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ABSTRACT

Metabolism is a network of biochemical reactions that converts carbon sources to cellu-
lar fuels and building blocks. Metabolism of many organisms has been studied for many
decades. These studies define metabolism as a very large and complex network. Stoichi-
ometric models have been used extensively to study these complex networks. With the
introduction of Genome Scale Models (GEMs), the studies on metabolism entered a new
era, and gained a more systems approach. GEMs have been used in a broad range of are-
as, from cancer research to industrial applications. By using GEMs, it is possible to study
metabolism with an input/output manner, and decompose it to individual fluxes by de-
tailed stoichiometric definition. However, due to the large degrees of freedom and the
underdetermined nature of GEMs, it is crucial to develop methods to further constrain
these complex networks to reveal the actual state of the metabolism. Integrating ther-
modynamics constraints to metabolic networks is a popular and powerful approach to
address this need. Moreover, these methods allow the incorporation of steady-state me-
tabolite concentrations into GEMs, which cannot be achieved by other methods such as
Flux Balance Analysis (FBA). In this thesis, we firstly discussed different methods to in-
corporate this constraint into metabolic models and used the most comprehensive one,
Thermodynamics-based Flux Analysis (TFA) for studies in the next chapters. Firstly, we
used TFA to study the overall behavior of E. coli in terms of bioenergetics efficiency, P:0
ratio and Gibbs free energy dissipation and revealed their connection. Following this
analysis, we focused on the complexity that emerges from the size of the GEMs. GEMs
are composed of large metabolic modules, called subsystems or pathways. In this thesis,
we aimed to re-define the pathway definition by generating subnetworks for the synthe-
sis of biomass building blocks using lumpGEM, a tool that extracts parts of metabolism
for certain tasks, such as synthesis of an amino acid. lumpGEM identified additional re-
actions from different parts of metabolism along with textbook pathways for synthesis

of many biomass building blocks. lumpGEM also builds lumped reactions for the gener-
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ated subnetworks, which represent the subnetwork with 1 overall reaction, thus reduc-
ing complexity. redGEM uses this property to build reduced models, moreover it re-
defines the central carbon metabolism definition, and build core models consistent with
their GEMs. These reduced models are valuable platforms for many studies, such as ki-
netic modeling, FBA/TFA studies and comparison of central carbon networks among
different organisms. We used a reduced model of E. coli to study further the characteris-
tics of the core models, and their still big solution space by enumerating all possible Flux
Directionality Profiles (FDP). We identified the effect of directionality of reactions on
overall network behavior, such as specific growth rate. We finally focused on the meta-
bolic capabilities of E. coli and identified possible biotransformation that E. coli can per-
form by using BNICE.ch. We built a super network for E. coli and studied its characteris-
tics for biomass production and metabolic gaps. As a conclusion, in the last chapter we
discuss the potential applications of the methods and tools that we developed in this

thesis.

Keywords: metabolism, metabolic networks, complexity, thermodynamics, energy dis-

sipation, subsystems/pathways, reduction, directionality, central carbon metabolism



RESUME

Le métabolisme est un réseau de réactions biochimiques qui convertit les sources de
carbone en combustibles cellulaires et composantes. Le métabolisme de nombreux or-
ganismes a été étudié pendant de nombreuses décennies. Ces études définissent le mé-
tabolisme comme un réseau tres vaste et complexe. Des modeles steechiométriques ont
été abondamment utilisés pour étudier ces réseaux complexes. Avec l'introduction de
modeles a 'échelle des génomes (GEM), les études sur le métabolisme sont entrés dans
une nouvelle ére, et ont bénéficié d'une approche plus systémique. Les GEM ont été utili-
sés dans un large éventail de domaines, de la recherche sur le cancer a des applications
industrielles. En utilisant des GEM, il est possible d'étudier le métabolisme d'une ma-
niére entrées/sorties, et de le décomposer a des flux individuels par définition stcechio-
métrique détaillée. Cependant, en raison des grands degrés de liberté et de la nature
sous-déterminée des GEM, il est crucial de développer des méthodes pour contraindre
davantage ces réseaux complexes afin de révéler I'état réel du métabolisme. L'intégra-
tion de contraintes thermodynamiques aux réseaux métaboliques est une approche ré-
pandue et puissante pour répondre a ce besoin. De plus, ces méthodes permettent
I'incorporation de concentrations de métabolites a 1'état stationnaire dans les GEM, qui
ne peuvent pas étre atteints par d'autres méthodes telles que I'analyse de I'équilibre des
flux (FBA). Dans cette these, nous avons tout d'abord discuté de différentes méthodes
pour intégrer cette contrainte dans les modeles métaboliques et utilisé la plus compléte,
I'analyse des flux basée sur la thermodynamique (TFA) pour les études dans les cha-
pitres suivants. Tout d'abord, nous avons utilisé TFA pour étudier le comportement glo-
bal de E. coli en termes d'efficacité de la bioénergétique, rapport P:0 et la dissipation de
I'énergie libre de Gibbs et révélé leur connexion. Suite a cette analyse, nous nous
sommes concentrés sur la complexité qui se dégage de la taille des GEM. Les GEM sont
composés de grands modules métaboliques, appelés sous-systemes ou voies. Dans cette
thése, nous avons cherché a redéfinir la définition de la voie en créant des sous-réseaux
pour la synthése de composantes de la biomasse en utilisant lumpGEM, un outil qui ex-
trait les parties du métabolisme pour certaines taches, telles que la synthese d'un acide

aminé. lumpGEM a identifié des réactions supplémentaires provenant de différentes



parties du métabolisme ainsi que les voies typiques pour la synthése de nombreuses
composantes de la biomasse. lumpGEM construit aussi des réactions regroupées pour
les sous-réseaux générés, qui représentent le sous-réseau avec une seule réaction glo-
bale, réduisant ainsi la complexité. redGEM utilise cette propriété pour construire des
modeles réduits, mais aussi pour revoir la définition du métabolisme central du carbone,
et pour construire des modeéles de base compatibles avec leurs GEMs. Ces modéles ré-
duits sont des plates-formes utiles pour de nombreuses études, telles que la modélisa-
tion cinétique, des études FBA/TFA et la comparaison des réseaux centraux de carbone
entre les différents organismes. Nous avons utilisé un modele réduit de E. coli pour étu-
dier davantage les caractéristiques des modeles de base, et leur grand espace de solution
en dénombrant tous les profils de direction des flux (FDP) possibles. Nous avons identi-
fié 1'effet de la directivité des réactions sur le comportement global du réseau, tels que
les taux de croissance. Nous avons finalement mis I'accent sur les capacités métabo-
liques de E. coli et identifié la biotransformation possible que E. coli peut effectuer a
I'aide de BNICE.ch. Nous avons construit un super réseau pour E. coli et étudié ses carac-
téristiques pour la production de la biomasse et des lacunes métaboliques. En conclu-
sion, dans le dernier chapitre, nous discutons des applications potentielles des méthodes

et des outils que nous avons développés dans cette these.

Mots-clés: métabolisme, réseaux métaboliques, complexité, Thermodynamique, dissipa-

tion d'énergie, réduction, directivité, métabolisme central carboné
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Chapter 1: Introduction

Chapter 1 - Introduction

Metabolism is the set of biochemical transformations that sustain the life of organisms.
Metabolism supplies the fuel for cellular processes; it supplies the precursors for the
synthesis of complex molecules such as proteins, lipids, nucleic acids, and some carbo-
hydrates. Metabolism and metabolic pathways have been studied in details for decades
and the underlying mechanisms and biotransformations for many organisms have been
revealed. These studies focused on a wide spectrum of areas from clinical research to
industrial large-scale production. Metabolic disorders have been shown to be connected
to many diseases, such as cancer, obesity, diabetes, etc. [1] Metabolic interactions in the
gut microbiota have emerged as a promising research area in the last decade to under-
stand the role of these organisms in the host human[2] and to reveal their connection
with diseases[3]. Moreover, metabolism is an excellent platform for white biotechnolo-
gy[4]; a research area that has close connections with industry for the replacement of
petroleum based chemical synthesis with bio-based synthesis methods. The focus of
scientific studies on biology has shifted to many different areas in years, metabolism yet

kept its importance and proved to be a promising and productive research area.

The accumulated knowledge through decades indicates the complexity of the metabo-
lism. Metabolic genes constitute a significant portion of the genes encoded by the organ-
isms. S. cerevisiae has ~6600 genes, and the consensus Yeast 6 metabolic network[5]
includes 900 genes. E. coli has ~4400 genes, and the latest metabolic reconstruction,
iJ01366[6] includes 1366 genes, which constitutes 32% of all genes. Gene to Protein to
Reactions (GPRs) associations, which form the bridge between the genome and bio-
chemistry, reveals thousands of metabolic reactions, defining a very complex network.

Complexity of metabolism does not only emerge from the number of metabolic reac-
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Chapter 1: Introduction

tions, but from the tight connections of metabolites that participate in these reactions.
Well-characterized metabolic networks are nested[7], which means that the metabolic
networks are not only composed of linear pathways that supply the precursors to the
next pathway. A metabolite can appear in different parts of the metabolism, being used
by several different enzymes as substrate or product. Although the pathways reported
in databases for certain functions, such as biosynthesis of amino acids, lipids, nucleo-
side-3-phosphates are linear, it does not necessarily mean that the enzymes that are
active for the synthesis of this particular metabolite along those pathways are the only

ones that are reported in those linear representations.

To study this complexity computationally, metabolism is represented through metabol-
ic networks, and metabolic networks are built through GPR associations[8]. However,
the list of reactions obtained through this process is not enough to study the metabo-
lism computationally. The solution for this need, stoichiometric models has been very
popular tools to study these complex networks through mathematical representations.
These models are built through a stoichiometric matrix, which keeps the information of
metabolites and their stoichiometric participation in every reaction in the network, and
in early examples, they represented a certain part of the metabolism picked with an ad
hoc manner. These stoichiometric models evolved into Genome Scale Metabolic Recon-
structions (GEMs), which encapsulate all metabolic capabilities obtained from GPR as-
sociations with a bottom-up approach[9]. These GEMs are accompanied with a compo-
sition of 1 gDW of cell on metabolite basis (amino acids, lipids, etc.)[10], and the bound-
ary conditions, i.e. media composition and possible secreted metabolites. This approach
enabled researchers to study on the overall behaviour of metabolic networks in an in-
put/output manner such as biomass growth or production of specific biochemicals.
Moreover, it gave the opportunity to study the individual contribution of the metabolic

fluxes that constitute these metabolic outputs.

Even though metabolism is nested and metabolic pathways are not linear, the relation
between metabolites and reactions represented by stoichiometric matrix is a set of line-
ar equations. This linearity, along with the linear representation of the biomass compo-

sition brings a mathematical advantage for simulations for optimum biomass produc-
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tion, target metabolite biosynthesis, or any other cellular objectives. Along with the
quasi-steady state assumption, which assumes that there is no accumulation of any me-
tabolite in the system, metabolic networks are mathematically represented by the fol-

lowing formulation:

where S is the stoichiometric matrix; v is the flux vector that defines the flux through
every reaction defined in the metabolic network. The right hand side of the equation
states that there is no accumulation of metabolites in the network. v,,;, and v,,,, repre-

sent the allowable ranges for fluxes for these metabolic reactions.

A well-connected metabolic network is underdetermined, which means that the number
of equations (metabolite mass balances) is bigger than the number of variables (reac-
tions)[11]. This brings a complexity to computational studies, since underdetermined
systems has infinite number of solutions, even though in linear space they have only 1
global optimum for a given objective. In biological terms, this means that there are infi-

nite number of flux profiles that can satisfy the same cellular objective.

Researchers have been working on different methods to understand and characterize
the complexity, and formulated different approaches to reduce it. The very first ap-
proach is to identify the reaction directionalities in the metabolic networks. Most of the
enzymes can catalyze a certain reaction in both direction, and there are a few enzymes
characterized as kinetically irreversible. To reduce the complexity that emerges from
bidirectionality and to recude the solution space, one of the most effective methods is to
integrate thermodynamics into metabolic networks. Thermodynamics, through Gibbs
Free Energy of reactions, has the capability to reveal if a certain enzyme can catalyze a
reaction in both directions given the cellular conditions, such as pH, ionic strength, etc.

[12]. This analysis evolved into network thermodynamics for metabolic networks,
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which globally reduce the solution space with energy constraints[13-15]. In Chapter 2,
we have reviewed different approaches to integrate thermodynamics into metabolic
networks, and we discussed in details our approach, and its advantages over other
methods developed in the last 10 years along with other applications and future per-

spective.

Thermodynamics, up to now, is introduced to the analysis of metabolic networks to
suggest the directionality for the reactions and by network thermodynamics to reduce
the solution space. Moreover, it has been used to compute thermodynamically feasible
concentration ranges for metabolites, thus distance from thermodynamic
equilibrium[16]. However, it has not been used systematically to understand the overall
behaviour of the cell in metabolic networks, such as bioenergetics efficiency. It has been
long known that the Gibbs free energy dissipation can be used to predict the cellular
growth[17], and the relation between these two properties has been shown experimen-
tally and computationally through different type of modeling. However, such studies
have not been carried out in the context of stoichiometric modeling and Flux Balance
analysis. There are a few examples, where the bioenergetics efficient concept is used to
metabolic modeling through P:0 Ratio, which is the number of ATP molecules produced
per number of oxygen atoms uptaken by the cell[18]. In Chapter 3, we have expanded
the scope of stoichiometric modeling and introduced the concept of free energy dissipa-
tion through TFA and its relation with P:0 Ratio. We have determined the relation be-
tween those two bioenergetics concepts and revealed how they can explain physiology
of optimal growth and by-product formation of E. coli. In addition, we have determined

the enzymes that are mainly contributing to the free energy dissipation for the cell.

Thermodynamics is a powerful tool to reduce the solution spaces for metabolic net-
works; however, it does not have any effect on the network topology. Metabolic net-
works are usually defined as the sum of modules[19] or pathways[20], such as amino
acid biosynthesis, and subsystems, glycolysis, TCA cycle etc. However, these modules or
subsystems are not isolated from each other and share many metabolites, even reac-
tions, which causes a different form of complexity. To manage this, in Chapter 4, we fo-

cused on cellular growth with a novel approach that aimed to re-define the pathways
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for the biosynthesis of all biomass building blocks. GEMs are capable of synthesizing
biomass, which means that the synthesis pathways for all biomass building blocks
(BBBs) can carry flux. However, due to the degrees of freedom that the system has, it is
almost impossible to determine all the enzymes contributing for the synthesis of each
biomass building block, and the precursor metabolites that these BBBs are synthesized
from by simply solving the system for a linear cellular objective. Also the textbook
pathways cannot explain the complexity in the network, since they do not account for
the nested parts of the pathways. In literature, there are reported values for the stoichi-
ometric expenditure of precursor metabolites for some BBBs, for instance in classical
textbooks, such as Neidhardt[21], but these estimations are not complete as they do not
account for the latest knowledge in GEMs and for multiple alternative routes that can be
used to synthesize the same BBBs. To overcome these limitations, we have developed
lumpGEM, a method, which enumerates possible subnetworks for the synthesis of every
biomass building block from core carbon metabolites. In this way, we have re-defined
the possible pathways for BBBs and revealed the nested parts of these pathways that
cannot be deduced systematically through growth maximization simulations or from
databases such as KEGG[22], EcoCyc[23], and SEED[24]. Apart from enumerating syn-
thesis pathways for BBBs, and re-defining the biosynthetic pathways, lumpGEM also
reduces the complexity of GEMs by lumping the generated subnetworks for each BBB,
and representing them through 1 overall reaction, which is stoichiometrically equiva-
lent to the calculated subnetwork for the generated flux distribution. This gives us the
opportunity to focus on certain parts metabolism and reduce the complexity emerges

from different parts of the network by lumping.

Bottom-up approach allows us to build high quality models, such as GEMs, based on
detailed mechanistic knowledge with well-established pipelines[25]. Top- down ap-
proach, on the other hand, extracts information from accumulated data and knowledge
in the literature to build models. Top-down models are usually hypothesis-driven[26]
and focus on certain functions, rather than having a global approach, and unlike bottom-
up models, have small sizes. Keng et al. [27] discussed the need to build models having

the bottom-up quality within the size of top-down models. In Chapter 5, we have devel-
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oped redGEM, a tool that builds reduced core models around the part of the metabolism
under interest. redGEM uses the bottom-up GEM models as input and generates re-
duced models while keeping the mechanistic quality of GEMs. Moreover, redGEM uses
lumpGEM to generate lumped reactions for all biomass building blocks from the core
metabolites. Final output of redGEM is a reduced core model that is consistent with its
GEM in terms of biomass yields, by-product formation, allowable flux ranges and essen-
tial genes and reactions. These core models are valuable platforms for various applica-
tions, from C13 labeling experiments[28] to TFA to kinetic models since they offer man-
ageable model sizes for such studies. Moreover, reduced models can be used as system-
atic comparison tools to understand the fundamental differences of metabolic and bio-
synthetic capabilities between organisms. In Chapter 6, we focused on the central car-
bon networks generated by redGEM and lumpGEM for 3 different organisms, P. putida,
S. cerevisiae and human, and highlighted the differences between them. Moreover, we
generated subnetworks and their lumped reactions for the 3 organisms and showed

their similarities and differences.

Integration of thermodynamics and reduction of GEMs are two very powerful methods
to reduce the solution space and the complexity of the metabolic networks. However
they do not characterize the still big solution space. The source of this complexity of
solution spaces can be classified into two main categories, i) the flexibility in the absolute
amount of the flux through a reaction and ii) the directionality of the reaction. The latter
emerges from bidirectional reactions (BDRs) in metabolic networks. To enumerate and
slice the solution spaces into subspaces through BDRs, in Chapter 7, we have developed
a method called Flux Directionality Profile Analysis (FDPA), and enumerated all possi-
ble flux directionality profiles (FDP) for E. coli grown under aerobic conditions with glu-
cose and succinate as sole carbon sources. Each of these FDPs represents a certain phys-
iology, and has different characteristics in terms of theoretical maximum growth, by-
product formation etc. Two of the most interesting studies that FDPA allows are the
study of flexibility that emerges from absolute amount of fluxes through sampling the
sub-solution space unique to an FDP and displacement of reactions from thermodynam-

ic equilibrium.
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The metabolism of certain organisms, such as E. coli or S. cerevisiae has been well char-
acterized and they have been studied for decades. However, even for these organisms,
there are metabolic gaps and unknown biochemical reactions that are characterized in
every year. For instance, databases that are updated annually, such as KEGG, are adding
new metabolic enzymes and reactions in every update. These newly added reactions
can represent a new biochemistry or can be new reactions catalysed by a known bio-
chemistry rule. Methods to predict these reactions and many more possible candidate
reactions have been proposed in the last 15 years. BNICE.ch (Biochemical Network In-
tegrated Computational Explorer)[29] is a powerful tool that can reproduce all known
reactions with a defined biochemistry in KEGG database and is capable of proposing
novel biochemical reactions with manually built reaction rules through known bio-
chemistry. In Chapter 8, we used BNICE to explore the metabolic capabilities of E. coli by
generating all known and novel reactions around the central carbon metabolism of E.
coli defined as Glycolysis, TCA Cycle, Pentose Phosphate Pathway, Pyruvate Metabolism
and Glyoxylate shunt. BNICE.ch also brings a new kind of multiplicity and complexity for
metabolic modelling purposes, since it explores the whole space of biochemistry and
proposes thousands of novel reactions. In Chapter 8, we also aimed in reducing this
complexity. By merging the native metabolic network of E. coli and the reactions pro-
posed by BNICE.ch, we built a super network, and explored its metabolic capabilities.
We revealed sets of novel or known non-native E. coli reactions in this super network
that can increase the biomass yield of the organism and exhaustively generated all pos-
sible thermodynamically feasible sets. We also performed a gap filling analysis for the
dead-end metabolites in the native network, and identified possible biotransformations

for these compounds throughout the super network.

In this thesis, we targeted navigating and managing the complexity of metabolic net-
works for a better understanding of the cellular physiology, and to guide biotechnologi-
cal applications. We built tools that can reduce this complexity, and proposed novel
methods to analyse both reduced and genome scale networks. These applications are
not developed for specific organisms, and can be applied to all GEMs and top-down built

metabolic networks, as we demonstrated on P. putida, yeast, and human. Also, by
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BNICE.ch, we explored the metabolic potentials of E. coli by using known biochemistry
rules, which can also be performed on any organism. We believe that these
tools/methods will help us to develop a better, more comprehensive view on one of the

most important component of life, metabolism.

Apart from the work discussed in this thesis, I also contributed for the development and
refinement of different tools that is used in our group, LCSB. I have developed a pipeline
that evaluates pathways for the production of target chemicals. This pipeline generates
thermodynamic information for all the metabolites and reactions on these pathways
using GCM, merges them with GEMs, performs FBA/TFA analysis and ranks them based
on the yield for the target chemicals. The method can evaluate more than ~15000
pathways per day. Moreover, | merged the traditional gap-filling analysis with TFA and
built a method that can perform thermodynamically feasible gap filling analysis per bi-
omass building block, or any metabolite that is targeted. I also contributed to the re-
finement of in-house TFA toolkit AGADOR and built new thermodynamics-based meth-
ods for different analysis, such as gene essentiality and minimal media analysis, which

are already used in a publication [30].
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Chapter 2 - Heading in the right direction: Ther-
modynamics-based network analysis and path-

way engineering

2.1 Introduction

In the last 15 years, the number of annotated genome sequences has grown tremen-
dously, and this has led to reconstruction of genome scale metabolic models (GEM) for
many organisms, from unicellular prokaryotes to higher organisms such as mouse and
human [31]. These metabolic models are in silico representations of all biochemical re-
actions that take place in the cell. Through various methods, such as Flux Balance Anal-
ysis (FBA), different phenotypes of organisms can be simulated and analysed [32,33].
Directionalities and allowable flux ranges for metabolic reactions are the main con-
straints that delineate the boundaries for GEMs. The two most important uses of ther-
modynamics-based analysis of metabolic networks are the determination of reaction
directionality and the estimation of how far from, or close to, equilibrium the reactions

in the network operate.

In most of the metabolic flux balance studies that discuss and analyse reaction thermo-
dynamics and energetics, the authors consider the reactions as irreversible (unidirec-
tional) based on the standard Gibbs free energy of reaction. Soh and Hatzimanikatis
[13,34] suggested differentiating between “reaction directionality” and the commonly
used term “reaction reversibility”. Reaction reversibility is a kinetic property of the en-
zyme and it is used to denote that the enzymes are able to catalyse the reactions in both

directions, i.e. the forward and backward reactions. If an enzyme is catalytically reversi-
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ble, then the directionality of the reaction depends on the displacement of the reaction
from thermodynamic equilibrium. In the context of a metabolic network, with or with-
out thermodynamic constraints, a reversible reaction can be either bidirectional, i.e. it is
able to operate in both the forward and reverse directions, or unidirectional, i.e., it can
operate only in one of the directions. The catalytic reversibility is an enzyme property
that depends on the enzyme amino acid sequence, and therefore it can be different be-
tween organisms. The information about catalytic reversibility is available for a rela-
tively small number of the enzymes in the biological databases and for a very small
number of organisms. Therefore, by determining the reaction directionality, thermody-
namic constraints provide important information that substitute for the lack of infor-

mation about reaction reversibility.

Three main approaches have been used for the introduction of thermodynamic con-
straints (network thermodynamics): (i) the energy balance analysis (EBA)[35], (ii) the
network-embedded thermodynamic analysis (NET analysis) [36,37], and (iii) the ther-
modynamics-based flux analysis (TFA), which has been also called metabolic flux analy-
sis (TMFA)[14] or thermodynamics-based flux balance analysis (TFBA)[13]. All three
methods introduce a new set of constraints that enforce the reactions fluxes to operate
within the feasible bounds of energy constraints. The general EBA problems constrain
the directionality and bounds of the fluxes using the value of the Gibbs free energy, ei-
ther as a constant or as continuous variable within defined ranges. NET analysis and
TFA constrain also the fluxes using the value of the Gibbs free energy but as a linear
function of the logarithms of the metabolite concentrations (or activities). However,
NET analysis requires a predetermination of the directionality of the fluxes, and the
thermodynamic constraints determine if the flux is feasible in the defined direction and
what are the thermodynamically feasible concentration ranges. The TFA considers ini-
tially all catalytically reversible fluxes as thermodynamically bidirectional and employs
a mixed-integer linear programming formulation that accounts for concentration ranges
and it computes the flux directionality based on the thermodynamically feasible concen-
tration profiles. Therefore TFA introduces the minimum bias about reaction directional-

ity and it simultaneously computes thermodynamically feasible flux and concentration
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ranges. Moreover, the EBA and NET analysis formulations represent special cases of the
TFA formulation. Hence, we believe that any analysis that uses thermodynamic con-
straints should apply TFA, or a similar formulation in order to avoid incomplete or false

predictions about the properties of the network.

Biochemical

Databases

Pathway Evaluation
* Directionality
Assignment

Applicationg/‘;

/ Methods

NETWORK
THERMODYNAMICS

* Thermodynamically
Feasible Fluxes

* Thermodynamically
Feasible EFMs

Unbiased to reaction A\ Uses predetermined
directionalities i | reaction directionalities

Concentration
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Equilibrium
Displacements

Kinetic Analysis

Applications

Figure 2-1: Applications of thermodynamics in metabolic networks. Standard Gibbs free energy values
can be used to evaluate pathways, and to assign directionalities in GEMs. Integration of network-
thermodynamics allows computation of thermodynamically feasible flux profiles and EFMs and feasible
concentration ranges. These ranges can be further used for estimating the equilibrium displacements and

building kinetic models of metabolic networks.

We review here the recent publications that have applied thermodynamic constraints in
metabolic flux balance analysis. The major applications of thermodynamics have bene-
fited the study of metabolism through three main uses: (i) the application of thermody-
namic constraints to assign directionalities and thus constraint the allowable flux space

and improve the predictions of metabolic modelling; (ii) the evaluation of the feasibility
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of synthetic and metabolically engineered pathways; and (iii) the integration of metabo-
lomics data into metabolic models and their analysis and interpretation in the context of

metabolic networks (Figure 2.2).

2.2 Assigning directionality based on Gibbs free energy of
reactions in GEM

Directionalities of metabolic fluxes in GEMs have significant impact on network proper-
ties, such as yield on biomass, gene/reaction essentiality. Directionality specifications in
GEMs are based on literature, databases, biochemical textbooks and information from
similar organisms. If there is no available information about the catalytic reversibility of
an enzyme, the corresponding metabolic reaction is defined as bidirectional in the net-
work. The sole systematic approach then to account for the directionality for these reac-
tions is integration of thermodynamics into metabolic networks. In a recent study,
Dreyfuss et. al [39] reconstructed the genome scale metabolic model of Neurospora
crassa, and by using the Gibbs free energy of reactions through the Group Contribution
Method (GCM) [40-42], they constrained 1046 of 1374 metabolic reactions as unidirec-
tional. However, they did not take into account the contribution of the activities to the
Gibbs free energy of reactions, and they determined the directionality just by using the
standard values. Pitkanen et. al [43] followed the same path, and they assigned direc-
tionalities to the reactions in 49 fungal species’ GEMs by using eQuilibrator[44]. Assign-
ing directionality based on the Gibbs free energy approach is becoming more and more
popular, and has been applied to many metabolic networks reconstructions [45-51]. All
these calculations are done without a systematic integration of thermodynamics con-
straints. A systematic approach provides a more accurate estimation on the directionali-
ty of reactions in metabolic networks rather than using only standard the Gibbs free

energy of reactions (Figure 2).

Thermodynamic constraints can also be used to test the consistency of pre-determined
directionality in GEMs. By utilizing the NET analysis method, Martinez et. al [52], identi-
fied 319 unidirectional reactions in Recon 1, human metabolic network model. 306 of

these reactions were already set as unidirectional in GEM, whereas 13 of them emerged
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as new unidirectionality constraints. They also revealed thermodynamically infeasible
internal loops, and removed these biologically meaningless futile cycles. Moreover, they
concluded that organisms use alternative methods in order to overcome the thermody-
namic constraints, such as substrate channelling or coupling with ATP hydrolysis. In
this study as in all the current studies that use GCM data, the standard Gibbs free energy
values used were estimated for 25 °C, while the human body temperature is typically 12
degrees higher. This points to one of the important needs for expanding the GCM meth-
ods for broader ranges of temperature and pressure that can be used for the analysis of

systems like human and extremophiles.

2.3 Improving model predictions by integrating thermodynamics
with metabolic models

Accurate prediction of the observed phenotypes is one of the main evaluation criteria of
the quality of metabolic models. Thermodynamics, along with other constraints, such as
mRNA and protein expression data, are widely used to improve the prediction capacity
of metabolic networks. For instance, by applying thermodynamics constraint in a sys-
tematic manner by TFA, Soh et. al [27] showed that the optimum specific growth rate of
Saccharomyces cerevisiae drops from 1/hr to 0.42/hr with 15.33mmol/gDWhr glucose
uptake rate, and the experimentally observed value was 0.35/hr. In another study,
Schulz and Qutub proposed a method (corsoFBA) to integrate a ‘thermodynamics cost’
to metabolic networks, similar to EBA analysis, while optimizing the protein cost to
study sub-optimal growth phenotypes. They succeeded in capturing the metabolic flux-
es at sub-optimal growth from experimental data of E. coli at different dilution rates

[53].

NET analysis has been also used to test the thermodynamic feasibility of given direc-
tionalities in metabolic networks. De Martino and colleagues [54] proposed a method
that attempts to overcome the NET analysis’ requirement of pre-assigned reaction di-
rectionalities. They used their method to estimate the metabolite concentration ranges

for human red blood cells and to identify thermodynamically infeasible loops in E. coli.
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However, their formulation cannot guarantee a globally optimal solution and cannot

enumerate alternative optimal solutions as it is done by the TFA.

Another study combined NET, and experimental, analysis of E. coli [55]. The authors
revealed that the Acetyl-CoA C-acetyltransferase is thermodynamically infeasible in
acetoacetylCoA synthesis direction. Under anaerobic and aerobic conditions, this infea-

sibility results in a 2.9% and 1.1% reduction in growth, respectively.

Orman et. al [56] used EBA analysis to study the behaviour of the perfused livers under
fed and fasted states. They applied EBA on certain parts of the network, such as path-
ways, and assumed that the overall dissipation of these pathways must be equal or

greater than 0. The result was a significantly reduced solution space.

These studies further demonstrate the benefit of thermodynamic constraints and it will
be interesting to compare their results with the TFA analysis, which is not subject to

preassigned reaction directionalities.

2.4 Thermodynamics methods in Systems and Synthetic Biology
tools
Integrating thermodynamic information, either through Gibbs free energy of formation,
or in a network manner such as TFA, has become one of the most important features of
systems biology and metabolic engineering for the analysis and design of synthetic met-

abolic pathways.

Pathway design tools [57-61] use the standard Gibbs free energy of reactions estimated
through GCM[40] to prune the set of de novo generated pathways and to retain only the
thermodynamically feasible ones. However, they do not include any systematic net-
work-thermodynamics approach to account for the effect of concentrations of metabo-
lites on the overall thermodynamic feasibility of the pathways. The necessity of adjust-
ing the estimated standard Gibbs free energies to physiological conditions (metabolite
concentrations, pH, and ionic strength) is discussed in [62,63]. These studies also
demonstrate that the number of feasible pathways can be reduced significantly if ther-

modynamic constraints are applied. The pruning that is based only on the standard
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Gibbs free energy, and using methods like EBA, is very conservative. Many pathways
that would be discarded as infeasible using standard Gibbs free energy could become
feasible using a framework like TFA, which allows for adjustment of the free energy to

physiological conditions.

The use of thermodynamics in systems biology tools is not limited to pathway evalua-
tions and can also be used to provide ranges for the flux values. Thermodynamic Opti-
mum Searching (TOS) [64] aims to calculate the thermodynamically optimal flux solu-
tion by minimizing the magnitude of Gibbs free energy change and maximizing the en-
tropy production with an EBA type analysis. Muller and Buckmayr [65] propose a simi-
lar method with improved computation time. However, these methods are based on the
formulation of EBA, and therefore their results are biased in the pre-selection of Gibbs
free energy bounds. It remains to be shown how the reformulation of these methods can
integrate metabolite concentrations as variables and how they can reduce the computa-

tional cost associated with such integration.

2.5 Thermodynamically Feasible Elementary Flux Modes
Elementary Flux Modes (EFMs) analysis, which characterizes the allowable steady state
fluxes for a metabolic network [66], has been extensively used to investigate the capa-
bilities of metabolic networks. However, even a small network can have millions of
EFMs, and this necessitates the usage of methods to characterize and eliminate biologi-
cally irrelevant EFMs. Gerstl et. al [67] developed a framework to identify thermody-
namically feasible EFMs by utilizing NET approach. This method reduced the number of
EFMs significantly by eliminating the thermodynamically infeasible EFMs. A very simi-
lar approach was followed by Jol et. al [68], in which they calculated 71 million EFMs of
S. cerevisiae metabolic network, and through the NET analysis, they concluded that 56%
of the EFMs are thermodynamically feasible. A method that integrates thermodynamics
into EFM analysis with improved efficiency has been also developed[69]. These are very
promising results and new model formulations and algorithms can lead to significant
reductions in the number of EFMs, removing one of the main limitations for their

broader applicability.
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2.6 Thermodynamically feasible concentration ranges, Kkinetic
modeling and metabolomics

We can further use network thermodynamics to integrate metabolomics data in meta-
bolic network models and to evaluate the consistency of these data with the metabolic
flux profiles. Since metabolite concentrations determine the Gibbs free energy of a reac-
tion, the concentrations of the reactants must be consistent with the flux directionality.
Network thermodynamics can also be used to validate the experimental results of in
silico predictions, such as measured metabolite concentrations [70], or to explain the

variations in concentration levels under different growth conditions [71].

Soh and Hatzimanikatis [13] defined the thermodynamic space of the network as the
space of the thermodynamically allowable metabolite concentrations and the space of the
reaction displacements from equilibrium, which are constrained by the Gibbs free of the
reactions in the network. The thermodynamic space of a metabolic network can be
characterized and analysed through the sampling of the concentrations of the metabo-
lites and/or the corresponding Gibbs energies of reactions using a TFA or a NET analy-
sis formulation. Using such approaches Soh et al [27] have derived for the first time the
displacement from equilibrium for a metabolic network in yeast, which includes the
central carbon pathways and the cytosolic and mitochondrial electron transport chains.
A similar approach was also used by Birkenmeier et al [72] to generate thermodynami-
cally feasible pathways, by sampling the metabolite concentrations by NET analysis ap-
proach. They analysed the glycerol biosynthetic pathway of S. cerevisiae without a pri-
ori knowledge of specific enzyme kinetic rate laws and parameters. They concluded that
the pathway is primarily controlled by glycerol-3-phosphate dehydrogenase enzyme

that operates far from equilibrium; which was previously proven experimentally.

Thermodynamically feasible steady state concentration profiles can be further used for
kinetic analysis of organisms. Chakrabarti et al [73] developed a method to build kinetic
models for genome scale reconstructions that takes into account all the stoichiometric
and thermodynamic constraints of the flux balance models. In this work, they calculated

the thermodynamic space in a metabolic network of the 146 reactions and 90 metabo-
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lites that describe the central carbon metabolism and electron transport in E. coli using
the TFA formulation. For each sampled set of the thermodynamic allowable concentra-
tions, they next calculated thousands of kinetic models that were stable and consistent
with the allowable concentrations and flux profiles. The efficiency of the method in
building kinetic models of such size and quality depends strongly on the proper choice
of thermodynamically feasible concentrations early in the model-building process. Sim-
ilar studies by Milo and colleagues [74,75] have shown that the integration of thermo-
dynamic constraints and the decomposition of the rate expressions between the kinetic
and the thermodynamic terms can improve the process of building kinetic models and

provide important insights into the analysis of complex kinetic models.

2.7 Conclusions
While thermodynamics have been used in many studies, their use is still limited relative
to the enormous field of metabolic modelling. Plants, due to their importance for energy
capture, and extremophiles, due to their non-standard bioenergetics properties, are
very promising organisms for biotechnology but the study of their bioenergetics is very
challenging. Simons et al [76] reconstructed a metabolic model of a maize leaf and they
used the Gibbs free energy of reactions to remove thermodynamically infeasible cycles.
PlantSEED [77], a comprehensive computational environment that focuses on plant me-
tabolism, includes in its database thermodynamic properties of the metabolites and re-
actions, and it defines cellular subsystems and compartments based on metabolic re-
constructions for plants. Introduction of thermodynamic constraints in metabolic mod-
els that include multiple compartments is a challenging task that will require careful
formulation of the thermodynamic constraints for the transport reactions [78]. TFA
formulations for such networks can reveal important properties of the energy metabo-
lism and the bioenergetics properties of plants and other multi-compartmental organ-

isms.

A recent study [79] on the adaptation of Saccharomyces species to different tempera-
tures, accounted for the Gibbs free energies of reactions under different conditions, and

predicted the metabolic changes that keep cells alive, such as increased glycerol accu-
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mulation. To perform detailed study on organisms under such harsh conditions, it is
essential to have accurate predictions for thermodynamics properties at high and low
temperatures or high pressures. Recently, with the integration of quantum chemistry,
this issue has been addressed, and new methods are proposed to achieve this goal

[80,81].

Regardless of the organism under study, all future studies will require development of
methods for: (i) the identification and reduction of number of bidirectional reactions,
and (ii) the identification of the metabolites which, if measured, would allow us to esti-
mate the displacement of reactions from thermodynamic equilibrium with higher confi-
dence. Using methods like EBA and TFA we can identify the number of the bidirectional
reactions. However, alternative combinations of flux directionalities can grow enor-
mously as the number bidirectional reactions increases. Methods that can rank the al-
ternative flux directionalities and the associated flux profiles can provide a systematic
analysis of cellular physiology. Similarly the identification of the most informative me-
tabolites will be very important for studies in metabolomics, physiology and bioenerget-
ics. These methods should be able to handle large- to genome-scale networks and to
account for the uncertainty in the input data. We expect that developments in these are-

as will further expand the scope and the usefulness of network thermodynamics.

This Chapter is published with the following details:

Ataman M, Hatzimanikatis V: Heading in the right direction: thermodynamics-based network

analysis and pathway engineering. Current opinion in biotechnology 2015, 36:176-182.
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Chapter 3 - In silico Studies on Bioenergetics of

Aerobically grown E. coli

3.1 Introduction
Organisms utilize the energy stored in the carbon sources such as sugars, lipids, etc. to
maintain a lifecycle [82]. For many organisms, the source of this energy is obtained
from oxidation of organic compounds. The interconversion of this internal energy is a
one of the key points to understand the behaviour of organisms. The energy obtained
from this oxidation is captured in other organic molecules, such as ATP, NADH or re-
duced flavin [83]. These molecules are then oxidized or broken down in order to cata-
lyse the biochemical transformations that are necessary for the survival of the organism
[84]. Comparison between the energy stored in biochemical molecules and the energy
that organisms obtain from those molecules shows that the efficiency of energy captur-
ing is not 100 per cent [85], and significant amount of energy is lost during this process.
This energy is dissipated to the environment as internal energy captured in by-products
and as heat. The latter helps the cell to maintain a certain internal temperature, and to

avoid overall chemical equilibrium [86].

In cells, the main metabolite that captures the internal energy of the carbon source is
ATP. The production of ATP, under aerobic conditions, is directly related with the oxida-
tion/reduction reactions of a subsystem called Electron Transport Chains (ETC). ETC is
the pathway that is composed of a series of oxidation and reduction processes, which
terminates with the reduction of molecular oxygen to water [87] under oxygenated en-
vironments for many organisms. This pathway is coupled to the synthesis of ATP (oxi-

dative phosphorylation) via the enzymes translocating protons to extracellular or
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periplasmic medium, thus creating a proton motive force (pmf) [88]. P:0 Ratio, which
represents the ATP production per oxygen atom reduced in Electron Transport Chains
(ETC), has been defined as the stoichiometric efficiency for organisms in terms of ATP

synthesis [82,83].

Over decades, researchers studied in details on the thermodynamic efficiency of oxida-
tion of carbon sources, and the synthesis of ATP via oxidative phosphorylation, sepa-
rately. With non-equilibrium thermodynamics, the relation between the growth rate
and total Gibbs free energy dissipation of the organisms has been shown extensively
[84,89,90]. Moreover, in these studies, mathematical models to predict the experimen-
tally observed growth rates have been built. In such studies, the yield for ATP produc-
tion is also included, however these models are very simple compared to the complexity
that exists in cellular networks and ATP yield is included in the models usually as con-
stants. The stoichiometric ATP synthesis capacity of the organisms is studied mainly
through P:0 Ratio. Experimentally, stoichiometric P:0 Ratios have been determined for
different organisms [91-94], under different conditions, such as alternative carbon
sources, or nitrogen limitations. Also, these stoichiometric values have been utilized in a
few in silico analysis [18,95,96]. However, up to date, to our knowledge, P:0O Ratio,
which accounts for the efficiency of organisms to capture internal energy obtained from
oxidizing its carbon source, and Gibbs free energy dissipation, the energy that is lost

during this process have not been studied jointly in metabolic networks.

In this chapter, we focused on the bioenergetics of cellular networks, by utilizing ge-
nome scale metabolic reconstruction of E. coli [6] constrained with network thermody-
namics TFA [14] to study its P:O Ratio and Gibbs free energy dissipation behaviour, and
to reveal how those two bioenergetics concepts are interrelated. Moreover, we focused
on the behaviour of by-product formation of E. coli under aerobic conditions, and its
relation with the thermodynamic efficiency of this organism. We concluded that E. coli
interconverts the internal energy obtained from its sources, in this specific case glucose,
to biomass with highest efficiency at the experimentally observed optimum P:0 Ratio,
and this point coincides with highest theoretical specific growth rate. Also, we identified

the enzymatic biotransformations, which are the main components of the dissipated
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free energy, and we concluded that these enzymes are mainly elements of ETC path-
ways. Finally, we showed that acetate, as the main by-product for E. coli, is also the most
efficient by-product formation route, to minimize the Gibbs free energy dissipation to

the environment.

3.2 Materials and Methods

For simulations, we used the latest genome scale model of E. coli i0J1366, which is com-
posed of 2253 enzymatic reactions and 1138 unique metabolites, along 2 compart-
ments, periplasm and cytosol. We thermodynamically curated the model with an in-
built toolbox, called AGADOR, which uses the TFA[13,14] formulation. In this work, we
focused on the aerobically grown E. coli with glucose as the sole carbon source. There-
fore we used the reported values for uptakes and secretion under these conditions from
literature [97]. TFA formulation allows the usage of metabolite concentrations, both
intracellular and extracellular; hence we integrated ec (energy charge), crc (catabolic
reduction charge) and arc (anabolic reduction charge) to the model by integrating the
metabolomics data from another study from Bennett et al. [38]. We directly constrained
the absolute metabolite concentrations of ATP, ADP, AMP, NAD+*, NADH, NADP+, and
NADPH. In order to account for the extracellular metabolite concentrations such as sul-
phate, phosphate, ammonia, carbon dioxide and oxygen, we integrated data from the

study from Henry et al. [14].

We simulated each P:0O point by setting the ratio between the ATP synthase flux and the
reactions that use oxygen in Electron Transport Chains of aerobically grown E. coli,
three reactions catalysed by cytochrome enzymes (bd-1, bd-2 and bo3). We followed

the steps listed below to simulate different P:0 ratio values for Flux Balance Analysis:

1. We create a pseudo metabolite.
2. We create a new constraint for the balancing of this metabolites as follows:
a. We add the pseudo metabolite into ATP synthase reaction with the stoi-
chiometric coefficient 1 (as product) and cytochrome reactions with the
coefficient y (as reactant).

b. We create the mass balance constraint for this metabolite:
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i. Flux_ATP_synthase -y (Flux_3_Cytochromes) = 0.
c. We generate different solutions by varying y incrementally.
We used the same approach to simulate P:0 ratio in TFA formulation, and perform sim-
ulations at different P:O ratios to study its effect on the metabolic network behaviour
under mass and thermodynamic constraints. The only difference is that in TFA formula-
tion, we can add the constraint for P:0 ratio without introducing a pseudo metabolite in

the formulation.

To calculate the Gibbs free energy dissipation of the cell (¢p), we utilized the Gibbs free
energy of reactions, and the corresponding flux values. The formula that we used to cal-

culate the Gibbs free energy dissipation is as follows:

¢ = Z (”jAGigm.j + ijTZ ”l”(ci)> (3.1)
j i

In this equation, v; represents the flux through jt reaction, ¢; is the concentration of
metabolite i in the reaction v;, with the stoichiometric coefficient as ‘n”. If we write this

equation by inserting the stoichiometric matrix, we reach to the following representa-

tion:

¢ =vTAG'° + RT(wTNT)In(c) (3.2)

In this representation, v” is the transpose flux profile vector, N7 stands for the trans-
pose of stoichiometric matrix, ‘c’ is the vector that keeps the concentration of each me-
tabolite in the system and AG'° is the vector that keep the transformed standard Gibbs
free energy of reaction for each reaction in the network. Pseudo steady state assump-
tion assumes no accumulation of any metabolites in cells; hence the mass balance for all

metabolites in Flux Balance analysis is represented through the following constraint:

Nov=0 (3.3)
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If we split the stoichiometric matrix into 2 parts, namely enzymatic reactions (N°®"#),
and boundary reactions (N?"¢), pTbndNT:Pnd wi]] not have a contribution to ¢ since
boundary reactions are not real reactions, but just define the systems boundaries,
therefore they do not have a A4G,2,,. If we write the Gibbs free energy dissipation term
with Formula 3.2, the term (vTN®"#)In(c) will have 0 contribution for cytosolic and
periplasmic metabolites, but will have contribution for the extracellular metabolites,
since these metabolites will not be balanced by boundary reactions. Therefore media
composition will have a direct effect on the Gibbs free energy dissipation of the organ-
ism, along with its indirect effect by changing the possible flux distributions in the met-

abolic network.

The values reported in this paper for Gibbs free energy dissipation is adjusted for pro-
duction of 1 Carbon mole of biomass. In order to calculate the Gibbs free energy dissipa-

tion for this term, we used the following representation:

¢ (total)

Carbon mole in biomass * Specific Growth rate

¢(1 Carbon mole of biomass) =

(3.4)

#0f BBB

Carbon mole in biomass = z n; * BBB; 4 of carbon (3.5)

i

in where n; is the stoichiometric coefficient of BBB; in the biomass formulation.

3.3 Results and Discussion
The studies about bioenergetics of metabolic networks revolve around respiratory
chains, mainly oxidoreductases, dehydrogenases, ATP synthase enzymes and transport
reactions across membranes. All these reactions are parts of GEMs, with well-defined
stoichiometry. Moreover, TFA allows us to focus on bioenergetics of the whole cell with
a systems perspective through detailed thermodynamics descriptions of enzymatic re-

actions and biochemical transports processes[78].
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Firstly, we focused on the stoichiometric efficiency of ATP synthesis of E. coli under aer-
obic conditions with glucose as the sole carbon source. Experimentally, P:O ratio is de-
fined as the number of ATP molecule produced per oxygen atom uptaken by the cell
[92]. Slightly different, we define P:O ratio as the flux through ATP synthase reaction
and the total flux through reactions catalysed by Cytochrome enzyme family (Table 3.1),
which utilizes oxygen to create proton motive force (pmf) across the compartments.
Since some other enzymes in the organism can use molecular oxygen, this representa-
tion captures the coupling between the oxygen usage as terminal electron acceptor and
ATP synthesis. Moreover, the protons that are pumped from cytoplasm to periplasm via
cytochromes are coupled to ATP synthase reaction; the amount of reduced oxygen is
directly related to the amount of ATP that the cell synthesizes via oxidative phosphory-

lation.

PO = VATP snythase (3_6)
2. Zi cht,i
The denominator is multiplied by 2, since the oxygen in P:0 definition is based on atom-

ic oxygen.

Table 3-1 Stoichiometry of the each Cytochrome Oxidoreductases and ATP synthase reactions in the E.
coli metabolic network.

Enzymes Enzymatic Reaction Formulas
CYTha1 2 H*(cytosolic) +Ubiquinol8+0.50; > H20 + Ubiquinone8 + 2 H*(periplasmic)
CYTpaz 2 H*(cytosolic) + Menaquinol8 + 0.502; - H20 + Menaquinone8 + 2 H*(periplasmic)
CYTbo3 4 H+*(cytosolic) + Ubiquinol8 + 0.50; = H20 + Ubiquinone8 + 4 H*(periplasmic)

ATP synth ADP + Phosphate + 4 H*(periplasmic) = ATP + 3 H*(cytosolic) + H20

The reported values for P:0 ratio of E. coli in the literature are close to each other, 1.5 *
0.1[96] and 1.49 = 0.26 [91] under aerobic, glucose minimal media, which they define a
range, rather than a single value. Moreover, Bekker et al. showed that P:0 ratios can
vary due to the alternative enzymes in the aerobic respiratory chains of E. coli[98]. Dif-
ference in the stoichiometry of these enzymes, mainly the number of pumped out pro-

tons contributes to the flexibility and variability in observed P:O ratios.
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Metabolic models allow creating constraints that can represent splitting points between
any parts of the networks. P:0 ratio is not a splitting point, however different P:0 ratios
can be represented as splitting points between ATP synthase reaction and the total flux

through cytochrome reactions in Formula 3.6 (Materials and Methods).

I N )

0.2 0.2

0.1 0.1

0 05 1 15 2 25 3 35 4 o o5 1 15 2 25 3 35 4
P:0 Ratio P:0 Ratio

@

0.8
0.7
0.6
0.5

0.4—

Wy (1/h1)

03L&

0.2

25 T —— I

20
o 15 10
Xygen Uptake Rate (mmo]/gDV\;hr) T

Figure 3-1:Feasible P:0 range and corresponding specific growth rates. A) Flux Balance Analysis (FBA)
results. C) Same analysis repeated with thermodynamic constraint implied by TFA. C) Feasible P:0 range
under different Oxygen Uptake Rates with TFA. By changing the Oxygen Uptake Rate of E. coli metabolism
from 1 mmol/gDWhr to 30 mmol/gDWhr, feasible P:0 ranges for each uptake rate is determined. P:0

value is iteratively increased by a step of 0.001 from 0 to 2 for each oxygen uptake rate, and correspond-
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ing specific growth rates are determined. The plateau shows the adaptation of the organism to different

oxygenation states, and its ability to survive under different environmental conditions.
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Figure 3-2: Feasible P:0 range and corresponding specific growth rates for different OUR - Color-map

This approach enables us to perform sensitivity analysis by varying the P:0 ratio over a
broad range, and observe its effects on the theoretical maximum growth of E. coli. With
open bounds on Oxygen Uptake Rate and a fixed glucose uptake rate, analysis with FBA
and TFA indicated that the optimum P:0 Ratio for E. coli is 1.575 (Figure 3.1 a-b). To
investigate the effect of OUR on P:0 ratio and specific growth rate, we repeated the
same study by fixing different oxygen uptake rates. This in silico analysis of different
oxygen uptake rates shows an optimum specific growth rate (0.78/hr, with glucose up-
take rate of 8.16 mmol/gDWhr) at ~15.5-21.5 mmol/gDWhr with 1.575 as P:0 ratio,
which shows accordance with experimental optimum values (Figure 3.1). Moreover,
when P:0 ratio is forced to be bigger than 2.2, the cell cannot maintain high fluxes
through cytochromes and ATP synthase, thus decreasing the ETC activity. If we force a

high oxygen uptake flux in this condition, the cell uses this oxygen in other reactions,
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such as MOX, malate oxidase. This signifies an important stoichiometric limit for E. coli

in terms of P:0 ratio.

After the optimum oxygen uptake rate of ~15.5 mmol/gDWhr, we do not observe an
increase in the yield; on the contrary, if we force more oxygen than ~21.5
mmol/gDWhr, the specific growth rate of the cell decreases (See the plateau in Figure
3.1). In silico optimum P:0 (1.3 to 1.575) values under different oxygen uptake rates are
in the experimentally reported range, and it continuously increases till the optimum

specific growth rate, and gets stabilized from this point, and stays around 1.55-1.6.

In silico and experimental P:0 ratio is calculated by stoichiometric basis, which must be
connected to the ‘energy’ term in bioenergetics. In order to reveal the relation between
P:0 ratio and bioenergetics of the cell in more details, we utilized a term, long known to
have relation with the carbon yield of the cell[17], Gibbs free energy dissipation. Gibbs
free energy dissipation is the amount of free energy that the cell releases to the envi-
ronment. In this context, we used the Gibbs free energy dissipation term as the heat that
must be released from the cell to produce 1 Carbon mole of biomass, which is the
consensus term that represent the amount of biochemical work required to convert a
carbon source into biomass and can be used to characterize chemotrophic microbial

growth[17].
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Figure 3-3: Gibbs Free Energy Dissipation vs. P:0 Ratio and Growth

Firstly, we fixed the glucose uptake to the experimental value, and tested the behaviour
of the cell under different P:0 ratios, and calculated the corresponding growth and
Gibbs free energy dissipation of the cell. We did not put any constraint on the oxygen
uptake, to observe the direct relation between P:0 ratio and dissipation. As we move
along the P:0 curve (Figure 3.3), we observe that minimum Gibbs free energy dissipa-
tion corresponds to the optimum P:0 ratio and optimum growth. This suggests that the
cell minimizes the amount of free energy that it disposes to the environment while it
maximizes growth. However, the curve that represents the free energy dissipation is
calculated based on 1 solution and is not tested for alternative solutions. Sampling
methods can be used to study different flux profiles for FBA problems, however they
cannot account for concentrations, since sampling cannot be performed for Mixed Inte-
ger Linear Programming problems like TFA. To study the extrema for free energy dissi-
pation, we employed a new approach. The formulation of Gibbs free energy dissipation
suggests a very important characteristic of the cells; the dissipation does not depend on
the intracellular concentrations, since the contribution of the intracellular concentra-

tions to Gibbs free energy term will cancel out when we sum up all the reaction AG;g’mJ
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in the system. So the governing terms in the system are the standard Gibbs free energy

of reactions, AG,’Ag’m’ ; and the extracellular metabolites (Materials and Methods for deri-

vation). Moreover, by fixing the media composition concentrations from the literature,
we reduce the flexibility that emerges from extracellular metabolites. In order to study
this behaviour, in each P:0 point along the curve, we calculated the maximum and max-
imum sum of standard transformed Gibbs free energy of all reactions (Figure 3.4), mul-
tiplied by the corresponding flux value. We call this term ‘pseudo-dissipation’. As hy-
pothesized, we observed that the ‘real’ free energy dissipation of the cell is accordant to
its minimum and maximum pseudo-dissipation and are showing the same behaviour
along the P:0 Ratio curve. Highest growth coincides with the minimum pseudo free en-
ergy dissipation extrema, and the real dissipation that is calculated based on 1 solution
shows the same behaviour. Another striking result is the smoothness of the curve for
pseudo dissipation extrema; we do not observe any peaks and troughs. Moreover, the
P:0 ratios that have wider pseudo dissipation range are the ones that we observe the

peaks and troughs in real dissipation based on 1 solution.
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Figure 3-4: The relation between P:0 ratio, specific growth (1/hr), and Gibbs free energy dissipation
(kcal/mol) of aerobically grown E. coli. The highest grown, and optimum P:0 ratio corresponds to the
minimum Gibbs free energy dissipation, and real dissipation can vary between the minimum and maxi-
mum pseudo dissipation. The real dissipation value is based on 1 solution (within degrees of freedom of
the system), hence it can fluctuate according to maximum and minimum pseudo dissipation. As the sys-
tem moves towards optimum, the allowable range for dissipation shrinks. Vertical dashed line indicates

the optimum P:0 Ratio.

3.3.1 Affect of Oxygen Uptake Rate (OUR) on P:0 Ratio and Dissipation Behav-

iour

Up to this point, in all simulations we only used an upper bound for OUR, which is 30
mmol/gDWhr. Since OUR is directly connected to P:O Ratio through Cytochrome en-
zymes, we decided to observe the system behaviour under different oxygenation states,

and repeated the calculations with different OURs (Figure 3.5).
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Figure 3-5: P:0 vs. Oxygen Uptake Rate vs. Gibbs Free energy dissipation. This figure illustrates the rela-
tion between P:0 ratio, specific growth rate and Gibbs free energy dissipation. Expectedly, Gibbs free

energy dissipation is at minimum at the optimum specific growth rate for all 4 cases. The optimum P:0
ratio differs for different OURs.

As stated before, under different oxygen availability, the optimum P:0 Ratio will vary.
For instance, at OUR=5mmol/gDWhr, the theoretical highest specific growth rate is
achieved at P:0 Ratio= 1.1. This is significantly smaller than the optimum under fully
aerobic conditions, which is 1.575. However, the optimum P:0 Ratio and minimum

pseudo extrema still coincide and this behaviour is preserved for different OURs. This

47



Chapter 3: In silico Studies on Bioenergetics of Aerobically grown E. coli

shows that under different environmental conditions, the cell tries to minimize the

Gibbs free energy dissipation.

However, still these data are not sufficient to explain the details on dissipation behav-
iour of E. coli since they represent the overall Gibbs free energy dissipation behaviour,
and approaches the organisms as a black box with certain inputs and outputs. In order
to investigate in more details, we studied on the Gibbs free energy dissipation charac-

teristics in a reaction-by-reaction basis.
3.3.2 Analysis of Gibbs free energy dissipation of E. coli on reaction basis

In this chapter, we claimed that E. coli, while optimizing growth, minimizes the amount
of free energy dissipated to the environment. In silico analysis gives the opportunity to
determine the enzymatic reactions, or reaction sets that govern the dissipation behav-
iour of the organism under different P:0 ratio and oxygen uptake rates. To achieve this
goal, we performed an analysis on the GEM, by taking into account the following crite-
ria: i) keeping the cell under the optimized specific growth at each P:0 point along the
curve in Figure 3.2. ii) Keeping the cell under the pseudo dissipation range calculated from
GEM. iii) Performing variability analysis on Gibbs free energy dissipation for each reaction.
By moving along the P:0 curve, we determined all reactions that are having a significant
contribution to free energy dissipation. Among these reactions, in each point along P:0
curve, reactions, mainly from dehydrogenases, transhydrogenases, cytochrome oxi-
doreductases and quinone reductases (see Table 3.2) have the largest effect on the dis-
sipation behaviour. Among these reactions, dehydrogenases and quinone reductases
have the biggest effect (for full list Appendix Table A.1). Another conclusion from this
analysis is that, even though we do not see every reactions active simultaneously along
the P:0 curve, dehydrogenases, transhydrogenases, cytochrome oxidoreductases and
quinone reductases are interchangeably used by the cell (inside their own enzyme fami-
ly), and the cell minimizes the amount of free energy dissipated to the environment by
choosing the necessary, but optimum in terms of dissipation, biotransformations cata-
lysed by these enzymes. In a recent study[99], the usage of cytochromes were reported

to be directly related to the membrane occupancy, in this study, we claim that the usage
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of the type of cytochromes does not depend only on the number of pumped protons and
membrane occupancy, but also it is related to the amount of heat dissipated to the envi-
ronment. Our final observation is that, as the ATP synthase enzyme synthesizes more
ATP, it brings more dissipation burden to the cell; hence we claim that the ATP produc-
tion of the cell is not only constrained by stoichiometric limitations, but also by thermo-

dynamic properties of the organism under aerobic conditions.

Table 3-2: Enzymatic reactions that affect most the Gibbs free energy dissipation of aerobically grown E.

coli. DIM is an abbreviation for DIMethyl.

Enzyme Enzymatic Reaction Formula AG,?;n
ATPM ATP + H20 - ADP + H* + Phosphate -7.76
ATPsynthase ADP + Phosphate + 4H*(p) = ATP + 3H*(c) + H20 -8.80
CYTpa1 2H*(c) + 0.5 02 + Ubiquinol8 > H20 + Ubiquinone8 + 2H+*(p) -28.66
CYThpaz 2H*(c) + 0.5 02 + Menaquinol8 - H20 + Menaquinone8 + 2H*(p) -14.94
CYTho3 4H*(c) + 0.50; + Ubiquinol8 - H20 + Ubiquinone8 + 4H+*(p) -20.38
GLUDy L-Glutamate + H20 + NADP* - Oxoglutarate + H* + NADPH + NH4 11.23
MDH L-Malate + NAD* - H* + NADH + 2-Oxaloacetate 4.75
MDH2 L-Malate + Ubiquinone8 -> Oxaloacetate + Ubiquinol8 -11.22
NADH17pp 4H*(c) + NADH + Menaquinone8 -> NAD* + Menaquinol8 + 3H*(p) -13.13
NADH18pp 4H*(c) + NADH + DIMmenaquinone8 - NAD*+ DIMmenaquinol8 + 3H*(p) -2.28
SUCDi Ubiquinone8 + Succinate - Fumarate + Ubiquinone8 -2.44
NADPHQR2 H* + NADPH + Ubiquinone8 > NADP+* + Ubiquinol8 -15.58
NADPHQR3 H* + NADPH + Menaquinone8 > NADP* + Menaiquinol8 -28.30
NADPHQR4 H* + NADPH + Dimethylmenaquinone8 - NADP* + Dimethylmenaquinol8 -18.45
PDH CoA + NAD* + Pyruvate - AcCoA + CO2 + NAD+* -10.53
THD; NADH + NADP+ + 2H*(p) > 2H*(c) + NAD* + NADPH -8.67

3.3.3 Relation between acetate production and Gibbs free energy dissipation

of E. coli

The goal of the cell has been a debate for many years, and recently there are different
approaches and hypothesis for the multiple optimality criteria for cells[100]. Until this
point, we reported on optimally grown E. coli cells, without a significant by-product

formation other than CO2, under these conditions, the lowest Gibbs free energy dissipa-
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tion and the optimal growth corresponded. To extend our study, we then studied the
Gibbs free energy dissipation characteristics of by-product forming E. coli. Even under
perfect conditions (aerobic, glucose, rich in salts media), E. coli is known to produce by-
product acetate[101]. In order to test our hypothesis with acetate producing E. coli,
firstly, we forced the experimental amount of acetate as by-product (4.95 mmol/gDWhr
acetate from 8.16 mmol/gDWhr glucose) from the model, and tested P:0 versus growth
characteristics, which resulted in the same behaviour that we observed with theoretical
maximum growth rate, with an optimum P:0 value as 1.55. Also when we calculated the
Gibbs free energy dissipation values to produce 1 Carbon mole of biomass, we saw that
the optimum growth as 0.65/hr corresponds to the lowest Gibbs free energy dissipation
along the P:0 curve, which shows that the Gibbs free energy dissipation minimization

still holds under by-product formation.
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Figure 3-6: Gibbs free energy dissipation of the E. coli cells with different product formation: By forcing
the same amount of carbon disposal from each by product, the corresponding Gibbs free energy dissipa-
tion (to form 1 Carbon mole of Biomass) and specific growth is calculated. Acetate disposal, even though
it does not lead to highest specific growth rate, is observed to produce lowest dissipated free energy to

the environment.
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E. coli can produce different by-products under imperfect conditions, and it does a
mixed acid fermentation under anaerobic conditions. Hence, a question regarding the
production of acetate emerges. Why does the cell prefer to produce acetate rather than
other by-products? In order to test the dissipation characteristics for each by-product
disposal cases, we forced the same amount of carbon through each of them, while keep-
ing CO2 disposal unconstrained. We maximized the biomass production, and fixed the
theoretical maximum growth rate and performed a variability analysis on the pseudo
dissipation to observe the limits of free energy dissipation in each case. We observed
that pseudo dissipation varies between 179kj/C-mol to 190 kj/C-mol of free energy,
with a specific growth rate of 0.65/hr, which is very close to experimental growth rate
of 0.61/hr in acetate producing case. All other 8 cases, namely, pyruvate, lactate, etha-
nol, oxoglutarate, succinate, malate, formate and glycerol, generated more free energy,
even though 2 of them (pyruvate, oxoglutarate) resulted in higher specific growth rates
(Figure 3.6). We claim that acetate is preferred over other by-products, since its dispos-
al produces less heat than other metabolite secretions, or at least we can say Gibbs free
energy dissipation is one criterion for this preference. Moreover, when acetate produc-
tion pathway is blocked by knocking out 2 main genes, phosphotransacetylase and ace-
tate kinase, the main by-product becomes pyruvate[102], which is the second optimal

candidate according to the free energy dissipation analysis.

3.4 Conclusion
In this chapter, we focused on the bioenergetics efficiency of aerobic growth of E. coli.
We have shown the consistency between in silico and experimental P:0 ratio, as well as
the growth characteristics and Gibbs free energy dissipation. We claim that the cell min-
imizes the amount of heat dissipated to the environment while growing with optimum
capacity. We reported the enzymes that are responsible for determining the dissipation
behaviour of the cell. We also showed the relation between the acetate producing E. coli
cell and Gibbs free energy dissipation, and we hypothesize that the cell chooses acetate,
because acetate production results in lowest Gibbs free energy dissipation even though
it does not lead to the highest growth. Studying on the bioenergetics efficiency of the

cell can be further used to determine the limitations of the cell for growth, or for pro-
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duction of a certain industrial chemical production. We suggest that Gibbs free energy
dissipation can be used as a selection criterion for the novel pathways for the produc-

tion of target chemicals in host cell.
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Chapter 4 - lumpGEM: Systematic Generation of
Biosynthetic Subnetworks for Biomass Building

Blocks

4.1 Introduction
Stoichiometric models have been extensively used since 1980s[103-105] and prediction
capabilities of these networks have been proven to be very useful. The size and struc-
ture of these models varied among different studies. One of the pioneering studies on E.
coli through a small stoichiometric model is performed by Varma et al. [106,107] in
where the authors described the model as composed of core carbon metabolism path-
ways namely, glycolysis, pentose phosphate pathway, TCA cycle and formation of some
by-product formations accompanied by a part of the Electron Transport Chains (ETC).
This stoichiometric definition is further extended by the integration of a biomass com-
position formulation that is provided in the classic text published by Neidhardt[108]. In
this textbook, E. coli metabolism has been explained extensively, and all the components
(amino acids, lipids, DNA, RNA etc.) that constitute 1gDW of cell were reported based on
previous experiments[21]. Moreover, the amounts of 12 precursor metabolites from the
core carbon metabolism (erythrose-4-phosphate, ribose-5-phosphate, pyruvate, alpha-
ketoglutarate, phosphoenolpyruvate etc.) along with the requirement of cofactors (ATP,
NADH, NADPH) and inorganic compounds (S, NH4) to synthesize these biomass build-
ing blocks (BBB) were estimated. This information allowed the authors to develop a
model that can mimic the growth behaviour of the organism without including the com-
plex biosynthesis routes for each individual biomass building block. With such a small

stoichiometric representation of the core metabolism (~50 reactions), authors were
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able predict many aspects of E. coli physiology. Similar metabolic models have been

used in many other studies[109-111].

In the following years, with the development of sequencing and high-throughput tech-
nologies, the gene-protein-reaction (GPR) associations[112] have been improved and
this sparked off the number of sequenced genomes[113,114]. This accumulation of
knowledge eventually has led to the development of Genome Scale Metabolic Networks
(GEMs), firstly for E. coli [115], which encapsulate all the known biochemistry of organ-
isms. These comprehensive representations of metabolism are accompanied by biomass
formulations that account for 1gDW of cell composition[10]. The contribution of each
biomass building block is either determined empirically, or approximated from phylo-

genetically close species[116].

The emerging GEM era has produced many metabolic models for various organisms
[30,117,118] and their strains[95,119] and proved to be extremely useful for many dif-
ferent purposes from strain design for biosynthesis of industrial chemicals to drug dis-
covery[120]. The applicability of the GPR method eventually has led to the development
of GEMs for higher organisms such as mouse[121], plants[76] and human[122]. Alt-
hough GEMs are widely used and they have provided important insight and guidance,
the charm of small and yet predictive models still shines the eyes of researches for
many purposes. And while the biomass formulation of Neidhardt is still in use and has
proven to be valid in the last 25 years, as Pramanik et al. [111] have shown, the changes
in the biomass composition has significant effects on the internal fluxes, thus should be
considered very carefully. In this respect, the extended and curated biochemistry in
GEMs can be used to validate and to improve the approximations made by Neidhardt,
and to extend it for every biomass building block defined in biomass compositions of

GEMs and to account for alternative synthesis routes.

Towards this, we developed lumpGEM, an algorithm that identifies all the alternative
reaction subnetworks that should be used to produce a cellular metabolite or biomass
building block from defined subset of metabolites, such as a core metabolic net-

work/subsystem. In this study, we focused on the biosynthesis pathways of biomass
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building blocks of E. coli J01366 [119], and with our tool lumpGEM, we have identified
known and possible other alternative synthesis routes/subnetworks for all BBBs from
core carbon metabolism as defined in[106,107]. We demonstrated that lumpGEM is ca-
pable of building lumped reactions in where the contribution of each core carbon me-

tabolite to synthesize a biomass building block is identified and properly accounted.

GEM

y

core ™ " biomass '}

precursors

non- core ™\

o R < [ Amino Acids
Lipids

NTPs/dNTPs

Cofactors

Glycolysis, PPP, TCA, Anaplerotic [ Lipid, Amino Acid Synthesis etc.

NS
+ Thermodynamically lumpGEM |::>
Feasible Subnetworks to

« Alternative Subnetworks/
Lumps for same BBB;

« Ranking Alternative
Lumps by Yield

PC1 PC2 ATP NADH NADPH NH, S

BBB; a b c d e f g

Synthesize BBBs from
Core Metabolites

BBB, h i k 1 m n p

Figure 4-1: Inputs and outputs for lumpGEM. By defining the core precursors (PC1, PC2, ...), biomass
building blocks (BBBs), and non-core parts of metabolism, the GEM is provided to lumpGEM. The output
of lumpGEM is thermodynamically feasible subnetworks, which with the core, is capable of
ing BBBs. The MILP characteristic of lumpGEM allows the building of alternative subnetworks and lump

reactions for the same BBB;, and it ranks them according to yield.

Using these lumped reactions, we performed a comparison between the approximations
of Neidhardt and the values generated by lumpGEM. Such studies will help us to under-
stand the capabilities of E. coli ‘per’ biomass building block and identify the flexibility of
the organism to survive by activating different parts of the metabolism to accumulate

biomass. The generality of the method makes it applicable to any GEM that has a well-
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defined biomass composition. In addition, lumpGEM can generate lumped reactions
from any part of the metabolism for any target metabolite, either a biomass building
block or a biochemical and chemical compound or sets of compounds, which makes it

versatile to be used for different purposes.

4.2 Materials and Methods

4.2.1 Preliminary Definitions
BBB: Biomass building block.

Mc°T¢: Metabolites that belong to core system, in this specific case, defined in Varma et

al. [106,107].

R€°T¢: Reactions that belong to core system, in this specific case, defined in Varma et al.

[106,107].
MCEM: Metabolites that belong to GEM that do not belong to Mc°¢,
RGEM: Reactions that belong to GEM that do not belong to R°°"®,

S7: Subnetwork (set of reactions) that synthesizes BBB; other than M R and

MGEM RGEM

composed of and
M>s¥P: Metabolites that belong to S/.

RS¥“P: Reactions that belong to S/.

FUSE: Binary decision variable that controls the flux through each R“2™, When decision

is 0, the reaction is active.
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4.2.2 Generating Subnetworks for each BBB

a. Decompose the biomass composition of GEM to each of its components, such as ala-
nine, tyrosine, biotin, etc. Built a new GEM model by allowing the individual produc-
tion of each BBB.

b. Define M°"®and R°"¢.

c. Split all the reactions in GEM in Step a. into forward F,.,, ; and backward B,.,, ; com-
ponents.

d. Create binary use variables FUSE; for each RFEM

e. Generate a constraint for each REM that will control the flux through these reac-

tions as:

Frxni + Brxni + C.FUSE; < C

C is the number of carbon atoms that the cell uptakes from its surrounding. If the cell
can uptake multiple carbon sources, and the number of carbon atoms is not definite, an

arbitrary big number can substitute for C.

Postulate 1: Binary control is unbiased to reaction directionality. This means that RFEM
that is controlled by FUSE; can operate in both directions if the existing constraints

(mass balance and thermodynamics) allow it.

f.  Apply thermodynamics constraints for M“°"¢and R°"® as defined in[13,14].
g. Build the following MILP formulation for each BBB;:

Maximize

such that:

Sv=0 (4.1)
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Vppg,j = Wj,GEM- Mmax (4.2)

Vgpp,;: The sink that is created in Step 1.a for BBB; for its biosynthesis.
Wnax: Theoretical maximum specific growth rate for the given physiology in 1/hr units.

n; cgm: The stoichiometric coefficient for BBB; in mmol/gDW unit as defined in original

GEM.

Postulate 2: Any M“°"¢ is a potential precursor for the biosynthesis of BBB;.

Postulate 3: Maximizing for the sum of FUSE; results in the smallest subnetwork S/to
produce BBB; from M“°"®. This subnetwork is not necessarily composed of only linear
pathways as reported in databases such as KEGG[22], SEED[123] or EcoCyc[124] etc.

and may include branches.

Postulate 4: The flux distribution for each generated subnetwork cannot guarantee an
optimum flux distribution that will specify the individual stoichiometric contribution of

each M“°® to synthesize BBB; due to the degrees of freedom (DOF) that the system has.

Moreover, the GEM built in Step f. for generating subnetworks is partially constraint

with thermodynamics, and these subnetworks are constrained by only mass-balance.

To overcome these limitations, we have built the following MILP formulation for each

S

a. Generate a model comprised of:
i, Mecoreand Reore
. s
iiil. vgpg
b. Apply thermodynamic constraints on this model as described in [13,14].
c. Build the following formulation for each S/:

Minimize
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#of Rsub #of Rsub

Z FR’scub + Z RRlscub
k k
such that

Sv=0

vBBB,j >1 (43)

F sup and Rsub are integer variables.
k k

Postulate 5: Minimizing the sum of net flux through RS*? generates a stoichiometrically
proportional flux distribution in the subnetwork S’/. This leads to the exact stoichio-

metric expenditure of each M“°"® to synthesize BBB;.

d. Lump RS*? with respect to the flux distribution obtained above, Step c. This is collaps-
ing the reactions into 1 overall reaction that is stoichiometrically equivalent to the flux

distribution generated above.

Generating Alternative Subnetworks for each BBB;

To identify alternative subnetworks for BBB;, GEM is further constrained with the fol-

lowing constraint after generating each S/ with an iterative manner[125].

# Of Rsub

Z FUSERsub > 0
k
k

Postulate 6: Since R,ﬁ”b is active if only FUSER’_zub = 0, the next solution will have at least

1 different reaction from the previous solution. Aftermath, the same procedure is ap-

plied for the newly generated S/2.
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4.3 Results and Discussion

When the genome scale model is optimized for maximum specific growth with Flux Bal-
ance Analysis, the contribution of M¢°"¢ (the metabolites defined in Varma stoichiome-
try) to synthesize a biomass building block is not evident from the flux distribution due
to the degrees of freedom that the system has, and the alternative routes that a BBB can
be synthesized. In order to overcome this limitation, we have developed lumpGEM, a
Mixed-Integer Linear Programming (MILP) based tool (See Material and Methods) to
reveal the contribution of M€ and R°"¢ (reactions defined in Varma stoichiometry)
in an optimum manner. MILP formulations have been often used on biochemical net-
works for many purposes[126-129] since they allow the control of reactions with an
on/off manner. We made use of this binary decision in order to control the flux through
the reactions of R%EM(the reactions defined in GEM network other than R¢°"®), and
lumpGEM allowed us to build minimal subnetworks that can synthesize BBBs from any
defined part of the metabolism in GEMs, in this specific case, the core carbon metabo-

lism.

The biomass formulation defined in E. coli 10J1366 is very well characterized and de-
tailed and contains 102 biomass building blocks. It is mainly composed of amino acids,
lipids, nucleoside triphosphates (NTPs), deoxy-NTPs and inorganic compounds (Nickel,
Zing, Iron, etc) along with cofactors such as NAD*/NADH, NADP+/NADPH, CoA/AcCoA,
and FAD. Experimental estimates of the growth associated ATP maintenance and pro-

duction of diphosphate are also included in the biomass composition.

The main difference between our approach for generating synthesis routes for the BBBs
and the database-based analysis is that the subnetworks that our method generates may
include branches from linear synthesis pathways. The difference emerges from the
mass conservation constraint that we force during our analysis. For instance, the small-
est subnetwork that lumpGEM generated for the synthesis of histidine is composed of
21 reactions and the precursors are ribose-5-phosphate (R5P) and oxaloacetate. In the
databases, the linear pathway for histidine synthesis is composed of 10 steps and has
ribose-5-phosphate as the only precursor. When we analyse the 21-reaction subnet-

work, we see branching points in the linear route from R5P to histidine. Due to the mass
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balance constraint, three metabolites, 1-(5-Phosphoribosyl)-5-amino-4-
imidazolecarboxamide, L-Glutamine and diphosphate (metabolites colored with red in
IG3PS and PRATPP reactions in Figure 4.2) cannot be balanced in a network that is
composed of core reactions and the linear pathway from ribose-5-phophate to histidine.
Hence, the generated sets of reactions are not only the linear routes from precursor me-
tabolites to biomass building blocks, but balanced subnetworks with stoichiometrically
proportional branches. lumpGEM captured reactions from different subsystems to pro-
duce histidine, alanine and aspartate metabolism, anaplerotic reactions, folate metabo-
lism, glutamate metabolism, histidine metabolism, nucleotide salvage pathway, purine
and pyrimidine biosynthesis subsystems. In addition, the lumped reaction that is gener-
ated from this subnetwork (see Materials and Methods) has only core metabolites and
biomass building blocks on both reactants and products sides. This representation is
similar to Neidhardt’s definition, since he also described the stoichiometric expenditure
of core metabolites in his estimations. Similar to our analysis, the values that Neidhardt
et al. reported for the synthesis of histidine are different than the linear route that is
reported in databases. This gives the impression that Neidhardt et al. also took into ac-
count the expenditure of the non-core metabolites along the linear pathway. However,
he reported only 1 value for each biomass building block. What lumpGEM allows us to
perform is to build alternative subnetworks and possible lumped reactions for the
same BBB;. In this specific case, with the minimum Sgu.n size as 21, lumpGEM generated
12 subnetworks, and 3 unique lumped reactions. This signifies that the overall lumped
reactions of different subnetworks can be the same. This has been observed also in a pre-
vious study by Henry et al. that focuses on pathway generations for an industrial chemi-
cal[63].

Table 4-1: Expenditure of Cofactors and Precursor metabolites for Histidine Synthesis and the compari-

son between values reported by Neidhardt and the minimum-sized subnetworks’ lumps by lumpGEM. 1-C
in lumpGEM represents Formate.

HISTIDINE Precursor ATP NADH NADPH 1-C NH4 S
Neidhardt 1 R5P 6 -3 1 1 3 0
lumpGEM-1 1 R5P, 1 0AA 5 -2 2 1 3 0
lumpGEM-2 1 R5P, 1 0AA 7 -2 2 1 3 0
lumpGEM-3 1 R5P, 1 0AA 9 -2 2 1 3 0
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Oxaloacetate appears as a precursor to balance the non-core metabolite glutamine in the
subnetwork, which is not reported in Neidhardt precursors. With a few exceptions like
this, the approximations by Neidhardt for the consumption of cofactors and inorganics
are very close to the values that lumpGEM reports (Table 4.1). These results explain
why these approximations could be used in metabolic networks and how these net-
works could predict many aspects of different physiology.

s/

The differences between the alternative subnetworks S’ min.2

min ... may emerge from
different reactions in the ‘linear’ pathway from main precursor to the biomass building
blocks, or from the other non-core reactions which are balancing the non-core metabo-
lites in the linear route. These two sources of differences, and especially the latter, may
result in an explosion in the number of subnetworks that can be generated for some of

the biomass building block. For metabolites like amino acids, which are not so far from

the core carbon metabolism, the number of smallest subnetworks Srj;lin

are not many
(Table 4.2), however for big molecules, such as lipids, there exists hundreds of alterna-
tive routes (Table 4.3, full list for all BBBs Appendix Table A.2). For example, Phospha-
tidylglycerol (dihexadecanoyl, n-c16:0) is a lipid with a S,{lin of 40 reactions, and has
256 alternative subnetworks with 16 unique lumped reactions. In the first subnetwork
generated by lumpGEM, within the 40 reactions, 34 of them are part of linear synthesis

route and 6 of them are balancing non-core metabolites. In all lipid cases, hundreds of

different subnetworks are represented by tens of unique lumped reactions (Table 4.3).
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The small number of alternative subnetworks for amino acids also shows that the num-
ber of non-core metabolites that appeared along the linear synthesis route is small, since
the main explosion in the number of subnetworks emerges from these reactions. As an
example, all 12 alternative subnetworks for histidine include the linear 10 steps route
from R5P to histidine and alternative subnetworks are generated by other non-core re-
actions. Moreover, there is a clear correlation between the number of alternative sub-
networks and the size of the minimal subnetworks. Most of the amino acids that have

more that 2 subnetworks require more than 10 steps for their biosynthesis.

Table 4-3: The size of smallest subnetworks for some lipids, the number of alternative subnetworks for

each of them and the corresponding number of lumped reactions.

BIOMASS BULDING SIZE OF # OF # OF LUMPED
BLOCK SUBNETWORK SUBNEWORKS  REACTIONS
PHOSPHATIDYLETHANOLAMINE 44 245 16
(DIHEXADECANOYL, N-C16:0)
PHOSPHATIDYLETHANOLAMINE 44 109 14
(DIHEXADEC-9ENOYL, N-C16:1)
PHOSPHATIDYLETHANOLAMINE 48 256 16
(DIOCTADEC-11-ENOYL, N-C18:1)
PHOSPHATIDYLGLYCEROL 40 256 16
(DIHEXADECANOYL, N-C16:0)
PHOSPHATIDYLGLYCEROL 40 127 14
(DIHEXADEC-9-ENOYL, N-C16:1)
PHOSPHATIDYLGLYCEROL 44 242 16
(DIOCTADEC-11-ENOYL, N-C18:1)
CARDIOLIPIN 41 512 32
(TETRAHEXADECANOYL, N-C16:0)
CARDIOLIPIN 41 255 28
(TETRAHEXADEC-9-ENOYL, N-C16:1)
CORE OLIGOSACCHARIDE LIPID A 75 128 24

4.3.1 Complex Biomass Components and Biomass Associated Processes

Apart from the inorganics, the biomass formulation has 87 metabolites on the reactant
side, and lumpGEM generated subnetworks and lump reactions for 86 of them. The only
metabolite that we did not perform lumping is ATP, which is a part of an ATP hydrolysis

(Growth Associated Maintenance - GAM) reaction in the biomass formulation. The hy-

67



Chapter 4: lumpGEM: Systematic Generation of Biosynthetic Subnetworks for Biomass Building Blocks

drolysis reaction of biomass is not stoichiometrically balanced, and has disproportional
coefficients for the participating metabolites. When the Varma network is tested for the
ability to hydrolyse ATP with the coefficients set in the GEM biomass formulation, it
fails. However, if the hydrolysis reaction is balanced with the stoichiometric coefficient
of ATP (54.12 mmol/gDW in this case), Varma network is able to hydrolyse this amount.
In this case, ATP/ADP pool becomes a moiety and does not require any de novo synthe-
sis of any metabolite (ATP or ADP) from the carbon source. Since the GEM is capable of
accumulating biomass, it signifies that there are non-core reactions necessarily active to
direct the carbon flow through biomass for ATP hydrolysis. In order to identify the sub-
network(s) for growth-associated maintenance (GAM), we followed the same procedure
that we did for biomass building blocks, and we built a GEM with an additional GAM
reaction with the coefficients of hydrolysis metabolites in GEM’s biomass. Then, by forc-
ing a flux of 1 mmol/gDWhr through this reaction, and by minimizing the number of
non-core reactions, we generated minimal subnetworks that allow this hydrolysis. The
resulting networks are composed of 27 reactions with 24 alternatives. The number of
unique lumped reactions is 8. When we analyse the lumped reactions individually, we
observe that these subnetworks are synthesizing de novo ADP to compensate for the
smaller ADP coefficient compared to ATP (53.95 mmol/gDW compared to 54.12

mmol/gDW) in the biomass formulation.

With the lumped reactions generated for GAM, the only metabolite in the biomass for-
mulation that we did not perform any analysis on is diphosphate. Diphosphate is se-
creted by biomass formulation; so there is not a synthesis pathway for this metabolite.

By following the same procedure that we have followed for GAM, we generated subnet-

works for the secretion of diphosphate. The size of S7 . is 1, and there are 2 alternative

min
reactions in R%EM that can substitute each other for diphosphate secretion: Inorganic
Diphosphatase (PPA) and Polyphosphate Kinase (PPKr). Both of these reactions are de-
composing the secreted diphosphate into phosphate and proton, the former with water

and the latter with ATP/ADP cofactor pair.
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4.3.2 Ranking Alternative Lumped Reactions - Yield Analysis

When we analyse the alternative lumped reactions for the same biomass building block,
we see different requirement of precursors, cofactors, nitrogen and sulphur. As ex-
plained before, this is an expected behaviour, and a detailed analysis could also suggest
which lumped reaction is more suitable for specific studies. One of the main criteria to
rank the lumped reactions is their capability to synthesize the BBB; from the carbon
source, and specifically the yield of BBB on the carbon source. In order to calculate the
yield per lumped reaction, we built a ‘mini’ core model for each of them, which is com-
posed of M€°"¢ - R¢9"¢ Vppp and the lumped reactions under study. By optimizing the
synthesis of the BBB; and calculating the C-mole yield over the carbon source of inter-
est, specifically glucose, we ranked the alternative lumped reactions for each BBB;. In-
terestingly, different lumped reactions can produce different amounts of biomass build-

ing blocks over a wide range of yield amounts (Table 4.4).

Table 4-4: The lumped reactions generated for deoxynucleoside triphosphate dTTP. The lumped reac-

tions are sorted based on their carbon mole dTTP synthesis / carbon-mole glucose uptake yield.

BBB LUMPED REACTIONS Yield

6 ATP + FOR + H + 4 NADPH + 2 NH4 + OAA + Q8 + R5P <=> 0.83
6 ADP + dTTP + 3 H20 + 4 NADP + 4 PI + Q8H2

6 ATP + FOR + H + MQN8 + 4 NADPH + 2 NH4 + OAA + R5P <=> 0.83
6 ADP + dTTP + 3 H20 + MQLS8 + 4 NADP + 4 PI

8 ATP + FOR + 4 NADPH + 2 NH4 + OAA + Q8 + R5P <=> 0.83
8 ADP + dTTP + H + H20 + 4 NADP + 6 PI + Q8H2

8 ATP + FOR + MQN8 + 4 NADPH + 2 NH4 + OAA + R5P <=> 0.83
8 ADP + dTTP + H + H20 + MQL8 + 4 NADP + 6 PI

6 ATP + CoA + FOR + H + 3 NADPH + 2 NH4 + OAA + PYR + Q8 + R5P <=> 0.71
ACCoA + 6 ADP + CO2 + dTTP + 3 H20 + 3 NADP + 4 Pl + Q8H2

dTTP 6 ATP + CoA + FOR + H + MQN8 + 3 NADPH + 2 NH4 + OAA + PYR + R5P <=> 0.71

ACCoA + 6 ADP + CO2 + dTTP + 3 H20 + MQL8 + 3 NADP + 4 PI

8 ATP + CoA + FOR + 3 NADPH + 2 NH4 + OAA + PYR + Q8 + R5P <=> 0.71
ACCoA + 8 ADP + CO2 + dTTP + H + H20 + 3 NADP + 6 PI + Q8H2

8 ATP + CoA + FOR + MQN8 + 3 NADPH + 2 NH4 + OAA + PYR + R5P <=> 0.71
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ACCoA + 8 ADP + CO2 + dTTP + H+ H20 + MQL8 + 3 NADP + 6 PI

6 ATP + FOR + FUM + H + 4 NADPH + 2 NH4 + OAA + R5P <=> 0.63
6 ADP + dTTP + 3 H20 + 4 NADP + 4 PI + SUCC

8 ATP + FOR + FUM + 4 NADPH + 2 NH4 + OAA + R5P <=> 0.63
8 ADP + dTTP + H + H20 + 4 NADP + 6 PI + SUCC

8 ATP + CoA + FOR + FUM + 3 NADPH + 2 NH4 + OAA + PYR + R5P <=> 0.56
ACCoA + 8 ADP + CO2 + dTTP + H + H20 + 3 NADP + 6 PI + SUCC

dTTP is a deoxy nucleoside triphosphates and its main precursor for all the generated
subnetworks is ribose-5-phosphate (R5P) from Pentose Phosphate Pathway. Conse-
quently, the core network can supply the same amount of carbon to all the generated
subnetworks and corresponding lumped reactions. One explanation for the differences
in yields (Table 4.4) is the capability of the lumped reactions to direct all the carbon
from R5P to dTTP. When we analyse the 4 lumped reactions with highest yield, we see
that on the product side, the only compound other than inorganics and cofactor pairs
like quinone/quinol, ATP/ADP-PI is dTTP. For the lumps with second highest yield,
along with the pyruvate (C3) in the reactant side, we see AcCoA (C2) and COz (C1) on
the product side. In the 3rd highest yield case, fumarate (C4) replaces pyruvate on the
reactant side, and succinate (C4) appears on the product side as a by-product. The low-
est yield producing lumped reaction has fumarate and pyruvate on the reactant side,
and has AcCoA, COz and succinate on the product side of the equation. This signifies that
the lump reactions with lower yield are losing carbon through those core metabolites
and the number of carbons in these metabolites defines the yield. Having a lower yield
does not necessarily mean that these lumped reactions are not useful for metabolic
modelling, since they can be used under sub-optimal growth conditions or under condi-
tions when growth is not the main physiological optimality criterion or to provide flexi-
bility under mutation. The use of these alternatives and their physiological interpreta-

tion will be the subject of future studies.
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4.3.3 Generating a metabolic model with lumpGEM

By generating subnetworks for GAM and diphosphate, lumpGEM managed to take into
account all the components of biomass formulation both on the product and reactant
sides. By testing for yield, we have shown that all the generated lumped reactions are
capable of producing their target BBB;. However, to produce biomass, these lumped
reactions must be able carry flux under the same quasi steady state condition, (in mod-
elling terms) in the same model with biomass as cellular objective. This requires gener-
ating a metabolic network composed of the defined core network, specifically Varma
stoichiometry, lumped reactions, the transport and sink reactions defined in GEM.
lumpGEM generated 673 unique lumped reactions for all 87 BBBs and 2 reactions for
diphosphate secretion by biomass. In order to test the lumpGEM results for optimum
growth, we have selected the highest yield producing lumped reactions per BBB; (if
there are many, we chose 1 among them randomly). This network includes 56 cytosolic
enzymatic (Varma network), 190 transport reactions, 88 lumpGEM output reactions
along with 64 sinks (398 in total) and 158 unique metabolites. The metabolic network
is capable of producing 0.944/hr specific growth rate with 10 mmol/gDWhr glucose
uptake rate. This signifies that all the lumped reaction were capable of producing corre-
sponding BBB; successfully under the given condition simultaneously. The specific
growth rate of GEM for the same condition is 0.997 /hr, which is close to the biomass
accumulation of the model generated with the output of lumpGEM. This shows that
lumpGEM can be used to generate networks, which are small, but comprehensive and
can mimic the GEM behaviour. It also proves that lumpGEM can generate lumped reac-
tions from any part of the metabolism either handpicked (ad hoc) or systematically se-

lected for metabolic modelling purposes.
4.3.4 Analysis on Compartmentalized Models, test case on S. cerevisiae

lumpGEM can be applied to any GEM with a proper biomass formulation, and in order
to test its applicability, we used it on a eukaryotic, compartmentalized GEM, iMM904
[117] of S. cerevisiae. This yeast is one of the mostly studied unicellular organisms along

with E. coli, and has many biotechnological applications [130]; thus making it a strong
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candidate for modelling approaches. Applying lumpGEM on this yeast revealed the con-
tribution of different possible precursors and cofactors for each of the biomass building
blocks defined in GEM, moreover it revealed alternative subnetworks/lumped reactions
for the same biomass building block. This can be interpreted as building ‘Neidhardt

style’ tables for S. cerevisiae.

In order to define the core for S. cerevisiae, we used a labelling study from Christen et al.
[131] and mapped the reactions of this MFA model with the iMM904 reactions. In addi-
tion, we mapped reactions of iMM904 that are in Varma network but not in C13 model
and included them as core reactions for S. cerevisiae network. The generated core net-
work is composed of 87 reactions and 67 unique metabolites along 2 compartments,
cytoplasm and mitochondria. Following these steps, we have applied the lumpGEM al-
gorithm to the GEM as described in Material Methods section. The main difference be-
tween E. coli and yeast GEMs are that yeast GEM is compartmentalized, however this
does not bring any more complexity for lumpGEM since it treats the transport reactions
between compartments as it treats uni-compartmentalized reactions. These transport
reactions can be a part of the generated subnetworks for biomass building blocks and
can participate in lumped reactions. The synthesis pathways of common biomass build-
ing blocks of yeast and E. coli such as amino acids are very similar. The sizes of the net-
works differ mainly from the transport reactions between the compartments. Another
reason for the divergence is the non-core metabolites along the linear routes to biomass
building blocks. There are different enzymes in these two organisms that are balancing
these non-core metabolites. Different subnetworks do not necessarily produces differ-
ent lumped reactions. When the synthesis pathway is in one compartment (mainly cyto-
sol), the lumped reactions of E. coli and yeast are very similar. L-phenylalanine, L-
methionine, L-serine L-cysteine and L-tyrosine are some examples of these similarities.
Small differences for these overall reactions emerge from different cofactor usage. A
similar behaviour is also observed for subnetworks including more than 1 compart-
ment. The main difference between E. coli and yeast overall reactions emerges from me-
tabolites in different compartments, which are also different due to the energetics cost

of transport reactions.
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4.4 Conclusion
In this chapter, we mainly focused on the biosynthetic pathways of E. coli and yeast, and
by using an ad hoc built central carbon network, we generated possible production
routes for all biomass building blocks defined in GEMs. This approach allowed us to re-
define the pathways, and we discovered that the contribution of many enzymes that are
labelled with different subsystems contributing for the biosynthesis of many BBBs.
Moreover, by lumping the generated subnetworks made it possible to study the indi-
vidual contribution of core metabolites and cofactors for synthesis of each BBB. The
lumping method is a very promising method for many analysis, experimental studies
like MFA or in silico studies such as FBA, TFA or Atom Mapping since it deduces the pre-

cursor metabolites from the central carbon network.

lumpGEM can also be used to build synthesis pathways for any metabolite defined in
the metabolic network. This makes it a strong tool to study the characteristics of indus-
trial chemical production strains, since it identifies all the enzymes, either linearly con-

nected or nested that participate in the biosynthesis of the target compound.

Apart from pathway and subsystems/subnetworks analysis, lumping strategy reduces
the complexity of the networks significantly. This property of lumpGEM became the key
factor for us to build representative reduced models from GEMs, which is the topic of

the next chapter.
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Chapter 5 - redGEM: Systematic reduction of ge-
nome-scale metabolic reconstructions for devel-

opment of core metabolic models

5.1 Introduction
In the previous chapters, we discussed about the stoichiometric models and their evolu-
tion to Genome Scale Metabolic Reconstructions (GEM), which encapsulate all known
biochemistry that takes place in the organisms by gene to protein to reaction (GPRs)
associations [112]. Since the first Genome Scale model developed in 2000 [115], the
number of annotated genomes and the corresponding genome scale metabolic recon-
struction increased tremendously [24,132,133]. This enabled the researches to study

the metabolic networks of different organisms, from archaea [134] to human.

With increasing popularity of Genome Scale Metabolic Reconstructions (GEMs), differ-
ent techniques to analyse these networks have been proposed [135,136]. Flux Balance
Analysis (FBA) [33] and Thermodynamic-based Flux Analysis (TFA) [12,13,15,137] for
the integration of available information with GEMs are invaluable tools to study meta-
bolic networks as discussed in Chapter 1. However, both FBA, and TFA cannot capture
the dynamic response of metabolic networks, which requires integration of detailed
enzyme kinetics and regulations [16]. Hatzimanikatis and colleagues have recently de-
veloped a framework that utilizes FBA, TFA and generates kinetic models without sacri-
ficing stoichiometric, thermodynamic and physiological constraints [73]. They have

employed methods that are also applicable to GEMs, however due to complexity of the
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GEMs and to focus on certain parts of the metabolism, they used a reduced model for

the analysis.

As the quality and the size of the models increase with better annotation, the complexity
of the mathematical representations of the models also increase. Keng et al. [34] ob-
served that majority of the studies and applications using metabolic models have still
revolved around the central metabolism and around “reduced” models instead of ge-
nome-scale models, indicating that the full potential of GEMs remains largely untapped
[138-140]. Moreover, these models have often been reduced ad hoc, with different crite-
ria and aims, which have not been consistently and explicitly justified [109,141,142].
Therefore, an approach to focus on chosen metabolic subsystems and yet retain the
linkages and knowledge captured in genome-scale reconstructions would help us to
manage the complexity and to yield better insights in connecting the metabolic model to

actual cellular physiology.

In this study, we have developed redGEM, a systematic model reduction framework for
constructing core metabolic models from GEMs. In redGEM, we use as inputs: (i) meta-
bolic subsystems that are of interest for a physiology under study; (ii) information
about utilized carbon source; and (iii) available physiological data. After a series of
computational processes, we generate a reduced model that is consistent with the orig-
inal GEM in terms of flux profiles, essential genes and reactions. We applied redGEM on
the latest GEM of E. coli if01366 under both aerobic and anaerobic conditions with glu-

cose as the sole carbon source and generated E. coli rij01366.

5.2 Material Methods
We applied redGEM algorithm on the latest genome scale model of E. coli iJ01366 [6],
which is composed of 2253 enzymatic reactions (along with transporters), 335 bounda-
ry reactions and 1139 unique metabolites across cytoplasm, periplasm and extracellular
media. We constrained the model for aerobic conditions with glucose as the sole carbon

source.
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5.2.1 Preliminary Definitions
S;: Core subsystem i that is selected/defined by the user.
MSi: Metabolites that belong to subsystems S;.
RSi: Reactions that belong to subsystems S;.

Degree of linkage D: The length of paths between two subsystems. It corresponds to the

number of reactions that link subsystems S;and §;.

Rlpj: The reactions in all paths of length D between the subsystems S;and §;; these reac-

tions do not belong to either RSior RS/,

ML-L}: The metabolites that are intermediates in all paths of length D between the subsys-

tems S;and S;; these metabolites do not belong to either M5i or MSi.

Postulate 1: Reactions that belong to RB- and metabolites that belong to Mg- can belong

to any of the subsystems S, withm # i and m # j.

Postulate 2: Some of the reactions in Rf;*" can belong to Rf). Reactions in Rj;~" that do

D=1,2,.

not belong in any other R;; (where D # n) are called unique reactions for the de-

gree of linkage D.

Postulate 3: Rlpj and Mg- captures the linking between the non-common metabolites of
S;and S;, however it cannot capture the intra-connections between the metabolites of

the same subsystem or the metabolites that are shared between S;and §;.

R}]: The reactions in all paths of length D that intra-connects the metabolites of the sub-

system S;.

MP: The intermediate metabolites in all paths of length D that intra-connects the me-

tabolites of the subsystem S;.
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R”: Reactions where only M%i, M} and M, participate and do not belong to RSi, R} and

D
Ril'-

Postulate 4: RT is composed of reactions that only cofactor pairs, small metabolites and
inorganics participate. All the other reactions that include other core metabolites (along

with cofactor pairs, small metabolites and inorganics) will be a part of RS, Rlpj or Rg.

Core Network, CNP: The core network for redGEM that is composed of metabolites M,

M} and M, and of reactions R%:, R, Rf; and R”.

We can generate the core network from the chosen subsystems using the minimum dis-
tance between the chosen subsystems and reports the linking reactions and metabo-

lites. In this case, the degree of linking D is the minimum distance between S;and §;.

Lpin,ij: The length of the shortest path between the subsystems S;and ;.

Lmin4n,ij
R 7

i The reactions that connect the subsystems S;and S; with a path of length

Liin+n,ij in where n is a user defined parameter.
M i;"m”l'” : The metabolites that does not belong to either S;or S;and are intermediates

of the path of length L, 5,; in between these two subsystems.

Lmin,ij . . D
Postulate 5: If Ly, ;; = 1 then R, M [ becomes R, Mj;, this also results in R, M; =

R, Miijin+(D—1),ij.

5.2.2 redGEM Parameters

redGEM uses the following inputs and parameters:
1. The starting subsystems or sets of reactions/metabolites defined by the user.
2. Media conditions (aerobic/anaerobic, nitrogen limited, etc.).
3. Possible carbon sources for the studied physiology.
4. Possible by-products or relevant extracellular metabolites. Together with possi-

ble carbon sources, these metabolites form a new subsystem that redGEM names
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as Extracellular Subsystem, this subsystem is treated as other subsystems de-
fined in Step 1 above.
5. Organism specific cofactor pairs.

6. Degree of linking D defined by the user.

5.2.3 redGEM Workflow

l.a Choose subsystems (or list of reactions and metabolites, such as synthesis pathway
of a target molecule) based on the studied physiology and the part of the metabo-
lism under interest.

1.b Derive a new stoichiometric matrix that excludes all cofactor pairs, small metabo-
lites and inorganics.

Lc Identify RS, R}, Rf, RT, and M®, M{} and M} for all subsystem pairs except Extracel-
lular Subsystem.

o Perform a graph search on the new stoichiometric matrix.

o This will find all the links up to degree D between each subsystem pairs
S;and S;, and will not find any reaction or metabolites between two subsys-
tems if Ly ;5 > D.

1.d To connect all Extracellular Subsystem metabolites to other subsystems, find all

Y and all metabolites M, with n as defined by the user.

. RL
reactions L ij

o Ifthe length of shortest path between a metabolite and §; is bigger than 1,
then:

Lmin+n,ij n+1
o number of Rl.]. = number of R}
Lmin+n,ij n+1
o numberofofMl.j = number of M7;
The core carbon network is defined as all the reactions and metabolites in M¥, Mf} and

MD (all j, j pairs), RS, R}, Rf (all i, j pairs) and RT.
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5.2.4 Formulation of lumped biosynthetic reactions for biomass building

blocks

We used the formulation as described Chapter 4 and generated pathways for all bio-
mass building blocks (BBB) as they are defined in GEM by lumpGEM. We have generat-
ed subnetworks up to minimum subnetwork size plus 3 for each BBB. Then we have
calculated the unique lumped reactions for all the BBBs, and used these lumped reac-

tions for further validation and other analysis.

5.2.5 Validation

We validate the consistency between GEM and rGEM performing the following con-
sistency checks:
i. Theoretical maximum biomass and other by-product of interest yield of
redGEM and GEM growing on same carbon source.
a. Under aerobic and anaerobic conditions for the organisms that can grow
under both conditions.
ii. Essentiality of the common genes.
a. Perform single gene deletions in order to see consistency between
redGEM and GEM.
i. Perform gene essentiality with FBA and with TFA.
iil. Allowable flux ranges of the common reactions between rGEM and GEM.
a. By performing Flux Variability Analysis (FVA) on both rGEM and GEM,
and compare the common reactions with FBA and TFA.
i. Perform FVA with (FBA) and without thermodynamic constraints
(TVA)
iv. Allowable concentration ranges for all metabolites with thermodynamics in-
formation.
a. TFA formulation allows the integration of steady-state concentrations of
metabolites since it constrains the model through Gibbs free energy of re-

action.
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b. Performed i) CVA (Concentration Variability Analysis) for GEM and
redGEM and compare the allowable ranges for common metabolites be-
tween the two models and ii) TVA to compare the AG,,, range of reac-
tions.

While these are the basic consistency tests, one could define additional checks, which
can be specific to the organism and problem under study. We recommend that in all
cases one should perform the checks using FBA and TFA, i.e. with and without thermo-

dynamics constraints.

5.3 Results and Discussion
We performed a reduction of the E. coli GEM iJ01366 using redGEM. We selected 6 cen-
tral carbon metabolism subsystems (glycolysis, pentose phosphate pathway, citric acid
cycle, glyoxylate cycle, pyruvate metabolism, and oxidative phosphorylation) as they are
defined in original E. coli GEM. In addition, we have included all the reactions that use
quinone/quinol pool metabolites (Ubiquinone/ubiquinol, menaquinone/menaquinol, 2-
dimethyl menaquinone/2- dimethyl menaquinol for E. coli) in oxidative phosphoryla-
tion subsystem to capture the coupling between the core carbon metabolism and ener-
gy/redox metabolism. Some of those reactions had different subsystem definition in
original GEM. These subsystems include a total of 184 reactions and 125 metabolites
(Appendix Table A.3). We next redefined the content of the subsystems by performing a
tightening analysis to identify the RT (See Materials Methods) reactions unique to each
subsystem. This analysis established that there are many reactions in GEM that include
metabolites that belong to only a specific subsystem but are labeled to a different sub-
system in the original GEM definition (Table 5.1). Some of the reactions defined in RT
are common between subsystems, since the subsystems share many metabolites, espe-

cially cofactor pairs such as ATP/ADP, NAD*/NADH etc.

Table 5-1: Statistics on Starting Subsystems with tightening reactions, RT

Subsystems Metabolites  Reactions  Tightening Reactions
Citric Acid Cycle 24 10 6
Pentose Phosphate Pathway 21 12 2
Glycolysis/Gluconeogenesis 35 22 17
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Pyruvate Metabolism 22 10 3
Glyoxylate Metabolism 13 4 3
Oxidative Phosphorylation 72 70 24
Media Composition 10 10 -

Unlike other reduction approaches such as Network Reducer [143], which reduces the
GEM by removing reactions through Flux Variability Analysis (FVA), redGEM performs
the reduction of GEMs by expansion of core network around the selected subsystems.
The network expansion by directed graph search finds metabolites and reactions be-
tween subsystems in a pairwise manner. It performs pairwise connections between the

metabolites of the same subsystems. By definition, the linking procedure is performed

through metabolites. Hence, RTS" does not change the calculated pairwise connections
between subsystems since it does not add any new metabolite to the subsystems.
redGEM calculates M5, M{; and M7} (all pairs i, ), RS, R, R} (all pairs i, j), which overall
define the core network with respect to selected degree of connection parameter D. As a
final step, redGEM performs once more tightening, and scans through every reaction in
GEM to identify the reactions R”, which are not captured by RS, Rg-, R} (all pairs i, j) but
include only M%, M} and M. This procedure finalizes the steps that define the final core
network for further analysis for redGEM/lumpGEM.

Table 5-2: The statistics of different Core Networks. The reported values for metabolites are compart-

mentalized, i.e. pyruvate cytoplasmic and cytosol periplasmic are reported as different metabolites.

Degree of Connection # of Metabolites  # of Reactions
D=1 156 243
D=2 202 289
D=3 224 320
D=4 268 358
D=5 391 544
D=6 496 689

For D=1, redGEM captures many reactions that are part of many ad hoc built models,
such as malic enzymes 1-2 between glycolysis and TCA cycle that connect L-malate to

pyruvate, phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase
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that connect oxaloacetate and phosphoenolpyruvate. Moreover, it captures many other
reactions, such as 2 types of L-aspartate oxidases, which are using quinone/quinol co-
factor pairs and labeled as electron transport chains reactions. There are 2 more L-
aspartate oxidase reactions that are added to the D=1 core network by redGEM. One is
using 02/H202 and the other one is using fumarate/succinate as cofactor pairs. These
reactions are captured by R and R” simultaneously. Finally redGEM added 10 more
reactions that only have the cofactors belonging to D=1 core network in their stoichi-
ometry, such as NAD* kinase, NADP phosphatase, adenylate kinase, nucleoside-
triphosphatase etc. as a part of R”.

By starting from 7 subsystems (including extracellular metabolites as exchange), the
network expansion procedure results in capturing reactions as core from 33 different
subsystems for D=6 (Table 4.3). In GEM, there are 36 subsystems, which signifies that
only 6 steps expansion captures reactions from ~90% of all subsystems defined in GEM,

thus showing the tight connections between metabolites/subsystems in the network.

Table 5-3: The subsystems that can be reached from starting subsystems in 6 steps

SUBSYSTEMS REPRESENTED IN D=6 CORE NETWORK

Alanine and Aspartate Metabolism Lipopolysaccharide Biosynthesis / Recycling
Alternate Carbon Metabolism Methionine Metabolism
Anaplerotic Reactions Methylglyoxal Metabolism
Arginine and Proline Metabolism Murein Recycling
Cell Envelope Biosynthesis Nitrogen Metabolism
Citric Acid Cycle Nucleotide Salvage Pathway
Cofactor and Prosthetic Group Biosynthesis Oxidative Phosphorylation
Cysteine Metabolism Pentose Phosphate Pathway
Folate Metabolism Purine and Pyrimidine Biosynthesis
Glutamate Metabolism Pyruvate Metabolism
Glycerophospholipid Metabolism Threonine and Lysine Metabolism
Glycine and Serine Metabolism Transport, Inner Membrane
Glycolysis/Gluconeogenesis Transport, Outer Membrane Porin
Glyoxylate Metabolism Tyrosine, Tryptophan, and Phenylalanine Metabolism
Histidine Metabolism Unassigned - No Subsystem
Inorganic lon Transport and Metabolism Valine, Leucine, and Isoleucine Metabolism
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5.3.1 Generation of Lumped Reactions for Biomass Building Blocks from Core

Carbon Network

The wild-type biomass reaction of the iJ01366 model contains 102 biomass building
blocks. The size and the complexity of the composition makes it necessary to develop
techniques to keep the information stored in the biomass formulation, but yet reduce
the size of the network significantly. Methods, such as graph-search algorithms can be
used for identification of biosynthetic routes between two metabolites in metabolic
networks [144]. However, these graph theory based approaches cannot be used for our
purposes due to the following limitations/issues: i) they do not make use nor obey mass
conservation; hence the pathways they generate are not guaranteed to be able to carry
flux in metabolic network or to be elementally balanced. ii) They cannot manage non-
linear branched pathways. As explained in Chapter 4, we have developed lumpGEM to
overcome these limitations. lumpGEM identifies subnetworks for each biomass building
block using the core metabolites as precursors and it generates lumped reactions for
each subnetwork. Moreover, it obeys to the mass conservation constraints, thus pre-
venting the generation of lumped reactions, which cannot carry flux in the metabolic
networks. In Chapter 4, the core metabolites were the ones belonging to the Varma
network that was built with an ad hoc manner. redGEM provides the new core metabo-
lites by defining core networks based on degree of connection parameter, D. For D=1, by
maximizing the number of non-active non-core reactions In GEM, lumpGEM generated a
17 reactions subnetwork to synthesize histidine from core carbon metabolites (Figure
5.2). In Chapter 4, lumpGEM generated a 21 reactions subnetwork for histidine synthe-
sis. This shows that redGEM defined at least 4 reactions from 21 reactions as core. Like
in the example in Chapter 4, histidine is synthesized from ribose-5-phosphate, a precur-
sor from pentose phosphate pathway. The linear pathway from this core metabolite to
histidine is composed of 10 steps. However, due to the mass balance constraint, two
metabolites, 1-(5-Phosphoribosyl)-5-amino-4-imidazolecarboxamide and L-Glutamine
cannot be balanced in a network that is composed of core reactions and the linear
pathway from ribose-5-phophate to histidine. These metabolites are balanced in the

network by other non-core reactions. Hence, the generated sets of reactions are not lin-
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ear routes from precursor metabolites to biomass building blocks, but branched, bal-
anced subnetworks.

Using lumpGEM, we replicated all the biosynthetic pathways in databases such as
EcoCyc [23], either as a part of subnetworks or the pathway itself, in addition we also
identify subnetworks that can qualify as alternative biosynthetic pathways. E. coli is
well-known to be robust against deletions by having many duplicate genes and alter-
nate pathways[145]. Some of these routes may not be active due to energetics or regula-
tory constraints but using our method here can help us to map out these possible alter-
nate pathways completely and also derive different biosynthetic lumped reactions. The
introduction of such lumped biosynthetic reactions simplifies the core models consider-
ably and allows the use of these models in important computational analysis methods
such as dynamic FBA [146] extreme pathway analysis [147,148] and elementary flux
modes [129,149], as well as TFA formulations and kinetic modeling. lumpGEM generat-
ed 1093 subnetworks and 246 unique lumped reactions for 79 biomass building blocks.
The GEM has 102 BBBs, thus indicating that 15 BBBs can be produced within the D=1

core network.
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Figure 5-1: The synthesis of histidine from core carbon network. Histidine synthesis starts from ribose-5-
phosphate (R5P) from Pentose Phosphate Pathway, and consists of 10 steps. The non-core metabolites
along the pathway are balanced by the reactions other than the linear pathway for histidine synthesis.
Metabolites colored with green are core; with red are non-core metabolites that are balanced by reactions,
which are non-core, and not a part of the linear route from R5P to histidine (Not all reactions of core net-
work are shown). Orange reactions form the linear pathways for histidine as defined in databases. Purple
reactions are balancing the non-core metabolites and blue reactions are balancing the non-core metabo-

lites appearing in purple reactions.

All those 246 lumped reactions are generated under aerobic conditions. For some
biomass building blocks, it is possible that the all the alternatives for S,,;,, subnetworks
are using molecular oxygen, thus cannot carry flux under anaerobic conditions. This
necessitates the generation of lumped reactions without any oxygen in the media.
lumpGEM generated only 23 new lumped reactions for anaerobic case, for 7
metabolites, namely biotin, heme O, lipoate (protein bound), phosphatidylethanolamine

(dioctadec-11-enoyl, n-C18:1), phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1),
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protoheme and cardiolipin (tetraoctadec-11-enoyl, n-C18:1). All the other lumped
reactions generated for anaerobic case are a subset of the 246 lumped reactions for

aerobic conditions.
5.3.2 Validation

5.3.2.1 Maximum biomass under different carbon sources

One of the most important criteria for the rGEM validation is the maximum biomass
production. We performed biomass maximization with FBA and TFA. With all 269
(246+23) lumped reactions, maximum specific growth rate of the rGEM is the same as
GEM’s Wnayx, 0.99 hr! with 10-mmol/gDWhr glucose uptake rate under aerobic condi-
tions both with FBA and TFA. The anaerobic specific growth rate of GEM with the same
carbon source for FBA is ~0.67 /hr and with thermodynamic constraints (TFA) it drops
to 0.27 /hr. rGEM grows with 0.27 /hr specific growth rate both with FBA and TFA.
When we analyzed the discrepancy between the FBA and TFA growth rates for GEM, we
saw that the difference is emerging from reactions that use molecular oxygen in GEM.
These oxygen-using reactions do not belong to oxidative phosphorylation or ETC reac-
tions, and are not a part of rGEM network. Moreover, the standard Gibbs free energy of
those reactions range from 19kcal/mol to 294 kcal/mol in the oxygen producing direc-
tion[40] and thermodynamically infeasible, except for 5 reactions which are mainly
degradation of hydrogen peroxide and superoxide anion. These 5 reactions have no ef-
fect on growth rate.

The reduction procedure can be performed on selected carbon source, and growth on a
different carbon source may require different minimal subnetworks for the same bio-
mass building blocks. Thus, to build a consistent rGEM, the lumping procedure should

be repeated.

5.3.2.2 Gene Essentiality Comparison Between GEM and rGEM

One of the most common analyses for genome-scale models is in silico gene deletion

(knockout) experiments to i) identify essential and nonessential genes, ii) study the gene
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deletion impact on the organism physiology, iii) develop strategies for metabolic engineer-
ing [150]. Consistency of gene knockouts between rGEM and GEM is another important
corroboration for the reliability of the reduction procedure. iJ01366, generated with
D=1, shares 307 genes with GEM, and among these 307 genes, 26 of them are essential.
Out of these 26 genes, 23 of them are also essential in GEM. 2 out of 3 genes do not have
an effect on the maximum theoretical yield of E. coli under aerobic, minimal glucose
medium in GEM. The first case is the gene transcribing thioredoxin reductase enzyme,
which interconverts NADPH to NADP by using oxidized thioredoxin and reduced thi-
oredoxin as cofactor pairs. This reaction is not essential in GEM, however it is essential
in redGEM, since the cofactor pairs oxidized thioredoxin and reduced thioredoxin are
participating in lumped reactions, and due to flux coupling, the reaction that thioredox-
in reductase catalyzes becomes indispensible. Building alternative lumped reactions
that do not use this cofactor pair may result in non-essentiality for this gene, however,
lumped reactions built from S,,,;;, do not make this gene non-essential. The second dis-
crepancy of the responses to gene deletion between GEM and rGEM is the gene tran-
scribing Glutamate dehydrogenease, which shows a different behaviour compared to
thioredoxin reductase enzyme. The reaction it catalyzes is the only reaction that synthe-
sizes glutamate in the rGEM, and knocking out this enzyme automatically results in no
specific growth. Knocking out this enzyme in GEM results in a growth drop about 3.3
percent, and alternative synthesis pathways for glutamate in GEM abolishes the essenti-
ality. The deletion of adenylate kinase is the third discrepancy between GEM and rGEM.
Knocking out this gene does not result in any drop in growth for GEM, however it pre-
vents the cellular growth in rGEM. The reason for this discrepancy is similar to the case
of Thioredoxin Reductase, i.e. the loss of alternative reactions/pathways that can com-
plement this deletion. These reactions/pathways can be part of the lumped reactions,

but this still reduces the flexibility of the network.

5.3.2.3 Flux Variability Analysis - Comparison between redGEM and GEM

To further validate the model, we compared the physiologically allowable flux ranges by

performing Thermodynamics-based Variability Analysis (TVA) for the reactions that are
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common between rGEM and GEM. Even though most of the common intracellular reac-
tions have consistent flux ranges, there are some reactions in the core model with re-
duced flux variability as compared to the genome-scale model. The variability of the
reactions in the subsystems Glycolysis/Gluconeogenesis, Pentose Phosphate Pathway,
and Citric Acid Cycle are close to variability in GEM, due to the less alternative reactions
for these reactions in GEM. Reactions that belong to Pyruvate Metabolism and Electron
Transport Chains (ETC) show a higher variability in GEM compared to redGEM, due to
the alternative reactions that use the metabolites that participate in those reactions.
The main difference between GEM and rGEM emerges from directionalities, since rGEM
is more constrained, some reactions, such as LDH-D (Lactate Dehydrogenase) become
unidirectional. Moreover, as we discussed in the case of essentiality studies, the integra-

tion of reactions into lumped reactions reduces the flexibility of the flow in the network.

Glycolysis/Gluconeogenesis Pentose Phosphate Pathway
FES: EDD L |
FEP O —— FEA3 — ey
GEBPP L
GAPD —— GEPDH2r ———
GLERANZ L —————————————— GND —
GLCS1 L s | PEK
GLDBRAN2 | 3 L EE—
——
HEX1 L ————————— PGL
PDH —_— RPE
PFK —e
PGl | RPI e —]
PGK | TALA "
PGM
ppPS — ey TKT1 e |
PYK —eeeeeeeeeeey
—_— =
I TKT2
60 40 20 0 20 40 60 -60 -40 -20 1} 20 40 60
Citric Acid Cycle/Glyoxylate Metabolism Pyruvate Metabolism
ACONTa e — ACALD
L —
ACONTL ACKr
AKGDH [ —
CITL L ACS L ——
Ccs e} N
FUM LCD2x [ |
GLXCL e — LDH,
GLYCK | e |
——
GLYCLTDx — 0AADC
r————
GLYCLTDy PFL ’ .
ICDHyr e —
MDH PORS
e PTAr
SUCOAS
-60 -40 -20 0 20 40 60 -60 -40 -20 1} 20 40 60

91



Chapter 5: redGEM: Systematic reduction of genome-scale metabolic reconstructions for development of core
metabolic models

Figure 5-2: Flux variability of reactions in starting subsystems in D=1 model compared to corresponding
reactions in GEM. The red lines represents FVA for redGEM, black lines represents TVA for GEM. There is
not any reaction in rGEM that has a wider range than corresponding GEM reaction. Thus, for the reactions
that do not have the black line have the same range for rGEM and GEM. Maximum flux bounds are
between -60 to 60 mmol/gDWhr, since the uptake of glucose is fixed to 10 mmol/gDWhr, and the
maximum allowable flux in the network cannot exceed 10 mmol/gDWhr times 6, which is the number of

carbon in glucose. Variability of ETC reactions are reported in Appendix Table A.4.

Then, we performed a Concentration Variability Analysis (CVA) on common metabolites
between GEM and rGEM (Figure 6.3). Almost all metabolites have the same allowable
ranges, however there are a few exceptions. Succinly-CoA and D-Ribulose 5-phosphate
are such two cases, in where rGEM bounds are wider than GEM bounds. Succinly-CoA
participates in reaction tetrahydrodipicolinate succinylase with CoA as cofactor pair.
Succinly-CoA concentration is tightly constraint due to energetics to synthesize N-
Succinyl-2-L-amino-6-oxoheptanedioate, which is an intermediate in L-lysine biosyn-
thesis. The lumped reactions for L-lysine subnetworks do not include this metabolite in
the overall stoichiometry, since it is an intermediate. Hence, Succinly-CoA concentration
is not constrained in the rGEM. Showing the same behaviour, D-Ribulose 5-phosphate
concentration is constrained in arabinose-5-phosphate isomerase reaction, which is in
Lipopolysaccharide biosynthesis pathway and producing arabinose-5-phosphate as

intermediate.
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Figure 5-3 CVA on common metabolites between GEM and rGEM (not all shown) Thin red lines are me-
tabolite concentration ranges in rGEM, thick black lines are metabolite concentration ranges in GEM.

5.4 Conclusion

Reduced models have been used for understanding the metabolism for a very long time,

long before the first GEM was reconstructed. These top-down models are built to focus

on certain parts of metabolism, and built based on the data in the literature. Even

though they are far from complete, they proved to be predictive, and helped us

understand many aspects of cell metabolism. In this chapter, we merged the invaluable

quality that the bottom-up approach brought to network reconstruction with the
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reductionist approach that helped researchers to understand the overall behavior of the
cells with small scale models. redGEM identifies and builds central carbon metabolism,
or any part of the network, by re-defining the term core, and by utilizing lumpGEM, it
reduces the complexity that emerges from the remote pathways from this core. The
output of redGEM is a reduced model that is consistent with its GEM. These reduced
models are used in many different areas, such as kinetic modeling, MFA studies,
Elementary Flux Modes (EFM) studies and TFA. Moreover, reduced models are
promising platforms to compare the central carbon (or any other) metabolism of
different species. This helps us to understand the metabolic capabilities and limitations
of certain organisms and to investigate the physiological differences that are observed
experimentally. In the next chapter, we will focus on this topic and build core carbon

metabolisms for different living entities.
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Chapter 6 - Comparison of Core Carbon Networks
and Biosynthetic Subnetworks of Different Or-

ganisms

6.1 Introduction

Central carbon metabolism is one of the highly conserved parts of metabolism among
different species, from unicellular bacteria to higher organisms like human[151]. In this
definition, core carbon metabolism is defined as the main carbon flows, such as glycoly-
sis, pentose phosphate pathways, TCA cycle, pyruvate metabolism, glyoxylate
shunt[21,152]. Even though those pathways exist among different organisms, there is a
certain divergence in different enzymes and the way those pathways are

optimized[153].

In Chapter 4, we have shown the subnetworks and lumped reactions for an ad hoc built
core carbon metabolism for S. cerevisiae, and identified the differences between E. coli
and yeast in terms of precursors and cofactor expenditure for the biosynthesis of the
same biomass building blocks. The differences between two organisms emerge from
mainly 2 sources: i) the differences along the synthesis pathways, the non-core metabo-
lites that appears on the linear, textbook routes, and how they are balanced in the net-
work, ii) the differences between the core networks. These distinctions among organism
have significant effects on different behaviour of the cells, such as growth yields on the

same carbon sources.

In this chapter, we focus on the differences of core carbon networks among 4 organisms,

E. coli, P. putida, S. cerevisiae and human. We chose those 4 organisms to have 2 prokar-
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yotic and 2 eukaryotic cells, which have well built GEMs, so that we can minimize the
loss of information due to missing information in the models. We used redGEM to ex-
tract the core network, and used the same criteria and same subsystems for all 4 organ-
isms to make a fair comparison. Moreover, we generated the subnetworks and lumped
reactions for every biomass building block that are defined in the biomass composition
in GEMs for D=1 core networks and highlighted the main differences between these 4

organisms.

6.1 Core carbon Network of P. putida
P. putida is a gram-negative bacterium, which is in abundance in soil. It is a promising
organism for many purposes, from bioremediation to biosynthesis of industrial chemi-
cals. The first GEM of P. putida was built in 2008[154], and different GEMs have been
reconstructed for different strains of this organism[155,156]. In the latest GEM for P.
putida, there are 62 subsystems across 2 compartments, periplasm, cytoplasm and ex-
tracellular media. The core carbon subsystems are defined in GEM as the following: Gly-
colysis, Gluconeogenesis, Pentose Phosphate Pathway, TCA Cycle, Pyruvate Metabolism

and Oxidative Phosphorylation (Table 6.1).

Table 6-1The Statistics on Starting Subsystems for P. putida

Core # of # of Tightening
Subsystems Reactions Reactions
TCA Cycle 16 8
Pentose Phosphate Pathway 7 1
Gluconeogenesis 9 6
Glycolysis 21 11
Pyruvate Metabolism 1

Oxidative Phosphorylation 14

Media Composition 9

In total, there are 77 reactions and 81 metabolites in the starting subsystems and 32
tightening reactions. However, tightening reactions are not unique to individual subsys-
tems, and can be shared, and a reaction that is assigned as a different subsystem can be
a tightening reaction for another subsystem. Thus, in total, there are 85 reactions, and

81 metabolites in D=0 core network.
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Table 6-2 The core networks for P. putida with different degree of connections D

Cgﬁﬁl;(teizfn # of Metabolites # of Reactions
D=1 104 115
D=2 129 138
D=3 154 167
D=4 218 217
D=5 254 259

By performing network expansion with redGEM, we calculated the core networks for P.
putida till degree of connection D=5. The networks are smaller compared to E. coli for
mainly two reasons: i) the sizes of GEMs. E. coli GEM has 2585 reactions and 1807 me-
tabolites across periplasm, cytoplasm and extracellular media. On the other hand, P.
putida has 1053 reactions and 917 metabolites across the two compartments. E. coli
metabolism has been studies for decades in more details compared to P. putida and it is
better characterized. As D increases, the space that redGEM explores to find pairwise
connections between the subsystems is much larger in E. coli compared to P. putida. ii)
The anaerobic Electron Transport Chains of E. coli is diverse, and includes many reactions
around quinone/quinol pool using many metabolites as substrates and products. P. putida
is a strict aerobe, and cannot grow without oxygen as terminal electron acceptor. How-
ever, E. coli is a facultative anaerobe and has many anaerobic enzymes in its redox me-

tabolism.

Table 6-3: Comparison between P. putida and E. coli for alternative subnetworks and unique lumped reac-
tions. The numbers (i:j) represents the statistics for P. putida and E. coli, respectively. (-) means that these

metabolites can be produced in the core network of E. coli.

Common Size of # of Alternative # of Lumped
BBB Smin Smin Reactions
Glycine 7:6 4:1 2:1
L-Arginine 11:9 3:1 3:1
L-Asparagine 4:1 1:1 1:1
L-Aspartate 2:- 1:- 1:-
L-Cysteine 8:11 1:2 1:2
L-Glutamate 2:- 1:- 1:-
L-Glutamine 3:1 2:1 2:1
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L-Histidine 22:17 5:2 5:2
L-Isoleucine 11:10 1:1 1:1
L-Leucine 10:9 2:1 1:1
L-Lysine 12:11 3:1 3:1
L-Methionine 18:20 8:2 6:2
L-Phenylalanine 12:10 1:1 1:1
L-Proline 4:4 2:1 2:1
L-Serine 5:3 1:1 1:1
L-Threonine 7:5 1:1 1:1
L-Tryptophan 19:15 2:1 2:1
L-Tyrosine 12:10 1:1 1:1
L-Valine 6:4 1:1 1:1

Different topology in GEMs and among the core networks result in differences in the
subnetworks and corresponding lumped reactions generated by lumpGEM for biomass
building blocks. We generated the S,,;,, subnetworks for P. putida (Table 6.3 for amino
acids, for the full list, Appendix Table A.6) and performed a comparison with E. coli. For
57 BBB, lumpGEM generated 167 subnetworks (1093 for E. coli), and 110 unique
lumped (246 for E. coli) reactions. This multiplicity emerges mainly from big molecules,

such as phosphatidylethanolamine, phosphatidylglycerol, peptidoglycan.

6.2 Core carbon Network of S. cerevisiae
S. cerevisiae, is one of the mostly studied organisms along with E. coli. Some of its prop-
erties, such as low pH tolerance make it a potential candidate for many biotechnological
purposes[25]. One of the main differences between this yeast and E. coli is that S. cere-
visiae is a eukaryotic cell, and have many compartments. However, many metabolic ca-
pabilities between these two organisms are conserved, especially in central carbon me-
tabolism. In this section, we created core carbon networks for S. cerevisiae and generat-

ed subnetworks/lumped reactions for the D=1 core carbon network.

For this purpose, we used the GEM of S. cerevisiae iMM904 [117], which includes 7
compartments, cytosol, Golgi apparatus, mitochondria, nucleus, Endoplasmic Reticulum,
vacuole, peroxisome, and extracellular media. Core carbon subsystems of the yeast are

named the same as E. coli.
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iMM904 GEM has 1583 reactions and 1233 metabolites across 7 compartments and
extracellular media. In defined D=0 core network, there are 95 reactions and 144 me-

tabolites (Table 6.4) including all 6 subsystems.

Table 6-4: Statistics on the Starting Subsystems for S. cerevisiae

Core # of # of Tightening
Subsystems Reactions Reactions
Pyruvate Metabolism 18 12
Citric Acid Cycle 13 10
Pentose Phosphate Pathway 13 3
Glycolysis/Gluconeogenesis 22 7
Oxidative Phosphorylation 19 9
Media Composition 10 -

Similar to E. coli, there are many tightening reactions for each subsystem, and some of
these tightening reactions are shared among different starting subsystems, resulting in

unique 127 reactions and 144 metabolites for D=0 core network.

Following the pairwise connection procedure and tightening analysis for these subsys-
tems, we generated all core networks for degree of connection D from 1 to 5 (Table 6.5).
The resulting core networks are also significantly smaller than E. coli core networks, due
to the same reason as in P. putida case. The size of the GEM of this yeast is smaller com-
pared to iJ01366 reconstruction, and it has less Electron Transport Chains/Oxidative

Phosphorylation reactions.

Table 6-5: The core networks for IMM904 with different degree of connections

Cgﬁﬁl;i:igfn # of Metabolites # of Reactions
D=1 170 180
D=2 181 196
D=3 217 245
D=4 267 321
D=5 302 358

S. cerevisiae is an autotroph, meaning that it can produce all its biomass building blocks

from simple sugars or any other electron donors in its surrounding. We employed
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lumpGEM on iMM904 to generate all possible S,,,;, subnetworks (Table 6.6, for full list,
Appendix Table A.7) and corresponding lumped reactions and compared them with E.

coli.

Table 6-6: Statistics on subnetworks and corresponding unique lumped reactions for amino acids of

iMM904. (-) means that these metabolites can be produced in the core network of E. coli.

Common Size of # of Alternative # of Lumped
BBB Smin Smin Reactions
Glycine 2:6 2:1 2:1
L-Arginine 12:9 2:1 2:1
L-Asparagine 4:1 3:1 3:1
L-Aspartate 2:- 2:- 2:-
L-Cysteine 12:11 6:2 6:2
L-Glutamate 2:- 1:- 1:-
L-Glutamine 2:1 1:1 1:1
L-Histidine 24:17 28:2 28:2
L-Isoleucine 12:10 12:1 12:1
L-Leucine 11:9 2:1 2:1
L-Lysine 10:9 2:1 2:1
L-Methionine 19:20 24:2 24:2
L-Phenylalanine 11:10 1:1 1:1
L-Proline 5:4 2:1 2:1
L-Serine 4:3 3:1 3:1
L-Threonine 7:5 4:1 4:1
L-Tryptophan 18:15 5:1 5:1
L-Tyrosine 11:10 2:1 2:1
L-Valine 6:4 1:1 1:1

The biomass composition of iIMM904 is less detailed compared to E. coli and has only 44
biomass building blocks, whereas iJ01366 has 102. lumpGEM generated 1093 subnet-
works for S,,,;, for E. coli and 143 for the yeast. However, the number of overall unique
lumped reactions for S,,;, subnetworks is very close to each other, 246 and 143 for E.
coli and S. cerevisiae, respectively. As we discussed in Chapter 4, this signifies that many
subnetworks in E. coli are equivalent in overall stoichiometry. For iMM904 case, most of
the generated subnetworks have different overall stoichiometry, which is a significant

difference between those two organisms.
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6.3 Core Carbon Network of Homo sapiens
The first metabolic network for human metabolism is reconstructed in 2007[122] and
updated in 2013[157]. Another human metabolic models were reconstructed by differ-
ent groups[158,159] Central carbon metabolism, similar to other organisms, plays a
very important role in human physiology and the same metabolic subsystems have been
conserved in human metabolism (Table 6.7). The Homo sapiens GEM, Recon 2 has 7441
reactions and 5063 along 7 compartments, which is almost triple the E. coli network. It
includes 984 transport reactions between the 7 compartments, and 1601 transport re-

actions exchanging metabolite with media.

Table 6-7: Statistics on Starting Subsystems for Homo sapiens

Core # of # of Tightening
Subsystems Reactions Reactions
Pyruvate Metabolism 32 20

Citric Acid Cycle 20 42
Pentose Phosphate Pathway 39 20
Glycolysis/Gluconeogenesis 40 47
Oxidative Phosphorylation 10 9

Media Composition 10 -

In starting subsystems of human, there are 203 metabolites and 259 reactions across 4
compartments, cytosol, mitochondria, peroxisome, and endoplasmic reticulum along
with extracellular media. The D=0 network for human is significantly bigger than other
organisms we have performed the analysis mainly due to tightening reactions. There
are many transport reactions between the compartments that include core metabolites

but labelled with a different subsystem in the model description.

Table 6-8: Statistics on core networks for Homo sapiens with D=1 to D=5

Degree of # of # of
Connection Metabolites Reactions
D=1 258 432
D=2 351 1183
D=3 454 1411
D=4 637 1753
D=5 734 1906
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By using redGEM, we generated the core networks for D=1 to D=5. The most striking
result in this network expansion analysis is the degree of freedom that the core net-
works have. For instance, in E. coli D=2 core network, 202 metabolites are participating
in 289 reactions, however in Recon 2, with the same degree of connection, 351 metabo-
lites participates in 1183 reactions, representing a very well-connected network (Table

6.8).

After generating the core networks, we applied lumpGEM to generate the subnetworks
and lumped reactions for D=1 core network. Homo sapiens lacks biosynthesis pathways
for many biomass building blocks, including 9 essential amino acids (Table 6.9, for full
list Appendix Table A.8). We performed the comparison between E. coli, P. putida and S.
cerevisiae under glucose minimal medium, without any additional carbon source, how-
ever human cells cannot grow under this minimal medium. Firstly, we employed
lumpGEM on Recon2 with the proposed medium in the model. This analysis showed
that there are many intermediate metabolites that the cell can uptake from the defined
medium to synthesize biomass building blocks. To make a fair comparison, secondly, we
tested the capabilities of Recon2 metabolic network to produce biomass building blocks
under glucose minimal medium. As expected, 9 essential amino acids cannot be synthe-
sized, and 2 more, L-cysteine and L-Tyrosine. The biosynthesis of L-cysteine requires
the uptake of an essential amino acid, L-methionine. With a subnetwork composed of 18
reactions, L-cysteine can be synthesized. The pathway reported for this amino acid in
HumanCyc [160] database is composed of 5 reactions, showing the complexity emerg-
ing from the non-core metabolites along the biosynthesis pathway. Production of L-
tyrosine also requires an uptake of an essential amino acid, L-phenylalanine, and
through degradation of this amino acid, L-tyrosine is synthesized. Interestingly, the bio-
synthesis pathway reported in HumanCyc accounts for the balancing of the non-core

metabolites, dihydrobiopterin and tetrahydrobiopterin.
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Table 6-9: Statistics on Subnetworks and Lumped Reactions for D=1 Homo sapiens rGEM. E stands for
essential. The amino acids marked with star are not essential, but their synthesis requires an intermediate

from the media. (-) means that these metabolites can be produced in the core network of E. coli.

Common Size of # of Alternative  # of Lumped
BBB Smin Smin Reactions
Glycine 3:6 2:1 2:1
L-Arginine 8:9 32:1 16:1
L-Asparagine 4:1 4:1 4:1
L-Aspartate 2:- 4:- 4:-
L-Cysteine 1811 12%:2 12%:2
L-Glutamate 2:- 2:- 2:-
L-Glutamine 2:1 2:1 2:1
L-Histidine E:17 E:2 E:2
L-Isoleucine E:10 E:1 E:1
L-Leucine E:9 E:1 E:1
L-Lysine E:9 E:1 E:1
L-Methionine E:20 E:2 E:2
L-Phenylalanine E:10 E:1 E:1
L-Proline 4:4 6:1 5:1
L-Serine 4:3 2:1 2:1
L-Threonine E:5 E:1 E:1
L-Tryptophan E:15 E:l E:1
L-Tyrosine 210 251 251
L-Valine E:4 E:1 E:1

6.4 Conclusion
redGEM and lumpGEM allows us to understand the differences in metabolic capabilities
between organisms. redGEM defines what is the central carbon metabolism, which fuels
the cell and supplies the precursors for biomass building blocks and lumpGEM defines
the metabolic capabilities to convert those precursors to biomass building blocks. In
this chapter, we used these 2 tools to understand the differences between 4 mentioned
organisms and revealed their similarities and difference based on their GEMs. This
analysis can be useful in different areas, such as comparison of possible host organisms
for targeted chemical production and community modelling. For community modelling,
redGEM/lumpGEM provides an excellent platform to compare the metabolic capabili-
ties of the members of the community and to reveal their metabolic interactions, which

plays a very important role in the community dynamics.
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Chapter 7 - Flux Directionality Profile and Growth
Patterns Analysis of E. coli under different Carbon

Sources

7.1 Introduction

The capacity of a metabolic network to produce precursors for biomass building blocks
is one of the major characteristics that determine the growth physiology of the cell. As
we have seen in Chapter 4, classical textbooks, such as Neidhardt define certain precur-
sors, which are core carbon metabolites, with certain stoichiometric amounts to pro-
duce every component of 1 gDW of E. coli. In Chapter 2 and 3, we have built two sys-
tematic methods to generate reduced metabolic models that can mimic the Genome
Scale model behaviour by defining the overall stoichiometry only through core metabo-
lites. One of the biggest advantages of such reduced models is that they enable us to fo-
cus and study on certain part of the metabolism without the complexity, as well as the
flexibility that emerges from remote pathways. A well-connected metabolic model is
underdetermined since it has more equations (metabolite balances) than variables (re-
actions), thus having infinite number of possible flux distribution due to the degrees of
freedom that the system has. The source of this flexibility can be classified into two
main categories, i) the flexibility in the absolute amount of the flux through a reaction, ii)
the directionality of the reaction. The multiplicity of the former can be studied through
different analysis, such as sampling of the fluxes, and further analysis on the generated
flux samples like Principle Component Analysis (PCA). However, it is not possible to
generate all possible flux distributions in terms of absolute amounts in the solution

space, and these methods are usually limited by the capacity of the methods to repre-
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sent this space. On the contrary, for the latter, flux directionalities, it is possible to enu-
merate different possible combinations of flux directionality distributions in a small
scale model, since they are free of the multiplicity that emerges from the parts of me-
tabolism that are not under study. Thus, reduced models generated by
redGEM/lumpGEM have the potential to be the platform to study different characteris-
tics of metabolic networks with different directionality profiles. In addition, the lumped
reactions generated by lumpGEM do not bring any complexity for the directionality

analysis since they are fixed to the biomass building block synthesis direction.

In this chapter, we developed a method called Flux Directionality Profile Analysis
(FDPA), which enumerates different, if possible all, Flux Directionality Profiles (FDP) for
a given metabolic network by utilizing a Mixed-Integer Linear Programming (MILP)
algorithm. FDP is a metabolic state of a network that has unique directionalities for each
reaction. By imposing these directionalities to the models, FDPA allows us to focus on
certain characteristics for each profile, such as biomass production and displacement of
reactions from thermodynamic equilibrium. By using FDPA, we generated all possible
FDPs of E. coli growing under aerobic medium for 2 different conditions, glucose and
succinate as the sole carbon sources. Moreover, we ranked the FDPs based on their ca-
pability to produce biomass, and revealed couplings between bidirectional reactions
under optimal conditions. FDPA also allowed us to study the differences and similarities
of metabolic capabilities for the same organisms growing under different carbon

sources.

7.2 Materials and Methods
For FDPA, we used the output of redGEM from Chapter 5, a reduced model (rGEM) of E.
coli iJ01366 growing under aerobic conditions with glucose as the sole carbon source.
To be able mimic the GEM behaviour, we kept all unique lumped generated for S,,;,

subnetworks.

Firstly, we implied thermodynamics constraints to the model with TFA. In TFA formula-
tion, reactions are split into forward E,, and reverse components R.,,, and for both

directions, there are binary variables that control the flux through them in an on/off
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manner (FUL,,, BUL.,). Thus, every solution that TFA generates is by definition an FDP.
Moreover, it is possible to generate alternative FDP with an iterative manner by follow-

ing these steps:

a. Identify active direction for all reactions for the particular solution.

b. Create a constraint that prevents the solver to choose the same integer combina-
tion (integer cuts, FDP)[125] by creating the following constraint:

FUfxn + BUS + FUS + BUSR . FURy < X FULn + BUjry

c. Solve the constrained models with an iterative manner till all possible integer
cuts are generated.
Following the generation of all FPDs, for every FDP, we tested the biomass production
by fixing the directionalities of all reactions obtained from the analysis above. For
growth on succinate analysis, we performed exactly the same analysis as growth on glu-

Cose case.

7.3 Results and Discussion
The first analysis that we performed on riJ01366 generated is to identify bidirectional
reactions (BDRs) for growth under glucose. As a first step, we constrained the model
with thermodynamics by TFA formulation, and then performed a Thermodynamic-
based Variability Analysis (TVA) to determine these bidirectional reactions. In this net-
work, there are 19 bidirectional reactions, which are distributed among 7 subsystems
(Table 7.1). More than one third of the BDRs belong to glycolysis, which states that even
though the overall carbon flux in growth under glucose is towards lower glycolysis, the
flexibility that the system has allows some of the glycolysis reactions to be able to oper-
ate in both directions. Other than glycolysis BDRs, 4 reactions of Pentose Phosphate
Pathway (PPP) are bidirectional, and they belong to non-oxidative branch of PPP. There
are 3 TCA cycle (Citric Acid Cycle), 3 Pyruvate metabolism BDRs and 1 oxidative phos-
phorylation BDRs. Interestingly, except the glyoxylate shunt that is composed of only 4
reactions, all the starting subsystems that we have chosen in Chapter 5 as D=0 for

redGEM has at least 1 BDR. Oxidative Phosphorylation, which forms the biggest subsys-
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tem in the reduced model, has only 1 BDR, indicating the effect of mass and energy con-

straints on oxidation/reduction processes.

Table 7-1: Bidirectional Reactions in E. coli riJ01366 grown under glucose as sole carbon source and the

subsystems they belong to.

Reaction Names

Reaction Formula

Subsystem

Acetaldehyde Dehydrogenase
Acetate Kinase
Enolase
Fructose 6-phosphate Aldolase
Fructose-bisphosphate Aldolase
Fumarase
G3P Dehydrogenase
Malate Dehydrogenase
Glucose-6-phosphate Isomerase
Phosphoglycerate Kinase
Phosphoglycerate Mutase
Polyphosphate Kinase
Phosphotransacetylase
RU5P-D-3-Epimerase
Succinyl-coa Synthetase
Transaldolase
Transketolasel
Transketolase2

Triose-phosphate Isomerase

ACALD + COA + NAD <=> ACCOA + H + NADH

AC + ATP + H <=> ACTP + ADP
2PG <=>H20 + PEP
F6P <=>DHA + G3P
FDP <=> DHAP + G3P
FUM + H20 <=> MAL-L
G3P + NAD + Pl <=>13DPG + NADH
MAL-L + NAD <=>H + NADH + OAA
G6P <=>F6P
3PG + ATP + H <=>13DPG + ADP
2PG <=>3PG
ATP + H + PI <=> ADP + PPI
ACCOA + H + PI <=> ACTP + COA
RU5P-D <=> XU5P-D
ATP + COA + SUCC <=> ADP + PI + SUCCOA
G3P + S7P <=> E4P + F6P
R5P + XU5P-D <=> G3P + S7P
E4P + XU5P-D <=> F6P + G3P
DHAP <=> G3P

Pyruvate Metabolism
Pyruvate Metabolism
Glycolysis/Gluconeogenesis
Glycolysis/Gluconeogenesis
Glycolysis/Gluconeogenesis
Citric Acid Cycle
Glycolysis/Gluconeogenesis
Citric Acid Cycle
Glycolysis/Gluconeogenesis
Glycolysis/Gluconeogenesis
Glycolysis/Gluconeogenesis
Oxidative Phosphorylation
Pyruvate Metabolism
Pentose Phosphate Pathway
Citric Acid Cycle
Pentose Phosphate Pathway
Pentose Phosphate Pathway
Pentose Phosphate Pathway

Glycolysis/Gluconeogenesis

For E. coli, with 19 BDRs, FDPA generated 8961 FDPs. Theoretically, 19 bidirectional
reactions can generate up to 2° FDPs, which is around ~500 K. However, flux coupling
in the metabolic network reduces the possible number of FDPs by not allowing all com-
binations between BDRs, thus showing that not all combinations between the bidirec-
tional reactions are viable for the organism. This also shows implicitly that for groups
of FDPs, some BDRs are fixed to certain directions, and there are some other BDRs that
can change sign, however, the behaviour of these FDPs for certain characteristics, such
as theoretical maximum growth may be the same. A switch in these indispensible direc-
tionalities directly affects the characteristics of the metabolic network, thus switching to
a different group of FDPs. In order to test this hypothesis, we tested every FDP with re-

spect to their capacity to produce biomass. To perform this analysis, for every FDP, we
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fixed the integer cut that represents the FDP for the model, and maximized through bi-
omass given the mass, thermodynamics and directionality constraints. Then, we sorted

the FDPs based on their theoretical maximum yield for biomass accumulation.

As we expected, there are groups of FDPs that have the same theoretical maximum spe-
cific growth rate, and there are jumps between the groups of FDPs. A clustering analysis
shows that there are 561 different p,,,, bins that can represent the whole 8961 FDPs
(Figure 7.1).
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Figure 7-1: The number of FDPs with respect to their theoretical maximum specific growth rate. The glu-
cose uptake is 8.16 mmol/gDWhr for every FDP, and the maximum allowable oxygen uptake rate (OUR) is
20 mmol/gDWhr. The number of FDPs shows a bimodal distribution with the peaks at p,,,, = 0.71 —
0.75/hr and W4 = 0.61 — 0.65. The experimental growth rate for E. coli under the specified conditions
is 0.61/hr.

The theoretical maximum specific growth rate of E. coli under the specific conditions is
0.7782, and this can be achieved by 36 different FDPs. Among those 36 most efficient

FDPs, we see that there are 6 reactions that can switch directions without affecting the
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Wnax- These reactions are Acetaldehyde Dehydrogenase, Acetate Kinase, Fructose-6-
phophate Aldolase, Fructose-biphosphate Aldolase, Phosphotransacetylase and Trans-
aldolase. However, if these 6 BDRs could switch directions without having any coupling
between them, then the number of FDPs for this bin should have been 2”6=64. For in-
stance, Acetate Kinase is fully coupled to Phosphotransacetylase, and these reactions
are operating in opposite directions, with the directions shown on Table 7.1. Another
source of coupling is partial coupling, in other words, directionality coupling, in where
the BDRs are coupled to each other in only certain directions, but the coupling is lost
when one of the reactions operate in opposite direction. For instance, when Transal-
dolase reaction operates in Fructose-6-phophate (F6P) direction, Fructose biphosphate
Aldolase operates in the direction of Glyceraldehyde-3-phosphate but we don’t observe
a coupling in the other direction in this yield bin. These 36 FDP indicate that the opti-
mum directionality for glycolysis reactions is towards pyruvate production, as reported
in the literature. Moreover, the TCA cycle operates in one, towards CO2 production, di-

rection without any bifurcation.

The second bin (0.7782/h specific growth rate) is composed of 36 FDPs as well. The
minimum hamming distance between the first 36 FDPs and these FDPs is 1. This implies
that there is only a single directionality change among the reactions that were set unidi-
rectional in the first 36 FDP to jump to this bin. This reaction is Succinyl-coa Synthetase,
and when it catalyses the reaction in succinyl-coa direction, the yield goes down to
0.7756. Again, the same 6 BDRs are generating all the 36 FDPs, similar to the most effi-
cient bin. TCA cycle is still operating in CO2 direction, even though Succinyl-coa Synthe-

tase belongs to TCA cycle.

The minimum hamming distance between the first and the third bin is also 1, and the
BDR that changes its direction in this bin is Transketolase2. The same 6 BDRs can oper-
ate bidirectional in this bin as well, however they allow only 24 FDPs. When this non-
oxidative PPP enzyme catalyses the reaction in Erytorulose-4-phosphate direction; we
observe a drop in growth from 0.7782/h to 0.7748/h. This drop may not be very signifi-
cant, however combinations of these directionality changes can result in a drop up to

26% in the last bin of FDPs, in where the y,,,, = 0.5829/h. In this last yield bin, the di-
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rectionalities of BDRs are significantly different than the optimum yield bins. The most
obvious change is in the direction of glycolysis; glucose-6-phosphate isomerase is oper-
ating in glucose-6-phophate direction. However, forcing this reaction in that direction
does not have a big effect on growth, and p,,,, drops to 0.7691/hr. An analysis to iden-
tify the minimum number of directionalities to relax to obtain the optimum biomass
production indicated 5 reactions, glucose-6-phosphate isomerase, fumarase, triose
phosphate isomerase, phosphoglycerate mutase and polyphosphate kinase. We also
generated alternative directionality relaxation sets. The second set is composed of 6
reactions, and there are only 5 different alternatives to obtain the maximum biomass
yield. This approach can be applied for every yield bin to identify the minimum ham-

ming distance from the optimum bin.

Among 8691 FDPs, there are different profiles that have p,,,, = 0.61/h, which is the
experimental specific growth rate for E. coli under aerobic conditions with glucose as
the sole carbon source. This states that E. coli is secreting by-products, and the metabol-
ic network without any directionality constraints (other than pre-assigned directionali-
ties) cannot predict the experimental growth rate, however these FDPs, with a fixed
glucose uptake rate, can predict the by-product secretion, thus can be used for different
analysis, such as Metabolic Flux Analysis (MFA), in where the experimental data is fitted
to a defined metabolic network. The models and the directionalities of reactions for
MFA are usually built in ad hoc manner and may miss many important links in their
network. rGEM models with FDPs that represent the observed growth offer consistent

platforms for MFA studies.
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7.3.1 Growth Patters of Aerobic Growth under Succinate as Carbon Source

Growth under different carbon sources or different limiting nutrients requires metabol-
ic switches for the organisms to adapt to the new environment. Expressing different
genes, such as genes for transporters or assimilation[161-163], is one of the responses
of the organism for this change. Switches in directionality of the metabolic reactions are
also important cellular responses to adapt to a different environment. The switches in
the directionalities are direct results from the changes in the concentrations of sub-
strates and products. TFA formulation allows us to study these possible changes since it
accounts for the steady-state concentration of metabolites. Moreover, studying the
growth patterns under different carbon sources can reveal how the optimum patterns

differ from one source to another.

The entry point of the carbon source into metabolism plays a very important role for
the optimal growth pattern for this carbon source. Most of the core reactions’ directions
are governed by this fact for optimum growth patterns. As we have seen, the main di-
rection for glycolysis, along with some BDRs, is through pyruvate direction, however
this does not mean that this directionality is optimum for growth under different carbon
sources. To test this hypothesis, we have generated growth patterns with the same
manner as glucose for growth under succinate. The reason for the selection of succinate

is to start the metabolism from a remote point from glucose, in this case TCA cycle.
7.3.2 Bidirectionality Analysis for growth under Succinate

Change in carbon source reflects a change in the metabolism, thus the BDRs under dif-
ferent carbon sources are not necessarily the same. In order to make a fair comparison
between growths on two different carbon sources, we set the number of carbon atom
uptakes as the same both in glucose and succinate case. Since the number of carbon in
glucose is 6, we have set the maximum specific succinate uptake as 12.24 mmol/gDWhr
(8.16 mmol/gDWhr*6/4). The theoretical maximum specific growth rate for E. coli un-
der this environment is 0.583/hr, which is significantly slower compared to growth un-
der glucose (0.7782/hr). Also, the number of bidirectional reactions decreased to 14

(Table 7.2).
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Table 7-2: Bidirectional Reactions in E. coli ij01366r grown under glucose as sole carbon source and the
subsystems they belong to.

Reaction Names Reaction Formula Subsystem
Acetaldehyde Dehydrogenase ACALD + COA + NAD <=> ACCOA + H + NADH Pyruvate Metabolism
Acetate Kinase AC + ATP + H <=> ACTP + ADP Pyruvate Metabolism
Enolase 2PG <=>H20 + PEP Glycolysis/Gluconeogenesis
Fructose 6-phosphate Aldolase F6P <=>DHA + G3P Glycolysis/Gluconeogenesis
Fructose-bisphosphate Aldolase FDP <=>DHAP + G3P Glycolysis/Gluconeogenesis
Malate Dehydrogenase MAL-L + NAD <=>H + NADH + OAA Citric Acid Cycle
Phosphoglycerate Mutase 2PG <=>3PG Glycolysis/Gluconeogenesis
Polyphosphate Kinase ATP + H + PI <=> ADP + PPI Oxidative Phosphorylation
Phosphotransacetylase ACCOA + H + PI <=> ACTP + COA Pyruvate Metabolism
RU5P-D-3-Epimerase RU5P-D <=>XU5P-D Pentose Phosphate Pathway
Succinyl-coa Synthetase ATP + COA + SUCC <=> ADP + PI + SUCCOA Citric Acid Cycle
Transaldolase G3P + S7P <=> E4P + F6P Pentose Phosphate Pathway
Transketolasel R5P + XU5P-D <=> G3P + S7P Pentose Phosphate Pathway
Transketolase2 E4P + XU5P-D <=>F6P + G3P Pentose Phosphate Pathway

The first striking observation is that there is no additional BDR to the ones that we ob-
serve for glucose case. Moreover, the glycolysis pathway is much more constraint, and 4
out of 8 reactions that were bidirectional under glucose growth becomes unidirectional.
3 reactions in a linear path, phosphoglycerate kinase, glyceraldehyde-3-phosphate de-
hydrogenase and glucose-6-phosphate isomerase are operating through Glucose-6-
phophate direction, and the carbon is carried to Pentose Phosphate Pathway. There is
only 1 other reaction in TCA cycle, Fumarase that is fixed to L-malate synthesizing di-
rection. One important observation is that even though the rest 14 BDRs are the same
between glucose and succinate case, the allowable flux ranges for these reactions differ
under these 2 conditions. The allowable flux bounds for 12 reactions under glucose
conditions are encapsulating the ranges under succinate condition, and for all of them
the ranges are narrower. For other two reactions, enolase and phosphoglycerate mu-
tase, the ranges do not overlap, however the range for glucose case is still wider com-
pared to succinate case. These observations also suggest that the efficiency of the meta-
bolic network to catabolize the carbon source has a direct effect on the allowable flux
ranges, if an organism can grow faster on a certain carbon source compared to another

with the same amount of carbon influx, the allowable flux ranges are wider.
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7.3.3 Analysis on alternative FDPs and corresponding p,,,, under Succinate

Following the bidirectionality analysis, we generated all possible FDPs for succinate
case. There are 2489 different directionality profiles for E. coli that is grown aerobically

under succinate as sole carbon source.
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Figure 7-3: The number of FDPs with respect to their theoretical maximum specific growth rate. The suc-
cinate uptake is 12.24 mmol/gDWhr for every FDP, and the maximum allowable oxygen uptake rate
(OUR) is 20 mmol/gDWhr. The number of FDPs shows a bimodal distribution with the peaks at p,,,, =
0.56/hr and 4, = 0.525/hr.

The theoretical limit for the possible FDPs is 16384 (2”14). Flux couplings are the rea-
son for the decreased number of FDPs. There are 174 yield bins that can span all 2489
FDPs. Unlike glucose case, the theoretical maximum specific growth rate for the opti-
mum (0.5833/hr) and the minimum yield bins (0.5151/hr) are close to each other. To
investigate the optimum growth patterns, we studied individually the first 3 bins, and
revealed the optimum directionalities for 14 BDRs and the couplings between them in

each bin.
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There are 9 FDPs that can achieve the highest 0.5833/hr specific growth rate, and there
are 9 other FPDs that can achieve 0.5832/hr. In optimal growth pattern analysis, we
treated these bins together. Among those 18 FDPs, there are 5 BDRs, namely acetalde-
hyde dehaydrogenease, acetate kinase, fructose-6-phophate aldolase, fructose biphos-
phate aldolase, and phophotransacetylase. Among these 5 BDRs, acetate kinase and
phophotransacetylase are coupled to each other, and operate in opposite directions
with respect to directions reported in Table 7.2. Growth under succinate requires a gly-
colysis pathway in the direction through glucose-6-phophate for optimality. Along with
the 4 reactions that were set unidirectional under succinate growth, the BDRs from gly-
colysis are set to the same direction in these optimum FDPs. Enolase and phospho-
glycerate mutase are operating in D-Glycerate 2-phosphate and D-Glycerate 3-
phosphate direction, respectively. Moreover, TCA cycle is operating in the same direc-

tion as it operates optimally under glucose condition.

The p,qx for the second yield bin in 0.5822, and there are 36 FDPs in this bin. Along
with the 5 BDRs from the optimum bin, there is a new BDR for these FDPs, which is
transladolase. Transaldolase does not have any coupling with the other BDRs, hence it
doubled the number of possible FDPs for this bin. Enolase and phophoglycerate mutase
are still coupled to each other in this yield bin. The minimum hamming distance be-
tween this bin and the optimum bin is 1, and the reaction responsible for this yield drop
is transketolasel. When this reaction operates in glyceraldehyde 3-phosphate direction,

the yield drops to 0.5822 /hr.

For the third bin, the specific growth rate drops from 0.5822/hr to 0.5811/hr and the
minimum hamming distance between the optimum bin and this bin is 3. Transletolasel
is operating in the glyceraldehyde 3-phosphate direction. Moreover, ribulose 5-
phosphate 3-epimerase operates in d-xylulose 5-phosphate direction, and transaldolase
is fixed in fructose-6-phophate direction. All these 3 enzymes were catalysing the reac-

tions in reverse direction in the optimum bin compared to the third optimum bin.
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Under succinate growth, the oxidative phosphorylation and electron transport reactions
are unidirectional, and the directions are the same for both glucose and succinate condi-

tions.

7.4 Conclusion
Metabolic enzymes can catalyse reactions in both directions, unless they are kinetically
irreversible. This property allows the cells to adapt to changing environments such as
growth media with different carbon sources. Even under the same media, due to the
changes in the metabolite concentrations, some reactions can change their directionali-
ty. Many reactions in E. coli metabolic network have AG2,, close to 0; hence they are
susceptible to directionality switches. In this chapter, we focused on the multiplicity
that emerges from bidirectional reactions in metabolic networks. By FDPA, we enumer-
ated all possible directionality profiles for E. coli under aerobic conditions, and revealed
the differences between growth under glucose and growth under succinate. Slicing the
solution space into FDPs gives us the opportunity to study the differences between di-
rectionality profiles in terms of biomass yield, target chemical production, displacement
from thermodynamic equilibrium. Some of these FDP can explain experimentally ob-
served behaviour of the organisms, and some can fail in this task. Identifying physiolog-
ically relevant FDPs helps us to point possible bottlenecks in the metabolic networks for
certain tasks, and can reveal the enzymes that controls the system output through ki-

netic models built specifically for the selected FDPs.
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Chapter 8 - super E. coli: Exploring Metabolic Ca-

pabilities of Central Carbon Metabolism

8.1 Introduction
In the previous 7 chapters, we focused on metabolic networks, mainly GEMs, which are
built based on GPR associations. GPR associations, by definition rely on the known bio-
chemistry reported in the databases, and GEMs can only capture the metabolic capabili-
ties based on literature. However, metabolism is a dynamic research area, new enzymes
that are catalysing biochemical reactions have been added to the databases each year.
For instance, KEGG added hundreds of new biochemical reactions to its database in the
update they performed in 2015[164], compared to 2012. In addition, known enzymes
are observed to be catalysing new reactions due to enzyme promiscuity. This also
brings a complexity for metabolic network analysis, since there can be many possible

routes for the carbon flow in the network.

Organisms, such as E. coli or S. cerevisiae are among the mostly studied organisms in the
last century, and their metabolic networks are very well characterized. However, even
for these organisms, there are metabolic gaps [165], which means that there are un-
known enzymatic activities that are yet to be characterized. In the GEMs of these organ-
ism, there are many metabolites that are classified as dead-ends, and there are also
computational efforts to predict possible biotransformations acting on these metabo-
lites[166,167]. But these efforts are also limited with the known reactions and they
cannot explore novel metabolic capabilities. Along with the mentioned studies, there
are also computational efforts to predict possible novel biotransformations[168]. How-
ever, these computational tools focus mainly on predicting biosynthesis pathways for

industrially relevant chemicals [6363,169-172]. This approach limits their capabilities
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to make predictions with a global approach for missing enzymatic activities and un-

known metabolic capabilities in the metabolism.

In this chapter, we focused on the potential metabolic capabilities of E. coli by utilizing
BNICE.ch (Biochemical Network Integrated Computational Explorer) to generate all
known and novel reactions around its central carbon metabolism. We determined the
effect of the novel reactions on the overall GEM behaviour in terms of biomass yield.
Then we reduced the complexity that is emerging from thousands of possible novel bio-
transformations by identifying smaller sets of novel reactions that can produce the
same overall behaviour with an MILP formulation similar to lumpGEM. Finally we have
performed a gap filling analysis to determine biotransformations that can connect the
dead-end metabolites to native GEM network, thus proposing reactions for the missing

enzymatic activities already observed in E. coli.

8.2 Materials and Methods

To explore the metabolic capabilities of E. coli, we used the BNICE.ch framework[29].
BNICE.ch is framework that is capable of reproducing enzymatic reactions reported in
databases (all reactions with a defined biochemistry in KEGG). Moreover it explores and
predicts possible novel biotransformations based on the known biochemistry. The un-
derlying idea in BNICE.ch framework is to find patterns in enzymatic reactions and to
formula generalized enzyme reaction rules that can capture several similar biochemical
reactions. BNICE.ch represents these enzymatic rules by defining the reactive sites of

the compounds as two-dimensional molecule fragments as shown in Figure 8.1.
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Figure 8-1: Example of Representing the Enzymatic Reaction of phenylpyruvate and glutamate to produce
phenylalanine and 2-oxoglutarate. The rule is named as generalized, since in the representation of the
reaction, the substrate is not specified, and this rule can catalyze several similar reactions that share the
same reactive sites on their substrates [29].

BNICE.ch framework has a database of manually formulated generalized reaction rules
that serve to not only to reconstruct known reactions, but also to generate novel enzy-
matic reactions. These reaction rules are generated with manual curation based on
known biochemical reactions in databases, which are classified based on enzyme com-
mission (EC) system [173]. In EC classification system, every enzyme is represented
with 4 digits, which count for the biochemistry of the reaction, the reactive site(s) that
the enzyme acts on, the cofactor that the enzyme uses and the specific substrate, suc-
cessively. BNICE.ch rules do not account for the fourth level EC number, since they are
not designed as substrate specific. This characteristic is the key point for the generaliza-
tion of the rules, which is also the key point for designing novel reactions. The rules are
defined for unidirectional reactions, so the ones that catalyze the reaction in reverse
direction are also created in order to account for the bidirectionality for these reactions.
BNICE.ch has two operating functions, i) forward mode, ii) retrobiosynthesis mode. In
forward mode, BNICE.ch uses all the reaction rules and generates all possible reactions
and metabolites from one or a set of starting compounds along with all cofactor pairs
defined in BNICE.ch [174]. Retrobiosynthesis mode is mainly used to design linear bio-
synthesis pathways for the bio-production of target chemicals. For this study, we uti-
lized the forward mode of BNICE.ch to generate a network that includes all central car-
bon metabolism of E. coli and all possible non-native E. coli or novel reactions.

8.2.1 Defining the compound space for BNICE.ch

Apart from the known compounds, BNICE.ch can also generate novel, hypothetical me-
tabolites, along with novel reactions, however for this study we limited the scope of re-
sults to known compounds. Moreover, even in the known compounds space, there is a
complexity that emerges from different databases, such as KEGG or PubChem [175].
BNICE.ch can screen the generated compounds to both these databases, however, to
focus on biological compounds space, we constrained the algorithm to generate only
biological compounds, and did not include the possible chemical compounds that have

never been observed in any biological systems.
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8.2.2 Generating the super network of E. coli

We created a super network of E. coli by merging the generated metabolites and reac-
tions with the GEM of E. coli. BNICE.ch reports the generated compounds with their da-
tabase IDs, hence we could easily map the generated metabolites to the GEM metabo-
lites. Since we do not have any information of the novel reaction directionalities, we
integrated them in the network as bidirectional. We also performed Group Contribution
Method[40] to estimate Gibbs free energy of formation of the newly added metabolites.
Moreover, we estimated the pKa values for these compounds through Marvin software,
which can perform pKa estimations based on the 2-D structures of the molecules

(Marvin 6.2.3, 2014, ChemAxon (http://www.chemaxon.com)).
8.2.3 Generating yield increasing sets in the super network

To generate the yield increasing sets of novel reactions, we formulated a Mixed-Integer
Linear Programming algorithm similar to lumpGEM, to enumerate possible sets that can
increase the yield with a minimum of 95% theoretical maximum with the following

steps:

a) We created binary use variables FUSE; for each non-native E. coli reaction.
b) We generated a constraint for every non-native E. coli reaction that will control the
flux through these reactions as:

Frxni+ Byxni + C.FUSE; < C

C is the number of carbon atoms that the cell uptakes from its surrounding. If the cell
can uptake multiple carbon sources, and the number of carbon atoms is not definite, an

arbitrary big number can substitute for C.

c¢) We maximize

# of non—native rxns

z FUSE,

i

such that:
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Sv=0 (8.1)
VBiomass = 0.95 * Hmax (8-2)
d) We generated all alternative solutions exhaustively with an iterative manner by
creating the following constraint after every solution.

e)

#of Rseti
Z FUSERsub > 0
k
k

where set; is the generated set of non-native reactions from Step c.

8.3 Results and discussions

We used the latest GEM of E. coli to determine the central carbon metabolism, and se-
lected Glycolysis, Pentose Phosphate Pathway, TCA cycle, pyruvate metabolism, glyox-
ylate shunt, glycerol synthesis pathway and a few amino acid synthesis pathways that
are very close to central metabolism, namely glutamate, aspartate and glutamine. The
resulting network is composed of 76 reactions and 67 metabolites (Figure 8.2). All the
reactions in this network are in KEGG database, and they have characterized biotrans-
formations, thus can be generated by BNICE.ch. We identified 45 generalized reaction
rules that BNICE.ch requires to reproduce the selected 76 central carbon reactions of E.
coli. This indicates that some rules can reproduce more than 1 reaction for 2 main rea-
sons: i) enzyme promiscuity in the 4t level EC and ii) generalized reaction rules which are
not substrate specific. To account for the possible bidirectionalities in the network, we
also selected the reverse reaction rules, thus resulting in 90 generalized reaction rules

for further analysis.

As we analyzed in Chapter 4, E. coli has all the metabolic pathways for every biomass
building block to make 1 gDW of cell, thus can grow under minimal media on single car-
bon sources. In this chapter, we focus on growth on glucose, and run BNICE.ch on glu-
cose as the only starting compound, along with the cofactor pairs that are coupled to the

reaction rules. These cofactor pairs are also determined based on the central carbon
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metabolism and other cofactor pairs that are not a part of the selected network are ex-

cluded from the analysis.
8.3.1 Generation of the de novo Network by BNICE.ch

We used the forward mode of BNICE.ch (see Material Methods) and run the algorithm
for 16 generations, and after 16t generation, BNICE.ch could not generate any more
reactions or metabolites. This convergence indicates that the existing reaction rules
cannot generate any more biotransformation between all the generated compounds
from the whole 16 generations. The final network is composed of 565 metabolites and
7804 reactions, which forms a well-connected network (Table 8.1). This also shows the
promiscuity of the enzymes and the generality of the rules since there are only 90 reac-
tion rules that can potentially catalyse all 7804 reactions. Starting from glucose, there
are 12 enzymatic steps to reproduce all 76 reactions of the central carbon metabolism.
Moreover, these 90 reaction rules can catalyse 174 more native E. coli reactions belong-
ing to subsystems other than central carbon, implying that these rules are also active in
other parts of the metabolism. In Chapter 4, we claimed that the existing subsystem def-
initions in GEMs and databases are not complete, and we re-defined the pathways for
biomass building blocks by identifying active enzymes for their biosynthesis. This result
is in accordance with this claim from a different perspective, and indicates one more
level of connectivity in metabolic networks, the shared biochemistry rules among dif-

ferent parts of the metabolism.

Table 8-1Statistics on the de novo Network by BNICE.ch

Generation Total # of # of KEGG # of E. coli Total # of # of E. coli
Reactions Reactions Reactions Compounds Compounds
0 0 0 0 19 19
1 18 9 6 28 25
2 80 26 16 45 35
3 197 62 33 83 56
4 553 164 75 159 95
5 1119 322 115 223 130
6 1730 438 143 277 155
7 2419 545 171 334 184
8 3268 648 194 393 210
9 4266 752 222 439 233
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10 5247 839 238 478 244
11 6010 892 243 513 251
12 6714 930 247 540 258
13 7441 953 250 555 262
14 7780 965 250 562 262
15 7801 973 250 564 262
16 7804 975 250 565 262

8.3.2 Topology of de novo metabolic network of E. coli

We then merged the BNICE.ch network with the genome scale network of E. coli. Since
we build this network around the central carbon metabolism and all those reactions
occur in cytoplasm, we introduced every non-native reaction to GEM as cytoplasmic.
The super network is composed of 2176 metabolites and 6454 reactions. This signifies a
20.4% increase in number of metabolites and 1.6 times increase in number of reactions.
The number of reactions did not increase as much as the number of generated non-
native E. coli reactions. A closer look into the generated network reveals that there are
thousands of same biotransformations with opposite directions. This is due to the for-
ward and backward reaction rules applied by BNICE.ch. Since GEMs account for this
bidirectionality through upper and lower bounds for the fluxes, we did not need to in-
troduce these same biotransformations to the super network as 2 separate reactions.
We did not put any directionality constraints to the novel reactions in the network, and
introduced them as bidirectional for FBA and TFA analysis. Moreover, the reported E.
coli metabolites in Table 8.1 correspond to all metabolites that have been observed in
all strains of E. coli in the KEGG database. There are 64 metabolites in KEGG that are

reported as E. coli compound but not a part of the ij01366 network.

Firstly, we performed an analysis on the dead-end metabolites of the wild type E. coli
and the super network. There are 208 dead-end metabolites in the native E. coli me-
tabolism. 9 of these metabolites are no longer dead-end in the de novo network, and
there is more than 1 non-native reaction that includes these metabolites in their stoi-
chiometry. Moreover, all these reactions are novel, suggesting an unknown biotrans-

formation. Generating possible biotransformations based on a certain part of metabo-
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lism brings an advantage for our approach over traditional gap filling methods, since
gap-filling analysis is performed on individual biomass building blocks. Moreover, these
methods do not account for alternative solutions, and does not span the whole possible

biotransformations.

Table 8-2: List of metabolites that were dead-end metabolites in the native E. coli and are not dead-end in
the de novo metabolic network. The reaction steps that could connect these metabolites to the native

metabolites are novel hypothetical reactions generated by BNICE.ch.

Metabolites # of Reactions  # of Novel Reactions
2,3-Dioxo-L-Gulonate 3 3
2,5-Diketo-D-gluconate 2 2
2-Phosphoglycolate 2 2
4-Hydroxy-L-Threonine 5 5
P1,P5-bis(5-Adenosyl) Pentaphosphate 11 11
1-Aminopropan-2-ol 72 72
1-Deoxy-D-Xylulose 10 10
Gamma-Hydroxybutyrate 15 15
Oxalate 17 17

8.3.3 Characteristics of the de novo network, super E. coli

The properties of the de novo network are significantly different than the native E. coli
GEM. The theoretical maximum specific growth rate of wild type E. coli network is
0.997 /hr under aerobic conditions with 10-mmol/gDWhr specific glucose uptake. The
de novo network, on the other hand can grow 1.46/hr under the same conditions. This
indicates a 46% increase in the biomass yield, and it is the maximum achievable yield
based on carbon mole glucose over carbon mole biomass, which becomes 1 in this case.
In other words, under perfect conditions, the cell does not need to secrete CO> to sustain
a high growth yield. This behaviour is unexpected, and requires a systematic approach

to understand its characteristics.
8.3.4 Sets of reactions that increase the biomass yield

There are 4647 non-native reactions in the super network, and it is not possible to re-

veal the individual contributions of the novel reactions for this significant increase in
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the yield just by optimizing for biomass production. This is mainly due to the degrees of
freedom that the system has, plus the complexity that emerges from similar biotrans-
formations among non-native reactions. The first step that we have taken to interpret
the effect of non-native reactions and to reduce this complexity is to perform Flux Vari-
ability Analysis (FVA). In this approach, we expected to capture the indispensible novel
reactions that increase the biomass yield while we imposed a lower bound of 1.46/hr
on biomass production. However, FVA indicated that there is not even a single non-
native reaction that has a lower allowable absolute flux value bigger than 0. This signi-
fies that the novel reactions increasing the yield can substitute each other, and without
an enumeration method, it is not possible to determine the individual or sets of novel
reaction that can achieve this goal. To overcome this limitation, and reduce the com-
plexity among the non-native reactions, we formulated an MILP method similar to
lumpGEM that was discussed in Chapter 4 (See Materials and Methods) and enumerated
all possible sets of those novel reactions. In this analysis, we did not enforce TFA con-
straints to generate all possible sets and included only mass balance constraints, and

then we tested these sets in GEM for thermodynamic feasibility.

Table 8-3: Statistics on yield increase sets, FBA/TFA. Total number of generated sets of reactions that

increase the yield in FBA, and the number of those that are thermodynamically feasible.

Length  # of generated sets # of TFA feasible

2 136 7
3 6705 1075
4 4200 1677
5 7 4
Total 11048 2763

Our method generated 11048 sets composed of different lengths, starting from 2 till 5.
Surprisingly, 1140 reactions can form all 11048 sets, and 135 of them were KEGG reac-
tions. This corresponds to ~15 percent of the total 7804 reactions proposed by

BNICE.ch, which is a significant reduction in the complexity of the super network.
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8.3.5 Thermodynamic feasibility of E. coli metabolic network with different

sets of non-native reactions

After generating all possible yield increasing sets, we tested them for thermodynamics
feasibility. In order to perform this analysis, for each set, we created a de novo GEM that
consists of native E. coli metabolism, and the generated set. Among 11048 sets, there
were 8285 sets that did not change the biomass yield for E. coli with thermodynamics
constraints. Moreover, the highest y,,,, among all sets is 1.39/hr, which is slightly low-
er than the p,,,, with only mass balance constraints. There are two main reasons for
the drop of biomass yield for the super network. i) The generated set is thermodynami-
cally infeasible. In this case, there is at least 1 reaction in the set that cannot carry flux in
the desired direction, and this automatically results in no increase in the biomass yield.
ii) the reactions that are coupled to the generated set either cannot carry flux in the de-
sired direction, which will result in no biomass yield increase, or cannot carry flux as high

as in FBA case, which will result in a lower biomass yield increase.

Following the TFA analysis on all the sets, we focused on the individual sets that are
increasing yield under thermodynamic constraint. We generated lumped reactions from
the sets following a similar method as lumpGEM (See Chapter 4, Materials and Methods)
and concluded that some sets are simply producing excess ATP for the super network,
and the cell does not need to activate TCA cycle to couple the ATP synthase flux to Elec-
tron Transport Chains. This indicates that the limiting factor for E. coli for the carbon
loss through CO; is ATP availability. However, for some other sets, we could not con-
clude the main reason for the yield increase, and performed a deeper analysis to under-

stand the network behaviour.

In a specific example, by following the carbon flow in the de novo network, we observed
that a cycle is formed, which synthesizes ATP and pumps out protons that are coupled
to ATP synthesis. In this cycle, the novel step is the biotransformation of succinate to
homoserine, and with 5 successive native reactions, the cycle is closed by the transfor-
mation of fumarate to succinate. Another reaction, NADH dehydrogenase, is also cou-

pled to this cycle and pumps out protons from cytosol to periplasm. The second reaction
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of the set converts (R)-2-hydroxyglutarate to isocitrate, since (R)-2-hydroxyglutarate is
not a native metabolite, and must be balanced in the network. This cycle is very similar
to TCA cycle, however there is no CO> loss in any step, thus resulting in no carbon loss.

(R)-2-Hydroxyglutarate
Glutamate

0
Homoserine

Succinate

() L-Aspartate 4-semialdehyde

Oxaloacetate

Glutamate AKG
NAD NADH

Figure 8-3: An example of sets that increase the yield towards biomass production. The overall reaction
for this set is ADP + H*(c) + NADH + NADP* + Phosphate <=>ATP + H,0 + NAD* + NADPH + H*(p). This

cycle is producing ATP, NADPH and is pumping out protons, which are coupled to ATP synthase reaction.

8.4 Conclusion
Despite the accumulated knowledge in years, we still do not comprehend the full meta-
bolic capabilities of E. coli. Using GEMs to identify the metabolic knowledge gaps is a
promising approach to determine the missing information. In this chapter, we focused
on the central carbon metabolism of E. coli, and studied its metabolic potential by using
BNICE.ch. BNICE.ch allowed us to investigate the potential non-native reactions that can
be catalysed by the enzymatic rules already existing in the organism. Moreover, it sug-
gested reactions acting on the dead-end metabolites in the native network. We extended
the scope of the -study by identifying sets of non-native reactions that can increase the
yield towards biomass. This study indicates the importance of a global approach to in-
vestigate the metabolic capabilities of organisms and its advantages over targeted gap-

filling analysis. This method is unbiased since it can be applied to any organism; moreo-
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ver, it can be performed on any part of the metabolism. It also indicated the common
biochemistry rules among different parts of the metabolic network, thus revealing one

more layer of connectivity between subsystems.
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Chapter 9 - Conclusions and Perspectives

In this thesis, we had mainly 2 perspectives, i) reducing the complexity of metabolic net-
works and ii) characterization of metabolic networks through the methods that we have
developed for reducing this complexity. This complexity emerges from different charac-
teristics of metabolic networks. In the first seven chapters, we focused on 2 sources: i)
the size of the metabolic networks and ii) underdetermined nature of the metabolic net-
works, and the large degrees of freedom that the systems have. In Chapter 8, we focused
on the complexity of the metabolic capabilities of organisms and proposed methods to

characterize the metabolic potentials of the enzymatic capabilities of E. coli.

Bio-thermodynamics that is described in details in Chapter 1 is one of the most popular
methods to reduce the solution space for metabolic networks and to determine direc-
tionality of reactions that have not been observed as catalytically irreversible. By dis-
cussing different approaches, we have reviewed the existing state of the methods; in
addition, we have discussed and revealed other potential areas that bio-
thermodynamics can play an important role, such as plant metabolism in where energy
metabolism is playing a very crucial role. For future studies, merging the computational
chemistry methods with existing bio-thermodynamics methods is a promising approach
for increasing the coverage of thermodynamic properties and for further improvement
of thermodynamic estimations. Moreover, this approach will make it possible to study
on the organisms that survive under extreme conditions, extremophiles, since the ther-
modynamic estimations can be made for different temperatures and pressures through

high-level quantum chemical calculation.

In Chapter 3, we focused on a new method by utilizing bio-thermodynamics with a sys-

tems biology approach through TFA. We showed that bio-thermodynamics is not only
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useful for assigning directionalities and determining allowable concentration ranges for
metabolites thus distance from thermodynamic equilibrium, but also useful to under-
stand the overall system behaviour, in this specific case Gibbs free energy dissipation
and efficiency of electron transport chains and oxidative phosphorylation. This method
is applicable to any genome scale model, which makes it a powerful approach to analyse
the relation between thermodynamic characteristics and the observed physiology of the
organisms. For future studies, this method can be applied to other organisms to under-
stand the growth characteristics, by-product formation and their coupling with engi-
neered pathways. Moreover, Gibbs free energy dissipation can be used as a criterion in
engineering organisms for certain tasks, such as biosynthesis of target chemicals. Possi-
ble non-native synthesis pathways can be ranked according to their additional dissipa-

tion burden for the host organism.

In Chapter 4 and 5, we focused on reducing the complexity on a topological level, and by
lumpGEM, we reduced the GEM for the synthesis of individual biomass building blocks,
and we re-defined the biological pathway definition by showing that the active enzymes
for the synthesis of a certain metabolite form a nested subnetwork, rather than linear as
shown in databases, such as KEGG and EcoCyc. This approach led to the development of
core reduced models around the parts of metabolism under interest by redGEM in
Chapter 5. redGEM generated representative models from GEM by re-defining the cen-
tral carbon metabolism, and by reducing the stoichiometry through lumpGEM. The con-
sistency between rGEMs and GEMs makes these reduced models powerful platforms for
different studies that focus on certain parts of the metabolism. Moreover, this approach
is very promising for many other applications, such as community modelling, in where
microbial consortia with many organisms are under study. Revealing the dynamics be-
tween the individual members of the consortia is crucial to understand the community
behaviour, growing in different environments, from soil to clinical cases, for instance
burnt skin. The sizes of these community models are manageable for studies, such as
FBA, TFA but the complexity of the network and uncertainty in the kinetic parameters

makes it very difficult to build representative kinetic models.
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redGEM and lumpGEM also have the potential to uncover the differences between the
central carbon metabolism and to indicate the different synthesis routes that evolved
for the same biomass building blocks among different organisms. In Chapter 6, we fo-
cused on these differences, and showed the characteristics of different central carbon
networks among prokaryotic and eukaryotic cells. This study has the potential to identi-
fy some of the evolutionary differences between the strains of the same species or tis-

sue specific cells in higher organisms, such as mouse or human.

In Chapter 7, we enumerated all the possible Flux Directionality Profiles for E. coli under
different conditions by using the generated rGEMs from Chapter 5. This approach can
be used for Metabolic Flux Analysis, in where the experimental data can be fitted to dif-
ferent directionality profiles. As a future study, growth patterns analysis can reveal min-
imum hamming distances between different yield bins that have been discussed in de-
tails in the chapter. Growth pattern analysis also reveals certain directionality profiles
with a theoretical maximum yield that is experimentally observed. Moreover, with the
same approach, FDPA can be used to study sub-optimal growth conditions, since it also
proposes FDPs with lower theoretical maximum growth rate compared to optimally
grown conditions. FDPA also has the potential to be merged with different approaches
in this thesis, such as P:0 Ratio and bioenergetics analysis in Chapter 3. For future work,
analysis of directionality profiles with the optimum P:0 Ratio and minimum Gibbs free
energy dissipation can be applied for the study of the flexibility of organisms under op-

timum growth conditions.

Enzyme promiscuity and uncharacterized enzymatic activities bring a different type of
flexibility and complexity to the metabolic network analysis studies. In Chapter 8, we
used BNICE.ch to explore the metabolic capabilities of E. coli with known and possible
biotransformations by creating a super network based on its known biochemistry. This
type of analysis has many potential applications, such as increasing the yield through
biomass production. Moreover, this approach can be used to analyse the metabolic ca-
pabilities of super E. coli network for different purposes, such as the biosynthesis of in-
dustrially relevant chemicals and provides guidance for synthetic biology and metabolic

engineering. Reducing the complexity among thousands of novel reactions also creates
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the chance to enumerate different small sets of novel reactions to achieve the metabolic
goals listed above. We can then use another tool developed in LCSB, BrigdIT, which
makes use of the similarity between reactants and products of the novel reaction and all
known KEGG reactions, and based on this similarity, ranks the possible enzymes that
can potentially catalyse this novel reaction. Such analysis has the potential to be applied
in experimental set-ups through determining potential enzymes to be engineered using

protein engineering and directed evolution.

Computational methods are indispensible tools to improve our understanding of cell
metabolism and its potential, to guide the experimental set-ups and improve the per-
formance of the organisms for certain tasks. In this thesis, we highlighted different
computational efforts to fulfil these goals, and discussed our contribution to the field. By
building methods to manage the complexity of the metabolic networks, we proposed
novel approaches to characterize cellular metabolism. We also aim to re-think and re-
define some established definitions in the field, such as subsystems and metabolic
pathways. The methods proposed in this thesis have the potential to be applied to any
metabolic network, thus making them unbiased tools for many different studies on me-

tabolism.

136



Appendix

Appendix

Table A.1: Reactions that contributes most to Gibbs Free Energy Dissipation of E. coli
Reactions Enzymatic Reaction Formula AG?;n
AKGDH AKG + COA + NAD <=> (CO2 + NADH + SUCCOA -11.69
ATPM ATP + H20 <=>ADP + H + PI -7.76
ATPsynthase ADP + Pl +4H_P <=>ATP+ 3 H+ H20 -8.80
CS ACCOA + H20 + OAA <=>CIT+COA+H -8.78
CYTbd2 2H+MQL8 + 0.5 02 <=>H20 + MQN8 + 2 H_P -14.95
CYTbd1 2H+0.502+Q8H2 <=>H20+Q8 + 2 H_P -28.67
CYTbo3 4H+0502+Q8H2 <=>H20+Q8+4H_P -20.38
FACOAE60 H20 + HXCOA <=> COA + H + HXA -4.83
FDH4pp 2H+Q8+FOR_P <=>Q8H2 +CO2_P + H_P -10.48
FDH5pp 2 H+ MQN8 + FOR_P <=>MQL8 + CO2_P + H_P -24.20
FEROpp 4 FE2_P+4H_P+02_P <=>4FE3_P+2H20_P -8.12
FOMETRIi S5FTHF + H <=> H20 + METHF -5.92
FRD3 2DMMQL8 + FUM <=>2DMMQ8 + SUCC 5.31
G3PD5 GLYC3P + Q8 <=>DHAP + Q8H2 -15.11
G3PD6 GLYC3P + MQN8 <=> DHAP + MQL8 -28.83
G3PD7 2DMMQ8 + GLYC3P <=>2DMMQL8 + DHAP -17.98
G6PDH2r G6P + NADP <=> 6PGL + H + NADPH -3.39
GAPD G3P + NAD + PI <=>13DPG + NADH -2.15
GLUDy GLU-L + H20 + NADP <=> AKG + H + NADPH + NH4 11.23
GLYAT ACCOA + GLY <=>2A0BUT + COA 7.25
GLYCLTDx GLX + H + NADH <=> GLYCLT + NAD -6.21
GLYCLTDy GLX + H + NADPH <=> GLYCLT + NADP -5.82
GLYCTO2 GLYCLT + Q8 <=>GLX + Q8H2 -9.76
GLYCTO3 GLYCLT + MQN8 <=> GLX + MQL8 -23.48
GLYCTO4 2DMMQ8 + GLYCLT <=>2DMMQL8 + GLX -12.63
HEXtZ2rpp H_P + HXA_P <=>H + HXA 1.26
HPYRRx H + HPYR + NADH <=> GLYC-R + NAD -4.75
HPYRRy H + HPYR + NADPH <=> GLYC-R + NADP -4.36
LDH_D LAC-D + NAD <=>H + NADH + PYR 4.75
LDH_D2 LAC-D + Q8 <=>PYR + Q8H2 -11.22
MDH MAL-L + NAD <=>H + NADH + OAA 4.75
MDH2 MAL-L + Q8 <=> OAA + Q8H2 -11.22
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MDH3
MOX
NADH10
NADH17pp
NADH18pp
NADH5
NADH9
NADPHQR?2
NADPHQR3
NADPHQR4
PDH

PFK

PFK_ 3

PGL
PPAKr
PPCSCT
PPKr

PTA2
PTAr
PYAM5PO
SUCDi
SUCOAS
THD2

MAL-L + MQN8 <=> MQL8 + OAA

MAL-L + 02 <=>H202 + OAA

H + MQN8 + NADH <=> MQL8 + NAD

4 H+ MQN8 + NADH <=> MQL8 + NAD + 3 H_P
2DMMQ8 + 4 H + NADH <=>2DMMQLS8 + NAD + 3 H_P
H + NADH + Q8 <=> NAD + Q8H2

2DMMQ8 + H + NADH <=> 2DMMQL8 + NAD

H + NADPH + Q8 <=> NADP + Q8H2

H + MQN8 + NADPH <=> MQL8 + NADP
2DMMQ8 + H + NADPH <=> 2DMMQL8 + NADP
COA + NAD + PYR <=> ACCOA + CO2 + NADH
ATP + F6P <=> ADP + FDP

ATP + S7P <=> ADP + S17BP

6PGL + H20 <=>6PGC+H

ADP + PPAP <=>ATP + H + PPA
PPCOA + SUCC <=> PPA + SUCCOA

ATP + H + PI <=> ADP + PPI

H + PI + PPCOA <=> COA + PPAP

ACCOA + H + PI <=>ACTP + COA

H20 + 02 + PYAM5P <=>H202 + NH4 + PYDX5P
Q8 + SUCC <=>FUM + Q8H2

ATP + COA + SUCC <=> ADP + PI + SUCCOA
NADH + NADP +2 H_P <=>2H + NAD + NADPH

-24.94
-25.49
-29.69
-13.13
-2.28
-15.97
-18.84
-15.58
-29.30
-18.45
-10.53
-7.68
-7.26
-7.21
-1.15
-1.16
-1.90
4.08
7.12
-18.10
-2.44
-4.09
-8.67
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Table A.2: Statistics of Subnetworks and Lumped Reactions of E. coli for ad hoc Core Network

Size # of # of
Biomass Building Blocks of Alternative Unique
Subnetwork | Subnetwork | Lumped
Reactions
10-Formyltetrahydrofolate 46 24 7
2-Demethylmenaquinol 8 31 24 4
[2Fe-2S] iron-sulfur cluster 19 40 16
[4Fe-4S] iron-sulfur cluster 21 48 16
5-Methyltetrahydrofolate 46 36 4
Acetyl-CoA 48 36 3
Adenosylcobalamin 29 48 15
L-Alanine 2 1 1
S-Adenosyl-L-methionine 43 36 4
L-Arginine 13 2
L-Asparagine 2
L-Aspartate 1
bis-molybdopterin guanine dinucleotide 46 24 8
Biotin 67 72 8
Chorismate 7 1 1
Coenzyme A 48 35 3
CTP 15 12 9
L-Cysteine 15 6 2
dATP 29 48 16
dCTP 17 24 18
dGTP 30 56 14
dTTP 23 18 12
Enterochelin 19 4 2
Flavin adenine dinucleotide oxidized 39 24 7
L-Glutamine 2 2 2
L-Glutamate 1 1
Glycine 2 2
glycogen 2 2
Reduced glutathione 21 6 2
GTP 28 24 7
Heme O 27 24 8
L-Histidine 21 12 3
L-Isoleucine 12 1 1
L-Leucine 10 1 1
lipoate (protein bound) 40 48 16
L-Lysine 11 1 1
Malonyl-CoA 49 36 3

139




Appendix

L-Methionine 25 6 2
5,10-Methylenetetrahydrofolate 45 36
molybdopterin cytosine dinucleotide 53 144 48
molybdopterin guanine dinucleotide 44 24 8
Menaquinol 8 44 21

Nicotinamide adenine dinucleotide 32 72 21
Nicotinamide adenine dinucleotide - reduced 32 72 21
Nicotinamide adenine dinucleotide phosphate 33 72 21
Nicotinamide adenine dinucleotide phosphate - reduced 33 70 21
phosphatidylethanolamine (dihexadecanoyl, n-C16:0) 44 245 16
phosphatidylethanolamine (dihexadec-9enoyl, n-C16:1) 44 109 14
phosphatidylethanolamine (dioctadec-11-enoyl, n-C18:1) 48 256 16
Phosphatidylglycerol (dihexadecanoyl, n-C16:0) 40 256 16
Phosphatidylglycerol (dihexadec-9-enoyl, n-C16:1) 40 127 14
Phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1) 44 242 16
L-Phenylalanine 11 1 1
Protoheme 13 4 4
L-Proline 1 1
Putrescine 1 1
Pyridoxal 5-phosphate 1 1
Ubiquinol-8 44 85 16
Riboflavin 35 24 7
L-Serine 4 1
Siroheme 24 2
Spermidine 37 2
Succinyl-CoA 48 36 3
5,6,7,8-Tetrahydrofolate 46 24 7
Thiamine diphosphate 46 12 4
L-Threonine 7 1
L-Tryptophan 17 2
L-Tyrosine 11 1
Undecaprenyl diphosphate 15 12 4
UTP 13 6 6
L-Valine 5 1 1
core oligosaccharide lipid A 75 128 24
cardiolipin (tetrahexadecanoyl, n-C16:0) 41 512 32
cardiolipin (tetrahexadec-9-enoyl, n-C16:1) 41 255 28
cardiolipin (tetraoctadec-11-enoyl, n-C18:1) 45 512 32
two linked disacharide tripeptide murein units (uncrosslinked, 32 4 4
middle of chain)

two disacharide linked murein units, tripeptide crosslinked 33 4 4
tetrapeptide (A2pm->D-ala) (middle of chain)

two linked disacharide tetrapeptide murein units (uncross- 33 4 4
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linked, middle of chain)

two disacharide linked murein units, tetrapeptide corsslinked 33 4 4
tetrapeptide (A2pm->D-ala) (middle of chain)

three disacharide linked murein units (tetrapeptide crosslinked 33 4 4
tetrapeptide (A2pm->D-ala) & tetrapeptide corsslinked

tetrapeptide (A2pm->D-ala)) (middle of chain)

phosphatidylethanolamine (dihexadecanoyl, n-C16:0) 44 256 16
phosphatidylethanolamine (dihexadec-9enoyl, n-C16:1) 44 128 14
phosphatidylethanolamine (dioctadec-11-enoyl, n-C18:1) 48 234 16
Phosphatidylglycerol (dihexadecanoyl, n-C16:0) 40 512 32
Phosphatidylglycerol (dihexadec-9-enoyl, n-C16:1) 40 247 28
Phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1) 44 512 32
Growth Associated Maintenance 27 24 8
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Table A.3: Core Carbon Network of E. coli for D=0

Reactions Reaction Formulas Reactions Reaction Formulas

DM_ac_e ac_e <=> GLYCK2 atp + glyc-R <=> 2pg + adp

DM_akg e akg e <=> GLYCLTDx  glx + h + nadh <=> glyclt + nad

DMo2_e co2_e <=> GLYCLTDy  glx + h + nadph <=> glyclt + nadp
DM_etoh_e etoh_e <=> GLYCTO2 glyclt + q8 <=>glx + q8h2

DM_for_e for_e <=> GLYCTO3 glyclt + mqn8 <=> glx + mql8

DM _glyc_e glyc_e <=> GLYCTO4 2dmmg8 + glyclt <=> 2dmmql8 + glx
DM_glycogennl <=> glycogennl GND 6pgc + nadp <=>co2 + nadph + ru5p-D
DM _bglycogennl <=> bglycogennl H20tpp h2o0_p <=>h2o0

DM_lac-D_e lac-D_e <=> HEX1 atp + glc-D <=> adp + gbp

DM_mal-L_e mal-L_e <=> HYD1pp 2h+h2+q8 <=>q8h2+2h_p
DM_pyr_e pyr_e <=> HYD2pp 2h+h2 +mqn8 <=>mql8+2h_p
DM_succ_e succ_e <=> HYD3pp 2dmmqg8 + 2h + h2 <=>2dmmql8 + 2 h_p
ACALD acald + coa + nad <=>accoa+h +nadh | ICDHyr icit + nadp <=>akg + co2 + nadph
ACKr ac+atp+h <=>actp + adp ICL icit <=> glx + succ

ACONTa cit <=>acon-C + h2o0 L-LACD2 lac-L + g8 <=> pyr + q8h2

ACONTDb acon-C + h2o <=>icit L-LACD3 lac-L + mqn8 <=>mql8 + pyr

ACS 2‘;; atp + coa + h <=>accoa + amp + LDH_D lac-D + nad <=>h + nadh + pyr

ADK1 amp + atp <=> 2 adp LDH_D2 lac-D + q8 <=> pyr + q8h2

AKGDH ilgg +coa+nad <=>coZ +nadh + suc- MALS accoa + glx + h2o <=>coa + h + mal-L
ALCD2x etoh + nad <=>acald + h + nadh MDH mal-L + nad <=>h + nadh + oaa
ALDD2x acald + h2o + nad <=>ac+ 2 h + nadh MDH2 mal-L + g8 <=>oaa + q8h2

ALDD2y f)gzzilgh+ h2o0 + nadp <=>ac + 2 h + MDH3 mal-L + mqn8 <=>mgql8 + oaa

ASPO3 asp-L + q8 <=>h +iasp + q8h2 ME1 mal-L + nad <=>co2 + nadh + pyr
ASPO4 asp-L + mqn8 <=>h + iasp + mql8 ME?2 mal-L + nadp <=>co2 + nadph + pyr
ASPO5 asp-L + fum <=>h +iasp + succ MOX mal-L + 02 <=>h202 + oaa

ASPO6 asp-L + 02 <=>h + h202 +iasp NADH10 h + mqn8 + nadh <=>mql8 + nad

ASPT asp-L <=>fum + nh4 NADH16pp 4h+nadh+q8 <=>nad+q8h2+3h_p
ATPM atp + h2o <=>adp +h + pi NADH17pp 4 h+mqn8 + nadh <=>mql8 + nad +3 h_p
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ATPS4rpp

CAT

CITL
CO2tex
CO2tpp
CRNBTCT
CRNCAL2
CRNCAR
CRNCBCT

CRNCDH

CRNDCAL2

CS

CTBTCAL2

CYTBD2pp

CYTBDpp

CYTBO3_4pp

DHAPT
DHORD?2

DHORD5

DHORDfum

DMSOR1

DMSOR1pp

DMSOR2

DMSOR2pp

DMSOtpp

DSBAO1

adp+pi+4h_p <=>atp+3h+h2o0

2h202 <=>2h20+02

cit <=>ac + oaa

co2_e <=>co2_p

co2_p <=>co2

bbtcoa + crn <=> crncoa + gbbtn

atp + coa + crn <=> adp + crncoa + pi
crncoa <=>crnDcoa

crn + ctbtcoa <=> crncoa + ctbt
crncoa <=> ctbtcoa + h2o

atp + coa + crn-D <=> adp + crnDcoa +
pi

accoa + h20 + oaa <=>cit+coa+h
atp + coa + ctbt <=>adp + ctbtcoa + pi

2h+mql8 + 0.5 02 <=>h20 + mqn8 +
2hp

2h+0.502+q8h2 <=>h20+q8+2
h_p

4h+0502+q8h2 <=>h20+q8 +4
h_p

dha + pep <=> dhap + pyr
dhor-S + g8 <=>orot + q8h2

dhor-S + mgn8 <=>mgql8 + orot

dhor-S + fum <=> orot + succ

dmso + mql8 <=>dms + h20 + mqn8

mql8 + dmso_p <=> mqn8 + dms_p +
h2o0_p

2dmmgql8 + dmso <=> 2dmmgqg8 + dms
+h2o0

2dmmgql8 + dmso_p
dms_p + h2o_p

<=> 2dmmgq8 +

dmso_p <=>dmso

g8 + dsbard_p <=>q8h2 + dsbaox_p

NADH18pp

NADH5
NADH9
NADK
NADPHQR?2
NADPHQR3
NADPHQR4
NADPPPS
NADTRHD

NH4tpp

NO2t2rpp

NO3R1bpp

NO3R1pp

NO3R2bpp

NO3R2pp

NO3t7pp

NTP1
NTPP6

NTRIR2x

NTRIR3pp

NTRIR4pp

OAADC

PDH

PFK

PFK_3

PFL
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2dmmq8 + 4 h + nadh <=>2dmmql8 + nad + 3
h_p

h + nadh + g8 <=>nad + q8h2

2dmmg8 + h + nadh <=>2dmmgql8 + nad
atp + nad <=> adp + nadp

h + nadph + g8 <=> nadp + q8h2

h + mgn8 + nadph <=>mql8 + nadp
2dmmg8 + h + nadph <=>2dmmgql8 + nadp
h20 + nadp <=>h + nad + pi

nad + nadph <=>nadh + nadp

nh4_p <=>nh4

h_p +no2_p <=>h +no2

q8h2 + no3_p <=>q8 +h20_p +no2_p

2h+no3 +q8h2 <=>h20+no2+q8+2h_p

mql8 + no3_p <=>mqn8 +hZo_p + no2_p

2 h + mql8 + no3 <=>h20 + mqn8 + no2 + 2
hp

noZ + no3_p <=>no3 +no2_p

atp + h2o <=>adp + h + pi

atp + h2o <=>amp + ppi
5h+ 3 nadh + no2 <=>2h20 + 3 nad + nh4

3q8h2 +2h p+no2p <=>3q8+2h2o_p+
nh4_p

3mql8 + 2 h_p + no2_p <=>3 mqn8 + 2 h2o_p
+nh4_p

h + oaa <=>co2 + pyr

coa + nad + pyr <=>accoa + co2 + nadh

atp + fép <=>adp + fdp

atp + s7p <=>adp +s17bp

coa + pyr <=>accoa + for
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DSBAO2
EDA
EDD
ENO
F6PA
FBA
FBA3
FBP

FDH4pp

FDH5pp

FHL
FLDR2
FORtZpp
FORtex
FORtppi
FRD2
FRD3
FUM
G1PPpp
G3PD2
G3PD5

G3PD6

G3PD7

G6PDH2r
G6PP
GAPD

GLBRAN2

GLCDpp

GLCP

GLCP2

mqn8 + dsbard_p <=>mql8 + dsbaox_p
2ddgép <=>g3p + pyr

6pgc <=>2ddgé6p + h2o0

2pg <=>h2o0 + pep

fép <=>dha+g3p

fdp <=>dhap + g3p

s17bp <=> dhap + e4p

fdp + h2o <=>f6p + h + pi
2h+q8+for_p <=>q8h2+co2_p+h_p

2h+mqn8 + for_p <=>mql8 + co2_p +
h_p

for +h <=>co2 +h2

2 flxso + h + nadph <=> 2 flxr + nadp
for p+h_p <=>for+h

for_e <=>for_p

for <=>for_p

fum + mql8 <=>mqn8 + succ
2dmmgql8 + fum <=>2dmmgq8 + succ
fum + h2o <=>mal-L

glp_p +h2o0_p <=>glc-D_p + h_p + pi_p
glyc3p + nadp <=>dhap + h + nadph
glyc3p + g8 <=> dhap + q8h2

glyc3p + mqn8 <=> dhap + mql8

2dmmq8 + glyc3p <=> 2dmmgql8 +
dhap

gbp + nadp <=> 6pgl + h + nadph
gbp + h20 <=>glc-D + h + pi

g3p +nad + pi <=> 13dpg + nadh
glycogen <=> bglycogen

q8 + glc-D_p + h2o_p <=>q8h2 + glen_p
+h_p

glycogen + h + pi <=>glp + glycogenn1

bglycogen + pi <=> bglycogenn1 + glp

PGI

PGK

PGL

PGM
PGMT
Plt2rpp
Pluabcpp
POR5

POX

PPA

PPA2
PPC
PPCK
PPK2r
PPKr
PPS
PTAr
PYK
QMO2
QMO3
RPE

RPI

SELR

SPODM
SUCDi
SUCOAS

TALA

THDZpp

THIORDXi

TKT1
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g6p <=>f6p

3pg + atp + h <=>13dpg + adp

6pgl + h20 <=>6pgc+h

2pg <=>3pg

glp <=>gép

h_p +pi_p <=>h+pi

atp + h20 + pi_p <=>adp +h + 2 pi

coa + 2 flxso + h + pyr <=>accoa + co2 + 2 flxr

h20 + pyr + q8 <=>ac + co2 + q8h2

h20 +ppi <=>2h+ 2 pi

h2o0 + pppi <=> pi + ppi

co2 +h2o0 + pep <=>2h +oaa + pi
atp + h + oaa <=>adp + co2 + pep
atp + ppi <=>adp + h + pppi

atp + h + pi <=>adp + ppi

atp + h2o0 + pyr <=>amp + h + pep + pi
accoa + h + pi <=> actp + coa
adp + pep <=>atp + pyr

202 +q8h2 <=>202s+q8

mql8 + 2 02 <=>mqn8 + 2 02s
ru5p-D <=>xu5p-D

r5p <=>ru5p-D

mgql8 + sel <=>h20 + mqn8 + sint

2 02s <=>h202 + 02

g8 + succ <=>fum + q8h2

atp + coa + succ <=> adp + pi + succoa
g3p +s7p <=>e4p + f6p

nadh + nadp + 2 h_p <=>2h + nad + nadph

h202 + trdrd <=>2 h2o0 + trdox

r5p + xu5p-D <=>g3p +s7p
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GLCS1

GLCabcpp

GLCptspp

GLCt2pp

GLDBRAN2

GLGC
GLXCL

GLYCK

adpglc + glycogennl <=> adp + glyco-
gen

atp + h2o + gle-D_p <=>adp +glc-D +h
+ pi

pep + glc-D_p <=>gbp + pyr

gle-D_p+h_p <=>glc-D+h

bglycogen <=> glycogen

atp + glp <=> adpglc + ppi
2 glx + h <=> 2h3oppan + co2

atp + glyc-R <=>3pg + adp

TKT2

TMAOR1

TMAOR1pp

TMAOR2

TMAOR2pp

TPI
TRDR

TRSARr

e4p +xu5p-D <=>f6p + g3p

h + mql8 + tmao <=>h20 + mqn8 + tma

mql8 + h_p + tmao_p <=> mqn8 + h2o_p +
tma_p

2dmmgql8 + h + tmao <=> 2dmmqg8 + h2o0 +
tma

2dmmgql8 + h_p + tmao_p <=> 2dmmg8 +
h2o_p + tma_p

dhap <=>g3p
h + nadph + trdox <=>nadp + trdrd

2h3oppan + h + nadh <=>glyc-R + nad
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Table A.4: Comparison of Flux Variability of ETC reactions in rGEM

Reactions Reaction rGEM rGEM GEM GEM
Formulas min max min max
ASPO3 asp-L + q8 <=>h + iasp + q8h2 0.000 0.002  0.000  0.002
ASPO4 asp-L + mqn8 <=>h + iasp + mql8 0.000 0.002  0.000 0.002
ATPSynthase adp + pi+4h_p<=>atp+3h+h2o -40.000 60.000 -40.000 60.000
CYTbd2 2h+mql8 + 0.5 02 <=>h20+mqn8 + 2 h_p 0.000 60.000 0.000 60.000
CYTbd1 2h+0.502+q8h2<=>h20+q8+2h_p 0.000 60.000 0.000 60.000
CYTbo3 4h+0.502+g8h2<=>h20+q8+4h_p 0.000 60.000 0.000 60.000
DHORD?2 dhor-S + q8 <=> orot + q8h2 0.000 0.319 0.000 16.116
DHORD5 dhor-S + mqn8 <=>mql8 + orot 0.000 0.319 0.000 16.116
FDH4pp 2h+ 8+ for_p <=>q8h2 + co2_p + h_p 0.000 60.000 0.000 60.000
FDH5pp 2h +mqn8 + for_p <=>mgql8 + co2_p +h_p 0.000  60.000  0.000  60.000
FRD3 2dmmql8 + fum <=> 2dmmg8 + succ 0.000 60.000 0.000 60.000
G3PD5 glyc3p + 8 <=> dhap + q8h2 0.000  60.000  0.000  60.000
G3PD6 glyc3p + mgn8 <=> dhap + mql8 0.000  60.000  0.000  60.000
G3PD7 2dmmg8 + glyc3p <=> 2dmmql8 + dhap 0.000 60.000 0.000 60.000
GLCDpp g8 + glc-D_p + h20_p <=>q8h2 + glen_p + h_p 0.000 10.000 0.000 10.000
GLYCTOZ glyclt + g8 <=> glx + q8h2 0.000  60.000  0.000  60.000
GLYCTO3 glyclt + mqn8 <=> glx + mql8 0.000  60.000  0.000  60.000
GLYCTO4 2dmmg8 + glyclt <=> 2dmmql8 + glx 0.000 60.000 0.000 60.000
LDH_D2 lac-D + g8 <=> pyr + q8h2 0.000  60.000  0.000  60.000
MDH2 mal-L + 8 <=> oaa + q8h2 0.000  60.000  0.000  60.000
MDH3 mal-L + mqn8 <=>mql8 + oaa 0.000  60.000  0.000  60.000
NADH10 h + mqn8 + nadh <=>mql8 + nad 0.000  60.000  0.000  60.000
NADH16pp 4 h +nadh + g8 <=>nad + q8h2 + 3 h_p 0.000 60.000 0.000 60.000
NADH17pp 4 h + mqn8 + nadh <=>mql8 + nad + 3 h_p 0.000 60.000 0.000 60.000
NADH18pp 2dmmg8 + 4 h + nadh <=> 2dmmql8 + nad + 3 h_p 0.000 60.000 0.000 60.000
NADHS5 h + nadh + g8 <=> nad + q8h2 0.000 60.000 0.000 60.000
NADH9 2dmmq8 + h + nadh <=> 2dmmqI8 + nad 0.000 60.000 0.000 60.000
NADPHQR2  h +nadph + g8 <=>nadp + q8h2 0.000  60.000  0.000  60.000
NADPHQR3 h + mgn8 + nadph <=> mql8 + nadp 0.000 60.000 0.000 60.000
NADPHQR4 2dmmg8 + h + nadph <=> 2dmmql8 + nadp 0.000 60.000 0.000 60.000
NADTRHD nad + nadph <=>nadh + nadp 0.000 60.000 0.000 60.000
POX h20 + pyr + q8 <=>ac + co2 + q8h2 0.000  60.000  0.000  60.000
PPK2r atp + ppi <=>adp + h + pppi 0.000  60.000 -60.000  60.000
PPKr atp +h + pi <=>adp + ppi -60.000  60.000 -60.000  60.000
SUCDi g8 + succ <=> fum + q8h2 0.000 60.000 0.000 60.000
THD2 nadh + nadp + 2 h_p <=> 2 h + nad + nadph 0.000 60.000 0.000 60.000
TRDR h + nadph + trdox <=> nadp + trdrd 0.000 58.529 0.000 60.000

146



Appendix

Table A.5: Statistics of Subnetworks and Lumped Reactions of E. coli rGEM riJ01366 D=1

Size # of # of
Biomass Building Blocks of Alternative Unique
Subnetwork | Subnetwork | Lumped
Reactions
10-Formyltetrahydrofolate 42 4 4
2-Demethylmenaquinol 8 28 6 1
[2Fe-2S] iron-sulfur cluster 15 6 6
[4Fe-4S] iron-sulfur cluster 17 8 8
5-Methyltetrahydrofolate 42 6 2
Acetyl-CoA 43 6 2
Adenosylcobalamin 25 4 4
L-Alanine 1 1 1
S-Adenosyl-L-methionine 38 6 2
L-Arginine 9 1 1
L-Asparagine 1 1
bis-molybdopterin guanine dinucleotide 41 4 4
Biotin 64 24 8
Calcium 1 1
chorismate 7 1 1
Coenzyme A 43 6 2
CTP 10 1 1
L-Cysteine 11 2 2
dATP 24 4 4
dCTP 11 1 1
dGTP 25 6 6
dTTP 17 2 2
Enterochelin 16 2 1
Flavin adenine dinucleotide oxidized 34 4 4
L-Glutamine 1 1
Glycine 6 1 1
Reduced glutathione 17 2 2
GTP 24 4 4
Heme O 22 3 1
L-Histidine 17 2 2
L-Isoleucine 10 1 1
L-Leucine 9 1 1
lipoate (protein bound) 36 8 8
L-Lysine 9 1 1
Malonyl-CoA 44 6 2
L-Methionine 20 2 2
5,10-Methylenetetrahydrofolate 41 6 2
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molybdopterin cytosine dinucleotide 47 8 8
molybdopterin guanine dinucleotide 39 4 4
Menaquinol 8 41 6 1
Nicotinamide adenine dinucleotide 27 4 4
Nicotinamide adenine dinucleotide - reduced 27 4 4
Nicotinamide adenine dinucleotide phosphate 27 4 4
Nicotinamide adenine dinucleotide phosphate - reduced 27 4 4
phosphatidylethanolamine (dihexadecanoyl, n-C16:0) 41 130 10
phosphatidylethanolamine (dihexadec-9enoyl, n-C16:1) 41 66 9
phosphatidylethanolamine (dioctadec-11-enoyl, n-C18:1) 45 130 10
Phosphatidylglycerol (dihexadecanoyl, n-C16:0) 38 130 10
Phosphatidylglycerol (dihexadec-9-enoyl, n-C16:1) 38 66 9
Phosphatidylglycerol (dioctadec-11-enoyl, n-C18:1) 42 64 10
L-Phenylalanine 10 1 1
Protoheme 9 1 1
L-Proline 4 1 1
Putrescine 1 1
Pyridoxal 5-phosphate 2 2
Ubiquinol-8 41 24 4
Riboflavin 30 4 4
L-Serine 3 1 1
Siroheme 21 1 1
Spermidine 33 2 2
Succinyl-CoA 43 6 2
5,6,7,8-Tetrahydrofolate 42 4 4
Thiamine diphosphate 42 2 2
L-Threonine 5 1 1
L-Tryptophan 15 1 1
L-Tyrosine 10 1 1
Undecaprenyl diphosphate 13 3 1
UTP 8 1 1
L-Valine 4 1 1
core oligosaccharide lipid A 73 64 12
cardiolipin (tetrahexadecanoyl, n-C16:0) 39 130 10
cardiolipin (tetrahexadec-9-enoyl, n-C16:1) 39 59 9
cardiolipin (tetraoctadec-11-enoyl, n-C18:1) 43 8

two linked disacharide tripeptide murein units (uncross- 31 1

linked, middle of chain)

two disacharide linked murein units, tripeptide crosslinked 31 1 1
tetrapeptide (A2pm->D-ala) (middle of chain)

two linked disacharide tetrapeptide murein units (uncross- 31 1 1
linked, middle of chain)

two disacharide linked murein units, tetrapeptide corsslinked 31 1 1

tetrapeptide (A2pm->D-ala) (middle of chain)
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three disacharide linked murein units (tetrapeptide cross-
linked tetrapeptide (A2pm->D-ala) & tetrapeptide corsslinked

tetrapeptide (A2pm->D-ala)) (middle of chain)

32

Growth Associated Maintenance

23
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Table A.6: Statistics of Subnetworks and Lumped Reactions of P. putida rGEM D=1

Size # of # of Unique
Biomass Building Blocks of Alternative Lumped
Subnetwork | Subnetwork Reactions
Nicotinamide adenine dinucleotide phos- 28 2 1
phate - reduced
Nicotinamide adenine dinucleotide phos- 28 2 1
phate
L-Alanine 2 2
L-Glutamate 1 1
AMP 22 2 1
L-Asparagine 4 1 1
L-Aspartate 1 1
L-Glutamine 2 2
Acetyl-CoA 52 8 4
UTP 12 1 1
L-Arginine 11 3 3
Nicotinamide adenine dinucleotide 28 2 1
Nicotinamide adenine dinucleotide - reduced 28 2 1
L-Proline 2 2
Putrescine 1 1
L-Cysteine 1 1
L-Serine 5 1 1
phosphatidylethanolamine (dihexadec- 42 2 2
9enoyl, n-C16:1)
cyclopropane phosphatidylethanolamine 46 4 2
(dihexadec-9,10-cyclo-anoyl, n-C16:0 cyclo)
cyclopropane phosphatidylglycerol (dihexa- 41 4 2
dec-9,10-cyclo-anoyl, n-C16:0 cyclo)
phosphatidylethanolamine  (dioctadec-11- 46 4 2
enoyl, n-C18:1)
cyclopropane phosphatidylethanolamine 50 4 2
(dioctadec-11,12-cyclo-anoyl, n-C18:0 cyclo)
cyclopropane phosphatidylglycerol (diocta- 45 4 2
dec-11,12-cyclo-anoyl, n-C18:0 cyclo)
GTP 23 2 1
Glycine 7 4 2
CTP 13 1 1
phosphatidylethanolamine (didodecanoyl, n- 33 2 1
C12:0)
phosphatidylethanolamine (dihexadecanoyl, 42 4 2
n-C16:0)
phosphatidylethanolamine (dioctadecanoyl, 46 4 2
n-C18:0)
Phosphatidylglycerol  (didodecanoyl, n- 28 2 1
C12:0)
Phosphatidylglycerol (dihexadecanoyl, n- 37 4 2
C16:0)
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Phosphatidylglycerol (dioctadecanoyl, n- 41 4 2
C18:0)

L-Methionine 18 8 6
L-Threonine 7 1 1
UDPglucose 12 1 1
L-Histidine 22 5 5
L-Phenylalanine 12 1 1
L-Tyrosine 12 1 1
L-Lysine 12 3 3
5-Methyltetrahydrofolate 43 10 5
Peptidoglycan subunit 32 17 17
L-Tryptophan 19 2 2
Heme O 25 1 1
Siroheme 14 1 1
dGTP 25 2 1
dATP 25 2 1
dCTP 15 1 1
dTTP 24 4 4
L-Isoleucine 11 1 1
L-Leucine 10 2 1
L-Valine 6 1 1
Cardiolipin (tetrahexadecanoyl, n-C12:0) 30 2 1
Cardiolipin (tetrahexadecanoyl, n-C16:0) 39 4 2
Cardiolipin (tetrahexadec-9-enoyl, n-C16:1) 39 4 2
Cardiolipin (tetraoctadecanoyl, n-C18:0) 43 4 2
Cardiolipin (tetraoctadec-11-enoyl, n-C18:1) 43 4 2
Growth Associated Maintanence 22 2 1
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Table A.7: Statistics of Subnetworks and Lumped Reactions of S. cerevisiae rGEM D=1

Size # of # of Unique
Biomass Building Blocks of Alternative Lumped
Subnetwork | Subnetwork | Reactions

1_3_beta_D_Glucan 3 1 1
L_Alanine 2 2 2
AMP 23 26 26
L_Arginine 12 2 2
L_Asparagine 4 3 3
L_Aspartate 2 2 2
CMP 14 6 6
L_Cysteine 12 6 6
dAMP 26 26 26
dCMP 14 4 4
dGMP 26 30 30
dTMP 19 12 12
Ergosterol 33 2 2
L_Glutamine 1 1
L_Glutamate 1 1
Glycine 2 2
Glycogen 1 1
GMP 22 13 13
L_Histidine 24 28 28
L_Isoleucine 12 12 12
L_Leucine 11

L_Lysine 10

Mannan 6 2 2
L_Methionine 19 24 24
Phosphatidate__yeast_specific 13 2 2
Phosphatidylcholine__yeast_specific 31 6 6
Phosphatidylethanolamine__yeast_specific 22 6 6
L_Phenylalanine 11 1 1
L_Proline 5 2 2
Phosphatidylserine__yeast_specific 21 6 6
Phosphatidyl_1D_myo_inositol__yeast_specific 19 2 2
Riboflavin 26 14 14
L_Serine 3 3
L_Threonine 4 4
Trehalose 1 1
triglyceride__yeast_specific 15 2 2
L_Tryptophan 18 5 5
L_Tyrosine 11 2 2
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UMP

L_Valine

Zymosterol

22
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Table A.8: Statistics of Subnetworks and Lumped Reactions of Homo sapiens rGEM D=1

Biomass Building Size of # of Alternative  # of Unique
Blocks Subnetwork Subnetwork Lumped
Reactions

L-Glutamate 2 2
L-Aspartate 2 4 4
GTP 21 8 8
L-Asparagine 4 4 4
L-Alanine 2 2 2
L-Glutamine 2 2 2
Glycine 3 2 2
L-Serine 4 2 2
L-Arginine 8 32 16
CTP 10 8 8
Cholesterol 23 64 3
UTP 9 4

dGTP 23 16 16
dCTP 12 8 8
dATP 23 8 8
dTTP 20 48 48
L-Proline 4 6 5
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