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Abstract

Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem
(DLP) in finite groups whose group representation is not yet exploited. For such groups, the
best one can do is using a generic method to attack the DLP, the fastest of which remains the
Pollard rho algorithm with r-adding walks. For the first time, we rigorously analyze the Pollard
rho method with r-adding walks and prove a complexity bound that differs from the birthday
bound observed in practice by a relatively small factor.

There exist a multitude of open questions in genus 2 cryptography. In this case, the DLP is
defined in large prime order subgroups of rational points that are situated on the Jacobian
of a genus 2 curve defined over a large characteristic finite field. We focus on one main topic,
namely we present a new efficient algorithm for computing cyclic isogenies between Jacobians.
Comparing to previous work that computes non cyclic isogenies in genus 2, we need to restrict
to certain cases of polarized abelian varieties with specific complex multiplication and real
multiplication. The algorithm has multiple applications related to the structure of the isogeny
graph in genus 2, including random self-reducibility of DLP. It helps support the widespread
intuition of choosing any curve in a class of curves that satisfy certain public and well studied
security parameters.

Another topic of interest is generating hyperelliptic curves for cryptographic applications via the
CM method that is based on the numerical estimation of the rational Igusa class polynomials.
A recent development relates the denominators of the Igusa class polynomials to counting ideal
classes in non maximal real quadratic orders whose norm is not prime to the conductor. Besides
counting, our new algorithm provides precise representations of such ideal classes for all real
quadratic fields and is part of an implementation in Magma of the recent theoretic work in the
literature on the topic of denominators.

Key words : the discrete logarithm problem, Pollard-rho, cyclic isogenies in genus 2, polarized
abelian varieties, theta structures, CM theory, Igusa class polynomials, ideal classes in real
quadratic orders.
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Résumé

De nos jour, la résolution du problème du logarithme discret (PLD) dans des groupes finis
où la représentation des éléments n’a pas encore été exploitée est un important domaine de
recherche en cryptanalyse. Seules les méthodes génériques sont applicables à ces groupes, dont
la plus rapide est l’algorithme rho de Pollard avec r-adding walks. Pour la premieère fois, nous
analysons l’algorithme rho de Pollard avec r-adding walks de manière rigoureuse, et prouvons
une complexité différant par un facteur relativement petit de la compléxité observée en pratique.

Il y a une multitude de questions ouvertes dans la cryptographie en genre 2. Dans ce cas-ci,
le PLD est défini sur de grands sous-groupes d’ordre premiers de points rationnels sur des
Jacobiennes de courbes de genre 2, définies sur des corps finis de grande caractéristique. Nous
nous concentrons sur un sujet particulier, introduisant un nouvel algorithme efficace pour le
calcul d’isogénies cycliques entre Jacobiennes. Par rapport aux travaux précédants sur le calcul
d’isogénies non-cycliques en genre 2, nous devons nous restreindre à des variétés abéliennes
principalement polarisées dont la multiplication complexe et réelle ont certaines propriétés.
Cet algorithme a de multiples applications liées à la structure du graphe d’isogénies en genre
2, notamment concernant l’auto-réductibilité aléatoire du DLP. Cela contribue à soutenir
l’intuition selon laquelle, du point de vue des paramètres de sécurité, le choix d’une Jacobienne
particuleère importe peu dès lors que la classe d’isogénie est fixée.

Un autre sujet d’intérêt est la génération de courbes hyperelliptiques pour des applications
cryptographiques via la méthode CM, qui est basée sur l’estimation numérique des polynômes
rationnels d’Igusa. Un développement récent a lié les dénominateurs des polynômes d’Igusa
au nombre de classes d’idéaux d’un ordre non-maximal dans un corps quadratiques réel, dont
la norme n’est pas première avec l’indice de l’ordre. En plus de résoudre ce comptage, notre
nouvel algorithme fournit des représentations précises de ces classes d’idéaux pour tous les corps
quadratiques réels, et fait partie d’une implémentation en Magma du rćent travail théorique
dans la litérature sur le sujet des dénominateurs.

Mots clefs : le problème du logarithme discret, Pollard-rho, isogénies cycliques en genre 2,
variétés abéliennes polarisées, thêta structures, théorie de Multiplication Complexe, polynômes
d’Igusa, classes d’idéaux d’un ordre non-maximal dans un corps quadratiques réel.
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1 Introduction

The World Wide Web technology grants us a multitude of fascinating opportunities and one
of them is access to an extensive amount of information. The data is so considerable in size,
diversity and scope that users are mostly concerned with high speed data processing and
communication, easy and pleasant access. Nevertheless, during the past few years, users are
more and more made aware of other important aspects, mainly the need of secure private data.
Users realize more and more that they are vulnerable to diverse exploits by unknown or known
parties and hence, they start to request better protection and presentation of the security risks
they might be subjected to. In the WWW, the classical notions of trust and personal privacy
are obsolete. Instead, we require secure channels or secure communication protocols, trusted
certificate authorities, long-term secure encryption to name a few.

To design reliable methods of data protection is very complex as it is dependent on a multitude of
factors, related or not to the application itself. Most encryption schemes rely on some algorithm
or construction that, under certain assumptions, is most probably not leaking significant data to
some unauthorised party in a certain amount of time. In this context, we say that the algorithm
is (sufficiently) secure against known attacks. Naturally, a security claim of this form relies
heavily on the current computer architecture and its capacity for doing arithmetic operations.

Nowadays, a distinct class of algorithms are used for establishing a common key between two
distinct parties. The key is next used to encrypt data transmitted on a non-trusted channel.
One of the currently most deployed methods is due to Diffie and Hellman and is based on the
security assumption that with the current architecture, solving the Discrete Logarithm Problem
(DLP) in certain types of large finite cyclic groups requires too many resources. For the precise
definition of the DLP and useful security requirements of the groups we refer to the second
chapter of the thesis. In current protocols, there exists a tendency to replace the classical
multiplicative groups of large characteristic finite fields with groups G for which currently
known DLP attacks are unable to exploit specific properties of the way the elements of G
are represented. Such groups and attacks are commonly called generic (see first paragraph of
Section 2.2).
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Chapter 1. Introduction

One of the generic attacks most used in practice is the Pollard-rho method with several distinct
adding walks. The algorithm was proven to be faster in practice than the classical Pollard-rho
[77, 9] whose rigorous complexity analysis was given by [38, 40]. Chapter 2 gives a rigorous
analysis of the algorithm in the case of an r-adding walk defined in the context of Section 2.2.2.
The assumptions of the second model are used to estimate the probability of a collision between
two random walks on a certain graph. In collaboration with Joppe Bos and Dimitar Jetchev,
we proved a theorem that gives an estimate on the number of steps until a (highly) probable
collision between two independent Pollard-rho walks. The result presented in this chapter
differs by a factor of

√
log |G| from the birthday bound observed in practice, namely Θ(

√|G|).

If we assume a secure environment on the current computer architecture, the hardness of the
DLP in generic groups guarantees a sufficiently long life for keys established with methods like
Diffie-Hellman. For cryptographic applications, an alternative to the classical multiplicative
group for DLP is a large prime order group of rational points on an elliptic (genus 1) curve or
on the Jacobian of a genus 2 hyperelliptic curve. If the parameters of the (hyper)elliptic curve
cryptographic system are carefully chosen, the best known attack is generic. We could conclude
that both curves currently offer similar levels of security. On the other hand, in the higher
genus case there exist a multitude of open questions that still need to be solved. Following our
work with Dimitar Jetchev and Damien Robert, the main question that we answer in this thesis
is whether or not a method exists of computing cyclic isogenies between Jacobians of dimension
2 defined over a finite field. The answer is indeed positive in the context of 4.1 and the main
result of chapter 4 gives such an efficient algorithm (polynomial in log q) when given an isogeny
kernel of order polynomial in log q. To understand the theory on which the current algorithm
relies, in chapter 3 we briefly review a number of known concepts with a focus on the results of
Mumford[60] and Lubicz-Robert [66, 48]. More precisely, for the purpose of later chapters, we
focus on the concepts of principally polarized abelian varieties with Complex Multiplication
(CM) by an order in a quartic field, theta structures and isogenies between polarized abelian
varieties.

Similar to the genus 1 case, there are numerous applications to cyclic isogenies. First, we
mention proving the random self-reducibility of the discrete logarithm problem [36] and if
possible, computing an isogeny between two random Jacobians in the same isogeny graph [20].
In the case of elliptic curves, an Fq-isogeny graph contains all the curves over Fq that have the
same characteristic polynomial χπ of the Frobenius endomorphism [76]. Let π ∈ K correspond
to the Frobenius endomorphism. The levels of the graph are in bijection with the orders O,
such that Z[π] ⊆ O ⊆ OK , in the imaginary quadratic field K = Q(π) and each vertex is
identified with an ideal class of some quadratic order. Each vertex is in 1-to-1 correspondence
with an Fq-isomorphism class of elliptic curves over Fq and each such curve has CM by OK .
Under the GRH assumption, the work of [36] proves random self-reducibility of DLP for elliptic
curves with CM by OK . More precisely, if there exists a deterministic algorithm that solves the
DLP on a fraction of 1/pol(# Pic(OK)) isomorphism classes of elliptic curves with CM by OK ,
then there exists a randomized algorithm that solves the DLP with high probability for any
Fq-isomorphism class of curves with CM by OK .
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In the case of genus 2 curves, the levels of the graph are indexed by orders in a quartic field
instead of an imaginary quadratic field. Each vertex is identified with an ideal class in some
order O, where Z[π, π†] ⊆ O ⊆ OK and π† is the Rosatti involution of π. The number of vertices
is equal to the class number of O. We say that if a Jacobian A has EndFq (A) �Fq O, then it
has CM by O. An isogeny of prime degree corresponds to an edge between abelian surfaces
with CM by orders O and O′ respectively, satisfying either O = O′ (horizontal isogenies) or
O ⊂ O′ or O′ ⊂ O (vertical isogenies). Our algorithm of computing cyclic isogenies enables
us to traverse the Fq-isogeny graph when the restrictions in 4.1 hold. For instance, one such
assumption is that both abelian varieties have real multiplication by the maximal order O0 of
the quadratic field K0 inside K. In particular, if we want to transfer the discrete logarithm
problem between the source surface and the target variety of a prime degree isogeny, the
discriminant of K0 must be sufficiently small (polynomial in log q). Given our algorithm for
computing cyclic isogenies and assuming GRH, the random self-reducibility of DLP in genus 2
[37] proves that with high probability, any two Jacobians with CM by the maximal order OK

of certain quartic CM-fields K have comparable security level. We conclude that the security
parameters of a cryptographic scheme based on genus 2 hyperelliptic curves depends on the
choice of the Frobenius polynomial. The number of rational points on the Jacobian is equal to
the value of the Frobenius polynomial evaluated at 1.

Similarly to the case of elliptic curves, we expect that the isogeny computation algorithm has
other applications related to the structure of the isogeny graph in genus 2. In genus 1, the
well known Schoof–Elkies–Atkin algorithm for point counting depends significantly on efficient
computation of cyclic isogenies of small degree. In the case of genus 2, the best point counting
algorithm of [23] for Jacobians requires instead fast real multiplication. If we also consider a
possible extension of the cyclic isogeny algorithm to genus 3, an application is the transfer of the
DLP from a given hyperelliptic curve to some non-hyperelliptic curve. The non-hyperelliptic
curves are suspected to be less secure as a solution can be found currently in significant less
time [14].

For cryptographic purposes, the number of rational points is chosen to be equal or to differ from
a large prime number Q by really small factors. Starting from Q or from a suitable Frobenius
polynomial, an algorithm of generating curves over a large characteristic field Fq is the CM
method [80]. If we assume that the class number of the real quadratic field inside K is 1 and
that, as a Galois extension, K is cyclic over Q (or in other words, all abelian varieties with real
multiplication by O0 are principally polarizable and simple), one type of CM method requires a
numerical estimation of three rational polynomials called Igusa polynomials. A triple (i1, i2, i3)
that contains a root of each Igusa polynomial is next tested whether it determines or not a
genus 2 curve over Fq whose Jacobian has the right number of points.

A rich area of research is dedicated to generating the Igusa class polynomials when given the
quartic field K [74]. Similarly to the case of elliptic curves, there are three main methods
of computing the Igusa class polynomials of K, the p-adic method, the Chinese Remainder
Theorem (CRT) method and the complex approximation method. To compute the Igusa class

3



Chapter 1. Introduction

polynomials given the estimates of its complex roots as in [74, §II.10], it is necessary to give
close bounds or precise values of the prime powers in the denominators of the polynomials
[24, 46, 45]. Recent work related the prime powers in the denominators to counting certain
ideals in non-maximal orders in real quadratic fields [44]. The main result of chapter 5 is done
in colaboration with Kristin Lauter and Binca Viray. It proves that the ideals are of a certain
form and so, there exists a precise number of such ideals. In addition, we also propose an
implementation in Magma (to be made public) that computes the ideals of this form. The
implementation is used as part of an algorithm implementation that follows [44] and outputs
the precise �-valuation of the intersection number for most primes � or a tight upper bound in
the other cases.

The present thesis focuses on the mathematical aspect of security systems of interest, aiming to
improve the understanding of their theoretic properties. The findings presented contribute to
the confidence we may have in the mathematical soundness of actual cryptographic systems
that have been proposed and that may soon become mainstream.
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2 Complexity Analysis of the Additive
Pollard’s Rho

2.1 Introduction

The results presented in this chapter were done in collaboration with Joppe Bos and Dimitar
Jetchev and published in [7].

Let G be a finite cyclic group of prime order and let g ∈ G be a generator. Given an element
h ∈ G, the discrete logarithm problem (DLP) is the problem of computing an integer y such that
h = gy. This problem is believed to be hard for certain groups of points on elliptic curves over a
finite field but can be solved in subexponential time for multiplicative groups of finite fields [1]
and for Jacobians of hyperelliptic curves of high genus [2, 3, 18, 21, 31, 15]. For this reason,
the elliptic curve discrete logarithm problem (ECDLP) is used as the theoretical foundation of
many standardized protocols used in elliptic curve cryptography [42, 54].

The parallelized [78] Pollard rho algorithm [64] is one of the most commonly used methods for
solving the discrete logarithm problem when G is a generic finite cyclic group. The basic idea is
to define a walk over the elements of the group G using an iteration function. One might solve
the DLP when a group element is encountered twice (such an event is commonly referred to as
a collision). If one assumes that the elements from the walk generated by this iteration function
are independent and uniformly random among all elements of G, the birthday paradox implies
that one can obtain a collision with probability greater than 50% after O(

√|G|) steps and with
high probability after O(

√|G| log |G|) steps [30, 19]. Here, with high probability means that
the probability of success is 1 −O(|G|−c) for some c > 0 that does not depend on |G|.

Obviously, the assumption that the points generated by the Pollard rho iteration function are
independent and uniformly at random among all elements of G is incorrect (see Section 2.2 for
more details). This has motivated a line of research to rigorously prove the desired bound of
O(

√|G|) matching the lower bound for solving discrete logarithms for generic algorithms in
prime order groups that was given by Shoup [72] (in the black-box model). This is an active
area demonstrated by the fact that the run time of another generic method to solve the DLP,
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Chapter 2. Complexity Analysis of the Additive Pollard’s Rho

the Pollard kangaroo method [64, 65], has been rigorously proven correct [58]. The rigorous
proof for the Pollard rho method was established using Markov chains by Kim, Montenegro,
Peres and Tetali in 2008 [38, 40] improving on previous attempts [52, 39].

Unfortunately, the proof presented in [38, 40] works only for the original iteration function used
by Pollard in [64]. In practice, however, the so-called additive walks are preferred and hence,
our proof is useful for studying the complexity of deployed algorithms. The additive walks as
studied by Teske [77] are used to solve instances of the DLP (see e.g., the methods described
in [29, 11, 8] for solving the discrete logarithm problem for elliptic curves). A property from
the original Pollard rho iteration function that is not present in these additive walks is crucial
for establishing rapid mixing results for random walks in the proof by Kim et al.

As far as we know, this work is the first attempt to rigorously prove the run time of the additive
Pollard rho method. It is well-known from experimental data [77, 9] and heuristic arguments [4,
Appendix B] that by increasing the number of components of the partition used for the additive
walk, the performance of the iteration function better resembles the behavior of a truly random
walk. We use a model introduced by Greenhalgh [26] and extended by Hildebrand [33, Thm.2]
where the number of components used to partition the iteration function depends logarithmically
on the cardinality of the group G. This is in agreement with the intuition that one should use
more components when larger instances of the DLP are being solved. Using this idea together
with results about estimating mixing times for random walks on additive groups due to Dou
and Hildebrand [32, 16], we prove a collision bound of O(

√|G| log |G|) with probability greater
than 50% and a collision bound of O(

√|G| log |G|) with high probability (see Corollary 2.3.2).
Hence, we are short by a factor of

√
log |G| from the birthday bound for both the case of 50%

probability of success and the case of high probability of success.

This chapter is organized as follows: Section 2.2 states the preliminaries related to Pollard
rho and motivates our work. In Section 2.3, we explain why the recent methods of Kim et
al. [38, 40] are not applicable in any obvious way to the setting of the additive Pollard rho
algorithm. In Section 2.4, we recall some basics on random walks on groups, convolutions of
functions from Fourier analysis and their links to the distributions of end-points of random
walks. Section 2.5 is devoted to the proof of our main theorem.

2.2 Preliminaries and Motivation

2.2.1 The Classical Pollard Rho Method

Throughout, we use multiplicative notation for the group G of prime order N . The Pollard rho
algorithm, originally proposed as an integer factorization method [63], was later modified to
obtain one of the most commonly used methods for solving the discrete logarithm problem when
G is a generic finite cyclic group [64]. In this context, generic means that the application of the
algorithm is independent of the representation of the group elements, i.e., the algorithm works
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for any representation as long as the group operation and the operation of testing equality of
two group elements are both efficient.

The original Pollard rho method works as follows: partition the group G into three sets S1, S2
and S3 of roughly the same size, pick a random element v0 ∈ [0, |G|− 1], compute x0 = gv0 ∈ G
and for i ≥ 0 let xi+1 = f(xi) where f : G → G is defined as follows:

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
gx if x ∈ S1,

hx if x ∈ S2,

x2 if x ∈ S3.

The sequence {xi}i≥0 represents a walk on G that will eventually enter a cycle, i.e., there will
be integers m > n such that xm = xn (we say that we have obtained a collision). Since each xn

is of the form gunhvn for some known un, vn ∈ Z, we obtain um + yvm ≡ un + yvn mod N , i.e.,
unless vm ≡ vn mod N , the solution of the discrete logarithm problem is y =

un − um

vm − vn
mod N .

Using standard cycle-detection algorithms, such as Floyd’s cycle finding method [41, Ex. 3.1.6],
the above method requires to store a constant number of group elements. If one makes the
heuristic assumption that the subsequent elements of the Pollard rho walk are independent and
uniformly random, one would get (by using the birthday bound) that it takes O(

√|G|) steps
in order to obtain a collision with probability greater than 50%.

2.2.2 Complexity Analysis

Regardless of the simplicity of the above method, a mathematically rigorous run time analysis
is a rather subtle question of probability theory and statistics. There are two separate stages
for analyzing the complexity of solving the discrete logarithm problem via Pollard rho: 1) one
needs upper bounds for the number of steps required to obtain a collision in the Pollard rho
walk; 2) one needs to estimate the probability of the collision being degenerate. In this chapter,
we only restrict to 1) and only note that 2) has been carried out rigorously for the classical
version of the algorithm in [53].

Regarding 1), we start with the following heuristic argument: if one makes the false assumption
that the elements x0, x1, . . . (up to the first step when a collision is obtained) are independent
and uniformly random among all elements of G, the birthday paradox would imply that one
can reach a collision with probability greater than 50% after O(

√|G|) steps and with high
probability after O(

√|G| log |G|) steps [30, 19]. The elements x0, x1, . . . are, however, far from
being independent and uniformly random as they are constructed using the random initial
point, the iteration function f and the partitioning G = S1 	 S2 	 S3. The obvious goal is to
rigorously prove the birthday bound O(

√|G|) that is observed in practice.

The function f in the original Pollard rho algorithm is fixed. As far as choosing the partition
G = S1 	 S2 	 S3 is concerned, we can view it as being given by a function � : G → {1, 2, 3}.
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The number of steps it takes to obtain a collision depends on the choice of the function �. It is
clear that for certain (degenerate) choices, this number can be quite large (e.g., if S1 = G and
S2 = S3 = ∅ then it can take as many as |G| steps to obtain a collision). What one could hope
for is that for a random choice of � (selected among some prescribed distribution on the set of
all such functions), the collision time will be what we expect (namely, O(

√|G|)). If we consider
the steps of the Pollard rho walk as random variables X0, X1, . . . , the collision time T will then
be a stopping time random variable where the randomness is determined by the choice of � as
well as by the random choice of the initial element. One could then try to show that with high
probability, T = O(

√|G|). We refer to this probabilistic model as Model 1. It is clear that the
values of X1, . . . , Xn, . . . are completely determined by the choices of X0 and �. Unfortunately,
it is not known how to analyze the statistical behavior of Model 1. A common approach to
remedy this problem is to use pseudo-random walks in order to approximate (statistically) the
random variables Xi with other random variables that are easier to work with. The idea is that
Xn+1 can be modeled as being computed from Xn by using (with probability 1/3) a random
transition out of the three different transition steps. This gives us the model of a random walk
on the so-called Pollard rho graph (a 4-regular graph whose vertices are the elements of G and
whose edges are determined by the transition steps). Of course, once we obtain a collision, the
walk should no longer be random, but deterministic. We refer to this approximation model
as Model 2. In this case (for the classical Pollard rho), one can show that with probability
more than 50% (or, more generally, with any probability that is independent of |G|), a collision
occurs after O(

√|G|) steps. In fact, this was not known until recently: the desired bound
of O(

√|G|) was rigorously established using Markov chains by Kim, Montenegro, Peres and
Tetali in 2008 [38, 40] improving on [52, 39]. The argument relies on establishing rapid mixing
results for random walks in the Pollard rho graph where the squaring step plays a crucial role
(see Section 2.3.1 for more details). Yet, currently nothing is known about how well Model 2
approximates Model 1 or vice versa.

2.2.3 Additive Pollard Rho Method

When trying to solve an elliptic curve discrete logarithm problem in practice, the squaring step
is often avoided because it is relatively inefficient. Instead, a small integer r is chosen and an
r-tuple (s1, . . . , sr) of group elements (transition steps) is precomputed. Given a new partition
function � : G → {1, 2, . . . , r}, one uses the transition function f(x) = x + s�(x) instead of the
function defined in the original Pollard rho method. This gives rise to a variation of Pollard
rho that uses no squaring steps. These walks are known as r-adding walks [77].

The theoretical question studied in this chapter is relevant as it is the first attempt to provide
a rigorous analysis of the variation of Pollard rho that is most commonly used nowadays. In
practice, when solving the discrete logarithm problem, one uses a parallel version of Pollard
rho [78]. This leads to an m-fold speedup when the workload is shared among m computational
units. The main cost of the Pollard rho method is computing the iteration function f . Computing
a single step in the Pollard rho walk (a single iteration of f), is equivalent to computing the
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group operation in G. In the setting of elliptic curves where we use the additive notation for
the group operation, this operation is either a point doubling or a point addition.

Montgomery’s simultaneous inversion method is often used to speed up Pollard rho [59]. When
processing m independent walks in the parallel version of the algorithm, the simultaneous
inversion method allows one to substitute m inversions by 3m − 3 multiplications and a single
inversion. When used in combination with affine Weierstrass coordinates, this results in
an average cost (ignoring modular additions and subtractions) of s squarings, 2 +

3m − 3
m

multiplications and
1
m

inversions to implement the group operation for a single walk where
s = 1 and s = 2 for elliptic curve addition and point doubling, respectively. This makes affine
Weierstrass coordinates the preferred point representation for this type of application and shows
that from a performance perspective, point doublings are to be avoided.

2.3 Runtime Analysis for r-adding Walks

Analyzing Model 1 is out of reach even in the setting of the classical Pollard rho method. We
thus restrict ourselves to Model 2 in the setting of the Pollard rho method using r-adding walks.

2.3.1 Classical Pollard Rho and Block Walks

The method of Kim, Montenegro, Peres and Tetali [38, 40] applies to the classical version of
Pollard rho that uses three transition steps, one of which is the squaring step and the other
two are multiplications by g and h, respectively. Under Model 2, this is achieved by choosing
transition steps uniformly at random among the three until a collision has been obtained. Under
this model, it is shown that a collision is obtained in O(

√|G|) steps. The key observation is
the fact that one can split the pseudo-random walk into blocks using the squaring steps of the
walk as a separating move. More precisely, if one represents the walk by the random variables
Xi = gYi for unique Yi-s in [0, |G|−1] then one defines a new sequence of random variables {Ti}
as follows: let T0 = 1 and let T1 be the first step when the walk makes a squaring transition.
More generally, let Ti be the first step after Ti−1 when the walk makes a squaring transition.
Let bi = YTi−1 − YTi−1 be the contribution from the ith block (this is the part of the original
walk covered by addition steps only). The block walk is then defined as the random process

Zs = YTs = 2sYT0 + 2
s∑

i=1
2s−ibi. One can estimate the probability Bs(u, v) of reaching a vertex

v starting from a vertex u via a pseudo-random walk consisting of exactly s blocks (as opposed
to a fixed number of steps). More precisely, assuming that Z0 = u, the probability that Zs = v

is Bs(u, v). Obtaining good upper and lower bounds for these probability is possible for the
following two reasons: if S is the set of blocks for which bi = 0 or 1, i.e., the blocks of zero
steps (two consecutive squarings), and the blocks of one multiplication-by-g step (a squaring
followed by multiplication by g followed by another squaring) then one can separate the total
contribution from these special blocks and conditions on the total contribution of the remaining
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blocks. Calculating this conditional probability amounts to calculating the probability of a
given integer w being represented as w =

∑s
i=1 2s−ibi where bi = 0 or 1. Using the uniqueness of

the binary representation of w, one can determine uniquely the contribution of each block from
the set S and thus, establish strong upper bounds on this conditional probability. This allows
to deduce (via Plancherel’s formula from Fourier analysis and the fact that the contributions bi

of the blocks are independent when considered as random variables) that Bs(u, v) is close to
uniform for s that is polylogarithmic in log |G| which shows rapid mixing for the block walk.
In this argument, the squaring step plays a key role.

It is difficult to generalize the block-walk method of [38, 40] in the additive Pollard rho setting
since we have no natural choice for the separating move (as is the squaring step in the classical
Pollard rho). Even if one declares one of the existing steps as separating, one still has no
analogue of the uniqueness of the binary expansion. One can work harder and estimate the
number of representations of w as a combination of the remaining (non-separating) steps, but
eventually, we were unable to obtain an asymptotically useful bound. From that point of
view, the problem of analyzing Pollard rho equipped with r-adding walks looks harder than
analyzing the original Pollard rho using a mixed walk. Before stating the main result, we make
two separate comments that will motivate the precise formulation chosen for the complexity
analysis.

2.3.2 Randomization over the Addition Steps

Suppose that one is interested in analyzing the case of Pollard rho for additive walks. One then
loses the important property that the squaring step contributes to the rapid mixing properties
of the Pollard rho walk. When no squaring is used, there exist special cases in which it might
take as many as |G| steps for the walk to even reach a certain element of the group.

To make this precise, note that each choice of the r-tuple (s1, . . . , sr) of transition elements
gives rise to a stopping time random variable Ts1,...,sr , namely, the first time when a collision is
obtained in the walk. More precisely, let

Ts1,...,sr = min {j > 0: ∃i < j such that Xi = Xj} ,

where (s1, . . . , sr) are the transition steps in the Pollard rho walk.

Here, the distribution of Ts1,...,sr depends on the source of randomness for the Pollard rho walk.
For Model 1, this source is the choice of a random partition of G into r disjoint sets whereas
for Model 2, it is the random choice of a transition element at each step in the walk. In either
case, we are interested in showing that Ts1,...,sr is bounded by some appropriate upper bound
with either probability at least 50% (or any fixed probability, independent of |G|) or with high
probability (i.e., probability 1−O(|G|−c) for some c > 0) over the desired source of randomness.
For instance, one might want to show that Ts1,...,sr is less than a constant times

√|G| with
probability more than 50% for an r-tuple (s1, . . . , sr) of transition steps. Yet, in the r-adding
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walk case, it is unreasonable to expect such a result to hold for a fixed r-tuple (s1, . . . , sr) as
there might be very degenerate choices that do not even allow one to reach every element of the
group G in O(

√|G|) steps. For instance, consider G = (Z/NZ, +) for some integer N > 0 and
suppose that r = O(log N). Consider the transition elements si = i mod N for i = 1, . . . , r. It
is clear that if the walk starts at the zero element, it cannot reach the element N − 1 mod N in
time less than N/ log N . This degeneracy leads to a poor mixing time for the Pollard rho walk
for this particular choice of steps. One way to remedy this issue is to establish the expected
upper bound on the stopping time Ts1,...,sr with high probability over the random choice of the
transition elements (s1, . . . , sr) as well as over the source of randomness of Model 2.

2.3.3 Dependency on r

One expects that by increasing the size of the set of precomputed points that can be added to
the current point in the iteration function results in a pseudo-random walk behaving more like
a truly random walk. This was experimentally shown to be true by Teske [77] and is made more
precise by Bernstein et al. who showed, using a heuristic argument [4, Appendix B] refining the
analysis from [10], that the expected number of steps to reach a collision when using an r-adding

walk is
√√√√ π|G|

2
(
1 −∑r

j=1 p2
j

) where typically pj ≈ 1
r

(see also [5]). Hence, the use of an r-adding

walk results in a bound that is larger than the birthday bound

√
π|G|

2
by a factor of

√
r

r − 1
,

so the larger r is, the closer the expected bound is to the birthday bound. This argument is
extended in [9] when using mixed walks (walks that have both multiplication and squaring

steps). The expected number of steps for reaching a collision is then
√

π|G|
2(1 − p2

D −∑r
j=1 p2

j )

where pD = 1 −
r∑

i=1
pi is the probability of choosing a squaring step. It follows from this result

that for instance, the original mixed walk used by Pollard is expected to differ from the birthday
bound by a factor of

√
3/2 ≈ 1.22.

A major question is then how r should depend on |G|. Assuming that r does not depend
on |G|, we note that an argument of Greenhalgh [26] as extended by Hildebrand [33, Thm.2]
(see also Theorem 2.4.4) establishes lower bounds on the mixing time that are exponential (in
log |G|) as opposed to mixing times that are polynomial (in log |G|) in the case when r depends
logarithmically on |G| (see Theorem 2.4.2). One would then expect that in the case when the
mixing time is poor, the number of steps to achieve a collision must be far from the birthday
bound. We thus allow r to depend logarithmically on |G|.
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2.3.4 Main Theorem

Similarly to the case of the classical Pollard rho algorithm with three transitions, proving
anything under Model 1 seems hopeless. Our main theorem shows that such a result for r-adding
walks can however be shown under Model 2 with an asymptotic upper bound

√|G| log |G| on
the number of steps (with probability greater than 50%).

Theorem 2.3.1. Let a > 1, δ > 0 and γ > 0 be real numbers. There exists n0 ≥ 0 with the
following property: if G is a finite cyclic group of prime order |G| ≥ n0 and κ > 1 is a real
number then

Pr
s1,...,sr

random walk

⎡⎣Ts1,...,sr ≤
√

(2 + δ)κ
e

|G| log |G|
⎤⎦ ≥ 1 − e−κ − 1

|G|γ ,

where r = �(log |G|)a� and e is the Euler’s number 2.7828 . . ... Here, the probability is taken
over a uniformly random choice of an r-tuple (s1, . . . , sr) of distinct elements of G and over
the randomness of Model 2.

The implications of this theorem are stated in the following corollary.

Corollary 2.3.2. Let a > 1 be a real number. If G is a finite group that is cyclic of prime
order and if r = �(log |G|)a� then solving the discrete logarithm problem with the Pollard rho
method using an r-adding walk requires

(i) O(
√|G| log |G|) steps with probability ≥ 0.5 as |G| → ∞,

(ii) O(
√|G| log |G|) steps with high probability, i.e., if γ > 0 is any fixed real number (inde-

pendent of |G|) then the probability of not finding a collision in O(
√|G| log |G|) steps is

bounded by O(|G|−γ) as |G| → ∞,
where the probability is over the choice of uniformly random r-tuple (s1, . . . , sr) of distinct
elements of |G| and the randomness in Model 2.

Proof. This follows immediately from Theorem 2.3.1 when we fix a constant γ > 0 and consider

κ = log
2|G|γ

|G|γ − 1
for the first part and κ = γ log |G| for the second part.

To prove the theorem, we first need mixing time estimates for random walks on the group
G. Such estimates over a random choice of r independent adding steps were established by
Dou and Hildebrand [32, 16]. The idea then is the following: given the mixing time τ (i.e.,
the number of steps needed to make the end point of the walk look uniformly random), we
make t0 initial steps and then τ additional steps. Since τ is a mixing time, the probability
of the end point of the walk being any of the t0 initial points is

t0
|G| , i.e., the probability of

failing to produce a collision at this step should be bounded by 1 − t0
|G| . If no collision has
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occurred, we perform another τ steps and calculate the probability of failure. We continue
until the probability of failure becomes less than e−κ. Suppose we have done s such iterations
(performing τ steps s times after the original t0 steps). We then need to minimize the total
number t0 + τs of steps subject to the constraint that the failure probability is smaller than e−κ.
By solving this optimization problem, we see that it takes O(

√|G| log |G|) steps to produce a
collision with probability at least 1 − e−κ.

2.4 Random Walks on Groups and Mixing Times

Let G be a finite abelian group, let P be a probability distribution on G and let U be the
uniform distribution on G. Following [32], we define the statistical distance between the
probability distribution P and the uniform distribution U as

‖P − U‖ :=
1
2
∑
s∈G

∣∣∣∣P (s) − 1
|G|

∣∣∣∣ .
Given two real-valued functions f : G → R and g : G → R, we define their convolution as

(f 
 g)(x) :=
∑
y∈G

f(xy−1)g(y).

As the convolution is associative, the m-fold convolution f 
 · · · 
 f is well-defined and we
denote it by f�m. Let r be a positive integer (that may or may not depend on |G|) and let
s1, . . . , sr ∈ G be a sequence of r distinct elements of G (we refer to these elements as the

transition steps). Let p1, . . . , pr be a set of non-negative real numbers such that
r∑

i=1
pi = 1 (we

refer to these numbers as transition probabilities). Let Ps1,...,sr be the distribution defined by:

Ps1,...,sr (s) :=

⎧⎨⎩pi if s = si for some i = 1, . . . , r,

0 otherwise.

In the case of the r-adding walk version of Pollard rho under Model 2, we take pi = 1/r for
every i = 1, . . . , r. Note that P �m

s1,...,sr
is the distribution of the end point of an m-step random

walk starting from the identity element of the group G (this follows, e.g., by induction on m).

Definition 2.4.1. Given ε > 0 and a sequence s1, . . . , sr of transition steps, we define the
ε-mixing time τs1,...,sr (ε) with respect to that sequence to be the smallest integer m such that
‖P �m

s1,...,sr
− U‖ < ε.

Remark 1. Using the fact that s1, . . . , sr generate G (since G is of prime order), using spectral
analysis of the adjacency matrices of the Cayley graph constructed from {s1, . . . , sr}, one can
show that the mixing time τs1,...,sr (ε) is well-defined.
Remark 2. We cannot find a reasonable bound for τs1,...,sr(ε) for every r-tuple (s1, . . . , sr) of

transition steps. Yet, for a uniformly random r-tuple among all
|G|!

(|G| − r)!
r-tuples of distinct
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elements of G, one could expect a reasonable upper bound. This can be formalized using
Markov’s inequality as well as bounds on the expectation of the statistical difference between the
distribution of the end-point of the mth step of the random walk and the uniform distribution
(due to Hildebrand). This is indeed the approach that we take.

The next theorem shows that if we allow polylogarithmic dependence of r on |G| then one does
indeed get a polynomial (in log |G|) mixing time.

Theorem 2.4.2. [16, Thm. 1] Let r = �(log |G|)a� for some constant a > 1 and let ε′ > 0 be
given. Suppose that m >

a

a − 1
log |G|
log r

(1 + ε′). Then

Es1,...,sr [‖P ∗m
s1,...,sr

− U‖] → 0 as |G| → ∞,

where the probability is taken over a uniformly random r-tuple (s1, . . . , sr) of distinct elements
of G.

Remark 3. For our particular application, the version stated above is not sufficient as it does
not quantify the rate of convergence of the expectation as |G| → ∞. Yet, we should point
out that such a quantification is implicit in the proof by Dou and Hildebrand. We state and
prove an effective version in the next section and apply this version to obtain upper bounds
on the mixing time τs1,...,sr(ε) that holds with high probability over the choice of the r-tuple
(s1, . . . , sr).

Remark 4. We note that Hildebrand’s bound is optimal in the following sense: it is shown in
[32, Thm.3] that if r = �(log |G|)a� for some constant a < 1 then for any fixed positive real
number b, the distance ‖P ∗m

s1,...,sr
− U‖ → 1 as |G| → ∞ for m = �(log |G|)b� and any choice

s1, . . . , sr ∈ G of transition steps.

Finally, we note that if r is independent of |G| then the mixing time becomes exponential as
shown by the following two theorems establishing upper and lower bounds, respectively.

Theorem 2.4.3. [32, Thm.1] Suppose that r ≥ 2 is a fixed positive integer and let p1, . . . , pr

be fixed transition probabilities as above. Given ε > 0, there exists a constant γ that depends on
r, ε and the pi’s, but not on |G| such that

Es1,...,sr [‖P ∗m
s1,...,sr

− U‖] < ε

for m = �γ|G| 2
r−1 � where the expectation is taken over a uniformly random r-tuple (s1, . . . , sr)

of distinct elements of G.

Theorem 2.4.4. [33, Thm.2] Let r be constant (independent of |G|) and let pi = 1/r for
i = 1, . . . , r. Let δ <

1
2

be fixed. There exists a value γ > 0 (independent of |G|) such that if

m < γ|G| 2
r−1 then ‖P ∗m

s1,...,sr
− U‖ > δ for any r-tuple (s1, . . . , sr) of distinct elements of G.
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2.4.1 Upper Bounds on Mixing Times

The mixing time τs1,...,sr (ε) can get as large as |G| for certain degenerate r-tuples (s1, . . . , sr) of
transition steps. We thus need a way to show that with high probability over a randomly chosen
r-tuple (s1, . . . , sr) of distinct elements of G, the mixing time can be bounded by a sufficiently
strong upper bound. The following definition is helpful in order to make this rigorous:

Definition 2.4.5. Let ε > 0 be a real number and let m be a positive integer. We say that an
r-tuple (s1, . . . , sr) of distinct elements of G is (ε, m)-faulty if ‖P �m

s1,...,sr
−U‖ > ε or equivalently,

if τs1,...,sr (ε) > m.

Using the work of Dou and Hildebrand [16] and Markov’s inequality, one can prove the following:

Lemma 2.4.6. Let a > 1 be any real number and let ε′ be a real number that satisfies
0 < ε′ <

(a − 1)
e

log log |G| − 1. Let r = �(log |G|)a� and let m =
⌈ log |G|

(a − 1) log log |G|(1 + ε′)
⌉
.

There exists n′
0 > 0 such that if |G| ≥ n′

0 then for any ε > 0, we have

Pr
s1,...,sr

[(s1, . . . , sr) is (ε, m)-faulty] = Pr
s1,...,sr

[‖P �m
s1,...,sr

− U‖ > ε] <
3

4ε2|G|ε′ ,

where the probability is taken over a uniformly random r-tuple (s1, . . . , sr) of distinct elements
of G.

Proof. We follow the proof of [16, Theorem 1]. Throughout, we omit the explicit reference to
the floor and ceiling notation, this does not affect any of the conclusions. It is shown in [16, p.
996] that

Es1,...,sr [‖P �m
s1,...,sr

− U‖2] ≤ 3
4
|G|(em)m

rm
, (2.1)

whenever |G| is sufficiently large, i.e., whenever |G| ≥ n′
0 for some n′

0 > 0. Letting d =
a

a − 1
1 + ε′

log r
=

1 + ε′

(a − 1) log log |G| , note that (em)m = |G|d(log d+1) and rm = em(a−1) log log |G|.

The right side of the inequality (2.1) becomes:

3|G|(em)m

4rm
=

3elog |G||G|d(log d+1)

4em(a−1) log log |G| =
3
4
|G|−ε′+d(log d+1).

If ε′ <
(a − 1) log log |G|

e
− 1 then log d < −1, hence, d(log d + 1) < 0 and inequality (2.1) then

implies
Es1,...,sr [‖P �m

s1,...,sr
− U‖2] ≤ 3

4
1

|G|ε′−d(log d+1) <
3

4|G|ε′ . (2.2)

Using Markov’s inequality, we obtain

Pr
s1,...,sr

[‖P �m
s1,...,sr

− U‖2 > ε2] <
3

4ε2|G|ε′ .
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Since the statistical distance is non-negative, the above inequality is equivalent to

Pr
s1,...,sr

[‖P �m
s1,...,sr

− U‖ > ε] <
3

4ε2|G|ε′ . (2.3)

2.5 Application to Pollard Rho – Proof of Theorem 2.3.1

We prove Theorem 2.3.1 in two steps: 1) we establish collision bounds in terms of mixing times;
2) we combine the previous bounds via a simple result from probability theory and carefully
optimize for the parameters involved.

2.5.1 Collision Bounds and Mixing Times

Our proof is based on the following argument: let ε > 0 and the r-tuple of transition steps
(s1, . . . , sr) be fixed. For notational convenience, we substitute τ = τs1,...,sr(ε). Given t ≥ 0,
we consider the probability p(ε, t, t0) that no collision has occurred after the first t0 + (t + 1)τ
steps of the walk. For instance, in case t = 0, we make t0 + τ steps of the walk and compare
the resulting end-point with the first t0 elements of the walk. We can look at the probability
p(ε, 0, t0) and by definition of the mixing time τ ,

p(ε, 0, t0) ≤ 1 − t0(1 − 2ε|G|)
|G| .

More generally, the probability that the (t0 + (t + 1)τ)th element of the walk does not collide
with any of the first t0 + tτ elements is at most

1 − (t0 + tτ)(1 − 2ε|G|)
|G| .

Using 1 − x ≤ e−x for x < 1, we obtain

p(ε, t, t0) ≤
(

1 − (t0 + tτ)(1 − 2ε|G|)
|G|

)
p(ε, t − 1, t0)

≤ exp
(
−(t0 + tτ)(1 − 2ε|G|)

|G|
)

p(ε, t − 1, t0).

By induction on t, we prove the following lemma:

Lemma 2.5.1. Let ε > 0 be a real number and let (s1, . . . , sr) be a fixed r-tuple of distinct
elements of G. Let τ = τs1,...,sr(ε) be the mixing time introduced in Definition 2.4.1. For any

16
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positive integers t ≥ 0 and t0 we have

p(ε, t, t0) ≤ exp
(
−(1 − 2ε|G|)(t + 1)(2t0 + tτ)

2|G|
)

=: B(ε, t, t0).

The above lemma bounds the probability that a collision is obtained after t0 +(t+1)τ steps. The
next step is to optimize the integer parameters t0 and t. Thus, the probability of obtaining a
collision after at most t(ε, t, t0) := t0 + (t + 1)τ(ε) Pollard rho steps is lower bounded by

Pr
random walk

[Ts1,...,sr ≤ t(ε, t, t0)] ≥ 1 − B(ε, t, t0).

For any ε <
1

2|G| and any t0 (keeping in mind that κ > 1 by hypothesis), we first determine the

minimal value of t for which the probability of failure (not obtaining a collision after t(ε, t, t0)
steps) is at most e−κ. In other words,

B(ε, t, t0) = exp
(
−(1 − 2ε|G|)(t + 1)(2t0 + tτ)

2|G|
)
≤ e−κ ⇐⇒

τ

2
t2 +

(
τ

2
+ t0

)
t + t0 − κ|G|

1 − 2ε|G| ≥ 0.

Here, we have used the hypothesis ε < 1
2|G| which implies that the discriminant of the above

quadratic polynomial in t is positive, hence, by solving the quadratic inequality, we obtain:

t ≥
− (

τ
2 + t0

)
+
√

2κ|G|
1−2ε|G|τ +

(
τ
2 − t0

)2

τ
=: t′.

This means that tmin = �t′� is the minimal possible value for t that yields a probability of
failure smaller than e−κ given ε, (s1, . . . , sr) and t0. Hence, the number of Pollard rho steps
necessary for producing a collision can be bounded by

t(ε, tmin, t0) ≤
√

2κ|G|
1 − 2ε|G|τ +

(
τ

2
− t0

)2
+

τ

2
.

The value of t0 that minimizes the above bound is t0 =
⌊

τ

2

⌋
. Hence,

min
t,t0

t(ε, t, t0) ≤
√

2κ|G|
1 − 2ε|G|τ +

1
4

+
τ

2
=: ts1,...,sr (ε).

Here, we intentionally write s1, . . . , sr in the subscript to remind the reader of the dependency

17
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on the transition steps. Finally,

Pr
random walk

[Ts1,...,sr ≤ ts1,...,sr (ε)] ≥ 1 − e−κ. (2.4)

2.5.2 Completing the Proof

Recall that we need to prove the existence of n0 ≥ 0 for which the statement of Theorem 2.3.1
holds. As we proceed with the proof, we will show what inequalities the value n0 needs to
satisfy. First, suppose that n0 satisfies

a − 1
e

log log n0 − 1 > 0. (2.5)

Second, suppose that n0 ≥ n′
0 where n′

0 is the bound from Lemma 2.4.6 and suppose that
|G| ≥ n0. Let ε′ be any real number that satisfies 0 < ε′ <

a − 1
e

log log n0 − 1 (the existence of

such ε′ is guaranteed by the above inequality) and let m =
⌊ log |G|

(a − 1) log log |G|(1 + ε′)
⌋
. Let

ε > 0 be a real number that satisfies ε <
1

2|G| . Lemma 2.4.6 yields a bound on the probability

of drawing an (ε, m)-faulty choice of (s1, . . . , sr) out of all r-tuples of distinct elements in G.
To complete the proof of Theorem 2.3.1, we need to combine (2.4) and (2.2) to get the desired
result. We do this via standard union bounds from probability theory by using that if A, B1
and B2 are three events such that A ⇒ ¬B1 ∨ ¬B2 then

Pr[A] ≤ Pr[¬B1] + Pr[¬B2]. (2.6)

We would like to apply (2.6) to A being the event

Event A : Ts1,...,sr > c
√

κ|G| log |G|

for some constant c > 0 that we specify below. Moreover, let B1 be the event

Event B1 : Ts1,...,sr ≤ ts1,...,sr (ε),

and let B2 be the event
Event B2 : τs1,...,sr (ε) ≤ m,

where m is the value from Lemma 2.4.6. In order to apply (2.6), we only need to choose the
parameters ε and ε′ in such a way that A ⇒ ¬B1 ∨ ¬B2.

Assuming that the events B1 and B2 both hold, we obtain

Ts1,...,sr ≤
√

2κ|G|
1 − 2ε|G|m +

1
4

+
m

2
.

18
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Since ε′ < (a−1)
e log log |G| − 1 then m < log |G|

e + 1. Substituting this in the above inequality,
we obtain

Ts1,...,sr ≤
√

2κ|G|
e(1 − 2ε|G|)(log |G| + e) +

1
4

+
log |G| + e

2e

(∗)
≤

√
2κ|G|

e(1 − 2ε|G|)(log |G| + 3).

Here, the inequality (∗) holds since we add an extra condition on n0 that is deduced below.
First let us notice that

√
a + b =

√
a + b2 + 2b

√
a, for all positive real numbers a, b. Applying

this for a =
2κ|G|

e(1 − 2ε|G|)(log |G| + e) +
1
4

and b =
log |G| + e

2e
, we observe that in order for (∗)

to hold, we need to prove that

1
4

+
(

log |G| + e

2e

)2
+

log |G| + e

e

√
2κ|G|

e(1 − 2ε|G|) (log |G| + e) +
1
4

<
2κ|G|(3 − e)
e(1 − 2ε|G|) .

Equivalently, we need to show that

e(1 − 2ε|G|)
8κ|G| +

(log |G| + e)2(1 − 2ε|G|)
8eκ|G| +

+
(log |G| + e)3/2√e(1 − 2ε|G|)

e
√

2κ|G|

√
1 +

e(1 − 2ε|G|)
8κ|G|(log |G| + e)

<

< 3 − e

and as 1 − 2ε|G| < 1 and κ > log 2, it suffices to show that one can choose n0 such that for any G with
|G| ≥ n0,

e

8|G| log 2
+

(log |G| + e)2

8e log 2 · |G| +
(log |G| + e)3/2√

2e log 2 · |G|
√

1 +
e

8|G| log 2(log |G| + e)
< 3 − e. (2.7)

Now, if our n0 is chosen such that each term

e

8n0 log 2
<

3 − e

3
,

(log n0 + e)2

8e log 2 · n0
<

3 − e

3
and

(log n0 + e)3/2
√

2e log 2 · n0

√
1 +

e

8n0 log 2(log n0 + e)
<

3 − e

3
,

then inequality (2.7) holds for any G with |G| ≥ n0.

The largest term in (2.7) is upper bounded by
(log n0 + e)3/2

√
n0

. If we impose the extra condition that this

bound is also less than
3 − e

3
(i.e., the extra condition that n0 should satisfy 9(log n0 + e)3 < (3− e)2n0),

all of the above inequalities will hold whenever |G| ≥ n0.
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We now specify the constant c: it should be chosen such that the above upper bound can be further
bounded by c

√
κ|G| log |G|. It is clear that c = 2/e is too small. Yet, we observe that for any positive

real number δ > 0 (independent of |G|), one can use c =
√

(2 + δ)
e

and as long as ε <

(
1 − 2

2 + δ

)
1

2|G| ,
i.e.,

Ts1,...,sr
≤
√

(2 + δ)
e

κ|G| log |G|. (2.8)

Next, for the specified γ > 0, we would like to choose ε such that the upper bound on Pr(¬B2) established
in Lemma 2.4.6 is upper bounded by |G|−γ , e.g., that

3
4ε2|G|ε′ <

1
|G|γ which is achieved as long as

ε >

√
3
4
|G| γ−ε′

2 .

To summarize, if we want to choose ε so that we guarantee simultaneously the following two conditions:

1. (i) B1 ∧ B2 ⇒ ¬A,

2. (ii) Pr(¬B2) < |G|−γ ,

then we need the lower bound on ε (namely,
√

3
4
|G| γ−ε′

2 ) to not exceed the upper bound (namely,(
1 − 2

2 + δ

)
1

2|G| ). This is achieved as long as ε′ > γ + 2. Since the only constraint on ε′ is ε′ <

(a − 1)
e

log log |G| − 1, if we choose n0 sufficiently large so that

(a − 1)
e

log log n0 − 1 > γ + 2, (2.9)

9(log n0 + e)3 < (3 − e)2n0, (2.10)

and
n0 ≥ n′

0 where n′
0 is the bound from Lemma 2.4.6, (2.11)

then for any G for which |G| ≥ n0, the two conditions (i) and (ii) will hold. Thus, the only conditions
that we need for n0 are the inequalities (2.9),(2.10) and (2.11).

Finally, if the events B1 and B2 both occur then

Ts1,...,sr <

√
2 + δ

e
κ|G| log |G|,

so the event A, i.e., Ts1,...,sr
>

√
2 + δ

e
κ|G| log |G|, is impossible. The union bound then implies

Pr
s1,...,sr

random walk

[
Ts1,...,sr

>

√
2 + δ

e
κ|G| log |G|

]
< e−κ +

1
|G|γ ,

i.e.,

Pr
s1,...,sr

random walk

[
Ts1,...,sr ≤

√
2 + δ

e
κ|G| log |G|

]
≥ 1 − e−κ − 1

|G|γ ,

which concludes the proof of Theorem 2.3.1.
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2.6 Conclusions

In the past few years, there has been a lot of attempts dedicated to rigorously proving the asymptotic
run time of generic algorithms to solve the discrete logarithm problem based on the Pollard’s rho
method [52, 39, 38, 58, 40]. With respect to Model 2, we rigorously prove collision bounds for general
cyclic groups G of prime order for the most common variation of Pollard rho (currently used to solve the
discrete logarithm problem on a generic elliptic curve), namely the Pollard rho method using additive
walks. Using mixing time estimates from Dou and Hildebrand [32, 16], we are able to prove a collision
bound of O(

√|G| log |G|) with probability greater than 50%. We hope that, just as in the case of the
original Pollard rho setting, this is only the first step in rigorously proving the asymptotic bound for the
additive Pollard rho algorithm.
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3 Analytic and Algebraic Theory of
Polarized Abelian Varieties

This chapter is meant to provide the theoretic background for Chapter 4 regarding explicit computations
of cyclic isogenies between Jacobians of genus 2 hyperelliptic curves. In Section 3.1.1 we focus on the
theory of g-dimensional complex abelian varieties whose group of complex points has the structure of
a complex torus admitting a non-degenerate Riemann form. Moreover, the condition for the torus to
admit an embedding into a suitable projective space is given in a few equivalent ways. For the purpose
of fixing a certain embedding of a complex torus into a suitable projective space in Section 3.1.2.1, we
give a short exposition of the Riemann theta functions in Section 3.1.2. It is followed by an useful
application in Section 3.1.3 that links the projective coordinates of an arbitrary point on two isomorphic
principally polarized complex tori. The last part 3.1.4 of this section is dedicated to a brief overview of
the Taniyama–Shimura theory of complex abelian varieties with complex multiplication as it is useful
for presenting the results of Chapter 4. In Section 3.2, we switch to abelian varieties defined over
an arbitrary field k and present the theory behind theta structures and isogenies of polarized abelian
varieties with compatible theta structures. The aim is to give an algebraic description of the theory over
the complex field presented in the previous section.

3.1 Abelian Varieties over the Complex Field

3.1.1 Preliminaries

Let V denote a complex vector space of dimension g. The group of complex points of an abelian variety X

of dimension g over the complex field is isomorphic to a complex torus T := V/Λ for some Z-lattice Λ ⊂ V

of maximal rank 2g. The torus T is a connected and compact complex manifold. The torus together with
an analytic isomorphism θX : X → T is called an analytic system of coordinates for the abelian variety
X [71, p.21]. The dual R vector space of V is the set of R-linear homomorphisms V ∨ := HomR(V, R)
[57, p.1] and we define the dual lattice of Λ in V ∨ as Λ∨ := {ϕ ∈ V ∨|ϕ(λ) ∈ Z, ∀λ ∈ Λ}. The dual torus
is by definition T ∨ = V ∨/Λ∨.

The converse of this statement is not true as not all complex tori correspond to abelian varieties. In
order for a complex torus V/Λ to be identified with the group of complex points of an abelian variety,
the torus must admit a non-degenerate Riemann form E : V × V → R [67, p.85].

By definition, a Riemann form E is an R-bilinear form E : V × V → R satisfying
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— E(u, u) = 0 for all u ∈ V (alternating),
— E(Λ, Λ) ⊆ Z,
— E(iv, iw) = E(v, w) for all complex vectors v, w and i the complex root

√−1.
Following the definition of a symplectic form on any vector space (namely it is an R-bilinear, alternating,
non-degenerate form), a non-degenerate Riemann form E is also a symplectic form on V , and so, the
vector space V is symplectic. We call a non-degenerate Riemann form E : V × V → R with respect to Λ
a polarization on V/Λ.

Next, we give an explicit formula for the Riemann form in terms of a basis of the lattice (and of the
complex space V ). If {v1, . . . v2g ∈ V } is a basis for the lattice, we represent E as a matrix J ∈ M2g×2g(Z)
whose element on row s and column t is js,t = E(vs, vt). The matrix J is a representation matrix of E

and is skew-symmetric (−J t = J) and invertible. 1

For the rest of this section, we fix once and for all a complex basis of V . We also use the standard
basis of R2g and the standard representation of C as an R vector space of dimension 2. Hence, we
identify V with an R-vector space V of dimension 2g. Then, the value of the Riemann form at any pair
of points x, y ∈ V is given by E(x, y) = at · J · b, where a, b are unique in R2g such that x =

∑2g
i aivi

and y =
∑2g

i bivi.

Moreover, according to [6, p.46], there exists a Z-basis B = {v1, . . . , vg, w1, . . . , wg} of Λ for which the

matrix representation of E is JD :=
(

Og D

−D Og

)
, with D = diag(d1, . . . , dg) where di are strictly positive

integers satisfying di|di+1 for all i ∈ {1, . . . , g − 1}, and Og is the zero matrix in Mg(Z). By definition
the type of E (or of the polarization) is δ := (d1, . . . , dg), or equivalently, the diagonal matrix D.

Such a basis B is called a symplectic basis of Λ with respect to E. This definition is a generalization
of the classical definition of symplectic bases for E, i.e., B is symplectic if it satisfies E(vi, vj) = 0 =
E(wi, wj) and E(vi, wj) = δi,j for all i, j = 1, . . . , g. 2 Moreover, in our case we also obtain that
〈v1, . . . , vg〉 ⊕ 〈wg+1, . . . , w2g〉 is a decomposition of Λ in 2 isotropic spaces for the choice of E. It
automatically induces a decomposition of the symplectic space V in two isotropic spaces.

We define the period matrix of Λ as P = (P1 P2), where P1 = (v1 . . . vg) and P2 = (w1 . . . wg) are two
complex square matrices of dimension g × g. According to [43, p.134], if the Riemann form E is of type
(1, . . . , 1), then the matrix P2 is invertible and moreover, the matrix Ω := P1P −1

2 is in the Siegel upper
half space

Hg = {X + iY = Ω ∈ Mg(C) |Ω = Ωt and Y positive definite}.

In this case, we also say that the complex torus admits a principal polarization. Thus, the existence of a
principal polarization on T induces a decomposition of the lattice Λ as ΩZ2 + Z2. Conversely, given
Ω ∈ H2 such that Λ = ΩZ2 + Z2, a non-degenerate Riemann form of type (1, . . . , 1) on Λ is given by
E(x1Ω + y1, x2Ω + y2) = xt

1y2 − yt
1x2. This result is very important as the existence of a principal

polarization on V/Λ that gives rise to Ω ∈ Hg allows us to define later on analytic theta functions and
to embed T into a suitable projective space. The existence of such an embedding is guaranteed by the
Lefschetz’s theorem (see Section 3.1.2).

We can extend the above result to complex tori with Riemann forms of general type D, namely given
(V/Λ, E) and a symplectic basis B for E, there exists a matrix Ω ∈ Hg such that Λ = ΩZg +DZg [6, §8.1].

1. J t denotes the transpose of J
2. δi,j = 1 if i = j, and δi,j = 0 otherwise.
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We write the corresponding period matrix as PD = (Ω D). Since a common aspect for all complex tori
with polarizations of arbitrary type is the existence of a matrix in Hg, it is natural to present morphisms
between two complex tori (that may not or not preserve the type of the polarization) in relation with
their period matrices. We start with isomorphisms that preserve the polarization type as it is particularly
useful later on when defining embeddings of isomorphic tori into some projective space via analytic

Riemann theta functions (see Section 3.1.3). First, for any symplectic matrix γ =
(

a b

c d

)
∈ Sp2g(Q),

with γΛ ⊆ Λ, the map Ω �→ γ ·Ω = (aΩ + b)(cΩ + d)−1 defines an action of Sp2g(Q) on the Siegel upper
half space Hg. We denote by P ′

D = (γ · Ω D) the period matrix of the torus T ′. The change of basis
induces an isomorphism from T = V/ΩZg + DZg onto V/γ · ΩZg + DZg [6, p.212]. According to [6,
Prop. 8.1.3], the elements {γ ∈ Sp2g(Q)| γΛ ⊆ Λ} are in bijection with the set of isomorphic complex
tori with polarizations of the same type D, namely {V/ΩZ2 + DZ2| Ω ∈ H2}.

We also mention other maps between complex tori, starting with general homomorphisms, and their
analytic and rational representation, and ending with the isogeny definition. A map φ : V/Λ → V/Λ′ =: T ′,
where Λ′ is a Z-lattice of rank 2g, is called a homomorphism of complex tori if it is a holomorphic map
that preserves the group structures. According to [6, p.10], it admits an analytic representation via a
map ρa : Hom(T, T ′) → EndC(V ) that associates a unique C-linear map Φ: V → V with Φ(Λ) ⊂ Λ′

to the homomorphism φ. The rational representation of φ is the restriction ΦΛ of Φ to the lattice
Λ via the injective homomorphism ρr : Hom(T, T ′) → HomZ(Λ, Λ′). The map Φ is given by a g-by-g
complex matrix Ma and the matrix representation of ρr(φ) is a 2g-by-2g integer matrix Mr, satisfying
MaPD = P ′

DMr.

Definition 3.1.1. An isogeny of complex tori ϕ : T → T ′ is a surjective homomorphism of finite kernel.

Next, for the purpose of finding analogue concepts in the case of abelian varieties over an arbitrary
field, we give alternative descriptions of polarizations on T (and consequently on the abelian variety X)
that are not in terms of bilinear forms, or period matrices. First, we introduce a connection between
a Riemann form E on the torus T and a class of line bundles L on T . We make the observation that
from now on we do not impose (unless made precise) that the Riemann form is non-degenerate, or in
other words, that it is a polarization. Another good consequence of introducing line bundles is a new
description of the dual torus T ∨ that was defined at the beginning of this section.

As in [6, p.24], the group H1(T,O∗
X) is identified with the group of holomorphic line bundles on T . 3 We

define the Néron-Severi group as the image of the homomorphism c1 : H1(T,O∗
T ) → H2(T, Z). Consider

a holomorphic line bundle L and let c1(L) ∈ H2(T, Z) be the first Chern class of L. According to [6,
Cor. 1.3.2] the first Chern class of L is identified with an alternating Z-valued form E on the lattice Λ.
The next goal is to prove that E can be extended to a Riemann form on V/Λ.

First, according to [6, Append. B], the line bundle L is canonically identified with a non vanishing
holomorphic function f : Λ × V → C∗ satisfying f(λ + μ, v) = f(λ, μ + v) · f(μ, v) for all parameters
λ, μ ∈ Λ and v ∈ V . The function f is called the canonical factor of automorphy for L. Next, the factor
of automorphy f allows us to map c1(L) to an alternating form E : Λ × Λ → Z of equation given in [6,
Thm. 2.1.2]. The form E is indeed a Riemann form [6, Prop. 2.1.6], and moreover the existence of a
Riemann form on T is equivalent to the existence of a holomorphic line bundle on T for which c1(L) is

3. The group operation on H1(T, O∗
X) is classically denoted by ⊗, but we omit it in general in the exponent,

i.e., Ln = L ⊗ . . . ⊗ L︸ ︷︷ ︸
n

.
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identified with E.

Next, we make more precise the connection between a polarization on T and a specific holomorphic line
bundle (out of all line bundles that have the same Chern class). First we define a form on V × V that
can also be identified with c1(L). Given a Riemann form E : V × V → R on the torus T , we define the
Hermitian form H : V × V → C as H(u, v) = E(iu, v) + iE(u, v). Indeed, it is easy to see that H is
C-linear in the first parameter and satisfies H(u, v) = H(v, u). Moreover, the set of Hermitian forms on
V , with imaginary part Im(H(Λ, Λ)) ⊆ Z, is in bijection with the set of Riemann forms on T [6, Lem
2.1.7]. Hence, there exists a line bundle L whose first Chern class is identified with H (or equivalently
with E).

We also link a holomorphic line bundle L of first Chern class H to a semicharacter for H. By definition,
a semicharacter for H is a map χ : Λ → C1, where C1 := {z ∈ C : |z| = 1}, such that for all
λ, μ ∈ Λ, χ(λ + μ) = χ(λ)χ(μ)e( 1

2 ImH(λ, μ)) (where we use the classical notation of e(x) := e2πix

where i is the square root of −1 and π the constant number 3.14159 . . .). Given a pair (H, χ), one can
deduce a corresponding factor of automorphy [6, p.30] that leads to a line bundle L(H, χ) � V × C/Λ
via the method in [6, Append. B]. The Appel–Humbert Theorem [6, Thm. 2.2.3] proves that any
holomorphic line bundle L whose first Chern class corresponds to H is isomorphic to L(H, χ), for a
unique semicharacter χ. We define the Picard group Pic(T ) as the group of isomorphism classes of
holomorphic line bundles on T and Pic0(T ) as the group of isomorphism classes of line bundles of Chern
class 0 (representatives of the form L(0, χ), with χ ∈ Hom(Λ, C1)).

The group Pic0(T ) is identified with the dual torus T ∨ [6, Prop. 2.4.1]. For any line bundle L on T and
any x ∈ T , the line bundle t∗

xL ⊗ L−1, where tx represents translation by x, is of first Chern class 0.
Hence, for any line bundle L and x ∈ T , we define a map ϕL : T → T ∨, of this form x → t∗

xL ⊗ L−1.
This map is proven to be a homomorphism [6, p.36] that depends only on c1(L) [6, Cor. 2.4.6]. The
kernel of ϕL is denoted by K(L) and in the case of c1(L) = E being non-degenerate, the kernel is finite
and so ϕL is an isogeny of degree equal to det(E). If the isogeny has degree 1 then we are in the case of
a principal polarization that we denote by L0.

Remark 5. Hence, we identify a polarization on T with a non-degenerate Riemann form E or a positive
definite Hermitian form H or a holomorphic line bundle of non-degenerate first Chern class c1(L).

We review quickly some well known definitions of line bundles. A positive definite line bundle L is by
definition a line bundle whose first Chern class is given by a positive definite Hermitian form H (or
alternatively by a non-degenerate Riemann form). Equivalently, in this case the line bundle is said to be
ample [6, Th. 4.5.1]. We can also verify that L being an ample line bundle implies that the surjective
map ϕL : T → T ∗ of kernel K(L) is indeed an isogeny.

We say that two line bundles L1 and L2 on T are algebraically equivalent if and only if they have the
same Chern class. Since Pic(T )/ Pic0(T ) is the group of isomorphism classes of holomorphic line bundles
modulo algebraic equivalence, there exists a line bundle L0 ∈ Pic0(T ) such that L2 = L1 ⊗ L0. If L1
is ample, there exists some x ∈ K(L1) such that L2 = t∗

xL1 [6, Cor. 2.5.4] and so the line bundle
L0 from above can be written as t∗

xL1 ⊗ L−1
1 . We say that two line bundles L1 and L2 are linearly

equivalent if they are isomorphic, or in other words if they are represented by linearly equivalent divisors.
One can extend the notion of algebraic equivalence by saying that L1 and L2 are equivalent up to an
automorphism whenever there exists an automorphism ξ of T such that L2 is algebraically equivalent
to ξ∗L1.
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3.1.2 Riemann Theta Functions

In this section we define Riemann theta functions with respect to a period matrix of the form P = (Ω Ig),
with Ω ∈ Hg. As before, the corresponding complex torus is T = Cg/ΩZ2 + Z2.

Consider the positive definite Hermitian form H : V × V → C that is corresponding to Ω ∈ Hg and let
E = Im(H). Let V = V1 ⊕ V2 be the decomposition of V given by the decomposition of Λ = Λ1 ⊕ Λ2
(due to the period matrix P ). Consider the line bundle L0 = L(H, χ0) of first Chern class H and
semicharacter χ0 : Λ → C× given by χ0(v) = e( 1

2 E(v1, v2)), where v = v1 + v2 with v1 ∈ Λ1, v2 ∈ Λ2.
When restricted to v ∈ Λ1 or v ∈ Λ2, we have E(v1, v2) = 0 and so, the semicharacters χ0|Λ1 , χ0|Λ2 are
trivial.

Moreover, the line bundle L0 = L(H, χ0) is well defined among all holomorphic line bundles of the same
first Chern class H (or equivalently in the same algebraic equivalence class) and L0 is the only line
bundle of first Chern class H whose semicharacter is trivial when restricted onto Λ1 and Λ2 respectively.
Next, we see that we can link the canonical factors of automorphy of L0 (see [6, p.50] for the definition)
to the so-called Riemann theta function corresponding to Ω.

Definition 3.1.2. Given Ω ∈ Hg, the Riemann theta function θ : V → C associated to Ω is

θ(z, Ω) :=
∑

x∈Zg

e

(
1
2

xtΩx + xtz

)
. (3.1)

The Riemann theta function of characteristic (a, b) ∈ Rg×Rg associated to Ω is by definition θ

[
a

b

]
: V →

C, with

θ

[
a

b

]
(z, Ω) :=

∑
x∈Zg

e

[
1
2

(a + x)tΩ(a + x) + (a + x)t(z + b)
]

. (3.2)

Let c = Ωa + b ∈ V , with a, b ∈ Rg. Then the canonical semicharacter for the line bundle t∗
cL0 is of

the form χc : Λ → C× where χc = χ0 · e(E(c, ·)) [6, Lem 2.3.2] and furthermore, according to [6, Rem.
8.5.3], the canonical factor of automorphy corresponding to t∗

cL0 is gc : Λ × V → C∗ of the form

gc(Ωα + β, z) = e(atβ + btα − 1
2
· αtΩα − ztα), where α, β ∈ Z2 and z ∈ V.

In case c = 0 and the corresponding line bundle is L0, the canonical factor of automorphy g for the
Riemann theta function is g0(Ωα + β, z) = e(−1

2 αtΩα − ztα), where α, β ∈ Z2 and z ∈ V .

According to [6, §8.5], the space of Riemann theta functions with characteristics a, b ∈ Rg is identified
with the space of holomorphic functions Θ: V → C that satisfy Θ(λ + z) = gaΩ+b(λ, z)Θ(z) for all
λ ∈ ΩZ2 + Z2 and z ∈ V . Following [66, p.23], the space of Riemann theta functions with characteristics
a, b is identified with the space of global sections of Γ(T, t∗

cL0)).

Given a line bundle L, there exists c = Ωa + b ∈ V , with a, b ∈ Rg (unique up to translation by λ ∈ Λ)
such that t∗

cL0 � L [6, Lem.3.1.2]. The uniqueness up to translation is in other words: for all a, b ∈ Rg,
if and only if c′, c′′ ∈ Zg then

θ

[
a + c′

b + c′′

]
(z, Ω) = θ

[
a

b

]
(z, Ω), for all z ∈ V (3.3)
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Definition 3.1.3. Consider the lattice decomposition Λ = ΩZ2 + DZ2, with D = diag(d1, . . . , dg) for
some positive integers d1|d2| . . . |dg. A Riemann theta function with characteristics a ∈ D−1Zg and
b ∈ Zg is called a Riemann theta function of type D.

If d1 = . . . = dg = n, for some integer n ≥ 2, a Riemann theta function with characteristics a ∈ 1/nZg

and b ∈ Zg is called a Riemann theta function of level n.

3.1.2.1 Embeddings of T into a Projective Space

The Riemann theta functions of level n ≥ 2 prove to be particularly useful when embedding the torus
into a certain complex projective space. As in [66, 13], for a positive integer n ≥ 2, we define the
group Z(n) := (Z/nZ)g whose elements are written as column vectors with elements in Z/nZ. When
using Z(n) in the definitions of theta functions below, we see an element a ∈ Z(n) as a ∈ Zg. Given
a ∈ Z(n) (or a ∈ Zg) and a positive integer m, by abuse of notation we denote by a/m the rational
vector (a1/m, . . . , ag/m)t.

First, let L = Ln
0 = L(nH, χn

0 ) for some integer n ≥ 2. Then, the kernel K(L) consists of the n-torsion
points Ωa/n + b/n, where a, b ∈ Zg, [6, Lem. 2.4.7]. Furthermore, there exists an n-torsion point c, such
that t∗

cL0 � L. Again, following [6, §8.5] and [66, p.23], the space of global sections Γ(T,L) is identified
with the space of Riemann theta functions of level n. Given the property (3.3), in order to generate the
space of Riemann theta functions of level n, it is enough to consider the case of a ∈ Z(n) and b = 0.

Similarly to the work of [22, 66, 12, 48], we prefer to work with a second basis for the space of global
sections Γ(T,L) that corresponds to a = 0 and b ∈ Z(n). The basis consists of the following functions
θb : V → C with:

θb(z) = θ

[
0

b/n

](
z,

Ω
n

)
, b ∈ Z(n). (3.4)

For the change of basis we refer to [12, Eq. (3.6-7)].

Consider the projective space P(Γ(T,L)) of dimension ng − 1 over C. A theorem of Lefschetz [6, Thm.
4.5.1] states that for n ≥ 3, the map (θi)i∈Z(n) : T → P(Γ(T,L)) is an embedding. For n = 2, the level 2
theta functions determine instead an embedding of the Kummer surface S = T/{±1} into P2g−1(C) [6,
Thm. 4.8.1].

We define the projective theta null point of level n as (θi(0))i∈Z(n) ∈ P(Γ(T,L)). We also call the
embedding of 0 into P(Γ(T,L)) as theta constants of level n. By definition, for z ∈ V the values
(θb(z))b∈Z(n) are called projective theta coordinates of level n for the point z.

In the case of n = k2, another basis of Γ(T,L) is the so-called basis of level (k, k), given by the so-called
Riemann theta functions of level (k, k). The projective theta coordinates of level (2, 2) for z ∈ T are:

θ

[
a/k

b/k

]
(kz, Ω), a, b ∈ Z(k). (3.5)
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For all a, b ∈ Z(k) and v ∈ Z(k), the following relation holds (for all z ∈ T ):

θ

[
a/k

b/k + v/k

]
(z, Ω) = e(at · v) · θ

[
a/k

b/k

]
(z, Ω). (3.6)

The level (k, k) basis is particularly interesting in the case of n = 4 and k = 2 as this is the case of the
smallest even level for which there exists an embedding of T into a projective space. Later on, we will
require n to be even for the purpose of defining operations on points in projective theta coordinates.
Going back and forth between theta coordinates of level 4 and level (2, 2) for a point z ∈ T is given
below as in [12, p.38]. For every z ∈ V , for every b ∈ Z(4), we have

θb

(
z,

Ω
4

)
=

∑
α∈Z(2)

θ

[
α/2
b/2

]
(2z, Ω) . (3.7)

Remark 6. In order for the value θ

[
α/2
b/2

]
(2z, Ω) to be computed by evaluating a theta function of

level (2, 2) at z, we first write uniquely b = 2v + b′, where b′ has components in {0, 1} (so v, b′ ∈ Z(2)),
and by (3.6), we obtain:

θ

[
α/2
b/2

]
(2z, Ω) = e(2at · v) · θ

[
α/2
b′/2

]
(2z, Ω) = θ

[
α/2
b′/2

]
(2z, Ω) .

For any point z ∈ T , to change the level from (2, 2) to 4, we use that for all a, b ∈ Z(2) we have:

θ

[
a/2
b/2

]
(2z, Ω) =

1
2g

∑
β∈Z(2)

(−1)atβθ

[
0

b/4 + β/2

](
z,

Ω
4

)
. (3.8)

Following [12, Prop. 3.1.11], given a theta null point of level n, we can obtain the corresponding
projective theta coordinates of level n (also called canonical) for the n-torsion points Ωα/n + β/n, with
α, β ∈ Z(n) as:

θb (Ωα/n + β/n, Ω) = e(−αtb/n) · θb+β (0, Ω) , (3.9)

for all b ∈ Z(n).

Furthermore, given a theta null point of level (2, 2), we can obtain projective theta coordinates of level
(2, 2) for the 4-torsion points Ωα/4 + β/4, with α, β ∈ Z(4), as:

θ

[
a/2
b/2

]
(2(Ωα + β), Ω) = e(−αtb/4) · θ

[
(a + 2α)/2
(b + 2β)/2

]
(0, Ω) , (3.10)

for all a, b ∈ Z(2).

Consider the classical projective map pT : A(Γ(T,L)) \ {0} → P(Γ(T,L)) and define the affine cone of T

as T̃ := p−1(T ). An affine lift of z ∈ T is simply an element in the preimage p−1
T (x) and is denoted by 0̃.
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3.1.3 Symplectic Isomorphisms and Theta Functions

Recall that in Section 3.1.1 we introduced symplectic isomorphisms of complex tori of the form V/ΩZg +
Zg → V/Ω′Zg + Zg, where Ω, Ω′ ∈ Hg. Here we show that we can compute the theta functions of level
n ≥ 2 corresponding to Ω′ (for the isomorphic torus T ′) from the theta functions of level n corresponding
to Ω (for the torus T ). That allows us to switch between different projective embeddings of the same
isomorphism class of complex tori. This formula has an analogue in the case of abelian varieties over an
arbitrary field, and in particular in the case of Jacobians of hyperelliptic curves (see section 4.7).

The elements γ =
(

A B

C D

)
of Sp2g(Z) act as an isomorphism on the Siegel upper half space Hg

given by Ω → γ · Ω = (AΩ + B)(CΩ + D)−1. It induces an isomorphism of corresponding tori, i.e.,
γ : T = V/ΩZg + Zg → T ′ = V/γ · ΩZg + Zg of the form z = Ωz1 + z2 → γ · z = ((CΩ + D)t)−1z, for
any z ∈ T .

Given the Riemann theta functions of level n ≥ 2 associated to Ω and the corresponding projective theta
coordinates of any z ∈ T (as defined in Section 3.1.2), we expect to be able to obtain Riemann theta
functions of level n associated to γ · Ω together with the corresponding projective theta coordinates of
γ · z. Indeed, such relation exists and it is proven by Igusa [34, §5, Thm.2] for general γ ∈ Sp2g(Z). We
review the equation proven by Igusa.

Let a = (a1, . . . , ag) and b = (b1, . . . , bg) be two vectors in Rg. For any γ ∈ Sp2g(Z) and for any
(z, Ω) ∈ Cg ×Hg the following relation holds:

θ

[
a′

b′

]
(γ · z, γ · Ω) = ξγ · ξz,γ · ξa,b ·

√
det(CΩ + D) · θ

[
a
b

]
(z, Ω), (3.11)

where:
* ξγ is an 8th root of unity,
* ξz,γ = e( 1

2 zt(CΩ + D)−1Cz),
* ξa,b = e(−1

2 · (atABta + btCDtb) − (Ata + Ctb + e′)te′′ − atBCtb),

*
(

a′

b′

)
:= (γt)−1 ·

(
a − e′

b − e′′

)
, where e′ =

1
2

diag
(
AtC

)
and e′′ =

1
2
(
DtB

)
.

Mumford proved the same formula for a congruence subgroup of Sp2g(Z), i.e., the subgroup Γ2 ={
γ ∈ Sp2g(Z) : γ ≡ I2g mod 2

}
. We introduce two types of congruence subgroups of Sp2g(Z) whose

action on the theta functions is useful further on. Following Igusa and Mumford, for any positive integer
n, we denote by:

Γ′
n :=

{
γ ∈ Sp2g(Z) : γ ≡ ±I2g mod n

}
,

and

Γ′
n,2n :=

{
γ =

(
A B

C D

)
∈ Γn : diag(AtC) ≡ diag(BtD) ≡ 0 mod 2n

}
.
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It follows from [12, Lem. 6.2.1] that for all a, b ∈ Z(n) and for all γ =
(

A B

C D

)
∈ Γ′

n, we have:

θ

[
a

b

]
(0, γ · Ω)

θ

[
0
0

]
(0, γ · Ω)

=
θ

[
a

b

]
(0, Ω)

θ

[
0
0

]
(0, Ω)

· e

(
1

2n2 atDtBa − 1
2n2 btAtCb − 1

n2 at(A − In)b
)

. (3.12)

It follows that Γ′
n is exactly the group fixing the 2n-th powers of the theta constants of level (n, n)

(modulo a constant), Γ′
n,2n is the group fixing the n-th powers and Γ′

n2,2n2 is the group that fixes the
theta constants of level (n, n).

3.1.4 Complex Abelian Surfaces of Dimension 2 with CM

In this section we focus on dimension 2 as the CM theory below is particularly useful in the case of
hyperelliptic curves of genus 2 that are the main scope of this thesis. We refer to Shimura [70, Ch. II]
for a detailed exposition of the notions below.

A quartic CM field K is a totally imaginary quadratic extension of a real quadratic field K0. The field
K has four complex embeddings {ϕ1, . . . , ϕ4}. A complex abelian variety X has CM by K if there exists
an isomorphism ι between K and the endomorphism algebra of X.

Similarly to Section 3.1.1, the isomorphism ι fixes an analytic representation of an endomorphism of X

via ρa : End(X) → EndC(V ) and similarly, a rational representation via ρr : End(X) → EndZ(Λ). By
taking the tensor product of the rational representation together with C, we have that ρr ⊗C � ρa ⊕ ρa

and at the same time, ρr ⊗ C � ⊕4
i=1ϕi. It follows that ρa = ϕ1 ⊕ ϕ2 where ϕ1 and ϕ2 are two distinct,

non-conjugate complex embeddings of K.

Let Φ denote the pair {ϕ1, ϕ2}. We define (K, Φ) as the CM-type of the abelian variety (X, ι). If two
complex abelian varieties X, Y have the same CM-type then they are isogenous [70, p.41]. If all complex
abelian varieties with CM by (K, Φ) are simple, then their CM-type is called primitive. Moreover, the
field K is primitive if there exists an element ξ in K where K = K0(ξ) such that the imaginary parts of
ϕ1(ξ), ϕ2(ξ) are positive and −ξ2 is a totally positive element of K0 [70, p.61].

Let the integer ring of K0 be O0. If K0 has class number 1 then the ring of integers OK is an O0-module
of rank 2 of the form O0 + τO0, for some τ ∈ K. Let π ∈ K be a root of the minimal polynomial of K/Q.
The endomorphism ring of an ordinary, absolutely simple abelian variety over C of CM-type (K, Φ) is
isomorphic to an order O of K, such that Z[π, π] ⊆ O ⊆ OK [79].

In the case of O = OK , Taniyama–Shimura [71, 70] proved the following. The isomorphism classes of
simple abelian varieties with endomorphism ring OK are in bijection with the ideal classes in the Picard
group Pic(OK) [71, p.60]. For an ideal class [a] ∈ Pic(OK), we associate a complex torus V/Φ(a) where
the map Φ: K → V is defined as x �→ (ϕ1(x), ϕ2(x)) [70, §6]. The dual abelian variety of V/Φ(a) is by
definition the abelian variety V/Φ(a∗), where a∗ = {β ∈ K|TrK/Q(βa) ⊂ Z}. Moreover, we have that
a∗ = (aDK)−1, where DK ⊂ OK is the different ideal [70, p.103].

According to [71, §14.3], a polarization L on V/Φ(a) induces an isogeny ϕL : V/Φ(a) → V/Φ(a∗) that
is given by x �→ ρa(ξ)x for some element ξ in (aaDK)−1. Moreover the polarization comes from the
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symplectic form E(x, y) = TrK/Q(ξxy). It follows that the abelian variety V/Φ(a) is polarizable if and
only if there exists ξ ∈ K with imaginary parts Im(ϕi(ξ)) > 0 for i = 1, 2. In addition, the polarization
is principal if and only if ϕL(Φ(a)) = Φ(a∗). The latter holds if and only if ξa = a∗. Conversely, any
principal polarization on V/Φ(a) is of this form. If ξ ∈ K yields a principal polarization on V/Φ(a), then
the other polarizations are of the form βξ for β ∈ End(V/Φ(a))++, i.e., β belongs to the set of totally
positive real endomorphisms of (V/Φ(a). Indeed if β is totally positive and ξa = a∗, we get that ξβ ⊂ a∗,
and Im(ϕ(βξ)) > 0. Conversely it is easy to check that if there is a polarization corresponding to the
element ξ′, then β = ξ′/ξ is a totally positive real endomorphism [71, §14.1].

3.1.4.1 Isogenies between Complex Abelian Varieties with CM

We distinguish two main classes of isogenies of abelian varieties with the same CM-type (K, Φ), where
K is a quartic CM field.

Definition 3.1.4. A horizontal isogeny ϕ : X → Y is an isogeny between abelian varieties X, Y with
the same endomorphism ring O.

Let the group of points X(C) be isomorphic to a complex torus T = V/Φ(a), for some ideal a ⊂ OK ,
and let Y (C) be isomorphic to a complex torus T ′ = V/Φ(b), for some invertible ideal b ⊂ OK .

According to [70, §7, Prop.15], if c := ab−1 ⊂ OK , there exists γ ∈ c−1 such that the isogeny ϕ is a
γc-multiplication represented by a diagonal matrix with Φ(γ) on the diagonal. The degree of the isogeny
is equal to the norm of the ideal NK/Q(c). The dual ideal of b is

b∗ = (ac−1)∗ = D−1
K (ac−1)−1 = (DKa)−1︸ ︷︷ ︸

=a∗

c = a∗c.

If ξ ∈ K corresponds to a polarization on T , then the existence of a principal polarization on T ′ is
equivalent to the existence of ξ′ ∈ K with Φ(ξ′) ∈ (iR>0)2 such that ξ′b = a∗c. The latter is equivalent
to cc = (ξ′ξ−1), i.e., cc is a principal ideal generated by a totally positive element.

Definition 3.1.5. A vertical isogeny is an isogeny between two abelian varieties X and Y with CM-type
(K, Φ) such that the endomorphism rings are not isomorphic, i.e., End(X)  � End(Y ).

The case of vertical isogenies is a little bit more subtle as we see below. Naturally, the corresponding
orders in K, namely OX and OY respectively, are not equal. The goal of this paragraph is to deduce the
CM description V/Φ(b) of Y in terms of the CM description V/Φ(a) of X. Without loss of generality,
we take the case of a descending isogeny, i.e., OY ⊂ OX . Otherwise, in the case of an ascending isogeny,
we consider the dual isogeny of the same degree from Y to X. In [25], the authors proved that for
any quadratic extension K over a principal ideal domain K0, any order O of K that is an O0 module
of rank 2 is of the form O0 + mτO0 for some m ∈ O∗

0 (unique up to multiplication by a unit) and
τ ∈ K such that OK = O0 + τO0. The conductor of O is the principal ideal mOK . In our case, let
OX be of conductor maOK and let OY be of conductor mbOK . Then, the vertical isogeny ϕ : X → Y

corresponds to the element mb/ma ∈ O∗
0 of norm equal to the degree of the isogeny. For the particular

case of a cyclic isogeny of degree � the isogeny corresponds to an element β ∈ K0 of norm � and the
ideal b = O0 + βmaτO0. A similar result is given in [35, Prop.5].
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3.2 Abelian Varieties over an Arbitrary Field

In this section we consider the case of simple, polarizable abelian varieties of dimension g (regularly
denoted by A or B) that are defined over an arbitrary field k. Let k denote the algebraic closure of k.

3.2.1 Preliminaries

We introduce some concepts regarding polarized abelian varieties over k, that are analogous to the
concepts related to complex tori introduced in Section 3.1. The theory over C gives us a good intuition
of what to expect in the case over k. Moreover, we refer to the end of Section 3.1.1 for definitions related
to line bundles on an abelian variety.

An abelian variety A over k of dimension g is a complete connected group variety [55, §1.1]. Let
Pic(A) be the group of isomorphism classes of invertible line bundles. Similarly to the case of complex
varieties, we identify the dual abelian variety of A with the group Pic0(A) [61, p.77], i.e. the subgroup of
isomorphism classes of line bundles [L] ∈ Pic(A), such that for all x ∈ A(k) there exists an isomorphism
φx : L → t∗

xL. 4 Then, two line bundles L and L′ on A are algebraically equivalent if L⊗L′−1 ∈ Pic0(A).

A polarization on A is an ample line bundle. For any polarization L, there exists an isogeny ϕL : A(k) →
Pic0(A) that sends x to the line bundle t∗

xL⊗L−1 on A. The kernel of ϕL is denoted by K(L), i.e., the
set of closed points x in A(k) such that there exists an isomorphism φx : L → t∗

xL. The degree of the
polarization L is by definition the degree of the isogeny ϕL. As in the case of complex abelian varieties,
a polarization L0 of degree 1 is called principal. From now on, we only consider ample line bundles
(polarizations) L on A with ϕL separable. Then, there exists an integer n > 0 such that there exists a
canonical embedding of (A,Ln) into a projective space of dimension over k equal to ng − 1. In this case,
the line bundle Ln is very ample.

An invertible line bundle L on A is called symmetric if there exists an isomorphism ψ : L → [−1]∗L.
The Néron-Severi group NS(A) is identified with the group of isomorphism classes of symmetric
line bundles on A up to algebraic equivalence. Given x ∈ K(L), then ψ induces an isomorphism
ψ(x) : L(x) → [−1]∗L(x) = L(−x). The isomorphism ψ is normalized if its restriction ψ(0) : L(0) → L(0)
is the identity. In this case, if we take any 2-torsion element x ∈ A[2] (x = −x) of K(L), then the map
ψ(x) ◦ ψ(−x) is the identity. Therefore, ψ(x) acts as multiplication by ±1. The line bundle L is called
totally symmetric if ψ(x) is the identity for all x ∈ A[2].

Next, given an integer r > 1, we define a polarization on the r-fold product of an abelian variety A that
is determined by L on A of type δ.

Definition 3.2.1. Given the polarized abelian variety (A,L), consider the line bundle on Ar of the
form

L�r = p∗
1L ⊗ · · · ⊗ p∗

rL,

where pi : Ar → A is the projection to the ith factor.

A polarization (or ample line bundle) L′ on the r-fold product Ar is called an r-fold product polarization
if L′ is isomorphic to p∗

1L ⊗ · · · ⊗ p∗
rL for some polarization L on A.

4. tx represents translation by x.
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3.2.2 The Mumford Theta Group and Theta Structures

Similarly to the case of complex abelian varieties we find means of embedding the variety into some
suitable projective space over k. The final goal is to define maps on the projective space that correspond
to the operations on the abelian variety itself. To obtain that, we first want an alternative to the concept
of theta functions of level n. Moreover, given a polarization L on the abelian variety A, we define the
embedding map into the projective space in terms of a particular class representative for [L] ∈ Pic(L).

We proceed by introducing some very useful definitions that will allow us to define the apparatus for
constructing the embedding map later on. The theory below is due to Mumford and we refer to [60] for
a more detailed exposition.

Let (A,L) be a polarized abelian variety of dimension g. The Mumford theta group associated to the
line bundle L is the group G(L) of pairs (x, φx), where x ∈ K(L) and φx : L → t∗

xL is an isomorphism.
The group law is given by:

(x, φx) · (y, φy) = (x + y, t∗
xφy ◦ φx),

for any pairs (x, φx), (y, φy) ∈ G(L). There exists an exact sequence

0 → k
× → G(L) → K(L) → 0,

with the natural projection of G(L) onto K(L) being the surjective map of kernel the automorphisms of
L(0), i.e., multiplications by elements of k

×.

An ample line bundle L on A induces a non-degenerate commutator pairing eL : K(L) × K(L) → k
×,

i.e., eL is a skew-symmetric bilinear form, defined as follows

eL(x, y) = (x, φx) · (y, φy) · (x, φx)−1.(y, φy)−1,

where (x, φx), (y, φy) ∈ G(L) are arbitrary lifts of x and y respectively. One can prove easily that the
commutator pairing is well defined.

With respect to eL, there exists a symplectic decomposition of K(L) = K1(L) ⊕ K2(L) into maximal
isotropic subspaces. Following the theorem of elementary divisors for the abelian group K1(L), there exist
elementary divisors d1 | d2 | · · · | dg of K1(L), i.e., K1(L) is isomorphic to Z(δ), for Z(δ) =

⊕r
i=1 Z/diZ.

In this case, the ample line bundle L is said to be of type δ = (d1, . . . , dg). Moreover, K2(L) is isomorphic
to the dual group Ẑ(δ), namely the group of homomorphisms in Hom(Z(δ), k

×). Let K(δ) := Z(δ)⊕Ẑ(δ),
then one can define the standard pairing eδ : K(δ) × K(δ) → k

×
p given by:

eδ((x1, y1), (x2, y2)) =
y2(x1)
y1(x2)

,

for x1, x2 ∈ Z(δ) and y1, y2 ∈ Ẑ(δ). Let H(δ) denote the Heisenberg group of δ, namely the group of
elements in k

× × Z(δ) × Ẑ(δ) with group law:

(α1, x1, y1) · (α2, x2, y2) = (α1α2y2(x1), x1 + x2, y1 + y2).

There is a canonical map sδ : K(δ) → H(δ) given by (x, y) �→ (1, x, y).

Definition 3.2.2. A theta structure ΘL of type δ on the polarized abelian variety (A,L) is by definition
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an isomorphism
ΘL : H(δ) → G(L)

that is the identity on k
×.

There is an induced symplectic isomorphism ΘL : K(δ) → K(L) such that the following diagram is
commutative:

0 �� k
× ��

=
��

H(δ)

ΘL
��

�� K(δ) ��

ΘL
��

0

0 �� k
× �� G(L) �� K(L) �� 0

Now, we define a theta structure on (Ar,L�r) given the theta structure ΘL of type δ = (d1, . . . , dg).
First we notice that the type of L�r is of the form

δ�r =

⎛⎝d1, . . . , d1︸ ︷︷ ︸
r

, d2, . . . , d2︸ ︷︷ ︸
r

, . . . , dg, . . . , dg︸ ︷︷ ︸
r

⎞⎠ ∈ Z(δ)r.

Definition 3.2.3. By definition, the r-fold product theta structure ΘL�r : H(δ�r) → G(L�r) is the theta
structure of type δ�r that maps

(x1, . . . , xr, y1, . . . , yr, α) ∈ H(δ�r) → (z1, . . . , zr, φz) ∈ G(L�r)

where on each factor i = 1, . . . , r, we have ΘL(xi, yi, α) = (zi, φi), where z = (z1, . . . , zr) ∈ (K(L))r and
φi : L ∼−→ z∗

i L induce an isomorphism φ : L�r → t∗
zL�r.

Now, we present several useful properties of theta structures. Given the theta structure ΘL, there
exists a map sK(L) of K(L) into G(L) corresponding to the canonical map sδ : K(δ) → H(δ) that was
introduced before. When restricted to the two isotropic subgroups, the maps sK1(L) : K1(L) → G(L)
and sK2(L) : K2(L) → G(L) are group sections.

Following [66, Prop.3.3.3], given a symplectic isomorphism ΘL : K(δ) → K(L) together with two group
sections sK1(L), sK2(L) as above, there exists a unique theta structure ΘL above ΘL inducing the two
sections sK1(L) and sK2(L). In particular, given any symplectic isomorphism ΘL : K(δ) → K(L), there
is a theta structure ΘL above that isomorphism.

We fix a theta structure above ΘL for the case of a totally symmetric line bundle L as follows. First, we
consider an isomorphism ψ : L ∼−→ [−1]∗L that is normalized at 0. Next, we define an automorphism of
the theta group that allows the introduction of a symmetric theta structure. Let γ−1 : G(L) → G(L) be
given by:

γ−1(x, φx) =
(−x, (t∗

−xψ)−1 ◦ ([−1]∗φx) ◦ ψ
)

.
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Immediately, the following diagram commutes

0 �� k
× ��

=
��

G(Ł)

γ−1

��

�� K(L) ��

−1
��

0

0 �� k
× �� G(L) �� K(L) �� 0

and γ−1◦γ−1 is the identity. As a consequence, given x ∈ K(L), there exist two elements (x, φx), (x, φx)−1

in G(L) above x with γ−1((x, φx)) = (x, φx)−1.

There exists a similar automorphism γ−1 : H(δ) → H(δ) of the Heisenberg group given by γ−1(α, x, y) =
(α,−x,−y). A theta structure ΘL on the polarized abelian variety (A,L) is called symmetric if it
satisfies γ−1 ◦ ΘL = ΘL ◦ γ−1.

3.2.2.1 Theta Coordinates

Having introduced theta structures in the previous section, we are able to adapt the theory from
Section 3.1.2.1 to the case of principally polarized abelian varieties defined over an arbitrary field k.
More precisely, we consider a principally polarized abelian variety (A,L0) over k together with a totally
symmetric line bundle L � L⊗n

0 , where n ≥ 2 is even. Let the type of L be δ = (n, . . . , n) ∈ Zg. If ϕL is
of degree n ≥ 3, then L is very ample and so, there exists an embedding of A into the projective space
P(Γ(A,L)) (embedding unique up to multiplication by an element in PGL(Γ(A,L)). In order to fix a
projective embedding, we need to define the analogue to the Riemann theta functions of level n, namely
we need to fix a basis for the space of global sections Γ(A,L).

For that we consider a symmetric theta structure ΘL : H(δ) → G(L). Let K(δ) be decomposed as
K1(δ) ⊕ K2(δ) with respect to the standard commutator pairing eδ and let V (δ) be the space of
functions {f : K1(δ) → k}. According to [66, p.50], the theta structure ΘL induces an isomorphism
ρ : V (δ) → Γ(A,L). The isomorphism ρ is unique up to multiplication by a constant and identifies the
irreducible action of the Heisenberg group H(δ) on V (δ) with the action of the theta group G(L) on
Γ(A,L). The action of (x, φx) ∈ G(L) on s ∈ Γ(A,L) is given by

(x, φx) · s = t∗
−xφx(s)

Consider the canonical basis {γi|i ∈ Z(δ)} of V (δ), where γi : Z(δ) → {0, 1} is the Kronecker function,
i.e. γi(j) = 1 if and only if i = j. By definition, the image

(θΘL
i )i∈Z(δ) := (ρ(γi))i∈Z(δ)

is the canonical basis of Γ(A,L). The basis elements are uniquely determined up to multiplication by a
constant in k∗ [66, p.50].

Remark 7. From now on, the index i of the theta coordinates of a point belongs either to K1(L), or to
K1(δ) = Z(δ).

Hence, we are able to give the following definition:

Definition 3.2.4. Let (A,L0) be a principally polarized abelian variety. Consider a polarization L of type
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δ = (d1, . . . , dg) with 2|d1. Given a theta structure ΘL on (A,L) and an isomorphism ρ : V (δ) → Γ(A,L),
the projective theta coordinates of a point x ∈ A are the image (θΘL

i (x))i∈K1(L) ∈ P(Γ(A,L)) with
respect to the canonical basis (θΘL

i )i∈K1(L).

Moreover, if d1 = . . . = dg, we say that both the theta structure ΘL and the projective theta coordinates
of a point x are of level n.

3.2.3 Compatible Theta Structures and the Action of Symplectic Isomor-
phisms

Let L be a totally symmetric line bundle on A of type δ. We denote the type of L2 as 2δ. Let ΘL
and ΘL2 be two symmetric theta structures on A. In order to define the notion of compatible theta
structures, we first introduce several necessary homomorphisms defined by Mumford in [60, p.309-310].

First, let ε2 : G(L) → G(L2) be a homomorphism given by:

ε2(x, φx) =
(
x, φ⊗2

x

)
,

where x ∈ K(L) ⊂ K(L2) and φ⊗2
x : L2 → t∗

xL2. Second, let ψ : L4 → [2]∗L and let η2 : G(L2) → G(L)
be a homomorphism given by:

η2(x, φx) = (2x, ρ)

where ρ : L → t∗
2xL is the unique isomorphism such that [2]∗ρ = t∗

xψ ◦ φ⊗2
x ◦ ψ−1.

Immediately, the following diagrams commute

0 �� k
× ��

squaring
��

G(Ł)

ε2

��

�� K(L) ��
� �

inclusion
��

0

0 �� k
× �� G(L2) �� K(L2) �� 0

and
0 �� k

× ��

squaring
��

G(Ł2)

η2

��

�� K(L2) ��

doubling

��

0

0 �� k
× �� G(L) �� K(L) �� 0

Mumford defines also similar maps over the Heisenberg groups. First, let E2 : H(δ) → H(2δ) be of
the form E2((α, x, y)) = (α2, x, y′) where y′ ∈ K̂(2δ) is a unique element such that y′(x) = y(2x) for
all x ∈ K(2δ). Second, let D2 : H(2δ) → H(δ) be given by N2((α, x, y)) = (α2, 2x, y), where y is the
canonical image of y in K̂(δ).

By definition [60, p.317], a compatible pair of theta structures ΘL and ΘL2 for the line bundle L and L2

respectively satisfy:
Θ−1

L2 ◦ ε2 = E2 ◦ Θ−1
L

Θ−1
L ◦ η2 = N2 ◦ Θ−1

L2 .
(3.13)
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We denote by ε2 : K(L) → K(L2) and E2 : K(δ) → K(2δ) the inclusion maps that are restrictions of
ε2 and E2 respectively. Similarly, let η2 : K(L2) → K(L) and N2 : K(2δ) → K(δ) denote the other
corresponding maps. The map η2 is surjective and its kernel consists of the 2-torsion points G(L)[2] (equal
to G(L) when the type of L is 4). Hence, there exists an induced isomorphism G(L) → G(L2)/G(L)[2].
Similarly, N2 is also surjective and gives an isomorphism of G(δ) → G(2δ)/G(δ)[2]. This argument [60,
p.318] proves that given a theta structure ΘL2 of level 4 and the doubling functions η2 and N2, one can
deduce a unique theta structure ΘL of level 2.

A stronger result is proved by Mumford [60, p.319] and Robert [66, Prop. 4.3.1]:

Lemma 3.2.5. For a principally polarized abelian variety (A,L0) of dimension g, with a totally
symmetric line bundle L = L2

0, it is sufficient to have a symplectic isomorphism Θ: K(L2) → K(2δ)
that is compatible with a symplectic isomorphism of K(L) → K(δ) in order to fix a unique symmetric
theta structure of level 2 corresponding to the two isomorphisms and coming from any theta structure of
level 4 that induces Θ.

Here, the compatibility between isomorphisms K(L) → K(δ) and K(L2) → K(2δ) signifies that the
first and second relation in (3.13) hold for the restriction maps η2, N2, ε2, E2 and the given pair of
isomorphisms.

3.2.3.1 Transformation Formula of a Symplectic Automorphism

We consider a principally polarized abelian variety (A,L0) of dimension g, with a totally symmetric line
bundle L = L2

0 and a level 2 symmetric theta structure ΘL coming from a symplectic decomposition of
the 4-torsion points Θ: K(2δ) → K(L2) (see Lemma 3.2.5). We fix a symplectic basis of K(2δ) with
respect to Θ and consider a symplectic automorphism S acting on K(2δ) that induces an automorphism
of K1(2δ).

The goal is to find an analogue formula to (3.11) for a general automorphism S. Notice that the formula
over C can be easily written in case of level (2, 2) Riemann theta functions for both isomorphic tori. In
case of a matrix representation of S with rational vectors e′, e′′, working with level 4 seems to be the
immediate choice.

First, we identify K(2δ) � Z(4) + Z(4) via an isomorphism. Let Z(2, 2) :=
( 1

2 Zg/Zg
)2, consider a

bijection map υ : Z(2, 2) × Z(2, 2) → K(2δ) and let

κ = Θ ◦ υ : Z(2, 2) × Z(2, 2) → K(L2).

Let Θ′ = Θ ◦ S be the new symplectic isomorphism. Consider the bijection map κ′ = Θ′ ◦ υ : Z(2, 2) ×
Z(2, 2) → K(L2). Let S ∈ Sp2g(Z) be the matrix representation of the symplectic isomorphism S acting

on Z(2, 2) (induced by κ, κ′) and write S =
(

a b

c d

)
for some matrices a, b, c, d.

The theta coordinates of the new theta structure Θ′
L of level 2 corresponding to Θ′ [60, p.319] are

computed for each point S · z as follows (z and S · z represent the same point, but for two different theta
structures). First, the level 2 theta structure ΘL determines the squares of level 4 theta coordinates for
any compatible level 4 theta structure ΘL2 (in the sense of lemma 3.2.5). The same statement holds
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for Θ′
L and any compatible level 4 theta structure Θ′

L2 . Hence, we write the analogue of (3.11) for the
squares of level 4 algebraic theta coordinates.

There exists a constant λ such that for every u, v, u′, v′ ∈ 1
2 Zg/Zg, with

(
u
v

)
=
(

a c

b d

)−1
·
(

u′ − e′

v′ − e′′

)
,

with e′ = 1
2 diag(atc) and e′′ = 1

2 diag(dtb) and

ξu,v = e

(
−1

2
· (utabtu + vtcdtv) − (atu + ctv + e′)te′′ − utbctv

)
,

we have (
θ

Θ′
L2

κ′(u′,v′)(z)
)2

= λ · ξ2
u,v ·

(
θ

ΘL2
κ(u,v)(z)

)2
. (3.14)

Since we are given the symplectic isomorphism Θ, we are also given a symplectic basis of K1(L) and
its abstract representation in Z(2). Then, any index i ∈ 1

2 Zg/Zg is identified with 2i ∈ Z(2) (via an
isomorphism) and a unique element in K1(L) (via Θ). We denote by μ : 1

2 Zg/Zg → K1(L). Similarly,
we denote by μ′ : 1

2 Zg/Zg → K1(L) the isomorphism corresponding to Θ′.

The projective theta coordinates of level 2 of z ∈ A, that correspond to ΘL are denoted by θΘL
μ(u)(z)

for u ∈ 1
2 Zg/Zg. The new theta coordinates of level 2, that correspond to the new Θ′

L are denoted
by θ

Θ′
L

μ′(u)(z) for u ∈ 1
2 Zg/Zg. The new theta coordinates are linked to the squares of level 4 theta

coordinates from (3.14), via [12, eq.(3.12–13)]:

θ
Θ′

L
μ′(v′)(z)θΘ′

L
0 (0) =

∑
u′∈ 1

2 Zg/Zg

(
θ

Θ′
L2

κ′(u′,v′)(z)
)2

(3.15)

and (
θ

Θ′
L2

κ′(u,v)(z)
)2

=
1
2g

∑
i∈( 1

2 Z/Z)g

e(−2uti)θΘ′
L

μ′(v+i)(z)θΘ′
L

μ′(i)(0). (3.16)

We first apply (3.15) and afterwards (3.14) (where we compute parameters u, v for given indexes
u′, v′ ∈ 1

2 Zg/Zg). In the end, we use (3.15) to go back to theta coordinates of level 2 for the theta
structure ΘL. We obtain:

θ
Θ′

L
μ′(v′)(z)θΘ′

L
0 (0) =

∑
u′∈ 1

2 Zg/Zg

(
θ

Θ′
L2

κ′(u′,v′)(z)
)2

=
∑

u′∈ 1
2 Zg/Zg

λ · ξ2
u,v

(
θ

ΘL2
κ(u,v)(z)

)2

=
λ

2g

∑
u′∈ 1

2 Zg/Zg

ξ2
u,v

∑
i∈ 1

2 Zg/Zg

e(−2uti)θΘL
μ(b+i)(z)θΘL

μ(i)(0).

(3.17)

We summarize in the following proposition:

Proposition 3.2.6. Consider a principally polarized abelian variety (A,L) with a level 2 theta structure
ΘL coming from a symplectic decomposition of the 4-torsion points Θ: K(2δ) → K(L2). Let S be a sym-
plectic automorphism acting on K(2δ). Consider the isomorphism μ : 1

2 Zg/Zg → K1(L) corresponding
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to Θ.

Then, there exists a unique metaplectic automorphism in Aut(H(δ)) corresponding to S such that the new
theta structure Θ′

L of level 2 comes from Θ′ = Θ ◦ S. Consider the isomorphism μ′ : 1
2 Zg/Zg → K1(L)

that is corresponding to Θ′. Let e′ = 1
2 diag(atc) and e′′ = 1

2 diag(dtb). There exists a constant λ for
which the new theta coordinates are

θ
Θ′

L
μ′(v′)(z)θΘ′

L
0 (0) =

λ

2g

∑
u′∈ 1

2 Zg/Zg

ξ2
u,v

∑
i∈ 1

2 Zg/Zg

e(−2uti)θΘL
μ(b+i)(z)θΘL

μ(i)(0) (3.18)

where u, v, u′, v′ ∈ 1
2 Zg/Zg such that

(
u
v

)
=
(

a c

b d

)−1
·
(

u′ − e′

v′ − e′′

)
, and

ξu,v = e

(
−1

2
· (utabtu + vtcdtv) − (atu + ctv + e′)te′′ − utbctv

)
.

3.2.4 The Isogeny Theorem for Symmetric Theta Structures

Consider an isogeny of polarized abelian varieties f : (A,L) → (B,M) over k that has kernel G. By
definition, the line bundles f∗M and L are algebraically equivalent. Moreover, according to [66,
Prop.4.2.12], if L is a totally symmetric line bundle, then there exists a symmetric line bundle M in the
algebraic equivalence class of the polarization on B with f∗M isomorphic to L. Let K(L) be the kernel
of the isogeny ϕL : A → A∨.

In this section, we first focus on a condition for G ⊂ K(L) (with respect to L) that is necessary for f to
be an isogeny of polarized abelian varieties. More precisely, G needs to be a maximal isotropic subgroup
of K(L) with respect to the commutator pairing eL. First, if α : f∗M ∼−→ L is fixed, then for each x ∈ G

there exists an isomorphism φx : L → t∗
xL of the form:

L α−1
−−→ f∗M = (f ◦ tx)∗M = t∗

x(f∗M)
t∗

xα−−→ t∗
xL,

and hence G ⊂ K(L).

Consider a lift of the form (x, φx) ∈ G(L) for any x ∈ G. The set of all such elements (x, φx) above
all x ∈ G form a subgroup G̃ of G(L), called a level subgroup. Moreover, G̃ is isomorphic to G via
the projection map G(L) → K(L) and there exists a 1-to-1 correspondence between level subgroups
G̃ and pairs (f, α), and consequently line bundles M on B. Let Z(G̃) denote the centralizer of G̃ in
the group G(L). According to [60, Thm. 3.2.2], the theta group G(M) is isomorphic to Z(G̃)/G̃. Let
αf : Z(G̃) → G(M) be the morphism induced by this isomorphism.

The data of G̃ is called the Grothendieck’s descent data for L with respect to f [60, pp.290–291].
Moreover, Mumford [60, pp.294] proves that there exists a level group G̃ over G if and only if G is
isotropic with respect to eL, i.e., eL ≡ 1 on G. Given a theta structure ΘL on A, we can define the level
groups K̃i(L) above Ki(L) via the group sections sKi(L) : Ki(L) → G(L) for i = 1, 2 [66, Prop.3.3.3]. A
level structure on G(L) is by definition a particular choice of level groups K̃i(L) above Ki(L).

The definition [66, 3.6.1] introduces the important notion of compatible theta structures with respect to
an isogeny of polarized abelian varieties. A theta structure ΘM on (B,M) is said to be f -compatible to
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ΘL on (A,L) if the following condition holds:
* The induced level structure on G(L) is compatible with the induced level structure on G(M) via

f , i.e., the symplectic decomposition of G̃ is (G̃ ∩ K̃1(L)) ⊕ (G̃ ∩ K̃2(L)). Reciprocally, the level
structure on G(M) is also compatible with the level structure on G(L) via the isogeny f , i.e.,
αf (K̃i(L) ∩ Z(G̃)) ⊂ K̃i(M) for i = 1, 2.

** The kernel is of the form G = G1 ⊕ G2, where Gi = Ki(L) ∩ G for i = 1, 2. Equivalently, if
G⊥ ⊂ K(L) be the orthogonal complement of G with respect to eL. Then, G⊥ = G⊥,1 ⊕G⊥,2 is
the decomposition induced by the symplectic decomposition of G.

The set of theta structures ΘM on (B,M) that are compatible with a fixed ΘL on (A,L) is in bijection
with the set of isomorphisms σ : G⊥,1/G1 → Z(δ0) where δ0 is the type of ΘM [66, Prop.3.6.2]. Given
the canonical αf associated to the level group G̃, if ΘL is symmetric, then following [66, Rem. 4.2.15],
any compatible theta structure ΘM on B is necessarily symmetric.

Theorem 3.2.7. (Isogeny Theorem) Consider an isogeny of polarized abelian varieties f : (A,L) →
(B,M) of kernel G, with L totally symmetric and of type δ and M totally symmetric and of type δ0.
Let ΘL on (A,L) and ΘM on (B,M) be compatible symmetric theta structures with respect to f . Let
σ : G⊥,1/G1

∼−→ Z(δ0) be the isomorphism corresponding to the choice of ΘM.

Consider the canonical basis (θΘL
i )i∈Z(δ) of Γ(A,L) and (θΘM

i )i∈Z(δ0) of Γ(B,M) respectively. There
exists λ ∈ k

× such that for all i ∈ K1(M) we have

f∗θΘM
i = λ

∑
j∈σ−1(i)

θΘL
j . (3.19)

3.2.5 Canonical Affine Lifts

We can explicitly obtain the projective theta coordinates of a point x given in Mumford coordinates,
via the method in [12, §5.3]. As in the complex case, the projective coordinates are unique up to
multiplication by a constant (see Section 3.2.2.1).

Let (A,L, ΘL) be a polarized abelian variety with theta structure and projective embedding into
P(Γ(A,L)). Let θΘL

i : A → P(Γ(A,L)) be a fixed basis of the projective embedding. Let pA : A(Γ(A,L))\
{0} → P(Γ(A,L)) be the canonical projection of an affine space onto the corresponding projective space.
An affine lift of x ∈ A is an element of Ã := p−1

A (A). In the case of an element x in K(L), we are able to
fix a particular affine lift that comes from the theta structure, and more precisely from an affine lift of
the theta constant.

Following [66, p.72], we define an affine lift of x ∈ K(L) as corresponding to a trivialization (isomorphism)
γx : L(x) → k and consequently, to a constant γx(θΘL

i (x)) ∈ k∗. In [66, p.51], as L is very ample, the
author proves that given an affine lift of 0, we can compute affine lifts of all the other x ∈ K(L) by
using the action of the Heisenberg group on K(δ). For that, consider the section sK(L) : K(L) → G(L)
induced by the theta structure ΘL and the canonical section sδ : K(δ) → H(δ), where

sδ(x1, x2) = (1, x1, x2).

If (x, φ) = sK(L)(x) then for any y ∈ A, we have φ(y) : L(y) → t∗
x(L(y)) and hence,

L(x) = t∗
x(L(0)) φ−1(0)−−−−→ L(0) γ0−→ k.
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So, the trivialization γ0 : L(0) → k induces a trivialization γx : L(x) → k for all x ∈ K(L) of the form

γx = γ0 ◦ (φ−1(0)).

Let γ0 : L(0) → k be a fixed trivialization and let 0̃L be the corresponding affine lift of the theta null
point. The theta coordinates of x̃, where x = x1 + x2 ∈ K(L), are determined precisely via the action of
the Heisenberg group on 0̃L [66, Eq. (3.9)], namely:

θΘL
i (x̃) = eδ(i, x2)θΘL

i−x1
(0̃L). (3.20)

Definition 3.2.8. The induced affine lifts x̃ of x ∈ K(L) are called canonical affine lifts or compatible
affine lifts for the choice of 0̃L.

For an arbitrary point z ∈ A(k), that is not in K(L), if an affine lift z̃ ∈ p−1
A (z) is fixed, then any other

affine lift of z is of the form λz · z̃ for some constant λz ∈ k
∗. The coordinates of an affine lift z̃ are

called affine theta coordinates.

When working over the affine space A(Γ(A,L)), Robert proved in [66, Section 4.4] that we can define
rigorously an affine correspondent to f : (A,L, ΘL) → (B,M, ΘM) (satisfying the conditions in the
Isogeny Theorem 3.2.7) when we are given affine lifts of the theta constants for both A and B.

Definition 3.2.9. Given the isogeny f : (A,L, ΘL) → (B,M, ΘM) together with the affine system
of theta coordinates θΘL

i : Ã → k and θΘM
i : B̃ → k (corresponding to the canonical choice of basis

(θΘL
i )i∈K1(L) and (θΘM

j )j∈K1(M)), the canonical affine isogeny f̃ is the isogeny f̃ : Ã → B̃ such that for
each i ∈ K1(M) and j ∈ K1(L) and for each x, we have:

θΘM
i (f̃(x)) =

∑
j∈σ−1(i)

θΘL
j (x̃) (3.21)

where σ : K1(L) → K1(M).

Moreover, the affine isogeny f̃ is an isogeny that corresponds to f in the sense that the following diagram
is commutative:

(Ã, 0̃L)
pA ��

f̃
��

(A,L, ΘL)

f

��
(B̃, 0̃M)

pB �� (B,M, ΘM)

(3.22)

Definition 3.2.10. Consider the canonical affine isogeny with theta structures f̃ : (Ã,L, ΘL) →
(B̃,M, ΘM) and a choice of affine theta null point 0̃L. If x̃ ∈ Ã is a canonical affine lift of x ∈ K(L) for
the choice of 0̃L, we say that ỹ = f̃(x̃) ∈ B̃ is a compatible affine lift of y = f(x) with respect to f̃ .

Example:

In [66, Ch.7], the author shows how to compute (�, �)-isogenies between abelian varieties A and B. For
that, one fixes canonical affine lifts of the isogeny kernel inside the �-torsion points when provided with
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a certain choice of affine theta constants for A. More precisely, let A[�] = A1[�] ⊕ A2[�] be a symplectic
decomposition with respect to the Weil pairing e : A[�] × A[�] → μ and let G = A1[�].

Consider the isogeny f : A → B of kernel G. Since G is maximal isotropic with respect to e, then B

admits a principal polarization M0 (section 3.2.4). Let M = M⊗n
0 be a totally symmetric line bundle

and consider the �-contragradient isogeny f̂ : (B,M) → (A,L) of f , where M � f̂∗L is of type δn.
The isogeny f̂ has kernel G′ = B2[�] = f(A2[�]). Moreover, B1[�] = K1(M)[�] and so, the elements
of the kernel admit compatible affine lifts with the choice of an affine lift (θΘM�

i (0̃))i∈K1(M�). Since

f̂(B1[�]) = G, then by definition of the canonical affine isogeny ˜̂
f , the elements of the kernel G admit

compatible affine lifts with respect to ΘM� . The (�, �)-isogeny case is particularly useful in Chapter 4 of
our thesis where we explain how to fix compatible affine lifts of a cyclic subgroup of the �-torsion points.

3.2.6 Main Operations on Points in Affine Theta Coordinates

In this section, we introduce the main operations on points in affine theta coordinates on a principally
polarized abelian variety A defined over k, namely chain addition and chain multiplication on the affine
cone Ã. When computing a certain operation on affine points, we consider two different affine lifts for
each point zi ∈ A in the input, one fixed z̃i and one that differs by a factor λzi . We compute the factor
that differentiate between the two affine lifts that result, one corresponding to z̃i and the other one
corresponding to λzi

z̃i.

First, over C a classical theorem states that the Riemann theta functions with characteristics (equa-
tion (3.2)) satisfy the so-called Generalized Riemann Relations. The Riemann relations allow us to
define operations of chain addition and chain multiplication on complex points given in level n (affine or
not) theta coordinates (see for instance [49] for more details). The chain addition operation outputs
the level n theta coordinates of x + y given the level n theta coordinates of x, y, x − y and 0. The
chain multiplication algorithm determines the level n theta coordinates of ax given the level n theta
coordinates of x and 0.

We present below the generalized Riemann relations in the case of a principally polarized abelian variety
(A,L0) over k, with a totally symmetric line bundle L = Ln

0 , where n = 2n′ ≥ 2, and a symmetric
theta structure ΘL of level n. Let δ be the type of L. Recall that ΘL : K(δ) → K(L) denotes the
isomorphism corresponding to ΘL and that the group K(δ) is Z(n) + Ẑ(n) (see Section 3.2.2). We follow
the exposition in [66, Section 4.4]. Any t ∈ Z(2) is identified with an element in Z(n) via the canonical
map t → n′t. For any affine lifts x̃, ỹ ∈ Ã, indexes i, j ∈ Z(n) and character χ ∈ Ẑ(2) we denote by

Li,j(x̃, ỹ) :=
∑

t∈Z(2)

χ(t)θΘL
i+t(x̃)θΘL

j+t(ỹ) (3.23)

Then, [66, Thm. 4.4.6] summarizes the Generalized Riemann relations for a theta structure of level n.

Theorem 3.2.11. Let x1, y1, u1, v1 ∈ A and let z ∈ A be such that x1 + y1 + u1 + v1 = 2z. Let

x2 := z − x1, y2 := z − y1, u2 := z − u1, v2 := z − v1. (3.24)

Then there exist affine lifts of x1, x2, y1, y2, u1, u2, v1, v2 such that for all characters χ in Ẑ(2), and
i, j, k, l, m ∈ Z(n) with i + j + k + l = 2m and i′ = m − i, j′ = m − j, k′ = m − k and l′ = m − l,

Li,j(x̃1, ỹ1)Lk,l(ũ1, ṽ1) = Li′,j′(x̃2, ỹ2)Lk′,l′(ũ2, ṽ2). (3.25)
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We first obtain the theta coordinates of x̃ + y (corresponding to ΘL) from the theta coordinates of
x̃, ỹ and 0̃ (again corresponding to ΘL). Next, we replace the variables in (3.25) such that the theta
coordinates of x̃ + y are on the left-hand side, whereas the theta coordinates of x̃ and ỹ are on the
right-hand side. Then, in (3.24) the variable z ← x and so, u1 = 0, v1 = 0, x2 = −y, y2 = y, u2 = x and
v2 = x. The Riemann relations become

Li,j(x̃ + y, x̃ − y)Lk,l(0̃, 0̃) = L−i′,j′(ỹ, ỹ)Lk′,l′(x̃, x̃). (3.26)

The theta coordinates of x̃ + y are determined uniquely from the affine theta coordinates of x̃, ỹ, x̃ − y, 0̃
via (3.26) if and only if Lk,l(0̃, 0̃) is non-zero for some k, � such that i + j + k + l = 2Z(n). This is indeed
true for the case 4|δ following the proof of the Riemann relations in [66, Thm.4.4.6]. Otherwise, if only
2|δ we assume that we are in the so-called generic case [22, 50].

Similarly to [66, p.77], we denote by chain_add an algorithm that given 0̃, x̃, ỹ, x̃ − y as input, outputs
x̃ + y based on (3.26), namely

chain_add(x̃, ỹ, x̃ − y, 0̃) → x̃ + y.

For convenience, we also write x̃ + y = chain_add(x̃, ỹ, x̃ − y, 0̃).

Remark 8. For instance, the algorithm [66, Alg.4.4.10] is such a method and is a direct application of
the Riemann relations from [60, p.334-335]. The complexity of the algorithm for the general case is
#Z(δ) + 2g multiplications, #Z(δ) + 2g squares, #Z(δ) inversions and O(4g#Z(δ)2) additions.

Due to [66, Lemma 4.5.3], if we consider distinct affine lifts for each point x, y, 0 and x−y, that differ from
x̃, ỹ, 0̃, x̃ − y by some non-zero factors λx, λy, λ0 and λx−y respectively, then any chain_add algorithm
satisfies

chain_add(λxx̃, λy ỹ, λx−yx̃ − y, λ00̃) =
λ2

xλ2
y

λx−yλ2
0

chain_add(x̃, ỹ, x̃ − y, 0̃). (3.27)

Starting with a = 2 and afterwards, for each a ← a + 1, we define

ãx + y := chain_add( ˜(a − 1)x + y, x̃, ˜(a − 2)x + y, 0̃).

We call chain_multadd a method that computes ãx + y (as defined above), out of x̃, ỹ, x̃ + y and scalar
a > 1, namely:

chain_multadd(a, x̃, x̃ + y, ỹ, 0̃) → ãx + y.

For convenience we also write ãx + y = chain_multadd(a, x̃, x̃ + y, ỹ, 0̃) as the result is unique, indepen-
dent of the choice of method [66, p.87].

Remark 9. Such a method is algorithm [66, Alg.4.4.12] that uses the base 2 decomposition of a and
a classical Montgomery ladder. The algorithm requires 3�log a� chain additions plus another initial
chain addition for the Montgomery ladder. So the complexity of the algorithm is of O(log a) chain
additions in the field of definition.

As before, we consider other affine lifts of the form λxx̃, λy ỹ, λx+yx̃ + y, λ00̃ where λx, λy, λx+y, λ0 ∈ k
∗.
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Then, we obtain by induction that:

chain_multadd (a, λxx̃, λx+yx̃ + y, λy ỹ, λ00̃) =

=
λa

x+yλ
a(a−1)
x

λa−1
y λ

a(a−1)
0

chain_multadd(a, x̃, x̃ + y, ỹ, 0̃).
(3.28)

In the particular case of y = 0, we denote by

ãx := chain_mult(a, x̃, 0̃),

as in [66, p.81] and we have

chain_mult(a, λxx̃, λ00̃) =
λa2

x

λa2−1
0

chain_mult(a, x̃, 0̃). (3.29)

If we fix ãx, ãx + y, ỹ, then we similarly define for each integer b > 1,

˜ax + by := chain_add( ˜ax + (b − 1)y, ỹ, ˜ax + (b − 2)y, 0̃).

A method chain_multiadd is an algorithm that computes ˜ax + by directly from x̃, ỹ, 0̃ and x̃ + y and
scalars a, b, namely:

chain_multiadd(a, b, x̃, x̃ + y, ỹ, 0̃) → ˜ax + by

Equations (3.28) and (3.29) determine:

chain_multiadd(a, b, λxx̃, λx+yx̃ + y, λy ỹ, λ00̃) =

=
λab

x+yλ
a(a−b)
x λ

b(b−a)
y

λa2+b2−ab−1
0

chain_multiadd(a, b, x̃, x̃ + y, ỹ, 0̃).
(3.30)

We apply [49, Prop.1] in the case of abelian varieties over k. Consider the principally polarized
abelian variety (A,L0) and let x1, x2 ∈ A. Then, for any point x ∈ A, if we are given affine lifts
x̃1, x̃2, x̃, x̃1 + x2, x̃1 + x, x̃2 + x ∈ Ã of level n, then there exists a unique affine lift x1 + x2 + x of
level n that satisfies the Riemann relations (3.25):

Li+j,i−j( ˜x + x1 + x2, x̃1)Lk+l,k−l(x̃2, x̃) =
= Li+k,i−k(0̃, x̃2 + x)Lj+l,j−l(x̃1 + x, x̃1 + x2)

(3.31)

Similarly to the chain addition algorithm, we presume that for all x ∈ A and k, � such that i + j + k + � =
2Z(n) we have Lk+l,k−l(x̃2, x̃)  = 0 (see proof of [49, Prop.1]). We denote by three_way_add the
algorithm that computes the affine lift of x + x1 + x2, namely

˜x + x1 + x2 = three_way_add(x̃, x̃1, x̃2, x̃ + x1, x̃ + x2, x̃1 + x2) (3.32)
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3.2.7 Action of the Heisenberg Group on Affine Lifts

Consider the polarized abelian variety (A,L, ΘL) together with an affine lift 0̃L ∈ Ã, where the line
bundle L = L2

0 is of type δ. Similarly to the case of complex theta constants (see (3.9)), we define
canonical affine theta coordinates for elements in K(L) out of the affine theta constants 0̃L. An element
(α, u1, u2) ∈ H(δ) is identified via the theta structure ΘL with u ∈ G(L). The action of (α, u1, u2) on
the theta coordinates of an affine point x̃ ∈ Ã is denoted by (α, u1, u2) · x̃ is given by:

(α, u1, u2) · θΘL
i (x̃) = αeδ(−i − u1, u2)θΘL

i+u1
(x̃). (3.33)

Let x̃ + y = chain_add(x̃, ỹ, x̃ − y). Here we omit the affine theta null point as it remains constant for
now.

By translating the theta indexes in the Riemann relations via some properly chosen elements in Z(δ),
Robert proved in [66, Prop.4.5.4] that ((1, u1 +v1, 0) · x̃ + y, (1, u1, 0) · x̃, (1, v1, 0) · ỹ,(1, u1 −v1, 0) · x̃ − y)
and ((1, 0, u2 + v2) · x̃ + y, (1, 0, u2) · x̃, (1, 0, v2) · ỹ, (1, 0, u2 − v2)x̃ − y) satisfy the Riemann relations
for the case of chain addition.

In the end, together with equation (3.28) and the addition law on H(δ), Robert proved in [66, §4.5] that
if u = (α, u1, u2) and v = (α, v1, v2), then

(uv) · chain_add(x̃, ỹ, x̃ − y) =
eδ(v1, v2)

β2 chain_add(u · x̃, v · ỹ, (uv−1) · x̃ − y). (3.34)

The action of the theta group is really useful when computing an affine lift of m̃t + x, where t̃ is an
affine lift of an �-torsion point t, x̃ is an affine lift of x ∈ A is of large order, and the affine lift of m̃t + x

is computed from t̃, x̃ ,t̃ + x.
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4 Computing Cyclic Isogenies in
Genus 2

4.1 Introduction

In this chapter, we focus on computing cyclic isogenies of prime degree � between Jacobians of genus 2
hyperelliptic curves defined over a finite field Fq of large characteristic. This work was completed in
collaboration with Dimitar Jetchev and Damien Robert. The algorithm is related to prior work of Cosset
and Robert [13] where they proposed an efficient method (polynomial in log q and �) that computes
(�, �)-isogenies, namely isogenies whose kernel is not cyclic, but is a maximal isotropic subgroup for the
Weil pairing e on the source variety. In this case, the target variety B is principally polarizable via the
Grothendieck descent argument (see Section 3.2.4)

In the case of (�, �)-isogenies of polarized abelian varieties f : (A,L) → (B,M), the CM description of
the abelian varieties A, B (see Section 3.1.4) is unnecessary when computing the theta constants of the
target variety B or the image of a point on B. Given a symmetric theta structure ΘL on A, a set of
affine theta constants and the kernel of the isogeny in certain affine theta coordinates (for ΘL), the
algorithm computes an affine theta null point of B for a compatible symmetric theta structure ΘM
on B [13, Thm. 3.1]. The authors compute also a set of affine theta coordinates of f(x), for x ∈ A, out
of a set of affine theta coordinates of the points x + t, where t ∈ G [13, Prop. 4.1.].

In our case, let f : A → A/G be a cyclic isogeny of kernel G over a finite field Fq. Naturally, we want
to find similar equations to the formulas in [13]. First, let L0 be a principal polarization on A. Let
End(A)+ denote the ring of real multiplication endomorphisms inside the endomorphism ring End(A).
Next, for the cyclic isogeny f to be an isogeny of polarized abelian varieties we need that the kernel
of f is contained in the kernel of a suitable polarization isogeny A → A∨. According to Sections 4.3
and 4.4, there exists a principal polarization M0 on B if and only if there exists a totally positive
real endomorphism β ∈ End(A)+ such that G ⊂ ker(ϕLβ

0
) is a maximal isotropic subgroup for the

commutator pairing eLβ
0

(here, ϕLβ
0

denotes the composition β ◦ ϕL0). Let α1, . . . , αr ∈ K0 such that
β =

∑r
s=1 α2

s.

In our case, we have the following result:

Theorem 4.1.1. Consider the following input for computing a cyclic isogeny over a finite field:
I1. a finite field Fq, an odd prime number � with (�, q) = 1;
I2. a smooth hyperelliptic curve C of genus 2 over Fq in Rosenhain form, with A = Jac(C) and L0
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its canonical principal polarization;
I3. a CM-type (K, Φ) of A, 1 where K is a quartic CM field, with real quadratic field K0 ⊂ K of

discriminant D;
I4. a generator t of the isogeny kernel G ⊂ A[�] with π(t) ∈ G, 2 given in Mumford coordinates defined

over an extension field F/Fq;
I5. a point x ∈ A(Fq) of order Q that is prime to q, �, given in Mumford coordinates.

We assume the following conditions with respect to real multiplication on A

H1. End(A) � O ⊂ K of maximal real multiplication, i.e., O0 = O ∩ K0 is the ring of integers
of K0 ;

H2. the index of [O : Z[π, π]] is prime to 2�Q;
H3. there exists a totally positive element β ∈ O0 of norm � such that β(t) = 0.

Then there exists an algorithm of output:
O1. an equation of C ′ over Fq, such that Jac(C ′) ∼Fq (B,M0) (as a principally polarized abelian

variety), where M0 is the principal polarization on B such that f∗M0 is algebraically equivalent
to Lβ

0 .
O2. the point f(x) ∈ Jac(C ′), in Mumford coordinates.

Given certain pre-computed data 3, the cost of computing a target curve is of O(�2) operations in the
extension field F over which the elements in G are defined.

Given certain pre-computed data 4, the cost of computing f(x) is of O(�2) operations in the field of
definition over which the affine theta coordinates of the points αsx+at, with a ∈ Z/�Z and

∑r
s=1 α2

s = β,
are defined.

This chapter is organized as follows. Given the input of the algorithm, we compute an affine theta null
point of A via Thomae’s formulae. The theta constants implicitly correspond to a totally symmetric
line bundle L and a symmetric theta structure of level 2 on A, namely they correspond to (A,L, ΘL).
We denote them by 0̃L. Following Section 3.2.7, we obtain canonical level 2 affine theta coordinates for
a symplectic basis of A[2] (compatible with the choice of 0̃L as defined in 3.2.8). We also compute an
affine theta null point 0̃L2 of level 4 and the corresponding affine theta coordinates of a symplectic basis
of A[4] for a compatible theta structure ΘL2 with ΘL (in the sense of Section 3.2.3). The choice of level
4 theta constants and of basis for the 4-torsion points is done by fixing once and for all an additional
choice of signs (see Section 4.2).

Next section proves that the target variety B is indeed principally polarizable and that the pullback of
the principal polarization M0 via f is indeed algebraically equivalent to Lβ

0 . Ultimately, we wish to
compute, using Theorem 3.2.7, the canonical theta constants for a suitably chosen symmetric theta
structure ΘM on (B,M), where M = M2

0. One possible way is to first compute the theta constants for a
symmetric theta structure ΘLβ on (A,Lβ) in order to apply the isogeny theorem to f : (A,Lβ) → (B,M)

1. We fix an isomorphism ι : K → End0(A), and let χ(π) (associated to K/Q) be the polynomial of the
Frobenius endomorphism π. To simplify notations, ι is omitted when referring to the image of an endomorphism
as an element in K0.

2. G is stable under Frobenius
3. The pre-computed data consists of certain affine theta coordinates for all points in G, together with the

action of α1, . . . , αr on the abstract representation of the 2-torsion points. Check Section 4.8 for more details.
4. The pre-computed data consists of certain affine theta coordinates of αsx + at, for all s = 1, . . . , r and

a ∈ Z/�Z, together with the action of α1, . . . , αr on the abstract representation of the 2-torsion points. Check
Section 4.8 for more details.
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that would expresses the theta constants of a symmetric theta structure ΘM compatible with ΘLβ

(via f) in terms of those for ΘLβ . Unfortunately, in order to compute the relation between the theta
coordinates for the polarizations L and Lβ we cannot simply apply the endomorphism β on A as β∗L is
not algebraically equivalent to Lβ (the latter have different degrees, 2�4 and 2�2 respectively). Moreover,
in general there exists no endomorphism u : (A,Lβ) → (A,L) such that uu = β. To resolve this issue,
we use the idea of [13], based on Zarhin’s trick [55, Thm 13.12]. Given the polarized abelian variety
(A,Lβ), there exists a principal polarization on Ar, with r = 2, 4, coming from the decomposition of β

as a sum of r squares in K0 (see the definition 3.2.1 of a polarization L�r on Ar given (A,L)).

Next, we compute 4 elements αi ∈ K0 such that α2
1 + . . . + α2

4 = β (when 2 of them, then A2 is
principally polarized). In general, the αi’s need not be integral and hence, need not be endomorphisms
of A. Yet, assuming that they yield endomorphisms of the β-torsion points, of 〈x〉 and the 2-torsion
points (i.e., the denominators are prime to 2�Q), one can take F to be the matrix corresponding to
multiplication by α1 +α2i+α3j +α4k on the Hamilton quaternions over K0 and observe that F tF = βI4.
The decomposition is naturally not unique but in Section 4.5, we propose a deterministic method of
computing αi’s based on the Euler’s four-square identity. In Sections 4.3 and 4.4 we prove that the
isogeny F descends the polarization (Ar, (Lβ)�r) to (Ar,L�r).

In the end, if we assume that the above approach works and we obtain the theta constants for ΘLβ

via F , the isogeny theorem applied to f : (A,Lβ) → (B,M) expresses the theta constants for ΘLβ as
polynomials on the theta constants for ΘM, thus requiring one to solve a polynomial system. Therefore,
this method may be too expensive in practice. To resolve this issue, we proceed again as in the case
of (�, �)-isogenies [13] and consider the β-contragredient isogeny f̂ : (B,Mβ) → (A,L). In this case, we
descend to a principal polarization on Br via the isogeny F : (Br, (Mβ)�r) → (Br,M�r). Unfortunately,
the resulting theta structure on Br is not a product theta structure and hence we apply a symplectic
isomorphism on Br in order to determine the theta constants for ΘM. The entire argument is presented
in Section 4.6, including the explicit computation of the theta constants of B and the image of a point
x ∈ A via an affine version of the isogeny f̂ and F . In the last section, we estimate the complexity of
the algorithm in Theorem 4.1.1 but we also analyze the cost of computing the pre-computed data.

4.2 Computing Theta Constants via Thomae’s Formulas

The goal of this section is to present the classical method [22, 13] of computing an affine theta null
point of level 2 and 4 out of the Rosenhain invariants λ, μ, ν [68] of the input curve C introduced in
Theorem 4.1.1. To simplify the formulas presented in this section, we assume that the curve C is already
given by its Rosenhain model, with {0, 1, λ, μ, ν ∈ Fq} being the roots of the defining polynomial.

In order to compute an affine theta null point of level 2 and 4, we first give the analogue of complex
theta functions of level (2, 2) (see equation (3.5)). Consider the principally polarized abelian variety
(A,L0) together with the totally symmetric line bundle L = L2

0 that were introduced in the previous
section. Consider an arbitrary symmetric theta structure ΘL2 and let Θ: Z(4) ∼−→ K1(L2) be the
induced isomorphism. Let {θ

ΘL2
b : A → Fq | b ∈ K1(L2)} be the canonical basis for the space of global

sections Γ(A,L2). Each b ∈ K1(L2) is identified with a unique element in Z(4) via the isomorphism Θ−1

and hence, we can index the basis by elements in Z(4) instead. Consider a map κ1 : Z(2) → Z(4) sending
the vector components 0 and 1 to 0 and 1 respectively. Consider an embedding κ2 : Z(2) → Z(4) sending
the vector components 0 and 1 to 0 and 2 respectively.
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Definition 4.2.1. Given the theta structure ΘL2 of level 4 together with the maps κ1, κ2 : Z(2) → Z(4),
the induced isomorphism Θ: Z(4) ∼−→ K1(L2) and the basis {θ

ΘL2
b : A → Fq| b ∈ Z(4)} of Γ(A,L2), we

define the projective theta coordinates of level (2, 2) of x ∈ A as being
(

θ
ΘL2
a,b (x)

)
a,b∈Z(2)

, where for each

a, b ∈ Z(2) we have:
θ

ΘL2
a,b (x) :=

1
4

∑
c∈Z(2)

(−1)atcθ
ΘL2
κ1(b)+κ2(c)(x). (4.1)

Next, we also use a bijection map between theta indexes in Z(2) × Z(2) and elements of {0, 1, · · · , 15}
identical to the one of Dupont [17] (and also used by [74, 12]):

0 ←
[
(0, 0)t

(0, 0)t

]
1 ←

[
(0, 0)t

(1, 0)t

]
2 ←

[
(0, 0)t

(0, 1)t

]
3 ←

[
(0, 0)t

(1, 1)t

]
4 ←

[
(1, 0)t

(0, 0)t

]
5 ←

[
(1, 0)t

(1, 0)t

]
6 ←

[
(1, 0)t

(0, 1)t

]
7 ←

[
(1, 0)t

(1, 1)t

]
8 ←

[
(0, 1)t

(0, 0)t

]
9 ←

[
(0, 1)t

(1, 0)t

]
10 ←

[
(0, 1)t

(0, 1)t

]
11 ←

[
(0, 1)t

(1, 1)t

]
12 ←

[
(1, 1)t

(0, 0)t

]
13 ←

[
(1, 1)t

(1, 0)t

]
14 ←

[
(1, 1)t

(0, 1)t

]
15 ←

[
(1, 1)t

(1, 1)t

]
.

Next, by applying Thomae’s formulae [12, Ex.6.2.2], we obtain:(
θ1
θ0

)4
=

μ(λ − 1)(ν − 1)
λν(μ − 1)

,

(
θ2
θ0

)4
=

μ(λ − 1)(ν − μ)
λ(μ − 1)(ν − λ)

,(
θ4
θ0

)4
=

μ

λν
,

(
θ8
θ0

)4
=

μ(λ − μ)(ν − 1)
ν(μ − 1)(λ − ν)

.

For each element (θi/θ0)4 with i ∈ 1, 2, 4, 8, making a choice of a square root corresponds to a symplectic
isomorphism. More precisely, for each root choice there exists a corresponding element γ ∈ Γ2/Γ2,4 that
changes the sign of (θi/θ0)2 but preserves the squares of all the other theta constants of level (2, 2).
Hence, we are allowed to take arbitrary square roots of the above formulas and in addition, we obtain
the squares of all other non null theta constants via:(

θ6
θ0

)2
=

1
ν

(
θ2
θ0

)2
·
(

θ0
θ4

)2
,

(
θ12
θ0

)2
=

1
λ

(
θ8
θ0

)2
·
(

θ0
θ4

)2

and (
θ3
θ0

)2
= (ν − 1)

(
θ4
θ0

)2
·
(

θ6
θ0

)2
·
(

θ0
θ1

)2
,

(
θ9
θ0

)2
= (λ − 1)

(
θ4
θ0

)2
·
(

θ12
θ0

)2
·
(

θ0
θ1

)2
,

(
θ15
θ0

)2
=

ν − μ

ν − 1

(
θ1
θ0

)2
·
(

θ12
θ0

)2
·
(

θ0
θ2

)2
.

In order to obtain theta constants of level (2, 2), we need to further choose square roots in the above
formulas. Each root choice corresponds to a certain isomorphism γ ∈ Γ2,4/Γ4,8 (that preserves all the
other theta coordinates of level 4).

Given the squares of the theta constants 0̃L2 of level (2, 2), we compute an affine theta null point for the
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compatible theta structure ΘL on (A,L) of level 2. First, the isomorphism Θ induces an isomorphism
ΘL : Z(2) ∼−→ K1(L). The projective theta coordinates of a point x are of the form

(
θΘL

b (x)
)

b∈Z(2)
,

where b corresponds to a unique element in K1(L) via ΘL.

For each b ∈ Z(2), there exists a transformation formula [12, p.39]:

θΘL
b (0) · θΘL

0 (0) =
∑

a∈Z(2)

θ
ΘL2
a,b (0)2. (4.2)

We are allowed to choose any affine theta null point and therefore, to avoid unnecessary inversions, we
could compute directly θΘL

b (0̃L) =
∑

a∈Z(2) θ
ΘL2
a,b (0̃L2)2 for all b ∈ Z(2).

Remark 10. To do operations of chain addition and chain multiplication on the Kummer surface Ã/ ± 1,
we assume that we are in the generic case [22, 50], namely, for all a, b ∈ Z(2) we have:∑

c∈Z(2)

(−1)atcθΘL
b+c(0̃L)θΘL

c (0̃L)  = 0. (4.3)

Recall that 0̃L2 is a level (2, 2) affine theta null point for a compatible symmetric theta structure ΘL2 .

We notice that for each a, b ∈ Z(2) the sum in (4.3) corresponds to the squares 4
(

θ
ΘL2
a,b (0̃L2)

)2
, and

therefore the sums are a priori computed from the Rosenhain invariants. To reduce the cost of computing
chain additions, we rescale the theta coordinates such that

(
θ

ΘL2
a,b (0̃L2)

)2
= 1, when a = b = (0 0) [50, §.

5].

4.3 Principal Polarizations and Totally Positive Real Endomor-
phisms

Recall from Section 4.1.1 that the Jacobian variety A is ordinary, of CM-type (K, Φ) and admits maximal
real multiplication. As before, let L0 be the canonical principal polarization on A for which the map
ϕL0 : A → A∨ is the corresponding polarization isomorphism.

According to [56, p.61], the principal polarization L0 on A yields a Rosati involution on the endomorphism
algebra End(A) ⊗ Q defined by

f �→ f† := ϕ−1
L0

◦ f∨ ◦ ϕL0 ,

where f∨ : A∨ → A∨ is the dual isogeny [56, §. 9].

Let A[�] denote the space of �-torsion points on A that are defined over the algebraic closure Fq. If � is
a prime different from the residue characteristic of Fq, we define the Weil pairing as the bilinear map
e : TA×TA → Z(1), where TA is the Tate module, Z(1) = lim←(μn) [56, p.58]. Given any isogeny
ϕ : A → A∨, we define the pairing eϕ

 : TA × TA → Z(1) as

eϕ
 (x, y) = e(x, ϕy).

Note that ϕ is an isogeny arising from a polarization on A if and only if eϕ
 is an alternating form[56,

Prop.13.6]. We extend the pairing to eϕ
 : TA ⊗ Q × TA ⊗Z�

Q → Z(1).
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Chapter 4. Computing Cyclic Isogenies in Genus 2

The following results describe all polarizations on A (up to algebraic equivalence) in terms of the subring
of endomorphisms End(A)++ ⊂ End(A)+ consisting of totally positive endomorphisms [6, p.123], namely
the endomorphisms that are symmetric for the Rosati involution. Recall that NS(A) is identified with
the group of symmetric line bundles on A up to algebraic equivalence (see Section 3.2.1).

Proposition 4.3.1. There is an isomorphism between NS(A)⊗Q and End(A)+⊗Q given by L �→ ϕ−1
L0

◦
ϕL. Moreover, the symmetric (for the Rosati involution) totally positive endomorphisms End(A)++ ⊂
End(A)+ act simply transitively on the group of symmetric ample line bundles (polarizations) on A,
taken up to algebraic equivalence.

Proof. Let L be an ample line bundle on A and let β = ϕ−1
L0

◦ϕL so that the following diagram commutes:

A

ϕL0 ��

A
β��

ϕL
��

A∨.

(4.4)

The statement [56, Prop. 14.2] proves that NS(A)⊗Q is identified with the subset of End(A)⊗Q that is
stable under the action of †. We similarly prove that β = ϕ−1

L0
◦ ϕL is stable under the Rosati involution,

i.e., β† = β. To do this, we fix a prime � different from the characteristic of Fq and show that for β as :

e(x, ϕL0 ◦ βx′) = e(x, β∨ ◦ ϕL0x′), ∀x ∈ TA ⊗ Q, ∀x′ ∈ TA ⊗ Q.

The above equation is indeed true. We write

e(x, β∨ ◦ ϕL0x′) = e(βx, ϕL0x′) = e
ϕL0
 (βx, x′)

= −e
ϕL0
 (x′, βx) = −e

ϕL0 ◦β

 (x′, x) = e(x, ϕL0 ◦ βx′),

where the last equality holds since eφ0◦β
 is alternating (as corresponds to the polarization L). Conse-

quently, β∨ ◦ ϕL0 = ϕL0 ◦ β or equivalently, ϕ−1
L0

◦ β∨ ◦ ϕL0 = β and so, β is stable under the Rosati
involution.

Next, we check that since A is ordinary then β is a totally positive in End+(A). We do this via the
canonical lifting of Serre–Tate [69] that allows us to lift A, together with End(A), to an abelian variety
Ã over the ring W (k) of Witt vectors of Fq. We next fix an embedding ı : W (Fq) ↪→ C and let ÃC be
the complex abelian variety Ã ⊗ı C. The polarizations L and L0 lift to unique polarizations L̃ and L̃0
of ÃC, we can apply the results from the last paragraph of Section 3.1.4 dedicated to complex abelian
varieties with CM. Let ξ ∈ K with Φ(ξ) ∈ (iR>0)2 be an element corresponding to L̃0 and ξ′ ∈ K with
Φ(ξ′) ∈ (iR>0)2 be an element corresponding to L̃ (unique up to multiplication by a totally positive
unit in K0). Then there exists β ∈ K such that β = ξ′/ξ with ϕ(β) > 0 for all ϕ ∈ Φ, that is β is totally
positive.

Conversely, given an endomorphism β satisfying the conditions of the proposition, there exists a
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polarization L̃0
β

fitting in the commutative diagram:

ÃC

ϕ
L̃0 ��

ÃC
β��

ϕ
L̃0

β

��
Ã∨

C.

(4.5)

To conclude, we use[6, Prop.5.2.1 and Thm.5.2.4], applied to ÃC. The results show that β is indeed a
(totally positive) element in K0. More precisely, the action of all real endomorphisms on ÃC gives an
isomorphism between End(ÃC)+ (up to equivalence given by units) and NS(ÃC). This isomorphism
restrict to an isomorphism between End(ÃC)++ and the polarizations on ÃC considered up to algebraic
equivalence.

The polarizations L0,L that correspond to L̃0 and L̃β
0 satisfy the same property above, namely there

exists a totally positive element in K0 such that ϕL0 ◦ β = ϕL̃. Since any endomorphism End(ÃC) over
C correspond to a unique endomorphism over Fq, we conclude that any polarization on A arises from
an element in End(A)++.

Corollary 4.3.2. If α is a totally positive endomorphism of A, then α∗L0 is algebraically equivalent to
Lαα

0 .

4.4 Principal Polarizations on A/G Induced from Principal Po-
larizations on A

In this section, we want to prove that the target B := A/G is principally polarizable and moreover,
we want to explicitly describe such a polarization M0 in a way that allows us to compute theta null
points of level 4 for a suitable theta structure ΘM4

0
. In the end, that allows us to recover the Rosenhain

invariants of a curve C ′ whose Jacobian is isomorphic to (B,M0). The main tool for achieving this will
be the following lemma that is valid over any field Fq.

Lemma 4.4.1. Let (A,L0) be a principally polarized abelian variety defined over a field Fq. Let G ⊂ A

be a finite Fq-rational subgroup, and f : A → B = A/G be the corresponding isogeny. Then B admits
a principal polarization if and only if there exists a totally positive real endomorphism β ∈ End(A)++

such that G is a maximal isotropic subgroup for the commutator pairing eLβ
0
.

Proof. If B admits a principal polarization M0, we apply the proposition 4.3.1 to f∗M0, so there exists
an endomorphism β making the following diagram commute:

A

ϕL0 ��

A
β�� f ��

ϕf∗M0
��

B

ϕM0
��

A∨ B∨.
f∨

��

(4.6)

It is easy to check that β is symmetric, it is positive because Lβ
0
∼= f∗M0 is ample (see Proposition 4.3.1),

and G is maximal isotropic inside ker(φLβ
0
) for degree reasons with respect to eLβ

0
. Conversely, given

an endomorphism β satisfying the conditions of the lemma, let Lβ
0 be a line bundle corresponding to
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ϕL0 ◦ β. Then Lβ
0 descends under f to a polarization M0 by descent theory [66, Prop.2.4.7], and the

following diagram is commutative

A

ϕL0 ��

A
β�� f ��

ϕLβ
0

��

B

ϕM0
��

A∨ B∨.
f∨

��

(4.7)

Thus, f∗M0 is algebraically equivalent to Lβ
0 . Finally, since the degree of β is equal to deg f deg f∨ =

deg f2, then the degree of ϕM0 is 1 and hence, M0 is a principal polarization.

Remark 11. There is a principal polarization on A/G if and only if there exists a totally positive real
element β ∈ End(A)+ of norm � such that G ⊂ A[β] is a maximal isotropic subgroup for the commutator
pairing eLβ

0
. In our case, given the input of the algorithm 4.1.1, there exists such real endomorphism β

and the kernel G is cyclic.

4.5 Real Endomorphisms

Recall the conditions 4.8.2 regarding real multiplication on A (in the statement of Theorem 4.1.1).
In this section, we aim to compute the action of ω =

√
D on 2-torsion points, �-torsion points and

Fq-rational subgroup 〈x〉.

First, we present a naive method of computing β = a + b
√

D ∈ O0, where a, b > 0 are the smallest
integers such that β is of norm � and totally positive. The method works if and only if there exists a
totally positive element β ∈ O0 of norm �.

4.5.1 Precomputation Phase: β ∈ K0

If it exists, the endomorphism β of degree �2 is identified with an element in O0 that has norm �. In
the case of the fundamental discriminant being 0 modulo 4 (D = 2, 3 (mod 4)), the endomorphism
corresponds to some totally positive element β = a + b

√
4D ∈ O0, with integers a, b > 0, of norm �.

Choosing a suitable β first amounts to finding integers a, b > 0 such that a2 − 4b2D = �. One naive
approach is to pick the smallest even b such that b2D + � is a square. Next, the parameter a is equal
to the positive square root of b2D + � and it is easy to verify that β =

√
b2D + � + b/2

√
4D ∈ O0

is indeed totally positive and of norm �. In the case of D = 1 (mod 4), the element is of the form
β = a + b

2 (1 +
√

D). The norm of β is � if and only if there exists b such that b2D/4 + � is a square.
One naive approach is to pick again the smallest even number b that satisfies this condition. If b′ = b/2,
the parameter a becomes

√
b′2D + � − b′ and in the end, the endomorphism has a similar form of

β =
√

b′2 + � + b′√D for the smallest positive integer b′.

4.5.2 A Suitable Decomposition of β as Sum of r-squares

Following Section 4.1, we need to compute a matrix F ∈ Mr(K0) that satisfies FF t = βId, where
r = 2, 4. This allows us to obtain a principal polarization on the target B in section 4.6. In this
paragraph, we present a method that decomposes β ∈ O0 as a sum of 4 squares in K0 (where some of
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them might be 0). The idea is based on the equality β2 + � − 2cβ = β(β + βc) − 2cβ = 2(Tr(β) − c)β,
for any positive integer c < Tr(β). Afterwards, let � =

∑4
s=1 �2

s for some integers �i ≥ 0. We notice
that m = 2 Tr(β) − 2�1 = 2(

√
b2D + � − �1) is also a strictly positive integer and so, we write it as a

sum of 4 squares of the form m =
∑4

s=1 ms, for some integers ms ≥ 0 that are not all zero. Next, we
consider a 4-by-4 integer matrix N with m1, . . . , m4 on the first column. Then, if z = (β − �1, �2, �3, �4),
we have z · zt = mβ. The decomposition of mI4 = N · N t implies that 1/m = (N t)−1N−1. We pick
(α1, . . . , α4) = z · (N t)−1 ∈ Kr

0 and β is indeed equal to the sum of 4 squares α2
1 + . . . + α2

s. As (N t)−1

is equal to 1/mN ∈ M4(Q), we notice that the denominators in the expression of αs are most likely
even. Here, the assumption that the index of Z[π, π] in O is odd will guarantee that the polynomial in
Frobenius of αs has odd denominators. On the other hand, if we choose �1 such that m is prime to �

and Q, we can compute the expression of αs on �-torsion points and on the rational subgroup of A(Fq)
of order Q.

4.5.3 Computing Real Endomorphisms on Certain Points of A

First we understand the action of a real endomorphism on the isogeny kernel G and on the rational
subgroup of order Q. For that we consider the Frobenius polynomial

χπ(T ) = T 4 − s1T 3 + (s2 + 2q)T 2 − qs1T + q2, (4.8)

where s1 and s2 satisfy s2
1 − 4s2 > 0 and s2 + 4q > 2|s1|√q (Rück bounds) and |s1| ≤ 4√q and |s2| ≤ 4q

(Weil bounds). Given an endomorphism γ ∈ End0(A), let fγ = a0 + a1T + a2T 2 + a3T 3 be the degree
3 polynomial that satisfies γ = fγ(π). The goal is to compute the endomorphism ω by using the fact
that ω2 is scalar multiplication by D = s2

1 − 4s2. In addition, ω = 2π + 2π − s1, where π is the complex
conjugate (in K) of π. We can now write π as a polynomial in π and derive the requested polynomial.
More precisely,

π3 − s1π2 + (s2 + 2q)π − qs1 = −q2

π
= −qπ,

and hence,
ω = −2q−1π3 + 2q−1s1π2 − 2(q−1s2 + 1)π + s1, (4.9)

i.e., fω(T ) = −2q−1T 3 + 2q−1s1T 2 − 2(q−1s2 + 1)T + s1. Given a prime p, we denote by fω,p(T ) the
polynomial fω(T ) whose coefficients are reduced modulo p.

Let x be a rational point of order Q and let t be a generator of G = Ker(f). Consider a real endomorphism
γ = u+v

√
D ∈ O0. If we reduce both coefficients modulo �, namely u = u (mod �) and v = v (mod �),

then u + vfω,(T ) represents the action of γ on �-torsion points and in particular on 〈t〉. In addition,
the group 〈t〉 is stable under Frobenius and hence, in this particular case, there exists a scalar st in
Z/�Z such that π(t) = st · t. We denote by ct = fω,(st) ∈ Z/�Z the action of

√
D on any point in G.

Consequently, any real endomorphism γ acts on G as multiplication by a scalar cγ,t = u + vct.

In the other case, we proceed in a similar manner as the Frobenius (with respect to Fq) is the identity
on the rational group 〈x〉. Hence, to compute

√
D on x we evaluate the polynomial fω,Q at 1, i.e.,

cQ = fω,Q(1) ∈ Z/QZ. Then, the endomorphism γ is once again multiplication by a scalar, more
precisely cγ,x = uQ + vQcQ.

Naturally the next question is how to compute real endomorphisms in practice. In the case of x and t in
theta coordinates, we use the methods of chain addition and chain multiplication from Section 3.2.6.
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4.6 Computing the Target Isogeny

Following the arguments given in Section 4.1, we use the β-contragrediant isogeny f̂ : B → A instead of
f : A → B in order to compute the target variety B. Following the argument from Section 4.4 there
exists a principal polarization on B whose pullback via isogeny f is algebraically equivalent to Lβ

0 .
Moreover, as β is totally positive then the line bundle Mβ

0 is indeed an ample line bundle. Next lemma
proves there exists a connection between the line bundles Mβ

0 and L0 given by the β-contragredient
isogeny f̂ .

Lemma 4.6.1. Let M0 be the principal polarization on B and let Mβ
0 be the ample line bundle on B

whose polarization isogeny ϕMβ
0

is ϕM0 ◦ β : B → B∨. Then f̂∗L0 is algebraically equivalent to Mβ
0 .

Proof. By Proposition 4.3.1 applied to (B,M0), there exists γ ∈ End(B)++ such that f̂∗L0 is alge-
braically equivalent to Mγ

0 . Now, we have f∗Mγ
0 = Lβγ

0 and f∗Mγ
0 = (f ◦ f̂)∗L0 = β∗L0 = Lβ2

0 where
the last equality comes from Corollary 4.3.2 and the fact that β is a real endomorphism. By applying
Proposition 4.3.1 again, we get that β = γ.

Remark 12. The line bundles satisfy (f̂∗L0)2 = f̂∗L2
0 = f̂∗L, as 2 � �, and (Mβ

0 )2 = Mβ . Therefore,
f̂∗L is algebraically equivalent to Mβ . Since L0 and M0 are symmetric, it implies that f̂∗L is linearly
equivalent to Mβ that is also totally symmetric as M is totally symmetric.

The advantage of this approach is that expressing a choice of theta constants for (B,Mβ , ΘMβ ) from a
choice of theta constants for (A,L, ΘL) via f̂ no longer involves solving systems of polynomial equations
as explained in the subsection below.

4.6.1 Isogeny Theorem for f̂

Lemma 4.6.1 shows that f̂ : (B,Mβ) → (A,L) is indeed an isogeny of polarized abelian varieties.
Let ΘMβ be a theta structure on (B,Mβ) compatible with the theta structure ΘL, i.e., such that
the isogeny f̂ : (B,Mβ , ΘMβ ) → (A,L, ΘL) is an isogeny of polarized abelian varieties with theta
structures. The theta structure ΘMβ induces a symplectic decomposition of the 2β-torsion points
K(Mβ) = K1(Mβ) ⊕ K2(Mβ). Since Ki(Mβ) = Ki(Mβ)[β] ⊕ Ki(Mβ)[2], we have a symplectic
decomposition K1(Mβ)[2] ⊕ K2(Mβ)[2] of B[2] which yields (via f̂) the symplectic decomposition on
K(L) = A[2] determined by the theta structure ΘL.

If we assume that the kernel Ĝ of f̂ is K2(Mβ)[β] (which we can always do since the compatibility
requirement on ΘMβ is only on the 2-torsion and not on the β-torsion points), the kernel G of f coincides
with f̂(K1(Mβ)[β]). Moreover, the isogeny f̂ induces an isomorphism between K1(Mβ)[2] and K1(L)
and significantly simplifies the formula appearing in the isogeny theorem (3.2.7) applied to f̂ .

Given the theta structures ΘL and ΘMβ , consider the corresponding affine systems of coordinates
θΘL

i : Ã → Fq and θ
ΘMβ

j : B̃ → Fq. Let ˜̂f : B̃ → Ã be the canonical affine isogeny corresponding to f̂

and the systems of coordinates (check Definition 3.2.9). We fix an affine lift ỹ of a point y ∈ B for the
theta structure ΘMβ . Let ˜̂

f(y) be the affine lift of f̂(y) ∈ A such that for all i ∈ K1(L), we have:

θΘL
i ( ˜̂f(y)) = θ

ΘMβ

j (ỹ), (4.10)
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where j ∈ K1(Mβ)[2] is the unique preimage of i via f̂ (note that Ĝ1,⊥ = K1(Mβ)[2] and Ĝ1 = 0 since
Ĝ ⊂ K2(Mβ)).

4.6.2 Isogeny Theorem for F

Let F be the r-by-r matrix from Section 4.1. Assuming that the elements of F are identified with
polynomials in the Frobenius π with Q-coefficients whose denominators are prime to � as in Section 4.5.3,
it is possible to compute the action of the corresponding endomorphism F on the �-torsion points of Br

by simply inverting all denominators modulo �.

We first prove that under the endomoprhism F , the totally symmetric line bundle M�r pulls back to
(Mβ)�r up to algebraic equivalence:

Lemma 4.6.2. Given the isogeny F : Br → Br, the line bundles F ∗M�r
0 and (Mβ

0 )�r are algebraically
equivalent.

Proof. From Corollary 4.3.2, the line bundle F ∗M�r
0 is algebraically equivalent to (M�r

0 )F †F , where F †

denotes the action of the Rosati involution on End(Br) which is given components by components as
the Rosati involution acting on the coefficients of the transpose of F . Since F is composed of totally
positive real quadratic endomorphisms α, then α† = α and consequently, F † = F t. Furthermore since
F tF = βId we get that F ∗M�r

0 is algebraically equivalent to (Mβ
0 )�r.

Since L0 and M0 are symmetric, then the line bundles L and M are totally symmetric. In addition,
as F ∗M�r

0 is algebraically equivalent to (Mβ
0 )�r, the two line bundles F ∗M�r and (Mβ)�r are totally

symmetric. This means that we have an isogeny F : (Br, (Mβ)r) → (Br,M�r) of polarized abelian
gr-folds. Consider the r-fold product theta structure Θ(Mβ)�r on (Br, (Mβ)r) (determined by ΘMβ by
Definition 3.2.3) and let Θ̃M�r be a compatible (for the isogeny F ) theta structure on (B,M�r). We
apply the isogeny theorem for the isogeny

F : (Br, (Mβ)�r, Θ(Mβ)�r )) → (Br,M�r, Θ̃M�r )

of principally polarized abelian varieties with compatible theta structures to first compute the theta
constants for Θ̃M�r . The theta structure Θ̃M�r induces a symplectic decomposition of K(M�r) into a
direct sum of Ki(M�r), for i = 1, 2.

Since Ki(Mβ) = Ki(Mβ)[β] ⊕ Ki(Mβ)[2] for i = 1, 2, any k ∈ Ki(Mβ) can be written uniquely as
k = t′ + j where t′ ∈ Ki(Mβ)[β] and j ∈ Ki(Mβ)[2]. The isogeny F has kernel that is a subgroup of
the β-torsion points of the form F1 ⊕ F2 with Fi ⊂ Ki((Mβ)�r)[β] and hence, F is an isomorphism at
the level of 2-torsion points.

As in the previous section, given the theta structures Θ̃M�r and Θ(Mβ)�r , we consider the corresponding

affine systems of coordinates, θΘ̃M�r

i : B̃r → Fr

q and θ
Θ(Mβ )�r

j : B̃r → Fr

q respectively. Consider the
canonical affine isogeny F̃ : B̃ → B̃ corresponding to F and the given affine system of coordinates (see
Definition 3.2.9). Let ỹ�r be an arbitrary affine lift of y�r ∈ Br for the theta structure Θ(Mβ)�r . Let
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F̃ (y�r) be the affine lift of F (y�r) such that for all k ∈ K1(M�r), the following relation holds

θΘ̃M�r

k (F̃ (y�r)) =
∑

t′∈K1((Mβ)�r)[β]
F (t′)=0

θ
Θ(Mβ )�r

j+t′ (ỹ�r), (4.11)

where j ∈ K1((Mβ)�r)[2] is the unique element satisfying F (j) = k.

4.6.3 Computing the Theta Constants of B

In this section, we focus on how to compute affine theta constants of the target variety B from an affine
theta null point 0̃L.

Let 0̃L be an affine lift of the theta null point of A for the theta structure ΘL (computed with Thomae’s
formulae in Section 4.2). According to the definition of the affine isogeny ˜̂

f , there exists a unique affine
theta null point 0̃Mβ of B̃ such that (4.10) holds, namely for all i ∈ K1(L),

θΘL
i (0̃L) = θ

ΘMβ

j (0̃Mβ ), (4.12)

where j ∈ K1(Mβ)[2] is the unique preimage of i via f̂ .

Let t̃′ be an affine lift of t′ ∈ K1(Mβ) that is compatible with the choice of the affine lift of 0̃Mβ (see
definition 3.2.8). Then, by definition of compatibility, for any j ∈ K1(Mβ)[2] we have

θ
ΘMβ

j+t′ (0̃Mβ ) = θ
ΘMβ

j (t̃′). (4.13)

Following equation (4.10) with t′ ∈ K1(Mβ), then there exists a unique affine lift of f̂(t′) such that for
any index j ∈ K1(Mβ)[2] we have:

θ
ΘMβ

j (t̃′) = θΘL
i (˜̂f(t′)), (4.14)

where i ∈ K1(L) with f̂(j) = i. Since Ĝ ⊂ K2(Mβ)[β], then f̂(t′) ∈ G for any t′ ∈ Ĝ. Then, the affine

lift ˜̂
f(t′) of t ∈ G satisfying equation (4.14) is compatible with respect to the affine isogeny ˜̂

f (check
definition 3.2.10).

Since Θ(Mβ)�r is a product theta structure, let 0̃(Mβ)�r be the affine theta null point of (Br, (Mβ)�r, Θ(Mβ)�r )
that is determined by 0̃Mβ . Then, given compatible affine lifts (t̃′

1, . . . , t̃′
r) of any t′ = (t′

1, . . . , t′
r) ∈ Ĝr,

we have that for any index j = (j1, . . . , jr) ∈ K1((Mβ)�r)[2] the following relation holds

θ
Θ(Mβ )�r

j+t′ (0̃(Mβ)�r =
r∏

s=1
θ

ΘMβ

js+t′
s
(0̃Mβ )

(4.13)
=

r∏
s=1

θ
ΘMβ

js
(t̃′

s)
(4.14)

=
r∏

s=1
θΘL

is
(˜̂f(t′)), (4.15)

where is = f̂(js) ∈ K1(L) for s = 1, . . . r.

Let 0̃M�r be the affine theta null point for (Br,M�r, Θ̃M�r) such that for all k ∈ K1(M�r), equation
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(4.11) (with y�r = 0̃(Mβ)�r ) is satisfied

θΘ̃M�r

k (0̃M�r ) =
∑

t′=(t′
1,...,t′

r)∈K1((Mβ)�r)[β]
F (t′)=0

θ
Θ(Mβ )�r

j+t′ (0̃(Mβ)�r )

(4.15)
=

∑
t=(t1,...,tr)∈Gr

F (t)=0

r∏
s=1

θΘL
is

(t̃s)
(4.16)

where j = (j1, . . . , jr) ∈ K1((Mβ)�r)[2] is the unique preimage of k under F , index is ∈ K1(L) is the
image of js ∈ K1(Mβ)[2] via f̂ and t̃s is the compatible affine lift of ts = f̂(t′

s) ∈ Ker(f) with respect to˜̂
f and 0̃Mβ .

Remark 13. Let κ : O0 → Z/�Z be the ring homomorphism giving the action of the real multiplication
endomorphisms on the points of G (note that κ induces a field isomorphism κ : O0/β

∼−→ Z/�Z). In
Section 4.5.3, we compute α1, . . . , αr ∈ K0, such that

∑r
s=1 α2

s = β. We notice that the least positive
integer d such that dαs ∈ O0 for all s = 1, . . . , r is prime to �. Let dαs = α1

s + α2
s

√
D, where α1

s, α2
s ∈ Z

and let bs = κ(dαs)/κ(d) ∈ Z/�Z represent the action of αs on elements in G.

In conclusion the matrix representation of the action of endomorphism F on Gr is a matrix in Mr(Z/�Z).
Furthermore, as the matrix satisfies FF t = βId and Gr is in the kernel of endomorphism β, there exists
t = (t1, . . . , tr) ∈ Gr such that F t(t) = (f̂(t′

1), . . . , f̂(t′
r)). We notice that the kernel of F inside Gr is of

size �r/2. We distinguish two different cases depending on r. First, when r = 4, the kernel of F is of size
�2 and so,

Ker(F ) = {F t(t)| t = (t1, t2, 0, 0), t1, t2 ∈ G}.

Else, when r = 2, the kernel of F is of size � and so,

Ker(F ) = {F t(t)| t = (t, 0), t ∈ G}.

From now on, we consider the case r = 4 as the other case is immediately deduced from it. Since the
matrix F t is of the form

F t =

⎛⎜⎜⎝
b1 −b2 −b3 −b4
b2 b1 b4 −b3
b3 −b4 b1 b2
b4 b3 −b2 b1

⎞⎟⎟⎠ ,

then for any t′
1, . . . , t′

4 ∈ K1(Mβ)[β] we have

(f̂(t′
1), . . . , f̂(t′

4)) = F t(t1, t2, 0, 0)t

for some t1, t2 ∈ G.

Remark 14. From now on, let t be a generator of G and let t̃0 be the compatible affine lift of t (in
level 2 coordinates for ΘL) with respect to the affine point 0̃Mβ and the isogeny ˜̂

f . Given t1, t2 ∈ G,
there exist unique a1, a2 ∈ Z/�Z such that a1t = t1 and a2t = t2. We consider the compatible affine
lift ã1t0 = chain_mult(a1, t̃0, 0̃L) of t1 and the compatible affine lift ã2t0 = chain_mult(a2, t̃0, 0̃L) of
t̃2. Moreover, as b1, . . . , br are also in Z/�Z, then ˜bs · a1t0 = chain_mult(bsa1, t̃0, 0̃L) and ˜bs · a2t0 =
chain_mult(bsa2, t̃0, 0̃L) for any s = 1, . . . , r. Next, since we have the same affine lift t̃0 determining
˜bs · a1t0 and ˜bs · a2t0 for all s = 1, . . . , r, we also group all scalars together and consider the compatible
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affine lifts
˜(b1a1 − b2a2)t0 := chain_mult(b1a1 − b2a2, t̃0, 0̃L),
˜(b2a1 + b1a2)t0 := chain_mult(b2a1 + b1a2, t̃0, 0̃L),
˜(b3a1 − b4a2)t0 := chain_mult(b3a1 − b4a2, t̃0, 0̃L),
˜(b4a1 + b3a2)t0 := chain_mult(b4a2 + b3a2, t̃0, 0̃L),

(4.17)

After grouping the scalars as above, equation (4.16) is rewritten as follows. For any index k ∈ K1(M�r):

θΘ̃M�r

k (0̃M�r ) =
∑

a1,a2∈Z/Z
θΘL

i1
( ˜(b1a1 − b2a2)t0)θΘL

i2
( ˜(b2a1 + b1a2)t0)

· θΘL
i3

( ˜(b3a1 − b4a2)t0)θΘL
i4

( ˜(b4a1 + b3a2)t0)
(4.18)

where is = f̂(js) ∈ K1(L), where j = (j1, . . . , jr) ∈ K1((Mβ)�r)[2] is unique such that F (j) = k.

Unfortunately in practice, we cannot compute compatible affine lifts of t ∈ G from the very beginning,
when we are given only the affine theta null point 0̃L of level 2 together with the Mumford coordinates of
t. We first change the coordinates of t from Mumford to theta and take any affine image of the resulting
projective point. It yields an affine lift of the form t̃ = λtt̃0, where λt  = 0 is unknown. Following previous
work of [13, 49], the next step is to figure out how λt intervenes when evaluating the RHS of (4.18)
when given the affine lifts of ast as chain_mult(as, t̃, 0̃L) (s = 1, 2). First, Lemma 4.6.3 proves that is
necessary to at least compute λ

t in order to apply equation (4.18).

Lemma 4.6.3. Let t be a generator of G and let t̃0 be the compatible affine lift of t with respect to 0̃L
(of theta structure ΘL). Let t̃ = λtt̃0, with λt ∈ F∗

q , be an arbitrary lift of t. Given the scalars b1, . . . , br

on the first row of F , and arbitrary a1, a2 ∈ Z/�Z, we denote by ˜(b1a1 − b2a2)t := chain_mult(b1a1 −
b2a2, t̃, 0̃L), ˜(b2a1 + b1a2)t := chain_mult(b2a1 + b1a2, t̃, 0̃L), ˜(b3a1 − b4a2)t := chain_mult(b3a1 −
b4a2, t̃, 0̃L), ˜(b4a1 + b3a2)t := chain_mult(b4a2 + b3a2, t̃, 0̃L). If the product

θΘL
i1

( ˜(b1a1 − b2a2)t)θΘL
i2

( ˜(b2a1 + b1a2)t)θΘL
i3

( ˜(b3a1 − b4a2)t)θΘL
i4

( ˜(b4a1 + b3a2)t) (4.19)

is defined symbolically as a polynomial in the variable λt, then it belongs to Fq[λ
t].

Proof. Our proof is similar to the proof of [13, Lem.4.2]. The product (4.19) differs from the product
with compatible affine lifts in the RHS of (4.18) by a factor equal to

λ = (λt)(b1a1−b2a2)2 · (λt)(b2a1+b1a2)2 · (λt)(b3a1−b4a2)2 · (λt)(b4a1+b3a2)2
=

= (λt)(b2
1+···+b2

4)(a2
1+a2

2) = (λt)κ(β)(a2
1+a2

2) = λ
(a2

1+a2
2)

t .
(4.20)

Moreover, if we consider a transformation of Fq[λt], taking λt �→ ξλt for some �th root of unity ξ ∈ F×
q ,

then the above factor λ remains unchanged as ξ = 1. As the �th root of unity is chosen arbitrarily,
the product of theta coordinates is invariant under any transformation that acts on the generator λt

of Fq[λt] by an �th root of unity. It proves that given γt = λ
t we can extract any �th root λt and the

choice does not change the theta null point computed via equation (4.18).

Now, we focus on finding γt and an easy method is by extracting an �th root out of λ2

t that is computed
as follows. We know that 0̃L = chain_mult(�, t̃0, 0̃L) and so, λ2

t 0̃L = chain_mult(�, t̃, 0̃L). The final
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equality gives the factor λ2

t . The problem with this approach is the introduction of another choice
of �th root of unity ξ when computing γt. It induces a new transformation that is not among the
transformations in the above lemma and it does not preserve the product of theta constants as a
symbolical polynomial in γt. We are not guaranteed that a particular choice of root ξ such that γt → ξγt

gives the right theta null point.

To avoid the introduction of another �th root of unity, we use the criterion [66, Section 7.4] for choosing
a particular affine lift t̃e = λtt̃0 of t such that the value γt = λ

t is computed precisely. First we give the
definition of this choice of affine lift and afterwards, we prove that we can indeed compute γt.

The prime � is assumed odd in Theorem 4.1.1. Let �′ = (� − 1)/2.

Definition 4.6.4. An excellent affine lift t̃e is an affine lift of t ∈ G such that the affine lifts of (�′ + 1)t
and �′t, namely ˜(�′ + 1)te = chain_mult(�′ + 1, t̃e, 0̃) and −̃�′te = chain_mult(−�′, t̃e, 0̃), satisfy

chain_mult(�′ + 1, t̃e, 0̃) = chain_mult(−�′, t̃e, 0̃) (4.21)

or equivalently,
θΘL

i ( ˜(�′ + 1)te) = θΘL
−i (�̃′te) for all i ∈ K1(L). (4.22)

The next lemma is particularly useful in computing equation (4.18). We assume that we are given an
arbitrary affine lift t̃ = λtt̃e and we are interested in computing the �th power of λt.

Lemma 4.6.5. If λtt̃e is an affine lift of t ∈ G, then we can explicitly compute λ
t.

Proof. In the case of an arbitrary lift of the form λtt̃e, we have the equalities

chain_mult(�′ + 1, λtt̃e, 0̃L) = λ
(′+1)2

t chain_mult(�′ + 1, t̃e, 0̃L)

and
chain_mult(−�′, λtt̃e, 0̃L) = λ′2

t chain_mult(−�′, t̃e, 0̃L)

= λ′2

t chain_mult(�′ + 1, t̃e, 0̃L) = λ−
t chain_mult(�′ + 1, λtt̃e, 0̃L)

Hence,
λ

t = chain_mult(�′ + 1, λtt̃e, 0̃L)/chain_mult(�′ + 1, λtt̃e, 0̃L) =: γt

Any other excellent affine lift is of the form ξt̃e, where ξ is an �-th root of unity (immediate from (3.29),
with λ0 = 1, and definition (4.21)).

Remark 15. Following [66, Prop.7.4.3], an excellent affine lift is compatible with a choice of level 2�2 theta
constants on A, denoted by 0̃[]∗L. The affine lift is uniquely determined up to multiplication by an �th
root of unity. But β◦βc = �, where βc is the endomorphism corresponding to the real quadratic conjugate
of β. Consider two affine isogenies β̃ and β̃c and the theta null point 0̃[β]∗L = β̃c(0̃[]∗L). In addition,

let f̃ ◦ ˜̂f = β̃. If we define the affine theta null points 0̃Mβ := f̃(0̃[β]∗L) and 0̃L := ˜̂
f(0̃Mβ ) = β̃(0̃[β]∗L),

then both theta null points are compatible with 0̃[]∗L. We conclude that an excellent affine lift t̃e ∈ G
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is also compatible with the choice of ˜̂f and 0̃Mβ , in the sense that it is equal to t̃0 up to multiplication
by an �th root of unity.

Remark 16. Notice that it is possible to compute the theta coordinates of an excellent affine lift t̃e

above t ∈ G given an arbitrary affine lift t̃ and a fixed affine theta null point 0̃L. Here, both points are
given in theta coordinates determined by the theta structure ΘL of level 2. We just need to compute
˜(�′ + 1)t and −�̃′t via two chain multiplication (denoted by chain_mult) or via �′ chain additions to

obtain 2̃t, 3̃t, . . . , ˜(�′ + 1)t. Then, as in Lemma 4.6.5, let γt = θΘL
i ( ˜(�′ + 1)te)−1 · (θΘL

−i (�̃′te)) for any
i ∈ K1(L) such that θΘL

i ( ˜(�′ + 1)te)  = 0.

Notice that γt = λ−
t to reduce the number of inversions. We extract an arbitrary �th root λt of γt, and

multiply t̃ by it. In this manner we obtain an excellent affine lift t̃e of t. If we use chain additions, given
λt, we can deduce the affine lifts of 2̃te, 3̃te, . . . , ˜(�′ + 1)te out of 2̃t, 3̃t, . . . , ˜(�′ + 1)t just by multiplying
via the corresponding factor from equation (3.29), namely, λ4

t , λ9
t , . . . , λ

(′+1)2

t . The affine lifts of the
remaining elements of G are computed using equation (4.22), but with m = 1, . . . , �′ − 1 instead of �′,

θΘL
i ( ˜(� − m)te) = θΘL

−i (�̃′te).

With this method, we determine excellent affine lifts of all elements in G as according to [66, Cor. 7.4.5]
and these lifts can be used in computing the sum in (4.18).

Next step is to compute the theta coordinates of (y, 0, 0, 0) ∈ B4. Again, the case r = 2 follows
immediately from the case r = 4.

4.6.4 Evaluating the Isogeny on Points

The main goal of this section is to express affine theta coordinates of y = f(x) ∈ B(Fq) for the theta
structure ΘM in terms of the affine theta coordinates of the rational point x for the theta structure ΘL.

First, consider the rational subgroup 〈x〉 ⊆ A(Fq) generated by x of order Q. The endomorphism β of A

of degree �2, with � prime to Q (see input 4.1.1, is restricted to an automorphism β|〈x〉 on 〈x〉. Consider
the following subgroup of Ar(Fq):

X = {(a1x, . . . , arx) | a1, . . . , ar ∈ Z/QZ}.

As β = F ◦ F t is an automorphism of X, then both F and F t are automorphisms of X. We prove the
following result.

Lemma 4.6.6. Let (x1, . . . , xr) = F t(x, 0 . . . , 0) ∈ X and let

(x′
1, . . . , x′

r) = F −1(x, 0, . . . , 0) ∈ X.

If yi = f(x′
i) ∈ B then, F (y1, . . . , yr) = (f(x), 0, . . . , 0) and (x1, . . . , xr) = f̂�r(y1, . . . , yr).
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Proof. Let (y′
1, . . . , y′

r) = F t(y, 0, . . . , 0). Then it follows:

(x′
1, . . . , x′

r) ∈ Ar

F

��

f�r

�� Br

F

��

% (y1, . . . , yr)

(x, 0, . . . , 0) ∈ Ar

F t

��

f�r

�� Br

F t

��

% (y, 0, . . . , 0)

(x1, . . . , xr) ∈ Ar f�r

�� Br % (y′
1, . . . , y′

r).

and consequently F (y1, . . . , yr) = (y, 0 . . . , 0) and (x1, . . . , xr) = β(x′
1, . . . , x′

r) = f̂�r(f�r(x′
1, . . . , x′

r)) =
f̂�r(y1, . . . , yr). Moreover, y′

s = βys and x′
s = β−1xs ∈ X, for all s ∈ {1, . . . , r}.

Consider a rational point x ∈ A(Fq) given in Mumford coordinates. We convert it to theta coordinates
for the theta structure ΘL and consider an arbitrary affine lift x̃ ∈ A(Γ(A,L)). Similarly to the theta
constants 0̃L, the theta coordinates of x̃ are over an extension field of Fq.

Consider the isogeny of polarized abelian varieties with theta structures f̂ : (B,

Mβ , ΘMβ ) → (A,L, ΘL). Let (y1, . . . , yr) ∈ Br(Fq), where F (y1, . . . , yr) = (f(x), 0, . . . , 0) and let
t′
1, . . . , t′

r ∈ K1(Mβ)[β]. Following equation (4.10), given an affine lift ỹs + t′
s of ys + t′

s, where s ∈
{1, . . . , r}, we consider the affine lift ˜

f̂(ys) + f̂(t′
s) of f̂(ys) + f̂(t′

s), of the form

θΘL
i ( ˜

f̂(ys) + f̂(t′
s)) = θMβ

j (ỹs + t′
s), (4.23)

for any i ∈ K1(L) and j ∈ K1(Mβ)[2] is the unique point for which f̂(j) = i.

According to Lemma 4.6.6, for all s = 1, . . . , r, we have f̂(ys) = xs where (x1, . . . , xr) = F t(x). Since
endomorphism F t has a matrix representation with α1, . . . , αr on the first column we write xs = αsx for
all s = 1, . . . , r. At the end of Section 4.6.2, we proved that f̂(t′

s) is an element of the kernel G = Kerf ,
that we denoted by ts. For any s = 1, . . . , r and ts = f̂(t′

s) ∈ G, with t′
s ∈ K1(Mβ)[β], we denote by

˜αsx + ts the affine lift of αsx + ts = f̂(ys) + f̂(t′
s) of the form

θΘL
i ( ˜αsx + ts) := θΘL

i ( ˜
f̂(ys) + f̂(t′

s)), (4.24)

for all i ∈ K1(L).

Next, we need to fix a particular affine lift of ỹs + t′
s to suit our purposes. Namely, given an affine lift of

ỹs, we consider the affine lift ỹs + t′
s of the form

ΘΘMβ

js
(ỹs + t′

s) := ΘΘMβ

js+t′
s
(ỹs). (4.25)

for all js ∈ K1(Mβ)[2] and all t′
s ∈ K1(Mβ)[β].
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In the end, we consider the isogeny of polarized abelian varieties

F : (Br, (Mβ)�r, Θ(Mβ)�r ) → (Br,Mr, Θ̃M�r ).

We consider equation (4.11), with ỹ�r = (ỹ1, . . . , ỹr) for the theta structure Θ(Mβ)�r . For any index
k ∈ K1(M�r) we have:

θΘ̃M�r

k (f̃(x), 0̃, . . . , 0̃) =
∑

t′∈K1((Mβ)�r)[β]
F (t′)=0

θ
Θ(Mβ )�r

j+t′ (ỹ1, . . . , ỹr)

(4.25)
=

∑
t′

1,...,t′
r∈K1(Mβ)[β]

F (t′
1,...,t′

r)=0

r∏
s=1

θ
ΘMβ

js
(ỹs + t′

s)

(4.23),(4.24)
=

∑
t1,...,tr∈G

f̂(t′
1)=t1,...,f̂(t′

r)=tr

t′
1,...,t′

r∈K1(Mβ)[β]
F (t′

1,...,t′
r)=0

r∏
s=1

θΘL
is

( ˜αsx + ts).

(4.26)

where is = f̂(js) ∈ K1(L), with j = (j1, . . . , jr) ∈ K1((Mβ)�r)[2] is unique such that F (j) = k.

Next, similarly to the previous section we present the more complicated case of r = 4. First, recall
that for any t′

1, . . . , t′
4 ∈ K1(Mβ)[β], with F (t′

1, . . . , t′
4) = 0, we have the equality (f̂(t′

1), . . . , f̂(t′
4)) =

F t(t1, t2, 0, 0) for some t1, t2 ∈ G. As in Remark 14, given a generator t of G, we write elements t1, t2 ∈ G

as t1 = a1t and t2 = a2t for some unique a1, a2 ∈ Z/�Z. Following Remark 13, each component of
the matrix F t (when acting on Gr) is equal to ±bs ∈ Z/�Z where multiplication by bs represents the
action of αs on G. Furthermore, we group the scalars in Z/�Z as in Remark 14, namely we write
(w1t, . . . , w4t) := F t(a1t, a2t, 0, 0) where

w1(a1, a2) := b1a1 − b2a2, w2(a1, a2) := b2a1 + b1a2,

w3(a1, a2) := b3a1 − b4a2, w4(a1, a2) := b4a1 + b3a2.
(4.27)

Then, in equation (4.24) we have αsx + ts = αsx + ws(a1, a2)t, for some a1, a2 ∈ Z/�Z such that
F t(a1t, a2t, 0, 0) = (t1, . . . , t4). From now on, we use a new notation for the affine lift of αsx + ts given
by equation (4.24), i.e., ˜αsx + ws(a1, a2)t.

The new notation has the advantage that, similarly to the case of (4.18), we sum over a1, a2 ∈ Z/�Z (or
equivalently over t1, t2 ∈ G) when evaluating the RHS of (4.26). More precisely, for all k ∈ K1(M�r)
we have

θ
Θ̃M�4
k (f̃(x), 0̃, . . . , 0̃) =

∑
a1,a2∈Z/Z

4∏
s=1

θΘL
is

( ˜αsx + ws(a1, a2)t) (4.28)

where is = f̂(js) ∈ K1(L), with j = (j1, . . . , j4) ∈ K1((Mβ)�4)[2] is unique such that F (j) = k.

Now, we want to evaluate the RHS of the above equation in practice. As in the previous section, we are
given the affine theta null point 0̃L of A and an affine lift t̃ of the generator t ∈ G. In addition, we also
consider an arbitrary affine lift x̃ ∈ Ã of the rational point x ∈ A(Fq) of order Q. Hence, we need to
compute some affine lifts ˜αsx + ws(a1, a2)t for which equation (4.28) holds (up to multiplication by a
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known scalar in F∗
q).

Remark 17. First, following Section 4.5.3, we notice that the action of the endomorphism αs on
the point x ∈ A(Fq) of order Q is given by multiplication via a scalar us + vscQ ∈ Z/QZ, where
us = α1

s · d−1 ∈ Z/QZ, vs = α2
s · d−1 ∈ Z/QZ and cQ = fω(1) ∈ Z/QZ is the action of

√
D on x

computed by using the Frobenius polynomial χπ. In order to evaluate the RHS of (4.28), at first glance
one would expect that it is sufficient to compute ˜αsx + ws(a1, a2)t via the method chain_multiadd(us +
vscQ, ws(a1, a2), x̃, x̃ + t, t̃, 0̃L), for some affine lift of x̃ + t (the method chain_multiadd is from Sec-
tion 3.2.6). But, following [13, §4.2] we notice that we need to be careful when fixing affine lifts of x + t

and αsx + t (to be made precise later on in Lemma 4.6.12).

Since the difference with respect to [13] is the presence of real endomorphisms αs, we give the following
definition for a method of computing the image of an affine points z̃ ∈ Ã via the endomorphism

√
D.

Definition 4.6.7. Let chain_mult_RM be a method that given the real endomorphism
√

D on A and
an affine lift z̃ of z ∈ A and a theta null point 0̃L, outputs an affine lift

√̃
Dz of

√
Dz. We write:

√̃
Dz ← chain_mult_RM(

√
D, z̃, 0̃L). (4.29)

Moreover, given a second affine lift λz z̃ of z, the new affine lift of
√

Dz computed via the method
chain_mult_RM satisfies

chain_mult_RM(
√

D, λz z̃, 0̃L) = λD
z chain_mult_RM(

√
D, λz z̃, 0̃L). (4.30)

We look for another method of computing affine lifts ˜αsx + ws(a1, a2)t out of arbitrary lifts x̃, t̃, 0̃L that is
not chain_multiadd. For that, we consider the method three_way_add defined in (3.32), satisfying the
equation (3.31). More precisely, for s = 1, . . . , 4 we write αsx + ws(a1, a2)t = us + vs

√
Dx + ws(a1, a2)t,

with us, vs, ws(a1, a2) viewed as elements in Z. We need to consider arbitrary affine lifts ũsx, ˜vs

√
Dx,

˜ws(a1, a2)t, ˜usx + vs

√
Dx, ˜usx + ws(a1, a2)t, ˜vs

√
Dx + ws(a1, a2)t.

Then, via the method three_way_add we obtain:

˜αsx + ws(a1, a2)t ← three_way_add(ũsx, ˜vs

√
Dx, ˜usx + vs

√
Dx, ˜ws(a1, a2)t,

˜usx + ws(a1, a2)t, ˜vs

√
Dx + ws(a1, a2)t).

(4.31)

In order to evaluate (4.31), we need to compute the above arbitrary lifts out of x̃, t̃, 0̃L. First, we recall
that in order to compute an affine lift of usx + ws(a1, a2)t via a method from Section 3.2.6, we need to
fix once and for all an arbitrary lift of x + t. Let x̃ + t be an arbitrary affine lift of x + t. For instance
it is computed by changing the Mumford coordinates of x + t ∈ A to theta coordinates for the theta

structure ΘL. Similarly, in order to compute an affine lift of vs

√
Dx + ws(a1, a2)t, let ˜√

Dx + t be an
arbitrary affine lift of

√
Dx + t. After we present the steps of computing affine lifts of usx + ws(a1, a2)t

via the three_way_add above, we will consider certain criteria for fixing affine lifts of x + t and
√

Dx + t.

For each s = 1, . . . , r we consider the elements us, vs, ws(a1, a2) ∈ Z from before and the above affine

lifts ˜√
Dx + t, x̃ + t, x̃, t̃, 0̃L. We proceed as follows:
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1. We use the method chain_mult from Section 3.2.6 to compute

ũsx ← chain_mult(us, x̃, 0̃L).

Next, both real endomorphisms vs

√
D and (us + vs

√
D) act on x. Consider the scalar cQ ∈ Z

representing the action of
√

D on x from Section 4.5.3. Since D is identified with c2
Q modulo

Q and chain_mult(cQ, λxx̃, 0̃L) = λ
c2

Q
x chain_mult(cQ, x̃, 0̃L), for any λx ∈ F∗

q , the method
chain_mult(cQ, x̃, 0̃L) is considered as a chain_mult_RM method for computing an affine image
of the affine point x̃ via the real endomorphism

√
D. In the end, let:

˜
vs

√
Dx ← chain_mult(vscQ, x̃, 0̃L)

˜(us + vs

√
D)x ← chain_mult(us + vscQ, x̃, 0̃L).

2. Let the action of
√

D on G be given by ct ∈ Z/�Z (see Section 4.5.3). Then, similarly to
computing

√̃
Dx, we can define an image of t̃ via the real endomorphism

√
D as given by

c̃tt ← chain_mult(ct, t̃, 0̃L). Then given ws(a1, a2) ∈ Z (written in terms of ct), we compute

˜ws(a1, a2)t ← chain_mult(ws(a1, a2), t̃, 0̃L).

3. We compute the affine lift of usx + ws(a1, a2)t out of the fixed affine lifts x̃, x̃ + t, t̃ and 0̃L via
the method chain_multiadd from Section 3.2.6, namely:

˜usx + ws(a1, a2)t ← chain_multiadd(us, ws(a1, a2), x̃, x̃ + t, t̃, 0̃L).

4. We compute an affine lift of vs

√
Dx + ws(a1, a2)t as:

˜
vs

√
Dx + ws(a1, a2)t ← chain_multiadd(vs, ws(a1, a2), c̃Qx,

˜√
Dx + t, t̃, 0̃L),

where c̃Qx is defined in Step 1.
5. We compute the affine lift of usx + vs

√
Dx + ws(a1, a2)t via the three_way_add method of (4.31).

Following [13, §4.2], to compute the RHS of (4.26), we give the same criterion for choosing an affine lift
of x + t. From now on, all affine coordinates (unless specified) are computed with respect to the theta
structure ΘL.

Definition 4.6.8 (suitable lifts). We call an affine lift x̃ + t of x + t suitable for the tuple (0̃L, x̃, t̃) if it
satisfies:

chain_multadd(�, t̃, x̃ + t, x̃, 0̃L) = x̃, (4.32)

where chain_multadd denotes the multiplication chain algorithm from Section 3.2.6.

Next, we give a result that proves that even in practice, we can determine a suitable affine lift x̃ + t from
an arbitrary affine lift x̃ + t

′
. As before, the arbitrary affine lift can be determined out of the Mumford

coordinates of x + t.

Lemma 4.6.9. Given an affine lift x̃ of x ∈ A(Fq), an affine lift t̃ = λtt̃e of the generator t ∈ G, t̃e is
an excellent affine lift of t and λ

t = γt is known and, and an affine lift x̃ + t
′

we can compute a suitable
affine lift of the form x̃ + t = λx+tx̃ + t

′
, with λ

x+t known.
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Proof. To compute a suitable lift of x + t, we take the arbitrary affine lift x̃ + t
′

for x + t and look for a
factor λx+t ∈ F×

q such that the rescaled lift λx+tx̃ + t
′

is suitable. Using (3.28), we obtain that:

λ
(−1)
t chain_multadd(�, t̃e, x̃ + t, x̃, 0̃L) = λ

x+tchain_multadd(�, t̃, x̃ + t
′
, x̃, 0̃L)

and equation (4.32),
λ

x+t = λ
(−1)
t x̃/chain_multadd(�, t̃, x̃ + t

′
, x̃, 0̃L)

Notice that the affine lift x̃ + �t
′

= chain_multadd(�, t̃, x̃ + t
′
, x̃, 0̃L) is computed as in Section 3.2.6. This

determines λx+t up to an �th root of unity, namely γx+t := λ
x+t as equal to γ−1

t θΘL
i (x̃)/θΘL

i (x̃ + �t
′
),

for any i ∈ K1(L) with θΘL
i (x̃ + �t

′
)  = 0.

Next we define a criterion for choosing an affine lift of
√

Dx + t.

Definition 4.6.10. Consider a deterministic chain_mult_RM method RMD of computing an affine lift
of

√
Dx given the affine points x̃, 0̃L ∈ Ã. Consider an arbitrary affine lift z̃ of z = x +

√
D

−1
t. The

affine lift
˜√
Dx + t = RMD(

√
D, z̃, 0̃L)

of
√

Dx + t is called suitable for the method RMD and the affine lifts (0̃L, z̃).

Furthermore, given another arbitrary affine lift λz · z̃ of z = x +
√

D
−1

t, for some λz ∈ F∗
q , by definition

of RMD the two affine lifts of
√

Dx + t satisfy:

RMD(
√

D, λz z̃, 0̃L) = λD
z · RMD(

√
D, z̃, 0̃L). (4.33)

Remark 18. Let cQ ∈ Z and ct ∈ Z represent the action of
√

D on x and t as in Section 4.5.3. We notice
that if we consider the affine lift c̃′

tt ← chain_mult(c′
t, t̃, 0̃L), for the least positive integer c′

t ≡ c−1
t

(mod �), and consider the affine lift z̃ ← chain_multadd(c′
t, t̃, x̃ + t, x̃, 0̃L), then an affine lift of

√
Dx + t

is given by the method chain_multadd(cQ, x̃, z̃, c̃′
tt, 0̃L). On the other hand, given an arbitrary λz ∈ F∗

q ,
we have:

λcQ
z · chain_multadd(cQ, x̃, z̃, c̃′

tt, 0̃L) = chain_multadd(cQ, x̃, λz z̃, c̃′
tt, 0̃L).

Then, chain_multadd is a chain_mult_RM method if the action of
√

D on x is given by multiplication
via D on x (namely the case of D ≡ 0, 1 (mod Q)).

Next lemma proves that there exists a deterministic method RMD for any D ≥ 2, with D square free. It
follows from the observation that if GD ⊂ A[D] is the kernel of the endomorphism corresponding to√

D ∈ O0, then GD is of size D2 and is maximal isotropic for the Weil pairing eD : TDA × TDA → μD.
Hence,

√
D on A is a (D, D)-isogeny. Then,

Lemma 4.6.11. Consider (A,L, ΘL), where L is totally symmetric and ΘL is symmetric. Consider
the isogeny

√
D : (A,

√
D

∗L, Θ√
D

∗L) → (A,L, ΘL) of polarized abelian varieties with symmetric theta
structures, whose kernel GD is maximal isotropic for the Weil pairing eD.

Consider an affine lift 0̃√
D

∗L for the theta structure Θ√
D

∗L. Let θ
Θ√

D∗L
i : Ã → Fq and let θΘL

i : Ã → Fq

be the two canonical system of coordinates and consider the canonical
√̃

D corresponding to the isogeny
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√
D and the affine system of coordinates. Let 0̃L be the affine theta null point of (A,L, ΘŁ) given by the

choice of 0̃√
D

∗L and the isogeny
√̃

D.

Let x̃ be an affine lift of x ∈ A for the theta structure ΘL and for u ∈ GD, let ũ be the compatible affine
lift of u for the theta structure ΘL with respect to 0̃√

D
∗L and the isogeny

√̃
D. Given (ũ, x̃, 0̃L), let

x̃ + u be a suitable affine lift 5 of x + u for the theta structure ΘL. Let
√̃

Dx be the affine lift of
√

Dx

satisfying (3.21).

If we rescale the affine lift x̃ by a factor λx ∈ F∗
q, then the output

√̃
Dx is rescaled by λD

x . Hence, the
affine (D, D)-isogeny

√̃
D is a deterministic chain_mult_RM method.

Proof. For any u ∈ GD, we want a suitable affine lift λx+ux̃ + u of x + u, i.e., the affine lift satisfies
chain_multadd(D, ũ, λx+ux̃ + u, λxx̃, 0̃L) = λxx̃. We know λxx̃ = λxchain_multadd(D, ũ, x̃ + u, x̃, 0̃L)
by definition of x̃ + u. Following (3.28), we have that the factors satisfy λD

x = λD
x+u, and so λx+u = ξλx

for some Dth root of unity ξD.

Following [13, §4.2], computing the image of the affine points x̃ and λxx̃ via the (D, D)-isogeny
√̃

D is
done by evaluating the RHS of the equation in [13, Prop 4.1]. Following [13, Lem. 4.4], the product of

affine theta coordinates that needs to be calculated in order to obtain ˜√
D(λxx̃) is equal to a polynomial

in Fq[λD
x ] times the product of affine theta coordinates that needs to be calculated in order to obtain ˜̃x).

To be more precise, we are given compatible affine lifts of u ∈ GD and suitable affine lifts of x + u and
so, the other factors in the statement of the cited lemma are equal to 1.

Next lemma proves we can compute the RHS of (4.26).

Lemma 4.6.12. Consider affine lifts t̃ = λtt̃e, x̃ and x̃ + t
′

= λx+tx̃ + t, where t̃e is an excellent affine
lift of generator t ∈ G, x̃ + t is suitable, and λ

t = γt, λ
x+t = γx+t are known. Then the term

θΘL
i1

(
˜

u1x + v1
√

Dx + w1(a1, a2)t
)

. . . θΘL
i4

(
˜

u4x + v4
√

Dx + w4(a1, a2)t
)

(4.34)

viewed as a polynomial in the unknown λt, λx+t, belongs to Fq[λ
t, λ

x+t].

Proof. Now, we will compute affine lifts of the points usx+vs

√
Dx+ws(a1, a2)t, where us, vs, ws(a1, a2) ∈

Z, via the three-way addition equation 4.31. As seen before in Steps 1–4, to do that, we compute
affine lifts for the pairwise sums usx + vs

√
Dx, usx + ws(a1, a2)t and vs

√
Dx + ws(a1, a2)t as well as for

usx, vs

√
Dx and ws(a1, a2)t for each s = 1, . . . , 4.

1. In Step 1, we compute ũsx, ṽs

√
D and ˜(us + vs

√
D)x via chain_mult of input x̃, 0̃L and all three

affine points do not depend on λt and λx+t.

5. The affine lifts x̃ + u are suitable in the sense that they satisfy chain_multadd(D, ũ, x̃ + u, x̃, 0̃L) = x̃, for
given (ũ, x̃, 0̃L).
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2. In Step 2, we compute ˜ws(a1, a2)t via the method chain_mult of input t̃, 0̃L ∈ Ã. Via (3.29), the
result differs from the affine point ˜ws(a1, a2)te := chain_mult(ws(a1, a2), t̃e, 0̃L) by the factor

λws(a1,a2)t = λ
ws(a1,a2)2

t . (4.35)

3. In Step 3, we compute ˜usx + ws(a1, a2)t out of the fixed affine lifts x̃, x̃ + t
′
and t̃ via chain_multiadd.

Following (3.30), the affine lift differs from the affine point

˜usx + ws(a1, a2)te := chain_multiadd(us, ws(a1, a2), x̃, x̃ + t, t̃e, 0̃L)

by a factor:
λusx+ws(a1,a2)t = λ

usws(a1,a2)
x+t λ

ws(a1,a2)(ws(a1,a2)−us)
t . (4.36)

4. In Step 4, we compute an affine lift of vs

√
Dx + ws(a1, a2)t after we consider an affine lifts of√

Dx + t.

First, recall
√

D
−1

t = c′
tt, where c′

t ∈ Z>0 such that c′
t = c−1

t (mod �), and consequently,√
D(x + c′

tt) =
√

Dx + t.

Let z = x +
√

D
−1

t. We compute z̃ = chain_multadd(c′
t, t̃, x̃ + t

′
, x̃, 0̃L) that differs from

˜x + c′
tte := chain_multadd(c′

t, t̃e, x̃ + t, x̃, 0̃L) via (3.28), by the factor

λz = λ
c′

t
x+tλ

c′
t(c′

t−1)
t .

The image of z̃ under an RMD method is a suitable affine lift for the method and the affine lifts (0̃L, z̃).
By Section 4.6.11, we can consider the (D, D)-isogeny

√
D : A → A as the RMD method of choice.

The affine lift ˜√
Dx + t = RMD(z̃) differs from the affine lift ˜√

Dx + te = RMD( ˜x + c′
tte) by:

λ√
Dx+t = λD

z = λ
Dc′

t
x+tλ

Dc′
t(c′

t−1)
t .

In the end, we compute an affine lift of vs

√
Dx + ws(a1, a2)t via chain_multiadd as in Step 4

and using (3.30), the affine lift differs from ˜vs

√
Dx + ws(a1, a2)te given by chain_multiadd of

input vs, ws(a1, a2),
√̃

Dx, ˜√
Dx + te, t̃e, 0̃L by the factor

λvs

√
Dx+ws(a1,a2)t = λ

vsws(a1,a2)√
Dx+t

λ
ws(a1,a2)(ws(a1,a2)−vs)
t

= λ
Dc′

tvsws(a1,a2)
x+t λ

Dc′
t(c′

t−1)vsws(a1,a2)+ws(a1,a2)(ws(a1,a2)−vs)
t .

(4.37)

5. In Step 4, we compute ˜usx + vs

√
Dx + ws(a1, a2)t via equation (4.31), that differs from the point

given by three_way_add of input ũsx, ˜vs

√
Dx, ˜ws(a1, a2)te, 0̃L, ˜usx + vs

√
Dx, ˜usx + ws(a1, a2)te,

˜vs

√
Dx + ws(a1, a2)te by the factor

λusx+vs

√
Dx+ws(a1,a2)t =

λusx+ws(a1,a2)t · λvs

√
Dx+ws(a1,a2)t

λws(a1,a2)t
. (4.38)

69



Chapter 4. Computing Cyclic Isogenies in Genus 2

Using equations (4.36)–(4.35), we compute the exponents of λx+t and λt in (4.38) and obtain that

∏4
s=1 λusx+vs

√
Dx+ws(a1,a2)t = λ

∑4
s=1(usws(a1,a2)+Dc′

tvsws(a1,a2))
x+t ·

λ

∑4
s=1(Dc′

t(c′
t−1)vsws(a1,a2)+ws(a1,a2)(ws(a1,a2)−us−vs))

t .

(4.39)

Now, we reduce the exponents of λx+t and λt modulo � and use the fact that Dc′
t =

√
D (mod �). We

notice that us + vsDc′
t( (mod �)) = bs and so, the exponent reduced modulo � of λx+t becomes∑

s

ws(a1, a2)bs = b1(b1a1 − b2a2) + . . . + b4(b3a1 + b4a2) = a1
∑

s

b2
s.

Also, the exponent of λt reduced modulo � becomes∑
s

(ws(a1, a2)2 − ws(a1, a2)bs) = (a1 + a2)2
∑

s

b2
s − a1

∑
s

b2
s,

where
∑

s ws(a1, a2)2 is easily computed as in (4.20).

In the end, equation (4.39) becomes:

4∏
s=1

λusx+vs

√
Dx+ws(a1,a2)t = λM1a1

x+t · λ
M2((a1+a2)2−a1)
t ,

for some integers M1, M2.

Hence, we proved that the product of ˜u1x + v1
√

Dx + w1(a1, a2)t, . . . , ˜u4x + v4
√

Dx + w4(a1, a2)t differs
from the product in equation (4.26) (of suitable affine lifts) by a factor depending only on γt = λ

t and
γx+t = λ

x+t. Similarly to Lemma 4.6.5, taking arbitrary �th roots of γt and γx+t does not change the
value of (4.34).

4.7 Modification of Θ̃M�r on (Br,M
r) via a Metaplectic Isomor-
phism

The theta constants for the symmetric theta structure Θ̃M�r on M�r from Section 4.6.2 do not
automatically recover theta constants for (B,M). It would do so if it were of the form ΘM 
 ΘM�(r−1)

for theta structures ΘM and ΘM�(r−1) on (B,M) and (Br−1,M�(r−1)), respectively.

In order to obtain information about a single polarized factor (B,M), we need to modify Θ̃M�r via a
suitably chosen metaplectic automorphism (an automorphism of the corresponding Heisenberg group)
so that it has the above form. The metaplectic automorphism comes from a symplectic automorphism
acting on the 4-torsion points (via the argument in Lemma 3.2.5) whose action on the theta coordinates
of level 2 for Θ̃M�r is computed as in Section 3.2.3.1. We explain how to find a suitable automorphism
of the 4 torsion points.

Lemma 4.7.1. There exists a metaplectic automorphism S ∈ Aut(H(δ�r)) such that the theta structure
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Θ̃M�r ◦ S is a product theta structure

Proof. There exists a symmetric theta structure ΘM on (B,M) which gives rise to an (r-fold) product
theta structure ΘM�r = ΘM 
 · · · 
 ΘM on (Br,M�r). Letting S := Θ̃−1

M�r ◦ ΘM�r , we see that
S ∈ Aut(H(δ�r)) and that it satisfies the above property.

Lemma 4.7.1 shows that we can always modify the resulting theta structure to a product theta structure.
Yet, it does not tell us how to efficiently compute the metaplectic automorphism S since the above proof
is non-constructive. In practice, we do not explicitly compute such an S, but instead, we only relate the
theta constants of the new r-fold product theta structure ΘM�r to the theta constants of the old one
Θ̃M�r .

Let Θ: K((2δ)�r) → K((M2)�r) be the symplectic automorphism (or basis) induced from the original
choice of ΘL2 (recall that we have fixed a choice of 4th roots in the Thomae’s formulas as explained in
Section 4.2). By Section 3.2.3, to give the metaplectic automorphism S, it suffices to give a symplectic
automorphism S : K((2δ)�r) → K((2δ)�r) (from Lemma 3.2.5) for which the symplectic basis determined
by Θ ◦ S : K((2δ)�r) → K((M2)�r) is an r-fold product basis.

In order to apply Proposition 3.2.6, it seems that we require the theta coordinates of the points of
K((M2)�r) of Br (i.e., the points in Br[4]). On the other hand, the isogeny f�r : (Ar, (L2β)�r) →
(Br, (M2)�r) (i.e., the isogeny obtained by using f on each factor) commutes with the action of S on
the 4-torsion points of Ar and Br as shown by the following diagram:

non r-fold, symplectic w.r.t. e(L2β)�r

S

��

f�r
�� non r-fold, symplectic w.r.t. e(M2)�r

S

��
r-fold, symplectic w.r.t e(L2β)�r

f�r
�� r-fold, symplectic w.r.t. e(M2)�r

We are given a symplectic basis of K(L2) on the original abelian surface A (i.e., A[4]) for which
we can easily construct its corresponding r-fold basis. Moreover, we have defined two isogenies of
p.a.v. f̂�r : (Br, (M2β)�r) → (Ar, (L2)�r) and F : (Br, (M2)β)�r) → (Br, (M2)�r) that fix a basis of
K((L2β)�r[4] as shown in the Lemma 4.7.2. Lemm 4.7.3 proves that in order to unfold the basis of
K((M2)�r) it suffices to pick a symplectic automorphism S ∈ Sp4r(Z/4Z) until one of them unfolds the
basis of K((L2β)�r)[4].

Lemma 4.7.2. The symplectic basis of K((L2β)�r)[4] (corresponding to the isogenies f�r : (Ar, (L2β)�r) →
(Br, (M2)�r) and F : (Br, (M2β)�r) → (Br, (M2)�r)) is induced via the action of the matrix Fβ−1 on
the symplectic basis of K((L2)�r).

Proof. First, we consider the r-fold product symplectic basis {e
′
i, e

′′
i }2r

i=1 for the 4-torsion points of
(Ar, (L2)�r). Let {x′

i, x′′
i }2r

i=1 be the r-fold product basis on K((M2β)�r)[4] corresponding to the r-fold
product theta structure Θ(M2β)�r . We know that f̂�r(x′

i) = e′
i (and same for x′′

i ). Let y′
i = F (x′

i) and
y′′

i = F (x′′
i ).

The basis {y′
i, y′′

i }2r
i=1 is then not an r-fold, but symplectic with respect to e(M2)� . Define f ′

i = (f�r)−1(y′
i)

and f ′′
i = (f�r)−1(y′′

i ) where we note that f�r|K((L2β)�r)[4] is invertible and (f�r)−1 denotes the inverse
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of the restriction. Note that {f ′
i , f ′′

i }2r
i=1 is a non-r-fold and non-symplectic basis for K((L2)�r) with

respect to e(L2)� ..

Indeed Fβ−1(e′
i) = f ′

i and Fβ−1(e′′
i ) = f ′′

i , following a simple diagram chasing argument:

{e′
i, e′′

i }2r
i=1 ∈ K(L2)�r)

F β−1

��

{x′
i, x′′

i }2r
i=1 ∈ K(M2β)�r)[2]

f̂�r

��

F

��
{f ′

i , f ′′
i }2r

i=1 ∈ K((L2β)�r)
f�r

�� {y′
i, y′′

i }2r
i=1 ∈ K(M2)�r)

Lemma 4.7.3. Suppose that S is a symplectic automorphism of K((L2β)�r)[4] for which {S(f ′
i), S(f ′′

i )}2r
i=1

(with f ′
i , f ′′

i as above) is an r-fold product symplectic basis with respect to e(L2β)�r . Then the symplectic
automorphism S unfolds the basis {y′

i, y′′
i } of K((M2)�r).

Proof. Write
Sy′

i = Sf�rf ′
i = f�rSf ′

i and Sy′′
i = Sf�rf ′′

i = f�rSf ′′
i .

Since Sf ′
i and Sf ′′

i are both an r-fold product, so are Sy′
i and Sy′′

i .

Next, we choose a symplectic automorphism S by looping over elements in GL4(Z/4Z) as follows.
Let M be the matrix corresponding to the action of Fβ−1 on the symplectic basis {e′

i, e′′
i }2r

i=1 of
Ar[4] (determined by the choice of theta structure Θ(L2)�r ). Naturally, M is sent via Θ(L2)�r to an
element of the general linear group of GL4r(Z/4Z). Let S denote the matrix representation of the
automorphism S introduced above. Then there exists a unique matrix S′ ∈ Sp4r(Z/4Z) such that
MS′ = SM that is acting on the basis of K((2δ0)r). According to the definition of an r-fold basis,
S′ = M−1 · Δ(GL4(Z/4Z)) where Δ: GL4(Z/4Z) → GL4r(Z/4Z) is the standard diagonal embedding.
The computation is sufficiently simple by, e.g., going through all elements of N ∈ GL4(Z/4Z) and testing
whether M−1Δ(N) is symplectic. Once this condition is satisfied for a certain choice of Δ(N) and
S′ = M−1Δ(N), the matrix representation of an unfolding symplectic automorphism S of K((2δ0)�r) is
S = MS′M−1.

4.7.1 Applying the Transformation Formula

Consider an automorphism S ∈ Aut(K((2δ0)�r)) computed with the previous method. Recall that
according to Section 3.2.3, there exists a unique metaplectic automorphism S of H(δ�r) corresponding
to S for which the theta structure ΘM�r := Θ̃M�r ◦ S coming from Θ ◦ S : K((2δ0)�r) → K((M2)�r) is
indeed of the product form ΘM 
ΘM�(r−1) for some theta structure ΘM on (B,M) and a theta structure
ΘM�(r−1) on (Br−1,M�(r−1)). Here, we chose the particular case of ΘM�(r−1) being the (r − 1)-fold
product of ΘM.

We now apply the results of Section 3.2.3.1 to compute affine theta constants of the new theta structure
ΘM�r out of affine theta constants for Θ̃M�r . First, we need to compute all affine theta coordinates
θΘ̃M�r

i (·) with i ∈ K1(M�r) via equation (4.18).
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Given the canonical map 1
2 Z2/Z2 → Z(2) sending i → 2i, let κ :

( 1
2 Z2/Z2)r → K(M)r be the bijective

function corresponding to Θ (and Θ̃M�r ). Similarly, let κ′ :
( 1

2 Z2/Z2)r → K1(M)r be the bijective
function corresponding to Θ ◦ S (and ΘM�r ). Let Z(2, 2) = 1

2 Z2/Z2 × 1
2 Z2/Z2. Given a bijection map

Z(2, 2) → Z(4), a theta structure Θ̃(M2)�r of level 4 (compatible with Θ̃M�r ) defines a bijective function
μ : (Z(2, 2) × Z(2, 2))r → K((M2)�r). Furthermore, a new r-fold product theta structure of level 4
compatible with ΘM�r defines another bijective function of the form ν : (Z(2, 2) × Z(2, 2))r → K((M2)�r)
(naturally K((M2)�r) has a new symplectic basis coming from the r-fold theta structure).

Let RS be the automorphism making the following diagram commutative:

(Z(2, 2) × Z(2, 2))r

R
S

��

μ
�� K((M2)�r)

S
��

(Z(2, 2) × Z(2, 2))r
ν

�� K((M2)�r).

Let
(

a b

c d

)
∈ Sp4r(Z) be the matrix representation of RS on Z(2, 2))r.

We first apply Proposition 3.2.6 for the case of z = (0, . . . , 0) and then for the rational point z = (y, 0, 0, 0).
Let e′ = 1

2 diag(atc) and e′′ = 1
2 diag(dtb). There exists a constant λ (containing the factor θΘM�r

0 (0̃))
for which the new theta coordinates are

θΘM�r

κ′(v′) (z̃) =
λ

22r

∑
u′∈( 1

2 Z2/Z2)r

ξ2
u,v

∑
i∈( 1

2 Z2/Z2)r

e(−2uti)θΘ̃M�r

κ(b+i)(z̃)θΘ̃M�r

κ(i) (0̃) (4.40)

where u, v, u′, v′ ∈ 1
2 (Z2/Z2)r such that

(
u
v

)
=
(

a c

b d

)−1
·
(

u′ − e′

v′ − e′′

)
, and

ξu,v = e

(
−1

2
· (utabtu + vtcdtv) − (atu + ctv + e′)te′′ − utbctv

)
.

Suppose that we know the affine theta constants for the new (modified) theta structure ΘM�r . Given
an index b′ := (b′, 0, . . . , 0) ∈ (K1(M))r with b′ ∈ K1(M), then the affine theta constant at b′ for

the (symmetric) theta structure ΘM�r is equal to θΘM
b′ (0̃M) ·

(
θΘM

0 (0̃M)
)r−1

. By varying over all

b′ ∈ K1(M) and by taking the factor
(

θΘM
0 (0̃M)

)r−1
= 1, we compute the affine theta constants 0̃M

for the principally polarized abelian surface (B,M, ΘM).

Next, we compute the affine theta coordinates of z = (f(x), 0, 0, 0) for the theta structure Θ̃(M)�r . We
finish by applying the formula above and then, for each b′ ∈ K1(M), compute θΘM

b′ (f̃(x)) by taking the

factor
(

θΘM
0 (0̃M)

)r−1
= 1 (common factor for all coordinates).
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4.8 Algorithm

Remark 19. In this section, we use the classical notations, M for multiplications, S for squaring, I for
inversion, and M0 for multiplications by elements in the field of definition of the theta constants 0̃L
(depending on the theta constants of the Kummer surface). Furthermore, throughout this section, all
operations that are not over (a finite field extension of) Fq are considered to be of constant time cost. If
the number of operations in Fq (or in a finite field extension) is constant in � and log q, then we say that
we have a constant number of operations in Fq (or in a finite field extension).

Computing chain additions or chain multiplications on the Kummer surface is quite expensive. According
to [50, §5], we have the following complexity:

(i) computing 2̃x = chain_mult(2, x̃, 0̃L) requires 8S + 6M0 in the field of definition of x;
(ii) computing x̃ + y = chain_add(x̃, ỹ, x̃ − y, 0̃L) requires 4M + 8S + 3M0 + 4I in the field of

definition of x and y;
(iii) computing x̃ + y′ (after computing x̃ + y) requires 4M + 4S + 3M0 + 4I in the field of definition

of x and y.
We give the following theorem:

Theorem 4.8.1. Consider the following input data:
I1. a finite field of definition Fq, a prime degree �;
I2. a smooth hyperelliptic curve C of genus 2 over Fq, with A = Jac(C) and L0 its canonical

principal polarization;
I3. a CM-type (K, Φ) of A, where K = Q(π) is a quartic CM field, containing a real quadratic field

K0 ⊂ K of discriminant D;
I4. a generator t of the isogeny kernel G ⊂ A[�] with π(t) ∈ G, 6 and β(t) = 0, given in Mumford

coordinates defined over an extension field F/Fq; 7

I5. a point x ∈ A(Fq) of order Q that is prime to q, �, given in Mumford coordinates.
We assume the following conditions with respect to real multiplication on A

H1. End(A) � O ⊂ K of maximal real multiplication, i.e., O0 = O ∩ K0 is the ring of integers
of K0 ;

H2. the index of [O : Z[π, π]] is prime to 2�Q;
H3. there exists a totally positive element β ∈ O0 of norm � such that β(t) = 0.

Pre-compute data:
P1. Compute an affine theta null point 0̃L from the Rosenhain invariants λ, μ, ν of the curve C. 8

Compute an affine theta null point 0̃L2 for a compatible theta structure of level (2, 2).

P2. Compute affine theta coordinates t̃ of the generator t ∈ G for the theta structure ΘL over some
extension field F and compute an excellent affine lift t̃e of t such that λtt̃e = t̃, for λt ∈ F∗

q.
Compute excellent affine lifts te for all t ∈ G.

P3. Compute affine theta coordinates x̃ and x̃ + t
′

for the theta structure ΘL (by changing coordinates
Mumford to theta) and compute a suitable affine lift x̃ + t of x + t.

P4. Compute a totally positive element β = u + v
√

D of norm �, where u, v ∈ Z are computed as in
Section 4.5, and the matrix F , such that F · F t = β · I4, of first row elements (α1, . . . , α4). Store
β, α1, . . . , α4 as elements in K0 and as rational polynomials in π.

6. G is stable under Frobenius.
7. The extension is of degree polynomial in �.
8. We assume that we are in the generic case. Here recall (4.3).
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P5. Compute the canonical 2-torsion basis from 0̃L, change to Mumford coordinates and compute the
action of the Frobenius endomorphism π and the endomorphisms α1, . . . , α4 on the 2-torsion points
as actions on the abstract representation of the 2-torsion basis, namely Z(2) × Ẑ(2). Store the
action of F on the abstract representation of (Z(2) × Ẑ(2))r of K(L�r).
Compute the canonical basis of the 4-torsion points from 0̃L2 , change to Mumford coordinates,
compute the action of the Frobenius endomorphism π and the endomorphisms α1, . . . , α4 on the
4-torsion points as actions on the abstract representation of the 4-torsion basis Z(4) × Z(4).

P6. Compute the action of π on t and c′
t representing the action of

√
D

−1 on t. Store c′
t and the scalars

bs representing the action of αs on t, for all s = 1, . . . , 4.
P7. Compute and store the least positive integer cQ representing the action of

√
D on x. Compute

integers us, vs, such that the positive integer us + vscQ represents the action of αs on x.
P8. Compute the kernel GD of the (D, D)-isogeny representing

√
D-endomorphism on A in Mumford

coordinates over an extension F′/Fq. 9 Compute excellent affine lifts of its elements for the theta
structure ΘL.

P9. Compute once and for all ˜us + vs

√
Dx, ũsx, ˜vs

√
Dx via chain_mult.

P10. Compute once and for all ˜
x +

√
D

−1
t and ũsx + t via chain_multadd. Compute the affine

point ˜√
Dx + t = RMD(x̃ + c′

tt) via the (D, D)-isogeny of kernel GD. Compute the affine theta
coordinates of the point ˜vs

√
Dx + t via the method chain_multadd.

P11. Store a look-up table consisting of all affine theta points ˜usx + vs

√
Dx + at, where s = 1, . . . , r and

a ∈ Z/�Z. They are computed from (4.31) when given ũsx, ˜vs

√
Dx, ãt, ˜usx + at, ˜usx + vs

√
Dx

and ˜vs

√
Dx + at, for all a ∈ Z/�Z and s = 1, . . . , r (the last two are computed independently with

chain_multadd).
There exists an algorithm of above input and precomputed data that

— computes a target curve C ′, with Jac(C ′) �Fq
(B,M0) in O(�2) operations in F;

— computes the image f(x) ∈ Jac(C ′) in O(�2) operations in the field of definition over which the
affine theta coordinates of the points usx + vs

√
Dx + ws(a1, a2)t are defined.

Proof. We keep track of the number of operations (that are not constant in �) performed in certain field
extensions of Fq.

1. We evaluate the right-hand side of equation (4.18).
For a given k ∈ K1(M�r), computing the index i ∈ K1(L�r) is done in constant time in log q

using the pre-computed data. Same for all elements in the kernel G.
Computing the right-hand side of (4.18) requires �r/2(r − 1) multiplications in the field F. There
are O(�r/2) total multiplications in the field F.

2. We evaluate the right-hand side of equation (4.26).
We use the precomputed data and therefore, for all a1, a2 ∈ Z/�Z and for all s = 1, . . . , r, given the

scalar ws(a1, a2) ∈ Z/�Z we use the look-up tables for the affine points ˜usx + vs

√
Dx + ws(a1, a2)t.

In the end, to compute (4.26), there are O(�r/2) multiplications in the field of definition of the

affine lifts ˜usx + vs

√
Dx + ws(a1, a2)t. The field extension over Fq is polynomial in � and D.

9. The extension over Fq is polynomial in D.
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3. We compute the symplectic transformation S.
We compute the matrix S only once. It requires a constant time in � and log q as the complexity
depends only on level n = 2 and r. In practice, this can be speeded up if one finds a faster method
for transforming a 4r-by-4r symplectic matrix with entries in Z/4Z into a block-diagonal form (we
only need to have a 4-by-4 block that will then correspond to the single copy (B,M, ΘM) in the
product (B ×Br−1,M
M�(r−1), ΘM�M�(r−1))). The brute-force method presented in Section 4.7
requires testing (4)4r matrices. The cost is constant in the number of operations over Fq.

4. We apply the transformation formula.
The main cost is given by computing the RHS of (4.40) as all the other operations are operations
with very small integers.
In the end we do not need but the elements of the form (b, 0, 0, 0) ∈ K1(M�r), where b ∈ K1(M),
for the final theta structure. For each element b ∈ K1(M), it requires n4 = #Z(n) · #Z(n)
multiplications in the field of definition of the affine theta coordinates. In conclusion, for x ∈ A

and the theta null point of B, it requires n6 (a constant number in �) operations in Fq.

5. We compute the Rosanhain invariants of the target curve C ′ via a constant number of operations
(in �) in the field of definition. If needed, in order to obtain a model over Fq, we apply Mestre’s
algorithm [51].

6. We compute the point f(x) ∈ Jac(C ′) in Mumford coordinates by changing the coordinates from
theta to Mumford as in [12]. If needed we apply the isomorphism given by the Mestre’s algorithm
to obtain the image of the point over Fq.

Now, we briefly analyze below the costs of computing each step of the precomputed data.

P1 Computing a theta null point of level 2 requires extracting 4 square roots and a constant number
in � of multiplications and inversions in the field of definition of λ, μ, ν. Let Fq′ be the field of
definition of λ, μ, ν. The cost of extracting square roots of a quadratic residue is highly dependent
on the field Fq′ [75] and could be the most expensive part of this step.
Similarly, computing an affine theta null point 0̃L2 requires extracting additional square roots and
hence, is of order O(log q′) operations in Fq′ .

P2 Computing an affine lift of t ∈ G for the theta structure ΘL out of its Mumford coordinates is
done via the method in [12, §5.3] and requires a constant number of operations in � in the field of
definition of t (field that we denoted a priori by F).
On the other hand, computing excellent affine lifts for all points in G is quite expensive. We briefly
analyse it below. Following 16, in order to obtain excellent affine lifts of all kernel elements, we
need to compute a sequence of affine lifts 2̃t, . . . , ˜(�′ + 1)t, where � = 2�′ + 1, via successive chain
additions or chain multiplications as in 1.
We consider the number of operations in F in terms of �. If �′ + 1 is even, there exists (�′ + 1)/2
operations chain_mult and (�′ + 1)/2 − 1 operations chain_add. Otherwise, �′/2 operations
chain_mult and �′/2 + 1) operations chain_add. In addition, 1 inversion when computing λt,
4M +1E per m̃te with m = 2, . . . , �′. The exponentiations are with small exponents as we compute
them in a row. Nevertheless, the algorithm requires O(�) operations in F. In the end, to extract
an �th root which is quite costly [75].
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Algorithm 1 Computing t̃e for all t ∈ G

Input: m, t̃, 0̃L
1: for m = 2, . . . , (�′ + 1) do
2: if m = 2m′ then
3: m̃t ← chain_mult(2, m̃′t, 0̃L)
4: else
5: m̃t ← (t̃,− ˜(m − 2)t, ˜(m − 1)t, 0̃L)
6: end if
7: end for
8: Compute λ−1

t

9: for m = 2 . . . �′ do
10: Compute λ−m2

t

11: Compute excellent m̃te ← λ−m2
t · m̃t

12: Compute excellent ˜(� − m)(t)e

13: end for

P3 Computing affine theta coordinates x̃ and x̃ + t
′

is constant in the number of operations over the
fields of definition. To compute a suitable affine lift x̃ + t of x + t requires a chain_multadd
operation of scalar � and an inversion.

P4 Given that the regulator RD and x1 of a solution x1 + y1
√

D to the Pell’s equation x2 = Dy2 + 1 are
of Õ(D1/2) [47], then we can estimate that a numeric approximation of log(β) is also of Õ(D1/2)
and moreover, if β = u + v

√
D then u ∈ Õ(D1/2). 10 To compute the first row of F such that

F · F t = β · I4 and
√

D as rational polynomials in π (coefficients in Q) is also constant in � and
operations in Fq. We also have that the numerical approximations log(αs) < log(β).

P5 Computing the canonical 2-torsion basis from 0̃L is fast as it requires some permutations of
coordinates. To compute the action of Frobenius π we change from theta to Mumford (again
constant time in log q). It is enough to compute the action of π on elements of the 2-torsion basis
and is also constant time in �. Computing the action of the endomorphisms α1, . . . , α4 on the
2-torsion points as degree 3 polynomials in π over Z/2Z is again constant.
We do the same for the canonical basis of the 4-torsion basis and the cost is again constant in �.

P6 The cost of computing the action of π on t is also constant in � for the number of operations in F.
Computing the actions of α1, . . . , αr on t requires evaluating r polynomials with coefficients in
Z/�Z and is also constant.

P7 Computing the least positive integer cQ representing the action of
√

D on x is given by evaluating
at 1 a degree 3 polynomial with coefficients in Z/QZ. For s = 1, . . . , r, computing integers us,
vs, such that the positive integer us + vscQ represents the action of αs on x, follows from the
representation of αs in K0 (reducing the rational representation in Z/QZ) and is also done in
constant number of operations over Fq. The values us + vscQ are of size Õ(D1/2cQ).

P8 It requires computing a basis of the D-torsion points in Mumford coordinates. According to [66,
§7.6], the cost of a deterministic algorithm is Õ(D6) (without logarithmic factors). To compute
the kernel of the

√
D endomorphism, we consider the action of

√
D as a rational polynomial in

π, reduce its coefficients in Z/DZ (if possible) and compute the action of the polynomial on the
D-torsion basis. The basis elements killed by

√
D determine the kernel GD. Computing excellent

10. We use Õ(D) when we omit logarithmic factors in D.
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affine lifts for the elements in GD is of cost O(D4) operations in F, plus an extraction of a Dth
root ξ of unity and O(D2) multiplications by ξ. In total the cost is of order Õ(D6).

P9 Computing ˜us + vs

√
Dx, ũsx, ˜vs

√
Dx via 3chain_mult is of cost equal to Õ(D1/2cQ) multiplications

in F′.

P10 Computing
˜

x +
√

D
−1

t and ũsx + t via chain_multadd is of cost Õ(D1/2) operations in F′.

Computing the affine point ˜√
Dx + t = RMD( ˜x + c−1

t t) via the (D, D)-isogeny of kernel GD =
〈g1, g2〉 is of cost O(D2) in the field over which the suitable affine theta coordinates of z + g1,
z + g2 and z + g1 + g2 are defined (recall z = x +

√
D

−1
t).

Computing the affine theta coordinates of the point ˜vs

√
Dx + t via the method chain_multadd

is of cost Õ(D1/2) operations in F′.

P11 Given ˜vs

√
Dx + t and ũsx + t, computing the look-up table consisting of all affine theta points

˜usx + at and ˜vs

√
Dx + at, for all a ∈ Z/�Z (each of them is computed independently with

chain_multadd) is of cost O(�) operations in the respective fields of definition. In the end, the
number of operations in F′ is constant when computing (4.31).

Following the analysis above we argue that the following theorem is immediate:

Theorem 4.8.2. Consider the following input data:
I1. a finite field of definition Fq, a prime degree �;
I2. a smooth hyperelliptic curve C of genus 2 over Fq.

Let π represent the Frobenius endomorphism. Let K = Q(π) and let the quadratic field K0 ⊂ K be of
discriminant D. We assume the following conditions with respect to real multiplication on A = Jac(C):

H1. End(A) � O ⊂ K is of maximal real multiplication, i.e., O0 = O ∩ K0 is the ring of
integers of K0 ;

H2. the index of [O : Z[π, π]] is prime to 2�Q;
H3. there exists a totally positive element β ∈ O0 of norm � such that β(t) = 0.

There exists an algorithm of above input and satisfying the conditions above that
— computes a target isogenous curve C ′ in polynomial time in log q and �.
— computes the image f(x) ∈ Jac(C ′) in polynomial time in log q, � and D.
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5 Denominators of Igusa Class Poly-
nomials

5.1 Introduction

In the previous chapter, we focused on computing rational, cyclic isogenies between Jacobians of genus
2 hyperelliptic curves defined over some finite field Fq. Moreover, the abelian varieties have complex
multiplication by orders in a quartic field K = Q(π) and admit maximal real multiplication by O0 ⊂ K0
(see Section 4.1). As mentioned in the introduction, one of the applications of computing cyclic isogenies
is to prove random self-reducibility in genus 2 [37]. Following this work, the DLP on a given Jacobian
with CM by OK is efficiently reduced via cyclic isogenies to the DLP on a uniformly random Jacobian
with CM by OK .

Therefore, one of the major parameters from a security point of view is the quartic field K or the
Frobenius polynomial χπ that generate K/Q. If we choose Fq of large characteristic and the polynomial
χπ such that N = χπ(1) is divisible by a large prime number, the previous security statement is in
alignment with the mainstream cryptographic constraints for choosing a genus 2 curve, i.e., the group
of rational points on the Jacobian of the curve (over a finite field of large characteristic) is required to
admit a subgroup of large prime order.

Similarly to elliptic curve cryptography, in order to have a secure scheme based on hyperelliptic curves
we need to solve one of the two following problems. First, given a curve equation over a finite field, how
can we compute efficiently the order of the group of rational points on the Jacobian of the curve? The
second question could be seen as the converse to the previous one, namely given a large prime number Q,
how can we generate efficiently a hyperelliptic curve over a sufficiently large finite field whose Jacobians
has a subgroup of order Q?

An answer to the second question is given by the CM method in genus 2 [73, 80] based on computing
and factoring Igusa class polynomials. Given a primitive quartic CM field K, the Igusa class polynomial
of index k ∈ {1, 2, 3} is Hk(X) :=

∏
C(X − ik(C)) ∈ Q[X], where the product is over the isomorphism

classes of complex hyperelliptic curves C, whose Jacobians have CM by the maximal order OK and
where ik(C) is the so called kth Igusa invariant of the isomorphism class [74, Def. 2.1.]. When Igusa
class polynomials are reduced modulo a prime p, a triple of algebraic numbers i1, i2, i3 that are roots of
H1, H2 and H3 respectively, could correspond to hyperelliptic curves over Fp, with CM by the same
order OK , and whose isomorphism class (over Fp) is identified with (i1, i2, i3). Similarly to the case of
elliptic curves, one method of computing the Igusa polynomials is by estimating their complex roots and
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Chapter 5. Denominators of Igusa Class Polynomials

finding numerical approximations of the coefficients. Since the polynomials are rational this approach
gives rise to a new problem, namely having an accurate bound on the denominators.

The work of Goren and Lauter [24] establishes a connection between the denominators of Igusa class
polynomials and certain embeddings of OK into the matrix algebra M2(Bp,∞), where p is a prime
number and Bp,∞ is the quaternion algebra over Q that is ramified only at p and ∞.

Let A be the Jacobian of a hyperelliptic curve C that is defined over a number field k and has CM
by OK , namely ι : Endk(A) → OK is an isomorphism. Then, if K is primitive, C has bad reduction
modulo a prime p ∈ Q if and only if there exists a solution to the embedding problem for the prime p,
namely there exists a prime ideal p|p of Ok such that A (mod p) is isomorphic over the field k(p) = Ok/p

to a product of supersingular, isogenous elliptic curves E1 × E2 with product polarizations [24, Lem.
4.1.1., Thm 4.1.2]. In this case, there exists a ring embedding

ι : OK → End(E1) × End(E2).

and the Rosati involution coming from the product polarization induces complex conjugation on OK .

Given a prime p for which C has bad reduction, the elements f ∈ End(E1) × End(E2) written as

f =
(

f1,1 f1,2
f2,1 f2,2

)
, for fi,j ∈ Hom(Ej , Ei), are embedded in a subring of M2(Bp,∞) as explained in [24,

p.6],[28, §5.1]. More precisely, consider a supersingular elliptic curve E1 over Fp whose endomorphism
ring is isomorphic to a maximal order O of Bp,∞. Let ψ : End(E1) → O. The set of isomorphism classes
of supersingular curves over Fp that are isogenous to E1 is in bijection to the set of left ideal classes of O.
Given ψ and φ ∈ Hom(E1, E2), the supersingular curve E2 is of endomorphism ring End(E2) isomorphic
to some maximal order O′ ⊂ Bp,∞. Moreover, an element of f ∈ End(E1)×End(E2) is identified with a
square matrix in

RE1,E2,φ :=
( O I

I−1 O′

)
,

where the ideal I = ψ(Hom(E2, E1)φ) is of right order O′.

The result of [24, Cor. 5.1.2.] proves that if the prime p divides the denominators of the Igusa class
polynomials, then the curve has bad reduction or equivalently, there exists a solution to the embedding
problem as above. The reciprocal is not true as it is experimentally proven in [24, §6.2.] for the case
of p = 2. Following this result, the next natural step is to compute a precise value or a tight bound
for the exponents in the prime factorisation of the denominators. First, a new method of counting
embeddings was proposed in [28, Prop 6.1.], namely given the curves E1, E2, the isomorphism ψ and
the homomorphism φ, in order to fix an embedding ι it is sufficient to find two elements in RE1,E2,φ

satisfying specific conditions.

Afterwards, by extending the previous work on counting embeddings and their image in RE1,E2,φ for all
possible primitive quartic K, the work of Lauter and Viray [45] and [44] provides an exact formula or a
tight bound for all prime powers appearing in the denominators of Igusa class polynomials. The authors
propose an alternative to the criterion of finding embeddings of the above form. Instead, in addition to
the pair of supersingular elliptic curves (E1, E2) and the embedding ι, they look for endomorphisms
x, u ∈ End(E1), z ∈ End(E2) and an isogeny y : E1 → E2 of certain properties [45, Proof Thm. 2.1].
The main result of [45] and [44] computes the valuation of the intersection number at any prime �.
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5.2. Ideals in Non Maximal Orders

It generalizes the Gross–Zagier formula [27] that computes the factorization of

J(d1, d2) =
∏

[τ1],[τ2]
disc(τi)=di

(j(τ1) − j(τ2)) ,

where di are fundamental discriminants of imaginary quadratic fields that are relatively prime to each
other and [τi] are elements in the Siegel upper half plane, modulo the action of SL2(Z). In the case of
[44], the formula is no longer restricted to discriminants of maximal orders or that are prime to each
others. In [44, Thm. 5.1.2], the evaluation of J(d1, d2) depends on the number of ideals of norm not
prime to the conductor of the order the ideal belongs to. The counting problem and its solution is
presented in the next section and summarized in Lemma 5.2.1.

5.2 Ideals in Non Maximal Orders

The work in this section was done in collaboration with Kristin Lauter and Bianca Viray. We are
interested in the number of ideals of arbitrary norm N that are contained in non maximal orders of
a real quadratic field K. Consider d = f2 · D be the discriminant of such order Od of K. We write

the order as a Z-module of the form Od := Z + fZ · D +
√

D

2
. In order to prove the main result of

this section, we use through out the theory of localisations at a prime p. First, we denote by Z(p) the
localization of Z by p. In a similar manner, the localisation of Od at p is denoted by Odp

.

According to [62, p.68], Od = ∩pOdp
, where p|p are prime ideals of Od that are not 0. Moreover, the

invertible ideals of Od become principal ideals in any Odp
as any localisation of Od is a principal ideal

domain. Consider a common prime factor p of both f and N , and let s = vp(f) and k = vp(N), where
vp denotes the p-adic valuation of a rational number. Let f ′ := f/ps be the factor of f that is not
divisible by p. Hence, counting ideals is equivalent to counting all elements α := a1 + b1 · ps D+

√
D

2 in
Odp

whose norm satisfies vp(N(α)) = k and that are unique up to multiplication by a unit in δ ∈ O×
dp

,
i.e. vp(δ) = 0. Let k0 = �k/2�.
Lemma 5.2.1. The Odp

-principal ideals of norm pk satisfy
— if k < 2s

— if k is even, then there are pk0 ideals of the form

(pk0 + bps D +
√

D

2
)Odp , for b ∈ Z/pk0Z,

— if k is odd, then there are 0 ideals.
— if k ≥ 2s:

— if p|D and vp( D2−D
4 ) = 1,

— if k is odd, then there are ps ideals of the form(
bpk0+1 + pk0

D +
√

D

2

)
Odp , for b ∈ Z/psZ.

— if k is even, then there are ps ideals of the form(
pk0 + bpk0

D +
√

D

2

)
Odp

, for b ∈ Z/psZ.
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— if p|D and vp( D2−D
4 ) = 0 (p = 2)

— if k is odd, then there are ps ideals of the form(
pk0 + bpk0

D +
√

D

2

)
Odp

, for b ∈ (Z/ps+1Z)×.

— if k is even, then there are ps ideals of the form(
bpk0+1 + pk0

D +
√

D

2

)
Odp

, for b ∈ Z/ps−1Z,

(
pk0 + bpk0+1 D +

√
D

2

)
Odp

, for b ∈ Z/ps−1Z.

— if
(

D
p

)
= 1. Let αp ∈ Z such that D ≡ α2

p (mod p).
Let u0 = −2−1(D + αp) and u1 = −2−1(D − αp).
— if k is odd, then there are (k + 1 − 2s)(ps − ps−1) ideals of the form(

u0pn + bpk−n + pn D +
√

D

2

)
Odp

, for b ∈ (Z/psZ)× and s ≤ n ≤ k0

(
u1pn + bpk−n + pn D +

√
D

2

)
Odp , for b ∈ (Z/psZ)× and s ≤ n ≤ k0.

— if k is even, then there are (k + 1 − 2s)(ps − ps−1) ideals of the form(
u0pn + bpk−n + pn D +

√
D

2

)
Odp , for b ∈ (Z/psZ)× and s ≤ n ≤ k0

(
u1pn + bpk−n + pn D +

√
D

2

)
Odp

, for b ∈ (Z/psZ)× and s ≤ n < k0.

— if
(

D
p

)
= −1.

— if k is even, then there are ps + ps−1 ideals of the form(
apk0+1 + pk0

D +
√

D

2

)
Odp

, for a ∈ Z/ps−1Z,

and (
pk0 + bpk0

D +
√

D

2

)
Odp

, for b ∈ Z/psZ.

— if k is odd, then there are 0 ideals.

Let u := D+
√

D
2 and v := D2−D

4 .

Consider two generators α, β of the same ideal in Odp
. Since α/β = αβc/N(β), where the norm of β

satisfies vp(N(β)) = k and βc is the real quadratic conjugate of beta, then αβc is an element of the
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ideal pkOdp
.

More precisely,
αβc = (a1 + b1psu)(a2 + b2ps D−√

D
2 )

=
(
a1a2 + a1b2psD + b1b2p2sv

)
+ (a2b1 − a1b2)psu,

(5.1)

with:
a1a2 + a1b2psD + b1b2p2sv ∈ pkZ(p) (5.2)

and
a2b1 − a1b2 ∈ pkZ(p). (5.3)

In order to deduce when the above conditions (5.2),(5.3) are achieved, we compute first vp(N1) and
vp(N2), where N1, N2 are the norms of α and β respectively. Immediately, the norm of the element
ai + bip

s D+
√

D
2 is

Ni = a2
i + aibip

sD + b2
i p2sv. (5.4)

Due to the lower bound of the sum, namely vp(a + b) ≥ min(vp(a), vp(b)) for any a, b ∈ Z(p), we have:

k ≥ min
(
vp(a2

i + aibip
sD), vp(b2

i p2sv)
)

. (5.5)

The minimum value on the right hand side of (5.5) yields that either⎧⎨⎩
vp(a2

i + aibip
sD) = k < vp(b2

i p2sv),
vp(b2

i p2sv) = k < vp(a2
i + aibip

sD),
2vp(a2

i + aibip
sD) = vp(b2

i p2sv) ≤ k

(5.6)

As the value vp(b2
i p2sv) is at least 2s, we first distinguish between two major cases, namely k < 2s and

k ≥ 2s.

5.2.1 Case k < 2s

In this case, the RHS of (5.5) is equal to vp(a2
i + aibip

sD) = k. Again we have a sum of parameters for
the valuation function. It implies that either⎧⎨⎩

2vp(ai) = k < s + vp(ai) + vp(bi) + vp(D),
s + vp(ai) + vp(bi) + vp(D) = k < 2vp(ai),
s + vp(ai) + vp(bi) + vp(D) = 2vp(ai) ≤ k

(5.7)

The last two cases cannot hold as they yield k/2 ≥ vp(ai) ≥ s that contradicts k < 2s. Hence,
automatically k is even and if we denote by k0 := k/2, then vp(ai) = k0. Automatically, the first
condition (5.2) for αβc ∈ pkOdp is true as the valuation of the first term, namely vp(a1) + vp(a2) = 2k0,
is equal to k and is strictly smaller than vp(a1b2psD + b1b2p2sv) ≥ k0 + s. So, the valuation at p

of the sum is strictly pk. Let a′
i = ai/pk0 with vp(a′

i) = 0. The second requirement (5.3) becomes
equivalent to a′

2b1 − a′
1b2 ∈ pk0Z(p) and eventually, to a′

2b1 ≡ a′
1b2 (mod pk0). Consider the projective

space P1(Z/pk0Z) over the residue class ring Z/pk0Z. As a′
2, a′

1 cannot be zero, the statement of (5.3)

83



Chapter 5. Denominators of Igusa Class Polynomials

is rewritten as equality of projective points

(a′
1 : b1) = (a′

2 : b2) in P1(Z/pk0Z).

Without loss of generality, we can fix a′
1 = a′

2 = 1 and then, the projective points are equal if and only
if b1 ≡ b2 (mod pk0). This is the necessary and sufficient condition for α and β to be representatives
of the same principal ideal in Odp

. For each class modulo pk0 , we take an ideal class representative
whose norm has p valuation equal to 2k0 < 2s. Since in the case of ai + bip

s D+
√

D
2 , the first term is

ai = a′
i · pk0 , the principal ideals are of the form(

pk/2 + bps D +
√

D

2

)
Odp

, for b ∈ {0, . . . , pk/2 − 1}. (5.8)

The expression of each ideal representative is unique up to multiplicity by a unit of Odp .

5.2.2 Case k ≥ 2s

Let t := vp(aibiD + b2
i psv) The relations (5.6) imply⎧⎨⎩

2s ≤ 2vp(ai) = k < s + t,

2s ≤ s + t = k < 2vp(ai),
s + t = 2vp(ai) ≤ k

(5.9)

In the first two cases, we have vp(ai) ≥ s for both i = 1, 2. Moreover, the valuation t is again bigger or
equal than the minimum of the two individual valuations and it yields:⎧⎨⎩

vp(ai) + vp(bi) + vp(D) = t < s + 2vp(bi) + vp(v),
s + 2vp(bi) + vp(v) = t < vp(ai) + vp(bi) + vp(D),
s + 2vp(bi) + vp(v) = vp(ai) + vp(bi) + vp(D) ≤ t

(5.10)

If we are in the last case of (5.9), namely t = 2vp(ai) − s ≤ k − s, the relations (5.10) yield vp(ai) ≥ s

and hence, a′
i = ai/ps ∈ Z(p) for both i = 1, 2 in all cases of (5.10). From now on, we consider the

elements αi = a′
i + bi

D+
√

D
2 whose norm has p valuation equal to k′ = k − 2s ≥ 0 and we study when

α1αc
2 ∈ pk′Odp

for k′ ≥ 0. More precisely,

α1αc
2 = (a′

1 + b1u)(a′
2 + b2

D−√
D

2 )
= (a′

1a′
2 + a′

1b2D + b1b2v) + (a′
2b1 − a′

1b2)u,
(5.11)

with:
a′

1a′
2 + a′

1b2D + b1b2v ∈ pk′
Z(p) (5.12)

and
a′

2b1 − a′
1b2 ∈ pk′+sZ(p). (5.13)

Next, we distinguish several cases depending on the relation between p and D.
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5.2.2.1 Case p Splits in OK

In this case, D is a square modulo p and vp(D) = 0. For p odd, we make a choice of a root of D

and denote it by αp :=
√

D (mod p) for αp ∈ {1, .., p − 1}. For a choice of sign e ∈ Z/2Z, let
ue := 2−1 · (D + (−1)e · αp). For p = 2, we are in the case of D ≡ 1 (mod 4) and we take u = v = 1
(mod 2).

Moreover, if αi = a′
i + biue, with i = 1, 2 for some sign e, generate the same ideal in Odp

and so,

min(vp(a′
1), vp(b1)) = min(vp(a′

2), vp(b2)) =: n. (5.14)

For fixed e, the real conjugate of αi is αc
i = a′

i + biue+1. Since N(αi) = αi · αc
i is of p-valuation equal

to k′, we have k′ ≥ 2n. Consider a sign e ∈ Z/2Z such that

vp(a′
i + biue) = k′ − n and vp(a′

i + biue+1) = n (5.15)

for i = 1, 2. In the above equation, if k′ = 2n, let the sign be e = 1.

If e is fixed in Z/2Z and given the p-valuation of αi from equation (5.15), we have ai ≡ biue (mod pk−n)
and hence,

a′
1a′

2 ≡ b1b2u2
e (mod p2k−2n)

In addition, vp(b2) = vp(b2D) ≥ n and so,

a′
1b2D ≡ −b1b2Due (mod pk−n+n).

Since 2k − 2n ≥ k and α2
p = D (mod pk), it follows that

a′
1a′

2 + a′
1b2D + b1b2v ≡ b1b2(u2

e − Due + v) ≡ 0 (mod pk)

and the condition (5.12) is satisfied.

Consider equation (5.13). It is equivalent to the equality of projective points(
a′

1
pn

:
b1
pn

)
=
(

a′
2

pn
:

b2
pn

)
∈ P1(Z/pk′+s−2nZ).

As αi/pn has p-valuation equal to k′ − 2n, we fix an embedding ϕe,n : P1(Z/pk′+s−2n) → P1(Z/pk′−2n)
such that (

a′
1

pn
:

b1
pn

)
∈ P1(Z/pk′+s−2n) → (−ue : 1) ∈ P1(Z/pk′−2n)

and an embedding ψe,n : P1(Z/pk′+s−2n) → P1(Z/pk′−2n+1) such that(
a′

1
pn

:
b1
pn

)
∈ P1(Z/pk′+s−2n) → (−ue : 1) ∈ P1(Z/pk′−2n+1).

Due to vp(αi/pn) = k′ − 2n, the point
(

a′
i

pn : bi

pn

)
is not in the preimage of (ue : 1) ∈ P1(Z/pk′−2n+1Z).

The set of principal ideal classes is in bijection with the set ϕ−1
e,n((ue : 1)) \ ψ−1

e,n((ue : 1)) of cardinality
ps − ps−1.
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Hence, for fixed e and n the ideals are of the form:((
−ue + bpk′−2n

)
pn + pn D +

√
D

2

)
Odp

, where b ∈ (Z/psZ)×.

If k′ is even and if n = k′ − n the two choices of e are equivalent. Otherwise for each 0 ≤ n < k′/2 we
have two choices of e (one for k′ − n and, one for n respectively). In conclusion, for a given even number
k′, if we consider all possible integers n and all signs e corresponding to n, the number of ideals is equal
to (k′ + 1)(ps − ps−1). Similarly, if k′ is odd there are �k′/2� ∗ 2 = (k′ + 1)(ps − ps−1) ideals.

The ideal representatives in terms of k = k′ + 2s and s ≤ n < k/2 are of the form:((
u0 + bpk−2n

)
pn + pn D +

√
D

2

)
Odp ,

((
u1 + bpk−2n

)
pn + pn D +

√
D

2

)
Odp ,

where b ∈ (Z/psZ)×, u0 = −2−1(D + αp) and u1 = −2−1(D + αp) with αp =
√

D (mod p).

5.2.2.2 Case p is Inert in OK

In this case D is not a square modulo p and vp(D) = 0. If k′ = 2k′
0 + 1 then vp(a′

i) = vp(bi) = n ≤ k′
0

and a′2 = b2u2 (mod pk′−2n). This gives no solution as u2 is not a square modulo p and k′ − 2n is
odd. If k = 2k′

0 then either vp(bi) > vp(a′
i) = k′

0 or vp(a′
i) > vp(b′

i) = k′
0. Hence, it implies that

vp(a′
1a′

2), vp(b1b2u2), vp(b1a′
2), vp(a′

1b2) ≥ k′ and (5.12) is automatically true. Then the value α1αc
2 is in

pk′Odp
if and only if (5.13) holds, namely (b1a′

2 − a′
1b2) is divisible by pk′+s and so,

a′
2

pk′
0

b1

pk′
0

=
a′

1
pk′

0

b2

pk′
0

(mod ps).

Then,

(
a′

1
pk′

0
:

b1

pk′
0

) = (
a′

2
pk′

0
:

b2

pk′
0

)

in P1(Z/psZ).

Hence, depending whether vp(bi) > vp(a′
i) or vp(bi) < vp(a′

i) = k′
0, there are ps ideals of the form

pk′
0+s + bpk′

0+su, with b ∈ Z/psZ, and there are ps−1 ideals of the form apk′
0+s+1 + pk′

0+su, with
a ∈ Z/ps−1Z.

The ideal representatives in terms of k and s are of the form:(
pk0 + bpk0

D +
√

D

2

)
Odp

,

(
apk0+1 + pk0

D +
√

D

2

)
Odp

,

for all possible a ∈ Z/ps−1Z, b ∈ Z/psZ.
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5.2.2.3 Case p Divides D

Assume that p divides D and consider the valuation vp(v). If p is odd, the valuation vp(D(D − 1)) is
vp(D) = 1 as D is free of odd squares. Otherwise if p = 2, the discriminant satisfies D = 0 (mod 4) and
D/4 square free, and equal to 2 or 3 modulo 4. Then the valuation of the ratio v at 2 is v2(D/4) which
can be either 0 or 1.

Hence, if the prime p is odd then the valuation of vp(D) = vp(v) = 1. Otherwise, for p = 2 the valuation
is v2(D) = vp(v) + 2 and we deduce another inequality, vp(D) ≥ vp(v) for any p dividing D.

We denote by t′ := vp(a′
ibiD + b2

i v) and k′
0 := �k′/2�. As vp(a′

i) = vp(ai) − s ≥ 0 and t′ = t − s, the
relations (5.9) and (5.10) become:⎧⎨⎩

2vp(a′
i) = k′ < t′,

t′ = k′ < 2vp(a′
i),

t′ = 2vp(a′
i) ≤ k′

(5.16)

and

⎧⎨⎩
vp(a′

i) + vp(bi) + vp(D) = t′ < 2vp(bi) + vp(v),
2vp(bi) + vp(v) = t′ < vp(a′

i) + vp(bi) + vp(D),
2vp(bi) + vp(v) = vp(a′

i) + vp(bi) + vp(D) ≤ t′
(5.17)

First, we prove that the minimum valuation among a′2
i , a′

ibiD and b2
i v is never given by a′

ibiD. For that,
we take all possible cases for t′ and k′.

— Let t′ > 2vp(a′
i) = k′. Then 2vp(a′

i) is the minimum among the terms Then, the relations of
(5.17), together with vp(D) ≥ vp(v), imply

2vp(a′
i) < 2vp(bi) + vp(v)

independently of p being odd or even.
— Let t′ ≤ k′ and t′ ≤ 2vp(a′

i). If we consider either the first relation or the last relation of (5.17),
then we obtain a contradiction due to:

vp(a′
i) ≥ t′ − vp(a′

i) ≥ vp(bi) + vp(D) ≥ vp(bi) + vp(v) > vp(a′
i) + vp(D) > vp(a′

i).

So, the minimum valuation must be given by the second equation, namely 2vp(bi) + vp(v) ≤ t′,
that implies the following inequality

2vp(a′
i) ≥ 2vp(bi) + vp(v). (5.18)

In conclusion the minimum is given by 2vp(a′
i) or 2vp(bi) + vp(v). Next, we consider all possible values

for vp(v).

— vp(v) = 0, then p = 2 and v2(D) = 2.
If v2(ai) = v2(bi) = t, then v2(N(αi)) = k′ is equal to 2t + 1 as a′2

i /22t and b2
i v/22t are odd and

equivalent to 1 modulo 4 and a′
ibiD/22t is even. The relation (5.12) is verified with the same

argument of having two odd terms, namely a′
1a′

2/22t and b1b2v/22t, and one even, namely a′
1b2D.

Then the value α1αc
2 is in pk′Od2 if and only if (5.13) holds, namely (b1a′

2 − a′
1b2) is divisible
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by 22t+1+s and so,
a′

2
2t

· b1
2t

=
a′

1
2t

· b2
2t

(mod 2s+1).

Then,

(
a′

1
2t

:
b1
2t

) = (
a′

2
2t

:
b2
2t

)

in P1(Z/2s+1Z).
Hence, as t is equal to �k/2� − s, after multiplying αi by ps, there are 2s+1 − 2s = 2s principal
ideals of the form (

2�k/2� + b · 2�k/2� D +
√

D

2

)
Od2 , with b ∈ (Z/2s+1Z)×.

Here b is odd as otherwise v2(b · 2�k/2�−s) > v2(2�k/2�−s).
If v2(a′

i) < v2(bi) or v2(ai) > v2(bi), let t = min{v2(a′
i), v2(bi)}. Then v2(N(αi)) = k′ is even

and moreover t = k′
0 = k′/2 as either a′2

i /22t or b2
i v/22t out of three terms is odd. The relation

(5.12) is immediately verified as the valuation of each individual term is at least 2t = k′. Then
the value α1αc

2 is in pk′Od2 if and only if (5.13) holds, namely (b1a′
2 − a′

1b2) is divisible by 2k′+s

and so,
a′

2
2k′

0
· b1

2k′
0

=
a′

1
2k′

0
· b2

2k′
0

(mod 2s).

Then,

(
a′

1
2k′

0
:

b1

2k′
0

) = (
a′

2
2k′

0
:

b2

2k′
0

)

in P1(Z/2sZ).
If vp(bi) < vp(a′

i), there are 2s−1 principal ideals of the form(
a · 2k/2+1 + 2k/2 D +

√
D

2

)
Od2 , with a ∈ Z/2s−1Z.

If vp(a′
i) < vp(bi), there are 2s−1 principal ideals of the form(

2k/2 + b · 2k/2+1 D +
√

D

2

)
Od2 , with b ∈ Z/2s−1Z.

— vp(v) = 1, then either vp(D) = 3 or vp(D) = 1. If k = 2k0 + 1 then the minimum is given by
2vp(bi) + 1 and hence, vp(bi) = k0 − s < vp(a′

i). As k − (k0 − s) − (k0 + 1) = s, condition (5.13)
is equivalent

a1
b1pk0+1 =

a2
b2pk0+1 (mod ps)

and with a similar argument as before, we obtain(
ap�k/2�+1 + p�k/2� D +

√
D

2

)
Odp

, with a ∈ Z/psZ.
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5.3. Table of Results

If k = 2k0, then the minimum is given by 2vp(a′
i) = k′

0 < 2vp(bi) + 1. The ideals are of the form:(
pk/2 + bpk/2 D +

√
D

2

)
Odp , with b ∈ Z/psZ.

In both cases we have the same number of ideals, namely ps. This completes the proof of
lemma 5.2.1.

5.3 Table of Results

We summarize the results of this lemma in the following table:

k and s p and D Ideals Number od Ideals
k < 2s,
k = 2k0

- (pk0 + bps D+
√

D
2 )Odp

, pk0

for b ∈ Z/pk0Z
k < 2s,
k = 2k0 + 1

- - 0

k ≥ 2s,
k = 2k0

p|D and vp( D2−D
4 ) = 1

(
pk0 + bpk0 D+

√
D

2

)
Odp

, ps

for b ∈ Z/psZ
p|D and vp( D2−D

4 ) = 0
(

bpk0+1 + pk0 D+
√

D
2

)
Odp , ps

p = 2
(

pk0 + bpk0+1 D+
√

D
2

)
Odp ,

for b ∈ Z/ps−1Z(
D
p

)
= 1

(
u0pn + bpk−n + pn D+

√
D

2

)
Odp

, (k + 1 − 2s)(ps − ps−1)
for b ∈ (Z/psZ)×, s ≤ n ≤ k0, and(

u1pn + bpk−n + pn D+
√

D
2

)
Odp

,
for b ∈ (Z/psZ)×, s ≤ n < k0(

D
p

)
= −1

(
apk0+1 + pk0 D+

√
D

2

)
Odp , ps + ps−1(

pk0 + bpk0 D+
√

D
2

)
Odp

,
for a ∈ Z/ps−1Z, b ∈ Z/psZ

k ≥ 2s,
k = 2k0 + 1

p|D and vp( D2−D
4 ) = 1

(
bpk0+1 + pk0 D+

√
D

2

)
Odp , ps

for b ∈ Z/psZ
p|D and vp( D2−D

4 ) = 0
(

pk0 + bpk0 D+
√

D
2

)
Odp

, ps

p = 2 for b ∈ (Z/ps+1Z)×(
D
p

)
= 1

(
u0pn + bpk−n + pn D+

√
D

2

)
Odp

, (k + 1 − 2s)(ps − ps−1)(
u1pn + bpk−n + pn D+

√
D

2

)
Odp

,
for b ∈ (Z/psZ)×, s ≤ n ≤ k0(

D
p

)
= −1 - 0
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5.4 Examples

We implemented the ideal representatives in Magma for the purpose of computing the intersection
formula in [44] and extending the current Magma packages with a library of computing ideals of arbitrary
norm in non-maximal orders.

We consider the first example of [44], namely the quartic field is K = Q(−119 + 28
√

17) and the prime
appearing in the denominators of Igusa polynomials is � = 7. First, we notice that � is ramified in K

and moreover, we need to count ideals of norm 28 and 7 that are not prime to the conductor and that
satisfy the conditions specified in [44, Thm 5.1.2.]. There exists only 1 such ideal of norm 7 (and none of
norm 28) and the ideal corresponds to solution of multiplicity 2, and hence, the intersection number at
prime 7 is equal to 2.

The second example takes a quartic field K = Q(−13 + 3
√

13) that does not satisfy the assumptions of
the Bruinier-Yang formula as D = 2613 and is not equivalent to 1 mod 4. For the prime 23, the work
of Bruinier-Yang provides an incorrect intersection number at � = 23. The work of [44] proves that
there are indeed four solutions to the Embedding Problem, two of which depend on counting ideals in
non-maximal quadratic orders.
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