note that regularity of a0(x) can be deduced from the regularity of ϕ(x, y). The Stokes

micro problems (2.14) can be pulled back to the domain YF and the coefficients of the resulting

problems depend on ∇yϕ(x, y). Assuming sufficient smoothness of ϕ(x, y) : Ω×Y → Y we then

have a smooth dependence of coefficients on the parameter x and this can yield a sufficient

smoothness of a0 : Ω→Rd×d . It is shown in [104] that a0 is elliptic in periodic porous media.

However, for locally periodic porous media, this proof does not guarantee uniform ellipticity

and boundedness of a0(x), which are discussed in the next two subsections.

2.4.1 Uniform boundedness of a0(x)

Boundedness of a0(x) are tightly related to the Poincaré-Friedrichs constant.

Lemma 2.4.1. Assume that there is α0 ∈ R such that, independently of x ∈ Ω, the following

Poincaré-Friedrichs inequality is valid: ‖v‖L2(Y x
F ) ≤ α0|v|H 1(Y x

F ) for every v ∈ W (Y x
F ). Then

‖a0(x)‖F ≤�
dα0 for every x ∈Ω.

Proof. Using the standard estimate of a solution to the Stokes equation (see [67] or [95, Thm.

15.4]) on ui ,x , we obtain

‖ui ,x‖L2(Y x
F ) ≤α0|ui ,x |H 1(Y x

F ) ≤α0‖ei‖L2(Y x
F ) < |Y x

F |1/2α0. (2.17)

Further, the Cauchy-Schwarz inequality yields

‖a0(x)‖2
F =

d∑
i , j=1

(∫
Y x

F

ui ,x
j dy

)2

≤ |Y x
F |

d∑
i=1

‖ui ,x‖2
L2(Y x

F ) ≤ d |Y x
F |2α2

0 ≤ dα2
0, (2.18)

which concludes the proof.

2.4.2 Uniform ellipticity of a0(x)

We first show that for each x ∈Ω the tensor a0(x) is positive definite. This was already shown

in [104, Ch. 7, Prop. 2.2], see also [93, 109] for a more detailed proof. Then we provide various

general criteria that lead to the uniform coercivity of a0(x).

Let us first define uξ,x =∑d
i=1 ξi ui ,x and pξ,x =∑d

i=1 ξi pi ,x for any ξ ∈Rd and x ∈Ω.
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Chapter 2. Homogenization theory and model problem

Lemma 2.4.2. For any x ∈Ω the tensor a0(x) is positive definite.

Proof. Let x ∈Ωbe arbitrary. Let i , j ∈ {1, . . . ,d} and take v = u j ,x in (2.15) to obtain a(ui ,x ,u j ,x ) =
(ei ,u j ,x )L2(Y x

F ). Then (2.11) gives a0
i j (x) = a(ui ,x ,u j ,x ), which implies the symmetry of a0(x).

We have

a0(x)ξ ·ξ=
d∑

i , j=1
ξiξ j a(ui ,x ,u j ,x ) = |uξ,x |2H 1(Y x

F ) ≥ 0. (2.19)

We prove that the inequality (2.19) is indeed strict by contradiction. Suppose that for some

ξ ∈Rd we have uξ,x ≡ 0. Summing the micro problems (2.14) and weighting them with ξi we

get

b(v, pξ,x ) =
∫

Y x
F

pξ,x div vdy = 0 ∀v ∈W (Y x
F )

For any q ∈C∞
c,per(Y x

F ) we have ∇q ∈W (Y x
F ) and thus

∫
Y x

F

pξ,xΔq dy = 0 ∀q ∈C∞
c,per(Y x

F ).

Thus, pξ,x is weakly harmonic and by Weyl’s lemma [119, Lemma 2] we have that (up to

redefinition on a set of measure zero) pξ,x ∈C∞
per(Y x

F ) and ∇pξ,x (y) = ξ for y ∈ Y x
F . Since Y x

F is

connected we conclude that pxi ,x = ξ · y +C for some C ∈ R, which leads to a contradiction

with periodicity of pξ,x for ξ �= 0. We reached a contradiction, which shows that uξ,x �= 0 for

ξ �= 0 and consequently a0(x)ξ ·ξ> 0.

Lemma 2.4.2 shows ellipticity of a0(x) for a given x ∈Ω but not uniform ellipticity, which we

discuss in the rest of this section.

Lemma 2.4.3. For any x ∈Ω and v ∈V (Y x
F ) with v �≡ 0 we have

a0(x)ξ ·ξ≥
(ξ,v)2

L2(Y x
F )

|v|2
H 1(Y x

F )

∀ξ ∈Rd , (2.20)

Proof. The equation (2.15) and the continuity and linearity of a(·, ·) give

|uξ,x |H 1(Y x
F )|v|H 1(Y x

F ) ≥ a(uξ,x ,v) =
d∑

i=1
ξi a(ui ,x ,v) = (ξ,v)L2(Y x

F ) (2.21)

for any v ∈ V (Y x
F ). The result then follows by using (2.21) to provide a lower bound for

|uξ,x |H 1(Y x
F ) in (2.19).

Lemma 2.4.3 can be used to get a lower bound on the coercivity if one can find appropriate

test functions v ∈V (Y x
F ) for any ξ ∈Rd and x ∈Ω. Notice that (2.20) does not contain (a priori
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2.4. Well-posedness of the model problem

unknown) solutions to the micro problems. In Lemma 2.4.4 we show how only d test functions

{vi ,x }d
i=1 are necessary to prove coercivity of a0(x) for any x ∈Ω. An application of this theorem

is illustrated in Example 2.4.5.

Lemma 2.4.4. Let ν = (ν1, . . . ,νd )T ∈ Rd . Suppose that for every i ∈ {1, . . . ,d} and x ∈Ω there

is a test function vi ,x ∈ V (Y x
F ) such that |vi ,x |H 1(Y x

F ) ≤ νi and (e j ,vi ,x )L2(Y x
F ) = δi j for every

j ∈ {1, . . . ,d}. Then we have

a0(x)ξ ·ξ≥ |ξ|2
|ν|2 ∀ξ ∈Rd , ∀x ∈Ω. (2.22)

Proof. For any ξ ∈ Rd we define vξ,x =∑d
i=1 ξi vi ,x . Notice that (ξ,vξ,x )L2(Y x

F ) = |ξ|2 while the

triangle and the Cauchy-Schwarz inequality give |vξ,x |H 1(Y x
F ) ≤ |ξ||ν|. Setting v = vξ in (2.20)

gives the desired result.

Example 2.4.5 (pore geometries Y x
F containing straight cylindrical subsets). Let r > 0, zx ∈ Y ,

and suppose that (see Figure 2.3(left))

B i ,x = {y ∈ Y ; r 2 −∑ j �=i (y j − zx
j )2 ≥ 0} ⊂ Y x

F .

Then a0(x) is uniformly elliptic with λ= r 3/3 for d = 2 and λ=πr 4/24 for d = 3.

We prove this claim using Poiseuille parabolic flows as test functions in (2.22). Define

vi ,x (y) =Cr

(
r 2 −∑

j �=i
(y j − zx

j )2

)
·
⎧⎨
⎩ei for y ∈ B i ,x ,

0 for y ∈ Y x
F −B i ,x .

It is clear that vi ,x ∈V (Y x
F ). Notice that the constant Cr can be set such that (e j ,vi ,x )L2(Y x

F ) = δi j

for every i , j ∈ {1, . . . ,d}. We compute explicitly the values of |vi ,x |H 1(Y x
F ) =: νi for i ∈ {1, . . . ,d}

and conclude the proof by using Lemma 2.4.4.
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Figure 2.3 – Left: Straight cylindrical subsets of Y x
F from Example 2.4.5. Middle: Half-balls from

the construction of test functions in Example 2.4.8. Right: Half-balls from the construction
of test functions in Example 2.4.10 (domains in dark gray are subsets of the fluid parts in all
Figures).

We provide a generalization of Lemma 2.4.4 to allow test functions vi ,x that are not divergence-

free in Proposition 2.4.7. We start with a definition of the inf-sup constant of b(·, ·).
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Chapter 2. Homogenization theory and model problem

Definition 2.4.6. For any x ∈Ω let βx
0 > 0 be the constant from the following inf-sup condition:

for every q ∈ L2(Y x
F )/R there is v ∈ H 1

0 (Y x
F )d such that b(v, q) ≥βx

0‖q‖L2(Y x
F )/R|v|H 1(Y x

F ).

In what follows, we will assume a uniform inf-sup constant for all domains Y x
F with x ∈Ω, i.e.,

βx
0 ≥ β> 0 for every x ∈Ω. Such results can be obtained for a large class of geometries that

can be defined as a union of star-shape domains with respect to open balls [64, Chap. III.3].

We note, however, that for domains with thin channels, β degenerates with increasing aspect

ratio [55].

Proposition 2.4.7. Let η= (η1, . . . ,ηd )T ∈Rd . Suppose that for any x ∈Ω and i ∈ {1, . . . ,d} there

is wi ,x ∈W (Y x
F ) such that |wi ,x |H 1(Y x

F ) ≤ ηi and
∫
∂Y x

F
y j (wi ,x ·n)dy = δi j for every j ∈ {1, . . . ,d}.

Further, suppose that there exists β> 0 such that βx
0 ≥β for every x ∈Ω. Then a0(x)ξ ·ξ≥λ|ξ|2

for each ξ ∈Rd and x ∈Ω with λ depending only on β, η, and d .

Proof. Let ṽi ,x ∈ H 1
0,per(Y x

F )d and p̃i ,x ∈ L2(Y x
F )/R be given by the Stokes problem

a(ṽi ,x ,w)+b(w, p̃i ,x ) =−a(wi ,x ,w) ∀w ∈ H 1
0,per(Y x

F )d ,

b(ṽi ,x , q) =−b(wi ,x , q) ∀q ∈ L2(Y x
F )/R.

Define vi ,x = ṽi ,x +wi ,x , then vi ,x is divergence-free, yielding vi ,x ∈V (Y x
F ). Standard a priori

error estimates for Stokes problems [95, 67] give

|vi ,x |H 1(Y x
F ) ≤ 2

(
1+

�
d

βx
0

)
|wi ,x |H 1(Y x

F ) ≤ 2

(
1+

�
d

β

)
ηi =: νi .

Further, using e j =∇y j , integration by parts, and the condition vi ,x = wi ,x on ∂Y x
F , yields

(e j ,vi ,x )L2(Y x
F ) =

∫
∂Y x

F

y j (vi ,x ·n)dy = δi j ∀ j ∈ {1, . . . ,d}. (2.23)

Finally, the inequality (2.22) gives λ= |ν|−2, with ν= (ν1, . . . ,νd )T .

Example 2.4.8. Let us show how Proposition 2.4.7 can be used in arbitrary geometries. Let

r > 0 and suppose that for every x ∈Ω we have zx ∈ Y such that the half-balls

Di ,x,k = {y ∈ Y ; r 2 − (yi + (−1)k /2)2 −∑ j �=i (y j − zx
j )2︸ ︷︷ ︸

=:g i ,x,k (y)

≥ 0}

(see Figure 2.3(middle)) satisfy Di ,x,k ⊂ Y x
F for i ∈ {1, . . . ,d} and k ∈ {1,2}. Then a0(x) is uni-

formly elliptic with λ depending only on r and β. Indeed, define

wi ,x (y) =C g i ,x,k (y) ·
⎧⎨
⎩ei for y ∈ Di ,x,k ,k ∈ {1,2},

0 otherwise,
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2.4. Well-posedness of the model problem

where C is a constant depending on r that assures
∫
∂Y x

F
x j (wi ,x · n)dy = δi j for every j ∈

{1, . . . ,d}. Using test functions wi ,x in Proposition 2.4.7 concludes the proof.

2.4.3 Uniform ellipticity in case of Neumann boundary conditions

The numerical method that will be described in Section 3.1 extracts micro geometries from

the global porous structure Ωε. Such geometries can violate Assumption 2.1.2(iii) as in Fig-

ure 2.3(right) and the presented computation of micro problems then yields a degenerate

(zero) homogenized tensor. Practical solution to this problem is to introduce other boundary

conditions in the micro problems. In this subsection we discuss uniform ellipticity of the

effective permeability if we use Neumann instead of periodic boundary conditions in the

micro problems.

Let
W N(Y x

F ) = {v ∈ H 1(Y x
F )d ; v = 0 on ∂Y x

S },

V N(Y x
F ) = {v ∈W N(Y x

F ); div v = 0 in Y x
F }.

Consider now the micro problems (2.12), where the space W (Y x
F ) is replaced by W N(Y x

F ) and

denote the corresponding tensor (computed using the velocity solution as in (2.11)) by aN(x).

Analogously to (2.20) we get

aN(x)ξ ·ξ≥
(ξ,v)2

L2(Y x
F )

|v|2
H 1(Y x

F )

∀ξ ∈Rd , ∀v ∈V N(Y x
F ), v �≡ 0. (2.24)

We provide a variant of the inequality (2.22) that has weaker assumptions on the scalar prod-

ucts of test functions with e j . Let L > 0 and η= (η1, . . . ,ηd )T ∈Rd . Assume that for any x ∈Ω

and i ∈ {1, . . . ,d} there is vi ,x ∈V N(Y x
F ) such that |vi ,x |H 1(Y x

F ) ≤ ηi . Denote Ax
i j = (ei ,v j ,x )L2(Y x

F )

for any i , j ∈ {1, . . . ,d} and assume that the matrix Ax is invertible. Denote B x = (Ax )−1, sup-

pose that ‖B x‖F ≤ L, and define vξ,x =∑d
j=1 ξi B x

j i v j ,x . Notice that (ξ,vξ,x )L2(Y x
F ) = |ξ|2, while

the triangle and the Cauchy-Schwarz inequality give |vξ,x |H 1(Y x
F ) ≤C L|η||ξ|, where C depends

only on d . Setting v = vξ,x in (2.24) then gives

aN(x)ξ ·ξ≥ C

L2|η|2 |ξ|
2 ∀ξ ∈Rd , ∀x ∈Ω, (2.25)

where C depends only on the dimension d .

The result from the previous paragraph can be used to obtain an analogue of Proposition 2.4.7.

Next we show a variant of Example 2.4.8 with aN(x).

Definition 2.4.9. For any x ∈Ω let βx
N > 0 be the constant from the following inf-sup condition:

for every q ∈ L2(Y x
F )/R there is v ∈W N(Y x

F ) such that b(v, q) ≥βx
N‖q‖L2(Y x

F )/R|v|H 1(Y x
F ).

Example 2.4.10. Suppose that the inf-sup constants βx
N have a lower bound, that is, βx

N >
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Chapter 2. Homogenization theory and model problem

βN > 0 for every x ∈Ω. For any i ∈ {1, . . . ,d}, any x ∈Ω, and any k ∈ {1,2}, let zi ,x,k ∈ ∂Y such

that zi ,x,k
i = (−1)k /2. Define the matrix Ax by Ax

i j = zi ,x,2
j − zi ,x,1

j and suppose that there exists

γ> 0 such that |det(Ax )| ≥ γ. Further, assume that the half-balls

Di ,x,k = {y ∈ Y ; r 2 −∑d
j=1(y j − zi ,x,k

j )2 ≥ 0}

(see Figure 2.3(right)) satisfy Di ,x,k ⊂ Y x
F for i ∈ {1, . . . ,d} and k ∈ {1,2}, where r > 0 is a given

radius. Then aN(x) is uniformly elliptic with λ depending only on r , γ, and βN. Indeed, define

wi ,x (y) =C (r 2 −∑d
j=1(y j − zi ,x,k

j )2) ·
⎧⎨
⎩ei for y ∈ Di ,x,k ,k ∈ {1,2},

0 otherwise,

where C is the constant from Example 2.4.8, depending only on r . Direct integration gives∫
∂Y x

F
y j (wi ,x ·n)dy = Ax

i j for any j ∈ {1, . . . ,d}. Using the auxiliary Stokes problems as in Propo-

sition 2.4.7 and then integration per parts as in the formula (2.23), we can find vi ,x ∈V N(Y x
F )

such that (e j ,vi ,x ) = Ax
i j and |vi ,x |H 1(Y x

F ) ≤ C , where C depends on r and βN. Finally, the as-

sumption on Ax (observe also that ‖Ax‖F ≤ d) gives ‖(Ax )−1‖F ≤C , where C depends only on

γ and d . We can conclude by using the test functions vi ,x in (2.25).
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3 An adaptive finite element heteroge-
neous multiscale method

In this chapter we propose a numerical homogenization method for Stokes flow in heteroge-

neous media named the Darcy-Stokes finite element heterogeneous multiscale method (DS-FE-

HMM). The FEM with numerical quadrature is used to solve the macroscopic Darcy problem

while the missing effective permeability is upscaled from microscopic Stokes computations at

the macroscopic quadrature points. The DS-FE-HMM has non-restrictive assumptions on the

macro and micro domains and porous structure and higher-order finite element methods are

applicable on both scales.

Outline. In section 3.1 we define the DS-FE-HMM and study its well-posedness. We provide

a priori and a posteriori error estimates in section 3.2 and 3.3, respectively. In section 3.4

we propose a residual-based adaptive algorithm that is adaptively refining the macroscopic

mesh and all the micro meshes to achieve an optimal order of convergence. We conclude this

chapter by various numerical experiments in section 3.5. This chapter is essentially taken

from [6].

3.1 The DS-FE-HMM

In this section we define the DS-FE-HMM. Since the effective Darcy equation (2.12) is elliptic,

we can use the strategy from FE-HMM for diffusion problems [1] for the macro solver. The

coupling with micro problems, however, differs from the FE-HMM as we now have to solve

micro Stokes problems, where we use a stable pair of finite elements. Well-posedness of the

DS-FE-HMM is studied in section 3.1.1.

Let ε> 0 and assume that Ω and Ωε are connected bounded polygonal domains in Rd with

Ωε ⊂Ω. Let {TH } be a family of conformal, shape-regular triangulations of Ω parametrized by

the mesh size H = maxK∈TH
HK , where HK = diam(K ).
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Chapter 3. An adaptive finite element heterogeneous multiscale method

Macro FE space and quadrature formulas. We consider the macro FE space

Sl (Ω,TH ) = {q H ∈ H 1(Ω); q H |K ∈P l (K ), ∀K ∈TH },

where P l (K ) is the space of polynomials on K of degree l ∈ N. For each element K ∈ TH

we consider an affine mapping FK such that K = FK (K̂ ), where K̂ is the simplicial reference

element. Let J ∈ N and {x̂ j ,ω̂ j }J
j=1 be a given quadrature formula on K̂ with quadrature

points x̂ j ∈ K̂ and weights ω̂ j > 0. The transformation FK induces a quadrature formula on

K with quadrature points xK j = FK (x̂ j ) ∈ K and weights ωK j = ω̂ j |det(∂FK )| > 0. Since exact

integration will be replaced by a quadrature formula, the following assumption is needed to

recover well-posedness of the numerical method and guarantee the optimal order of accuracy

(see [45, Chap. 4.1]).

Assumption 3.1.1. The quadrature formula {x̂ j ,ω̂ j }J
j=1 on the reference simplicial element K̂

is exact for polynomials of order m = max(2l −2, l ), that is,

∫
K̂

q̂(x̂)dx̂ =
J∑

j=1
ω̂ j q̂(x̂ j ) ∀q̂ ∈P m(K̂ ).

As a consequence of Assumption 3.1.1 we have

∫
K

q(x)dx =
J∑

j=1
ωK j q(xK j ) ∀K ∈TH , ∀q ∈P m(K ).

Some quadrature formulas that satisfy Assumption 3.1.1 are presented in Example 3.1.2.

Denote the sets of quadrature points by

QK = {xK j }1≤ j≤J and Q H =∪K∈TH QK , (3.1)

where we notice that QK ⊂ K and Q H ⊂Ω. Denote the family of all quadrature points for H > 0

by {Q H }.

Example 3.1.2. Let us list some quadrature formulas in two and three dimensions that satisfy

Assumption 3.1.1. They are all sketched in Figure 3.1. For further references see [50, 49, 57]

and the references therein.

• If l = 1 then the quadrature formula has to be exact for polynomials of degree m = 1.

It is sufficient to take the one-point formula with J = 1, weight ω̂1 = |K̂ |, and x̂1 is the

barycenter of K̂ .

• If l = 2 then the quadrature formula has to be exact for polynomials of degree m = 2. We

can use a quadrature formula with d +1 quadrature points with the barycentric coordi-

nate (β,α,α, . . . ,α) ∈Rd+1 and its cyclic permutations, where α= (1−(d+2)−1/2)(d+1)−1

and β= 1−dα. The weights are all equal to |K̂ |/(d +1).

• If l = 3 then the quadrature formula has to be exact for polynomials of degree m = 4. For
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d = 2 we can use the 6-point quadrature formula that is defined in In Table 3.1.

ω̂ j /|K̂ | barycentric coordinates of x̂ j

0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965
0.223381589678011 0.445948490915965 0.108103018168070 0.445948490915965
0.223381589678011 0.445948490915965 0.445948490915965 0.108103018168070
0.109951743655322 0.816847572980459 0.091576213509771 0.091576213509771
0.109951743655322 0.091576213509771 0.816847572980459 0.091576213509771
0.109951743655322 0.091576213509771 0.091576213509771 0.816847572980459

Table 3.1 – Six-point quadrature formula on a two-dimensional simplex that is exact for
polynomials of degree 4.

l = 1 l = 2 l = 3

Figure 3.1 – Sketches of the quadrature formulas from Example 3.1.2.

Micro FE spaces. Let δ≥ ε. For each x ∈ {Q H } we define the local geometry snapshot

Y x,δ
S = (((Rd \Ωε)∩ (x +δY ))−x)/ε,

Y x,δ
F = ((δ/ε)Y )\Y x,δ

S .
(3.2)

For any x ∈ {Q H }, we assume that {T x
h }h is a family of conformal, shape-regular triangulations

of Y x,δ
F parametrized by the mesh size h = maxT∈T x

h
hT , where hT = diam(T ). The shape-

regularity constants are assumed to be the same for each x ∈ {Q H } and δ ≥ ε. We further

assume that every element K ∈ T x
h has at most one boundary interface. We consider two

standard stable pairs of micro velocity and pressure elements (see [36]): the Taylor-Hood

P k+1/P k FE for k ≥ 1 and the MINI FE (see Remark 3.1.3). We consider two different boundary

conditions (BC) on the micro scale: periodic and Neumann. The pressure FE space is given by

Lh(Y x,δ
F ) =

⎧⎨
⎩{q ∈ Sk (Y x,δ

F ,T x
h ); q is (δ/ε)Y -periodic} for periodic BC,

Sk (Y x,δ
F ,T x

h ) for Neumann BC.
(3.3)

The velocity FE space is given by

Wh(Y x,δ
F ) =W (Y x,δ

F )∩Sk+1(Y x,δ
F ,T x

h )d , (3.4)

where

W (Y x,δ
F ) =

⎧⎨
⎩{v ∈ H 1(Y x,δ

F )d ; v = 0 on ∂Y x,δ
S ,v is (δ/ε)Y -periodic} for periodic BC,

{v ∈ H 1(Y x,δ
F )d ; v = 0 on ∂Y x,δ

S } for Neumann BC.
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Chapter 3. An adaptive finite element heterogeneous multiscale method

For the sake of simplicity of notation, we indicate the dependence of spaces Wh(Y x,δ
F ) and

Lh(Y x,δ
F ) on the micro triangulation T x

h only by the subscript h.

Remark 3.1.3. To use the MINI finite elements, we take (3.3) with k = 1 and

Wh(Y x,δ
F ) =W (Y x,δ

F )∩ (S1(Y x,δ
F ,T x

h )d ⊕B(Y x,δ
F ,T x

h )d ),

where B is the bubble space is defined as

B(Y x,δ
F ,T x

h ) = {q ∈ Sd+1(Y x,δ
F ,T x

h ); q = 0 on ∂K ,∀K ∈T x
h }.

In case of periodic boundary conditions, we assume that the micro meshes T x
h are conformal

over periodic boundaries and periodicity can be thus enforced strongly (see Figure 3.2(c)).

(a) (b) (c) (d)

H

δ

Figure 3.2 – DS-FE-HMM with P 1 macro elements (l = 1): (a) TH ; (b) zoom on Ωε in the two
highlighted macro elements; (c) T x

h in Y x,δ
F with periodic coupling (periodic: double line ,

Dirichlet: bold line); (d) T x
h in Y x,δ

F with Neumann coupling (Neumann: double line with dots,
Dirichlet: bold line).

Coupling macro and micro methods (DS-FE-HMM). The coupled Darcy-Stokes finite ele-

ment heterogeneous multiscale method is defined as follows. Find p H ∈ Sl (Ω,TH )/R such that

BH (p H , q H ) = LH (q H ) ∀q H ∈ Sl (Ω,TH )/R, (3.5)

where the discrete macro bilinear form and right-hand side corresponding to (2.12), (2.13) are

BH (p H , q H ) = ∑
K∈TH

J∑
j=1

ωK j ah(xK j )∇p H (xK j ) ·∇q H (xK j ),

LH (q H ) = ∑
K∈TH

J∑
j=1

ωK j ah(xK j )fH (xK j ) ·∇q H (xK j ).

(3.6)

Here, fH ∈V l−1(Ω,TH )d is an appropriate interpolation of the force field f ∈ L2(Ω)d , where

V k (Ω,TH ) = {q H ∈ L2(Ω); q H |K ∈P k (K ), ∀K ∈TH }

26



3.1. The DS-FE-HMM

for any k ∈N0 and ah(xK j ) is a numerical approximation of the tensor a0(xK j ) computed by

the micro Stokes problems: for each i ∈ {1, . . . ,d} and quadrature point x ∈ Q H find ui ,x,h ∈
Wh(Y x,δ

F ) and pi ,x,h ∈ Lh(Y x,δ
F )/R such that

a(ui ,x,h ,v)+b(v, pi ,x,h) = (ei ,v)L2(Y x,δ
F ) ∀v ∈Wh(Y x,δ

F ),

b(ui ,x,h , q) = 0 ∀q ∈ Lh(Y x,δ
F )/R,

(3.7)

and set

ah
i j (x) = εd

δd

∫
Y x,δ

F

ei ·u j ,x,h dy ∀i , j ∈ {1, . . . ,d}. (3.8)

Remark 3.1.4. From the definition of (3.8) it appears that the exact knowledge of ε is required

to use the DS-FE-HMM, but it is not true. Indeed, if we change ε in (3.8) we get the same

solution p H since scaling the tensor ah does not affect the equation (3.5).

Remark 3.1.5. Neumann boundary conditions in the micro problems are especially use-

ful when the periodic extension of the fluid part Y x,δ
F is not connected (see for example

Figure 2.3(right)). If periodic boundary conditions were used in such case, we would get

ah(x) = 0.

Computational cost. Denote the number of macroscopic degrees of freedom by Nmac and

the (average) number of microscopic degrees of freedom by Nmic. The macroscopic mesh

TH can be much coarser than the pore scale (ε� H), hence Nmac is not restricted and can be

chosen arbitrarily. The number Nmic may depend on δ/ε but not on ε directly. If the time cost

of solving one (micro or macro) problem is assumed to be linear in the degrees of freedom,

the total cost of the DS-FE-HMM method is O (NmicNmac), which does not depend on the pore

size ε. The DS-FE-HMM discretizes the pore geometry only in a small portion of the whole

domain Ωε, hence it is much faster than methods that directly solve for pε.

Numerical fluxes. We reconstruct a discontinuous velocity field using piecewise approxima-

tion of ah(fH −∇p H ) by interpolation from quadrature points. In addition to Assumption 3.1.1

we assume that the number of quadrature nodes J is minimal. It can be shown that the

minimal size of quadrature formula that is exact for polynomials of degree m = max{1,2l −2}

is J = (l+d−1
d

)
. Given a macro element K ∈ TH (recall the definition (3.1)) and a function

q : QK → R, there is a unique interpolant Π(q) ∈P l−1(K ) such that Π(q)(x) = q(x) for every

quadrature point x ∈QK (see [21] and [88, Prop. 50]). This leads us to the following definition

of a numerical flux reconstructed from quadrature points.

Definition 3.1.6. Suppose that a quadrature formula (xK j ,ωK j ) j=1,...,J is given for any K ∈TH

such that Assumption 3.1.1 is satisfied and J = (l+d−1
d

)
. For any tensor defined in all the

quadrature points a : Q H →Rd×d we denote by Πa the unique operator Πa : V l−1(Ω,TH )d →
V l−1(Ω,TH )d that satisfies

Πa(v)(x) = a(x)v(x), ∀x ∈Q H , ∀v ∈V l−1(Ω,TH ).
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Chapter 3. An adaptive finite element heterogeneous multiscale method

We define the DS-FE-HMM velocity reconstruction by uH =Πah (fH −∇p H ).

Remark 3.1.7. Quadrature formulas that satisfy Assumption 3.1.1 and J = (l+d−1
d

)
are known

only for l ≤ 3 in two dimensions and l ≤ 2 in three dimensions, see [49] and the references

therein. These quadrature formulas are shown in Example 3.1.2. If the number of quadrature

nodes is not minimal, we can still define Π(q) as

Π(q) = arg min
r∈P l−1(K )

J∑
j=1

ωK j |q(xK j )− r (xK j )|2.

Note that Assumption 3.1.1 and Definition 3.1.6 give a different representation of BH and LH .

For any p H , q H ∈ Sl (Ω,TH ) we have

BH (p H , q H ) = ∑
K∈TH

J∑
j=1

ωK j ah(xK j )∇p H (xK j ) ·∇q H (xK j )

= ∑
K∈TH

J∑
j=1

ωK j Πah (∇p H )(xK j ) ·∇q H (xK j )

= ∑
K∈TH

∫
K
Πah (∇p H ) ·∇q H dx =

∫
Ω
Πah (∇p H ) ·∇q H dx,

LH (q H ) = ∑
K∈TH

∫
K
Πah (fH ) ·∇q H =

∫
Ω
Πah (fH ) ·∇q H .

(3.9)

3.1.1 Well-posedness of the DS-FE-HMM

There is a well-known theory [28, 36, 39] that guarantees well-posedness of the micro prob-

lems (3.7) with finite element spaces defined in (3.3), (3.4). Later in this section we provide

arguments that for sufficiently small micro mesh size h we can safely assume that (2.16)

implies also that there are constants 0 <λ≤Λ such that

ah(x)ξ ·ξ≥λ|ξ|2, |ah(x)ξ| ≤Λ|ξ| ∀x ∈Q H , ∀ξ ∈Rd . (3.10)

The well-posedness of the macro problem (3.5) is shown in the following proposition.

Proposition 3.1.8. Suppose that (3.10) and Assumption 3.1.1 hold. Then there is a unique

solution p H of (3.5). Moreover, |p H |H 1(Ω) ≤Λ/λ‖fH‖L2(Ω)d .

Proof. For any q H ,r H ∈ Sl (Ω,TH ) we use first (3.10), then the Cauchy–Schwarz inequality,
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3.1. The DS-FE-HMM

and finally Assumption 3.1.1 to show that

BH (q H ,r H ) ≤Λ
∑

K∈TH

J∑
j=1

ωK j |∇q H (xK j )||∇r H (xK j )|

≤Λ

( ∑
K∈TH

J∑
j=1

ωK j |∇q H (xK j )|2
) 1

2
( ∑

K∈TH

J∑
j=1

ωK j |∇r H (xK j )|2
) 1

2

=Λ|q H |H 1(Ω)|r H |H 1(Ω).

Analogously we obtain

LH (q H ) ≤Λ‖fH‖L2(Ω)d |q H |H 1(Ω).

A similar argument (without using the CS inequality) gives

BH (q H , q H ) ≥λ
∑

K∈TH

J∑
j=1

ωK j |∇q H (xK j )|2 =λ|q H |2H 1(Ω).

The Lax-Milgram lemma concludes the proof.

Micro problems. We now study whether (3.10) holds and how do Λ and λ depend on the

local geometries Y x,δ
F . Let us first consider micro problems in Y x,δ

F that are solved exactly in

Sobolev spaces. Using here the variant of Stokes problem (2.15), which excludes pressure, we

arrive at the following definition. For any x ∈ {Q H } and i ∈ {1, . . . ,d}, let ui ,x ∈V (Y x,δ
F ) be the

unique solution to the Stokes problem

a(ui ,x ,v) = (ei ,v)L2(Y x,δ
F ) ∀v ∈V (Y x,δ

F ), (3.11)

where

V (Y x,δ
F ) = {v ∈W (Y x,δ

F ); div v = 0 in Y x,δ
F }.

We then define

a(x) = εd

δd

∫
Y x,δ

F

[u1,x , . . . ,ud ,x ]dy. (3.12)

Consider a macro mesh TH and assume that there are constants 0 <λ≤Λ such that

a(x)ξ ·ξ≥λ|ξ|2, |a(x)ξ| ≤Λ|ξ| ∀x ∈Q H , ∀ξ ∈Rd . (3.13)

Convergence properties of the stable FE scheme (3.7) assure that

lim
h→0

‖ah(x)−a(x)‖F = 0 ∀x ∈Q H ,

which implies (3.10) if h > 0 is sufficiently small (possibly with different constants λ, Λ). We

next discuss uniform (with respect to H > 0 and h > 0) properties of ah(x).
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Chapter 3. An adaptive finite element heterogeneous multiscale method

Uniform boundedness of ah(x) We follow the arguments of Section 2.4.1. Assume that

there is α ∈ R such that the Poincaré-Friedrichs inequality ‖v‖L2(Y x,δ
F ) ≤ α|v|H 1(Y x,δ

F ) is valid

for every v ∈W (Y x,δ
F ), independently of δ≥ ε and quadrature point x ∈ {Q H }. Following the

estimates (2.17), (2.18), while using the standard discrete solution stability result (see [67, 95])

and Wh(Y x,δ
F ) ⊂W (Y x,δ

F ), we obtain ‖ah(x)‖F ≤�
dα.

Uniform ellipticity of ah(x) We first consider the tensor a(x). Except for the scaling by ε/δ,

the ellipticity of (3.12) was examined in Section 2.4.2 (periodic) and Section 2.4.3 (Neumann).

Similarly to Section 2.4.2, we derive that ah(x) is symmetric and that

ah(x)ξ ·ξ≥ εd

δd

(ξ,vh)2
L2(Y x,δ

F )

|vh |2
H 1(Y x,δ

F )

∀ξ ∈Rd , ∀vh ∈Vh(Y x,δ
F ), vh �≡ 0, (3.14)

where

Vh(Y x,δ
F ) = {vh ∈Wh(Y x,δ

F ); b(vh , qh) = 0,∀qh ∈ Lh(Y x,δ
F )/R}.

The main idea in what follows is to take, for any x ∈ {Q H } and any unit vector η ∈ Rd , a test

function vη,x ∈V (Y x,δ
F ) that satisfies the property

(η,vη,x )2
L2(Y x,δ

F )
≥ γ|vη,x |2

H 1(Y x,δ
F )

, (3.15)

whereγ> 0 is a constant. We further assume that there exist finite dimensional approximations

vη,x,h ∈Vh(Y x,δ
F ) of vη,x such that for all ε̃> 0 there exists h0 such that

|vη,x,h −vη,x |H 1(Y x,δ
F ) ≤ ε̃|vη,x |H 1(Y x,δ

F ) ∀h ≤ h0, ∀x ∈ {Q H }, ∀η ∈Rd . (3.16)

Remark 3.1.9. The assumption (3.16) can be motivated as follows. Observe that that vη,x is

the velocity solution of the Stokes problem: find v ∈W (Y x,δ
F ) and p ∈ L2(Y x,δ

F )/R such that

a(v,w)+b(w, p) = a(vη,x ,w) ∀w ∈W (Y x,δ
F ),

b(v, q) = 0 ∀q ∈ L2(Y x,δ
F )/R.

(3.17)

Let vη,x,h ∈Wh(Y x,δ
F ) be a discrete velocity solution of (3.17), where we replace the continuous

spaces W (Y x,δ
F ) and L2(Y x,δ

F )/R by the discrete spaces Wh(Y x,δ
F ) and Lh(Y x,δ

F ), respectively.

Then vη,x,h is in Vh(Y x,δ
F ) and standard estimates for the Stokes problem (see [67, 108]) give

lim
h→0

|vη,x,h −vη,x |H 1(Y x,δ
F )

|vη,x |H 1(Y x,δ
F )

= 0. (3.18)

The assumption (3.16) says that the limit (3.18) holds uniformly for each quadrature points

x ∈ {Q H } and η ∈Rd
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3.1. The DS-FE-HMM

The following Proposition together with the construction of test functions vη,x leads to elliptic-

ity bound for ah .

Proposition 3.1.10. Suppose that for each quadrature point x ∈ {Q H } and unit vector η ∈Rd ,

there exists vη,x ∈V (Y x,δ
F ) with the property (3.15). Assume that there are uniform bounds on

the Poincaré-Friedrichs inequalities introduced in Sections 2.4.1 and 3.1.1 denoted by α0 and

α, respectively. Finally, assume that the functions vη,x,h ∈Vh(Y x,δ
F ) satisfy (3.16). Then there is

λ> 0 and ĥ > 0 such that ah(x)ξ ·ξ≥λ|ξ|2 for all h ≤ ĥ, x ∈ {Q H } and ξ ∈Rd .

Proof. A simple computation gives∣∣∣∣∣∣∣
(η,vη,x,h)2

L2(Y x,δ
F )

|vη,x,h |2
H 1(Y x,δ

F )

−
(η,vη,x )2

L2(Y x,δ
F )

|vη,x |2
H 1(Y x,δ

F )

∣∣∣∣∣∣∣≤C
|vη,x,h −vη,x |2

H 1(Y x,δ
F )

|vη,x |2
H 1(Y x,δ

F )

, (3.19)

where C depends on δ/ε and on the Poincaré-Friedrichs constants α0 and α. Using (3.18) we

know that there is ĥ > 0 such that for all h ≤ ĥ the right-hand side in (3.19) can be bounded

above by γ/2. This implies (η,vη,x,h)2
L2(Y x,δ

F )
≥ γ/2|vη,x,h |2

H 1(Y x,δ
F )

for all h < ĥ. The estimate (3.14)

concludes the proof with λ= γ(ε/δ)d /2.

The test functions vη,x can be constructed in many ways. One can use the test functions

from Sections 2.4.2 and 2.4.3 or we can take directly vη,x =∑d
i=1ηi ui ,x , where ui ,x is defined

in (3.11). We close this section with a construction of the test functions for Proposition 3.1.10

in a specific situation, where the rate of convergence of (3.18) can be derived explicitly.

Definition 3.1.11. For any quadrature point x ∈ {Q H } let βx
δ

,βx,h
δ

> 0 be the constants from

the following inf-sup conditions:

• for every qh ∈ Lh(Y x,δ
F )/R there is vh ∈Wh(Y x,δ

F ) such that

b(vh , qh) ≥βx,h
δ

‖qh‖L2(Y x,δ
F )/R|vh |H 1(Y x,δ

F ),

• for every q ∈ L2(Y x,δ
F )/R there is v ∈W (Y x,δ

F ) such that

b(v, q) ≥βx
δ‖q‖L2(Y x,δ

F )/R|v|H 1(Y x,δ
F ).

As before we assume that βx
δ
≥ βδ > 0 for all x ∈ Ω. For stable pairs of FE spaces in shape-

regular meshes (see [36]), we also have a uniform bound for the discrete inf-sup constants,

i.e., βx,h
δ

≥βδ,num > 0 independently of x ∈ {Q H } and h > 0. Recall that the constant of shape-

regularity for the families of micro triangulations {T x
h }h is assumed to be independent of

x ∈ {Q H }. We describe a construction similar to Example 2.4.5.

Example 3.1.12. Let M ∈ N, r > 0 and assume that for every quadrature point x ∈ {Q H }

and m ∈ {1, . . . , M }, there is a point zx,m ∈ (δ/ε)Y with the following properties. For every
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Chapter 3. An adaptive finite element heterogeneous multiscale method

i ∈ {1, . . . ,d} the pairwise disjoint cylinders

B i ,x,m = {y ∈ (δ/ε)Y : r 2 −∑ j �=i (y j − zx,m
j )2 ≥ 0}

satisfy B i ,x,m ⊂ Y x,δ
F (see Figure 3.3). Then there are test functions vη,x satisfying the assump-

tions of Proposition 3.1.10.

Indeed, we can define

vi ,x (y) =C (r 2 −∑ j �=i (y j − zx,m
j )2)2 ·

⎧⎨
⎩ei for y ∈ B i ,x,m ,m ∈ {1, . . . , M },

0 for y ∈ Y x,δ
F \∪M

m=1 B i ,x,m ,
(3.20)

where C is a constant depending only on r such that (e j ,vi ,x ) = δi j M(δ/ε)d . We set vη,x =∑d
i=1ηi vi ,x for any unit vectorη ∈Rd and show that these test functions satisfy the conditions of

Proposition 3.1.10. A direct computation shows that (3.15) is satisfied with γ=C (δ/ε)d , where

C > 0 depends only on μ, r , and d . The definition (3.20) implies that vη,x ∈ H 2(Y x,δ
F )d ∩V (Y x,δ

F )

and ‖vη,x‖H 2(Y x,δ
F ) can be computed explicitly. Recall that vη,x,h is defined in Proposition 3.1.10

as a discrete solution of a Stokes problem where the continuous solution is vη,x . Using standard

approximation results (see [108, 67]) we obtain

|vη,x −vη,x,h |H 1(Y x,δ
F ) ≤C h‖vη,x‖H 2(Y x,δ

F ) ≤C h|vη,x |H 1(Y x,δ
F ), (3.21)

where C depends on r , d , βδ,num, micro FE space, and the shape regularity constant of {T x
h }h .

The estimate (3.21) implies a uniform convergence rate in (3.18). Hence, all the assumptions

of Proposition 3.1.10 are satisfied.

...
...

...

. . .

. . .

. . .

. . .

− δ
2ε

− δ
2ε

δ
2ε

δ
2ε

B 2,x,1

B 2,x,2

B 2,x,M

B 1,x,1
B 1,x,2

B 1,x,M

Figure 3.3 – Straight cylindrical subsets of Y x,δ
F from Example 3.1.12. Points zx,m are marked

by bullets on the intersections of B 1,x,m and B 2,x,m .

3.2 A priori error estimates

In this section we estimate the error between the DS-FE-HMM solution p H of (3.5) and the

exact homogenized solution p0 of (2.12). This analysis is similar to [2]. We decompose the

error into multiple parts, depending on the source of the error. Let us define two semi-discrete

versions of the DS-FE-HMM.
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Semi-discrete DS-FE-HMM. Consider a variant of the DS-FE-HMM where the tensor a(x)

(see (3.11) and (3.12)) is used instead of ah(x). We search p H ∈ Sl (Ω,TH )/R such that

B H (p H , q H ) = LH (q H ) ∀q H ∈ Sl (Ω,TH )/R, (3.22)

where B H , LH are given by (3.6) with ah(x) replaced by a(x). The reconstructed velocity is

then defined as uH =Πa(fH −∇p H ).

Consider next the standard FEM with numerical quadrature for the elliptic macro prob-

lem (2.12) with exact effective tensor. Find p H ,0 ∈ Sl (Ω,TH )/R such that

B 0
H (p H ,0, q H ) = L0

H (q H ) ∀q H ∈ Sl (Ω,TH )/R, (3.23)

where where B 0
H , L0

H are given by (3.6) with ah(x) replaced by a0(x). The reconstructed velocity

is then defined as uH ,0 =Πa0 (fH −∇p H ,0).

Remark 3.2.1. The well-posedness of the problems (3.22) and (3.23) can be shown by Propo-

sition 3.1.8 if the tensors a(x) and a0(x) are coercive and bounded for x ∈Q H . This is studied

in Section 3.1.1 and Section 2.4, respectively.

Error decomposition. Consider the triangle inequality

|p0 −p H︸ ︷︷ ︸
e

|H 1(Ω) ≤ |p0 −p H ,0︸ ︷︷ ︸
emac

|H 1(Ω) +|p H ,0 −p H︸ ︷︷ ︸
emod

|H 1(Ω) +|p H −p H︸ ︷︷ ︸
emic

|H 1(Ω),

where the three terms denote three sources of error: macroscopic error, modeling error, and

microscopic error. In the following theorem we bound these terms and then we provide

additional discussion on these bounds.

Theorem 3.2.2. Suppose that Assumption 3.1.1 holds.

1. If (2.16) holds, p0 ∈ H l+1(K ), and a0 ∈ W̄ l+1,∞(Ω)d×d then

|p0 −p H ,0|H 1(Ω) ≤C (H l +‖f− fH‖L2(Ω)), (3.24)

where C is independent of H and ε.

2. If (2.16) and (3.13) hold then

|p H ,0 −p H |H 1(Ω) ≤C‖fH‖L2(Ω) sup
x∈Q H

‖a0(x)−a(x)‖F.

3. If (3.13) and (3.10) hold then

|p H −p H |H 1(Ω) ≤C‖fH‖L2(Ω) sup
x∈Q H

‖a(x)−ah(x)‖F.

Proof. The first statement is a result from standard FEM theory, see [45, Chap. 4.1].
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The second and third statement are analogous, hence we detail only the proof of the second

statement. Let us denote

Ca = max
x∈Q H

‖a(x)−a0(x)‖F.

Using the same arguments as in Proposition 3.1.8 we can show that the bilinear form B H (·, ·)
is bilinear and elliptic. Using the ellipticity of B H (·, ·), the relations (3.23) and (3.22), and the

Cauchy–Schwarz inequality we obtain

λ|emod|2H 1(Ω) ≤ B H (emod,emod)

= B H (p H ,0,emod)−B H (p H ,emod)

= B H (p H ,0,emod)−B 0
H (p H ,0,emod)+LH (emod)−L0

H (emod)

= ∑
K∈TH

J∑
j=1

ωK j (a(xK j )−a0(xK j ))(∇p H ,0 − fH ) ·∇emod

≤Ca
∑

K∈TH

J∑
j=1

ωK j |∇p H ,0 − fH | · |∇emod|

≤Ca

( ∑
K∈TH

J∑
j=1

ωK j |∇p H ,0 − fH |2
) 1

2
( ∑

K∈TH

J∑
j=1

ωK j |∇emod|2
) 1

2

=Ca‖∇p H ,0 − fH‖L2(Ω)d |emod|H 1(Ω).

Dividing the previous inequality by |emod|H 1(Ω) and using

‖∇p H ,0 − fH‖L2(Ω)d ≤ |p H ,0|H 1(Ω) +‖fH‖L2(Ω)d ≤
(
Λ

λ
+1

)
‖fH‖L2(Ω)d

gives the desired result.

Macro error. The macroscopic error is the effect of the macroscopic FEM with numerical

quadrature. If f ∈ H̄ l−1(Ω), we can bound the term ‖f− fH‖L2(Ω) from (3.24) by C H l and we

thus achieve

|p0 −p H ,0|H 1(Ω) ≤C H l .

The regularity of p0 can be ensured a priori, e.g., if Ω is convex and a0 is sufficiently regular

then p0 ∈ H 2(Ω).

For the velocity field we have the estimate

‖u0 −uH ,0‖L2(Ω) ≤C (|p0 −p H ,0|H 1(Ω) +‖a0(fH −∇p H ,0)−Πa0 (fH −∇p H ,0)‖L2(Ω)).

We can decompose the second term of the previous estimate further to ‖a0fH −Πa0 (fH )‖L2(Ω)

and ‖a0∇p H −Πa0 (∇p H )‖L2(Ω). These terms vanish if we assume that a0(x) is constant within

each element K ∈TH . In a general situation, these terms can be bounded by C H l , if higher

derivatives of fH and p H are bounded.
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3.2. A priori error estimates

Modeling error. In HMM terminology, the modeling error denotes the error induced in the

effective quantities (e.g., pressure, velocity) by using approximate microscopic data (micro

domain Y x,δ
F ) instead of the exact data (micro domain Y x

F ). If the porous medium Ωε is locally

periodic (see section 2.2) and we use DS-FE-HMM with periodic micro boundary conditions,

δ = ε, and we let Y x,δ
F = Y x

F , then the modeling error vanishes. For other cases, we do not

provide quantitative analysis of the modeling error, however, it is examined in the numerical

experiments (see section 3.5).

Micro error. This error arises from the FE approximation of the Stokes problem on the micro

scale. Using the definitions of a and ah and the Cauchy–Schwarz inequality, we obtain

‖a(x)−ah(x)‖2
F =

( d∑
i , j=1

εd

δd

∫
Y x,δ

F

(ui ,x
j −ui ,x,h

j )dy

)2

≤
d∑

i=1

εd

δd
‖ui ,x −ui ,x,h‖2

L2(Y x,δ
F )

. (3.25)

The micro error in the L2-norm can be bounded a priori using standard a priori convergence

estimates for Stokes problem (see [113, 67]). For any x ∈Ω we have θ > 0 (depending on the

regularity of the solutions ui ,x , pi ,x ) such that

‖a(x)−ah(x)‖2
F ≤C hθ, (3.26)

where C does not depend on h. Hence, for a given macroscopic mesh TH there is θ > 0 and

C > 0 such that (3.26) holds for every x ∈Q H we have

|p H −p H |H 1(Ω) ≤C hθ, (3.27)

where C does not depend on the mesh sizes H and h.

Optimally, one has θ = k +2 for the P k+1/P k Taylor-Hood FEs or θ = 2 for MINI FEs (see [38]).

However, if the micro domains Y x,δ
F contain re-entrant corners (which is essentially always),

we can expect θ ∈ (1,2).

Total error. Assuming that the regularity assumptions at the macro and micro scales are

met, we have seen that the DS-FE-HMM with P l FE on the macro scale and P k+1/P k FE on

the micro scale follows the convergence rate

|p0 −p H |H 1(Ω) ≤C (H l +h(k+2) +|emod|H 1(Ω)).

The modeling error vanishes if we use Y x,δ
F = Y x

F . If Nmac denotes the number of DOF at

the macro scale and Nmic the (average) number of DOF on the micro scale, we translate this
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estimate into

|p0 −p H |H 1(Ω) ≤C (N
− l

d
mac +N

− k+2
d

mic +|emod|H 1(Ω)). (3.28)

In the case of MINI FE on the micro scale we consider k = 0 in (3.28).

3.3 A posteriori error estimates

There are two major issues for the DS-FE-HMM method (3.5) when using uniform mesh

refinement on the macro and the micro scales. First, it is well-known that for non-convex

macro domain Ω the optimal convergence rate (3.24) will deteriorate. Second, the DS-FE-

HMM accuracy will also deteriorate if the approximation of the effective tensor ah(x) is not

accurate enough, leading to a large micro error. However, the micro domains Y x,δ
F are usually

not convex for porous medium so the regularity of the micro problems is low. For example, in

two-dimensional domains with re-entrant corners the exponent from (3.27) satisfies θ ∈ (1,2)

depending on the maximal interior angle of Y x,δ
F (see [113]).

One can thus not rely on a priori error analysis in general to develop a robust approximation

of flow in porous medium. We therefore propose an adaptive method for both the macro

and the micro solvers. To derive the coupled adaptive mesh refinement we therefore need

rigorous a posteriori error estimates on both scales and an algorithm to adequately balance

the macro and micro mesh refinement. Inspired by [18, 20] we prove reliability and efficiency

of the multiscale macro residual. We then define the multiscale micro residual and prove the

reliability of the combined multiscale macro-micro residuals.

Notation, auxiliary identities and inequalities Denote the set of all edges of triangles of

TH by EH . For any edge e ∈ EH or element K ∈TH set

M(K ) = {T ∈TH ; K = T or ∂K ∩∂T ∈ EH },

N (K ) = {T ∈TH ; K ∩T �= �},

N (e) = {T ∈TH ; e ∩T �= �}.

(3.29)

If e ∈ EH is a common edge of two distinct elements K ,T ∈TH , then �·�e denotes the jump of

a (possibly discontinuous) quantity over the edge e. If v is a vector field with v|K ∈C 0(K ) and

v|T ∈C 0(T ), then

�v�e (x) = v|K (x) ·nK (x)+v|T (x) ·nT (x).

If e ⊂ ∂K ∩∂Ω, we assume an artificial element T on the other side of e and define v|T ≡ 0.

We will denote by I H : H 1(Ω) → S1(Ω,TH ) the Clément interpolation operator [48] and recall

the inverse inequality (see [45, Thm. 3.2.6])

|q H |H 1(K ) ≤C H−1
K ‖q H‖L2(K ) (3.30)
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3.3. A posteriori error estimates

for any q H ∈ Sl (Ω,TH ) and K ∈TH , where C depends only on d , l , and the shape-regularity of

K . For any q ∈ H 1(Ω), K ∈TH , and e ∈ EH , we have (see [22, Thm. 3.10]) the trace inequality

‖q‖L2(e) ≤C H 1/2
e |q|H 1(K ) +C H−1/2

e ‖q‖L2(K ),

where He = diam(e) and the interpolation estimates (see [48])

‖q − I H q‖L2(K ) ≤C HK |q|H 1(N (K )),

|q − I H q|H 1(K ) ≤C |q|H 1(N (K )),

‖q − I H q‖L2(e) ≤C H 1/2
e |q|H 1(N (e)),

(3.31)

where C depends only on d and the shape-regularity of TH .

Residual-based error estimates Our goal is to find an a posteriori error estimate of e =
p0 −p H in the H1-seminorm and prove efficiency of these bounds. Let

ξ2
K = ‖a0(f−∇p H )−Πah (fH −∇p H )‖2

L2(K ),

η2
K = H 2

K ‖∇·Πah (fH −∇p H )‖2
L2(K ) +

∑
e∈∂K

1
2 He‖�Πah (fH −∇p H )�e‖2

L2(e)

(3.32)

for any K ∈TH . If K ′ is any union of elements K in TH , e.g., K ′ =Ω, we define ξ2
K ′ =∑K⊂K ′ ξ2

K

and η2
K ′ =∑K⊂K ′ η2

K . We recall that the uniform ellipticity and boundedness of a0(x) assumed

in the following theorem are discussed in Subsection 2.4.2.

Theorem 3.3.1. Assume that a0(x)ξ·ξ≥λ|ξ|2 and |a0(x)ξ| ≤Λ|ξ| for each ξ ∈Rd and a.e. x ∈Ω.

Then there exists a constant C depending only on Ω, λ, and the shape-regularity of TH such that

|p H −p0|2H 1(Ω) ≤C (η2
Ω+ξ2

Ω)

and a constant C depending only on Ω, d, l , Λ, and the shape-regularity of TH such that for

any K ∈TH we have

η2
K ≤C (|p H −p0|2H 1(M(K )) +ξ2

M(K )). (3.33)

The proof of Theorem 3.3.1 follows [21, 88] and it is divided into two parts.

Part 1: Upper bound

Let us state and prove an error representation formula.
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Chapter 3. An adaptive finite element heterogeneous multiscale method

Lemma 3.3.2. For any q ∈ H 1(Ω)/R and any q H ∈ Sl (Ω,TH )/R we have

B0(e, q) = ∑
K∈TH

∫
K

(a0(f−∇p H )−Πah (fH −∇p H )) ·∇q dx

+ ∑
e∈EH

∫
e
�Πah (fH −∇p H )�e (q −q H )ds

− ∑
K∈TH

∫
K

(∇·Πah (fH −∇p H ))(q −q H )dx.

Proof. Using (2.12) and (2.13) for any q ∈ H 1(Ω)/R we get

B0(e, q) = ∑
K∈TH

∫
K

(a0(f−∇p H )−Πah (fH −∇p H )) ·∇q dx

+ ∑
K∈TH

∫
K
Πah (fH −∇p H ) ·∇q dx.

The integration by parts formula

∑
K∈TH

∫
K
Πah (fH −∇p H ) ·∇q dx = ∑

e∈EH

∫
e
�Πah (fH −∇p H )�e q ds

− ∑
K∈TH

∫
K

(∇·Πah (fH −∇p H ))q dx

yields

B0(e, q) = ∑
K∈TH

∫
K

(a0(f−∇p H )−Πah (fH −∇p H )) ·∇q dx

+ ∑
e∈EH

∫
e
�Πah (fH −∇p H )�e q ds − ∑

K∈TH

∫
K

(∇·Πah (fH −∇p H ))q dx.
(3.34)

Using LH (q H )−BH (p H , q H ) = 0 for any q H ∈ Sl (Ω,TH )/R, formulas (3.9), and integration by

parts, gives

0 = ∑
e∈EH

∫
e
�Πah (fH −∇p H )�e q H ds − ∑

K∈TH

∫
K

(∇·Πah (fH −∇p H ))q H dx. (3.35)

Subtracting (3.35) from (3.34) we get the desired result.

Let q = e and q H = I H e in Lemma 3.3.2 and use the Cauchy–Schwarz inequality to get

B0(e,e) ≤ ∑
K∈TH

‖a0(f−∇p H )−Πah (fH −∇p H )‖L2(K )|e|H 1(K )

+ ∑
e∈EH

‖�Πah (fH −∇p H )�e‖L2(e)‖e − I H e‖L2(e)

+ ∑
K∈TH

‖∇·Πah (fH −∇p H )‖L2(K )‖e − I H e‖L2(K ).

(3.36)

38



3.3. A posteriori error estimates

Using the interpolation results (3.31) and the Cauchy–Schwarz inequality then yields

B0(e,e) ≤C (ξ2
Ω+η2

Ω)1/2|e|H 1(Ω),

where C depends only on d and the shape-regularity of TH , using the finite overlapping

property of the neighborhoods N (K ). Combining (3.36) and the uniform ellipticity of a0(x)

proves (3.33).

Part 2: Lower Bound

We derive two estimates related to the interior and to the jump parts of the residual ηK . The

result (3.33) then follows by combining the inequalities (3.37) and (3.42) for all e ∈ ∂K .

Interior Residual. Let K ∈TH and ΨK be the standard bubble function for element K , i.e.,

ΨK ∈ Sd+1(Ω,TH ) such that ΨK |Ω\K ≡ 0 and ΨK (xK ,bary) = 1 at the barycenter xK ,bary of K . We

next use the representation formula of Lemma 3.3.2 with q =ΨK ∇·Πah (fH −∇p H ) and q H = 0

to obtain∫
K
ΨK (∇·Πah (fH −∇p H ))2 dx =−B0(e, q)+

∫
K

(a0(f−∇p H )−Πah (fH −∇p H )) ·∇q dx.

Using the continuity of a0, the Cauchy–Schwarz inequality, and the equivalence of norms

‖ν‖L2(K ) and (
∫

K ΨK ν
2 dx)1/2 for ν ∈P l−1(K ) (see e.g., [23, Theorem 3.3]), we obtain

‖∇·Πah (fH −∇p H )‖2
L2(K ) ≤C (|e|H 1(K ) +ξK )|q|H 1(K ),

where we have used the definition (3.32) for ξK . Using the inverse inequality (3.30) for q and

the property |ΨK | ≤ 1 leads to

H 2
K ‖∇·Πah (fH −∇p H )‖2

L2(K ) ≤C (|e|2H 1(K ) +ξ2
K ). (3.37)

Jump Residual. We set q H ≡ 0 in Lemma 3.3.2, then use the Cauchy–Schwarz inequality and

continuity of B0 to obtain

∑
e∈EH

∫
e
�Πah (fH −∇p H )�e q ds ≤C

∑
K∈TH

(‖∇·Πah (fH −∇p H )‖L2(K )‖q‖L2(K )

+|e|H 1(K )|q|H 1(K ) +ξK |q|H 1(K )).

(3.38)

Let K ∈TH , e ∈ ∂K , and Ψe ∈P d (e) be the bubble function on e, i.e., Ψe |∂e ≡ 0 and Ψe (ebary) =
1 at the barycenter ebary of e. Define function qe = Ψe�Πah (fH −∇p H )�e and notice that

qe ∈P d+l−1
0 (e) = {r ∈P d+l−1(e); r |∂e ≡ 0}.

By [34, Chap. XI, Lemma 2.7], there is a lifting operator RK ,e : P d+l−1
0 (e) →P d+l−1(K ) such
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that RK ,e (qe )|e = qe |e and RK ,e (qe )|∂K \e = 0. Moreover, we have

|RK ,e (qe )|H 1(K ) +H−1
K ‖RK ,e (qe )‖L2(K ) ≤C H−1/2

e ‖qe‖L2(e), (3.39)

where C depends only on d , l , and the shape-regularity of TH . For any interior interface

e ∈ EH , let K1 and K2 be two elements such that e = ∂K1 ∩∂K2 and define

q =
⎧⎨
⎩RKi ,e (qe ) in Ki for i = 1,2,

0 elsewhere in Ω.

Using this function q in (3.38) together with the inequality (3.39) gives∫
e
Ψe�Πah (fH −∇p H )�2

e ds ≤C H−1/2
e ‖qe‖L2(e)

∑
i=1,2

(ξKi +|e|H 1(Ki )

+HKi ‖∇·Πah (fH −∇p H )‖L2(Ki )).

(3.40)

Using the the property |Ψe | ≤ 1 and the equivalence of norms ‖ν‖L2(e) and (
∫

e Ψeν
2 ds)1/2

in (3.40) yields

He‖�Πah (fH −∇p H )�e‖2
L2(e) ≤C

∑
m=1,2

(ξ2
Km

+|e|2H 1(Km )

+H 2
Km

‖∇·Πah (fH −∇p H )‖2
L2(Km )).

(3.41)

The last step is to use (3.37) in (3.41) and obtain

He‖�Πah (fH −∇p H )�e‖2
L2(e) ≤C

∑
m=1,2

(ξ2
Km

+|e|21,Km
). (3.42)

Finally, combining the estimate for the interior residual (3.37) and the jump residual (3.42)

gives the lower bound (3.33).

A posteriori analysis of the micro error

Let K ∈ TH be arbitrary and use the triangle inequality to obtain the decomposition ξK ≤
ξdata,K +ξmic,K , where

ξ2
data,K = ‖a0(f−∇p H )−Πa(fH −∇p H )‖2

L2(K ),

ξ2
mic,K = ‖Πah−a(fH −∇p H )‖2

L2(K ).

Recall the definition of QK in (3.1). A simple estimation gives

ξ2
mic,K =

J∑
j=1

ωK j |(ah(xK j )−a(xK j ))(fH (xK j )−∇p H (xK j ))|2

≤ ‖fH −∇p H‖2
L2(K ) max

x∈QK

‖ah(x)−a(x)‖2
F.

(3.43)
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3.4. Adaptive algorithm

The inequality (3.43) is a foundation for the a posteriori estimation of the micro error ξmic,K .

Using (3.25) and the Poincaré inequality gives

ξ2
mic,K ≤C

( ε
δ

)d
‖fH −∇p H‖2

L2(K ) max
x∈QK

d∑
i=1

|ui ,x,h −ui ,x |2
H 1(Y x,δ

F )
, (3.44)

where C depends only on the bound α for the continuity of ah (see Section 3.1.1). The micro FE

error |ui ,x,h −ui ,x |H 1(Y x,δ
F ) can be estimated using the classical residual-based error estimator

for Stokes problem, see [114, Theorem 3.1]. For any quadrature point x ∈QK there exists a

constant C that depends only on the inf-sup and Poincaré-Friedrichs constants of the Stokes

micro problem, shape regularity of T x
h , and the micro FE type such that for any i ∈ {1, . . . ,d}

we have

C−1η2
stokes,x,i ≤ |ui ,x,h −ui ,x |2

H 1(Y x,δ
F )

+‖pi ,x,h −pi ,x‖2
L2(Y x,δ

F )/R
≤Cη2

stokes,x,i , (3.45)

where

η2
stokes,x,i =

∑
T∈T x

h

⎛
⎝ ∑

e∈∂T∩E x
h

He

2

∥∥∥∥∥
�
∂ui ,x,h

∂n
−pi ,x,hn

 
e

∥∥∥∥∥
2

L2(e)

+ h2
T ‖Δui ,x,h −∇pi ,x,h +ei‖2

L2(T ) +‖∇·ui ,x,h‖2
L2(T )

) (3.46)

and E x
h is the set of all edges in T x

h except the Dirichlet boundary edges. Notice that (3.45)

does not contain any data approximation error, since the force term in (3.7) is constant.

Applying (3.45) in (3.44) yields ξ2
mic,K ≤Cη2

mic,K , where

η2
mic,K = εd

δd
‖fH −∇p H‖2

L2(K ) max
x∈QK

d∑
i=1

η2
stokes,x,i . (3.47)

As before, we set η2
mic,Ω =∑K∈TH

η2
mic,K and ξ2

data,Ω =∑K∈TH
ξ2

data,K .

Theorem 3.3.3. There is a constant C depending only on the domain Ω, the continuity (Λ) and

coercivity (λ) constants of a0(x), the degree l of the macro finite element, the shape-regularity of

TH and the constant C in (3.45) such that

|p0 −p H |2H 1(Ω) ≤C (η2
Ω+η2

mic,Ω+ξ2
data,Ω).

Proof. The proof follows from Theorem 3.3.1 and the inequality ξ2
mic,K ≤Cη2

mic,K .

3.4 Adaptive algorithm

We propose an adaptive numerical algorithm for the DS-FE-HMM problem (3.5), (3.7), (3.8).

The individual macro and micro adaptive processes follow the standard FEM refinement cycle

SOLVE → ESTIMATE → MARK → REFINE.
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Chapter 3. An adaptive finite element heterogeneous multiscale method

In our algorithm we want to ensure that the micro error is bounded by the macro error,

controlled by the macroscopic indicator that guarantees the accuracy of the macro out-

puts of interest. We thus require that |emic|H 1(Ω) < |emac|H 1(Ω). Since these errors are not

available during the DS-FE-HMM computation, we perform the following approximation.

Before running the DS-FE-HMM we find constants c1,c2 > 0 such that |emac|H 1(Ω) ≈ c1ηΩ

and |emic|H 1(Ω) ≈ c2ηmic,Ω (see Remark 3.4.1). We then control the micro error by ensuring

c2ηmic,Ω ≤ c1ηΩ, which we enforce element-wise by

η2
mic,K ≤μη2

K ∀K ∈TH , (3.48)

whereμ= c2
1/c2

2 (in practice we further introduce a safety factor and divide thisμby 2). As we fix

these constants at the beginning of our computation, we cannot guarantee that the inequalities

|emac|H 1(Ω) ≤ c1ηΩ and |emic|H 1(Ω) ≤ c2ηmic,Ω hold throughout the adaptive algorithm. As can

be seen from Figures 3.8, 3.10, 3.17 and 3.21, we nevertheless have |emac|H 1(Ω) � c1ηΩ and

|emic|H 1(Ω) � c2ηmic,Ω. An alternative strategy would be to update these constants during the

adaptive computation.

While solving a micro problem (3.7), we refine the micro mesh T x
h until the condition

η2
stokes,x,i ≤

μ

d
η2

K ‖fH −∇p H‖−2
L2(K ), (3.49)

is met, which implies (3.48).

Remark 3.4.1. We briefly describe how to find suitable values of c1,c2, needed for the compu-

tation of μ= c2
1/c2

2. In an offline stage we estimate emic and emac for the initial macro mesh

and the coarsest micro meshes by performing a few iterations of uniform refinements in the

DS-FE-HMM (at the macro and the micro-level). We denote ẽmic and ẽmac these approxi-

mations and η̃Ω, η̃mic,Ω the corresponding residuals. We then define c1 = |ẽmac|H 1(Ω)/η̃Ω and

c2 = |ẽmic|H 1(Ω)/ẽmic. As mentioned previously, the values of c1,c2 (and therefore μ) could be

updated during the adaptive DS-FE-HMM.

Algorithm 3.4.2 (Adaptive DS-FE-HMM). We assume that the user provides Ω, Ωε, δ, an initial

macro mesh TH of Ω, finite element spaces, and the micro coupling (periodic or Neumann).

We then repeat the following steps (see the flow chart in Figure 3.4):

1. Solve. For each quadrature point x ∈Q H solve the Stokes micro problems (3.7) adap-

tively using the stopping criterion (3.49) (using p H and ηK from the previous step).

Assemble and solve the macro elliptic problem (3.5).

2. Estimate. Compute ηK and ηmic,K and repeat the previous step until (3.48) is satisfied.

3. Mark. Select a subset of the elements in TH by using the indicator ηK (we use the

marking strategy E [115, Chapter 4.1]).

4. Refine. The selected elements are refined so as to guarantee the conformity and shape-

regularity of the refined meshes.
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3.5. Numerical Experiments

Start: user input

For K ∈TH , x ∈QK , i ∈ {1, . . . ,d}

Solve micro problem (3.7)
Estimate η2

stokes,x,i (3.46)

Is (3.49) true?

Mark and refine T x
h

Define ah(x)

Solve macro problem (3.5)
Estimate η2

K (3.32), η2
mic,K (3.47)

Is (3.48) true?

Mark and refine TH

no
yes

yes

no

Figure 3.4 – A flow-chart of the adaptive DS-FE-HMM algorithm for the Stokes problem.

An efficient implementation of the proposed algorithm must contain a mechanism for saving

and reusing the data from the micro problems. We propose to store for each quadrature

point x ∈Q H the values ah(x), η2
stokes,x,i , the most refined micro mesh T x

h that was reached

and the corresponding micro solution. Since we can verify (3.48) only after all the micro

problems (and the macro problem) are computed, it occurs that one needs to solve some

micro problems with higher precision. If the finest solution and the finest mesh of a micro

problem is saved, then they can be reused as a starting point for the additional refinement

cycles. Notice that even if the micro meshes are stored, the sampling domains cover a small

fraction of the domain Ω (we usually have δ� H ) and hence the storage is much smaller than

the storage that would be needed by a global fine scale mesh.

The marking strategy E contains one parameter that is usually denoted θ. We use θ = 0.5

for the micro problems and θ = 0.25 for the macro problem. To guarantee conformity and

shape-regularity of the refined meshes, we use the newest vertex bisection in two dimensions

and the modified longest edge bisection [29] in three dimensions. Finally, we note that the

indicator ηK could be used also for coarsening. We will however not use coarsening strategies

in our computations.

3.5 Numerical Experiments

In this section, we present numerical experiments that test the capabilities of the adaptive

DS-FE-HMM. Three different non-periodic porous media, called A, B and C , are presented.

They are all based on a locally periodic porous geometry as described in Section 2.2. The

two-dimensional medium A has a simple pore geometry and is used to demonstrate the

convergence rates of various macro and micro FE types. We also test the multiscale method

for different boundary conditions and sizes of the representative domains in the Stokes micro

problems. The two-dimensional medium B illustrates the performance of the method on a

more complex porous material. We conclude this section by a three-dimensional experiment

performed on the medium C .
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All the numerical computations were performed in Matlab with FE code inspired by [19]

and the AFEM code [44] with mesh generation provided by gmsh [66]. Linear systems were

solved using Matlab’s mldivide for d = 2. In three dimensions, we used algebraic multigrid

solver AGMG [89] for positive definite (macro) problems and an Uzawa method [91] for saddle

point (micro) problems. The Uzawa method uses algebraic multigrid preconditioning for the

coercive part and pressure mass matrix preconditioning for the Schur’s complement. At the

macro scale we used the quadrature formulas from Example 3.1.2.

Reference solution. The examples considered in our numerical experiments have a locally

periodic porous structure with known (Y x
F ,Y x

S ). Furthermore, in order to be able to compute a

reference solution, we take locally periodic media given by ϕ(x, y) =φ(θ(x), y), where θ : Ω→R

is a parameter (e.g., in the following two sections it represents an angle). Thus we can compute

for equidistant sample points of the parameter θ (1024 in our examples) corresponding micro

problems and homogenized tensors with very high accuracy (adaptive solution with up to 106

DOF). We then used a cubic spline interpolation to get an approximation of a0 for an arbitrary

value of the parameter. We then compute two reference solutions

• a DS-FE-HMM solution with “exact” Stokes solver, denoted p H ,0 obtained for any macro

iteration in the adaptive algorithm by using the same macro mesh but with the reference

tensor a0(x);

• a reference homogenized solution denoted by p0 obtained by uniformly refining the

final macro mesh two times and using the reference tensor a0(x).

These functions p H ,0 and p0 are used to estimate emac and emic+emod. In several experiments

we use periodic micro boundary conditions, δ= ε, and Y x,δ
F = Y x

F , which yields emod = 0 (see

section 3.2).

3.5.1 Porous medium A

Consider the macro domainΩ= ((0,2)×(0,3))\([1,2]×[1,2]) with periodic boundary conditions

that connect the edges (0,2)× {0} and (0,2)× {3} and the force field f ≡ fH ≡ (0,−1) as shown in

Figure 3.5.

We define Y x
S to be a closed rectangle of size 0.6×0.3 centered in the middle of Y and rotated

by the angle θ(x) = (1−x2
1/8−x2/3)π. The mapping ϕ can be appropriately defined to satisfy

ϕ(x,YS) = Y x
S , where YS is Y x

S for x = [0,0]. A sketch of the pore geometry is given in Figure 3.5

and examples of the micro problem solutions are plotted in Figure 3.6.

Porous domains Ωε and fine scale solution pε are plotted in Figure 3.7 for various values of ε.

The solutions pε were computed numerically using single-scale adaptive FEM with P 2/P 1

FEs. This is a costly computation and we therefore did choose ε≥ 2−4. We then constructed

the extension Pε as in (2.3) and computed |Pε−p0|L2(Ω) for ε= 2−m , where m ∈ {0,1,2,3}. The
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Figure 3.5 – Ω and pore geometries (Y x
S ,Y x

F ) for the media A and B (gray solid part).
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Figure 3.6 – Medium A: micro velocity solutions for x = [0.5,1] (left) and x = [0.5,1.5] (right).

respective errors (0.45, 0.23, 0.11, 0.059) suggest a linear convergence rate with respect to ε. A

rough estimate of this error for ε= 10−4 is then 5 ·10−5.

ε= 1/2 ε= 1/4 ε= 1/8 ε= 1/16

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Figure 3.7 – Medium A: Plots of pε for different ε> 0.

For the numerical multiscale method we set ε = δ = 10−4 and use periodic BC on micro

problems. We take P 1 macro FEs (l = 1) and P 2/P 1 micro FEs (k = 1). The initial macro

mesh is set as in Figure 3.11(left). Following Remark 3.4.1 we obtain μ≈ 1200. We apply the

adaptive DS-FE-HMM and observe that the expected convergence rate |p0−p H |H 1(Ω) ∝ N−l/d
mac

45



Chapter 3. An adaptive finite element heterogeneous multiscale method

is obtained as displayed in Figure 3.8, where Nmac is the number of degrees of freedom of

the macro problem. The micro error decays at a faster rate, proportional to N−(l+1)/d
mac . This is

expected, as we estimate the L2-norm by the H 1-norm in (3.44). Sample solutions p H with

different mesh refinements and the homogenized solution p0 are plotted in Figure 3.9. The

value of δ is sufficiently small that the sampling regions do not touch even in the smallest

elements most refined macro mesh. In practice, the sampling domains can start to overlap

when macro mesh is refined. We have not investigated such situations but it might be possible

to change to a fine scale solver near the singularities and couple it with the DS-FE-HMM

performed elsewhere.
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|uH −u0|L2(Ω)d

|u0|L2(Ω)d

102 103 104

10−2

10−1 −1/2

−1

Nmac
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Figure 3.8 – Medium A: Errors analysis (δ= ε= 10−4, macro: P 1, micro: P 2/P 1, periodic BC).
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Figure 3.9 – Medium A: p0 (right) and DS-FE-HMM solutions (δ= ε= 10−4, macro: P 1, micro:
P 2/P 1 and periodic BC).

For experiments with different FE spaces we use the DS-FE-HMM with periodic BC on micro

scale and Y x,δ
F := Y x

F . There, the value of δ = ε does not affect the computation and the

modeling error is thus eliminated. In this simplified case we thus test if the adaptive algorithm

can balance the micro and macro errors.

We test six different combinations of micro and macro FEs. The convergence rates displayed in
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Figure 3.10 corroborate the theoretical results obtained in Section 3.3. As in standard adaptive
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macro: P 3, micro: P 3/P 2

Figure 3.10 – Medium A: Error analysis of DS-FE-HMM with different FE (micro: periodic BC
and Y x,δ

F = Y x
F )

FEM, the mesh is more refined close to the corner singularities at points (1,1) and (1,2). With

increasing l , the refinement is even stronger close to the corners. Figure 3.11 compares meshes

for the same relative error of different macro FEs. In Figure 3.12 we plot the convergence rates

initial

#elem:
Nmac

rel. err.: 5%

P1

4344
2241

P2

179
391

P3

107
516

rel. err.: 0.5%

P2

2269
4663

P3

399
1881

Figure 3.11 – Medium A: Macro meshes at different stages of DS-FE-HMM (micro: periodic
BC)

versus the total cost of the method, that is, the sum of the degrees of freedom in the macro

and all the micro problems. The obtained convergence rate − l
d · k+1

l+k+1 is slightly smaller than

the optimal convergence rate − l
d · k+2

l+k+2 . This can be explained because of the suboptimal

estimate in (3.44).

Micro error propagation. We next describe what happens when the micro problems are

not refined simultaneously to the macro problem. In this experiment we run the adaptive

algorithm in such a way that for every quadrature point we fix the maximum DOF for the
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Figure 3.12 – Medium A: Error vs. total cost of DS-FE-HMM (micro: periodic BC, Y x,δ
F = Y x

F )

micro problems. We use P 1 macro FEs (l = 1) and P 2/P 1 micro FEs (k = 1) with periodic

boundary conditions and Y x,δ
F = Y x

F . The error plot in Figure 3.13 shows the resulting error

saturation, when further macro refinements do not decrease the error.
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Figure 3.13 – Medium A: Saturation of the macro error when the maximal micro DOF is fixed.
Settings: macro: P 1, micro: P 2/P 1, periodic BC and Y x,δ

F = Y x
F .

Modeling (resonance) error. To show that our method is robust without the precise knowl-

edge of the size of micro domains for the Stokes flow, we changed δ to be a non-integer

multiple of ε with both Neumann and periodic BC on the micro problems. The detailed error

analysis can be seen in Figure 3.14. It is visible that with increasing δ/ε the convergence

improves.
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Figure 3.14 – Medium A: Error analysis of DS-FE-HMM with Neumann BC (left) and periodic
BC (right) on micro problems for different δ> ε= 10−4.

3.5.2 Porous medium B

We use the same macro domain Ω and force filed f ≡ fH ≡ (0,−1) as for the porous medium A,

but the pore geometry is now more involved (see Figure 3.5(c)). The solid part Y x
S consists of

three regular hexagons with centers at a distance 0.25 from the point [0,0]. The sides of the

hexagons r1,r2,r3 and the rotation angle θ are given by r j (x) = A(ζ+ ( j −1)/3) for j ∈ {1,2,3}

and θ(x) = 2πζ/3, where ζ= (1+ sin(x1))(1+ sin(2πx2/3))/4 and A(ζ) = 0.145+0.035sin(2πζ).

The mapping ϕ governing the slow variation of the medium depends on r1,r2,r3 and the

rotation angle θ. This mapping thus rotates and changes the size of the solid parts. See

Figure 3.16 for sample micro solutions and corresponding permeability.

Porous domains Ωε and fine scale solution pε are plotted in Figure 3.15 for various values of ε.

The solutions pε were computed as for the medium A.
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Figure 3.15 – Medium B : pε for different ε> 0 and the homogenized pressure p0.

We performed an experiment with P 1 macro FE (k = 1) and P 2/P 1 micro FE (l = 1). We

used periodic boundary conditions and Y x,δ
F := Y x

F which eliminated the modeling error. The
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convergence rates presented in Figure 3.17 again corroborate the theoretical results obtained

in Section 3.3.
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Figure 3.16 – Medium B : micro velocity solutions for x = [0.5,1] (left) and x = [0.5,1.5] (right).
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Figure 3.17 – Medium B : DS-FE-HMM error analysis (macro: P 1, micro: P 2/P 1, periodic BC,
and Y x,δ

F = Y x
F ).

3.5.3 Porous medium C

Let Ω be a subset of (0,2)× (0,2)× (0,3) for which (x3 −2)(x3 −1) > 0 or max(x1, x2) < 1 and let

f ≡ fH ≡ (0,0,−1), see Figure 3.18(left). Let the faces (0,2)× (0,2)× {0} and (0,2)× (0,2)× {3} be

periodically connected. We will define a three-dimensional porous structure where the solid

part Ω\Ωε is connected.

We will define the domain Ωε such that it will consist of rectangular prisms spaced in an ε-sized

grid, connected in all three basic directions by simple channels (see Figure 3.20(right)). To

describe such medium in the locally periodic fashion, we the generalized definition of locally
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Figure 3.18 – Medium C : macroscopic domain Ω (left) and a description of the pore struc-
ture. The fluid part (middle) consists of a rectangular prism (black) and three connecting
polyhedrons (red, green, blue).

periodic porous media (2.9), where the map ϕ(x, y,ε) takes ε as a parameter. Instead of stating

ϕ explicitly, we define ϕ(x,YF,ε), where YF can be set appropriately (see Figure 3.18(right)). We

let ϕ(x,YF,ε) be a rectangular prism of size r1(x)× r2(x)× r3(x) located in the corner of Y . Its

three faces that do not lie on ∂Y are faces of three polyhedrons that reach to the opposite side

of Y and these polyhedrons will serve as a connection to the neighboring cells in Ωε, which

contain rectangular prisms of sizes r1(xk )× r2(xk )× r3(xk ), where xk = x +εek for k ∈ {1,2,3}.

We define rk (x) = 0.5+0.2cos(2π(ζ+ (k −1)/3)) for k ∈ {1,2,3}, where ζ(x) = x1/2−x2/2+x3/3.
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Figure 3.19 – Medium C : an interior view of micro velocity solutions for x =
[0,0,1/3] with a0(x) ≈ 10−3diag(1.495,4.638,1.69) (up) and x = [0,0,2] with a0(x) ≈
10−3diag(2.895,1.638,2.895) (down).

We apply the DS-FE-HMM with P 1 macro FEs (l = 1), and P 2/P 1 micro FEs (k = 1). Periodic

BC are used on the micro problems and we set Y x,δ
F = Y x

F . Sample micro solutions can be seen
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Figure 3.20 – Medium C : DS-FE-HMM solutions with relative errors 30% and 6%, p0, and pε

for ε= 1/8.
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Figure 3.21 – Medium C : DS-FE-HMM error analysis (macro: P 1, micro: P 2/P 1, periodic BC,
and Y x,δ

F = Y x
F ).

in Figure 3.19. The convergence rates given in Figure 3.21 are as predicted by the results of

Section 3.3. Despite choosing very coarse initial micro meshes, the macro error dominates

the micro error. The adaptive algorithm detects this behavior and allows for coarse micro

meshes reducing the computational cost by order of magnitudes compared to a multiscale

macro-micro method that would be used with uniform micro mesh refinement.

3.6 Conclusion

We have presented a multiscale FE method for the Stokes flow in porous media. The method

is based on a macroscopic FE discretization of an elliptic problem (Darcy flow) with effective

permeability recovered from micro FE solutions of Stokes problems and its computational

cost is independent of the pore size. We have focused on a class of problems with non-periodic

pore structures that can be obtained from a smooth deformation of a reference pore sampling

domain. As the well-posedness of the Darcy problem depends on the Stokes flow at the pore

level, we have analyzed classes of microscopic geometries that ensure existence and unique-

ness of a solution of the macroscopic problem and its FE discretization. While a priori error

52



3.6. Conclusion

analysis has been discussed, our main objective has been to derive an adaptive algorithm

combining macroscopic and microscopic mesh refinement. Rigorous a posteriori error esti-

mates have been derived that show efficiency and reliability of the proposed adaptive method

as corroborated by numerical experiments for non-periodic two- and three-dimensional

problems.
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4 Reduced basis finite element hetero-
geneous multiscale method

Numerical homogenization methods, such as the DS-FE-HMM that was defined in chapter 3,

show a large improvement in computational cost with respect to numerical methods that

solve the fine-grained problem. Additional speed up can be achieved by parallelization of the

micro scale computations. However, the large number of micro problems to solve is still a

bottleneck. While the Stokes micro problems vary from macro element to macro element,

they might also share some similarity, which can be exploited by applying some model order

reduction techniques. The reduced basis (RB) method has been applied to Stokes problems in

parameter-dependent domains (see [100, 102, 65, 99] and the references therein). However,

all these methods assume that the parameter-dependent domains can be mapped into a

reference domain. If we try to apply the RB technique to the DS-FE-HMM directly, it would be

very difficult if not impossible to map Y x,δ
F (the snapshots of Ωε) to a single reference domain.

In this chapter we provide a different version of the DS-FE-HMM, where we assume that the

reference microscopic domain (YF,YS) and the deformation map ϕ from section 2.2 are known.

The micro problems, defined in Y x
F can be then pulled back from Y x

F to the reference micro

domain YF via the deformation map. We can then use the FE-HMM framework to discretize

the two-scale problem with a macroscopic mesh in Ω and a microscopic mesh in YF. The FEM

with numerical quadrature is used on the macro scale and the missing effective permeability

is obtained from micro problems solved by a stable Taylor–Hood FE pair. This variant of the

DS-FE-HMM has micro problems defined using the same functional spaces and only the

coefficients depend on x ∈Ω. In this framework model reduction can be applied.

In this chapter we propose a numerical homogenization method for Stokes flow in porous

media named the reduced basis Darcy-Stokes finite element heterogeneous multiscale method

(RB-DS-FE-HMM). It is obtained by applying the reduced basis method on the micro problems

and using the reduced basis approximation of the effective permeability in the macroscopic

FE method. The micro computation is divided into two stages:

• The offline stage that is computationally expensive but executed only once. In this

stage a small number of representative microscopic domains are selected, for which
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the corresponding Stokes micro problems are solved accurately on the reference micro

mesh. The collection of Stokes solutions then spans the reduced basis space.

• The online stage is a fast procedure that efficiently computes aRB(x), an accurate ap-

proximation of the effective permeability a0(x), for any quadrature point x ∈Ω using

the precomputed reduced basis space. As the reduced basis space is usually of low

dimension that is independent of the microscopic mesh, the online computations are

usually very fast.

Outline. In section 4.1 we present a variant of the DS-FE-HMM, where the microscopic

problems are solved in the reference microscopic domain. In section 4.2 we describe the

Petrov–Galerkin reduced basis method in general. The first two sections are then combined

into the reduced basis numerical multiscale method in section 4.3. A priori error estimates are

derived in 4.4 and an adaptive method based on the a posteriori error estimates on the macro

scale is presented in section 4.5. We conclude with numerical experiments in section 4.6. This

chapter is essentially taken from [9, 10].

4.1 A variant of the DS-FE-HMM

In this section we provide a variant of the DS-FE-HMM (see chapter 3). Instead of sampling the

porous medium Ωε to define local geometries Y x,δ
F (see (3.2)) we discretize directly the model

problem from section 2.3, which we shortly recall. Let Ω ∈ Rd be a a bounded, connected

domain and (YF,YS) be the reference micro domain. Let ϕ : Ω×Y → Y be a parametrized

deformation map and denote Y x
F =ϕ(x,YF) and Y x

S =ϕ(x,YS). The two-scale model problem

is then defined as follows. At the macro scale, we solve the effective Darcy equation: Find

p0 ∈ H 1(Ω)/R such that∫
Ω

a0∇p0 ·∇q dx =
∫
Ω

a0f ·∇q dx ∀q ∈ H 1(Ω)/R. (4.1)

At the micro scale, we solve d Stokes micro problems: For any x ∈ Ω and i ∈ {1, . . . ,d} find

ui ,x ∈ H 1
0,per(Y x

F )d and pi ,x ∈ L2(Y x
F )/R such that

∫
Y x

F

(∇ui ,x : ∇v−pi ,x div v)dy =
∫

Y x
F

ei ·vdy ∀v ∈ H 1
0,per(Y x

F )d ,

−
∫

Y x
F

qdiv ui ,x dy = 0 ∀q ∈ L2(Y x
F )/R,

(4.2)

where ∇u : ∇v =∑d
i , j=1∂i u j∂i v j for any vector functions u,v. The effective permeability a0(x)

can be then defined as a0
i j (x) =∫Y x

F
ei u j ,x dy .

Suppose that we would like to solve (4.2) with a stable FE method. The pressure lies in the

quotient space L2(Y x
F )/R, which can be resolved by one of the standard strategies:
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• fix one degree of freedom of the pressure and normalize it afterwards.

• assemble the sparse linear system in a standard way (resulting in a singular system

matrix) and use an appropriate iterative solver (e.g., the Uzawa method [91]).

• use a Lagrange multiplier to enforce the average of the pressure to be zero and avoid the

quotient space already in the weak formulation.

While all three approaches are applicable for solving a single problem, we use the third, which

makes it straightforward to apply the reduced basis method in section 4.3. We thus modify

the system (4.2) as follows. For any x ∈Ω and i ∈ {1, . . . ,d} find the velocity ui ,x ∈ H 1
0,per(Y x

F )d ,

pressure pi ,x ∈ L2(Y x
F ), and multiplier λi ,x ∈R such that

∫
Y x

F

(∇ui ,x : ∇v−pi ,x div v)dy =
∫

Y x
F

ei ·vdy ∀v ∈ H 1
0,per(Y x

F )d ,∫
Y x

F

(−qdiv ui ,x +λi ,x q)dy = 0 ∀q ∈ L2(Y x
F ),∫

Y x
F

κpi ,x dy = 0 ∀κ ∈R.

(4.3)

Recall that the local micro domains Y x
F are assumed to be deformations of the reference

micro domain YF given by ϕ(x,YF) = Y x
F . In the next step, we apply the change of variables

yold =ϕ(x, ynew) to the problem (4.3). Subsequently, we sum the three equations and group

the velocity, pressure, and Lagrange multiplier unknowns into a single variable that lies in the

space

X = H 1
0,per(YF)d ×L2(YF)×R, (4.4)

which is independent of x ∈Ω. We obtain the following micro problem formulation. For any

x ∈Ω and i ∈ {1, . . . ,d} find Ui ,x ∈ X such that

A(Ui ,x ,V; x) =Gi (V; x) ∀V ∈ X , (4.5)

where for any U = (u, p,λ) ∈ X and V = (v, q,κ) ∈ X and x ∈Ω we have

A(U,V; x) =
∫

YF

d∑
i , j=1

(
ρi j

∂u

∂yi
· ∂v

∂y j
−σi j

(
∂vi

∂y j
p + ∂ui

∂y j
q

))
+τ(λq +κp)dy,

Gi (V; x) =
∫

YF

τei ·vdy,

(4.6)

where the coefficients ρi j ,σi j ,τ depend on both x and y as follows. Denoting the Jacobian

J = J (x, y) =∇yϕ(x, y) we have

ρ(x, y) = det(J )(J� J )−1,

σ(x, y) = det(J )J−�,

τ(x, y) = det(J ).

(4.7)
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The problem (4.5) is still equivalent to the original micro problem (4.2), hence, we have

a0
i j (x) =

∫
Y x

F

ei ·u j ,x dy =Gi (U j ,x ; x) ∀i , j ∈ {1, . . . ,d}. (4.8)

FE spaces. We apply the FE-HMM framework as in section 3.1 to discretize the macroscopic

Darcy equation (4.1) and microscopic Stokes equations (4.5) that are coupled by (4.8).

Let Ω be a connected bounded polygonal domain in Rd . Let {TH } be a family of conformal,

shape-regular triangulations of Ω parametrized by the mesh size H = maxK∈TH
diam(K ). Let

l ∈N and consider the macro FE space

Sl (Ω,TH ) = {q H ∈ H 1(Ω); q H |K ∈P l (K ), ∀K ∈TH }.

For every element K ∈TH we consider a quadrature formula (xK j ,ωK j ) j=1,...,J with integration

points xK j ∈ K and weights ωK j > 0. We suppose that Assumption 3.1.1 is satisfied, that is, the

quadrature formula is exact for polynomials of degree max{1,2l −2}.

Let {Th} be a family of conformal,1 shape-regular triangulations of YF parametrized by the

mesh size h = maxT∈Th
diam(T ). Consider the Taylor-Hood P k+1/P k FE spaces given by

Lh(YF) = {q ∈ Sk (YF,Th); q is Y -periodic},

Wh(YF) = {v ∈ Sk+1(YF,Th)d ; v is Y -periodic, v = 0 on ∂YS}.
(4.9)

A discrete equivalent of X from (4.4) is now Xh =Wh(YF)×Lh(YF)×R.

Numerical multiscale method. Let the force f ∈ L2(Ω)d be given and let fH ∈ V l−1(Ω,TH )

be its approximation. Find p H ∈ Sl (Ω,TH )/R such that

BH (p H , q H ) = LH (q H ) ∀q H ∈ Sl (Ω,TH )/R, (4.10)

where

BH (p H , q H ) = ∑
K∈TH

J∑
j=1

ωK j ah(xK j )∇p H (xK j ) ·∇q H (xK j ),

LH (q H ) = ∑
K∈TH

J∑
j=1

ωK j ah(xK j )fH (xK j ) ·∇q H (xK j ).

(4.11)

For any quadrature point x = xK j the tensor ah(x) is an approximation of a0(x) that is defined

as follows. Find Ui ,x
h ∈ Xh and ah(x) ∈Rd×d such that

A(Ui ,x
h ,V; x) =Gi (V; x) ∀V ∈ Xh , (4.12)

ah
i j (x) =Gi (U j ,x

h ; x) ∀i , j ∈ {1, . . . ,d}. (4.13)

1We assume that Th is conformal not only in the interior but also over periodic boundaries of the domain YF.
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Well-posedness. Let us comment on the well-posedness of the modified DS-FE-HMM pre-

sented in this section. Firstly, we remark that the micro problems (4.2) and (4.5) are equivalent.

Hence, well-posedness results of (4.2) that were studied in section 2.4 are automatically

translated to the problem (4.5). We can thus assume that for any x ∈Ω there are constants

γA(x),γG (x) ∈R such that

A(U,V; x) ≤ γA(x)‖U‖X ‖V‖X ∀U,V ∈ X ,

Gi (V; x) ≤ γG (x)‖V‖X ∀V ∈ X , ∀i ∈ {1, . . . ,d},
(4.14)

and βBa(x) > 0 such that the inf-sup condition in the sense of Babuška is satisfied:

βBa(x) = inf
U∈X
U�=0

sup
V∈X
V�=0

A(U,V; x)

‖U‖X ‖V‖X
> 0. (4.15)

To achieve well-posedness of the macroscopic problem (4.1) we need uniform ellipticity and

boundedness of the effective permeability a0 : Ω→Rd×d . This is again studied in section 2.4

for the original micro domains Y x
F . We thus assume that there are λ,Λ> 0 such that

a0(x)ξ ·ξ≥λ|ξ|2, |a0(x)ξ| ≤Λ|ξ|, ∀x ∈Ω, ∀ξ ∈Rd . (4.16)

Let us make a remark on the difference between the stability constants of (2.14) and (4.5).

In (2.14) the bilinear forms a(·, ·) and b(·, ·) bounded with a constant independent of x ∈Ω.

If the mapping ϕ is non-degenerate, as is assumed in (2.7), the same can be derived for

boundedness of A(·, ·; x), that is, there are upper bounds γA(x) ≤ γA and γi
G (x) ≤ γG . The

inf-sup stability of (2.14) is studied in the sense of Brezzi, see Definition 2.4.6. Since we lost

the standard saddle-point formulation, we used the inf-sup condition in the sense of Babuška

in (4.15). Assuming non-degeneracy of the mapping ϕ (see (2.7)) one can again show that

there is C > 0 such that βx
0 ≥CβBa(x) for every x ∈Ω, see [100, 120, 54].

Let us consider the FE approximation (4.12). Since (4.14) is true for any U,V ∈ X and Xh ⊂ X it

is evident that

A(U,V; x) ≤ γA(x)‖U‖X ‖V‖X ∀U,V ∈ Xh ,

Gi (V; x) ≤ γG (x)‖V‖X ∀V ∈ Xh , ∀i ∈ {1, . . . ,d}.
(4.17)

Since we use a stable FE approximation, the discrete inf-sup condition is also positive

βh
Ba(x) = inf

U∈Xh
U�=0

sup
V∈Xh
V�=0

A(U,V; x)

‖U‖X ‖V‖X
> 0. (4.18)

For sufficiently small h > 0 the difference a0(x)−ah(x) is small enough so that

ah(x)ξ ·ξ≥λ|ξ|2, |ah(x)ξ| ≤Λ|ξ|, ∀x ∈Ω, ∀ξ ∈Rd , (4.19)
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where the constants λ,Λ are the same as in (4.16) for the simplicity of notation. The proper-

ties (4.19) imply that the discrete problem (4.10) is well-posed.

4.2 The Petrov–Galerkin reduced basis method

In this section we recall the Petrov–Galerkin reduced basis method based on [99, 77]. We

selected this particular RB method because it has several favorable properties:

• The reduction preserves the inf-sup stability constant of the original system and the

reduced linear system is algebraically stable.

• The size of the online linear system is equal to the number of selected parameter

samples.

• Simple and general description of the method allows a black-box usage and no special

structure of the problem (e.g., saddle-point) is assumed.

Our model problem (4.20), (4.21) is selected so that it can be applied with minimal changes to

the micro problems (4.12), (4.13).

Let X be a Hilbert space with a scalar product (·, ·)X and a corresponding norm ‖ ·‖X and let

D be a space of parameters.2 Let A(·, ·;μ) : X ×X →R be a parameter-dependent symmetric

bilinear form Gi (·;μ) : X → R be linear forms indexed by i ∈ {1, . . . ,d}. We are interested in a

tensor a(μ) ∈Rd×d for any μ ∈D that depends on a solution to a variational problem and is

defined as follows. For any μ ∈D find Ui ,μ ∈ X such that

A(Ui ,μ,V;μ) =Gi (V;μ) ∀V ∈ X , (4.20)

ai j (μ) =Gi (U j ;μ) ∀i , j ∈ {1, . . . ,d}. (4.21)

We assume that for any μ ∈D there are 0 <β(μ) ≤ γA(μ) and γG (μ) ∈R such that

A(U,V;μ) ≤ γA(μ)‖U‖X ‖V‖X ∀U,V ∈ X ,

Gi (U;μ) ≤ γG (μ)‖U‖X ∀U ∈ X ,

inf
U∈X
U�=0

sup
V∈X
V�=0

A(U,V;μ)

‖U‖X ‖V‖X
=β(μ),

(4.22)

for every μ ∈D and i ∈ {1, . . . ,d}. The conditions (4.22) assure that the problem (4.20) is well-

posed for every μ ∈D. The value β(μ) is called the inf-sup constant. Since A is symmetric, we

have

ai j (μ) =Gi (U j ;μ) = A(Ui ,μ,U j ,μ;μ) = A(U j ,μ,Ui ,μ;μ) =G j (Ui ;μ) = a j i (μ)

and thus a(μ) is symmetric.

We consider (4.20) as d independent problems indexed by i ∈ {1, . . . ,d}. For each i ∈ {1, . . . ,d}

2Usually one assumes D ⊂Rp for some p ∈N.
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we project (4.20) to a solution space Xi ⊂ X and a parameter-dependent test space X μ

i ⊂ X

(defined below) with dim(Xi ) = dim(X μ

i ) = Ni , where we aim to achieve Ni � dim(X ). The RB

approximation of (4.20) is then defined as follows: For any μ ∈D and i ∈ {1, . . . ,d} we search

Ui ,μ
RB ∈ Xi such that

A(Ui ,μ
RB,V;μ) =Gi (V;μ) ∀V ∈ X μ

i . (4.23)

The solution space Xi is spanned by a small number of solutions of (4.20) computed for

parameter values Si = {μi ,1,μi ,2, . . . ,μi ,Ni } ⊂D, whose construction is described in section 4.2.2.

For every n = 1,2, . . . , Ni we denote by Ui ,n ∈ X the solution to (4.20) with μ=μi ,n . We assume

that these selected solutions are linearly independent. The sequence {Ui ,n}n is then processed

by the Gram–Schmidt method (without changing the notation) to achieve algebraic stability

(see section 4.2.5). We then define Xi = span{Ui ,1, . . . ,Ui ,Ni }.

The inf-sup stability of the reduced problem (4.23) is guaranteed by an adequate construction

of the test space X μ

i . Consider the so-called supremizer operator T : X ×D → X defined as

follows. For any μ ∈D and U ∈ X let T (U;μ) be the Riesz’s representant of A(U, ·;μ), that is, the

solution to

(T (U;μ),V)X = A(U,V;μ) ∀V ∈ X . (4.24)

One can easily show that the supremizer operator T (·;μ) : X → X is linear and

T (U;μ) = arg max
V∈X

A(U,V;μ)

‖V‖X
, β(μ) = inf

U∈X

‖T (U;μ)‖X

‖U‖X
· (4.25)

We now set

X μ

i = T (Xi ;μ) = span{T (Ui ,1;μ), . . . ,T (Ui ,Ni ;μ)}. (4.26)

A simple approximation of the output of interest (4.21) is Gi (U j ,μ
RB ;μ), which is optimal for i = j .

However, if i �= j , one can increase the order of accuracy with a dual RB problem [92]. Since

the right-hand sides of our problems, Gi (·;μ), are the same linear forms as needed to obtain

the outputs of interest (4.21), we do not need to solve any additional dual problems and we

define

aRB
i j (μ) =Gi (U j ,μ

RB ;μ)+R j (Ui ,μ
RB;μ), (4.27)

where the residual R j : X ×D →R is given by

R j (V;μ) =G j (V;μ)− A(U j ,μ
RB ,V;μ)

= A(U j ,μ−U j ,μ
RB ,V;μ).

(4.28)

Lemma 4.2.1 (approximation stability). The reduced problem (4.23) is well-posed for any

i ∈ {1, . . . ,d} and μ ∈D.

Proof. The problem (4.20) is well-posed by the assumption (4.22). We will show similar con-

ditions for the reduced problem (4.23). The boundedness inequalities (second and third
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inequality in (4.22)) are true also when we restrict the supremums to Xi ⊂ X and X μ

i ⊂ X . We

will prove that the inf-sup stability condition (first inequality in (4.22)) is preserved in the

reduced system. Using that for any U ∈ Xi we have T (U;μ) ∈ X μ

i and applying (4.25) we have

βi (μ) := inf
U∈Xi
U�=0

sup
V∈X μ

i
V�=0

A(U,V;μ)

‖U‖X ‖V‖X
≥ inf

U∈Xi
U�=0

A(U,T (U;μ);μ)

‖U‖X ‖T (U;μ)‖X
= inf

U∈Xi
U�=0

‖T (U;μ)‖X

‖U‖X
≥β(μ). (4.29)

This concludes the proof.

Offline/online splitting. The efficiency of the RB method relies on a splitting of the compu-

tation into two stages.

• The offline stage is run only once and it is used to construct the RB space Xi and

precompute necessary values for the online stage.

• The online stage can be run after the offline stage repeatedly and it provides a cheap

evaluation of aRB(μ) for any μ ∈D.

This splitting can be achieved with the following, additional assumption. We assume that

there is an affine decomposition of the bilinear form A(·, ·;μ) and of the linear forms Gi (·;μ),

that is, there are Q A ,QG ∈N and

• continuous symmetric bilinear forms Aq : X ×X →R for q ∈ {1, . . . ,Q A},

• continuous linear forms Gi q : X →R for q ∈ {1, . . . ,QG } and i ∈ {1, . . . ,d},

• vector fields ΘA : D →RQ A and ΘG : D →RQG ,

such that for any U,V ∈ X , parameter μ ∈D, and i ∈ {1, . . . ,d} we have

A(U,V;μ) =
Q A∑
q=1

ΘA
q (μ)Aq (U,V),

Gi (V;μ) =
QG∑
q=1

ΘG
q (μ)Gi q (V).

(4.30)

Remark 4.2.2. The affine expansion of Gi for i ∈ {1, . . . ,d} is not completely generic since we

assume the same vector field ΘG for any i ∈ {1, . . . ,d}. While this can be easily generalized, we

use the special type of expansion (4.30) since it is sufficient for our purposes.

4.2.1 Online stage: RB solution and output of interest

Using the affine decomposition of A(·, ·;μ) from (4.30) in the definition of T (·;μ) from (4.24),

we can deduce that there is an affine decomposition of the supremizer operator. Indeed, we
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have

T (U;μ) =
Q A∑
q=1

ΘA
q (μ)T q (U), (4.31)

where T q (U) is the Riesz’s representant of Aq (U, ·), that is,

(T q (U),V)X = Aq (U,V) ∀V ∈ X . (4.32)

The expansion (4.31) allows us to write the basis functions of X μ

i from (4.26) as linear combi-

nations: T (Ui ,n ;μ) =∑Q A
q=1Θ

A
q (x)T q (Ui ,n). Hence, functions Ui ,x

RB ∈ Xi and V ∈ X μ

i from (4.23)

can be written as linear combinations

Ui ,x
RB =

Ni∑
n=1

U
i ,μ
n Ui ,n , V =

Ni∑
m=1

V m

Q A∑
q=1

ΘA
q (μ)T q (Ui ,m), (4.33)

where U
i ,μ = (U

i ,μ
1 , . . . ,U

i ,μ
Ni

)T ∈ RNi and V = (V 1, . . . ,V Ni )T ∈ RNi are vectors of coefficients.

Plugging (4.33) into the reduced system (4.23), using the affine decomposition (4.30) and (4.31),

and expanding and regrouping terms gives the following problem: find U
i ,μ ∈RNi such that

A
i ,μ

U
i ,μ = G

i ,μ
, (4.34)

where the matrix A
i ,μ ∈RNi×Ni and the right-hand side vector G

i ,μ ∈RNi are given by

A
i ,μ =

Q A∑
q,r=1

ΘA
q (μ)ΘA

r (μ)M
i qr

, G
i ,μ =

QG∑
q=1

Q A∑
r=1

ΘG
q (μ)ΘA

r (μ)N
i qr

. (4.35)

Here, the matrices M
i qr ∈RNi×Ni and vectors N

i qr ∈RNi are given by

M
i qr
nm = Aq (Ui ,n ,T r (Ui ,m)) = (T q (Ui ,n),T r (Ui ,m))X ,

N
i qr
m =Gi q (T r (Ui ,m)).

(4.36)

The values (4.36) are precomputed in the offline stage and the dense linear system (4.34) with

Ni variables is assembled (via (4.35)) and solved in the online stage.

Lemma 4.2.3 (algebraic stability). The condition number of the system (4.34) is bounded by

γA(μ)2/β(μ)2 for any μ ∈D and i ∈ {1, . . . ,d}.

Proof. Let μ ∈ D and i ∈ {1, . . . ,d} be arbitrary and let W ∈ RNi . Denote W = ∑N1
n=1 W nUi ,n .

Since we apply the Gramm-Schmidt procedure, the vectors Ui ,1, . . . ,Ui ,Ni are an orthonormal

basis of Xi . Hence, we have

‖W‖2
X =

Ni∑
n=1

W
2
n‖Ui ,n‖2

X = |W |2. (4.37)

63



Chapter 4. Reduced basis finite element heterogeneous multiscale method

Using (4.35) and (4.36)

A
i ,μ

W ·W = (T (W;μ),T (W;μ))X = A(T (W;μ);W;μ) ≤ γA(μ)‖T (W;μ)‖X ‖W‖X .

The last inequality together with (4.25) imply

β(μ)2‖W‖2
X ≤ A

i ,μ
W ·W ≤ γA(μ)2‖W‖2

X . (4.38)

Using (4.37) and (4.38) and the fact that the matrix A
i ,μ

is symmetric, we obtain that all

the eigenvalues of A
i ,μ

are real and within the interval [β(μ)2,γA(μ)2], which concludes the

proof.

Output of interest. Assume that we have solved the system (4.34) for every i ∈ {1, . . . ,d}. We

rewrite (4.27) using the affine decompositions (4.30) and (4.33) to obtain

aRB
i j (μ) =

QG∑
q=1

ΘG
q (μ)(S

i j q ·U j ,μ+S
j i q ·U i ,μ

)−
Q A∑
q=1

ΘA
q (μ)T

j i q
U

j ,μ ·U i ,μ
, (4.39)

where the vectors S
i j q ∈RN j and the matrices T

i j q ∈RNi×N j can be precomputed in the offline

stage as

S
i j q
n =Gi q (U j ,n), T

i j q
nm = Aq (Ui ,n ,U j ,m). (4.40)

4.2.2 Offline stage: RB construction and a posteriori error estimator

In this section we recall the offline greedy algorithm to construct the parameter sets Si . This

algorithm uses a cheap a posteriori estimator of the RB error that relies on a rigorous estimate

of the stability constant (4.18).

For every i ∈ {1, . . . ,d} we perform the selection of the RB parameters Si only once, in the

offline stage. We chose a standard greedy approach that adds points μ ∈D from a training set

to Si , until a suitable error tolerance is reached. The error ‖Ui ,μ−Ui ,μ
RB‖X is estimated by its

upper bound (see Lemma 4.2.5)

ΔE
i (μ) = ‖Ri (·;μ)‖X ′

βSCM(μ)
, (4.41)

where the residual Ri is defined in (4.28) and βSCM(μ) is a cheap computable positive lower

bound of β(μ) that will be described in section 4.2.3.

Algorithm 4.2.4 (offline greedy RB construction). Given i ∈ {1, . . . ,d}, training set size N RB
train ∈

N, and tolerance εRB > 0 do:

1. Initialization. Choose randomly (Monte Carlo) or structurally (regular grid) a training

set ΞRB
train ⊂D of size N RB

train. Set Si =� and Ni = 0.
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2. Estimate. For every μ ∈ΞRB
train compute the RB error estimator (4.41) and let μ̃ ∈ΞRB

train be

the argument for which ΔE
i (μ̃) is maximized.

3. Stopping criterion. If ΔE
i (μ̃) < εRB, then precompute (4.40) and stop the algorithm. Else,

let Ni ← Ni +1, set μi ,Ni = μ̃, and update Si ← Si ∪ {μi ,Ni }.

4. Update online fields. Compute Ui ,Ni by solving (4.12) with μ= μi ,Ni and compute the

supremizers T q (Ui ,Ni ) for q = 1, . . . ,Q A by solving (4.32). Update (4.36) and go to step 2.

When Algorithm 4.2.4 stops it gives Si such that the RB error ‖Ui ,μ−Ui ,μ
RB‖X ≤ εRB for all training

parameters μ ∈ΞRB
train. We cannot guarantee this bound for all μ ∈D but a bound of type CεRB

is are practically observed if the training set is dense enough in D and the dependence on

parameter is smooth.

We next prove that the error indicator ΔE
i (μ) defined in (4.41) is an upper bound on the RB

error and we describe a cheap evaluation of ΔE
i (μ).

Lemma 4.2.5. For any μ ∈Ω and i ∈ {1, . . . ,d} we have ‖Ui ,μ−Ui ,μ
RB‖X ≤ΔE

i (μ).

Proof. Using the inf-sup condition (4.18), definition (4.28), and inequality (4.46), gives

‖Ui ,μ−Ui ,μ
RB‖X ≤ 1

β(μ)
sup
V∈X

A(Ui ,μ−Ui ,μ
RB,V;μ)

‖V‖X
≤ΔE

i (μ).

The inequality (4.46) establishes that βSCM(μ) ≤β(μ), which concludes the proof.

From the error bound (4.41) we consider here only the evaluation of ‖Ri (·;μ)‖X ′ , follow-

ing [101]. Evaluation of βSCM(μ) is presented in section 4.2.3. Using (4.28) and (4.30) we get

Ri (V;μ) =Gi (V;μ)− A(Ui ,x
RB,V;μ)

=
QG∑
q=1

ΘG
q (μ)Gi q (V)−

Q A∑
q=1

Ni∑
n=1

ΘA
q (μ)U

i ,μ
n Aq (Ui ,μ

RB,V)

=
( QG∑

q=1
ΘG

q (μ)Gi q −
Q A∑
q=1

Ni∑
n=1

ΘA
q (μ)U

i ,μ
n T q (Ui ,n), V

)
X

.

(4.42)

where Gi q ∈ X is a Riesz representant to Gi q (·), that is, (Gi q ,V)X =Gi q (V) for every V ∈ X . With

the help of (4.42) we can write

‖Ri (·; x)‖2
(Xh )′ =

∥∥∥∥∥
QG∑
q=1

ΘG
q (μ)Gi q −

Q A∑
q=1

Ni∑
n=1

ΘA
q (μ)U

i ,μ
n T q (Ui ,n)

∥∥∥∥∥
2

X

=
QG∑

q,r=1
ΘG

q (μ)ΘG
r (μ)P

i qr −2G
i ,μ ·U i ,μ+A

i ,μ
U

i ,μ ·U i ,μ
,

(4.43)

where the numbers P
i qr ∈R can be precomputed in the offline stage by P

i qr = (Gi q ,Gi r )X .

65



Chapter 4. Reduced basis finite element heterogeneous multiscale method

4.2.3 Successive constraint method (SCM)

Here we describe a cheap lower bound βSCM(μ) of the inf-sup constant β(μ). We follow the

algorithm [75] with some modifications detailed in Remark 4.2.8, where also the accuracy of

the SCM is addressed. Using (4.18) and (4.25) for any μ,μ ∈D we have

β(μ) ≥ inf
U∈X

A(U,T (U;μ);μ)

‖U‖X ‖T (U;μ)‖X

≥ inf
U∈X

‖T (U;μ)‖X

‖U‖X︸ ︷︷ ︸
=β(μ)

inf
U∈X

A(U,T (U;μ);μ)

‖T (U;μ)‖2
X︸ ︷︷ ︸

=:β(μ;μ)

· (4.44)

A greedy algorithm is used to construct a finite set S ⊂D and a family of finite sets {Cμ}μ∈S ⊂D

such that:

• for each μ ∈ S the value β(μ) is computed and stored,

• given a μ ∈ S the values β(μ;μ) are computed and stored for every μ ∈Cμ. They are used

to provide cheap bounds of β(μ;μ) defined in (4.49) that satisfy

βLB(μ;μ,C ) ≤β(μ;μ) ≤βUB(μ;μ,C ) ∀μ ∈D, ∀C ⊂Ω. (4.45)

Using (4.44) and (4.45) we obtain (and define)

β(μ) ≥βSCM(μ) := max
μ∈S

β(μ)βLB(μ;μ,Cμ). (4.46)

Eigenproblems. The values β(μ) and β(μ;μ) described in (4.44) can be interpreted as min-

imal eigenvalues of related eigenproblems. We denote the corresponding eigenvectors by

Uμ,μ = arg min
U∈X

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(U,T (U;μ);μ)

‖T (U;μ)‖2
X

if μ �=μ,

‖T (U;μ)‖X

‖U‖X
if μ=μ.

(4.47)

Upper and lower bounds. Let us fix a parameterμ ∈Ω. Using the affine decomposition (4.30)

we obtain

β(μ;μ) = inf
U∈X

Q A∑
q=1

ΘA
q (μ)

Aq (U,T (U;μ))

‖T (U;μ)‖2
X︸ ︷︷ ︸

=:Z q (U;μ)

= inf
z∈Yμ

Q A∑
q=1

ΘA
q (μ)zq ,
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where Yμ is the set of all z ∈ RQ A such that zq = Z q (U;μ) for every q ∈ {1, . . . ,Q A} for some

U ∈ X . Given a nonempty set C ⊂D, we define Y UB
μ

(C ),Y LB
μ

(C ) ⊂RQ A by

Y UB
μ

(C ) = {z(μ̂;μ) = (Z q (Uμ̂,μ;μ))Q A
q=1 ∈RQ A : μ̂ ∈C },

Y LB
μ (C ) = {(s1, . . . , sQ A ) ∈RQ A : |sq | ≤ γq /β(μ) ∀q ∈ {1, . . . ,Q A}

and
∑Q A

q=1Θ
A
q (μ̂)sq ≥β(μ̂;μ) ∀μ̂ ∈C },

(4.48)

where γq = supU∈X ‖T q (U)‖X /‖U‖X . Using the inclusion property Y UB
μ

(C ) ⊂ Yμ ⊂ Y LB
μ

(C )

(for a proof see [75]) we immediately get for the lower and upper bound in (4.45)

βLB(μ;μ,C ) = min
z∈Y LB

μ
(C )

Q A∑
q=1

ΘA
q (μ)zq ,

βUB(μ;μ,C ) = min
z∈Y UB

μ
(C )

Q A∑
q=1

ΘA
q (μ)zq .

(4.49)

Let us present an algorithm for constructing the set S ⊂D and the family {Cμ}μ∈S .

Algorithm 4.2.6 (offline greedy SCM construction). Given a training size N SCM
train ∈N , a toler-

ance εSCM ∈ (0,1), and θ ∈ (0,1) do:

1. Initialization. Choose randomly (Monte Carlo) or structurally (regular grid) a training

set ΞSCM
train ⊂ D of size N SCM

train . Compute γq for q ∈ {1, . . . ,Q A}. Let S = � and Cμ = � for

every μ ∈D. Select a random μ ∈ΞSCM
train and set μ̂←μ.

2. Update. Set S ← S ∪ {μ} and Cμ ←Cμ∪ {μ̂}. Solve the eigenproblem (4.47) and update

the sets (4.48).

3. Upper bound check. Find the training point μ̂ ∈ΞSCM
train with the smallest upper bound

estimate by

μ̂← arg min
μ̂∈ΞSCM

train

max
μ∈S

βUB(μ̂;μ,Cμ).

If maxμ∈S β
UB(μ̂;μ,Cμ) < θ, then we let μ ← μ̂ and continue with the step 2, which

enlarges the set S with μ.

4. Lower bound check. Find a training point μ̂ ∈ ΞSCM
train and μ ∈ S corresponding to the

smallest lower bound estimate by

μ̂,μ← arg min
μ̂∈ΞSCM

train

max
μ∈S

{
βLB(μ̂;μ,Cμ); βUB(μ̂;μ,Cμ) ≥ θ

}
.

If βLB(μ̂;μ,Cμ) < θεSCM, then we continue with the step 2, which enlarges the set Cμ.

Else, we have reached the tolerance and we stop the algorithm.

When Algorithm 4.2.6 stops we have βSCM(μ) > 0 for all training points. We cannot guarantee
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positivity for every μ ∈D but we practically observe it, if the training set is dense enough.

Remark 4.2.7 (online SCM). For any μ ∈ D we get βSCM(μ) defined in (4.46) by computing

βLB(μ;μ,Cμ) by solving the linear programming problem (4.49) for each μ ∈ S.

Remark 4.2.8. In the original procedure (see [75]) for each μ ∈ S a corresponding set Cμ is

constructed before adding another element to S. This approach resulted in unnecessary

large sets Cμ, therefore, we decided to construct all these sets concurrently. Furthermore, the

precision of the SCM in [75] was controlled by a function ϕ(μ,μ) that can be constructed using

the so-called SCM2 method. Since we do not expect extreme variations of β(μ), we replaced

this function by a constant θ > 0. In practice we chose θ = εSCM = 0.5.

4.2.4 A posteriori error estimate for output of interest

We discuss here the error between the tensor a(μ) and its RB approximation aRB(μ), defined

in (4.13) and (4.27), respectively.

Lemma 4.2.9. For any i , j ∈ {1, . . . ,d} we have

|ai j (μ)−aRB
i j (μ)| ≤ 1

βSCM(μ)
‖Ri (·;μ)‖X ′‖R j (·;μ)‖X ′ , (4.50)

‖a(μ)−aRB(μ)‖F ≤ 1

βSCM(μ)

d∑
i=1

‖Ri (·;μ)‖2
X ′ =: ΔF(μ). (4.51)

Proof. Using the definitions (4.13) and (4.27), the residual definition (4.28), the problem

statement (4.12), and symmetry of A(·, ·;μ), we obtain the following identity

ai j (μ)−aRB
i j (μ) =Gi (U j ,μ;μ)−Gi (U j ,μ

RB ;μ)−G j (Ui ,μ
RB;μ)+ A(U j ,μ

RB ,Ui ,μ
RB;μ)

= A(Ui ,μ−Ui ,μ
RB,U j ,μ−U j ,μ

RB ;μ)

= Ri (U j ,μ−U j ,μ
RB ;μ).

(4.52)

Using (4.52) and Lemma 4.2.5 gives

|ai j (μ)−aRB
i j (μ)| = |Ri (U j ,μ−U j ,μ

RB ;μ)| ≤ ‖Ri (·;μ)‖X ′‖U j ,μ−U j ,μ
RB ‖X

≤ ‖Ri (·;μ)‖X ′ΔE
j (μ) =Δout

i j (x).

This shows (4.50) and (4.51) follows.

The error bound (4.51) is quadratic with respect to the error bound for the RB solution (4.41).

This improvement of accuracy is due to the use of dual problem in the definition (4.27).
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4.2. The Petrov–Galerkin reduced basis method

4.2.5 A priori error analysis

Using the inf-sup stability (4.29) and X μ

i = T (Xi ;μ) one can obtain optimality of the RB

method.

Lemma 4.2.10. For every i , j ∈ {1, . . . ,d} and μ ∈D we have

‖Ui ,μ−Ui ,μ
RB‖X ≤

(
1+ γA(μ)

β(μ)

)
inf

V∈Xi

‖Ui ,μ−V‖X ,

|ai j (μ)−aRB
i j (μ)| ≤ γA(μ)

(
1+ γA(μ)

β(μ)

)2

inf
V∈Xi

‖Ui ,μ−V‖X inf
W∈X j

‖U j ,μ−W‖X .

Proof. The proof of the first inequality is given in [30]. Using (4.52) we obtain

|ai j (μ)−aRB
i j (μ)| = |A(Ui ,μ−Ui ,μ

RB,U j ,μ−U j ,μ
RB ;μ)|

≤ γA(μ)‖Ui ,μ−Ui ,μ
RB‖X ‖U j ,μ−U j ,μ

RB ‖X .

We conclude the proof of the second inequality by applying the first one.

Let us discuss a priori convergence rates of the RB greedy algorithm with respect to the number

of RB functions Ni . We apply the general framework for greedy approximations of compact

sets in Hilbert spaces [35]. For each i ∈ {1, . . . ,d}, the RB methods approximates the solution

manifold M i = {Ui ,μ; μ ∈D} ⊂C with Xi ⊂ X . Approximability of M i by linear subspaces of

X of dimension n is described by the Kolomogorov n-width

dn(M i ) = inf
Z⊂X

dim(Z )=n

sup
U∈M i

dist(U, Z ),

where dist(U, Z ) = minV∈Z ‖U−V‖X . Algorithm 4.2.4 is, in terminology of [35], a weak greedy

algorithm, provided that the a posteriori error estimator ΔE
i (μ) is uniformly equivalent to the

exact error dist(Ui ,μ
RB, Xi ). Indeed, by (4.41), (4.14), and Lemma 4.2.10 we have

ΔE
i (μ) = sup

V∈X

A(Ui ,μ−Ui ,μ
RB,V;μ)

βSCM(μ)‖V‖X
≤ γA(μ)

βSCM(μ)
‖Ui ,μ−Ui ,μ

RB‖X

≤ γA(μ)

βSCM(μ)

(
1+ γA(μ)

βi (μ)

)
dist(Ui ,μ

RB, Xi ),

(4.53)

and from Lemma 4.2.5 we simply obtain dist(Ui ,μ
RB, Xi ) ≤ΔE

i (μ). In [35] it is proved for coercive

problems that there is a constant γ ∈ (0,1], depending only on the constants from (4.53), such

that the following properties are true:

• If there are M ,α > 0 such that dn(M i ) ≤ Mn−α for all n > 0, then dist(Ui ,μ
RB, Xi ) ≤

C M N−α
i , where C depends only on α and γ.
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• If there are M , a,α > 0 such that dn(M i ) ≤ Me−anα

for all n ≥ 0, then dist(Ui ,μ
RB, Xi ) ≤

C Me−cNβ

i , where β=α/(α+1) and the constants C ,c > 0 depend only on α and γ.

While standard formulation of Stokes problem is not coercive, our model problem (4.20) and

its RB formulation (4.23) can be equivalently rewritten as follows: Find Ui ,μ ∈ X and Ui ,μ
RB ∈ Xi

such that
B(Ui ,μ,V;μ) =Gi (V;μ) ∀V ∈ X ,

B(Ui ,μ
RB,V;μ) =Gi (V;μ) ∀V ∈ Xi ,

where the parameter-dependent bilinear form B(U,V;μ) = (T (U;μ),T (V;μ))X is symmetric

and positive definite. Hence, the a priori error estimates for coercive problems [35] are

applicable.

4.2.6 Computational cost

Here we describe the computational cost of offline and online RB procedures. For a compari-

son to other methods see [65]. Let N = max{N1, . . . , Nd }, where Ni is the dimension of the RB

space Xi and let Q = max{Q A ,QG }.

Online stage. Let μ ∈ D be arbitrary. To obtain the RB coefficients U
i ,μ

we need to as-

semble (4.35) and solve the dense system (4.34) with Ni variables, which can be done with

O (Q2N 2
i +N 3

i ) operations. Then, we evaluate aRB(μ) via (4.39) using O (QN 2) operations.

To obtain ΔE
i (μ) we evaluate (4.43) in O (Q2 + N 2

i ) operations and we compute βSCM(μ) as

described in Remark 4.2.7. Computation of βSCM(μ) via (4.46) and (4.49) is dominated by

solving a linear programming problem in RQ A with 2Q A +|Cμ| constraints for each μ ∈ S.

Offline stage. The major sources of computational cost in the offline RB (Algorithm 4.2.4

and 4.2.6) stage can be split into four categories:

Solving sparse linear systems. In Algorithm 4.2.4 (step 4) we solve O (N ) Stokes problems (4.12)

and compute O (QN ) supremizers (T q (Ui ,n) and Gi q ), which can be done in O (N (N+Q)dim(X )),

assuming a linear-time solver.

Assembling online fields. In Algorithm 4.2.4 (step 4) we assemble (4.36) and we also need (4.40)

for the output of interest. This takes O (N 2Q2dim(X ))

Residual calculation. In Algorithm 4.2.4 (step 2) we compute the error estimator ΔE
i (μ) in each

iteration of the algorithm at all training points, which costs O ((Q2N 3+N 4)N RB
train). Furthermore,

we compute the inf-sup lower bound (4.46) at N RB
train points.

SCM. In Algorithm 4.2.6 we compute several eigenproblems of size dim(X ). First, Q A eigen-

problems are needed to obtain γ ∈RQ A . Second, we solve |S|+ J eigenproblems to obtain Uμ,μ
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given in (4.47), where J :=∑μ∈S |Cμ|. Furthermore, in each iteration of Algorithm 4.2.6 we need

to compute the upper and lower bounds (4.49) in the sampling points. Hence, in the whole

offline SCM we need to solve O ((J +|S|)N SCM
train ) linear programming problems.

Memory requirements. The online RB stage (excluding the computation of βSCM(μ)) has

O (Q2N 2) memory complexity, which is independent of Nmic. Since one can discard the

supremizers after the step 4 in every iteration of Algorithm 4.2.4, the memory requirements of

the offline RB stage are only O ((N +Q)dim(X )).

4.3 The RB-DS-FE-HMM

In this section we introduce a new numerical multiscale method, the reduced basis Darcy-

Stokes finite element heterogeneous multiscale method (RB-DS-FE-HMM). The method is

constructed by applying the reduced basis method (see section 4.2) to the micro problems of

the modified DS-FE-HMM from section 4.1. An illustration of the RB-DS-FE-HMM is depicted

in Figure 4.1.

Macro scale. The macroscopic equation is similar to (4.10), we just need to replace the

tensor ah by its reduced basis approximation aRB. Find p H ,RB ∈ Sl (Ω,TH )/R such that

B RB
H (p H ,RB, q H ) = LRB

H (q H ) ∀q H ∈ Sl (Ω,TH )/R, (4.54)

where

B RB
H (p H , q H ) = ∑

K∈TH

J∑
j=1

ωK j aRB(xK j )∇p H (xK j ) ·∇q H (xK j ),

LRB
H (q H ) = ∑

K∈TH

J∑
j=1

ωK j aRB(xK j )fH (xK j ) ·∇q H (xK j ).

For any quadrature point x = xK j the computation of aRB(x) is detailed below.

Micro scale. We depart from the modified micro problem (4.12) that yields the effective

permeability (4.13). This micro problem corresponds to the setting of the reduced basis

model problem (4.20), (4.21) with parametric domain D :=Ω, parameter μ := x, Hilbert space

X := Xh , and output of interest a := ah . Hence, the results of section 4.2 can be applied to the

micro problem (4.12), (4.13).

For every i ∈ {1, . . . ,d} we choose a training set size N RB
train ∈N and tolerance εRB > 0 and use

Algorithm 4.2.4 to construct the RB solution space Xi ⊂ Xh and the parameter-dependent test

space X x
i ⊂ Xh . We denote dim(Xi ) = dim(X x

i ) = Ni and we expect Ni � dim(Xh). The RB

micro problems are then stated as follows. For any x ∈Ω and i ∈ {1, . . . ,d} find Ui ,μ
RB ∈ Xi such
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that

A(Ui ,μ
RB,V; x) =Gi (V; x) ∀V ∈ X x

i .

Then, we define the RB approximation of ah(x) as

aRB
i j (x) =Gi (U j ,x

RB ; x)+G j (Ui ,x
RB; x)− A(Ui ,x

RB,U j ,x
RB ; x).

xi ,Ni

xi ,2

xi ,1

Ui ,Ni

h

Ui ,2
h

Ui ,1
h

...
...

Y x
F

YF
ϕ(x, ·)−1

Si

online phaseoffline phase

reduced
basis
micro
solver

H

x

TH

ΘA(x)
ΘG (x)

aRB(x)

Figure 4.1 – A sketch of the RB-DS-FE-HMM.

Affine decomposition. To achieve efficiency in the RB method, an affine decomposition of

the bilinear form A and linear forms Gi (defined in (4.6)) is needed. A standard way to provide

such decomposition is with the following assumption on the geometry transformation ϕ.

Assumption 4.3.1. Let R ∈N and assume that {Y r
F }R

r=1 is a disjoint partition of YF such that

the restriction ϕ(x, y)|y∈Y r
F

is affine for every x ∈Ω and r ∈ {1, . . . ,R}. Furthermore, assume that

for every K ∈Th there exists r ∈ {1, . . . ,R} such that K ⊂ Y r
F .

Assumption 4.3.1 implies that there are C r : Ω→Rd and J r : Ω→Rd×d such that

ϕ(x, y) =C r (x)+ J r (x)y ∀x ∈Ω, r ∈ {1, . . . ,R}, y ∈ Y r
F . (4.55)

For an illustration see Example 4.3.2 and 4.3.3.

The affine form of ϕ from (4.55) leads to the Jacobian ∇yϕ(x, y) = J r (x) for any x ∈ Ω and

y ∈ Y r
F . Using this in the definition (4.7) we obtain that for any x ∈Ω and y ∈ Y r

F we have

ρ(x, y) = ρr (x) := det(J r (x))(J r (x)� J r (x))−1,

σ(x, y) =σr (x) := det(J r (x))J r (x)−�,

τ(x, y) = τr (x) := det(J r (x)).
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Using this in (4.6) we obtain that for any U = (u, p,λ) ∈ X , V = (v, q,κ) ∈ X , and x ∈Ω we have

A(U,V; x) =
d∑

i , j=1

R∑
r=1

ρr
i j (x)

∫
Y r

F

∂u

∂yi
· ∂v

∂y j
dy

−
d∑

i , j=1

R∑
r=1

σr
i j (x)

∫
Y r

F

( ∂vi

∂y j
p + ∂ui

∂y j
q
)

dy

+
R∑

r=1
τr (x)

∫
Y r

F

(λq +κp)dy,

Gi (V; x) =
R∑

r=1
τr (x)

∫
Y r

F

ei ·vdy.

(4.56)

The equations (4.56) can be directly interpreted as affine decompositions of type (4.30).

The numbers of terms in the affine decomposition, denoted by Q A and QG , influence the time

and memory requirements of the reduced basis algorithm. Hence, one tries to minimize Q A

and QG . The decomposition (4.56) yields Q A = 2Rd 2 +R and QG = R. Using the symmetry of

ρr one can reduce this amount to Q A = R(d 2 +d(d +1)/2+1). It is often possible to reduce

this complexity even more by symbolic manipulation of (4.30). Another approach to reduce

Q A or QG is using the empirical interpolation method [31].

We illustrate the affine decomposition on two simple examples of micro geometries (YF,YS)

and the deformation function ϕ.

Example 4.3.2. Let YS be a circle with radius 0.25 and YF = Y \YS as is shown in Figure 4.2.

We divide YF into two subdomains: Y 1
F = {y ∈ YF; y1 < 0} and Y 2

F = {y ∈ YF; y1 > 0}. Given a

function μ : Ω→ (−0.5,0.5), the mapping ϕ(x, ·) : Y → Y stretches the subdomains Y 1
F and Y 2

F

such that their common boundary (line given by y1 = 0) is moved to the line given by y1 =μ(x)

(see Figure 4.2). Formally, we have

ϕ(x, y) =
⎧⎨
⎩(y1(1+2μ(x))+μ(x), y2) for y ∈ Y 1

F ,

(y1(1−2μ(x))+μ(x), y2) for y ∈ Y 2
F ,

which then implies that the Jacobian matrix J (x, y) is diagonal and equal to

J (x, y) =
⎧⎨
⎩diag(1+2μ(x),1) for y ∈ Y 1

F ,

diag(1−2μ(x),1) for y ∈ Y 2
F .
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We apply (4.56) and obtain

A(U,V; x) = 1

1+2μ(x)

∫
Y 1

F

∂u

∂y1
· ∂v

∂y1
dy + 1

1−2μ(x)

∫
Y 2

F

∂u

∂y1
· ∂v

∂y1
dy

+
∫

Y 1
F

∂u

∂y2
· ∂v

∂y2
dy +

∫
Y 2

F

∂u

∂y2
· ∂v

∂y2
dy −

∫
YF

(
∂v1

∂y1
p + ∂u1

∂y1
q

)
dy

− (1+2μ(x))
∫

Y 1
F

(
∂v2

∂y2
p + ∂u2

∂y2
q

)
dy − (1−2μ(x))

∫
Y 2

F

(
∂v2

∂y2
p + ∂u2

∂y2
q

)
dy

+ (1+2μ(x))
∫

Y 1
F

(λq +κp)dy + (1−2μ(x))
∫

Y 2
F

(λq +κp)dy,

Gi (V; x) = (1+2μ(x))
∫

Y 1
F

ei ·vdy + (1−2μ(x))
∫

Y 2
F

ei ·vdy.

It is easily seen that one can regroup this expansion to arrive at an affine decomposition of

A(U,V; x) with Q A = 4 and QG = 2 with

ΘA
1 (x) = (1+2μ(x))−1, ΘG

1 (x) = 1,

ΘA
2 (x) = (1−2μ(x))−1, ΘG

2 (x) =μ(x),

ΘA
3 (x) = 1,

ΘA
4 (x) =μ(x).

− 1
2

− 1
2 1

2

1
2

YS

Y 2
FY 1

F

0 − 1
2

− 1
2 1

2

1
2

Y x
S

Y x
F

μ(x)

ϕ(x, ·)

Figure 4.2 – An illustration of the mapping ϕ for Example 4.3.2.

Example 4.3.3. We present another example of the affine decomposition that will be also

used in the numerical experiments. Let YS = [−0.5,0]2 and YF = Y \YS is divided into four

subdomains {Y r
F }1≤r≤4 as is shown in Figure 4.3. Given a function μ : Ω→ Y , the mapping

ϕ(x, ·) maps the point (0,0) to μ(x). The rest of the mapping is defined such that it is affine

for regions Y r
F and YS as is shown in Figure 4.3. Specifically, using the notation from (4.55) we

have C r (x) = (μ1(x),μ2(x)) for every r ∈ {1,2,3,4} and

J 1(x) =
(

1+2μ1(x) 0

2μ2(x) 1

)
, J 2(x) =

(
1 −2μ1(x)

0 1−2μ2(x)

)
,

J 3(x) =
(

1−2μ1(x) 0

−2μ2(x) 1

)
, J 4(x) =

(
1 2μ1(x)

0 1+2μ2(x)

)
.
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4.4. A priori error estimates

We do not provide the whole affine decomposition of this example but we note that it is

possible to obtain Q A = 15 and QG = 3 with ΘG (x) = (1,μ1(x),μ2(x)).

0

0

YS

Y 1
F

Y 2
F

Y 3
F

Y 4
F

− 1
2

− 1
2 1

2

1
2

ϕ(x, ·)
μ2(x)

μ1(x)

Y x
S

− 1
2

− 1
2 1

2

1
2

Figure 4.3 – An illustration of the mapping ϕ for Example 4.3.3.

Remark 4.3.4. In the description of the RB-DS-FE-HMM we consider Ω to be the parametric

space and x ∈Ω to be the parameter. The RB method is then used to approximate (2.14) in

the family of micro geometries {(Y x
S ,Y x

F )}x∈Ω. It is sometimes convenient (see Example 4.3.2

and 4.3.3 and section 4.6) to define a family of micro geometries {(Y μ

S ,Y μ

F )}μ∈D , where D ⊂Rp

is a parametric domain. To define a porous structure in Ω it is then sufficient to provide a

mapping μ : Ω→D and define local pore geometries as (Y x
S ,Y x

F ) := (Y μ(x)
S ,Y μ(x)

F ).

Inner product on X . The inner product on X enters the RB computation and thus influences

the behavior of the RB method. It is advised (see [101, 100]) to choose the scalar product

(U,V)X = (∇u,∇v)L2(YF) +λP (u,v)L2(YF) + (p, q)L2(YF) +λκ,

where U = (u, p,λ) and V = (v, q,κ) andλP > 0 is a numerical approximation to the optimal con-

stant from the Poincaré–Friedrichs inequality: |w|H 1(YF) ≥λP‖w‖L2(YF) for every w ∈ H 1
0,per(YF).

This choice of λP is preferred over other natural choices, such as λP = 0 or λP = 1, since it

improves the efficiency of the eigensolvers needed in section 4.2.3 (see [100, 75]).

4.4 A priori error estimates

In this section we show that the RB-DS-FE-HMM is well-posed and thus the solution p H ,RB

is well-defined in (4.54). We then provide a priori error estimates for p0 −p H ,RB, which are

similar to those for the DS-FE-HMM in section 3.2. The main differences are that now we do

not have to take into account the modeling error but we introduced a new error term by using

the RB method. We also provide an improved micro error estimate.

Well-posedness of the RB-DS-FE-HMM. Similarly as in Proposition 3.1.8, if Assumption 3.1.1

holds and there are constants 0 <λ≤Λ such that

aRB(x)ξ ·ξ≥λ|ξ|2, |aRB(x)ξ| ≤Λ|ξ|, ∀x ∈Q H , ∀ξ ∈Rd , (4.57)
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then the problem (4.54) is well-posed and we have |p H ,RB|H 1(Ω) ≤Λ/λ‖fH‖L2(Ω)d . Hence, how

can we assure that (4.57) holds? The tensor aRB(x) is an approximation ah(x), which we

assume to be uniformly elliptic and bounded (see (4.19)). By setting the tolerance εRB > 0

small enough and using (4.51), we can ensure the coercivity of aRB(x) at least for every x in the

RB training set ΞRB
train. If the training set is dense enough in Ω, we expect to have ellipticity of

aRB(x) for any x ∈Ω. To ensure that (4.57) holds for every x ∈Q H , the macroscopic quadrature

points Q H can be included into the training set in the offline stage of the RB method.

Error decomposition. We have already presented the exact problem (4.1), its discretiza-

tion (4.10), and its RB approximation (4.54). To separate different sources of error (see the

a priori error analysis in [14, 20] and in section 3.2), we define an additional semi-discrete

problem. Let p H ,0 ∈ Sl (Ω,TH )/R be a solution to (4.10) but with tensor a0 (instead of ah)

in (4.11). We decompose the difference p0 −p H ,RB to three components: macro, micro, and

RB error, which are denoted by emac, emic, and eRB, respectively. Since we are working with the

exact micro domains Y x
F (compared to Y x,δ

F in the DS-FE-HMM), the modeling error is not

present. The triangle inequality gives

|p0 −p H ,RB︸ ︷︷ ︸
e

|H 1(Ω) ≤ |p0 −p H ,0︸ ︷︷ ︸
emac

|H 1(Ω) +|p H ,0 −p H︸ ︷︷ ︸
emic

|H 1(Ω) +|p H −p H ,RB︸ ︷︷ ︸
eRB

|H 1(Ω). (4.58)

Similarly to Theorem 3.2.2, we can derive the following result.

Theorem 4.4.1. Suppose that Assumption 3.1.1 holds.

1. If a0 is uniformly elliptic and bounded as in (4.16), a0 ∈ W̄ l ,∞(Ω)d×d , Assumption 3.1.1

holds, and p0 ∈ H l+1(Ω), then

|p0 −p H ,0|H 1(Ω) ≤C (H l +‖f− fH‖L2(Ω)d ),

where C is a constant independent of H.

2. Suppose that a0, ah : Q H →Rd×d are uniformly elliptic and bounded (see (4.16) and (4.19)).

Then there is a constant C > 0 depending only on λ and Λ such that

|p H ,0 −p H |H 1(Ω) ≤C‖fH‖L2(Ω) max
x∈Q H

‖a0(x)−ah(x)‖F.

3. Suppose that ah , aRB : Q H →Rd×d are uniformly elliptic and bounded (see (4.19) and (4.57)).

Then there is a constant C > 0 depending only on λ and Λ such that

|p H −p H ,RB|H 1(Ω) ≤C‖fH‖L2(Ω) max
x∈Q H

‖ah(x)−aRB(x)‖F.

Proof. The proof is analogous to that of Theorem 3.2.2.
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4.4. A priori error estimates

Macro error. The macroscopic error is the effect of the macroscopic FEM with numerical

quadrature. If f ∈ H̄ l (Ω), we can bound the term ‖f− fH‖L2(Ω) from (3.24) by C H l and we thus

achieve

|p0 −p H ,0|H 1(Ω) ≤C H l .

For further details see the macro error discussion in section 3.2.

Micro error. The micro error in RB-DS-FE-HMM differs from the micro error in the DS-FE-

HMM since we solved different micro problems. For any V ∈ Xh and i , j ∈ {1, . . . ,d} one can

derive
a0

i j (x)−ah
i j (x) =Gi (U j ,x −U j ,x

h ; x)

= A(Ui ,x ,U j ,x −U j ,x
h ; x)

= A(Ui ,x −V,U j ,x −U j ,x
h ; x)

(4.59)

using (4.8) and (4.13), then (4.5) and (4.12), and finally the Galerkin orthogonality. We

use (4.59) to compute ‖a0(x)−ah2 (x)‖2
F, then apply (4.14), and finally take an infimum over V

to obtain

‖a0(x)−ah(x)‖2
F ≤ γA(x)

(
d∑

i=1
inf

V∈Xh

‖Ui ,x −V‖2
X

)(
d∑

i=1
‖Ui ,x −Ui ,x

h ‖2
X

)
.

Stability properties (4.14), (4.15), (4.17), and (4.18) imply that

‖a0(x)−ah(x)‖F ≤C (x)
d∑

i=1
inf

V∈Xh

‖Ui ,x −V‖2
X , (4.60)

where C (x) = (γA(x)(1+γA(x)/βh
Ba(x)))1/2. We now derive an upper bound of (4.60) based on

regularity of Ui ,x ∈ X . Let X∗ = H k+2
per (YF)d ×H k+1

per (YF)×R and suppose that for every x ∈Ω and

i ∈ {1, . . . ,d} we have Ui ,x ∈ X∗. Then the standard interpolation estimates [45] give

inf
V∈Xh

‖Ui ,x −V‖X ≤C‖Ui ,x‖X∗hk+1,

where C depends only on k and shape-regularity of Th . Moreover, suppose that there is a

constant C > 0 such that ‖Ui ,x‖X∗ <C for every x ∈Ω and i ∈ {1, . . . ,d}. If further C (x) can be

bounded above independently of x ∈Ω then there exist a constant C > 0 such that

‖a0(x)−ah(x)‖F ≤C h2(k+1),

where C does not depend on x or h. Using Theorem 4.4.1 we have

|p H ,0 −p H |H 1(Ω) ≤C h2(k+1).
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RB error. The a priori error analysis of ‖ah(x)−aRB(x)‖F has been studied in section 4.2.5.

If the Kolmogorov n-width dn(M i ) is decaying exponentially, then so is the error of the RB

approximation. We are not aware of any a priori estimates on the Kolmogorov n-width for

parametric spaces of dimension larger than 1. Hence, we cannot prove it a priori in the

numerical experiments we observe an exponential convergence of type

|p H −p H ,RB|H 1(Ω) ≤C exp(−cNβ

RB),

where c,C ,β> 0 do not depend on H and h and NRB = min{N1, . . . , Nd }.

Total error. We have analyzed the three terms of the error decomposition (4.58) for P l FE

on the macro scale and P k+1/P k FE on the micro scale. The resulting a priori error estimate

is then

|p0 −p H ,RB|H 1(Ω) ≤C (H l +h2(k+1) +exp(−cNβ

RB)). (4.61)

Notice that the micro mesh size h has to be fixed before the offline stage of the method and

changing it is not possible in the online stage.

As we have seen in the DS-FE-HMM, the exponents of H and h in (4.61) are too optimistic,

since the regularity assumptions on the micro and macro solutions are usually not satisfied.

Expressing (4.61) in terms of degrees of freedom we get

|p0 −p H ,RB|H 1(Ω) ≤C (N
− l

d
mac +N

− 2(k+1)
d

mic +exp(−cNβ

RB)), (4.62)

where Nmac denotes the number of DOF at the macro scale and Nmic the number of DOF on

the micro scale. Even for solutions with lower regularity, the rates from (4.62) may be achieved

by using a and adaptive refinement strategy on the macro scale (see section 4.5) and adaptive

construction of the micro meshes (see section 4.6.2).

4.5 A posteriori error estimates

Here we derive a posteriori error estimates that allow us to control the macro error emac and

the RB error eRB. The micro error in the RB framework comes from the discretization error

of the micro problem (4.12). We recall that the number of degrees of freedom Nmic for these

problems is assumed to be large so that the offline computations of the RB solutions are very

accurate. Hence, emic will be in general negligible.

Velocity reconstruction. We reconstruct a discontinuous velocity field using piecewise ap-

proximation of aRB(fH −∇p H ,RB) by interpolation from quadrature points. In addition to the

Assumption 3.1.1 we assume that the number of quadrature nodes J is minimal, i.e., J = (l+d−1
d

)
.

Following Definition 3.1.6, there is is a unique linear operator Πa that maps V l−1(Ω,TH ) to
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4.5. A posteriori error estimates

itself and satisfies

Πa(v)(xK j ) = a(x)v(xK j ), ∀K ∈TH , ∀ j ∈ {1, . . . , J }.

We define the RB-DS-FE-HMM velocity reconstruction by uH ,RB =ΠaRB (fH −∇p H ,RB).

Following the a posteriori error estimates in section 3.3 we can define the macro residual ηK

by

η2
K = H 2

K ‖∇·ΠaRB (fH −∇p H ,RB)‖2
L2(K ) +

∑
e∈∂K

1
2 He‖[ΠaRB (fH −∇p H ,RB) ·n]e‖2

L2(e)

for any K ∈TH . The quantity ηK is computable and will serve as an error indicator. To state a

rigorous a posteriori error estimate, we need to define additional errors: the RB error ξRB,K ,

the micro error ξmic,K , and the data approximation error ξdata,K by

ξ2
RB,K = ‖fH −∇p H ,RB‖2

L2(K ) max
x∈QK

‖aRB(x)−ah(x)‖2
F,

ξ2
mic,K = ‖fH −∇p H ,RB‖2

L2(K ) max
x∈QK

‖ah(x)−a0(x)‖2
F,

ξ2
data,K = ‖a0(f−∇p H ,RB)−Πa0 (fH −∇p H ,RB)‖2

L2(K ).

Furthermore, for any quantity ξK that is defined for every K ∈TH let ξ2
M =∑K⊂M ξ2

K for any M

that is a union of elements from TH . Finally, for any K ∈TH define M(K ) as the set of elements

of TH that share at least one edge with K (see (3.29)). We then have the following theorem.

Theorem 4.5.1. There is a constant C depending only on Ω, on the uniform continuity and

coercivity constants of a0 and on the shape-regularity of TH , such that

|p0 −p H ,RB|2H 1(Ω) ≤C
∑

K∈TH

(η2
K +ξ2

RB,K +ξ2
mic,K +ξ2

data,K ).

Moreover, for every K ∈TH we have

η2
K ≤C (|p0 −p H ,RB|2H 1(M(K )) +ξ2

RB,M(K ) +ξ2
mic,M(K ) +ξ2

data,M(K )).

Proof. The proof is analogous to that of Theorem 3.3.1.

Even though we are not able to improve the RB precision in the online stage, we can assess the

RB error online. Using (4.51) we have a computable RB error estimate

ξ2
RB,K ≤ ‖fH −p H ,RB‖2

L2(K ) max
x∈QK

ΔF(x) =: η2
RB,K .

4.5.1 Adaptive method

We propose an adaptive RB-DS-FE-HMM that solves (4.54) by starting with a coarse macro

mesh TH that is successively refined based on the local error indicators ηK . The adaptive
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Chapter 4. Reduced basis finite element heterogeneous multiscale method

process follows the standard cycle: solve → estimate → mark → refine.

Algorithm 4.5.2 (adaptive RB-DS-FE-HMM). We assume that the offline RB stage is finished

and the user provides Ω and an initial mesh TH .

1. Solve. For each quadrature point x ∈ Q H compute aRB(x) using the online RB stage.

Assemble and solve the macro elliptic problem (4.54).

2. Estimate. Compute ηK for every K ∈TH .

3. Mark. Choose a subset of elements in TH by using the error indicator ηK . We used the

marking strategy E [115].

4. Refine. The marked elements are refined such that conformity and shape-regularity is

preserved. The refined mesh stays denoted as TH .

The marking strategy contains one parameter that is usually denoted θ ∈ (0,1). Smaller values

of θ lead to more iteration steps but usually a better balancing of residuals (fewer outliers).

Since the computation of aRB is more expensive than solving the macro problem, we chose

a relatively small value θ = 0.25. Conformity and shape-regularity of the refined meshes is

guaranteed by the newest vertex bisection method in two dimensions and by the modified

longest edge bisection [29] in three dimensions.

For an efficient implementation of Algorithm 4.5.2 we save the tensors aRB(x) for all quadrature

points and new values of aRB(x) are computed only in the refined elements. The method can

be extended by checking if the RB error is dominated by the macro error by computing also

ηRB,K and comparing it to ηK . If the domination of the RB error is detected, we can increase

the size of the reduced basis.

4.6 Numerical Experiments

In this section we first validate the proposed RB method for Stokes micro problems. Second,

we test the RB-DS-FE-HMM and compare it to the DS-FE-HMM. Finally, we discuss the

performance of the RB-DS-FE-HMM on a 3D problem.

On the macro scale, we will use P 1, P 2, or P 3 elements and a corresponding quadrature

formula from Example 3.1.2. We only use the well-known Taylor-Hood P 2/P 1 elements on

the micro scale (other stable FE pairs are of course possible).

Implementation. All experiments were performed on a single computer with two 8-core

processors Intel Xeon E5-2600 and memory 8×8 GB DDR3 SDRAM 1600 MHz. The numerical

codes were written in and run by Matlab R2014a with the startup option -singleCompThread

that prohibits internal parallelization of Matlab. Some parts of the algorithm that are embar-

rassingly parallel were run using a parfor in a pool of 16 parallel single-threaded workers. For

time measurement of a parallel job, we measure the execution time on each thread and sum
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4.6. Numerical Experiments

the resulting times together. Hence, parallelizable parts can execute up to 16 times faster than

the shown execution time.

The finite element code, inspired by [44, 19], uses vectorization to achieve fast assembling.

Sparse linear systems for two-dimensional problems are solved by the Matlab routine mldivide.

For three-dimensional systems we adopt the following strategy for the linear algebra:

• Positive definite systems are solved by the algebraic multigrid solver AGMG [89].

• Stokes systems are solved by the Uzawa method [91]. In the Uzawa method, AGMG was

used as a preconditioner for the coercive part and the diagonal of the pressure mass

matrix was used as a preconditioner of the Schur’s complement.

Linear systems with the same positive definite matrix representing the inner product on Xh

are solved repeatedly in the offline algorithms3. We optimize this by precomputing a sparse

Cholesky factorization (with reordering) provided by the Matlab routine chol and using it

whenever we need to solve such system.

Eigenproblems and generalized eigenproblems from the SCM method were solved using

the Matlab package bleigifp [98], which implements a block, inverse-free Krylov subspace

method. Linear programming problems from the SCM method were run by the Matlab routine

linprog with the default settings.

Micro mesh generation in DS-FE-HMM was done by external calls to gmsh [66].

4.6.1 Validation of the RB method

In this section we focus on the described RB method applied to micro problems and test

its precision. Consider the two-dimensional micro geometry described in Example 4.3.3,

where the reference fluid part YF is L-shaped. Following Remark 4.3.4 we choose a square

parametric domain D = (−0.2,0.2)2 and consider the family of micro geometries {Y μ

S ,Y μ

F }μ∈D .

The parametric domain D allows high variation of permeability but also avoids degenerate

micro problems. In Figure 4.4 we plot the velocity solution of the micro problem in (2.14) for

i = 1 and several different parameter values.

Reference micro meshes and discretization error. Usually, a fine mesh Th is defined in the

reference domain YF and Th is assumed to be fine enough for the RB calculation so that the

discretization error is negligible. For testing purposes, we consider a variety of meshes ranging

from coarse to very fine and we asses the error originating from the RB discretization.

Let T 0
L be the coarse mesh of YF depicted in Figure 4.5(left). We define a family of meshes

T 0
L ,T 1

L , . . . such that T s
L is obtained from T s−1

L by a global uniform refinement as shown in

3We solve these systems to compute supremizers in Algorithm 4.2.4 step 4 but also when solving the eigenprob-
lems in Algorithm 4.2.6.
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μ= (−0.2,−0.2)

0

0.02

0.04

−0.01

−0.005

0

0.005

(
0.02 −0.0036

−0.0036 0.02

)

μ= (0.2,−0.2)

0

0.02

0.04

−0.005

0

0.005

(
0.017 −0.00036

−0.00036 0.0057

)

μ= (0.2,0.2)

0

0.01

0.02

−0.004

−0.002

0

0.002

0.004

0.006

0.008

(
0.0058 0.0012
0.0012 0.0058

)

μ= (−0.2,0.2)

0

0.01

0.02

−0.005

0

0.005

(
0.0057 −0.00036

−0.00036 0.017

)

u1,μ
1

u1,μ
2

Figure 4.4 – Velocity field u1,μ = (u1,μ
1 ,u1,μ

2 ) of the micro problem (2.14) for i = 1 and for the
four corner cases of parameter μ ∈D and approximate values of the corresponding tensors
a0(μ).

Figure 4.5 (top).
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Figure 4.5 – The four coarsest uniform meshes of the reference L-shaped micro domain YF

(top) and the three coarsest adapted meshes (bottom).

We measure the discrepancy between the exact tensor a0(μ) and the numerically computed

tensor ah(μ) with the following numerical test. We select a uniform grid of parameters Ξtest ⊂
D of size 17×17. Given a reference micro mesh T s

L , we compute ah(μ) for every μ ∈ Ξtest.

Furthermore, we compute a precise approximation4 of a0(μ) for every μ ∈Ξtest. Then we use

4An approximation of the exact value a0(μ) is computed for every μ ∈ Ξtest just once by solving the micro
problems in Y

μ
F with an adaptive FEM, where the stopping criteria were set to 5 ·105 DOF.
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uniform meshes graded meshes
mesh DOF (Nmic) rel. err. (4.63) mesh DOF (Nmic) rel. err. (4.63)
T 0

L 126 7.92 ·10−2

T 1
L 470 4.10 ·10−2 T 1

ad 478 6.11 ·10−2

T 2
L 1806 1.99 ·10−2 T 2

ad 1851 6.07 ·10−3

T 3
L 7070 9.50 ·10−3 T 3

ad 7265 1.68 ·10−4

T 4
L 27966 4.59 ·10−3 T 4

ad 28564 1.32 ·10−5

T 5
L 111230 2.23 ·10−3 T 5

ad 114893 1.16 ·10−6

Table 4.1 – DOF and the relative discretization error (4.63) for different reference micro meshes:
uniform (T s

L ) and adaptive (T s
ad).

the value

max
μ∈Ξtest

‖a0(μ)−ah(μ)‖F

‖a0(μ)‖F
(4.63)

as an estimate of the maximal relative discretization error. The results of this experiment are

shown in Table 4.1.

Since the micro domain is not convex, one expects that uniform meshes T s
L are not optimal

for the micro problem. A standard way to improve approximation properties of a mesh (when

solving a single problem) is to use an adaptive method such as [114]. However, we aim for a

mesh that would be fit not only for a single problem but a family of problems. We achieved very

small discretization errors with micro meshes in the reference domain YF with the following

approach. Starting with the coarse mesh T = T 0
L we proceed with an iterative adaptive

algorithm.

1. Map the mesh T to the domains Y μ

F for the four corner parameters μ ∈ D, that is

μ ∈ {(−0.2,−0.2), (0.2,−0.2), (0.2,0.2), (−0.2,0.2)}.

2. In each of these four meshes we solve the two micro problems and compute the energy-

based residuals (see [114] or (3.46) for details).

3. For each element in T we take the maximal residual over the eight problems and these

values serve as residuals for marking and then refining the mesh T using the methods

described in section 4.5.1.

We repeat these three steps until we reach the number of DOF of T s
L for some s ∈N, when

we denote the current refined mesh T by T s
ad. The meshes T s

ad for s ∈ {1,2,3} are shown in

Figure 4.5. The discretization error of these meshes is shown in Table 4.1. It is clear from these

computations that the adaptive meshes can give much better approximation of a0(μ) with the

same number of DOF as the uniform meshes.

SCM test. We next test the SCM Algorithm 4.2.6 with the different reference micro meshes

from the previous subsection. The SCM involves several user-defined parameters, which were

set as shown in Table 4.2.
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The efficiency of the SCM is plotted in Figure 4.6, where we compared the estimated values

βSCM(μ) with numerically computed βBa(μ) for a fine grid of parameters μ ∈D. For these SCM

computations 120–180 eigenproblems and around 1.2 ·106 linear programming problems

were solved.

parameter value
tolerance εSCM 0.5

θ 0.5
training set size N SCM

train 129×129
training set ΞSCM

train regular grid in D

Table 4.2 – Parameters for the successive constraint method (SCM) used in Algorithm 4.2.6.
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Figure 4.6 – Effectivity of the proposed SCM Algorithm 4.2.6 for different Th . The plots show
the value βSCM(μ)/βBa(μ) for different μ ∈D. Filled circles represent the values μ ∈ S and they
are connected to non-filled circles representing the points Cμ.

We note (see Table 4.3) that neither |S| nor J increase with Nmic. However, the computational

cost of solving the eigenproblems in the offline SCM increases with Nmic.

T 3
L T 5

L T 3
ad T 5

ad

|S| 10 10 11 11
J 103 112 119 118

Table 4.3 – The sizes of the set S and the number J =∑x∈S |Cx | in Algorithm 4.2.6 for different
reference micro meshes.

RB Greedy test. We next test the greedy procedure of Algorithm 4.2.4 (assembling of the

RB functions). The parameters were set according to Table 4.4. The desired tolerance was

reached in Ni ≤ 70 steps for i = 1,2 for all tested micro meshes. The convergence of the greedy

algorithm is plotted in Figure 4.7 and it appears to be exponential in Ni . The indicator of the

error in the output of interest ΔF(x) (see (4.51)) is quadratic with respect to the indicators of

the error of the solution ΔE
i (x) (see (4.41)). We note that the round-off error can become an

issue for very small residuals, which is addressed in [42].
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4.6. Numerical Experiments

parameter value
tolerance εRB 10−5

training set size N RB
train 65×65

training set ΞRB
train regular grid in D

Table 4.4 – Parameters for the greedy RB construction used in Algorithm 4.2.4.

0 20 40 60

10−5

10−3

10−1

N1

m
ax

μ
∈Ξ

R
B

tr
ai

n

Δ
E 1

(μ
)

T 0
L

T 1
L

T 2
L

T 3
L

T 4
L

T 5
L

0 20 40 60

102

100

10−2

10−4

10−6

10−8

10−10

N1

m
ax

μ
∈Ξ

R
B

tr
ai

n

Δ
F

(μ
)

‖a
h

(μ
)‖ F

Figure 4.7 – Greedy Algorithm 4.2.4 in practice: decreasing tendency of the maximal residual
for the first micro problem for four different Nmic.

4.6.2 Validation of the RB-DS-FE-HMM

In this section we validate the RB-DS-FE-HMM and see how different sources of errors (macro,

micro, RB) influence the total error. We choose a 2D experiment based on the micro geometries

and meshes that were tested in the previous section. Let Ω ⊂ R2 be a piecewise polygonal

domain as depicted in Figure 4.1(right) with TH as an initial mesh and let us define a porous

structure in Ω with geometries from Figure 4.3 and μ : Ω→D given by

μ(x) =
(

1

5
cos

(
π(x2 −x1)

2

)
,

1

5
cos

(
π(x2 +x1)

2

))
∈D. (4.64)

We assume that the force field is constant f ≡ (0,−1) and that the edges (0,2)×{0} and (0,2)×{4}

in the macroscopic domain Ω are connected periodically. The homogenized solution p0 and

non-homogenized solutions of (2.2) are shown in Figure 4.8.

We next run the RB-DS-FE-HMM with different settings (macro FE, number of RB functions

Ni , micro mesh) to detail the error behavior. We stop the adaptive method when the number

of macro degrees of freedom (Nmac) reaches 104.

Remark 4.6.1. Since we do not have an analytic reference solutions, all the errors from the

error decomposition (4.58) are only estimated as follows. We compute approximations to p H ,

p H ,0, p0, which are denoted by p̃ H , p̃0,H , p̃0, respectively, and substitute them into (4.58) to

get approximations of emac, emic, and eRB.

• p̃ H is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting Ni to
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pε,ε= 1/4 pε,ε= 1/8
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Figure 4.8 – Pressure solutions pε to (2.2) for varying size of ε> 0 (left). Homogenized solution
p0 to (4.1) (right).

the maximum) but with the same macro mesh and micro reference mesh as p H ,RB.

• p̃0,H is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting Ni

to the maximum), the same macro mesh as p H ,RB, and the finest micro mesh T 5
ad.

• p̃0 is a solution obtained from the RB-DS-FE-HMM with the complete RB (setting Ni

to the maximum), the finest micro mesh T 5
ad, and the macro mesh obtained by two

uniform refinements of the macro mesh used for the finest solution p H ,RB.

Coarse micro mesh and small RB. We first illustrate what happens if a coarse micro mesh

is taken. Let us use the mesh T 0
L for micro problems. We take only three RB functions

(N1 = N2 = 3) generated by the greedy algorithm.

We run the adaptive RB-DS-FE-HMM with two different macro FE: P 1 and P 3. The results

are depicted in Figure (4.9). We see that the micro error |emic|H 1(Ω) becomes soon dominant

and is the main reason for saturation of the global error |e|H 1(Ω) = |p0 −p H ,RB|H 1(Ω).

102 103 104

10−2

10−1

100

Nmac

P 1 macro FE, N1 = N2 = 3, T 0
L

|e|H 1(Ω)
|eRB|H 1(Ω)
|emic|H 1(Ω)
|emac|H 1(Ω)

103 104

10−3

10−2

10−1

Nmac

P 3 macro FE, N1 = N2 = 3, T 0
L

Figure 4.9 – Error plot of the adaptive RB-DS-FE-HMM: 3 RB functions (N1 = N2 = 3) and the
coarse micro mesh T 0

L .
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Fine uniform micro mesh and small RB. In the next experiment we keep 3 RB functions

but take the most refined uniform micro mesh T 5
L . As before, we run the experiment for

P 1 and P 3 macro elements and the error rates are plotted in Figure 4.10. The micro error

|emic|H 1(Ω) is now dominated by the RB error |eRB|H 1(Ω). For P 3 macro FE the RB error causes

the saturation of the global error |e|H 1(Ω) for Nmac > 103.
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100

Nmac

P 1 macro FE, N1 = N2 = 3, T 5
L

|e|H 1(Ω)
|eRB|H 1(Ω)
|emic|H 1(Ω)
|emac|H 1(Ω)

103 104
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10−2

10−1

Nmac

P 3 macro FE, N1 = N2 = 3, T 5
L

Figure 4.10 – Error plot of the adaptive RB-DS-FE-HMM: 3 RB functions (N1 = N2 = 3) and fine
uniform micro meshes T 5

L .

Fine uniform micro mesh and a larger RB. We now increase the number of RB functions to

10 and repeat the experiment with the most refined uniform micro mesh T 5
L . The experiments

for P 1 and P 3 macro FE are depicted in Figure 4.11. We see that the RB error |eRB|H 1(Ω) is

negligible compared to the other errors for Nmac up to 104. However, for P 3 macro FE we see

a saturation of the global error close to 104 DOF due to the micro error.

102 103 104
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10−1

100

Nmac

P 1 macro FE, N1 = N2 = 10, T 5
L

|e|H 1(Ω)
|eRB|H 1(Ω)
|emic|H 1(Ω)
|emac|H 1(Ω)
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P 3 macro FE, N1 = N2 = 10, T 5
L

Figure 4.11 – Error plot of the adaptive RB-DS-FE-HMM: 10 RB functions (N1 = N2 = 10) and
fine uniform micro meshes T 5

L .
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Graded micro mesh and a larger RB. We now show the advantage of a graded micro mesh

over the uniform micro meshes. We use the graded mesh T 3
ad, which has approximately 16

times less DOF than T 5
L , and we keep 10 RB functions as in the previous experiment. We

use P 3 macro FEs and stop the adaptive RB-DS-FE-HMM when we reach 104 macro DOF.

The convergence rates are depicted in Figure 4.12. The micro error is approximately 10 times

smaller with 16 times less DOF on micro scale. The global error saturation is not visible in the

figure and happens only after one reaches more than 2 ·104 DOF.

103 104
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10−3

10−2

10−1

Nmac

P 3 macro FE, N1 = N2 = 10, T 3
ad

|e|H 1(Ω)
|eRB|H 1(Ω)
|emic|H 1(Ω)
|emac|H 1(Ω)

Figure 4.12 – Error plot of the adaptive RB-DS-FE-HMM: 10 RB functions (N1 = N2 = 10) and
graded micro meshes T 3

ad.

4.6.3 Performance comparison: RB-DS-FE-HMM vs. DS-FE-HMM

In this subsection we compare the performance of the RB-DS-FE-HMM and the DS-FE-HMM

on the problem from the previous subsection. We keep the macro domain Ω and the initial

macro mesh TH . The micro geometries are as in Figure 4.3 and their variation is described

by (4.64). The force field f has a constant value (0,−1) and we use P 2/P 1 Taylor-Hood

elements on the micro scale. We use adaptive mesh refinement for both methods and use the

same marking scheme with θ = 0.25 on macro scale.

Offline stage. The DS-FE-HMM is an offline/online method, where a constant for the cal-

ibration of the adaptive process is precomputed in the offline stage (see section 3.4). This

precomputation took 3380s. The offline stage of the RB-DS-FE-HMM depends on many

parameters, however, we decided to fix the tolerance and sampling parameters as in Table 4.2

and Table 4.4. We report the offline CPU time in Table 4.5 for some selected micro meshes.

A careful inspection of Table 4.5 reveals that the most costly part in the current implementation

is the SCM. Both the offline part of Algorithm 4.2.6 and the evaluation of SCM lower bounds in

Algorithm 4.2.4 are very costly. However, excluding the SCM part, Algorithm 4.2.4 appears to
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RB-DS-FE-HMM offline CPU time [s] mesh
part subpart T 3

L T 5
L T 3

ad T 5
ad

SCM eigenproblems 480 38948 402 21509
Algorithm 4.2.6 linear programming 8913 8566 9610 9477
RB greedy assembling 5 133 6 129
Algorithm 4.2.4 fine solve (Stokes) 23 621 24 350

fine solve (supremizers) 2 85 2 43
residuals (without SCM) 30 31 37 31
SCM for residuals 567 585 641 628

Table 4.5 – Offline CPU time for the RB-DS-FE-HMM with different micro meshes. Settings in
Table 4.2 and Table 4.4, with Q A = 15, Q = 3.

be quite efficient, compared to the DS-FE-HMM preprocessing.

Online stage. We further provide a comparison of the main computation. Performance of

the online RB-DS-FE-HMM does not depend significantly on the used micro mesh, hence

we chose T 5
L . We performed the adaptive methods and stopped after the number of macro

DOF reached 102, 103, and 104. The pairs of solutions from the two methods have very similar

accuracy since the macroscopic error is dominating. See Table 4.6 for the comparison.

DS-FE-HMM online stage RB-DS-FE-HMM online stage

Ni = 10 Ni = 89
iteration DOF CPU time(s) iteration DOF CPU time(s)

10 113 244 9 106 6 7
24 1116 4500 24 1158 19 56
38 11372 179724 37 10151 63 733

Table 4.6 – Online CPU time of the adaptive methods. We compare solutions after reaching
102, 103, and 104 macroscopic degrees of freedom.

4.6.4 A 2D experiment with more complex geometry

In this subsection we apply RB-DS-FE-HMM to another 2D problem with a more complex

micro and macro geometries. The macro geometry with the initial macro mesh TH is depicted

in Figure 4.14(left). We use periodic boundary conditions over the boundary edges (1,2)× {0}

and (1,2)× {4} and assume the force field f ≡ (0,−1). We set D = (−1/12,1/12)× (−1/12,1/12).

The reference micro domain and the mesh of its fluid part is sketched in Figure 4.13. Micro

geometry variations with respect to a two dimensional parameter μ ∈ D is depicted in Fig-

ure 4.14. The micro cell Y is divided into 3×3 grid, whose tiles are affinely deformed by ϕ(μ, ·).

The dependence of μ ∈D on x ∈Ω is governed by the function

μ(x) = ( cos(2π(x2 −x1)/4)/12, cos(2π(x2 +x1)/4)/12 ).

89



Chapter 4. Reduced basis finite element heterogeneous multiscale method

− 1
2

− 1
2

1
2

1
2

0 1 2 3
0

1

2

3

4

Figure 4.13 – Experiment from section 4.6.4. Initial macro mesh with periodic BC indicated by
thick lines (left) and the reference micro mesh (right).
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Figure 4.14 – Experiment from section 4.6.4. Transformation ϕ(μ, ·) that maps the reference
micro geometry (left) to a local geometry (right) for any μ ∈D.

The variation of the micro geometry is shown in Figure 4.15(left), where the fine scale solutions

to (2.2) are plotted. We observe that with decreasing ε the pressure solutions agree with the

homogenized solution in Figure 4.15(right).
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Figure 4.15 – Pressure solutions pε to (2.2) for varying size of ε> 0 (left). Homogenized solution
p0 to (4.1) (right).

The affine decomposition in this case resulted to Q A = 12 and QG = 4 and the number of DOF

of the micro problems is equal to 6752. In the offline RB stage we used the same settings as

before, see Table 4.2 and Table 4.4. Reaching the required tolerance in Algorithm 4.2.4 yields

N1 = N2 = 44 RB functions.

We run the RB-DS-FE-HMM with only N1 = N2 = 15 RB functions, which still yields the RB
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error smaller than the micro error. The convergence rates with respect to macro DOF are as

expected and plotted in Figure 4.16(left), where saturation of the error can be observed. We

repeated the same experiment but with once uniformly refined micro reference mesh and the

convergence rates indeed improved, see Figure 4.16(right). The RB offline part without the

SCM ran took 40s for the coarser micro problem and 105s for the finer micro problem. The

SCM procedure took two orders of magnitude longer and remains the main bottleneck of the

offline part. Run times of the RB-DS-FE-HMM online part are shown in Table 4.7.

P 1 P 2 P 3

iter. DOF time(s) iter. DOF time(s) iter. DOF time(s)

23 10194 33 48 11335 45 55 10406 133
41 112958 313 65 105328 245 80 109112 422

Table 4.7 – Online CPU time of the RB-DS-FE-HMM in the experiment from section 4.6.4 with
Ni = 15. Time measured after reaching 103 and 104 macroscopic DOF.
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Figure 4.16 – RB-DS-FE-HMM convergence rates for the experiment from section 4.6.4 with
different macro elements (left). The same with finer (once uniformly refined) micro reference
mesh (right).

4.6.5 A 3D experiment

In this subsection we present a 3D experiment. The macro geometry is a geometrical extrusion

of the 2D macro geometry from section 4.6.4 and is depicted in Figure 4.17(left). The coarse

macro mesh TH with 7152 elements and 1605 nodes is plotted in Figure 4.17(right). We keep

the structure of the previous problems and define periodic boundary conditions between the

faces (1,2)× (0,1)× {0} and (1,2)× (0,1)× {4}. Furthermore, we assume a constant force field

f ≡ (0,0,−1).

The porous structure in Ω is given as follows. We set D = (−1/12,1/12)3. The reference micro
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Figure 4.17 – Three-dimensional macro geometry with periodic faces in gray (left) and a the
coarse mesh (right).

geometry and its variation with respect to a three dimensional parameter μ ∈D is depicted in

Figure 4.18. The micro cell Y is divided into 3×3 grid whose tiles are dilated in coordinate

directions, depending on the parameter. The dependence of μ ∈D on x ∈Ω is governed by the

function μ : R3 →R3 defined by

μ1(x) = cos(π(−x1 +x2 −x3)/2)/12,

μ2(x) = cos(π(−x1 +x2 +x3)/2)/12,

μ3(x) = cos(π(x1 +x2 +x3)/2)/12.
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Figure 4.18 – Three-dimensional micro reference mesh (above left) and some mapped micro
domains Y μ

F with μ= (−1/12,0,1/12) (above right), μmax = (1/12,1/12,1/12) (bottom left) and
μmin = (−1/12,−1/12,−1/12) (bottom right).

We performed the RB-DS-FE-HMM experiment with P 1 macro elements and N1 = N2 = N3 =
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10. We reached the expected convergence rate of N−1/3
mac , as is depicted in Figure 4.19.
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Figure 4.19 – Convergence rates of the RB-DS-FE-HMM algorithm for the 3D experiment.

Several additional challenges arise for such a large 3D experiment. The main problem is that

the Cholesky factorization of the inner product matrix can be too expensive to compute and

store, when computing a fine reference micro RB problem. We resolved this by running the

AGMG solver to compute each supremizer in Algorithm 4.2.4. Furthermore, the SCM also

relies on the Cholesky factorization even more (used in 2D in each eigenproblem at each

iteration). Various ways to address this problem are presented in the following remark.

Remark 4.6.2. If the SCM is too demanding, one can try some of these approximate methods.

(i) Apply the SCM for a coarser micro mesh than used for computing the micro functions.

(ii) Compute βh
Ba(x) on a coarse grid in Ω and define βh

SCM(x) for any x ∈ Ω by a linear

interpolation over the grid.

(iii) Set a constant inf-sup estimate βh
SCM(x) ≡βh

Ba(xref).

While none of the approaches from Remark 4.6.2 can guarantee βh
Ba(x) ≥βh

SCM(x), we did not

experience any degradation in the greedy process when using these approximations. This is,

most probably, due to the fact that the function βh
Ba(x) is smooth and moreover its maximum

and minimum value differ by only one or two orders of magnitude. In the 3D experiment we

used the second approximation method for the SCM of the test problem.

4.7 Conclusion

We have presented an efficient multiscale FE method for the Stokes flow in porous media. In

our new method, the RB-DS-FE-HMM, we avoid the repeated direct solution of Stokes micro

problems at each macro quadrature point, which is the main bottleneck of the DS-FE-HMM.

93



Chapter 4. Reduced basis finite element heterogeneous multiscale method

Instead, we map the micro problems into a reference domain and construct a Petrov-Galerkin

reduced basis method for their solutions. With a greedy algorithm we select a small number

of micro problems that are solved on a reference micro mesh. Then, a RB interpolation is

used to obtain a cheap and accurate estimate of the effective permeability for any parameter

(macro quadrature point). The Petrov–Galerkin RB method provided a cheap approximation

of the effective permeability while preserving the inf-sup stability of the original problem.

Furthermore, orthogonalization of the reduced basis can ensure algebraic stability of the

online linear systems. We have discussed an a posteriori error estimate for the selection of

representative micro solutions including the estimation of the (inf-sup) stability constant. We

have derived an a priori and a posteriori error analysis of the multiscale method, which lead

to an adaptive method for the macro discretization. The accuracy, versatility, and efficiency of

the RB-DS-FE-HMM has been illustrated by several numerical examples. Comparisons with

the DS-FE-HMM have shown significant speedup in the online stage of the methods.
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5 A conservative multiscale method for
Stokes flow in porous media

We have already presented two numerical homogenization methods for Stokes flow in porous

media. The DS-FE-HMM from chapter 3 and the RB-DS-FE-HMM from chapter 4 have

different assumptions and approach to solve the micro problems and upscale the effective per-

meability. None of the presented or reviewed (see [26, 40, 105]) methods can simultaneously

accommodate:

• higher-order macroscopic methods on arbitrary macro domains,

• fast and accurate resolution of the micro scale,

• conservation of mass.

The DS-FE-HMM and RB-DS-FE-HMM have been shown to satisfy the first two points, but

mass conservation can be achieved only with additional post-processing algorithms. We

opt for a different strategy where we change the macroscopic method to be a priori locally

conservative.

In this chapter we propose a new numerical homogenization method for Stokes flow in locally

periodic porous media. The HMM framework is applied to the model problem from section 2.3.

The macroscopic Darcy equation is solved using the discontinuous Galerkin finite element

method (DG-FEM) with symmetric interior penalty and numerical quadrature. The DG-FEM

is consistent and locally conservative, which is inherited also by the multiscale method. At

every macroscopic quadrature point we approximate the effective permeability with the RB

method applied to the parametrized Stokes micro problems as in chapter 4.

Outline. In section 5.1 we recall the DG-FEM for single-scale problems. The method is

stabilized with symmetric interior penalty and numerical quadrature is used for approximating

the exact integration. We study well-posedness of the DG-FEM with respect to a penalty

parameter. In section 5.2 we define the conservative numerical homogenization method and

we study its well-posedness and a priori error estimates in section 5.3. Numerical experiments

that test the accuracy and conservative properties of the method are shown in section 5.4.

95



Chapter 5. A conservative multiscale method for Stokes flow in porous media

This chapter is essentially taken from [7].

5.1 The discontinuous Galerkin finite element method (DG-FEM)

In this section we recall the DG-FEM for single-scale elliptic problems. The DG methods

were initially introduced for a transport equation [71] and later extended for many different

problems. We refer to [27] for a unified analysis of DG methods for elliptic problems. Both

the standard FEM and the DG-FEM have they advantages and disadvantages. One of the

main advantages of the DG-FEM is that it allows non-conforming meshes and non-uniform

polynomial degree of approximation, which is well-suited for hp-adaptive methods. Further-

more, the DG-FEM can be locally conservative without additional post-processing. On the

other hand, the DG-FEM is more complex to analyze, implement, etc., since we need to deal

with an additional problem, how to weakly enforce the interior continuity. We present here a

DG-FEM that uses symmetric interior penalty (SIP) to weakly enforce continuity and Dirichlet

boundary conditions. The penalty term then needs to be sufficiently large to ensure that the

SIP-DG-FEM is well-posed.

Let us consider a single-scale Darcy equation in a connected bounded domain Ω⊂Rd , where

the boundary is divided into a Dirichlet and Neumann part by ∂Ω= ΓD ∪ΓN. We search for

the pressure p0 such that
−∇· (a0∇p0) = f in Ω,

p0 = gD on ΓD,

a0∇p0 ·n = gN on ΓN,

(5.1)

where f ∈ L2(Ω), gD ∈ H
1
2 (ΓD), gN ∈ H− 1

2 (ΓN), and a0 ∈ L∞(Ω)d×d is a uniformly coercive and

bounded tensor, that is, there are constants 0 <λ≤Λ such that

a0(x)ξ ·ξ≥λ|ξ|2, |a0(x)ξ| ≤Λ|ξ|, ∀x ∈Ω, ∀ξ ∈Rd .

A weak formulation of (5.1) then reads: find p0 ∈ H 1
gD,ΓD

(Ω) such that

∫
Ω

a0∇p0 ·q dx =
∫
Ω

q f dx +
∫
ΓD

gNq dx, ∀q ∈ H 1
0,ΓD

(Ω), (5.2)

where H 1
g ,Γ(Ω) = {q ∈ H 1(Ω); q = g on Γ} for any Γ⊂ ∂Ω and g ∈ H 1/2(Γ).

Preliminaries. Let TH be a conformal,1 shape-regular simplicial mesh of Ω indexed by

H = maxK∈TH
HK , where HK = diam(K ). Let Eint be the set of all interior element interfaces

(edges or faces), ED the set of all boundary Dirichlet interfaces, and EN the set of all boundary

Neumann interfaces. Furthermore, define the set of all interfaces E = Eint ∪ED ∪EN and the

1While the non-conforming meshes are one of the biggest advantages of the DG-FEM, we explain the method
on conforming meshes, for the sake of simplicity.
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set of all interfaces that will be affected by a penalty term Epen = Eint ∪ED. Let e ∈ Eint be an

interface between two elements K 1 and K 2 and let ni denote the outward normal vector of

K i on e for i ∈ {1,2}. Let q be any element-wise smooth function and v be any element-wise

smooth vector function. For i ∈ {1,2}, let qi and vi denote the trace of q and v on e from within

K i , respectively. We define the average {·} and the jump �·� of q and v over e by

{q} = (q1 +q2)/2, �q� = q1n1 +q2n2,

{v} = (v1 +v2)/2, �v� = v1 ·n1 +v2 ·n2.
(5.3)

For any boundary interface e ∈ ED ∪EN, belonging only to one element K 1, we define

{q} = q1, �q� = q1n1,

{v} = v1, �v� = v1 ·n1.

Let us define a discontinuous finite element space of degree l ∈N by

V l (Ω,TH ) = {q H ∈ L2(Ω); q H |K ∈P l (K ), ∀K ∈TH },

where P l (K ) is the space of polynomials on the simplicial element K of total degree l .

Remark 5.1.1. Gradient is not well-defined for q H ∈ Sl (Ω,TH ) and the broken gradient ∇H q H

should be used, where (∇H q H )|T =∇(q H |T ) for every T ∈TH . We prefer a simpler notation

and use ∇q H as a broken gradient for any q H ∈ Sl (Ω,TH ).

Derivation of the SIP-DG-FEM. We briefly recall how the symmetric interior penalty dis-

continuous Galerkin finite element method can be derived for the problem (5.1). For further

details and analysis see [27, 73, 3]. The first equation from (5.1) is multiplied by a smooth test

function q and integrated by parts over an element K ∈TH to get∫
K

a0∇p0 ·∇q dx −
∫
∂K

a0∇p0 ·nq ds =
∫

K
f q dx.

Summing over all elements K ∈TH and using the notation (5.3) and the Neumann boundary

condition yields∫
Ω

a0∇p0 ·∇q dx − ∑
e∈Epen

∫
e
{a0∇p0} · �q�ds =

∫
Ω

f q dx +
∫
ΓN

gNq ds. (5.4)

Notice that p0 ∈ H 1(Ω) implies �p0� = 0 on Eint and the Dirichlet boundary conditions imply

�p0� = gDn on ΓD. Hence, the left-hand side of (5.4) can be symmetrized to achieve∫
Ω

a0∇p0 ·∇q dx − ∑
e∈Epen

∫
e
({a0∇p0} · �q�+ {a0∇q} · �p0�)ds

=
∫
Ω

f q dx +
∫
ΓD

a0∇q ·ngD ds +
∫
ΓN

gNq ds.
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Finally, to stabilize the method we add penalty terms that will weakly impose continuity of the

solution over Eint and also the Dirichlet boundary conditions. We obtain∫
Ω

a0∇p0 ·∇q dx − ∑
e∈Epen

∫
e
({a0∇p0} · �q�+ {a0∇q} · �p0�−σ�p0� · �q�)ds

=
∫
Ω

f q dx +
∫
ΓD

(a0∇q ·n+σq)gD ds +
∫
ΓN

gNq ds,

(5.5)

where the non-negative penalty function σ : ∪e∈Epen e → R is constant over each interface

e ∈ Epen. We will see that setting σ large enough will make the resulting DG-FEM well-posed

(see Theorem 5.1.5). For now, let us remark that it suffices to set σ|e =αSe /He , where He =
diam(e), the term Se depends on the values of a0(x) for x in the neighborhood of e, and

α > 0 is a large enough constant. The equation (5.5) could be used to define a DG-FEM

approximation by replacing p0 with p H and then searching for p H ∈V l (Ω,TH ) such that (5.5)

is true for every q ∈V l (Ω,TH ). However, we need to continue further with disretization since

the integrals from (5.5) that contain a0 may be difficult (or impossible) to compute exactly.

We thus introduce numerical quadrature to approximate them.

Numerical quadrature and fluxes. For every element K ∈TH consider a quadrature formula

(xK j ,ωK j ) j=1,...,J , where xK j ∈ K are integration points and ωK j > 0 are weights. Denote by Q H

the set of all quadrature points in TH . We suppose that Assumption 3.1.1 is satisfied, that is,

the quadrature formula is exact for polynomials of degree max{1,2l −2}.

We further assume that the number of quadrature nodes is minimal (J = (l+d−1
d

)
) and define

the interpolation operator Π as in Definition 3.1.6. That is, for any tensor a∗ : Q H → Rd×d

there is a unique interpolant Πa∗ : V l−1(Ω,TH )d →V l−1(Ω,TH )d such that

Πa∗(v)(xK j ) = a∗(xK j )v(xK j ), ∀K ∈TH , ∀ j ∈ {1, . . . , J }, ∀v ∈V l−1(Ω,TH )d .

We can now replace the terms of type a0∇q in (5.5) by their polynomial approximations

Πa0 (∇q) and define a DG-FEM approximation of p H . However, instead of using the tensor a0

we use a∗, since we will be using the DG-FEM with different tensors such as ah or aRB.

Definition 5.1.2 (The SIP-DG-FEM with numerical quadrature). Given a tensor a∗ : Q H →
Rd×d we define the following variational problem. Find p H ,∗ ∈V l (Ω,TH ) such that

B∗
H (p H ,∗, q H ) = L∗

H (q H ) ∀q H ∈V l (Ω,TH ), (5.6)
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where2

B∗
H (p H , q H ) = ∑

K∈TH

J∑
j=1

ωK j a∗(xK j )∇p H (xK j ) ·∇q H (xK j )

− ∑
e∈Epen

∫
e
({Πa∗(∇p H )} · �q H �+ {Πa∗(∇q H )} · �p H �−σ∗�p H � · �q H �)ds

L∗
H (q H ) =

∫
Ω

f q H dx +
∫
ΓD

(Πa∗(∇q H ) ·n+σ∗q H )gD ds +
∫
ΓN

gNq H ds.

For any e ∈ E we let the penalty function σ∗ be constant in e by defining σ∗|e ≡αS∗
e /He , where

He = diam(e), α> 0 is a large enough global constant (see Theorem 5.1.5), and

S∗
e ≡ max

K∈TH
e⊂∂K

S∗
K , S∗

K = max
j∈{1,...,J }

‖a∗(xK j )‖2 ∀K ∈TH .

5.1.1 Well-posedness of the DG-FEM

In this section we analyze well-posedness of the discrete problem from Definition 5.1.2. Let us

start with the functional spaces and norms that are used for the analysis. While the numerical

multiscale method is defined on V l (Ω,TH ), an appropriate space for the analysis is

V (TH ) =V l (Ω,TH )+H 1
0 (Ω)∩H 2(Ω)

accompanied with a mesh-dependent norm

~v~=
(
~v~2

0 +
∑

K∈TH

H 2
K |v |22,K

)1/2
,

where

~v~2
0 = ‖∇v‖2

L2(Ω) +|v |2pen, |v |2m,K = ∑
|α|=m

‖∂αv‖2
L2(K ), |v |2pen = ∑

e∈Epen

‖H−1/2
e �v�‖2

L2(e),

where He = diam(e). Both ~ ·~ and ~ ·~0 are norms in V (TH ) but they are not equivalent.

However, using the local inverse inequality it can be shown that they are equivalent when

restricted to V l (Ω,TH ).

Let us start with two lemmas that provide useful bounds of terms from Definition 5.1.2. Here

we will often assume that a tensor a∗ : Q H →Rd×d is given such that

a∗(x)ξ ·ξ≥λ|ξ|2, |a∗(x)ξ| ≤Λ|ξ| ∀x ∈Q H , ∀ξ ∈Rd . (5.7)

Lemma 5.1.3. Consider a tensor a∗ : Q H → Rd×d that satisfies the property (5.7). If Assump-

2For simplicity, we assume that the boundary data gD and gN can be integrated exactly. If not, one needs to
introduce additional quadrature formulas on the boundary.
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tion 3.1.1 holds, then for every p H , q H ∈V l (Ω,TH ) and K ∈TH we have

J∑
j=1

ωK j a∗(xK j )∇p H (xK j ) ·∇q H (xK j ) ≤Λ‖∇p H‖L2(K )‖∇q H‖L2(K ), (5.8)

J∑
j=1

ωK j a∗(xK j )∇p H (xK j ) ·∇q H (xK j ) ≥λ‖∇p H‖2
L2(K ), (5.9)

‖Πa(∇p H )‖L2(K ) ≤Λ‖∇p H‖L2(K ). (5.10)

Proof. Using Cauchy–Schwarz inequality and then the fact that the quadrature formula is

exact for polynomials of degree 2(l −1) (see Assumption 3.1.1) we get

∑J
j=1ωK j a∗(xK j )∇p H (xK j ) ·∇q H (xK j )

≤Λ
∑J

j=1ωK j |∇p H (xK j )| · |∇q H (xK j )|

≤Λ
(∑J

j=1ωK j |∇p H (xK j )|2
)1/2(∑J

j=1ωK j |∇q H (xK j )|2
)1/2

≤Λ‖∇p H‖L2(K )‖∇q H‖L2(K ).

Proof of the other two bounds (5.9) and (5.10) is analogous.

In the proof of the next lemma we will need the trace inverse inequality, which we recall here.

For any K ∈TH and vector function v ∈P l−1(K )d we have

‖v‖L2(∂K ) ≤C l H−1/2
K ‖v‖L2(K ), (5.11)

where C depends only on d and shape-regularity of K . For a proof see [118].

Lemma 5.1.4. Consider a tensor a∗ : Q H → Rd×d that satisfies the property (5.7). If Assump-

tion 3.1.1 holds, then for any p H , q H ∈V l (Ω,TH ) we have

∑
e∈Epen

∫
e
{Πa(∇p H )} · �q H �ds ≤CΛ‖∇p H‖L2(Ω)|q H |pen,

where the constant C depends only on l , d, and the shape-regularity of TH .

Proof. The Cauchy-Schwarz inequality gives

∑
e∈Epen

∫
e
{Πa∗(∇p H )} · �q H �ds ≤

( ∑
e∈Epen

He‖{Πa∗(∇p H )}‖2
L2(e)︸ ︷︷ ︸

=:I

)1/2|q H |pen.
(5.12)

For any e ∈ E we consider the neighboring elements K 1
e ,K 2

e ∈ TH , where K 1
e = K 2

e for the
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5.1. The discontinuous Galerkin finite element method (DG-FEM)

boundary interfaces e ∈ ∂Ω. Using the triangle and the Cauchy–Schwarz inequalities we get

‖{Πa∗(∇p H )}‖2
L2(e) ≤

1

2

(
‖Πa∗(∇p H )|K 1

e
‖2

L2(e) +‖Πa∗(∇p H )|K 2
e
‖2

L2(e)

)
. (5.13)

Next we bound I by using first that He ≤C HK (shape regularity) and the inequality (5.13), then

the trace inverse inequality (5.11) and finally (5.10). We obtain

I ≤C
∑

K∈TH

HK ‖Πa∗(∇p H )|K ‖2
L2(∂K ) ≤C

∑
K∈TH

l 2‖Πa∗(∇p H )‖2
L2(K )

≤C
∑

K∈TH

Λ2‖∇p H‖2
L2(K ) ≤CΛ2‖∇p H‖2

L2(Ω),
(5.14)

where the constant C can have different value at every occurrence. We conclude by using (5.14)

in (5.12).

Let us study well-posedness of the problem (5.6). The explicit inclusion of S∗
e in the penalty

term σ∗ allows us to find stability bounds for α that are independent of the tensor scaling (see

Remark 5.1.6). Notice also that we have S∗
e ≤ S∗

K ≤Λ for every K ∈TH and e ∈ ∂K .

Theorem 5.1.5. Consider a tensor a∗ : Q H →Rd×d that satisfies the property (5.7). If Assump-

tion 3.1.1 holds, then there is a threshold value αmin > 1 such that for every α>αmin the bilinear

form B∗
H (·, ·) (see Definition 5.1.2) is uniformly elliptic and bounded on V l (Ω,TH )×V l (Ω,TH )

and the problem (5.6) has a unique solution p H ,∗ ∈V l (Ω,TH ).

Proof. Recall that the penalty factor is defined as σ∗|e ≡αS∗
e /He for any interface e ∈ E . We

will show that for α large enough the bilinear form B∗
H (·, ·) is coercive and bounded. The

existence and uniqueness of the solution will then follow from the Lax–Milgram lemma.

Coercivity. For any p H ∈V l (Ω,TH ) apply the estimates (5.9) and Lemma 5.1.4 to the definition

of B∗
H (p H , p H ) to obtain a lower bound

B∗
H (p H , p H ) =

∫
Ω
Πa∗(∇p H ) ·∇p H dx −2

∑
e∈Epen

∫
e
{Πa∗(∇p H )} · �p H �ds

+ ∑
e∈Epen

∫
e
σ∗�p H � · �p H �ds

≥λ‖∇p H‖2
L2(Ω) −CΛ‖∇p H‖L2(Ω)|p H |pen +αλ|p H |2pen.

Using the Young’s inequality 2x y ≤α−1/2x2 +α1/2 y2 on the middle term and then assuming

that α> max{1,4C 2Λ2λ−2} we get

B∗
H (p H , p H ) ≥ (λ−CΛα−1/2)‖∇p H‖2

L2(Ω) + (αλ−CΛα1/2)|p H |2pen

≥ λ

2
(‖∇p H‖2

L2(Ω) +|p H |2pen) = λ

2
~p H ~2

0 ≥C~p H ~2,
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where the last constant C depends only on λ, d , l , and the shape-regularity of TH . Thus, the

bilinear form B∗
H (·, ·) is thus coercive.

Boundedness. For any p H , q H ∈ V l (Ω,TH ) we can bound |B∗
H (p H , q H )| from above by us-

ing (5.8) and Lemma 5.1.4, then using that S∗
K ,S∗

e ≤Λ and finally applying the Cauchy-Schwarz

inequality. We get

|B∗
H (p H , q H )| ≤Λ‖∇p H‖L2(Ω)‖∇q H‖L2(Ω) +CΛ‖∇p H‖L2(Ω)|q H |pen +CΛ‖∇q H‖L2(Ω)|p H |pen

+α
∑

e∈Epen

S∗
e ‖H−1/2

e �p H �‖L2(e)‖H−1/2
e �q H �‖L2(e)

≤C (‖∇p H‖L2(Ω) +|p H |pen)(‖∇q H‖L2(Ω) +|q H |pen)

≤C~p H ~0~q H ~0 ≤C~p H ~~q H ~,

where C depends on Λ, α, d , l , and the shape-regularity of TH . The bilinear form B∗
H (·, ·) is

thus bounded.

Remark 5.1.6. If the proof of coercivity in Theorem 5.1.5 is carried more carefully and one

follows the constants, a more precise condition on α can be obtained, for example

α≥C l 2 max
K∈TH

(
S∗

K /s∗K
)2 ,

where the constant C depends only on d and shape-regularity of TH and s∗K > 0 is such that

a∗(xK j )ξ ·ξ≥ s∗K |ξ|2 is valid for every j ∈ {1, . . . , J }. In the numerical experiments presented in

section 5.4 we used α= 10l 2 and observed stable behavior.

5.2 The conservative numerical multiscale method

In this section we present a new numerical homogenization method for solving the two-scale

model problem presented in section 2.3. However, at the macroscopic scale we use the Darcy

equation (5.1), where more general boundary conditions are considered. The macro problem

is discretized using the SIP-DG-FEM with numerical quadrature presented in section 5.1. The

Stokes micro problems (2.5) are solved using the RB method as in the RB-DS-FE-HMM (see

chapter 4).

Macro scale. We assume that the macroscopic domain Ω⊂Rd , mesh TH , and quadrature

formula (xK j ,ωK j )1≤ j≤J are given as in section 5.1. Let l ∈N and suppose that the quadrature

formula satisfies Assumption (3.1.1). We then define the macroscopic equation as follows.

Find p H ,RB ∈V l (Ω,TH ) such that

B RB
H (p H ,RB, q H ) = LRB

H (q H ) ∀q H ∈V l (Ω,TH ), (5.15)
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where the forms B RB
H and LRB

H are given in Definition 5.1.2 with the index ∗= RB, that is, the

effective permeability that we use is denoted by aRB. For any quadrature point x = xK j the

computation of aRB(x) is detailed below.

Micro scale. The micro scale computation is identical to that of section 4.3. For the sake of

completeness, we briefly recall the computation of aRB.

Recall the exact microscopic Stokes problems (2.10) that can are used to compute a0(x) defined

in (2.11). In section 4.1 these problems were modified by a change of variables and adding a

Lagrange multiplier and the problem (4.5) was derived with the effective permeability a0(x)

defined in (4.8). This micro problem, now in a domain YF that is independent of the parameter

x ∈ Ω, can be discretized. For some k ∈ N we use Taylor–Hood P k+1/P k FE spaces given

in (4.9). Denoting Xh =Wh(YF)×Lh(YF)×R we can then state the discrete micro problems as

follows. For any x ∈Ω and i ∈ {1, . . . ,d} find Ui ,x
h ∈ Xh such that

A(Ui ,x
h ,V; x) =Gi (V; x) ∀V ∈ Xh , (5.16)

ah
i j (x) =Gi (U j ,x

h ; x) ∀i , j ∈ {1, . . . ,d}. (5.17)

The Petrov-Galerkin reduced basis method is then applied to the problem (5.16) with the

output of interest (5.17). Given a training set ΞRB
train ⊂Ω and a tolerance εRB > 0 we can run the

Algorithm 4.2.4 that constructs the reduces solution space Xi ⊂ Xh and parameter-dependent

test spaces X x
i . A reduced problem is then defined as follows. For any x ∈Ω and i ∈ {1, . . . ,d}

find Ui ,x
RB ∈ Xi such that

A(Ui ,x
RB,V; x) =Gi (V; x) ∀V ∈ X x

i

and define

aRB
i j (x) =Gi (U j ,x

RB ; x)+G j (Ui ,x
RB; x)− A(U j ,x

RB ,Ui ,x
RB; x) ∀i , j ∈ {1, . . . ,d}.

If the mapping ϕ (see section 2.2) satisfies Assumption 4.3.1, one can obtain an affine decom-

position of the problem (5.16) and the RB method can be split into two stages.

• The offline stage is run only once and it is used to construct the RB space Xi and

precompute necessary values for the online phase.

• The online stage can be run after the offline phase repeatedly and it provides a cheap

and accurate approximation of the effective permeability aRB(x) for any x ∈Ω.

5.3 A priori error analysis

We first recall properties of the effective permeability that were derived in the previous chap-

ters. It is shown in section 2.4 that under rather generic assumptions on the varying micro
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geometries (Y x
F ,Y x

S ) there exist Λ≥λ> 0 such that

a0(x)ξ ·ξ≥λ|ξ|2, |a0(x)ξ| ≤Λ|ξ| ∀x ∈Ω, ∀ξ ∈Rd . (5.18)

For any macroscopic mesh TH the tensors ah(x) and aRB(x) are considered (in the multiscale

methods) only on the quadrature points Q H = {xK j : K ∈TH , j ∈ {1, . . . , J }}. Assuming that the

micro mesh size h is small enough, bounds of type (5.18) are shown for ah(x) in section 4.1.

Assuming that the tolerance εRB > 0 in the offline RB stage is small enough and the training

set ΞRB
train contains Q H , bounds of type (5.18) can be obtained for aRB(x) too (see section 4.4).

Thus, for the rest of the analysis we assume that

aRB(x)ξ ·ξ≥λ|ξ|2, |aRB(x)ξ| ≤Λ|ξ| ∀x ∈Q H , ∀ξ ∈Rd . (5.19)

Even if not all points from Q H are in ΞRB
train, we practically observe (5.19) if the training set is

dense enough in Ω.

If (5.18) holds then the problem (5.1) is well-posed and so p0 is well-defined. By Theorem 5.1.5

the problem (5.15) is well-posed if the condition (5.19) is satisfied and the penalty parameter

α is sufficiently large. We define a semi-discrete problem that will help us with the a priori

error analysis. Using Definition 5.1.2 with a∗ = a0, find p H ,0 ∈V l (Ω,TH ) such that

B 0
H (p H ,0, q H ) = L0

H (q H ) ∀q H ∈V l (Ω,TH ). (5.20)

Since we assume (5.18), the problem (5.20) is well-posed if the penalty parameter α is suf-

ficiently large. Let us assume that in problems (5.15) and (5.20) we use the same α that

is sufficiently large for ensuring well-posedness of both problems such that the coercivity

constants of both B 0
H and B RB

H are at least λ/2.

We decompose the error into two parts

|||p0 −p H ,RB||| ≤ |||p0 −p H ,0︸ ︷︷ ︸
emac

|||+ |||p H ,0 −p H ,RB︸ ︷︷ ︸
emic,RB

|||,

where emac stands for the macro error and emic,RB stands for the micro and RB error. In the

following we estimate these two error terms.

Theorem 5.3.1. Let p0 be the solution to (5.2), p H ,RB the solution to (5.15), and p H ,0 the solu-

tion to (5.20). Let (5.18) hold an suppose that the macro quadrature formula satisfies Assump-

tion 3.1.1.

1. If a0(x) is constant in each element K ∈TH and p0 ∈ H l+1(Ω), then

~p0 −p H ,0~≤C H l , ‖p0 −p H ,0‖L2(Ω) ≤C H l+1,

where the constant C is independent of H.
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2. If (5.19) holds then

~p H ,0 −p H ,RB~≤C
(

max
x∈Q H

‖aRB(x)−a0(x)‖2︸ ︷︷ ︸
Ca

)
(~p H ,RB~+‖gD‖H 1/2(ΓD)),

where the constant C depends only on λ, Λ, α, Ω, d, l , and shape-regularity of TH .

Proof. The first statement is a standard result [27] of the single-scale DG-FEM.3

We prove the second statement in several steps. By Theorem 5.1.5 the bilinear form B 0
H (·, ·) is

coercive, thus
λ

2
|||emic,RB|||2 ≤ B 0

H (emic,RB,emic,RB)

= B 0
H (p H ,0,emic,RB)−B 0

H (p H ,RB,emic,RB)

= B RB
H (p H ,RB,emic,RB)−B 0

H (p H ,RB,emic,RB)

+L0
H (emic,RB)−LRB

H (emic,RB).

That implies

|||emic,RB||| ≤ 2

λ
sup

q H∈V l (Ω,TH )

B RB
H (p H ,RB, q H )−B 0

H (p H ,RB, q H )+L0
H (q H )−LRB

H (q H )

|||q H ||| · (5.21)

For any p H , q H ∈V l (Ω,TH ) we have

B RB
H (p H , q H )−B 0

H (p H , q H )

= ∑
K∈TH

J∑
j=1

ωK j (aRB(xK j )−a0(xK j ))∇p H (xK j ) ·∇q H (xK j )

− ∑
e∈Epen

∫
e
({Π(aRB−a0)(∇p H )} · �q H �+ {Π(aRB−a0)(∇q H )} · �p H �)ds

+ ∑
e∈Epen

∫
e
(σRB −σ0)�p H ��q H �ds

Using (5.8) on the first term, Lemma 5.1.4 with a∗ = aRB − a0 on the second term, and the

definition of σ∗ on the third term, we get

B RB
H (p H , q H )−B 0

H (p H , q H )

≤CCa
(‖∇p H‖L2(Ω)‖∇q H‖L2(Ω) +‖∇p H‖L2(Ω)|q H |pen +|p H |pen‖∇q H‖L2(Ω)

)
+α

(
max

e∈Epen

|SRB
e −S0

e |
) ∑

e∈Epen

∫
e

H−1
e �p H ��q H �ds

(5.22)

3We are not aware of any results where these a priori convergence rates are proved for a DG-FEM with numerical
quadrature with a diffusion tensor that is not assumed to be constant in each element.
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For any e ∈ Epen we have by the triangle inequality that

|SRB
e −S0

e | =
∣∣∣ max

K∈TH
e∈∂K

max
j∈{1,...,J }

‖aRB(xK j )‖2 − max
K∈TH
e∈∂K

max
j∈{1,...,J }

‖a0(xK j )‖2

∣∣∣
≤ max

K∈TH
e∈∂K

max
j∈{1,...,J }

|‖aRB(xK j )‖2 −‖a0(xK j )‖2|

≤ max
x∈Q H

‖a0(x)−aRB(x)‖2 =Ca .

(5.23)

Using the Cauchy–Schwarz inequality and (5.23) in (5.22) we get

B RB
H (p H , q H )−B 0

H (p H , q H ) ≤CCa |||p H ||||||q H |||. (5.24)

Next we have

L0
H (q H )−LRB

H (q H ) =
∫
ΓD

Π(a0−aRB)(∇q H ) ·ngD ds

+
∫
ΓD

(σ0 −σRB)q H gD ds.
(5.25)

The first term in (5.25) can be bounded as∫
ΓD

Π(a0−aRB)(∇q H ) ·ngD ds ≤ ‖Π(a0−aRB)(∇q H )‖H−1/2(ΓD)‖gD‖H 1/2(ΓD)

≤C‖Π(a0−aRB)(∇q H )‖L2(Ω)‖gD‖H 1/2(ΓD)

≤CCa |||q H |||‖gD‖H 1/2(ΓD).

(5.26)

The second term in (5.25) can be bounded using the approach of (5.26) and the bound

from (5.23). We have∫
ΓD

(σ0 −σRB)q H gD ds ≤α
(

max
e∈Epen

|SRB
e −S0

e |
) ∑

e∈ED

∫
e
|H−1

e q H gD|ds

≤CCa
∑

e∈ED

∫
e
‖H−1

e q H‖H−1/2(e)‖gD‖H 1/2(e)

≤CCa
∑

e∈ED

∫
e
‖H−1/2

e �q H �‖L2(e)‖gD‖H 1/2(e)

≤CCa |||q H |||‖gD‖H 1/2(ΓD).

(5.27)

Using (5.26) and (5.27) in (5.25) we get

|L0
H (q H )−LRB

H (q H )| ≤CCa |||q H |||‖gD‖H 1/2(ΓD). (5.28)

Using (5.28) and (5.24) in (5.21) gives the desired result.

Theorem 5.3.1 gives an explicit bound of the macro error and an abstract bound of the micro

and RB error. Suitable bounds for the micro and RB errors were developed in section 4.4. If

106



5.4. Numerical experiments

the micro solutions Ui ,x are smooth enough and the quadrature points Q H are included in the

training set then there is a constant C > 0 such that

~p0 −p H ,RB~≤C (H l +h2(k+1) +ε2
RB).

Expressed in terms of degrees of freedom, we obtain

~p0 −p H ,RB~≤C (N
− l

d
mac +N

−2(k+1)
d

mic +ε2
RB).

Let us remark that the micro mesh size h or the corresponding number of micro DOF denoted

by Nmic is fixed in the offline stage of the RB method and cannot be changed in the online

stage. The tolerance εRB is used as a stopping criterion in the offline stage but one can easily

decrease the number of the RB functions that are used in the online stage, which increases the

RB error but improves performance.

5.4 Numerical experiments

In this section we validate the proposed DG multiscale method, study convergence rates and

conservative properties. We illustrate the efficiency of the method on 2D and 3D problems.

Implementation. All experiments were performed on a single computer with two 8-core

processors Intel Xeon E5-2600 and 64 GB of RAM with Matlab R2014a. The finite element code

is inspired by [44, 19] and it uses vectorization techniques to achieve fast assembling. Sparse

linear systems are solved by the Matlab routine mldivide for two-dimensional problems. For

three-dimensional problems we apply two different techniques.

• Positive definite systems are solved by the algebraic multigrid solver AGMG [89].

• Stokes systems are solved by the Uzawa method [91]. In the Uzawa method, AGMG was

used as a preconditioner for the coercive part and the diagonal of the pressure mass

matrix was used as a preconditioner of the Schur’s complement.

Linear systems with the same positive definite matrix representing the scalar product on Xh

are solved repeatedly in the offline algorithms. We optimize this by precomputing a sparse

Cholesky factorization (Matlab routine chol). Generalized eigenproblems from the SCM

method were solved using the Matlab package bleigifp [98], which implements a block,

inverse-free Krylov subspace method. Linear programming problems from the SCM method

are solved by the Matlab routine linprog with the default settings. At the macro scale we used

the quadrature formulas from Example 3.1.2.
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Chapter 5. A conservative multiscale method for Stokes flow in porous media

5.4.1 A 2D problem

Let Ω= (−3,3)× (−2,2) and define the local porous geometries (Y x
F ,Y x

S ) by (see Figure 5.1)

Y x
F =

{
y ∈ Y : |y1| < a or |y2| < c or

(|y1|−a)2

(b −a)2 + (|y2|− c)2

(d −c)2 < 1
}

,

where a,b,c,d are functions depending on x (see (5.29)). We define the reference porous

geometry YF by setting a = b = 1/6 and c = d = 1/3. Figure 5.1 displays how we can divide YF

by four horizontal and four vertical lines and how we can obtain Y x
F by simply moving these

lines so that the geometry is stretched or contracted in the directions y1 and y2. That is, we

can divide YF into 13 regions such that an implicitly defined ϕ(x, ·) will be affine in each region.

To avoid degenerate cases we set the mapping x �→ (a,b,c,d) so that 0 < a(x) < b(x) < 1/2 and

0 < c(x) < d(x) < 1/2. Let

a(x) = 0.15e(x)+0.05,

c(x) = 0.15 f (x)+0.05,

b(x) = d(x) = 0.15(e(x)+ f (x))+0.1,

(5.29)

where e(x) = sin(πx1/6+ x2)2 and f (x) = cos(πx1/6− x2)2. We plot some of the extreme

deformations of the reference geometry in Figure 5.2. Notice that the permeability of thick

and thin channels differs by two orders of magnitude.
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Figure 5.1 – Micro geometries and the mapping ϕ(x, ·) for the 2D example.

x = (3/2,π/4)(
0.011 0

0 0.011

) x = (3/2,−π/4)(
0.000095 0

0 0.000095

) x = (0,0)(
0.0065 0

0 0.00014

) x = (0,π/2)(
0.00014 0

0 0.0065

)

Figure 5.2 – Examples of the local porous geometries (Y x
F ,Y x

S ) that show extremal deformations.
The matrices below are approximate values of a0(x).

To give more intuition on how the porous geometry varies, we plot Ωε in Figure 5.3. However,
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5.4. Numerical experiments

we do not follow the definition (2.6) as it would create artificial corners at the boundaries of

neighboring tiles, since the channel widths would not match exactly. Instead, we define the

porous geometry by (2.8).

Figure 5.3 – A sketch of Ωε for ε= 1/4.

At the macro scale (see (5.1)) we set the force field f ≡ 0. For the boundary conditions, we

set gD(x) = 0 for x ∈ ΓD = (−3,3)× {−2} and ΓN(x) = 1 for x ∈ ΓN = (−3,3)× {2}. The remaining

two edges {−3}× (−2,2) and {3}× (−2,2) are assumed to be connected periodically. We choose

such boundary conditions to provide high regularity of p0 so that we can test higher order

finite elements with uniform macro meshes. A sketch of the exact solution p0 and the related

velocity field is plotted in Figure 5.4.

0

2000

4000

1

2

3

Figure 5.4 – Solution p0 with contours (left), magnitude of the velocity field |a0(x)∇p0| with
streamlines (right).

Macroscopic meshes. In all experiments we consider uniform macroscopic meshes. The

coarsest macro mesh has 24 elements and we consider 6 additional meshes, where each new

mesh is a uniform refinement of the previous one. See Figure 5.5.

Figure 5.5 – First three (out of 7) uniform macro meshes TH considered in the experiments.
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Chapter 5. A conservative multiscale method for Stokes flow in porous media

Uniform micro meshes. For testing purposes we considered different micro meshes. The

coarsest micro mesh is depicted in Figure 5.6(left) and is denoted T 0
h . It contains 2216

elements and the corresponding degrees of freedom for the micro problems are Nmic = 10150.

We define a sequence of meshes T 0
h ,T 1

h ,T 2
h , . . ., where each new mesh is a uniform refinement

of the previous one.

Adaptive micro meshes. Since YF contains re-entrant corners, micro solutions can ben-

efit from meshes that are adapted to the geometry. We applied the adaptive micro mesh

refinement from section 4.6.1. Starting with the coarsest uniform mesh T 0
h we considered

the extreme geometries (see Figure 5.2). We repeatedly map the current micro mesh to the

extreme geometries, solve the micro problems, compute the residuals for every element and

mark and refine the micro mesh according to the maximum residual over all four geome-

tries. During this adaptive process we stopped the refinement when we reach successively

20000,40000,80000, . . . degrees of freedom and we denoted by T ad,1
h ,T ad,2

h ,T ad,3
h , . . . the ob-

tained micro meshes.

Figure 5.6 – The coarsest uniform micro mesh T 0
h (left) and the first adaptive micro mesh

T ad,1
h with a zoomed in interesting part (right).

RB offline. For all different micro meshes we used the same settings in the RB offline proce-

dure. For discretization we used the stable Taylor-Hood elements P 2/P 1, that is, l = 1. We

ran the reduced basis over the parametric space x ∈Ω, which was sampled randomly by Ξtrain

of size 10000. Setting the tolerance to εtol = 10−5 we obtained the RB space with N1, N2 ≈ 55

basis functions in all the cases.

Micro error. We first tested the influence of the micro mesh on the overall error. To minimize

the RB error we took the complete reduced basis N1, N2 ≈ 50. An experiment with P 1 macro

elements is shown in Figure 5.7, where the saturation of the micro error is visible for all the

uniform meshes T 0
h , . . . ,T 4

h . As expected, with finer micro meshes the error is saturated at

a lower value. It is remarkable that with the coarsest adaptive micro mesh we get a smaller

micro error than with the finest uniform micro mesh that we considered. We emphasize that

the online computation time is independent of the degrees of freedom of the micro mesh.
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Figure 5.7 – Convergence rates of p H ,RB with P 1 macro FE and uniform macro refinement
with different micro meshes. The RB is set to maximum: N1, N2 ≈ 50.

We repeated the same experiment but this time with P 2 and P 3 macro elements and only the

adaptive micro meshes T ad,1
h , . . . ,T ad,5

h . The convergence rates are shown in Figure 5.8.
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h , Nmic = 327032

Figure 5.8 – Convergence rates of p H ,RB with P 2 (left) and P 3 (right) macro FE and uniform
macro refinement with different micro meshes. The RB is set to maximum: N1, N2 ≈ 50.

RB error. We have seen that we can expect the best results with the finest adapted micro

mesh T ad,5
h . Hence, we choose this micro mesh and run the multiscale method with uniform

refinement on the macro scale and varying number of RB functions NRB = N1 = N2. We

monitor the relative macroscopic error in the pressure. For P 1 macro elements, the resulting

convergence rates are plotted in Figure 5.9. We see that already taking NRB = 7 is sufficient for

the finest macro mesh.
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Figure 5.9 – Convergence rates of p H ,RB with P 1 macro FE, micro mesh T ad,5
h , and a varying

number of RB functions NRB = N1 = N2.

We next choose P 3 macro elements and repeat the experiment. From Figure 5.10 we see that

for NRB = 25 the error is saturated even for the finest macro mesh and the micro error becomes

dominant.
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Figure 5.10 – Left: Convergence rates of p H ,RB with P 1 macro FE, micro mesh T ad,5
h , and a

varying number of RB functions NRB = N1 = N2. Right: Convergence of the maximal residual
in the offline greedy algorithm for the reduced basis.

Conservation of mass. One of the desirable properties of a DG method is conservation of

mass, especially in time-dependent problems. For every interior edge e ∈ Eint the numerical

flux is defined as σ̂K = {ΠaRB (∇p H ,RB)}−σ�p H ,RB�. These fluxes are conservative, that is, for

element K ∈ TH with no boundary edges we have the conservation property
∫
∂K σ̂K ds =∫

K f dx. The flux over boundary edges is treated differently. To express the conservation of
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mass for any element, we take any K ∈TH and e ∈ ∂K and define

F K
e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∫

e ({ΠaRB (∇p H ,RB)}−σe�p H ,RB�)nds if e ∈ Eint,∫
e ({ΠaRB (∇p H ,RB)}−σe�p H ,RB − gD�)nds if e ∈ ED,∫
e gN ds if e ∈ EN.

It is then guaranteed that ∑
e∈∂K

F K
e =

∫
K

f dx ∀K ∈TH . (5.30)

We examined the conservation property (5.30) numerically by computing the left hand side

value of (5.30) for every element in Figure 5.11(top). Since f ≡ 0 in our experiment, we

expect these values to be very close to zero, which seems to hold (up to round-off errors).

Evaluation of the same quantity for a the RB-DS-FE-HMM results in values whose absolute

value are significantly larger, see Figure 5.11(bottom). Compared to continuous FE, where

reconstruction techniques are used to post-process the solution to be conservative, with a

SIP-DG method such properties are valid without any additional procedure.
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Figure 5.11 – Comparison of conservations of the proposed numerical method (top) and the
RB-DS-FE-HMM that uses continuous FE on the macro scale (bottom). Plotted are the values
of the left hand sides of (5.30) that were computed for two different macro meshes (left vs.
right), P 1 macro elements, micro mesh T ad,5

h , and N1 = N2 = 7.

5.4.2 A 3D problem

We now consider a three-dimensional example. The macroscopic domain will be a filtration

bottle given by Ω = {x ∈ R3 : x1 ∈ (−1,1), x2
2 + x2

3 ≤ g (x1)2}, where g (r ) = 0.2 for r < −1/2,

g (r ) = 0.6 for r > 1/2, and g (r ) = 0.2sin(πr )+0.4 otherwise (see Figure 5.12).

The microscopic domains Y x
F are defined as unions of three ellipsoidal cylinders. See Fig-
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Chapter 5. A conservative multiscale method for Stokes flow in porous media

x1x2

x3

Figure 5.12 – Macroscopic domain Ω and mesh TH (left). Boundary conditions (right): Neu-
mann inflow (left side), zero Dirichlet (right side), zero Neumann (transparent green).

ure 5.13 for a sketch of the following definition. We define

Y x
F =

{
y ∈ Y : min

{ y2
1

μ2
1

+ y2
2

μ2
2

,
y2

1

μ2
1

+ y2
3

μ2
3

,
y2

2

μ2
2

+ y2
3

μ2
3

}
< 0.82

}
,

where the functions μ1,μ2,μ3 depend on x (see (5.31)). The reference micro domain corre-

sponds to μ1 =μ2 =μ3 = 1/4. Figure 5.13 illustrates how we can cut YF with 6 planes such that

Y x
F can be obtained stretching or contracting the planes in each direction. That is, we can

divide YF into 7 regions such that an implicitly defined ϕ(x, ·) will be affine in each region. To

avoid degenerate cases we will allow only 0 <μ1,μ2,μ3 < 1/2. We set

μ1(x) = 1/4+ sin(x1 +2x2 +3x3)/8,

μ2(x) = 1/4+ sin(−2x1 +x2 −3x3)/8,

μ3(x) = 1/4+ sin(3x1 −x2 +x3)/8.

(5.31)

In the reduced basis offline algorithm we used tolerance εtol = 0.0005 and the training set was

random selection of points from Ω with |Ξtrain| = 653. The resulting sizes of RB were N1 = 59,

N2 = 61, and N3 = 58. In Figure 5.14 we sketched a plot of some pressure isosurfaces for the

pressure solution computed with the multiscale numerical method.

Conclusion

We have presented a multiscale FE method for Stokes flow in porous media. The method uses

a discontinuous Galerkin discretization of the effective Darcy problem at the macroscopic

scale. The effective permeability is recovered at every quadrature point of the macroscopic

using local porous geometry. We applied the reduced basis method for a fast and accurate

approximation of the permeability, allowing for a fast (mesh independent) computation of

the permeability in an online stage. We discussed a priori error analysis and provided a priori

convergence rates for the proposed multiscale method. Various sources of discretisation error

have also been studied numerically and the performance and accuracy of the method has also

been illustrated. The method allows for further generalizations. In particular, tools developed
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Figure 5.13 – Reference micro domain YF and mesh Th (upper left corner) and some local
geometries Y x

F .

Figure 5.14 – A plot of some pressure isosurfaces of p H ,RB. The isosurface of zero value
(rightmost) is scattered since the Dirichlet boundary conditions are enforced weakly.

for single scale DG-FEM such as adaptive mesh refinement or hp-adaptivity, can be applied

on the macro scale without changing the micro solver.
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6 A three scale heterogeneous mul-
tiscale method for Stokes flow in
porous media
In chapter 2 we introduced two-scale porous media with locally periodic micro structure.

Given d ∈ {2,3} and Ω⊂Rd we considered Ωε ⊂Ω and showed how homogenization theory

can be applied to the fine-scale Stokes problem (2.2) in Ωε and derive an effective Darcy

problem (2.4). In chapters 3–5 we presented numerical multiscale methods that are based

on the two-scale homogenization model problem shown in section 2.3. There are, however,

porous materials that do not fit into the two-scale framework because they contain porous

structures at more than two incommensurate scales. If we apply the DS-FE-HMM to such

media the micro problems will have complex geometries and contain porous parts with small

pore size. This can make the numerical computation of micro solutions very demanding or

even impossible.

In this chapter we propose a definition of a locally periodic three-scale porous medium based

on [69] and we consider a three-scale model problem based on homogenization theory. At

the macroscopic scale we consider again the Darcy equation. The macroscopic effective

permeability is upscaled from the mesoscopic scale, where the medium is considered in two

regimes: fluid and porous. We use the Stokes–Brinkman equation to model the fluid flow at

the meso scale. The effective permeability in the mesoscopic porous part is upscaled from the

microscopic scale, where the medium is considered in two regimes: fluid and solid. We use the

Stokes equation to model the fluid flow at the micro scale, which is the scale where the solid

part is considered impermeable.

Outline. In section 6.1 we define the three-scale porous media and formally derive the

model problem. In section 6.2 a weak formulation of the model problem is derived and its

well-posedness is studied. This model problem is discretized and a three-scale numerical

method is proposed in section 6.3. The reduced basis method is applied on both micro and

meso scale in section 6.4 to provide an efficient three-scale numerical method. Numerical

experiments in section 6.5 show the accuracy of the method with respect to many different

parameters (mesh sizes, RB sizes, EIM size). This chapter is essentially taken from [11, 12].

Preliminary results for this chapter were obtained in [76].
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Chapter 6. A three scale heterogeneous multiscale method for Stokes flow in porous
media

6.1 Three-scale porous media and homogenization

We define the three-scale locally periodic porous medium in section 6.1.1 and a formal deriva-

tion of the three-scale model problem is provided in section 6.1.2.

6.1.1 Three-scale locally periodic porous media

Let d ∈ {2,3} and Ω⊂Rd be a connected bounded domain. We will define a porous medium

Ωε1,ε2 ⊂Ω with porous structures of characteristic sizes ε1,ε2, where ε1 � ε2 > 0. The scales

corresponding to ε1 and ε2 are called the mesoscopic and the microscopic scale, respectively.

We assume that ε1 and ε2 are positive functions of ε ∈ R+ such that limε→0 ε1(ε) = 0 and

the micro scale is well-separated, a. e., limε→0 ε2(ε)/ε1(ε) = 0. For an illustration of the

construction that follows see Figure 6.1.
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Figure 6.1 – The construction of a three-scale porous medium Ωε1,ε2 .

At the mesoscopic scale we consider two different regimes: fluid and porous (for a gen-

eralization see Remark 6.1.1). Let (YP,YF) be the reference mesoscopic geometry, where

YP ⊂ Y represents the porous part and YF = Y \YP represents the fluid part. We suppose that

(YP,YF) satisfies Assumption 2.1.2(i) and (ii). Consider a continuous map ϕmes : Ω×Y →
Y such that ϕmes(x, ·) : Y → Y is a homeomorphism for every x ∈ Ω. We suppose that

ϕmes(x, ·),ϕmes(x, ·)−1 ∈W 1,∞(Y )d for every x ∈Ω and that there is a constant Λϕ such that

‖ϕmes(x, ·)‖W 1,∞(Y )d ≤Λϕ, ‖ϕmes(x, ·)−1‖W 1,∞(Y )d ≤Λϕ, ∀x ∈Ω. (6.1)

For any x ∈ Ω we define the local mesoscopic geometry by Y x
P = ϕmes(x,YP) and Y x

F =
ϕmes(x,YF). The porous structure in Y x

P can be described in detail by considering the mi-

cro scale features.

Remark 6.1.1. It is possible to consider three regimes at the meso scale: porous, fluid, and
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6.1. Three-scale porous media and homogenization

solid. Since this generalization is straightforward but makes the analysis more technical, we

prefer the simpler model that we introduced.

At the microscopic scale we distinguish two regimes of the material: fluid and solid. Let

Z = (−0.5,0.5)d be the microscopic unit cube1 and let (ZS, ZF) be the reference microscopic

geometry, where ZS ⊂ Z and ZF = Z \ZS. We suppose that (ZS, ZF) satisfies Assumption 2.1.2.

Let ϕmic : Ω×Y × Z → Z be such that ϕmic(x, y, ·) : Z → Z is a homeomorphism for every

(x, y) ∈ Ω×Y . We suppose that ϕmic(x, y, ·),ϕmes(x, y, ·)−1 ∈ W 1,∞(Z )d for every x ∈ Ω and

y ∈ Y and that there is a constant Λϕ such that

‖ϕmic(x, y, ·)‖W 1,∞(Z )d ≤Λϕ, ‖ϕmic(x, y, ·)−1‖W 1,∞(Z )d ≤Λϕ, ∀(x, y) ∈Ω×Y . (6.2)

Since we often fix coordinates x ∈Ω and y ∈ Y to represent a microscopic location, we simplify

the notation by denoting this pair as s = (x, y). Hence, we can write ϕmic(x, y, z) ≡ϕmic(s, z).

For any s ∈ Ω×Y we define the local microscopic geometry as Z s
S = ϕmic(s, ZS) and Z s

F =
ϕmic(s, ZF).

For any x ∈Ω we consider the local mesoscopic geometry (Y x
F ,Y x

P ) where the porous part Y x
P

is further decomposed using the microscopic porous structure. The mesoscopic domain is

thus split into a solid part Ỹ x
S and a fluid part Ỹ x

F , where Y x
F ⊂ Ỹ x

F and Ỹ x
S ⊂ Y x

P . Let

Ỹ x
S = Y x

P \
⋃

k∈Zd

ε2

ε1
(k +Z

x,
ε2
ε1

k

S ), Ỹ x
F = Y \Ỹ x

S . (6.3)

We next define the fine scale structure of the three-scale porous medium in Ω by

Ωε1,ε2 =Ω\
⋃

k∈Zd

ε1(k + Ỹ ε1k
S ). (6.4)

Notice that in (6.3) and (6.4) the functions ϕmes and ϕmic are used outside their domain of

definition. We resolve this discrepancy using the same approach as in Remark 2.2.2.

6.1.2 Formal homogenization

We discuss here a fluid flow in a three-scale porous medium and derive an effective three-scale

model, which is summarized in Table 6.1. One could model a fluid flow in Ωε1,ε2 using the

Stokes equation as in (2.2): find the velocity field uε1,ε2 and pressure pε1,ε2 such that

−Δuε1,ε2 +∇pε1,ε2 = f in Ωε1,ε2 ,

div uε1,ε2 = 0 in Ωε1,ε2 ,

uε1,ε2 = 0 on ∂Ωε1,ε2 .

(6.5)

1Technically Y and Z are identical but we use different notation to clearly distinguish between mesoscopic and
microscopic objects. Also, notice the difference between the unit cube Z and the set of integers Z.
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The complexity of Ωε1,ε2 makes a direct numerical approximation of (6.5) prohibitive. If we

apply the two-scale effective problem framework (see section 2.3) in the three-scale media we

would obtain the macroscopic Darcy equation

∇·a0(f−∇p0) = 0 in Ω,

a0(f−∇p0) ·n = 0 on ∂Ω
(6.6)

and the following microscopic Stokes equation. For any x ∈Ω and i ∈ {1, . . . ,d} find the velocity

field ũi ,x and the pressure p̃i ,x such that

−Δũi ,x +∇p̃i ,x = ei in Ỹ x
F , ũi ,x = 0 on ∂Ỹ x

S ,

div ũi ,x = 0 in Ỹ x
F , ũi ,x and p̃i ,x are Y -periodic.

(6.7)

The computational domain Ỹ x
F defined in (6.3) contains porous structures of characteristic

scale ε2/ε1. Hence, meshing of Ỹ x
F and a direct numerical approximation of (6.7) can be again

prohibitive. We solve this problem by applying homogenization theory again. We approximate

the Stokes model in Ỹ x
F by a Darcy model in Y x

P and a Stokes model in Y x
F . The effective

permeability of the Darcy flow in Y x
P can be upscaled from microscopic problems in domains

Z x,y
F . This leads to a different mesoscopic problem: for any i ∈ {1, . . . ,d} and x ∈Ω find the

velocity field ui ,x and the pressure pi ,x such that

−Δui ,x +∇pi ,x = ei in Y x
F , div ui ,x = 0 in Y ,

ε2
2

ε2
1

b0(ei −∇pi ,x ) = ui ,x in Y x
P , ui ,x and pi ,x are Y -periodic,

(6.8)

where b0 is the mesoscopic permeability defined below. Note that the problem (6.8) is in-

complete since we have not specified coupling of the Stokes and Darcy problem over their

interface ∂Y x
P . This coupling has been studied extensively and a standard approach is to use

the Beavers–Joesph–Saffman interface conditions [32, 103, 81]. We use a simpler approach

that is well justified for ε2/ε1 � 1, see [69]. We replace the Darcy model in Y x
P by the Brinkman

model, which allows for a simple interface conditions requiring only continuity of ui ,x and pi ,x

over ∂Y x
P . Hence, we introduce the mesoscopic Stokes–Brinkman model: for any i ∈ {1, . . . ,d}

and x ∈Ω find the velocity ui ,x and pressure pi ,x such that

−Δui ,x +∇pi ,x +K 0ui ,x = ei in Y , ui ,x , pi ,x are Y -periodic,

div ui ,x = 0 in Y ,
(6.9)

where

K 0(x, y) =
⎧⎨
⎩

ε2
1

ε2
2

b0(x, y)−1 if y ∈ Y x
P ,

0 if y ∈ Y x
F .

(6.10)
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We then define the macroscopic effective permeability by

a0
i j (x) =

∫
Y

ei ·u j ,x dy ∀i , j ∈ {1, . . . ,d}. (6.11)

The meso permeability tensor b0 : Ω×Y →Rd×d depends on the micro porous structure. For

any s = (x, y) ∈Ω×Y we can compute b0(s) = b0(x, y) by solving the so-called Stokes micro

problems: for any i ∈ {1, . . . ,d} find the velocity ui ,s and pressure pi ,s such that

−Δui ,s +∇pi ,s = ei in Z s
F, ui ,s = 0 on ∂Z s

S ,

div ui ,s = 0 in Z s
F, ui ,s and pi ,s are Y -periodic.

(6.12)

We then define

b0
i j (s) = b0

i j (x, y) =
∫

Z s
F

ei ·u j ,s dy ∀i , j ∈ {1, . . . ,d}. (6.13)

Summary of the presented model problem is in Table 6.1.

macro meso micro

domain Ω Y = Y x
F ∪Y x

P Z s
F

reference domain Y = YF ∪YP ZF

parameter x ∈Ω s = (x, y) ∈Ω×Y
model problem (6.6) (6.9), (6.10), (6.11) (6.12), (6.13)

Table 6.1 – A summary of the three-scale model problem in strong form with micro and meso
problems in their original domains.

Notation. Notice the subtle difference in the notation between the solution of the meso

problem (6.9), denoted by (ui ,x , pi ,x ), and the solution to the micro problem (6.12), denoted

by (ui ,s , pi ,s). The only difference is that the second index appears in a different space: x ∈Ω

and s ∈Ω×Y . In the following sections we will use the same principle to distinguish functions

related to either micro or meso scale.

6.2 Model problem

In this section we provide a weak formulation of the three-scale problem that is summarized

in Table 6.2 and we analyze its well-posedness in section 6.2.1. The mapping of the micro and

meso problems into a reference domain and its well-posedness is described in section 6.2.2.
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6.2.1 Weak formulation

The macroscopic equation (6.6) is a standard elliptic problem that can be formulated as

follows. Find p0 ∈ H 1(Ω)/R such that

B0(p0, q) = L0(q) ∀q ∈ H 1(Ω)/R, (6.14)

where for any p, q ∈ H 1(Ω) we define

B0(p, q) =
∫
Ω

a0∇p ·∇q dx, L0(q) =
∫
Ω

a0f ·∇q dx.

The mesoscopic problem (6.9) is a typical saddle-point problem. Due to the periodic boundary

conditions, pressure is unique only up to an additive constant, which is solved by using a

quotient space. For any x ∈Ω and i ∈ {1, . . . ,d} we look for ui ,x ∈ H 1
per(Y )d and pi ,x ∈ L2(Y )/R

such that∫
Y

(∇ui ,x : ∇v−pi ,x div v+K 0ui ,x ·v)dy =
∫

Y
ei ·vdy ∀v ∈ H 1

per(Y )d ,

−
∫

Y
qdiv ui ,x dy = 0 ∀q ∈ L2(Y )/R,

(6.15)

where ∇u : ∇v =∑d
i , j=1∂i u j∂i v j for any vector functions u,v, and the space H 1

per(Y ) is the set

of Y -periodic functions from H 1(Y ).

The microscopic problem (6.12) is a standard Stokes problem. Since there are only Dirichlet

and periodic boundary conditions, pressure is again unique only up to an additive constant.

The weak formulation reads as follows. For any s = (x, y) ∈Ω×Y and i ∈ {1, . . . ,d} find ui ,s ∈
H 1

0,per(Z s
F)d and pi ,s ∈ L2(Z s

F)/R such that

∫
Z s

F

(∇ui ,s : ∇v−pi ,sdiv v)dz =
∫

Z s
F

ei ·vdz ∀v ∈ H 1
0,per(Z s

F)d ,

−
∫

Z s
F

qdiv ui ,s dz = 0 ∀q ∈ L2(Z s
F)/R,

(6.16)

where H 1
0,per(Z s

F) is a subspace of H 1(Z s
F) that contains Y -periodic functions with a vanishing

trace over ∂Z s
S .

Well-posedness. We will show that the weak formulation of the model problem is well-posed.

The microscopic Stokes problem (6.16) is analogous to the micro problem from the two-scale

model (2.14), which is studied in section 2.4. Thus, for any s ∈Ω×Y the problem (6.16) is

well-posed and the effective meso permeability b0(s) (see (6.13)) is a well-defined symmetric

positive definite tensor. Deformations of the micro geometries that guarantee existence of
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constants 0 <λb ≤Λb such that

b0(s)ξ ·ξ≥λb |ξ|2, |b0(s)ξ| ≤Λb |ξ|, ∀ξ ∈Rd , ∀s ∈Ω×Y (6.17)

have been studied in section 2.4.

Consider next the mesoscopic Stokes–Brinkman problem (6.15). Symmetry of b0 implies that

K 0 is also symmetric. The estimates (6.17) guarantee the existence of 0 <λK ≤ΛK such that

K 0(x, y)ξ ·ξ≥λK |ξ|2, |K 0(x, y)ξ| ≤ΛK |ξ|, ∀ξ ∈Rd , ∀x ∈Ω, ∀y ∈ Y x
P . (6.18)

Recall that K 0(x, y) = 0 for y ∈ Y x
F . Assuming sufficient smoothness of ϕmic we have for

any x ∈ Ω that b0(x, ·) ∈ L∞(Y )d×d and hence K 0(x, ·) ∈ L∞(Y )d×d , which makes the meso

problem (6.15) well-defined. The meso problem (6.15) can be rewritten in a saddle-point

formulation as follows. For any x ∈Ω and i ∈ {1, . . . ,d} find ui ,x ∈ H 1
per(Y )d and pi ,x ∈ L2(Y )/R

such that

ã(ui ,x ,v; x)+ b̃(v, pi ,x ) =
∫

Y
ei ·vdy ∀v ∈ H 1

per(Y ),

b̃(ui ,x , q) = 0 ∀q ∈ L2(Y )/R,
(6.19)

where ã(·, ·; x) : H 1
per(Y )d ×H 1

per(Y )d →R for any x ∈Ω and b̃(·, ·) : H 1
per(Y )d ×L2(Y )/R→R are

bilinear forms defined by

ã(u,v; x) =
∫

Y
(∇u : ∇v+K 0(x, y)u ·v)dy, b̃(v, p) =−

∫
Y

pdiv vdy.

Since K 0 is symmetric, the bilinear form ã(·, ·; x) is symmetric too. Let us show that ã(·, ·; x) is

uniformly continuous and bounded. Using (6.18) we get

ã(u,v; x) ≤
∫

Y
∇u : ∇v+ΛK |u||v|dy ≤Λã‖u‖H 1(Y )d ‖v‖H 1(Y )d (6.20)

for every u,v ∈ H 1
per(Y )d and x ∈Ω, where Λã = max{ΛK ,1}. For any u ∈ H 1

per(Y )d let u ∈ Rd

be the average of u in Y , i.e., ui =
∫

Y ei ·udy for every i ∈ {1, . . . ,d}. Using the lower bound

from (6.18) and the Poincaré–Wirtinger inequality we obtain

ã(u,u; x) ≥ ‖∇u‖2
L2(Y )d×d +λK ‖u‖2

L2(Y x
P )d

≥Cp‖u−u‖2
L2(Y )d +λK ‖u‖2

L2(Y x
P )d

≥ s‖u‖2
L2(Y )d ,

(6.21)

where s > 0 depends on Cp ,λK , and infx∈Ω |Y x
P |. We thus obtain ã(u,u; x) ≥ s‖u‖2

L2(Y )d and

using this together with the first line of (6.21) yields

ã(u,u; x) ≥λã‖u‖2
H 1

per(Y )d ∀u ∈ H 1(Y )d , (6.22)

where λã = min{1, s}/2. The bilinear form b̃(·, ·) is inf-sup stable, that is, there exist constants
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0 <λb̃ ≤Λb̃ such that

inf
p∈L2(Y )/R

p �=0

sup
u∈H 1

per(Y )d

v�=0

b̃(u, p)

‖u‖H 1(Y )d ‖p‖L2(Y )/R
≥λb̃ ,

sup
p∈L2(Y )/R

p �=0

sup
u∈H 1

per(Y )d

v�=0

b̃(u, p)

‖u‖H 1(Y )d ‖p‖L2(Y )/R
≤Λb̃ .

(6.23)

The stability conditions (6.22), (6.20), and (6.23) imply that the saddle point problem (6.19) is

well-posed and so is the original meso problem (6.15). The standard stability estimates give

‖ui ,x‖H 1(Y )d ≤λ−1
ã ‖ei‖L2(Y )d =λ−1

ã .

Lemma 6.2.1. Suppose that (6.20), (6.22), and (6.23) hold. Then a0(x) is symmetric and there

exist constants 0 <λa ≤Λa such that

a0(x)ξ ·ξ≥λa |ξ|2, |a0(x)ξ| ≤Λa |ξ|, ∀ξ ∈Rd , ∀x ∈Ω. (6.24)

Proof. The proof is similar to that in section 2.4. Plugging v = u j ,x into (6.19) gives

ã(ui ,x ,u j ,x ; x) =
∫

Y
ei ·u j ,x dy = a0

i j (x). (6.25)

Symmetry of ã(·, ·; x) then implies symmetry of a0(x). Using (6.25) and (6.20) we obtain

‖a0(x)‖2
F =

d∑
i , j=1

ã(ui ,x ,u j ,x ; x)2 ≤Λ2
ã

(
d∑

i=1
‖ui ,x‖2

H 1(Y )d

)2

≤ d 2Λ2
ã

λ4
ã

∀x ∈Ω. (6.26)

For any ξ ∈Rd and x ∈Ω we define uξ,x =∑d
i=1 ξi ui ,x . We then have

a0(x)ξ ·ξ=
d∑

i , j=1
ã(ξi ui ,x ,ξ j u j ,x ; x) = ã(uξ,x ,uξ,x ; x) ≥λã‖uξ,x‖2

H 1
per(Ω)d . (6.27)

Thus, a0 is at least positive semi-definite for every x ∈Ω. Using the Cauchy–Schwarz inequality

one can show ã(u,v; x)2 ≤ ã(u,u; x)ã(v,v; x) for any u,v ∈ H 1
per(Y )d . Applying this rule with

u = uξ,x in (6.27) gives

a0(x)ξ ·ξ≥ ã(uξ,x ,v; x)2

ã(v,v; x)
∀v ∈ H 1

per(Y )d . (6.28)

If we plug in a constant function v ≡ ξ we can use the problem (6.19) and the bound (6.20)

in (6.28) to obtain

a0(x)ξ ·ξ≥ (
∫

Y ξ ·ξdy)2

Λã‖ξ‖2
H 1(Y )d

≥ |ξ|2
Λã

∀ξ ∈Rd . (6.29)

Using (6.29) and (6.26) we conclude the proof.
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Remark 6.2.2. Note that in the bound (6.29) the coercivity constant scales with ε2
2/ε2

1 since ΛK

and therefore Λã scale with ε2
1/ε2

2. In some cases, this can be improved by choosing different

test functions v in (6.28). Let us recall that the meso geometries (Y x
P ,Y x

F ) are required to

satisfy Assumption 2.1.2(i) and (ii). If also Assumption 2.1.2(iii) holds, then there exist nonzero

functions v in (6.28) that are supported in Y x
F and divergence-free. Plugging such function v

into (6.28) simplifies the bound to

a0(x)ξ ·ξ≥
(
∫

Y x
F
ξ ·v)2

|v|2
H 1

0,per(Y x
F )d

·

This lower bound was studied in section 2.4 and general criteria on the micro geometries

(Y x
F ,Y x

P ) were given to obtain a lower bound on uniform coercivity of a0. In this case, this

lower bound does not depend on ε1 and ε2.

Finally, we consider the macroscopic problem (6.14). It is a standard elliptic problem with a

positive definite, symmetric, and bounded tensor a0. We assume that a0 ∈ L∞(Ω)d×d . Notice

that such regularity of the homogenized tensor can be proved provided sufficient regularity of

the mapsϕmic andϕmes. Thus, the macroscopic problem (6.14) is well-defined and using (6.24)

we can show that
B0(p, q) ≤Λa |p|H 1(Ω)|q|H 1(Ω) ∀p, q ∈ H 1(Ω)/R,

B0(p, p) ≥λa |p|2H 1(Ω) ∀p ∈ H 1(Ω)/R,

L0(q) ≤Λa |q|H 1(Ω)‖f‖L2(Ω)d ∀q ∈ H 1(Ω)/R.

The problem (6.14) is thus well-posed by the Lax–Milgram lemma and the solution p0 ∈
H 1(Ω)/R satisfies |p0|H 1(Ω) ≤Λa/λa‖f‖L2(Ω)d .

6.2.2 Model problem in reference micro and meso domains

We transform the meso and micro problems in two steps. First, the weak formulation is

supplemented with an additional Lagrange multiplier to avoid a quotient space for the pressure

variable. Second, a change of variables is used to map the problem to the reference domain.

Such modification was already motivated and used in the RB-DS-FE-HMM (section 4.1).

Micro problem. After supplementing problem (6.16) with Lagrange multipliers to fix a zero

average of the pressure we map it into the reference micro domain ZF by applying the change

of variables zold =ϕmic(s, znew). Subsequently, we sum the three equations into one, which

results in a variational problem in the space Xmic = H 1
0,per(ZF)× L2(ZF)×R. We obtain a

problem equivalent to (6.16), (6.13). For any s ∈Ω×Y find Ui ,s ∈ Xmic such that

Amic(Ui ,s ,V; s) =Gi
mic(V; s) ∀V ∈ Xmic, (6.30)

b0
i j (s) =Gi

mic(U j ,s ; s) ∀i , j ∈ {1, . . . ,d}, (6.31)
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where the parameter-dependent bilinear form Amic(·, ·; s) : Xmic ×Xmic →R and linear forms

Gi
mic(·; s) : Xmic →R are defined for any U = (u, p,λ) and V = (v, q,κ) by

Amic(U,V; s) =
∫

ZF

d∑
i , j=1

(
ρi j

∂u

∂zi
· ∂v

∂z j
−σi j

(∂vi

∂z j
p + ∂ui

∂z j
q
))
+τ(λq +κp)dz,

Gi
mic(V; s) =

∫
ZF

τei ·vdz,

(6.32)

where we denote the Jacobian J = J (s, z) =∇zϕmic(s, z) and define

ρ(s, z) = det(J )(J� J )−1,

σ(s, z) = det(J )J−�,

τ(s, z) = det(J ).

(6.33)

Meso problem. After supplementing problem (6.15) with Lagrange multipliers we map it

into the reference meso structure (YF,YP) using the change of variables yold =ϕmes(x, ynew).

Subsequently, we sum the three equations into one, which results in a variational problem

in the space Xmes = H 1
per(Y )×L2(Y )×R. We obtain a problem equivalent to (6.15), (6.11). For

any x ∈Ω and i ∈ {1, . . . ,d} find Ui ,x ∈ Xmes such that

Ames(Ui ,x ,V; x) =Gi
mes(V; x) ∀V ∈ Xmes, (6.34)

a0
i j (x) =Gi

mes(U j ,x ; x) ∀i , j ∈ {1, . . . ,d}, (6.35)

where the parameter-dependent bilinear form Ames(·, ·; x) : Xmes ×Xmes →R and linear forms

Gi
mes(·; x) : Xmes →R are defined for any U = (u, p,λ) and V = (v, q,κ) by

Ames(U,V; x) = Astokes
mes (U,V; x)+ Abr

mes(U,V; x),

Astokes
mes (U,V; x) =

∫
Y

d∑
i , j=1

(
ρi j

∂u

∂yi
· ∂v

∂y j
−σi j

( ∂vi

∂y j
p + ∂ui

∂y j
q
))
+τ(λq +κp)dy,

Abr
mes(U,V; x) =

∫
YP

β0u ·vdy,

Gi
mes(V; x) =

∫
Y
τei ·vdy,

(6.36)

where we denote the Jacobian J = J (x, y) =∇yϕmes(x, y) and define

ρ(x, y) = det(J )(J� J )−1,

σ(x, y) = det(J )J−�,

τ(x, y) = det(J ),

β0(x, y) = ε2
1

ε2
2

det(J )b0(x,ϕmes(x, y))−1.

126



6.3. The three-scale numerical method

Well-posedness. Nothing substantial has changed by enforcing the zero pressure average

with a Lagrange multiplier and applying the change of variables. The problems (6.30) and (6.34)

are thus equivalent to (6.16) and (6.15), respectively. The regularity assumptions (6.1) and (6.2)

imply that the standard norms of functions in old and new variables are equivalent. Hence,

the problems (6.34) and (6.30) are well-posed and there exist constants 0 <λmic ≤Λmic and

0 <λmes ≤Λmes such that for every x ∈Ω and s ∈Ω×Y we have

inf
U∈Xmic

U�=0

sup
V∈Xmic

V�=0

Amic(U,V; s)

‖U‖Xmic‖V‖Xmic

≥λmic, sup
U∈Xmic

U�=0

sup
V∈Xmic

V�=0

Amic(U,V; s)

‖U‖Xmic‖V‖Xmic

≤Λmic, (6.37)

inf
U∈Xmes

U�=0

sup
V∈Xmes

V�=0

Ames(U,V; x)

‖U‖Xmes‖V‖Xmes

≥λmes, sup
U∈Xmes

U�=0

sup
V∈Xmes

V�=0

Ames(U,V; x)

‖U‖Xmes‖V‖Xmes

≤Λmes. (6.38)

Furthermore, there exist constants Lmic,Lmes ∈ R such that for every i ∈ {1, . . . ,d}, x ∈Ω and

s ∈Ω×Y we have
Gi

mic(V; s) ≤ Lmic‖V‖Xmic ∀V ∈ Xmic,

Gi
mes(V; x) ≤ Lmes‖V‖Xmes ∀V ∈ Xmes.

(6.39)

We note that the tensor β0 is symmetric, positive definite, and bounded. Hence, the esti-

mates (6.18) and (6.2) imply that there exist constants 0 < λK ≤ ΛK (the same notation as

in (6.18), for simplicity) such that

β0(x, y)ξ ·ξ≥λK |ξ|2, |β0(x, y)ξ| ≤ΛK |ξ|, ∀ξ ∈Rd , ∀(x, y) ∈Ω×YP.

6.3 The three-scale numerical method

In this section we propose a new numerical three-scale method for Stokes flow in porous

media. It is based on a discretization of the three-scale model problem from section 6.2.2. The

discretization is detailed in section 6.3.1 and a priori error analysis is provided in section 6.3.2.

6.3.1 Finite element discretization

We use a finite element (FE) method to discretize the equations (6.14), (6.34), and (6.30). We

proceed in the bottom-up manner, starting with the micro problem. The fully discretized

three-scale problem is sketched in Figure 6.2 and summarized in Table 6.2.

macro meso micro

mesh TH Th1 Th2

finite elements P l P k+1/P k P m+1/P m

quadrature formula (xK j ,ωK j ) (yT j ,ωT j )
problem (6.46) (6.43), (6.44) (6.40), (6.41)

Table 6.2 – A summary of the three-scale numerical method.
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TH K ∈TH Th1 T ∈Th1 ,T ⊂ YP Th2

xK1

xK2

xK3 yT4

yT2

yT3

yT5

yT1yT6

Figure 6.2 – A sketch of the three-scale numerical method. The quadrature formulas corre-
spond to l = 2 and k = 1.

FE spaces. Let T be a simplicial mesh of a domain D ⊂Rd and let n ∈N. For any element

K ∈ T we denote by P n(K ) the space of polynomials in K of degree n. We consider the

continuous and discontinuous finite element spaces of degree n in T defined by

Sn(D,T ) = {q ∈ H 1(D); q|K ∈P n(K ), ∀K ∈T },

V n(D,T ) = {q ∈ L2(D); q|K ∈P n(K ), ∀K ∈T }.

Micro problems. We discretize the micro problem (6.30) with the Taylor–Hood finite ele-

ments P m+1/P m for some m ∈ N, which is a stable approximation scheme for m ≥ 1. Let

{Th2 } be a family of conformal, shape-regular simplicial meshes of ZF parametrized by the

mesh size h2 = maxK∈Th2
diam(K ) and define the FE spaces

V h2
mic = {v ∈ Sm+1(ZF,Th2 )d ; v is Y -periodic},

P h2
mic = {q ∈ Sm(ZF,Th2 ); q is Y -periodic}.

Consider X h2
mic = V h2

mic ×P h2
mic ×R, which is a finite-dimensional linear subspace of Xmic, and

define a numerical approximation of (6.30) and of the meso permeability (6.31) as follows. For

every s = (x, y) ∈Ω×Y and i ∈ {1, . . . ,d} find Ui ,s
h2

∈ X h2
mic such that

Amic(Ui ,s
h2

,V; s) =Gi
mic(V; s) ∀V ∈ X h2

mic, (6.40)

bh2
i j (s) =Gi

mic(U j ,s
h2

; s) ∀i , j ∈ {1, . . . ,d}. (6.41)

Meso problems. We discretize the meso problem (6.34) with the Taylor–Hood finite elements

P k+1/P k for some k ∈ N with k ≥ 1. Let {Th1 } be a family of conformal, shape-regular

simplicial meshes of Y parametrized by the mesh size h1 = maxT∈Th1
diam(T ). We assume

that every element T ∈Th1 is either completely in the fluid part (T ⊂ YF) or completely in the
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porous part (T ⊂ YP). Let us define the FE spaces

V h1
mes = {v ∈ Sk+1(Y ,Th1 )d ; v is Y -periodic},

P h1
mes = {q ∈ Sk (Y ,Th1 ); q is Y -periodic}.

Consider a finite dimensional subspace of Xmes given by X h1
mes = V h1

mes × P h1
mes ×R. In the

problem (6.34) we have the term Abr
mes(U,V; x) that is related to the mesoscopic permeability.

To discretize this term we use numerical quadrature. Let T P
h1

⊂ Th1 be the subset of all

elements contained in YP. For each element T ∈ T P
h1

we consider a quadrature formula

(yT j ,ωT j ) j=1,...,Jmes with integration points yT j ∈ K and positive weights ωT j , where Jmes ∈N. To

achieve the optimal order of accuracy we rely on the following assumption:

∫
T

q(y)dy =
Jmes∑
j=1

ωT j q(yT j ) ∀T ∈T P
h1

, ∀q ∈P 2(k+1)(T ), (6.42)

that is, the mesoscopic quadrature formula is exact for polynomials of degree 2(k +1). The

numerical approximation of (6.34) and of the macro permeability (6.35) as follows. For every

x ∈Ω and i ∈ {1, . . . ,d} find Ui ,x
h1

∈ X h1
mes such that

Ah1
mes(Ui ,x

h1
,V; x) =Gi

mes(V; x) ∀V ∈ X h1
mes, (6.43)

ah1
i j (x) =Gi

mes(U j ,x
h1

; x) ∀i , j ∈ {1, . . . ,d}, (6.44)

where

Ah1
mes(U,V; x) = Astokes

mes (U,V; x)+ ∑
T∈T P

h1

Jmes∑
j=1

ωT j β
h2 (x, yT j )u(yT j ) ·v(yT j )dy (6.45)

and βh2 : Ω×YP :→Rd×d is defined by

βh2 (x, y) = ε2
1

ε2
2

det(∇yϕmes(x, y))(bh2 (x,ϕmic(x, y)))−1.

Macro problem. The macroscopic equation (6.14) is discretized using finite elements of

degree l ∈ N with numerical quadrature. Macroscopic permeability (6.44) is upscaled at

every macroscopic quadrature point from meso problems. Let {TH } be a family of conformal,

shape-regular simplicial meshes of Ω parametrized by the mesh size H = maxK∈TH
diam(K ).

We consider the macro FE space Sl (Ω,TH ) of degree l ∈ N. For each element K ∈ TH we

consider a quadrature formula (xK j ,ωK j ) j=1,...,Jmac with integration points xK j ∈ K and positive

weights ωK j and Jmac ∈ N. To guarantee well-posedness of the macroscopic problem and

achieve the optimal order of accuracy we suppose that Assumption 3.1.1 is satisfied, that is,

the macroscopic quadrature formulas is exact for polynomials of order max(2l −2,1). A direct
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discretization of (6.14) gives: Find p H ∈ Sl (Ω,TH )/R such that

BH (p H , q H ) = LH (q H ) ∀q H ∈ Sl (Ω,TH )/R, (6.46)

where the discrete macro bilinear form and right-hand side are given by

BH (p H , q H ) = ∑
K∈TH

Jmac∑
j=1

ωK j ah1 (xK j )∇p H (xK j ) ·∇q H (xK j ),

LH (q H ) = ∑
K∈TH

Jmac∑
j=1

ωK j ah1 (xK j )fH (xK j ) ·∇q H (xK j ).

(6.47)

Here, fH ∈V l−1(Ω,TH )d is an appropriate interpolation of the force field f ∈ L2(Ω)d .

6.3.2 A priori error estimates

In this section we prove well-posedness of the three-scale numerical method and derive a

priori error estimates. Let us start with the micro problem (6.40). The forms Amic(·, ·; s) and

Gmic(·; s) remain continuous with the same constants (see (6.37) and (6.39)) also when consid-

ered over the FE space X h2
mic ⊂ Xmic. Taylor–Hood finite elements are stable for approximation

of Stokes problems on conforming and shape-regular meshes. Hence, the bilinear form

Amic(·, ·; s) remains inf-sup stable also when considered over the FE space X h2
mic. Consequently,

there exist constants 0 <λmic ≤Λmic (denoted the same as in (6.37), for simplicity of notation)

such that

inf
U∈X

h2
mic

U�=0

sup
V∈X

h2
mic

V�=0

Amic(U,V; s)

‖U‖Xmic‖V‖Xmic

≥λmic, sup
U∈X

h2
mic

U�=0

sup
V∈X

h2
mic

V�=0

Amic(U,V; s)

‖U‖Xmic‖V‖Xmic

≤Λmic (6.48)

for every s ∈ Ω× Y . The conditions (6.48), (6.39), and X h2
mic ⊂ Xmic imply that the micro

problem (6.40) is well-posed with a unique solution Ui ,s
h2

∈ Xmic with ‖Ui ,s
h2
‖Xmic ≤ Lmic/λmic.

Consequently, for any s ∈ Ω×Y and i , j ∈ {1, . . . ,d} the permeability bh2 (s) is well-defined

in (6.41) and we can use (6.41) and (6.40) to derive

bh2
i j (s) =Gi

mic(U j ,x
h2

; s) = Amic(Ui ,x
h2

,U j ,x
h2

; x). (6.49)

Symmetry of Amic and (6.49) then imply that bh2 is symmetric. For any V ∈ X h2
mic one can derive

b0
i j (s)−bh2

i j (s) =Gi
mic(U j ,s −U j ,s

h2
; s)

= Amic(Ui ,s ,U j ,s −U j ,s
h2

; s)

= Amic(Ui ,s −V,U j ,s −U j ,s
h2

; s).

(6.50)

using (6.41) and (6.13), then (6.40) and (6.30), and finally the Galerkin orthogonality. Us-

ing (6.50) to compute the norm ‖b0(s)−bh2 (s)‖F, applying (6.37), and taking an infimum over
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V gives

‖b0(s)−bh2 (s)‖2
F ≤Λmic

(
d∑

i=1
inf

V∈X
h2
mic

‖Ui ,s −V‖2
Xmic

)(
d∑

i=1
‖Ui ,s −Ui ,s

h2
‖2

Xmic

)
. (6.51)

Lemma 6.3.1. Assume that the solution Ui ,s = (ui ,s , pi ,s ,λi ,s) to the micro problem (6.30) satis-

fies Ui ,x ∈ X ∗
mic, where X ∗

mic = Xmic ∩ (H m+2(ZF)d ×H m+1(ZF)×R) and that there exists C ′ > 0

such that ‖Ui ,s‖X ∗
mic

≤ C ′ for every s ∈Ω×Y and i ∈ {1, . . . ,d}. Then there is a constant C > 0

such that

‖b0(s)−bh2 (s)‖F ≤C h2(m+1)
2 ∀s ∈Ω×Y .

Proof. By the interpolation theory for Sobolev spaces (see [46]) there is C > 0 that depends

only on the shape-regularity of Th2 such that

inf
V∈X

h2
mic

‖Ui ,s −V‖Xmic ≤C hm+1
2 ‖Ui ,s‖X ∗

mic
(6.52)

for every i ∈ {1, . . . ,d} and s ∈Ω×Y . By Céa’s lemma for indefinite problems (see [120]) we

have

‖Ui ,s −Ui ,s
h2
‖Xmic ≤

Λmic

λmic
inf

V∈X
h2
mic

‖Ui ,s −V‖Xmic . (6.53)

for every i ∈ {1, . . . ,d} and s ∈Ω×Y . Using (6.52) and (6.53) in (6.51) concludes the proof.

Even if the micro solutions Ui ,s have lower regularity than is assumed in Lemma 6.3.1 and the

rate (6.52) is not achieved, one still has

lim
h2→0

inf
V∈X

h2
mic

‖Ui ,s −V‖Xmic = 0

and therefore

lim
h2→0

‖b0(s)−bh2 (s)‖F = 0 ∀s ∈Ω×Y . (6.54)

Thus, for any s ∈Ω×Y the permeability bh2 (s) is positive definite for sufficiently small h2.

If the limit (6.54) is uniform with respect to s ∈Ω×Y then for sufficiently small h2 there are

constants 0 <λb ≤Λb (denoted as in (6.17) to simplify the notation) such that

bh2 (s)ξ ·ξ≥λb |ξ|2, |bh2 (s)ξ| ≤Λb |ξ|, ∀ξ ∈Rd , ∀s ∈Ω×Y . (6.55)

Even it the limit (6.54) is not uniform for s ∈Ω×Y , the uniform bounds (6.55) are valid for

sufficiently small h2 > 0 if we restrict the parameter s to Q H ×Qh1 .

We now consider the tensor β0 and its numerical approximation βh2 . Using (6.55) and (6.2)

we conclude that βh2 is symmetric and uniformly coercive and bounded. Thus, there are
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constants 0 <λK ≤ΛK (denoted the same as in (6.18), for simplicity of notation) such that

βh2 (x, y)ξ ·ξ≥λK |ξ|2, |βh2 (x, y)ξ| ≤ΛK |ξ|, ∀ξ ∈Rd , ∀(x, y) ∈Ω×YP. (6.56)

Since b0 and bh2 are symmetric and with all eigenvalues in the range [λb ,Λb], there is a

constant C > 0 such that

‖b0(s)−1 −bh2 (s)−1‖F ≤C‖b0(s)−bh2 (s)‖F ∀s ∈Ω×Y . (6.57)

Let us sketch a proof of the inequality (6.57). Let M be the set of symmetric matrices with

eigenvalues in the interval [λb ,Λb]. It can be shown that M is a connected compact set in Rd×d .

Since the mapping A → A−1 is smooth in M , its derivatives are bounded and the mapping is

thus Lipschitz.

Using (6.57) and (6.2) we conclude that there is C > 0 such that

‖β0(s)−βh2 (s)‖F ≤C‖b0(s)−bh2 (s)‖F ∀s ∈Ω×YP. (6.58)

We next consider the meso problem (6.34) and its numerical approximation (6.43). Since

we are using a stable FE pair, the tensor βh2 is coercive and continuous (see (6.56)), and the

quadrature formula satisfies the assumption 6.42, the problem (6.43) is well-posed and there

are constants 0 <λmes ≤Λmes (denoted as in (6.38) to simplify the notation) such that for any

x ∈Ω we have

inf
U∈X

h1
mes

U�=0

sup
V∈X

h1
mes

V�=0

Ah1
mes(U,V; x)

‖U‖Xmes‖V‖Xmes

≥λmes, sup
U∈X

h1
mes

U�=0

sup
V∈X

h1
mes

V�=0

Ah1
mes(U,V; x)

‖U‖Xmes‖V‖Xmes

≤Λmes.

Using the same approach as in (6.49), it can be shown that ah1 (x) is symmetric for any x ∈Ω

because of the symmetry of the bilinear form Ah1
mes.

Let us now provide a bound for the difference a0−ah1 . Let x ∈Ω and i , j ∈ {1, . . . ,d} be arbitrary.

We obtain
a0

i j (x)−ah1
i j (x) =Gi

mes(U j ,x ; x)−Gi
mes(U j ,x

h1
; x)

= Ames(Ui ,x ,U j ,x ; x)− Ah1
mes(Ui ,x

h1
,U j ,x

h1
; x)

= Ames(Ui ,x −Ui ,x
h1

,U j ,x −U j ,x
h1

; x)

+ (Ames − Ah1
mes)(Ui ,x

h1
,U j ,x

h1
; x)

(6.59)

using the definitions (6.34), (6.35) and (6.43), (6.44). Using the triangle inequality in (6.59)

gives

|a0
i j (x)−ah1

i j (x)| ≤ |E(x)|+ |E1(Ui ,x
h1

,U j ,x
h1

; x)|+ |E2(Ui ,x
h1

,U j ,x
h1

; x)|, (6.60)
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where the three functions E , E1, and E2 are defined by

E(x) = Ames(Ui ,x −Ui ,x
h1

,U j ,x −U j ,x
h1

; x),

E1(U,V; x) =
∫

YP

β0u ·udy − ∑
T∈T P

h1

Jmes∑
j=1

ωT j β
0(x, yT j )u(yT j ) ·v(yT j ),

E2(U,V; x) = ∑
T∈T P

h1

Jmes∑
j=1

ωT j (β0(x, yT j )−βh2 (x, yT j ))u(yT j ) ·v(yT j ),

(6.61)

where U,V ∈ X h1
mes are arbitrary and U = (u, p,λ) and V = (v, q,κ).

Upper bounds for the terms from (6.61) can be obtained as follows. By (6.37) we have

|E(x)| ≤Λmes‖Ui ,x −Ui ,x
h1

‖Xmes‖U j ,x −U j ,x
h1

‖Xmes . (6.62)

For sufficiently smooth β0 and non-negative integers n1,n2 ∈N0 with n1,n2 ≤ k +1 the error

of the quadrature formula can be estimated (see [47, 46]) by

|E1(U,V; x)| ≤C hn1+n2
1 ‖β0(x, ·)‖W̄ n1+n2,∞(YP)d×d ‖u‖H̄ n1 (YP)d ‖v‖H̄ n2 (YP)d , (6.63)

where C > 0 is a constant independent of h1. By the norm and triangle inequalities we get

|E2(U,V; x)| ≤ max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F
∑

T∈T P
h1

Jmes∑
j=1

ωT j |u(yT j )||v(yT j )|. (6.64)

Using the Cauchy–Schwarz inequality and the assumption (6.42) we obtain

∑
T∈T P

h1

Jmes∑
j=1

ωT j |u(yT j )||v(yT j )| ≤
( ∑

T∈T P
h1

Jmes∑
j=1

ωT j |u(yT j )|2
) 1

2
( ∑

T∈T P
h1

Jmes∑
j=1

ωT j |v(yT j )|2
) 1

2

= ‖u‖L2(YP)d ‖v‖L2(YP)d ≤ ‖U‖Xmes‖V‖Xmes .

(6.65)

Combining (6.64) and (6.65) gives

|E2(U,V; x)| ≤ max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F‖U‖Xmes‖V‖Xmes . (6.66)

Lemma 6.3.2. Assume that the solution Ui ,x = (ui ,x , pi ,x ,λi ,x ) to the meso problem (6.34) satis-

fies Ui ,x ∈ X ∗
mes, where X ∗

mes = Xmes∩(H k+2(Y )d×H k+1(Y )×R) and thatβ0(x, ·) ∈ W̄ 2(k+1),∞
per (Th1 )d×d

for every x ∈Ω and i ∈ {1, . . . ,d}. Further suppose that that the there are constants C ′,C ′′ > 0

such that ‖Ui ,x‖X ∗
mes

≤ C ′ and ‖β0(x, ·)‖W̄ 2(k+1),∞
per (Th1 )d×d ≤ C ′′ for every x ∈ Ω and i ∈ {1, . . . ,d}.

Then there is a constant C > 0 such that

‖a0(x)−ah1 (x)‖F ≤C

(
h2(k+1)

1 + max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F

)
∀x ∈Ω. (6.67)
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Proof. We prove (6.67) by using the estimate (6.60) and the follow-up estimates (6.62), (6.63),

and (6.66). Let us start with bounding E(x). The right hand side of (6.62) contains the error

term ‖Ui ,x −Ui ,x
h1

‖Xmes . We address it by considering the first Strang’s lemma for indefinite

problems, which gives

‖Ui ,x −Ui ,x
h1

‖Xmes ≤C inf
V∈X

h1
mes

V�=0

(
‖Ui ,x −V‖Xmes + sup

W∈X
h1
mes

W�=0

(Ames − Ah1
mes)(V,W; x)

‖W‖Xmes

)
.

Hence,

‖Ui ,x −V‖Xmes ≤ ‖Ui ,x −V‖Xmes + sup
W∈X

h1
mes

W�=0

E1(V,W; x)

‖W‖Xmes

+ sup
W∈X

h1
mes

W�=0

E2(V,W; x)

‖W‖Xmes

(6.68)

for any V ∈ Xmes. Let us substitute V by the standard FE interpolant Πh1 (Ui ,x ) and bound the

three terms in (6.68) one by one. By the interpolation theory for Sobolev spaces (see [46])

there is C > 0 such that

‖Ui ,x −Πh1 (Ui ,x )‖Xmes ≤C hk+1
1 ‖Ui ,x‖X ∗

mes
≤C hk+1

1 . (6.69)

Using (6.63) with n1 = k +1 and n2 = 0 we conclude that there is C > 0 such that

sup
W∈X

h1
mes

W�=0

E1(Πh1 (Ui ,x ),W; x)

‖W‖Xmes

≤C hk+1
1 ‖β0(x, ·)‖W̄ k+1,∞(YP)d×d ‖ui ,x‖H̄ k+1(YP)d ≤C hk+1

1 . (6.70)

Estimate (6.66) yields

sup
W∈X

h1
mes

W�=0

E2(Πh1 (Ui ,x ),W; x)

‖W‖Xmes

≤ max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F‖Πh1 (Ui ,x )‖Xmes . (6.71)

Using (6.69), (6.70), and (6.71) in (6.68) and the boundedness assumptions we conclude that

there is C > 0 such that

‖Ui ,x −Ui ,x
h1

‖Xmes ≤C
(
hk+1

1 + max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F

)
,

which together with (6.62) implies that there is C > 0 such that

|E(x)| ≤C
(
h2(k+1)

1 + max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖2
F

)
. (6.72)

134



6.3. The three-scale numerical method

Let us bound the second term from (6.60). For any V,W ∈ X h1
mes we have

E1(Ui ,x
h1

,U j ,x
h1

; x) = E1(Ui ,x
h1

−V,U j ,x
h1

−W; x)+E1(V,U j ,x
h1

−W; x)

+E1(Ui ,x
h1

−V,W; x)+E1(U,W; x).

Applying the estimate (6.63) with appropriate constants n1,n2 ∈ {0,k +1} we conclude that

there is C > 0 (depending only on C ′′ and on the shape-regularity of Th1 ) such that

|E1(Ui ,x
h1

,U j ,x
h1

; x)| ≤C
(
‖ui ,x

h1
−v‖L2(YP)d +hk+1

1 ‖v‖H̄ k+1(YP)d

)
·
(
‖u j ,x

h1
−w‖L2(YP)d +hk+1

1 ‖w‖H̄ k+1(YP)d

)
≤C

(
‖ui ,x

h1
−ui ,x‖L2(YP)d +‖ui ,x −v‖L2(YP)d +hk+1

1 ‖v‖H̄ k+1(YP)d

)
·
(
‖u j ,x

h1
−u j ,x‖L2(YP)d +‖u j ,x −w‖L2(YP)d +hk+1

1 ‖w‖H̄ k+1(YP)d

)
.

Plugging in V =Πh1 (Ui ,x
h1

) and W =Πh1 (U j ,x
h1

) we conclude that there is C > 0 such that

|E1(Ui ,x
h1

,U j ,x
h1

; x)| ≤C (h2(k+1)
1 + max

y∈Qh1

‖β0(x, y)−βh2 (x, y)‖2
F). (6.73)

Finally, we bound the third term from (6.60). Using (6.66) we obtain

|E2(Ui ,x
h1

,U j ,x
h1

; x)| ≤C max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F‖Ui ,x
h1

‖Xmes‖U j ,x
h1

‖Xmes . (6.74)

We can combine now the triangle inequality (6.60) with the estimates (6.72), (6.73), and (6.74)

and the boundedness assumptions to show that there is a constant C > 0 such that

|a0
i j (x)−ah1

i j (x)| ≤C
(
h2(k+1)

1 + max
y∈Qh1

‖β0(x, y)−βh2 (x, y)‖F

)

for any x ∈Ω, which implies the bound (6.67).

Even if the regularity assumptions of Lemma 6.3.2 are not valid the mesoscopic solutions still

satisfy

lim
h1→0

lim
h2→0

‖Ui ,x −Ui ,x
h1

‖Xmes = 0 ∀x ∈Ω,

which in turn implies that

lim
h1→0

lim
h2→0

‖a0(x)−ah1 (x)‖F = 0 ∀x ∈Ω. (6.75)

If the limit (6.75) is uniform with respect to x ∈Ω then for sufficiently small h1 and h2 there

are constants 0 <λa ≤Λa (denoted as in (6.24) to simplify the notation) such that

ah1 (x)ξ ·ξ≥λa |ξ|2, |ah1 (x)ξ| ≤Λa |ξ|, ∀ξ ∈Rd , ∀x ∈Ω. (6.76)
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Even if the limit (6.75) is not uniform for x ∈Ω, we can have (6.76) over a finite set x ∈Q H .

At the macro scale, the analysis is the same as in the two-scale method. Using the proper-

ties (6.76) and Assumption 3.1.1 one can show (see Proposition 3.1.8) that

BH (q H , q H ) ≥λa |q H |2H 1(Ω) ∀q H ∈ Sl (Ω,TH ),

BH (q H ,r H ) ≤Λa |q H |H 1(Ω)|r H |H 1(Ω) ∀q H ,r H ∈ Sl (Ω,TH ),

LH (q H ) ≤Λa‖fH‖L2(Ω)d |q H |H 1(Ω)/R ∀q H ∈ Sl (Ω,TH ).

Thus the macro problem (6.46) is well-posed and the unique solution can be bounded by

|p H |H 1(Ω) ≤Λa/λa‖fH‖L2(Ω)d .

Lemma 6.3.3. Suppose that p0 ∈ H l+1(Ω) and that a0 ∈ W̄ l ,∞(Ω)d×d . Then there is C > 0 such

that

|p0 −p H |H 1(Ω) ≤C
(
H l +‖f− fH‖L2(Ω)d +‖fH‖L2(Ω)d max

x∈Q H

‖a0(x)−ah1 (x)‖F

)
.

Proof. The proof follows the lines of the proof of Theorem 3.2.2.

Theorem 6.3.4. Let the assumptions of Lemma 6.3.1, Lemma 6.3.2, and Lemma 6.3.3 be satis-

fied and let f ∈ H̄ l (Ω)d . Then there is a constant C > 0 such that

|p0 −p H |H 1(Ω) ≤C (H l +h2(k+1)
1 +h2(m+1)

2 ).

Proof. The desired inequality is obtained by using Lemma 6.3.3, Lemma 6.3.2, estimate (6.58),

and Lemma 6.3.1 (in this order). The regularity of f allows an estimate ‖f− fH‖L2(Ω)d ≤C H l for

some C > 0.

The a priori convergence rate of Theorem 6.3.4 is mainly theoretical since the assumed reg-

ularity of the micro and meso problems may be difficult to achieve for practical problems.

Therefore, non-uniform meshes that are adapted to geometries of macro, meso, or micro do-

mains should be used in practice. Using possibly non-uniform meshes, denoting the number

of degrees of freedom by Nmac = dim(Sl (Ω,TH )), Nmes = dim(Xmes), and Nmic = dim(Xmic),

the estimate from Theorem 6.3.4 reads as

|p0 −p H |H 1(Ω) ≤C

(
N

− l
d

mac +N
− 2(k+1)

d
mes +N

− 2(m+1)
d

mic

)
. (6.77)

Since the macroscopic problem is the same as in the two-scale methods from chapters 3–5,

most of the technology that was developed there can be applied in the three-scale problem.

For example, it is now straightforward to develop residual-based a posteriori error estimates

on the macro scale and provide an adaptive three-scale method (see section 3.3 and 4.5) or

use a conservative macroscopic approximation (see section 5.2).
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6.3.3 Computational cost

The computational cost of the three-scale numerical method presented in this section does

not depend on the pore sizes ε1 and ε2, they are only present as multiplicative constants in the

meso problem (6.43). We assume that the number of quadrature points we consider on the

macro and meso scale is proportional to Nmac and Nmes, respectively. We thus need to solve

one macroscopic problem, O (Nmac) mesoscopic problems, and O (NmacNmes) microscopic

problems. Further, let us assume that after assembling the computational cost of solving

one (micro, meso, or macro) problem is linear in the DOF. The total cost of the three-scale

numerical method is then O (NmacNmesNmic). Notice that the micro problems are independent

of each other and therefore a parallel implementation of the three-scale method is easily

scalable to many threads.

6.4 Reduced basis three-scale numerical method

In this section we propose a new reduced basis three-scale numerical method for Stokes flow

in porous media. We depart from the three-scale numerical method described in section 6.3

and apply the RB method from section 4.2 to the meso and micro scale. We build this new

method bottom-up, starting with the micro scale. Application of the RB method at the micro

scale is similar as in the two-scale problem (see section 4.3). However, there is no direct way to

obtain an affine decomposition of the meso problem, which is a fundamental assumption for

an efficient RB method. We solve this obstacle by an approximate expansion of the mesoscopic

bilinear form obtained by the empirical interpolation method [31].

Affine decomposition of the micro problem. The micro problem (6.40), (6.41) has the same

form as (4.20), (4.21). Micro problems are parametrized by s ∈Ω×YP, which corresponds to

μ = s and D =Ω×YP, and we work in the Hilbert space X = X h2
mic. To apply the RB method

we need to provide an affine decomposition of the type (4.30) for Amic and Gi
mic. Let us start

with the affine forms Gi
mic. Using (6.33) in (6.32) gives Gi

mic(V; s) =∫ZF
det(∇zϕmic(s, z))ei ·vdz

for every V = (v, q,κ) ∈ X h2
mic. Our goal is to write Gi

mic(V; s) as a sum of products of functions

depending only on s and only on V. A standard way to provide such decomposition is with the

following assumption on the geometry transformation ϕmic.

Assumption 6.4.1. Let Rmic ∈N and assume that {Z r
F }Rmic

r=1 is a disjoint partition of ZF such that

the restriction ϕmic(s, z)|z∈Z r
F

is affine for every s ∈Ω×Y and r ∈ {1, . . . ,Rmic}. Moreover, for

any K ∈Th2 there is r ∈ {1, . . . ,Rmic} such that K ∈ Z r
F .

As in section 4.3, Assumption 6.4.1 implies that ∇zϕmic(s, z) is constant in z ∈ Z r
F for every
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s ∈Ω×Y . Using this in the definition (6.33) we obtain that for any s ∈Ω×Z r
F we have

ρ(s, z) = ρr (s) := det(J r (s))(J r (s)� J r (s))−1,

σ(s, z) =σr (s) := det(J r (s))J r (s)−�,

τ(s, z) = τr (s) := det(J r (s)),

where the Jacobian J r (s) is the constant value of ∇zϕmic(s, z) for z ∈ Z r
F . Hence, the bilinear

form Amic and the linear forms Gi
mic can be affinely decomposed as follows. For any U =

(u, p,λ) ∈ X , V = (v, q,κ) ∈ X , and s ∈Ω×Y we have

Amic(U,V; s) =
d∑

i , j=1

Rmic∑
r=1

ρr
i j (s)

∫
Z r

F

∂u

∂zi
· ∂v

∂z j
dz

−
d∑

i , j=1

Rmic∑
r=1

σr
i j (s)

∫
Z r

F

(∂vi

∂z j
p + ∂ui

∂z j
q
)

dz

+
Rmic∑
r=1

τr (s)
∫

Z r
F

(λq +κp)dz,

Gi (V; s) =
Rmic∑
r=1

τr (s)
∫

Z r
F

ei ·vdz.

(6.78)

Using symmetry of ρ and σ we can obtain an affine decomposition of Amic with Qmic
A =

Rmic(1+d +d 2). The affine decomposition of Gi has Qmic
G = Rmic terms.

RB at the micro scale. Thus, all the requirements of the RB method are met. We set the

tolerance εRB
mic > 0 and choose a training set of parameters ΞRB

mic ⊂Ω×YP and the RB offline

computation can start by running Algorithm 4.2.4. The RB approximation of the solution Ui ,s
h2

is denoted by Ui ,s
RB and the resulting approximation of bh2 (s) by the RB method (see (4.27)) is

defined by

bRB
i j (s) =Gi

mic(U j ,s
RB; s)+G j

mic(Ui ,s
RB; s)− Amic(Ui ,s

RB,U j ,s
RB; s).

Affine decomposition of the meso problem. We update the meso problem (6.43), (6.44) to

include the upscaled meso permeability bRB instead of bh2 . We replace the bilinear form Ah1
mes

(defined in (6.45)) with

ARB
mes(U,V; x) = Astokes

mes (U,V; x)+ ∑
T∈T P

h1

Jmes∑
j=1

ωT j β
RB(x, yT j )u(yT j ) ·v(yT j )dy, (6.79)

where βRB : Ω×YP :→Rd×d is defined by

βRB(x, y) = ε2
1

ε2
2

det(∇yϕmes(x, y))(bRB(x,ϕmic(x, y)))−1.
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From now on we consider the meso problem with the bilinear form (6.79) and the original

right-hand side Gi as in (6.43). Meso problems have the same structure as the model problem

in section 4.2. They are parametrized by x ∈Ω, which corresponds to μ= x and D =Ω, and

we use the Hilbert space X = X h1
mes. To successfully apply the RB method we need to provide

an affine decomposition (4.30) to the bilinear form ARB
mes and to the linear forms Gi

mes defined

in (6.36). Let us start with an additional assumption on ϕmes that will help us with a part of

the decomposition.

Assumption 6.4.2. Let Rmes ∈N and assume that {Y r }Rmes
r=1 is a disjoint partition of Y such that

the restriction ϕmes(x, y)|y∈Y r is linear for every x ∈Ω and r ∈ {1, . . . ,Rmes}. Moreover, for every

T ∈Th1 there is r ∈ {1, . . . ,Rmes} such that T ∈ Y r .

Using Assumption 6.4.2 we can repeat the reasoning we used with the micro problems to show

that the linear forms Gi
mes and the bilinear form Astokes

mes allow an affine decomposition with

Qmes
G and Qmes

A terms, respectively. However, we cannot apply the same reasoning to the term

with quadrature formula in (6.79) since a form of the function βRB(x, y) that would separate

x and y is not known. This problem can be solved by considering a suitable approximation

of (6.79) given by the empirical interpolation method described below. For the moment, let us

assume that we have an approximate expansion

βEIM(x, y) =
NEIM∑
n=1

qn(y)r n(x) ≈βRB(x, y), (6.80)

where qn : YP → Rd×d and r n : Ω→ R for n ∈ {1, . . . , NEIM} and NEIM ∈N. We then substitute

the expansion (6.80) in (6.79) and define

AEIM
mes(U,V; x) = Astokes

mes (U,V; x)+ ∑
T∈T P

h1

Jmes∑
j=1

ωT j β
EIM(x, yT j )u(yT j ) ·v(yT j )dy. (6.81)

Let the affine decomposition of Astokes
mes (U,V; x) be composed of coefficients ΘA

q (x) and non-

parametric bilinear forms Aq (U,V), where the index q is in range {NEIM +1, . . . , NEIM +Qmes
A }.

Changing the summation order in (6.81) and applying (6.80) and the affine decomposition of

Astokes
mes gives

AEIM
mes(U,V; x) =

NEIM∑
n=1

r n(x)︸ ︷︷ ︸
=:ΘA

n (x)

∑
T∈T P

h1

Jmes∑
j=1

ωT j qn(yT j )u(yT j ) ·v(yT j )dy

︸ ︷︷ ︸
=:An (U,V)

+
NEIM+Qmes

A∑
q=NEIM+1

ΘA
q (x)Aq (U,V).
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Updated meso problem. At the meso scale we replace the original problem (6.43), (6.44)

with the following approximation. For every x ∈Ω and i ∈ {1, . . . ,d} find Ui ,x
EIM ∈ X h1

mes such that

AEIM
mes(Ui ,x

EIM,V; x) =Gi
mes(V; x) ∀V ∈ X h1

mes, (6.82)

aEIM
i j (x) =Gi

mes(U j ,x
h1

; x) ∀i , j ∈ {1, . . . ,d}. (6.83)

We have shown that Assumption 6.4.2 and the approximate expansion (6.80) imply that AEIM
mes

and Gi
mes have affine decompositions of sizes Qmes

A + NEIM and Qmes
G , respectively. Let us

explain the last piece of the meso RB method, the construction of (6.80).

Empirical interpolation method. An approximate expansion such as (6.80) can be con-

structed using the empirical interpolation method [31]. For brevity we explain the method in

a general setting and then show how it applies to our problem.

Consider sets D and P and a function f : D×P →R. We build a sequence of approximations

of f denoted by IN [ f ] : D×P →R indexed by N ∈ {0,1, . . . , NEIM}, where NEIM ∈N is the final

size of the approximation. With an offline greedy algorithm (see below) we construct the

so-called magic points yn ∈P and functions qn : P →R for n ∈ {1, . . . , NEIM}. We then define

I0[ f ](x, y) ≡ 0 and for N ≥ 1 we let

IN [ f ](x, y) =
N∑

n=1
qn(y)

( N∑
m=1

B N
nm f (x, ym)

)
, (6.84)

where B N is the inverse of the matrix (qm(yn))1≤n,m≤N . The coefficients that multiply qn

in (6.84) can be computed in the online stage with only N evaluations of the function f and

one matrix-vector multiplication with the matrix of size N ×N . Let us define the error of the

EIM approximation simply by

EN [ f ](x, y) = f (x, y)− IN [ f ](x, y).

Algorithm 6.4.3 (EIM offline stage). Set a tolerance εEIM > 0. For n = 0,1, . . . do:

1. Find where the interpolation commits the largest pointwise error:

xn+1, yn+1 ←− arg max
x∈D,y∈P

|En[ f ](x, y)|. (6.85)

If |En[ f ](xn+1, yn+1)| < εEIM then we stop iterating and let NEIM ←− n.

2. We define qn+1 : P →R as

qn+1(y) ←− En[ f ](xn+1, y)

En[ f ](xn+1, yn+1)
·
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Application of EIM to obtain (6.80). For several reasons it is not straightforward to apply the

EIM to obtain the expansion (6.80). First, values of the function βRB(x, y) are not real numbers

but real matrices of size d×d . Second, the set Ω×YP is infinite, therefore, a direct evaluation of

expressions as (6.85) can be problematic. We address the first point by considering a function

f : Ω× (YP × {1, . . . ,d}2) →R defined by

f (x, (y, i , j )) =βRB
i j (x, y).

The second point can be addressed by taking only finite samples of Ω and YP that we denote

by D =ΞEIM
mac ⊂Ω and P =ΞEIM

mes ⊂ YP, respectively. The offline EIM algorithm then becomes

numerically feasible. We obtain NEIM ∈N and a sequence of magic points (yn , in , jn) ∈ YP ×
{1, . . . ,d}2 and functions qn : YP × {1, . . . ,d}2 →R for n ∈ {1, . . . , NEIM}. The real functions qn are

then reshaped into matrix-valued functions by qn
i j (y) = qn(y, i , j ). Thus, we define

βEIM(x, y) =
NEIM∑
n=1

qn(y)
(NEIM∑

m=1
BnmβRB

im jm
(x, ym)

)
,︸ ︷︷ ︸

=:r n (x)

(6.86)

which is a decomposition of the desired form (6.80). Given a tolerance εEIM, we can perform

the offline EIM algorithm and it is guaranteed that

‖βRB(x, y)−βEIM(x, y)‖F ≤CεEIM (6.87)

for every (x, y) ∈ΞEIM
mac ×ΞEIM

mes. If the training samples are dense enough in Ω×YP we expect

that the inequality (6.87) holds for every (x, y) ∈ Q H ×Qh1 . We advise to choose ΞEIM
mac ⊂ Q H

(quadrature points of the initial macro mesh) and ΞEIM
mes ⊂ Qh1 (quadrature points of the

mesoscopic mesh used to compute the RB functions) so that the training sets contain only a

fraction of the total number of the quadrature points.

RB at the meso scale. An affine decomposition of the modified meso problem (6.82) has

been provided and thus the requirements of the RB method are met. Given a tolerance εRB
mes > 0

and a finite set of training parameters ΞRB
mes ⊂Ω we are ready to run the RB offline stage. The RB

approximation of Ui ,x
EIM is denoted as Ui ,x

RB and the RB approximation of the output of interest

aEIM(x) is defined by

aRB
i j (x) =Gi

mic(U j ,x
RB ; x)+G j

mic(Ui ,x
RB; x)− AEIM

mes(Ui ,x
RB,U j ,x

RB ; x). (6.88)

Macro problem. Finally, we are ready to update the macroscopic problem (6.46) to the

following. Find p H ,RB ∈ Sl (Ω,TH )/R such that

BH ,RB(p H ,RB, q H ) = LH ,RB(q H ) ∀q H ∈ Sl (Ω,TH )/R, (6.89)
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where BH ,RB and LH ,RB are defined as in (6.47) but with the tensor aRB instead of ah1 .

6.4.1 Summary

The goal of the method we presented is to solve the macro problem (6.89), where the perme-

ability aRB needs to be evaluated at every macroscopic quadrature point. Before we can use

the RB online computation for a fast evaluation of aRB, several offline algorithms need to run.

We plot the processes that yields an online evaluation of aRB in a comprehensive flowchart

diagram in Figure 6.3. For simplicity, we excluded the successive constraint method from the

diagram, which needs to be applied twice: before the micro RB offline stage and before the

meso RB offline stage.

s �→ΘA(s),ΘG (s)

bRB : Ω×YP →Rd×d

r n : Ω→R

x �→ΘA(x),ΘG (x)

aRB : Ω→Rd×d

affine decomposition

micro RB offline

EIM offline: (6.86)

affine decomposition
of (6.82), (6.83)

meso RB offline

(6.40), (6.41)

εRB
mic, ΞRB

mic

εEIM, ΞEIM
mac, ΞEIM

mes

(6.43), (6.44)

εRB
mes, ΞRB

mes

m
ic

ro
E

IM
m

es
o

OnlineOfflineUser input

Figure 6.3 – A comprehensive guide to the computation of aRB. Thin arrows show the order of
processing. In the “online” column the thick arrows show dependence of computation, for
example, to evaluate bRB(s) for some s ∈Ω×YP we need to evaluate ΘA(s) and ΘG (s).

Time cost. Let N RB
mic be the maximal size of the RB on the micro scale (that is, maxi∈{1,...,d} Ni )

and let N RB
mes be the same for the meso scale. Let Nmac, Nmes, Nmic be the number of degrees

of freedom of the FE problem (6.89), (6.82), (6.40), respectively. Let Qmic
A ,Qmic

G and Qmes
A ,Qmes

G

be the sizes of affine decompositions of the micro and the Stokes part of the meso problem,

respectively. For simplicity, let us denote Qmic = max{Qmic
A ,Qmic

G } and Qmes = max{Qmes
A ,Qmes

G }.

For any s ∈Ω×YP the time cost of evaluation of bRB(s) is O ((N RB
micQmic)2), as was discussed in

section 4.2. For any x ∈Ω the time cost of evaluation of the coefficients r n(x) for n = 1, . . . , NEIM

takes NEIM online evaluations of bRB and a matrix-vector multiplication with the matrix of size

NEIM ×NEIM, which makes a total of O (NEIM(N RB
micQmic)2 +N 2

EIM). To obtain the time cost of

the online evaluation of aRB(x) we need to add assembling and solution of the online system,

which gives O (NEIM(N RB
micQmic)2 + (N RB

mes(NEIM +Qmes))2) in total. The total time cost of the

online stage of the reduced basis three-scale method is thus

O (Nmac(NEIM(N RB
micQmic)2 + (N RB

mes(NEIM +Qmes))2)).

142



6.4. Reduced basis three-scale numerical method

6.4.2 A priori error estimates

In this section we show well-posedness of the RB three-scale numerical method presented

and derive a priori error estimates. We follow the a priori error analysis from section 6.3.2

and take into account the additional approximation techniques: reduced basis and empirical

interpolation method.

Let us start with the micro scale. It was shown that the micro problem (6.30) and its discretiza-

tion (6.40) are well-posed (see (6.37), (6.39), and (6.48)). It was shown under rather general

assumptions on the micro geometries that the permeability tensor b0 is uniformly bounded

and elliptic (see (6.17)) and the same is true for bh2 for sufficiently small h2 (see (6.55)). More-

over, both b0 and bh2 are symmetric.

Lemma 6.4.4. Suppose that the assumptions of Lemma 6.3.1 hold. Then there exists C > 0 such

that for any x ∈Ω×Y we have

‖b0(s)−bRB(s)‖F ≤C

(
h2(m+1)

2 +
d∑

i=1
‖Ui ,s

h2
−Ui ,s

RB‖2
Xmic

)
.

Proof. We use the triangle inequality

‖b0(s)−bRB(s)‖F ≤ ‖b0(s)−bh2 (s)‖F +‖bh2 (s)−bRB(s)‖F

and apply Lemma 6.3.1 and the a priori error estimates in output of interest from Lemma 4.2.10.

By Lemma 6.4.4 and (6.55) we see that if the error of the RB approximation is sufficiently small,

then we can conclude that bRB is also uniformly bounded and constant, that is, there are

constants 0 <λb ≤Λb (denoted similarly as in (6.17), for simplicity) such that

bRB(s)ξ ·ξ≥λb |ξ|2, |bRB(s)ξ| ≤Λb |ξ|, ∀ξ ∈Rd , ∀s ∈Ω×Y . (6.90)

Furthermore, by symmetry of Amic, the tensor bRB is also symmetric.

Similarly as in section 6.3.2 we conclude from (6.90) and (6.2) that βRB(s) is bounded, and

positive definite, that is, there are constants 0 <λK ≤ΛK (denoted the same as in (6.18), for

simplicity of notation) such that

βRB(x, y)ξ ·ξ≥λK |ξ|2, |βRB(x, y)ξ| ≤ΛK |ξ|, ∀ξ ∈Rd , ∀(x, y) ∈Ω×YP. (6.91)

Since bRB is symmetric then βRB(s) is symmetric too. Furthermore, there is a constant C > 0

that depends only on λK and ΛK such that

‖βh2 (s)−βRB(s)‖F ≤C‖bh2 (s)−bRB(s)‖F ∀s ∈Ω×YP.
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Finally, consider the EIM approximation of βRB that we denoted by βEIM and defined in (6.86).

The bound (6.87) is a priori valid only on the EIM training set. Assuming that (6.87) is valid

for all (x, y) ∈Ω×Qh1 , it can be derived from (6.91) that βEIM is also uniformly elliptic and

bounded for a sufficiently small tolerance εEIM. Hence, there are constants 0 <λK ≤ΛK (using

the same notation as in (6.18), for simplicity) such that

βEIM(x, y)ξ ·ξ≥λK |ξ|2, |βEIM(x, y)ξ| ≤ΛK |ξ|, ∀ξ ∈Rd , ∀(x, y) ∈Ω×Qh1 .

Consequently, the meso problem (6.82) is well-posed, that is, there are constants 0 <λmes ≤
Λmes (using the same notation as in (6.38), for simplicity) such that for any x ∈Ω we have

inf
U∈X

h1
mes

U�=0

sup
V∈X

h1
mes

V�=0

AEIM
mes(U,V; x)

‖U‖Xmes‖V‖Xmes

≥λmes, sup
U∈X

h1
mes

U�=0

sup
V∈X

h1
mes

V�=0

AEIM
mes(U,V; x)

‖U‖Xmes‖V‖Xmes

≤Λmes. (6.92)

Hence, the RB method at the meso scale is also well-posed and the macroscopic permeability

aRB(x) is well-defined in (6.88). Since βEIM is symmetric it is evident that AEIM
mic is symmetric

and thus aRB is symmetric.

Lemma 6.4.5. Suppose that (6.92) and the assumptions from Lemma 6.3.2 hold. Then there is

C > 0 such that for any x ∈Ω we have

‖a0(x)−aRB(x)‖F ≤C

(
h2(k+1)

1 + max
y∈Qh1

‖β0(x, y)−βEIM(x, y)‖F +
d∑

i=1
‖Ui ,x

EIM −Ui ,x
RB‖2

Xmes

)
.

Proof. The triangle inequality gives

‖a0(x)−aRB(x)‖F ≤ ‖a0(x)−aEIM(x)‖F +‖aEIM(x)−aRB(x)‖F.

Using Lemma 6.3.2 for the first term and the a priori error estimates in output of interest from

Lemma 4.2.10 for the second term gives the desired result.

For sufficiently good RB and EIM approximation and sufficiently small h2 and h1 we get that

aRB is uniformly elliptic and bounded. Thus, there are constants 0 < λa ≤ Λa (denoted as

in (6.24), for simplicity) such that

aRB(x)ξ ·ξ≥λa |ξ|2, |aRB(x)ξ| ≤Λa |ξ|, ∀ξ ∈Rd , ∀x ∈Ω. (6.93)

This leads to the first global a priori error estimate.

Lemma 6.4.6. Suppose that (6.93) and the assumptions of Lemma 6.3.3 hold. Then there is

C > 0 such that

|p0 −p H ,RB|H 1(Ω) ≤C
(
H l +‖f− fH‖L2(Ω)d +‖fH‖L2(Ω)d max

x∈Q H

‖a0(x)−aRB(x)‖F

)
.

144



6.5. Numerical experiments.

Proof. The proof follows the lines of the proof of Theorem 3.2.2.

Finally, we propose a fully discrete a priori error estimate.

Theorem 6.4.7. Suppose that assumptions of Lemma 6.4.6, Lemma 6.4.5, and Lemma 6.4.4

hold and that f ∈ H l (Ω)d . Then there is a constant C > 0 such that

|p0 −p H ,RB|H 1(Ω) ≤C

(
H l +h2(k+1)

1 +h2(m+1)
2 + max

s∈Q H×Qh1

d∑
i=1

‖Ui ,s
h2

−Ui ,s
RB‖2

Xmic

+ max
s∈Q H×Qh1

‖βRB(s)−βEIM(s)‖F + max
x∈Q H

d∑
i=1

‖Ui ,x
EIM −Ui ,s

RB‖2
Xmes

)
.

Proof. The proof is a direct application of Lemma 6.4.6, Lemma 6.4.5, and Lemma 6.4.4. The

regularity of f allows the estimate ‖f− fH‖L2(Ω)d ≤C H l .

In Theorem 6.4.7 we resolved the errors coming from the FE discretization of the macro, meso,

and micro problems but we left the error terms stemming from the RB and EIM. If the training

sets of the offline algorithms include all the quadrature points, we get an estimate

|p0 −p H ,RB|H 1(Ω) ≤C

(
N

− l
d

mac +N
− 2(k+1)

d
mes +N

− 2(m+1)
d

mic + (εRB
mes)2 +εEIM + (εRB

mic)2
)

, (6.94)

where we used the degrees of freedom instead of mesh sizes as in (6.77). Let us remind that in

the online stage of the reduced basis three-scale method we can only change the macroscopic

mesh (H or Nmac) and the number of RB functions used at the meso scale, where we are

limited from above by the maximum achieved in the offline stage. All the other parameters

in Theorem 6.4.7 or in (6.94) have to be fixed in the offline stage. If the Kolmogorov n-widths

of the mesoscopic and microscopic solution manifolds decay exponentially, then so are the

mesoscopic and microscopic RB errors.

6.5 Numerical experiments.

In this section we test the proposed reduced basis three-scale method and study the effect of

different parameter choices on the global error.

Implementation. All experiments were performed on a single computer with two 8-core

processors Intel Xeon E5-2600 and 64 GB of RAM with Matlab R2015b. The finite element

code is inspired by [44, 19] and it uses vectorization techniques to achieve fast assembling.

Sparse linear systems are solved by the Matlab routine mldivide. Linear systems with the

same positive definite matrix representing the inner product on Xh are solved repeatedly in

the offline algorithms. We optimize this by precomputing a sparse Cholesky factorization

(Matlab routine chol). Generalized eigenproblems from the SCM method were solved using
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the Matlab package bleigifp [98], which implements a block, inverse-free Krylov subspace

method. Linear programming problems from the SCM method are solved by the Matlab

routine linprog with the default settings.

Macro scale. We consider the macroscopic domain Ω= (0,2)× (0,3) with periodic boundary

between the bottom edge (0,2)× {0} and the top edge (0,2)× {3} and Neumann boundary

conditions elsewhere. The macroscopic force field is constant f ≡ (0,−1). The macro geometry

and the coarsest macroscopic mesh are both shown in Figure 6.4.

f

Ω TH

Figure 6.4 – Macroscopic domain Ω with the direction of the constant force field f (left) and
the coarsest macroscopic mesh TH that we consider (right).

Meso scale. To describe the porosity at the meso scale we define the reference meso geome-

try (YF,YP) and the mapping ϕmes. Let

YP = {y ∈ Y ; max{|y1|, |y2|} < 1/8 or |y1| > 3/8 or |y2| > 3/8
}

as is depicted in Figure 6.5. The fluid part is then the complement YF = Y \YP. We define ϕmes

implicitly by describing the local mesoscopic domains Y x
P =ϕmes(x,YP) and Y x

F =ϕmes(x,YF).

For any x ∈Ω let Y x
P be such that the outer layer is unchanged but the the inner square is

moved so that it is centered at the point with coordinates [μ1(x),μ2(x)], where

μ1(x) = 1

8
sin

(
πx1

2
+ 2πx2

3

)
,

μ2(x) = 1

8
sin

(
πx1

2
− 2πx2

3

)
.

The mesoscopic domain Y can be divided into 6 subdomains as is shown in Figure 6.5 and the

deformation ϕmes(x, ·) : Y → Y can be defined so that it is affine in each of these subdomains.

It is important that |μ1(x)| < 1/4 and |μ2(x)| < 1/4 so that this deformation is not degenerate.

Micro scale. To describe the porosity at the micro scale we define the reference micro

geometry (ZF, ZS) and the mapping ϕmic. We define ZF and the coarsest micro mesh Th2 as is

depicted in Figure 6.6. We define ϕmic implicitly by describing the local microscopic domain

Z s
F =ϕmic(s, ZF). It is shown in Figure 6.6 how ZF can be divided by two horizontal and two
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Nmes = 685

1 2

3

4

5

6

0

0

1/8

1/8
ϕmes(x, ·)

μ1(x)

μ2(x)

Figure 6.5 – From left to right: the coarsest mesoscopic mesh Th1 ; division of Y into six
regions such that ϕmes is affine in each of them; reference mesoscopic domain (YP,YF); local
mesoscopic domain (Y x

P ,Y x
F ) that is obtained by applying ϕmes.

vertical lines. For any s = (x, y) ∈Ω×Y the fluid part Z s
F can be obtained by simply moving

these lines so that the geometry is stretched or contracted in the directions z1 and z2 as is

shown in Figure 6.6, where the deformation is controlled by

μ1(x, y) = 1

12
sin

(
πx1

2
− 2πx2

3

)
cos(2πy2),

μ2(x, y) = 1

12
sin

(
πx1

2
− 2πx2

3
+2πy1 +2πy2

)
.

(6.95)

Hence, ZF can be divided into 8 regions such that ϕmic(s, ·) is affine in each region.

Nmic = 1468

1 2 3

4 5

6 7 8

−1/6 1/6

−1/6

1/6

ϕmic(s, ·)
−1/6−μ1(s)

1/6+μ1(s)

−1/6−μ2(s)

1/6+μ2(s)

Figure 6.6 – From left to right: the coarsest microscopic mesh Th1 ; division of Y into eight
regions such that ϕmic is affine in each of them; reference microscopic domain (ZF, ZS); local
microscopic domain (Z s

F, Z s
S ) that is obtained by applying ϕmic.

Fine scale solution. For an illustration of the three-scale porous media that we just defined,

we plot in Figure 6.7 the solution pε1,ε2 to the fine-scale problem (6.5) with ε1 = 1/4 and

ε2 = 1/32. This solution was obtained numerically using a mesh with 908252 nodes, which

yielded 7777418 DOF with P 2/P 1 finite elements.

Offline computation. We now provide a step by step description of the application of the

reduced basis three-scale method to a test problem. We describe the choice of the various

parameters and illustrate how they influence the error.

The offline part of the three-scale method is performed in the bottom-up manner, starting with
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−0.4

−0.2

0

0.2

Figure 6.7 – A solution pε1,ε2 to the fine-scale problem (6.5) with ε1 = 1/4 and ε2 = 1/32.
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the micro scale. The microscopic geometry is described in Figure 6.6 and its parametrization

is given in (6.95). The coarsest micro mesh that we consider is in Figure 6.6(left) and using

P 2/P 1 finite elements gives Nmic = 1468. Using the technique from section 4.6.2 we created

refined micro meshes depicted in Figure 6.8.

Nmic = 3054 Nmic = 6711 Nmic = 13279 Nmic = 24652

Figure 6.8 – Graded microscopic meshes and the corresponding number of DOF of the micro
problems when discretized with P 2/P 1 FE.

To apply the RB method at the micro scale we need an affine decomposition of the micro

problem. Since the deformation function ϕmic satisfies Assumption 6.4.1 such a decompo-

sition is available via (6.78). We can symbolically reduce this decomposition to size Q A = 12

and QG = 4. The same random sample of parameters ΞSCM
mic =ΞRB

mic ⊂Ω×Y was selected for

both offline SCM and RB algorithms. The sample size was set to 1282 and the offline SCM

stage (Algorithm 4.2.6) was executed with εSCM = θ = 0.5. Instead of a tolerance for the a

posteriori error estimator, we stopped the offline RB stage (Algorithm 4.2.4) when we reached

the number of RB functions equal to 50. In the experiments we will then vary the size of the

RB denoted by N1 = N2 = N RB
mic ≤ 50.

Having completed the offline stage on the micro scale, we now have a fast online evaluation

of bRB(s) for any s ∈Ω×Y and we continue with the meso scale offline computation. The

mesoscopic geometry deformation and the coarsest meso mesh are depicted in Figure 6.5. We

will consider also finer meso meshes that are obtained via uniform refinement and shown in

Figure 6.9.

Nmes = 2737 Nmes = 10945 Nmes = 43777

Figure 6.9 – Uniformly refined meso meshes and the corresponding number of DOF of the
micro problems when discretized with P 2/P 1 FE.

Affine decomposition of the meso scale is achieved by two means, as described in section 6.4.

We consider the modified meso problem (6.82) with the bilinear form AEIM
mes defined in (6.81)

and the linear form Gi
mes. The first part of Ames (denoted by Astokes

mes ) and Gi
mes give an affine

decomposition as in the micro scale because the meso geometry deformation ϕmes satisfies
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Assumption 6.4.2. The second part of Ames (see (6.81)) comes from the EIM applied to βRB

as shown in (6.86). In the offline EIM stage (Algorithm 6.4.3) we select random training sets

ΞEIM
mac ⊂Ω and ΞEIM

mes ⊂Qh1 of size at most 4096. We repeat the offline EIM cycle for 100 iterations

and in what follows we denote by NEIM the size of the EIM basis that we use (NEIM ≤ 100). The

size of the meso affine decomposition is then Q A = 16+NEIM and QF = 4.

With an affine decomposition of the meso problem (6.82) we can continue with the RB offline

computation (Algorithm 4.2.4) at the meso scale. Since the variation of the inf-sup constant

is minimal, we used a constant estimate instead of the SCM algorithm. A random sample of

parameters ΞRB
mes ⊂Ω was selected with sample size 1282. We performed the offline greedy

algorithm until we reached the number of RB functions equal to 50. In the experiments we

will then vary the size of the RB denoted by N1 = N2 = N RB
mes ≤ 50.

Let us remark that the micro mesh, micro RB size, meso mesh, and the size of the EIM are

fixed in the offline stage and can be changed only by running the offline stage again. The size

of the meso RB (not exceeding the maximal size that was computed in the meso RB offline

stage) and the macroscopic discretization can be freely changed in the online stage.

Reference solution. We are not aware of any three-scale locally periodic porous media with

an explicitly known macro solution p0 or tensors a0 or b0 in a closed form. Thus, whenever

we compare to p0 in numerical experiments, we use a fine numerical approximation of p0.

This reference solution is obtained by the reduced basis three-scale numerical method with

the parameters described in Table 6.3.

micro mesh (DOF) Nmic = 212267 micro FE P 2/P 1

micro RB size N1 = N2 = 50
EIM size NEIM = 100
meso mesh (DOF) Nmes = 700417 meso FE P 2/P 1

meso RB size N1 = N2 = 50
macro mesh (DOF) Nmac = 442944 macro FE P 3

Table 6.3 – Parameters of the three-scale reference solution.

Numerical tests. In the online stage we used macroscopic mesh from Figure 6.4 and its

uniform refinements. We tested P 1, P 2, and P 3 macroscopic FE but in the experiments

below we show only results with P 2 and P 3 to monitor the saturation of the error with micro

and meso parameter variation.

In Table 6.4 we define micro and meso parameters of a solution that will be taken as the

starting point of the following experiments. Each time we will vary one of the parameters

and see how it influences the macroscopic error with P 2 and P 3 macroscopic FE. In all the

experiments we observe (see Figures 6.10–6.14) that the macroscopic error converges as N−l/d
mac

when the meso and micro errors are negligible. For larger values of Nm ac the macro error
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saturates and this saturation level depends on the varying parameter. This corroborates the a

priori error estimate of Theorem 6.4.7.

micro mesh (DOF) Nmic = 24654 micro FE P 2/P 1

micro RB size N1 = N2 = 20
EIM size NEIM = 50
meso mesh (DOF) Nmes = 43777 meso FE P 2/P 1

meso RB size N1 = N2 = 20

Table 6.4 – Micro and meso parameters of the most preciseRB solution considered.

In Figure 6.10 we show how the micro mesh influences the accuracy of the three-scale method.

All the parameters from Table 6.4 are fixed except the micro mesh (Nmic), which varies over the

meshes from Figure 6.6(left) and Figure 6.8. The following experiments are of similar nature.

In Figure 6.11 we show how the size of the micro RB influences the accuracy of the method.

All the parameters from Table 6.4 are fixed except for the micro RB size N RB
mic that varies over

values {4,8,12,16,20}.

Let us now discuss the effects of changing the mesoscopic parameters. The influence of the

mesoscopic mesh is shown in Figure 6.12. We select the meso meshes from Figure 6.5(left)

and Figure 6.9 while the other parameters from Table 6.4 are fixed.

The influence of the size of the EIM for βRB used at the meso scale is depicted in Figure 6.13.

The parameter NEIM is chosen from the set {10,20,30,40,50}.

Finally, the effect of the size of the meso RB size is depicted in Figure 6.14, where N RB
mes are

chosen from {4,8,12,16,20}.

These five experiments shows that the error is influenced by all parameters and they should

be carefully selected to achieve good accuracy and performance. Moreover, except the size of

the meso RB that we use, all the other parameters have to be fixed in the offline stage of the

three-scale method.

151



Chapter 6. A three scale heterogeneous multiscale method for Stokes flow in porous
media

102 103 104

10−3

10−2

10−1

Nmac

‖p
H

,R
B
−p

0
‖ H

1
(Ω

)

‖p
0
‖ H

1
(Ω

)

P 2 macro FE
Micro mesh

Nmic = 1468
Nmic = 3054
Nmic = 6711
Nmic = 13279
Nmic = 24652

102 103 104

10−3

10−2

Nmac

P 3 macro FE

Figure 6.10 – Error saturation with respect to the micro mesh variation.
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Figure 6.11 – Error saturation with respect to variation of the micro RB size.
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Figure 6.12 – Error saturation with respect to the meso mesh variation.
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Figure 6.13 – Error saturation with respect to EIM size variation.
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Figure 6.14 – Error saturation with respect to variation of the meso RB size.
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7.1 Conclusion

In this thesis we have first studied a two-scale model for Stokes flow in locally periodic porous

media that is based on the homogenization theory. We analyzed the well-posedness of the

system and provided criteria that ensure uniform coercivity of the effective permeability.

We proposed a two-scale numerical method (DS-FE-HMM) based on the model problem. This

method can be applied to arbitrary porous media (no locally periodic structure is needed),

where the fine scale geometry of the medium is known. This method allows higher-order finite

element methods on both micro and macro scale and its time cost does not depend on the

smallness of the porous structure. The method was analyzed and a priori error estimates were

derived. Three error sources were identified that were denoted the macro, modeling, and micro

error. The macro and micro errors are stemming from the macro and micro discretization and

are bound to the macro and micro mesh size, respectively. However, the convergence rates

with respect to the mesh size is usually not optimal due to low regularity of the macro and

micro problems. An adaptive mesh refinement method was proposed that uses residual-based

a posteriori error estimates on both micro and macro problems. This adaptive technique was

tested in two and three-dimensional experiments and we demonstrated its efficiency and

accuracy.

We next addressed the bottleneck of the DS-FE-HMM, which is the large number of micro

problems to solve. A new two-scale numerical method was proposed (RB-DS-FE-HMM),

where the micro problems are mapped into a reference geometry and solved approximately

with the Petrov–Galerkin reduced basis method. The RB-DS-FE-HMM requires that the micro

problems are parametrized, e.g., as in the locally periodic porous media. The a priori error

analysis was derived and three sources of the error were identified: macro, micro, and RB error.

A posteriori error estimates at the macro scale allowed an adaptive macro method to achieve

optimal macro error. To reduce the micro error we provided a practical approach to construct

graded micro meshes. The numerical experiments showed the accuracy of the method and an

improvement in terms of time cost with respect to the DS-FE-HMM.
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In order to keep the possibility to use higher-order methods and general micro and macro

geometries but also allow a conservative macroscopic approximation, we introduced and

analyzed the discontinuous Galerkin RB-DS-FE-HMM. The symmetric interior penalty dis-

continuous Galerkin FEM with numerical quadrature was used as the macroscopic solver. A

prior error analysis has shown that the method is well-posed for a sufficiently large penalty

parameter.

In the last chapter we introduced a three-scale model for Stokes flow in locally periodic porous

media. This model was discretized and a three-scale numerical method was derived and

analyzed. Due to the large number of meso and micro problems, this method is inefficient

or even infeasible, especially for three-dimensional problems. Thus, a reduced basis three-

scale numerical method was proposed, where the RB method was used to approximate

both the micro and meso calculation. To couple efficiently the micro and meso scales, the

empirical interpolation method was used at the meso scale. Several numerical experiments

were conducted to assess the sensitivity of the method with respect to the various meso and

micro discretization parameters.

7.2 Outlook

The numerical methods developed in this thesis can be seen as a foundation for many interest-

ing extensions and applications. It would be of great interest to use the presented microscopic

strategies with a time-dependent macroscopic solver. In the current settings, the efficient

permeability does not change with time and it has to be computed only once, before the

time integration takes place. Another interesting topic consists in generalizing our method to

more accurate microscopic model. Homogenization theory is available for the Navier–Stokes

equation in porous media and it can be used to derive two-scale method with non-linear

micro problems. Non-linearity at the micro scale will provide new and interesting challenges

in analysis and implementation Ultimately, one could couple fluid flow with porous media

deformation (local and/or global) and create interesting multi-physics models. We think that

in all these suggested generalizations, the reduced-order modeling will play a crucial role to

provide an efficient method.

Last but not least, numerical methods are developed to be used on real scientific or engineering

problems. There is a variety of applications where the presented numerical methods and

their derivatives can be applied and tested. We mention the fluid dynamics in brain, biofilm

dynamics in porous environments, textile modeling and optimization, etc.
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[6] A. ABDULLE AND O. BUDÁČ, An adaptive finite element heterogeneous multiscale method

for Stokes flow in porous media, Multiscale Model. Simul., 13 (2015), pp. 256–290.

[7] , A discontinuous Galerkin reduced basis numerical homogenization method for

fluid flow in porous media. submitted to SIAM J. Sci. Comput., 2015.

[8] , Multiscale adaptive method for Stokes flow in heterogenenous media, in Numerical

Mathematics and Advanced Applications - ENUMATH 2013, Lect. Notes Comput. Sci.

Eng., Springer, 2015, pp. 367–375.

[9] , A Petrov–Galerkin reduced basis approximation of the Stokes equation in parame-

terized geometries, C. R. Math. Acad. Sci. Paris, 353 (2015), pp. 641–645.

[10] , A reduced basis finite element heterogeneous multiscale method for Stokes flow in

porous media. accepted in Comp. Meth. Appl. Mech. Eng., 2015.

[11] , Multiscale model reduction methods for flow in porous media. to appear in the

Proceedings of ENUMATH 2015, 2016.
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