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Abstract

Regenerative medicine aims to replace or regenerate tissues or organs to re-establish their

normal function. In 1975, Rheinwald and Green developed a technique to isolate and amplify

epidermal stem cells. Their discovery led to the development of cultured epidermal autografts

(CEA), the first regenerative therapy using cultured cells.

Adult stem cells are the working force behind tissue homeostasis and repair. Through

constant division and specialization, they produce enough daughter cells to maintain tissue

architecture and function. This process is orchestrated by an elegant cross-talk between the

stem cells and their microenvironment.

By using irradiated feeder cells (3T3-J2 cells), Rheinwald and Green were able to artificially

instruct epidermal cells to grow in vitro. Later on, they discovered that these cultured cells

could regenerate a functional epidermis when transplanted on patients. However, Barran-

don and Green demonstrated that clonogenic keratinocytes lose progressively their growth

potential in vitro. This process is called clonal conversion.

The 3T3-J2 cells are mouse embryonic fibroblasts. The molecules produced by these cells

are necessary to promote self-renewal of keratinocyte stem cells in vitro. If the quality of the

culture system is not monitored, clonal conversion can occur rapidly and the therapeutic

potential is lost. Although the system is now used in the clinics for the treatment of large burns

and cornea injuries, the regulatory affairs express genuine concerns towards the animal origin

of the feeder cells. Ultimately, we would like to replace the current 3T3-J2 culture system by a

fully defined alternative, devoid of animal products, for the production of CEA. In this thesis,

we describe two strategies to address this challenge.

First, we developed a large scale RNAi strategy to investigate the cellular cross-talk between
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Abstract

feeder cells and human keratinocytes. We have identified several putative “feeder genes”. One

of these genes is FURIN, a serine protease.

Second, we investigated the impact of ROCK inhibition on the procurement and culture of

human keratinocytes. We found that it promoted the adhesion and proliferation of freshly

isolated human keratinocytes. In opposition to what was described previously, we did not

observe evidences of cellular immortalization or reprogramming when keratinocytes where

treated with Y-27632 (ROCK inhibitor).

Together, the results of our two approaches provide new leads for the further development

of a new culture system for human keratinocyte stem cells.

Keywords: 3T3, cell culture, epidermal stem cells, high-throughput screening, ROCK
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Résumé

La médecine régénérative a pour but de remplacer ou régénérer les tissus et les organes

afin de restaurer leur fonction. En 1975, Rheinwald et Green ont développé une technique

pour isoler et amplifier les cellules souches épithéliales de l’épiderme. Cette découverte a

abouti au développement des greffes cultivées autologues, la première thérapie de médecine

régénérative utilisant des cellules amplifiées en laboratoire.

Les cellules souches adultes sont responsables du maintien et de la réparation de nos tissus.

En se divisant et se spécialisant continuellement, elles produisent suffisamment de cellules

filles pour maintenir l’architecture et la fonction de nos tissus. Ce processus est orchestré par

un élégant dialogue entre les cellules souches et leur microenvironnement.

En utilisant des cellules nourricières irradiées (3T3-J2), Rheinwald et Green ont pu instruire

artificiellement les cellules de l’épiderme à proliférer in vitro. Plus tard, ils ont découvert

que ces cellules pouvaient régénérer un épiderme fonctionnel une fois transplantées sur des

patients. De plus, Barrandon et Green ont démontré que les kératinocytes clonogéniques

perdaient progressivement leur potentiel de croissance en culture. Ce processus s’appelle la

conversion clonale.

Les cellules 3T3-J2 sont des fibroblastes de souris embryonnaires. Les molécules qu’ils

produisent sont nécessaires pour promouvoir l’auto-renouvèlement des cellules souches de

l’épiderme. Si la qualité du système de culture n’est pas suivie, la conversion clonale peut avoir

lieu rapidement et le potentiel thérapeutique des cellules est perdu. Bien que le système des

3T3-J2 soit utilisé en clinique pour le traitement des grands brûlés et de certaines pathologies

de la cornée, les affaires régulatrices expriment des préoccupations concernant l’origine

animale des cellules nourricières. Idéalement, nous souhaiterions remplacer le système actuel
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Résumé

des 3T3-J2 par une alternative définie, sans aucune trace de composantes animales. Dans ce

travail de thèse, nous avons développé deux stratégies pour aller dans cette direction.

Dans un premier temps, nous avons mis au point une approche à haut débit utilisant l’ ARN

interférence pour comprendre le dialogue cellulaire entre les 3T3-J2 et les cellules épithéliales.

Nous avons ainsi identifié plusieurs gènes responsables de ce dialogue. L’un de ces gènes est

la Furin, une protéase à sérine.

Dans un deuxième temps, nous avons étudié l’impact de l’inhibition de ROCK sur l’isolation

et la culture des kératinocytes humains. Nous avons démontré que l’ajout de Y-27632, un

inhibiteur de ROCK, au milieu de culture améliorait l’adhésion et la prolifération de cellules

fraichement isolées. De plus, en opposition avec ce qui est décrit dans la littérature, nous

n’avons pas trouvé de preuves témoignant de l’immortalisation ou de la reprogrammation de

ces cellules par Y-27632.

Ensemble, les résultats de ces deux approches apportent de nouvelles pistes pour le déve-

loppement d’un nouveau système de culture pour les cellules souches de l’épiderme humain.

Mots-clés : 3T3, culture cellulaire, cellules souches de l’épiderme, criblage à haut débit, ROCK
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1 Introduction

1.1 Stem cells

1.1.1 Definition

Stem cells are responsible for the development and renewal of our tissues and organs. They

are defined by two properties, they can continuously self-renew and they have the ability

to produce specialized cells. Self-renewal implies that when a stem cell divides, it always

produces at least one daughter cell equivalent to the mother cell. When a stem cell enters

commitment, it stops to self-renew and it starts to differentiate.

The potency of a stem cell defines the lineage choices available for commitment. There are

five levels of potency. Stem cells can be pluripotent and generate all tissue lineages (with some

extraembryonic lineages). Multipotent stem cells can form all the lineages of an entire tissue.

Oligopotent stem cells can only form some, but not all lineages within a tissue. Unipotent stem

cells can commit to only one lineage. Finally, only the zygote and the morula are totipotent

and sufficient to form an entire organism (Smith, 2006).

1.1.2 Adult stem cells

Adult stem cells are responsible for tissue renewal, growth and repair. Although many hypothe-

sized their existence, they were first identified in the hematopoietic system (Becker et al., 1963;

Wu et al., 1968; Till and McCulloch, 1961). Now, we know that many other tissues (such as the
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Chapter 1. Introduction

skin, the cornea or the intestine etc.) have their own reservoir of stem cells. Stem cells from

different tissues do not have the same potency. For example, the hematopoietic stem cell is a

multipotent stem cell capable of regenerating all myeloid and lymphoid lineages, whereas the

interfollicular keratinocyte stem cell will only differentiate in corneocytes during homeostasis.

Not all tissues have the same turnover or the same prevalence to injury. Stem cells from

different tissues display different behaviors. Some divide frequently to produce enough

daughter cells for the tissue to function, while others only display increased mitotic activity

during repair or regeneration. However, all adult stem cells can make the same choices. Stem

cells can divide or remain quiescent. When they divide, they can give rise to two identical

daughter cells (symmetric division) or to two different daughter cells (asymmetric division).

They can also differentiate directly or die (Fig. 1.1). All stem cells within our body continuously

choose between one of these outcomes with different frequencies.

The fate of the stem cell, the “output”, is decided by the integration of all intrinsic and

extrinsic inputs. The intrinsic components include several factors, such as the mRNA levels

or protein levels of various genes, the activity of different stress responses (DNA damage,

infection, metabolic, oxydative), the concentration of metabolites and nutrients within the

cell. In the other hand, the extrinsic signals influencing stem cell fate are integrated in the

stem cell microenvironment.

1.1.3 The microenvironment

The microenvironment, or the stem cell niche, encompasses all the extrinsic signals influ-

encing stem cell fate. This concept was introduced in a seminal paper by Schofield in the

late 1970s (Schofield, 1978). The microenvironment is dynamic and composed of different

types of signals. Their sources are the interactions between the stem cells and the extracel-

lular matrix, growth factors and “niche” cells. The presence or absence of humoral factors,

chemokines, metabolites, in adition with physical and chemical constraints also influence

stem cell behavior. Nerve endings can also have a function in the microenvironment.

Not only do stem cells respond to their microenvironment, they also remodel it. As the

organism develops, stem cells specialize and differentiate. During this process and throughout

2
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Quiescence Differentiation Cell death

Self-renewal Symmetric
commitment

Committed cellStem cell

Figure 1.1 – Stem cell fates. Stem cells can remain quiescent, differentiate or die. They can
also self-renew or produce committed daughter cells through symmetric or assymetric cell
division.

homeostasis, cells reshape the surrounding extracellular matrix to provide corresponding

signals required for proper development. When they differentiate, stem cells give rise to

specialized cells which feedback directly with the stem cell through cell-cell interactions and

other signaling molecules (Scadden, 2014).

1.1.4 Cellular plasticity

Cellular plasticity is of particular importance for stem cell biology and regenerative medicine.

This concept describes the fact that some cells can display an increase in potency in peculiar

conditions (Smith, 2006). The fundamental discovery of nuclear reprogramming demonstrated

that the differentiated state of a cell is not fixed and no genomic information is lost during

development, with the exception of VDJ recombination events (Gurdon et al., 1958; Takahashi

3
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and Yamanaka, 2006). Somatic nuclear transfer, forced expression of transcription factors and

cell fusion experiments are all elegant examples of nuclear reprogramming which lead to an

increase in potency of the targeted cell (Blau et al., 1985). However, cellular plasticity is not

limited to the artificial environment of the laboratory. It is also displayed by several plant and

animal cells in vivo (Sánchez Alvarado and Yamanaka, 2014).

In mammals, cellular plasticity can refer to three different phenomena. First, some adult

stem cells can transdifferentiate in stem cells of recipient tissues when transplanted in a

different microenvironment. In rats, thymic epithelial cells have the capacity to behave as

bonafide multipotent epidermal stem cells when challenged by a skin reconstitution assay

(Bonfanti et al., 2010). In humans, oral mucosa epithelial cells can be expanded in vitro and

transplanted on the cornea stroma to regenerate an epithelium. In both cases, transplanted

cells and their progeny adopt similar morphologies and gene expression patterns of the tissue

resident stem cells (Nishida et al., 2004).

The second case of plasticity has been revealed through lineage tracing experiments in mice.

During repair, some tissues have different strategies to restore integrity. In epithelia of the

lung, the stomach and the intestine, specialized cells can dedifferentiate and replace the stem

cells lost after injuries or targeted depletion (Stange et al., 2013; Tata et al., 2013; van Es et al.,

2012). In the liver, hepatocytes can transdifferentiate in biliary epithelial cells after injury

(Michalopoulos et al., 2005). In mice hair follicles, epithelial cells adjacent to the bulge migrate

and adopt the fate of the stem cells if those are ablated (Rompolas et al., 2013).

The third occurrence of cellular plasticity comes from clinical observations. Epithelial

metaplasia is a pathology characterized by a switch of cellular phenotype. For example,

Barett’s metaplasia is characterized by a switch of eosphagus epithelium into an intestinal

epithelium (Bonfanti et al., 2012). A dramatic change in the local microenvironment is often

the underlying cause. The complete molecular mechanisms behind this phenomenon remains

to be identified (Slack, 2007).

Altogether, these evidences demonstrate that cells can adopt a different fate in response to

a change in their microenvironment. Whether they are transplanted in a different organ or

facing local perturbation, cells can hijack lineage restriction and restore local tissue function.
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Interestingly, R. Schofield already suggested in his 1978’s paper that specialized cells could be-

come “fixed stem cell” if they had found a niche that would provide them with the appropriate

signals. It will be of interest to know if these properties extend to other tissues and cells of the

human body.

1.1.5 Capturing stemness

Stem cell therapy aims to harness the potential of stem cells to rebuild tissues and organs

to restore their normal functions. Stem cells (somatic or pluripotent) are often rare and

prone to differentiate in response to stress. To circumvent these limitations, scientists have

developed culture systems to both promote stem cell self-renewal and prevent differentiation

in vitro. These artificial microenvironments provide the required signals to capture stem cells

and their potential, allowing the study of developmental and regenerative processes and the

development of new regenerative therapies.

One of the most popular model system for developmental biology are the embryonic stem

(ES) cells or pluripotent stem cells (PSC). These cells were first derived from the inner cell mass

(ICM) of a mouse embryo and cultured in presence of a layer of irradiated feeder cells (mouse

embryonic fibroblasts, MEF) in medium containing fetal calf serum (Martin, 1981; Evans and

Kaufman, 1981). These cells can grow indefinitely in vitro and form teratocarcinomas when

grafted to adult mice. More importantly, they can contribute to all tissues of a chimeric mouse

when transplanted in a recipient developing blastocyst (Bradley et al., 1984). This was the first

demonstration of a culture system that could capture pluripotency of normal cells in vitro.

Few years later, the same approach was used to derive human embryonic stem cells isolated

from the ICM of a developing blastocyst produced by in vitro fertilization (Thomson, 1998).

Feeder cells (mitotically inactivated cells) were previously used to support the growth of

Hela cells and normal epithelial cells (Puck et al., 1956; Cieciura et al., 1956). Later on, the

same approach used to support the growth of teratocarcinoma cell lines that paved the way to

embryonic stem cell culture (Martin and Evans, 1975; Rheinwald and Green, 1975a). A similar

approach was used to develop a culture system that supports hematopoiesis with the OP9

stromal cell line (Kodama et al., 1994). Although feeder cells enable the cultivation of cells of
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various nature, they also have drawbacks. First, their animal origin often raises concerns for

further clinical applications. They also add an additional level of complexity to the molecular

mechanisms underlying growth, self-renewal and differentiation of stem cells in vitro. The

same is true for the serum. Feeder cells also require to be cultivated in parallel with their own

medium.

There is an ongoing effort to develop feeder-free and serum-free culture systems for both

mouse and human pluripotent stem cells. By screening conditioned media, they identified LIF

(leukemia inhibitory factor) as a key molecule to inhibit mouse ES cells differentiation (Smith

et al., 1988). In addition, LIF can replace the use of feeder cells for some, but not all mouse ES

cell lines. The addition of BMP4 (bone morphogenetic protein 4) further alleviates the use of

the serum by blocking neural differentiation of mouse ES cells (Ying et al., 2003). The system

was further improved by the development of 2i (2 inhibitors) to target MEK (mitogen-activated

protein kinase/ERK kinase) and GSK3 (glycogen synthase kinase 3). Inhibition of these two

proteins, in combination with LIF, enables the derivation of mouse ES cells from previously

non permissive mice strains in feeder-free and serum-free conditions (Wray et al., 2010).

Unlike mouse ES cells, human pluripotent stem cells require different culture conditions.

Human ES cells do not depend on LIF to promote self-renewal in vitro. Instead, they require

the addition of FGF2 (fibroblast growth factor 2 or bFGF) to the culture medium in addition

to 20% fetal calf serum or 20% Knockout Serum Replacer (Amit et al., 2000). By studying the

components of the serum, S1P (sphingosine-1-phosphate) and PDGF (platelet-derived growth

factor) were identified as being sufficient to promote self-renewal of hES cells in serum-free

condtions (Pébay and Pera, 2009). However, the culture system for human pluripotent stem

cells was still dependent on MEF. The first report of feeder-free culture of hES cells used a

combination of Matrigel® and feeder conditioned medium (Xu et al., 2001). While they can

replace the feeder layer, these two components are not xeno-free. Matrigel® is a mixture

of extracellular matrix proteins and growth factors directly extracted from mouse sarcoma

tumors (Kibbey, 1994). Matrigel® is also susceptible to batch variation due to its nature.

Laminins are one of the main constituent of Matrigel®, they are also the first extracellular

matrix proteins expressed during development. Culture dishes coated with Laminins can limit

the use of Matrigel®. Further trials identified recombinant human LN-511 (Laminin 511) and
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its E8 fragment as the best alternative to Matrigel® and feeder cells for both human ES and IPS

cells culture (Domogatskaya et al., 2008; Rodin et al., 2010; Miyazaki et al., 2012).

The development of mouse and human ES cells culture systems are great examples of the

empirical approaches used to build systems that efficiently capture stemness in vitro. While

the use of feeders initially permitted ES cells culture, it had flaws. But, it allowed researchers

to study self-renewal and the signaling pathways underlying stem cell fates choices. By

progressively understanding the role of some key proteins and pathways, they were able to

build xeno-free and defined culture systems.

1.2 The skin

1.2.1 Structure of the skin

The skin is the largest organ of the body. It acts as a barrier to protect the organism from the

environment and dehydration. The skin is also important for thermoregulation, nutrients

retention and vitamins synthesis. This organ is subdivided in three different layers: the

epidermis, the dermis and the hypodermis. The epidermis, the outermost layer of the skin,

is a stratified squamous epithelium formed by keratinocytes. The dermis is the underlying

connective tissue that provides elasticity to the skin. The innermost layer, the hypodermis,

acts as an energy reservoir and thermal barrier by storing fat. Hair follicles, sebaceous glands

and sweat glands are epidermal appendages which extend into the dermis (Fig. 1.2). These

structures arise during development and have distinct functions. Their formation results from

the interaction between epidermal cells and the underlying mesenchyme.

1.2.2 The epidermis

The epidermis is very thin in comparison to the dermis and hypodermis.It renews constantly

with the division of basal epidermal cells and their progressive outwards migration and dif-

ferentiation (Fig. 1.3). These basal cells rest on a basement membrane produced by both

keratinocytes and dermal fibroblasts. Basal keratinocytes can be identified by the expression

of KERATIN 5 and 14 (KRT5 and KRT14). When they leave the basal layer, they enlarge and
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Figure 1.2 – Schematic representation of human skin. (For the National Cancer Institute
© 2008 Terese Winslow, U.S. Govt. has certain rights.)

connect with adjacent cells through desmosomes. It results in the formation of the spinous

layer. At the same time, these cells start to differentiate and switch the expression of KRT5 and

KRT14 to KRT1 and KRT10. The granular layer rests above the spinous layer and precedes the

stratum corneum. The latter is formed by terminally differentiated cells that have lost their

nuclei. These cells possess a cornified envelope produced by the crosslinking of precursor

proteins, such as IVL (involucrin) and LOR (loricrin), with several lipids (fatty acids, sterols

and ceramids) by transglutaminases.

The epidermis also hosts other cells that contribute to skin function. Melanocyte stem cells

and differentiated melanocytes are localized within hair follicles and throughout the basal

layer of the epidermis. They provide photo-protection by producing melanosomes which

are transferred to keratinocytes (Nishimura et al., 2002). Merkel cells are also located in the

basal layer of the epidermis and hair follicles. They are of epithelial origin and participate in

mechanotransduction (Van Keymeulen et al., 2009). Langerhans cells and resident T lympho-

cytes are also present within the epidermis and provide additional defense mechanisms to the

skin immune system (Pasparakis et al., 2014). These cells produce multiple cytokines that can
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impact keratinocyte stem cells (Pasparakis et al., 2014).

Figure 1.3 – Illustration of the epidermis. Gray, Henry Gray’s Anatomy: Descriptive and
Applied (Philadelphia: Lea & Febiger, 1913) 1154. Copyright © 2004–2016 Florida Center for
Instructional Technology.

1.2.3 Culture of human epidermal stem cells

In 1975, Rheinwald and Green made the seminal discovery that keratinocytes can be serially

cultivated in vitro on a feeder layer of lethally irradiated 3T3-J2 cells (Fig. 1.4) (Rheinwald

and Green, 1975b). These cells were derived from mouse embryonic fibroblasts by the same

laboratory (Todaro and Green, 1963). Using this culture system, keratinocytes can grow and

form an epithelium that can regenerate a fully functional epidermis when transplanted on

the back of a recipient athymic mouse (Banks-Schlegel and Green, 1980). This discovery was

quickly translated in a clinical application to produce cultured epithelium autografts (CEA)

for burn patients (Fig. 1.5). In 1984, two young large burn patients had their lives saved by

CEA derived from tiny skin biopsies (O’Connor et al., 1981; Gallico et al., 1984). CEA are now
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successfully used in competent clinics for the treatment of 3rd degree burned patients and for

the treatment of specific cornea injuries.

Figure 1.4 – A colony of human keratinocytes (center) surrounded by irradiated 3T3-j2 cells.

The regenerated epidermis can self-renew for several years (>20 years). This observation

confirms that CEA include epidermal stem cells, as no remaining epithelial cells are present on

the wound beds (burns are excised to the muscle fascia). It also demonstrates that stem cells

were able to self-renew and maintain their potency during in-vitro expansion (Green, 2008;

Claudinot et al., 2005). However, CEA are unable to recapitulate the developmental processes

required for epidermal appendages formation. No hair follicles or gland are present in the

regenerated epidermis.

The phenotype of cultured keratinocytes is different from their in vivo counterpart. Cultured

epithelial cells form stratifying colonies of 2 to 3 layers (Rheinwald and Green, 1975b). The

basal-like cells express KRT5, KRT14 and KRT17. The latter is normally expressed during

wound repair (Lindberg and Rheinwald, 1990; Pastar et al., 2014). The suprabasal cells ex-

press markers of terminal differentiation, such as IVL (involucrin) and LEKTI (Simon and

Green, 1985; Barrandon and Green, 1987b). The serial cultivation of normal keratinocytes

is dependant on the density of feeder cells (Rheinwald, 1980). Moreover, addition of EGF or
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Figure 1.5 – “Long-term follow-up of cultured epithelia transplanted on a fibrin matrix. 9-
year-old boy was burned by flames over 95% of his body. A, Admission at Percy Burn Centre a
month after injury. B, Transplantation of cultured epithelia grown on a fibrin matrix on the
left arm. C, Appearance of the transplanted area at take-down. D and E, Clinical appearance
of the skin 3.5 years after the transplantation. The skin is elastic when pinched and has a
smoother appearance than the neighboring split-thickness skin autografts. F, Histological
appearance of the skin 3.5 years after transplantation. The epidermis is histologically normal.
Note the presence of rete ridges and that of a superficial neodermis with vascular arcades.
Similar results were obtained with cultured epithelia grown in absence of fibrin. Bar: 100 μm”.
Figure and legend from Ronfard et al. (2000)

TGFα to the culture medium greatly enhances keratinocytes migration and proliferation. It

also improves keratinocytes colony forming efficiency in subcultures and enhances culture

lifetime overall (Barrandon and Green, 1987a; Rheinwald and Green, 1977).
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Cultured keratinocytes are not identical. Indeed, Barrandon and Green demonstrated that

clonogenic keratinocytes can be classified in three different categories based on the growth

potential of their progeny (see Fig. 1.6). Holoclones have the highest growth potential. They

are the in vitro phenotype of epidermal stem cells (Rochat et al., 1994). Paraclones are cells

with the lowest growth potential. Their progeny mostly form aborted colonies that express

marker of differentiation such as IVL. Meroclones are composed of cells with intermediate

growth capacity (Barrandon and Green, 1987b). Keratinocytes progressively lose their growth

potential in vitro. At each passages, the number of holoclones diminishes while the number of

meroclones and paraclones increases. This process is defined as clonal conversion (Barrandon

and Green, 1987b). It highlights the fact that the 3T3-J2 culture system, in its current iteration,

cannot capture epidermal stemness indefinitely. This process is accelerated if the culture

conditions are not appropriate or if the cells were isolated from an old patient (Barrandon

et al., 2012). Clonal conversion is also independent from replicative senescence as it can occur

in few cell divisions (Barrandon et al., 2012). Rapamycin, a small molecule inhibitor of mTOR,

can slow down clonal conversion. However, it also slows down keratinocyte proliferation

(Mosig, 2013).

Although the culture system developed by Rheinwald and Green allows for long term ker-

atinocytes cultivation and CEA production, it raises important safety concerns due to the

animal origins of the 3T3-J2 cells and the serum. Several groups and companies have devel-

oped alternative culture systems for human keratinocytes. However, those systems either rely

on the use of irradiated human fibroblasts or they require high cell seeding densities (Higham

et al., 2003). Unfortunately, neither the feeder-free, serum-free and other commercially avail-

able media can recapitulate the performance of the 3T3-J2 culture system and its ability to

produce CEA (Lamb and Ambler, 2013).

We know from the work of Rheinwald and Green that 3T3-J2 cells secrete growth factors and

other soluble molecules that promote the survival and proliferation of human keratinocytes.

To some extent, a conditioned medium can promote the growth of human keratinocytes.

However, the system only reaches its optimal performance when keratinocytes are co-cultured

directly with the lethally irradiated feeders (Rheinwald, 1980). This suggests that the physical

contacts with the feeders play a positive role in the system. Moreover, it could also mean that
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Figure 1.6 – Clonal analysis of human clonogenic keratinocytes. Holoclones generate daughter
cells with high proliferative capacity. Paraclones mostly give rise to cells that form aborted
colonies. Meroclones produce cells with both high and low proliferative capacity. Modified
from Barrandon et al. (2012).

some soluble factors have limited diffusion properties and that the feeders might act as a

buffer for inhibitory signals (Rheinwald, 1980).

To understand the function of the 3T3-J2 cells, several groups have investigated the proteins

they produce and their molecular mechanisms. 3T3-J2 cells produce several proteins of the

extracellular matrix in culture, such as COL4 (collagen type IV), laminins and FN1 (fibronectin)

(Alitalo et al., 1982). These proteins are normally expressed in the basement membrane of

the epidermis and act as scaffolds and ligands for cell adhesion and cell signaling. Multiple

laminins (such as Laminin-332 or Laminin-511) bind to integrins (α6β4, α3β1) expressed

by basal keratinocytes to promote cell survival and cell proliferation (Sugawara et al., 2008).
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Blocking the internalization process of ITGB1 (integrin β1) with a targeting monoclonal

antibody inhibits terminal differentiation of human keratinocytes in vitro. Fibronectin binds to

ITGB1 (integrin β1) and can also inhibit terminal differentiation in methylcellulose suspension.

The effect is even more potent when laminins and COL4 are mixed with Fibronectin (Adams

and Watt, 1989, 1990; Watt et al., 1993). These results strongly suggest that the extracellular

matrix produced by the 3T3-J2 cells play a key role in their function. However, neither collagen-

coated or laminin-coated culture dishes can replace the feeder cells.

Other signaling molecules have been identified as effector of the 3T3-J2 cells’ function.

Barreca and colleagues demonstrated that 3T3-J2 cells secrete IGF1 (insulin like growth factor I)

which can positively influence keratinocytes proliferation (Barreca et al., 1992). The paracrine

function of the 3T3 cells is not unidirectional. Together, human keratinocytes and feeder cells

communicate through a double paracrine mechanism. Keratinocytes produce IL1A and IL1B

(interleukin 1 α and β) which bind the IL1R (interleukin 1 receptor) on the cell surface of 3T3

cells to induce the production of KGF (keratinocyte growth factor). Blocking the function

of either IL1A, IL1B, IL1R or KGF with neutralizing antibodies greatly impair keratinocytes

proliferation (Maas-Szabowski et al., 1999). In addition, HGF (or scatter factor) is produced by

3T3-J2 cells and can promote growth and cellular migration of epithelial cells in vitro (Stoker

et al., 1987; Panos et al., 1993). Recently, DACT1 (Dishevelled-binding antagonist of Beta-

Catenin 1) was identified as a mediator of the 3T3-J2 function. DACT1 promotes keratinocyte

proliferation through attenuation of WNT-induced production of TGF-β2 by the 3T3-J2 cells

(Suzuki and Senoo, 2015).

While some pieces of the puzzle have been identified, other molecular mechanisms remain

to be elucidated in order to replace the 3T3-J2 cells. Recently, a study highlighted the potential

of SMAD inhibition to enable the long term cultivation of basal epithelial cells (P63 positive

cells). They found that dual inhibition of TGFβ and BMP signaling could replace the feeder

cells in human and mouse keratinocytes culture (Mou et al., 2016). It will be of interest to see

if this allows clonal analysis and CEA production in feeder-free condition.
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1.2.4 Epidermal homeostasis

The ability of the epidermis and its appendages to self-renew is ensured by the presence of

multiple adult keratinocyte stem cells with different potency. Unipotent keratinocyte stem

cells are located within the basal layer of the epidermis (VANSCOTT and EKEL, 1963; Penneys

et al., 1970; Barrandon and Green, 1987b). In hair follicles, multipotent keratinocyte stem

cells contribute to both hair follicle, sebaceous gland and merkel cell lineages. They can also

contribute to the interfollicular lineage during wound repair. In human hairs, multipotent

stem cells are located below the bulge of the follicle (Rochat et al., 1994). In rodents, the bulge

region of the follicle is the main location of multipotent stem cells. However, stem cells can

also be isolated from the lower part of the follicle during the growing phase of the hair cycle

(Oshima et al., 2001; Blanpain et al., 2004; Claudinot et al., 2005).

Although the presence of epidermal stem cells has been confirmed (Blanpain and Fuchs,

2006; Green, 2008), several laboratories continue to disagree on a unified model for epidermal

homeostasis. Initially, Potten argued for a hierarchical model, the epidermal proliferative

unit (EPU). This model describes the epidermis as an assembly of small columnar units,

each with one slowly dividing stem cell that gives rise to committed amplifying progenitors

(Potten, 1974). However, lineage tracing experiments in mice did not confirm the EPU model

(Clayton et al., 2007). When genetically labelled, single basal cells give rise to clones of various

size and shape. The clone-size distributions could be predicted by a model involving only a

population of equipotent progenitors (Clayton et al., 2007; Jones et al., 2007; Doupé et al., 2010).

These cells can divide both symmetrically and asymmetrically with different frequencies to

maintain the epidermis. Interestingly, the authors believe that those cells are distinct from

stem cells (Clayton et al., 2007). This model was recently challenged by a study from Mascre

and colleagues. Using a similar approach, they found a second population of cells within the

basal layer, with reduced chances of long term survival (Mascré et al., 2012). Their analysis

suggests that stem cells give rise to committed progenitors during homoeostasis. However,

their data indicate that the fraction of committed progenitors within the basal layer is small.

Additional work would be required to confirm a hierarchical relationship between the two

basal cell populations. Although these studies disagree, they suggest that the basal layer of

mouse epidermis has more stem/progenitor cells than expected. It would be of interest to
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know if it is the same in human epidermis.

In human, keratinocyte stem cells are thought to express high amount of integrin α6 (ITGA6

or CD49f) and β1 (ITGB1). Cells with high amount of CD49f and low amount of transferin

receptor (TFRC or CD71) have high colony forming efficiencies in vitro (Jones and Watt, 1993;

Kaur and Li, 2000; Li et al., 1998). LRIG1, a transmembrane protein, has also been described

as a putative marker for epidermal stem cells (Jensen and Watt, 2006). LRIG1 expression

influences the mitotic activity of epidermal cells by modulating EGF signaling. When skin

sections are labelled for one of these markers, the majority of basal cells are positive. It is

currently not known if all positive cells are stem cells.

1.2.5 TP63

In 1998, Yang and colleagues identified TP63 as a new member of the P53 family of transcrip-

tion factors (Yang et al., 1998). TP63 encodes 6 different isoforms which can be distinguished

by their different combination of N-terminal (TA and ΔN) and C-terminal (α, β, γ) ends. P63

isoforms share identical DNA-binding and oligomerization domains. The trans-activating

domain is restricted to the TA isoforms. Similarly, the sterile alpha motif region is unique to

the α isoforms (Yang et al., 1998). It has been shown that the main isoform expressed in mam-

malian epidermis and cultured human keratinocytes is ΔNP63α (referred as P63 for rest of this

document) (Fig. 1.7). Genetic ablation of P63 in mice results in a lethal phenotype. Newborn

mice display a strong failure to develop and maintain different ectoderm and mesenchymal

structures which require proper ectodermal-mesenchymal interactions, such as the skin and

its appendages. The thymus and the limbs also fail to develop properly (Yang et al., 1999; Mills

et al., 1999; Crum and McKeon, 2010; Senoo et al., 2007).

Initially, there was a controversy surrounding the proposed function for P63 in mammalian

epidermis and other epithelia. Some believed that P63 was responsible for stratification and

differentiation of keratinocytes while others were claiming that it was required for stem cell

maintenance (Yang et al., 1999; Mills et al., 1999; Koster et al., 2007). However, recent studies

indicate that P63 might be fulfilling both functions (Truong et al., 2006; Sen et al., 2012). High

P63 expression is prominent in the basal layer of mammalian epidermis and corneal epithelia.
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A

B

Figure 1.7 – Distribution of P63 and INVOLUCRIN in normal human epidermis. Frozen
sections of human foreskin were fixed and stained for P63 (red) and INVOLUCRIN (green) (A),
and for DNA (blue)(B). INVOLUCRIN appears in the spinous layer beginning several layers
above the first layer lacking P63 and is typically located in the peripheral cytoplasm, close to
the cell membrane. P63 is located mainly in the nuclei of the basal layer and immediately
suprabasal layers of the epidermis. As in the case of the mRNA, cells with the most abundant
P63 protein appear to be clustered in patches. The green color staining in the dermis is
non-specific. Scale bar: 50 μ. Figure and legend from Parsa et al. (1999).

It also correlates positively with proliferative colonies in vitro (Parsa et al., 1999; Pellegrini

et al., 2001; Senoo et al., 2007). Knockdown experiments have shown that P63 controls cellular

adhesion and proliferation of epithelial cells, confirming its importance for maintaining stem

cell properties (Carroll et al., 2006; Senoo et al., 2007). It is still unclear how P63 can achieve to

regulate different processes important for both stem/progenitor and differentiating cells.

1.2.6 ROCK inhibition & clonal fate

In 2003, McMullan and colleagues described that human keratinocyte differentiation is regu-

lated by RHO/ROCK (rho associated kinases) signaling (McMullan et al., 2003). ROCK-I and
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ROCK-II belong to the family of serine-threonine kinases. They act downstream of RHO GT-

Pases, which are regulators of various processes, such as cell adhesion, cytoskeleton dynamics

and cell cycle (Jaffe and Hall, 2005). Using a ROCK inhibitor (Y-27632), they could inhibit

keratinocyte differentiation and increase cell proliferation in vitro. They also observed an

increase in keratinocyte colony forming efficiency in presence of Y-27632.

Control Y-27632

Figure 1.8 – The effect of Y-27632 on the procurement of human epidermal cells. Y-27632
improves the number of colony forming cells from freshly dissociated biopsies.

Few years later, Sasai and colleagues published a seminal paper on the impact of Y-27632

treatment for the culture of human embryonic stem cells (Watanabe et al., 2007). This study

brought back the ROCK inhibitor under the spotlight and in 2010, Terunuma and colleagues

reported that a RHO-associated protein kinases (ROCK) inhibitor (Y-27632) could greatly

improve the culture of primary human keratinocytes (Terunuma et al., 2010). Colony forming

efficiency of freshly isolated keratinocytes was efficiently increased (50 fold) when cells were

cultured in presence of Y-27632 (Fig. 1.8). With these information in mind, Terunuma and

colleagues hypothesized that the ROCK inhibitor could enhance the survival of keratinocyte

stem cells and/or promote progenitor cells to exhibit a stem cell behavior.

Other studies confirmed the effect of Y-27632 on epithelial cells’ survival and proliferation in

vitro (Chapman et al., 2010; Suprynowicz et al., 2012). Initially, they interpreted their results as

an observation of cellular immortalization. Later, they refined their conclusion and postulated

that Y-27632 could induce a conditional reprogramming of cultured epithelial cells which can
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A B

Figure 1.9 – Pig keratinocytes were cultured in presence of Y-27632 and transplanted on the
muscle fascia of a pig wound model (A). After 14 days, a biopsy confirmed the ability of the
transplanted cells to regenerate all the layers of the epidermis (N. Grasset & F. Gorostidi,
unpublished data).

be reverted by removal of the ROCK inhibitor from the medium (Liu et al., 2012).

The effect of Y-27632 on epidermal cell culture is very promising for both basic research and

regenerative medicine (Fig. 1.9). Our group has studied its effects on long term culture and

single cell behavior (A. Rochat & F. Gorostidi, unpublished data). They were able to confirm

that Y-27632 promotes a holoclone-like behavior in single cells that have successfully adhered

to the culture dish (Gorostidi, 2012). Moreover, Nanba and colleagues demonstrated that

ROCK inhibition was insufficient to restore the growth potential of a paraclone (Nanba et al.,

2013). This result was also confirmed by our laboratory (unpublished data, Y. Barrandon & A.

Rochat).

The effect of ROCK inhibition is highly reproducible, but the molecular mechanism under-

lying this phenomenal phenotype is still poorly understood. We know that ROCK regulate

various cellular processes. Actin filaments stabilization and actin network assembly are reg-

ulated by the activity of ROCK through myosin light chain (MLC) and LIMK respectively.

Moreover, ROCK mediate the signal transduction from focal adhesion to actin filaments rear-

rangements. In consequence, ROCK regulate cell migration and establishment of cell polarity
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(Riento and Ridley, 2003). Recently, it has been demonstrated that ROCK integrate multiple

physical cues, such as local stiffness, cellular crowding and integrin signaling to control cellular

proliferation in vivo and in vitro. These outcomes are often mediated trough changes in the

activity of the Hippo signaling pathway (Halder et al., 2012). We currently do not know if any

of these pathways are involved in the phenotype described earlier. A better understanding of

the molecular pathway involved in ROCK inhibition would allow us to better understand and

target clonal conversion.
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2 Aims of the thesis

It has been more than 40 years since Rheinwald and Green discovered the 3T3-J2 culture

system. Their discovery paved the way for the birth of therapy with cultured cells. Recently,

new culture systems have been developed for the in vitro expansion of other epithelial stem

cells (Sato et al., 2009; Wang et al., 2015). Although these systems have different compositions,

they all rely on the ability of epithelial cells to tolerate artificial microenvironments. However,

there are two obstacles that prevent the general use of these culture systems in both basic

research and regenerative medicine. First, the underlying components of these systems are

both undefined and from animal origin (feeder cells, animal serum, Matrigel®). Second, the

quality of these systems can affect their ability to capture epithelial stemness and promote

self-renewal in vitro. These two issues raise strong concerns towards the regulatory affairs, the

scientific community and the clinicians.

The aim of this thesis is to provide new leads for the development of a better, animal free,

culture system for human epithelial stem cells. With the development of high throughput

technologies (Moffat and Sabatini, 2006), we now have the tools to investigate the molecular

crosstalk between feeder cells and human epithelial cells. Moreover, the recent discovery of

the effect of ROCK inhibition on the procurement of human keratinocytes suggests that a new

implementation of the Rheinwald and Green culture system could be possible.

First, we developed a high-throughput approach using RNAi to investigate the cellular

crosstalk between 3T3-J2 cells and human keratinocytes. We designed an assay to measure the
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impact of a single feeder gene knockdown on keratinocytes. We then screened the 3T3-J2 cells

with a siRNA (small interfering RNA) library for the druggable fraction of the mouse genome.

We identified a small number of candidate genes and confirmed the biological impact on

human keratinocytes for one of them. Although the strategy that we used was unable to

identify genes with redundant functions or genes that were not covered by the siRNA library,

we validated our experimental approach.

Second, to assess the compatibility of ROCK inhibition with the Rheinwald and Green

culture system, we studied its impact on human keratinocytes. We confirmed that ROCK

inhibition did not trigger cellular immortalization or reprogramming to a stem-like state. We

also confirmed that Y-27632 treatment could inhibit keratinocyte differentiation and enhance

the number of freshly isolated colony forming cells, as previously described in the literature.

However, we could not identify the underlying molecular mechanisms behind this phenotype.

Nevertheless, our results suggested that Y-27632 could improve the current culture system for

human keratinocytes.
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3 Materials & Methods

3.1 Cell culture

3T3-J2

3T3-J2 cells were propagated in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen)

supplemented with 8% Bovine Serum (BS, Thermo Scientific) and incubated in 10% CO2

atmosphere at 37◦C). Cells were inoculated every 7 days at low density (1 to 5 x 105 cells

per 162 cm2 flasks). The culture medium was replaced every 3 to 4 days. For keratinocytes

propagation, 3T3-J2 cells were irradiated with a dose of 60 Gy and then plated at a density of

2.5 x 104 cells/cm2.

Human keratinocytes

Human keratinocytes were propagated on top of the irradiated 3T3-J2 cells with cFAD culture

medium, a 3:1 ratio of DMEM and Ham’s F12 culture medium (Amimed), supplemented with

insulin (5 μg/mL, Sigma), Triiodothyronine (2 x 10−9 M, Sigma), hydrocortisone (0.4 μg/mL,

Calbiochem) and cholera toxin (1 x 10−10 M, ICN). Cells were incubated in 10% CO2 humid

atmosphere at 37◦C. For serial amplification, pre-confluent keratinocytes were trypsinized

(0.05% trypsin and 0.1% EDTA) and seeded at appropriate density once a week. The culture

medium was changed every 2 to 3 days for mass culture or every 4 days for colony forming

efficiency. EGF was added at each feeding (10 ng/mL, Upstate Biotechnology Inc.). For
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ROCK inhibition experiments, the small molecule Y-27632 (ROCK inhibitor) was added to the

culture medium (10 μM, Tocris) from cell seeding and at each feedings. For FURIN inhibition

experiments, the Proprotein Convertase Inhibitor (50 μM, Calbiochem) was added daily in

cFAD without EGF to mimic the screening conditions. Similarly, recombinant human IGFI

(100 ng/uL, Peprotech) was added daily in cFAD minus EGF for some experiments.

3.2 Human skin dissociation & cell sorting

Human skin samples were obtained from adult women (age 30-50). Skin biopsies were incu-

bated overnight at 4◦C in DMEM supplemented with 8% Bovine Serum (BS) prior treatment.

The majority of the hypodermis and the dermis were removed with surgical scissors. Then,

the tissue was cut in small pieces (0.5-1 cm2) and incubated overnight at 4◦C in DMEM/BS

supplemented with 1mg/mL Collagenase/Dispase or 1 mg/mL Dispase (Roche). The next

day, the tissue was incubated up to 2 hours at 37◦C with agitation in the same medium. Fresh

Collagenase/Dispase was added to the medium if the epidermis did not start to peel off after 1

hour of incubation. After incubation, the epidermis was removed from the remaining dermis

and incubated in trypsin/EDTA for 5 minutes at 37◦C. The epidermis and cells in suspension

were centrifugated and resuspended in HBSS supplemented with 2% BS and 20 mM HEPES

(FACS buffer). Cells were filtered using a 100 μm cell strainer (Millipore).

For cell sorting, cells were incubated with a primary antibody against ITGA6 (CD49f) con-

jugated with Alexa Fluor® 647 (1:100, clone GoH3, Biolegend) for 30 minutes at RT in FACS

buffer. Cells were then washed and re-suspend in FACS buffer. Dead cells were stained with

DAPI (1:1000). The sort was performed by the Flow cytometry core facility (FCCF) using a

MoFlo Astrios (Beckman Coulter). Debris and doublets were excluded based on the physical

parameters (forward and side light scatter). DAPI positive cells were excluded. Live cells were

then separated in CD49fhigh and CD49flow fractions. The purity of the samples was checked

by second flow cytometry analysis. Sorted cells were then used to perform colony forming

efficiency analysis in presence or absence of Y-27632 (10 μM, Tocris).
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3.3 Flow cytometry

Cells were trypsinized and re-suspended in cold Hank’s balanced salt solution (HBSS) supple-

mented with 2% BS (Flow buffer). Then, the cells were incubated with conjugated antibodies

on ice for 30min. After incubation, cells were washed once and re-suspended in 200 μL of

HBSS/2%BS. The samples were filtered with a 70 μM cell strainer (Millipore) and analyzed

with a BD™ LSR II cytometer (BD Biosciences). Cell viability was assessed using either DAPI

or PI (1:1000).

3.4 cDNA synthesis

RNA extraction was performed using the RNeasy® Mini Kit (Qiagen). The RNA was either

directly used for cDNA synthesis or stored at -80◦C. Total RNA concentration was measured

using a nanodrop spectrophotometer (Thermo Scientific). First strand cDNA synthesis was

performed with the SuperScript® III reverse-transcriptase (Invitrogen) according to the man-

ufacturer’s protocol. 1 μg of total RNA and random primers were used for cDNA synthesis.

The cDNA was then diluted ten times in nuclease free water (QIAGEN) prior downstream

application.

3.5 Real-time quantitative PCR

Real-time quantitative PCR was performed according to the Taqman® or the Power SYBR® man-

ufacturer’s protocols (Life Technologies). The cDNA was amplified on the 7900HT QPCR

system (Life Technologies). Reactions were run in triplicates. The delta CT method was used

to measure relative gene expression. The reference CT was calculated as the average CT

from the endogenous controls. We used commercially available Taqman® assays from Life

Technologies or Integrated DNA Technologies to assess gene expression. Comparisons were

performed using the paired t test (two-tailed).

29



Chapter 3. Materials & Methods

3.6 Protein extraction

Total protein extraction

Pre-confluent 60 mm dishes were washed twice with cold PBS and lysed on ice with 1% Triton

X-100, 50 mM Tris pH 8, 150 mM NaCl and protease inhibitors (Roche). Cells were then

scrapped and harvested in eppendorf tubes and left for 45-60 min on ice for complete cell

lysis. Cell debris were centrifugated (13’000 rpm, 10 min, 4◦C) and the supernatant containing

the proteins was then stored at -80◦C.

Subcellular protein fractionation

Pre-confluent culture dishes were placed on ice and lysed according to the ProteoExtract® sub-

cellular protein extraction kit’s protocol (Merck Millipore). Samples were then stored at -80◦C.

Protein quantification

Protein concentration was determined with the Pierce® BCA protein assay kit (Thermo Scien-

tific). Protein samples were diluted 3 or 5 times before protein quantification to get accurate

measurements.

3.7 Western blot

Protein samples in SDS-PAGE sample buffer (50 mM Tris-HCL pH 6.8, 2% SDS, 10% glycerol,

2.5%β-mercaptoethanol and 0.02% bromophenol blue) were separated by SDS-polyacrylamide

gel electrophoresis and transferred to nitrocellulose membranes. The membranes were then

blocked with 5% skimmed milk in TBS or TBST for 30-60 min and incubated with diluted

primary antibodies (O/N at 4◦C). After overnight incubation, membranes were washed and

incubated with corresponding secondary antibodies (HRP-linked) for 1 h at room temperature

(RT). Detailed informations of the primary antibodies are listed on Table 3.1.
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3.8. Immunocytochemistry

Target Clone Manufacturer Cat. No. Dilution

P63 4A4 Sigma Aldrich P3737 1:5000
YAP - Cell Signaling 4912 1:1000
p-YAP - Cell Signaling 4911 1:1000
TAZ - Abcam ab84927 1:1000
FRIZZLED6 D16E5 Cell Signaling 5168 1:2500
FURIN - Abcam ab3467 1:1000
H3 D1H2 Cell Signaling 4499 1:50000
CALNEXIN - BD transduction 610523 1:5000
pan-CADHERIN - Cell Signaling 4068 1:5000
GAPDH 6C5 Abcam ab8245 1:50000
pRB G3-245 BD pharmingen 554136 1:1000

Table 3.1 – Primary antibodies used for Western blot.

3.8 Immunocytochemistry

For immunocytochemistry, cells were grown on coverslip (12 well plate) for 7 to 10 days and

fixed with 4% paraformaldehyde (PFA) for 15 min. The coverslips were then washed three

times with PBS and permeabilized with 0.3% Triton X-100 (Sigma) in PBS for 10 min. After

another three consecutives washes with PBS, the cells were blocked with 2% bovine serum

albumin (BSA) in PBS for 45 min. Cells were incubated overnight at 4◦C with primary antibody

diluted in blocking solution. After three washes with PBS, the cells were incubated with

corresponding conjugated secondary antibodies diluted in PBS for 45 min at RT. DNA was

counterstained with DAPI for 10 min. Coverslips were washed twice with PBS and mounted

on microscope slides.

3.9 High-throughput screening of 3T3-J2

The mouse druggable genome siRNA library was first pooled (4 siRNAs per gene) by the

Biomolecular Screening Facility (BSF) and then spotted on 96 well plates (BD Falcon) in

duplicates. Briefly, 10 μL of pooled siRNAs (QIAGEN) were spotted (40 nM final concentration)

with 0.4 μL of RiboCellIn transfection reagent (BioCellChallenge) and 10 μL of OptiMem (Life

Technologies) with the Caliper Sciclone platform (PerkinElmer). The first and last columns

were spotted with scramble siRNA (negative control) and mouse specific cell death cocktail
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siRNAs (positive control) respectively. After 15 min incubation at RT, 10’000 irradiated 3T3-J2

cells (in 80 μL of DMEM/BS) were seeded in each well using a Multiflow liquid dispenser

(Biotek). Assay plates were then incubated overnight in 10% CO2 atmosphere at 37◦C. The next

day, the medium was removed using an ELx405 (Biotek) and 600 normal human epidermal

cells (strain YF29) in 100 μL of cFAD were dispensed in each well with the Multiflow. The

plates were then incubated for one week in 10% CO2 atmosphere at 37◦C with one medium

change (cFAD without EGF) on the third day after seeding using the ELx405 and the Multiflow

(Biotek). After 7 days of culture, the plates were fixed for 15 min with 3.4% formaldehyde

(Sigma-Aldrich) and stained for 10 min with 3% Rhodamine B (Sigma). Next, the plates were

washed 9 times with PBS using the ELx406 (Biotek) and the remaining Rhodamine B was then

re-suspended in 100 μL of PBS by 20 min incubation at RT on an orbital shaker at 90 rpm.

Finally, the total fluorescence of the Rhodamine B was measured using an Infinite F500 plate

reader (Tecan). The acquisition parameters are listed on Table 3.2.

Parameter Value

Excitation wavelength 485 nm
Emission wavelength 590 nm
Excitation bandwidth 20 nm
Emission bandwidth 10 nm
Gain 26
Number of flashes 5
Integration time 40 μs

Table 3.2 – Acquisition parameters for rhodamine B fluorescence measurements.

The mean (μ) and the standard deviation (σ) of the fluorescence signal for the positive and

negative controls were used to calculate the Z’ (equation 3.1) to assess the assay’s quality both

during the assay development and the screening campaign (Zhang et al., 1999).

Z ′ = 1− 3∗ (σpos +σneg)∣∣μpos −μneg
∣∣ (3.1)

32



3.10. CRISPR-Cas9 mediatd 3T3-J2 knockouts

Z ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 SD = 0 - an ideal assay

1 > Z ′ ≥ 0.5 separation band is large - an excellent assay

0.5 > Z ′ > 0 separation band is small - a double assay

0 no separation band - a poor assay

< 0 both signals overlap - screening impossible

(3.2)

If the Z’ was below 0.5 (equation 3.2), the experiment (96 well plate) was repeated or excluded

from the analysis. All the dispensing and read-out data were integrated in the managing

software of the BSF. During the screen, the results were selected as putative hits when both

duplicates produced a signal below the threshold given by this formula:

Signal <μneg −3∗σneg (3.3)

3.10 CRISPR-Cas9 mediatd 3T3-J2 knockouts

To generate Furin knockout feeder cells, we transfected 3T3-J2 cells with a plasmid containing

a guide RNA to target Furin, the hSPCas9 enzyme and EGFP (gift from the Constam lab). The

plasmid was transfected using Lipofectamine® 3000 Reagent (Thermo Scientific). After 3 days,

GFPpos cells were sorted by the FCCF. Single cells were sorted in a 96 well plates prepared

with irradiated untransfected 3T3-J2 feeder cells at low density (0.5 x 104 cells/cm2). After 14

days, confluent cells were dissociated and cultured for two passages without irradiated feeder

cells. Later, the cells were dissociated and used for protein extraction. Candidate clones were

identified by Western blot analysis for FURIN expression.

3.11 Telomere length analysis

Genomic DNA was extracted with the Wizard® Genomic DNA Purification Kit (Promega)

according to the manufacturer’s protocol. The DNA was digested with HinfI and RsaI overnight

at 37◦C. The digested DNA was separated by pulse field agarose electrophoresis (0.6% agarose
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gel, pulse speed of 1 to 6 s at 200 V overnight at 14◦C). The gel was dried and denaturated. It

was then used as a membrane and hybridized to radioactive labelled telomeric oligonucleotide

probes. The signal was captured with a FLA-3000 (Fujifilm).

3.12 GAPDH activity assay

Cell lysates were used to measure GAPDH activity with the KDalert™ GAPDH Assay Kit

(Thermofisher) according to the manufacturer’s protocol. The protocol was performed on 96

well plates.
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4 Results

4.1 Deconvolution of the 3T3-J2 culture system

4.1.1 Assay development

siRNA reverse transfection in 3T3-J2 cells

To establish our screening assay, we first had to set-up the knockdown protocol in the feeder

cells. To optimize the siRNA reverse transfection in irradiated 3T3-J2 cells, we tried multiple

siRNA transfection reagents and found that RiboCellIn reagent (BioCellChallenge) was the

most effective. It was also the less toxic reagent for 3T3-J2 cells (data not shown). To measure

the efficiency of siRNA mediated gene knockdown, we reverse transfected irradiated 3T3-J2

cells with either scramble or Gapdh (a well known housekeeping gene) targeting siRNAs.

Then, we measured the activity of GAPDH in cell lysates 72 hours post transfection. The

measurments showed that GAPDH could be selectively and efficiently knocked down by siRNA

reverse transfection (Fig. 4.1).
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Figure 4.1 – Efficient knockdown of 3T3-J2 by reverse transfection of siRNAs. Irradiated 3T3-J2
cells were reverse transfected with scramble or Gapdh targetting siRNAs. After 72h, cells lysates
were used to measure GAPDH activity. The delta fluorescence signal is proportional to the
activity of GADPH. Error bars: 95% Student t-test confidence interval.

Screening assay

Next, we developed an assay to measure the impact of one feeder gene knockdown in the

3T2-J2 co-culture system. The assay had to be compatible for high-throughput screening

(HTS). We decided to go for a single fluorescence measurement, instead of a high content

assay (multiple measurments by imaging), to reduce the time of data acquisition and analysis.

After few trials, we decided to adapt the reliable colony forming efficiency (CFE) assay for HTS

(Fig. 4.2). We made the assumption that variation of the signal would reflect changes in human

keratinocytes colony forming efficiency and proliferation. The Rhodamine B staining is also

dependant on the keratinization of epithelial cells in vitro (Rheinwald and Green, 1975a).

Stratifying colonies stain well with Rhodamine B. Therefore, the assay would allow us to detect

genes that impact the system at different levels.
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Figure 4.2 – Schematic representation of the rhodamine assay used to measure perturbation
in the 3T3-J2 culture system.

Initially, 96 well plates were prepared with various densities of feeder cells on day 0. The

next day, normal human keratinocytes (strain YF29) were seeded at different densities on

top of feeder cells. Keratinocytes were then allowed to grow for 7 days with one medium

change at day 4 (without EGF). Subsequently, the cells were fixed with 3.4% formaldehyde and

stained with rhodamine B. After several washes, the remaining rhodamine B that attached to

the cells was resuspended in PBS with strong agitation for total fluorescence measurement

(Fig. 4.3). As expected, we measured a positive relationship between YF29’s confluency after

a week of culture and the amount of feeder cells initially seeded (Rheinwald, 1980). The

signal intensity was also dependent on the number of keratinocytes that were seeded initially

(Fig. 4.4). Moreover, fluorescence imaging confirmed the positive correlation between the

fluorescence signal and the confluency of the wells (Fig. 4.5). Together, these results confirmed

that this variation of the CFE assay could be adapted for HTS.
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Figure 4.3 – The rhodamine assay detects variation in confluency after 7 days of culture with
different densities of feeder cells. The assay measured the impact of the initial number of
feeder cells (3T3-J2) on the proliferation of human keratinocytes (YF29). After a week of
culture in a 96 well plate, the cells were fixed and then stained with rhodamine B. After several
washes with PBS, the remaining rhodamine B was resuspended in PBS and total fluorescence
measurements were performed with a plate reader. Error bars: 95% Student t-test confidence
interval.
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Figure 4.4 – The rhodamine assay detected variation of confluency after 7 days of culture with
different initial densities of human keratinocytes (YF29). After a week of culture in a 96 well
plate, the cells were fixed and then stained with rhodamine B. After several washes with PBS,
the remaining rhodamine B was resuspended in PBS and total fluorescence measurements
were performed with a plate reader. The assay could measure the positive relationship between
the number of keratinocytes seeded per well (600, 300 or 150 cells/well) and the signal intensity
after 7 days of culture. 104 feeder cells per well. Error bars: 95% Student t-test confidence
interval.

n = 600 n = 300 n = 150

Figure 4.5 – Fluorescence imaging of Rhodamine B staining. Keratinocytes were seeded
at different densities (600, 300 or 150 cells/well) in 96 well plates. After a week of culture,
cells were fixed and then stained with rhodamine B. Large white/grey surfaces are human
keratinocytes colonies. The dot-like shapes are remaining feeder cells. Scale bars: 1.58 mm.
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Definition of the control conditions for HTS

After establishing the reverse transfection and read-out protocols, we researched a candidate

positive control for the screen. To identify a putative positive control, we performed a small

primary siRNA screen on a small list of genes (Table 4.1). We hypothesized that genes influ-

encing keratinocyte proliferation or genes encoding for known components of the basement

membrane would be ideal candidates as they contribute to the microenvironment of epider-

mal stem cells in vivo. We also made the assumption that our assay would allow us to identify

non-redundant factors of the system. We included several growth factors, such as Egf and

Tgfα (Barrandon and Green, 1987a). We also included several collagen and laminin genes,

which are known components of the epidermal basement membrane. In addition, we also

included a cell death inducing target (Plk1) and few randomly selected genes to the list. For

each genes, we reverse transfected 3T3-J2 cells with a pool of siRNAs (4 siRNAs per target gene).

A scramble siRNA was used as a negative control and a low serum (2% FBS) cFAD medium

was used as a surrogate positive control.
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Table 4.1 – List of genes for the primary screen.

Entrez gene id Ncbi gene symbol Entrez gene id Ncbi gene symbol

11548 Adra1b 16177 Il1r1
12156 Bmp2 16178 Il1r2
12159 Bmp4 107527 Il1rl2
12770 Ccr1l1 16330 Inpp5b
12842 Col1a1 16179 Irak1
12843 Col1a2 65099 Irak1bp1
12828 Col4a3 16772 Lama1
12832 Col5a2 16773 Lama2
12836 Col7a1 16775 Lama4
329941 Col8a2 16776 Lama5
12765 Cxcr2 16779 Lamb2
13645 Egf 16780 Lamb3
14165 Fgf10 16905 Lmna
14179 Fgf8 17199 Mc1r
14182 Fgfr1 15235 Mst1
75296 Fgfr1op 18121 Nog
14290 Fpr-rs3 18817 Plk1
14309 Fshr 19035 Ppib
15234 Hgf 20423 Shh
54426 Hgfac 21802 Tgfa
15978 Ifng 117149 Tirap
15979 Ifngr1 21926 Tnf
16159 Il12a 22408 Wnt1
16161 Il12rb1 22415 Wnt3
16162 Il12rb2 22416 Wnt3a
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Figure 4.6 – Compatibility of the reverse transfection protocol and the rhodamine assay.
Keratinocytes (YF29) were expanded on irradiated 3T3-J2 cells in normal cFAD or low serum
medium. They were also expanded on irradiated 3T3-J2 cells that were previously reverse
transfected with scramble or cell death cocktails siRNAs. After one week of culture, the
rhodamine assay was performed. Both 40 nM and 10 nM siRNA final concentrations were
reproducing the normal and low serum condition. Error bars: 95% Student t-test confidence
interval.

None of the selected genes showed a significant reduction in the fluorescence signal when

downregulated (data not shown). Therefore, we decided to use a cell death inducing cocktail

of siRNAs (AllStars Mm/Rn Cell Death Control siRNA, Qiagen) as a candidate control. We

repeated the experimental protocol with the new control siRNA. Both 40 nM or 10 nM siRNA

final concentrations could mimic the normal and low serum conditions (Fig. 4.6). These results

confirmed that the cell death cocktail could be used as a positive control for the screen. The

fact that it also produced an effect at 10 nM suggested that, during the screen, one indivudual

siRNA from a pool of 4 siRNAs (each at 10 nM) could still produce an effect. The knockdown

efficiency is dependent on the targeted gene and the siRNA sequence. Usually, for a single

gene, not all siRNAs have the same efficiency. Therefore, it is important to set-up the final

siRNA concentration to a level that does not produce off-target effects, but that still allows at

least one siRNA to be effective. Finally, we decided to use a final concentration of 40 nM for

the screen.
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Edge effects

Edge effects are a source of variation in cell based assay in HTS. Indeed, the increased evapo-

ration at the edges of the assay plates can result in decreased cell proliferation during long

period of incubation. In our assay, the fluorescence signal intensity was greatly reduced at the

edges of the plate. This could impact the assay quality. To solve this issue, we manually filled

the interstices between the wells at the periphery of the plates with 80 μL of PBS. Moreover, we

had a dedicated incubator for the screen to prevent constant perturbation of the atmosphere

due to frequent opening and closing of the incubator’s door. This allowed us to use all the

wells of the culture plates and it simplified the screening procedure.

The assay is compatible with HTS

To further assess the compatibility of the protocol and control conditions for HTS, the experi-

ment was repeated using both the spotting robot of the Biomolecular Screening Facility (BSF)

and the plate washer and dispenser for cell seeding and feeding. The fixation and staining

protocols were also performed with a plate washer/dispenser. A Z’ was computed to assess

the quality of the screening procedure. The calculated Z’(0.568) confirmed the compatibility

of the co-culture assay for HTS (Fig. 4.7).

Although our controls did produce a strong effect, it would have been preferable to have a

single target control that would produce a signal closer to what one would expect from a hit.

We also did not know if the duration of the knockdown in feeder cells would be sufficient to

produce an effect on keratinocyte. Nevertheless, we decided to move on with the screen to

identify putative “feeder genes”.
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Figure 4.7 – The assay is compatible with HTS. The reverse transfection of the 3T3-J2 with a
scramble siRNA or a cell death cocktail of siRNAs were performed in automation. Human
keratinocytes (YF29) were seeded with a liquid handler. After 7 days, we performed the
rhodamine assay. A Z’ was computed from the results and it confirmed the quality and
compatibility of the screening protocol for HTS.

4.1.2 Screening of the mouse druggable genome siRNA library

We decided to screen the 3T3-J2 cells with the Mouse druggable genome siRNA library from

QIAGEN (Fig. 4.8). The library was already available at the BSF and covered about half of

the mouse genome. This library covered 8’320 different genes, each with 4 different siRNAs.

The four individual siRNAs were pooled together by the BSF and the screen was performed

in duplicate. Every week, 24 x 96 well plates were spotted by the BSF with the siRNAs and

transfection mix. The plates were then processed for cell culture and read-out acquisition in

our laboratory. The screen lasted 15 weeks. We had to repeat 20 plates as one amplification of

YF29 cells was not optimal.
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Figure 4.8 – Schematic representation of the screening procedure.

Out of the 8’320 pools of siRNAs, only 126 pools of siRNA did produce an effect in duplicates.

The hits were located throughout the whole library and did not result from “plate effects”. To

further validate these hits, we decided to repeat the screening procedure with a deconvoluted

library (single siRNA).

4.1.3 Secondary screening

To validate the initial hits, we repeated the screening procedure for the 126 genes using single

siRNAs. We ordered the same 4 siRNAs for each genes separately. We also included 6 additional

genes in the list. One of these genes, Smc3, was not detected as a hit in the screen because one

duplicate was under the detection threshold. However, this gene encodes for a protein that

is either targeted to the nucleus or secreted after the addition of several chondroitin sulfate

chains. The secreted glycoprotein form is BAMACAN, one of the principal component of the

epidermal basement membrane (Wu and Couchman, 1997). Proteoglycans play a a major
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role in signaling as they can tether and modulate growth factors signaling activity (Yurchenco,

2011). Fgf7 (Kgf, keratinocyte growth factor) was also added as it was previously described

as one of the growth factors that 3T3 cells produce when co-cultured with keratinocytes. F10

(coagulation factor X) was added as it was detected as a hit during the screening campaign,

even though it was absent from the final report. Its absence from the list was likely due to a

bug of the inventory software used to track the assay plates.

Since we also wanted to investigate genes that are known to activate the RHO/ROCK pathway,

we included Porcn, Wnt3 and Tgfb1 (Tgfβ, transforming growth factor beta). The Wnt/Planar

cell polarity pathway and Tgfβ pathway can signal through ROCK (Kobune et al., 2007; Vasilaki

et al., 2010). We wanted to know if either one of these genes could impact keratinocyte

proliferation (positively or negatively) in the context of the second project described in this

thesis.

All the 4 siRNAs for the 131 genes were tested independently. In addition, the single siRNAs

were used to generate new pools of siRNAs for the validation. Each siRNA or pools were tested

in duplicates. The procedure for the validation was identical to the first screen.
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Table 4.2 – Results of the secondary screen. The score represent the percentage of inhibition
compared to the negative control (scramble siRNA).

Name Score ScoreSD GeneID GeneName

Mm_Psmb4_4 0.871 0.104 19172 Psmb4
Mm_Gpx7_3 0.849 0.030 67305 Gpx7
Mm_Psmc5_6 0.795 0.169 19184 Psmc5
Mm_Itgav_3 0.793 0.002 16410 Itgav
Mm_Pgam2_2 0.739 0.000 56012 Pgam2
Mm_Sars1_3 0.728 0.024 20226 Sars
Mm_Fkbp8_4 0.716 0.029 14232 Fkbp8
Mm_Psmc5_1 0.700 0.005 19184 Psmc5
Pooled_Smc3 0.689 0.047 13006 Smc3
Mm_Csnk1a1_3 0.687 0.040 93687 Csnk1a1
Mm_Ddx39_3 0.650 0.029 68278 Ddx39
Mm_Ddx39_1 0.649 0.059 68278 Ddx39
Mm_Gpd2_5 0.645 0.017 14571 Gpd2
Mm_Rrm1_7 0.642 0.019 20133 Rrm1
Pooled_Psmc5 0.626 0.020 19184 Psmc5
Mm_Gne_1 0.618 0.076 50798 Gne
Mm_Lifr_1 0.616 0.331 16880 Lifr
Mm_Rpl38_3 0.612 0.026 67671 Rpl38
Pooled_Xpo1 0.603 0.016 103573 Xpo1
Mm_V1ra2_2 0.600 0.001 22297 Vmn1r45
Mm_Rrm2_3 0.589 0.046 20135 Rrm2
Mm_Eif3s8_1 0.588 0.149 56347 Eif3c
Mm_LOC545756_4 0.559 0.049 545756 Gm5867
Mm_Psmc1_2 0.549 0.283 19179 Psmc1
Pooled_Psmb4 0.528 0.050 19172 Psmb4
Mm_Gsn_5 0.514 0.063 227753 Gsn
Mm_Psmb4_2 0.484 0.013 19172 Psmb4
Mm_Pdlim7_3 0.473 0.161 67399 Pdlim7
Mm_Rpl4_6 0.472 0.101 67891 Rpl4
Mm_Papln_1 0.465 0.009 170721 Papln
Pooled_Ddx54 0.463 0.065 71990 Ddx54
Mm_Mmp1b_4 0.462 0.029 83996 Mmp1b
Mm_Ddx58_4 0.459 0.300 230073 Ddx58
Mm_Fkbp8_5 0.451 0.088 14232 Fkbp8
Mm_Il20_3 0.450 0.051 58181 Il20
Mm_Hs3st1_7 0.450 0.137 15476 Hs3st1
Mm_Gnb5_4 0.447 0.032 14697 Gnb5
Mm_BC048082_4 0.445 0.019 332110 Mapk15
Pooled_Itgav 0.439 0.044 16410 Itgav
Mm_Dmbt1_2 0.436 0.225 12945 Dmbt1
Mm_Efcbp2_4 0.432 0.194 117148 Necab2
Pooled_Ddx39 0.430 0.041 68278 Ddx39
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Table 4.2 – Results of the secondary screen. The score represent the percentage of inhibition
compared to the negative control (scramble siRNA).

Name Score ScoreSD GeneID GeneName

Mm_Xab2_6 0.428 0.107 67439 Xab2
Mm_A530016O06Rik_4 0.427 0.050 319660 Agmo
Mm_D10Ertd610e_4 0.420 0.059 52666 Arhgef25
Mm_Dll3_3 0.414 0.104 13389 Dll3
Mm_Lmo2_3 0.397 0.004 16909 Lmo2
Mm_Mllt6_4 0.391 0.100 246198 Mllt6
Mm_Pole_3 0.384 0.019 18973 Pole
Mm_Fbxw11_3 0.369 0.105 103583 Fbxw11
Pooled_Dll4 0.364 0.084 54485 Dll4
Mm_Emd_1 0.364 0.042 13726 Emd
Mm_Olfr731_3 0.360 0.149 258360 Olfr731
Mm_Prkwnk4_3 0.359 0.135 69847 Wnk4
Pooled_Efna1 0.354 0.116 13636 Efna1
Mm_Nelf_2 0.351 0.124 56876 Nsmf
Mm_Htr4_7 0.341 0.063 15562 Htr4
Mm_Eif3s8_5 0.340 0.040 56347 Eif3c
Mm_Tssk2_4 0.339 0.098 22115 Tssk2
Mm_Dctn1_5 0.338 0.077 13191 Dctn1
Mm_Ddx54_3 0.338 0.097 71990 Ddx54
Pooled_Fbxo34 0.338 0.040 78938 Fbxo34
Mm_Ctdsp2_6 0.334 0.074 52468 Ctdsp2
Mm_Ptk2_6 0.329 0.105 14083 Ptk2
Mm_Gpnmb_6 0.323 0.027 93695 Gpnmb
Mm_Pkia_1 0.319 0.030 18767 Pkia
Mm_Mllt6_3 0.318 0.129 246198 Mllt6
Mm_Eya3_4 0.312 0.036 14050 Eya3
Mm_Fbxo31_1 0.302 0.029 76454 Fbxo31
Mm_Pkn3_1 0.292 0.012 263803 Pkn3
Mm_Ewsr1_1 0.290 0.016 14030 Ewsr1
Pooled_Bzrap1 0.287 0.079 207777 Bzrap1
Mm_Xpo1_6 0.286 0.010 103573 Xpo1
Mm_1700011C14Rik_1 0.282 0.008 76571 Styxl1
Mm_Xpo1_5 0.274 0.104 103573 Xpo1
Mm_Rrm1_5 0.267 0.022 20133 Rrm1
Mm_Snrpd1_4 0.263 0.026 20641 Snrpd1
Mm_Dok1_1 0.259 0.019 13448 Dok1
Mm_Lmo2_4 0.244 0.025 16909 Lmo2
Mm_Ercc2_1 0.238 0.033 13871 Ercc2
Mm_Nefh_6 0.235 0.028 380684 Nefh
Mm_Egln1_3 0.231 0.015 112405 Egln1
Mm_Furin_1 0.225 0.064 18550 Furin
Mm_Psmd2_5 0.213 0.011 21762 Psmd2
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Table 4.2 – Results of the secondary screen. The score represent the percentage of inhibition
compared to the negative control (scramble siRNA).

Name Score ScoreSD GeneID GeneName

Mm_Cacna1e_8 0.209 0.039 12290 Cacna1e
Mm_Csnk1a1_2 0.209 0.028 93687 Csnk1a1
Mm_Dll4_3 0.204 0.006 54485 Dll4
Mm_Psmc5_5 0.202 0.019 19184 Psmc5

From the validation, only 70 out of the 131 genes were classified as hits (Table 4.2). The

majority of the hits were reproduced with a single siRNA. Interestingly, only 11 pools of siRNAs

reproduced their effects. We performed a functional annotation analysis to identify enriched

KEGG pathways in the hit list using the DAVID bioinformatics ressource (Huang et al., 2009).

Only 3 pathways were enriched in the list (Table 4.3). However, these were unlikely to represent

the feeder function of the 3T3-J2 cells. In cancer and transformed cells, proteasome inhibition

act as a radiosensitizer to promote cell death after irradiation (McBride et al., 2003). This could

explain why genes encoding for proteasome subunits are enriched in our hit list.

Pathway (KEGG) # genes p-value

Proteasome 4 3.60E-03
Pyrimidine metabolism 4 2.50E-02
Glutathione metabolism 3 4.60E-02

Table 4.3 – Results of the KEGG pathways enrichment analysis.

In addition to the functional annotation analysis, we also used the GeneCards® database

to retrieve the subcellular localization annotations for each gene. Out of the 70 genes, the

majority encoded for intracellular proteins. However, 11 genes encoded for known secreted

proteins, transmembrane ligands and receptor proteins (Table 4.4).

Interestingly, none of these genes were previously described in the 3T3-J2 culture system.

However, nearly all of them were linked with epidermal homeostasis & wound repair. For

example, IL20 is a cytokine that is upregulated in psoriasis (a disease characterized by a hyper

proliferative epidermis) (Ouyang et al., 2011). MMP1, a collagenase, is also upregulated in

wounded skin and facilitates the migration of keratinocytes (Rohani et al., 2014). FURIN is

also known to play a key role during wound repair (Gurtner et al., 2008). However, we could
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Entrez gene id NCBI gene symbol RT-PCR

13389 Dll3 -
54485 Dll4 +
12945 Dmbt1 -
13636 Efna1 ?
18550 Furin +
93695 Gpnmb ?
58181 Il20 +*
16880 Lifr ?
332110 Mapk15 ?
83996 Mmp1b ?
170721 Papln ?
13006 Smc3 +

Table 4.4 – List of putative “feeder genes” identified in the secondary screen. The mRNA
expression was confirmed by RT-qPCR for some of them (+ : detected, - : not detected, ? : not
tested, * : Il20 was only detected in 3T3-J2 after irradiation).

not identify growth factors such as EGF, KGF or TGFα. But, we did validate SMC3 (BAMACAN),

one of the major proteoglycans of the basement membrane.

4.1.4 Investigating the role of FURIN in the culture system

To further confirm the results of the screen, we decided to study the role of one of the putative

feeder genes in the culture system. Although all of the hits are interesting candidates on their

own, we chose to focus on one gene due to time constraints. We decided to concentrate our

efforts on FURIN (or PACE), a proprotein convertase (PC) responsible for the maturation of

multiple targets. FURIN is a serine protease. It recognizes the consensus sequence (Arg-X-

X-Arg) and cleaves after the last Arginine residue. While FURIN is mostly enriched in the

trans-Golgi network, an active secreted form of FURIN has also been reported (Plaimauer

et al., 2001; Mesnard et al., 2011). Also, FURIN has been reported to process several substrates

at the cell surface and in early endosomes (Thomas, 2002).

In the epidermis, FURIN is expressed alongside three other PCs (PACE4, PC5/6 and PC7/8).

FURIN is known to processes multiple protein precursors that influence epidermal home-

ostasis. TGFβ, a well-known FURIN substrate, can affect the proliferation and differentiation

of epidermal keratinocytes. If TGFβ1 is not cleaved and activated by FURIN, it cannot bind
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to its receptor. When activated, TGFβ1 inhibits keratinocytes proliferation in vitro (Pieten-

pol et al., 1990; Shipley et al., 1986). In addition, FURIN is also required for the processing

and activation of the NOTCH1 receptor (Logeat et al., 1998). NOTCH1 is expressed in the

suprabasal cells of the epidermis. Conditional deletion of NOTCH1 in the epidermis results in

disturbed differentiation and expansion of the basal layer leading to hyperplasia (Rangarajan

et al., 2001; Nicolas et al., 2003). Moreover, IGF1, a known growth factor produced by 3T3 cells,

is processed by FURIN (Duguay et al., 1997). In addition, the receptor for IGF1, IGF-1R, is

also processed by FURIN (Fu et al., 2012). These examples only represent a small fraction of

all protein precursors processed by FURIN. There are other FURIN substrates, such as EDA

(ectodysplasin A), BMP4, various MMPs (matrix metallopeptidase) and COL17A1 (collagen

XVII), which can influence epidermal development and homeostasis (Tian et al., 2011). In

the 3T3-J2 culture system, both 3T3 feeder cells and human keratinocytes express FURIN.

Therefore, understanding the role and function of FURIN in the culture system for human

keratinocytes is a very challenging question.

To further confirm the results produced by RNA interference, we first decided to generate a

Furin knockout (KO) 3T3 cell line using the CRISPR/Cas9 technology. The plasmid containing

the guide RNA and the Cas9 was kindly shared by Prof. D. Constam and Dr. S. Bessonnard. The

guide RNA (target sequence: GGTTGCTATGGGTGGTCGCA) was designed by Dr. S. Bessonnard

to target the coding sequence early after the start codon. The plasmid also included the

elements to express both hSPCas9 and EGFP. Pre-confluent 3T3-J2 cells were transfected with

the plasmid and allowed to grow for 3 days. Then, single GFP positive cells (1.5 %) were sorted

by FACS in 96 well plates that were previously prepared with irradiated untransfected 3T3-J2

cells. After 14 days, the clones were serially amplified for two passages without irradiated

cells. The clones were then screened by Western blot analysis for FURIN expression. Out of 40

different clones, we could identify 3 clones that did not express FURIN (expected band 95-100

kDa). By themselves, the knockout clones did not grow very well. To have enough cells for

co-culture experiments with human keratincoytes, we also had to use irradiated feeder cells

(104 cells/mL) to support the growth of the Furin KO cell lines. Therefore, we cannot exclude

the presence of a very small number of normal irradiated feeder cells in our experiments with

Furin KO 3T3 cells.
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Figure 4.9 – Analysis of FURIN expression in 3T3-J2 clones. Western blot detection of FURIN
in total cell lysates.

We first decided to repeat the rhodamine assay with the Furin KO 3T3 clone. We co-cultured

human keratinocytes (YF29) with either wild-type (F4), Furin KO (c52) or control (c19) feeder

cells in 96 well plates. After a week of culture, the plates were fixed and processed for rho-

damine B staining and fluorescence measurements. The intensity of the rhodamine B fluores-

cence was reduced when human keratinocytes we co-cultured with irradiated clone 52 feeder

cells (Fig. 4.10) and there were less keratinocytes compared to wild-type and control 3T3 cell

lines (Fig. 4.11). The percentage inhibition of the signal (16% versus control untreated F4 3T3

cells, paired t test two-tailed p-value = 9.46E−5) was similar to the results of RNAi (score of 22%

+/- 6%). It was previously shown that 3T3-J2 cells produce IGF1. Therefore, we hypothesized

that the phenotype could be rescued by the addition of recombinant human IGF1. YF29 were

co-cultured with either wild-type or Furin KO 3T3 cells lines with or without the addition of

recombinant IGF1 (100 ng/mL, every day). Unfortunately, the addition of IGF1 did not result

in an increase of the rhodamine signal (Fig. 4.12). This suggested that addition of recombinant

IGF1 alone could not compensate for the loss of FURIN in the feeder cells, or that it was already

compensated by the cFAD medium (containing recombinant human insuline).
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Figure 4.10 – Rhodamine assay with different 3T3 cell lines. YF29 cells were co-cultured with
either wild-type (F4), Furin KO (c52) or control (c19) 3T3 cells lines for a week and analysed
with the rhodamine assay. When co-cultured with 3T3 clone 52 cells, we could observe a
decrease in total rhodamine B fluorescence intensity.
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Figure 4.11 – Immunofluorescence analysis of KI67 expression. Human keratinocytes were
co-cultured with irradiated wilde-type (F4), Furin KO (c52) and control (c19) 3T3-J2 cells for
7 days. The confluency was slightly lower when human keratinocytes were co-cultured with
irradiated c52 cells. Scale bars: 1.58 mm.

56



4.1. Deconvolution of the 3T3-J2 culture system

F4 c52 c19 F4 c52 c19

30000

20000

10000

0

cFAD cFAD + IGF1
Fl

uo
re

sc
en

ce
 in

te
ns

ity
 (a

rb
. u

ni
t)

Figure 4.12 – IGF1 does not increase the rhodamine signal. Human keratinocytes were co-
cultured with different 3T3 cell lines (F4, clone 52 and clone 19) in presence or absence of
recombinant human IGF1 (100 ng/mL). After 7 days, the plates were fixed and analyzed with
the rhodamine assay. Addition of IGF1 did not increase the signal of the assay.
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In parallel to the CRISPR/Cas9 experiments, we also investigated the impact of FURIN

inhibition with a soluble, cell permeable inhibitor (FURIN inhibitor or I24) (Becker et al., 2012).

These experiments differed from the CRISPR/Cas9 approach as the inhibitor targeted both

human keratinocytes and feeder cells.

First, we repeated the rhodamine assay with or without treatment with the FURIN inhibitor.

While treatment with DMSO (carrier) did produce an increase in signal intensity, the signal was

drastically lower when the FURIN inhibitor was added to the culture medium (Fig. 4.13). The

effect was also stronger than what we observed with the Furin KO 3T3 clones. To investigate if it

did impact keratinocyte proliferation, we performed an immunofluorescence analysis of KI67

expression (Fig. 4.14). To our surprise, we detected more keratinocyte colonies in presence

of DMSO (carrier) or FURIN inhibitor compared to untreated cells. Moreover, there was a

significant increase in the number of KI67 positive cells in presence of the FURIN inhibitor

compared to DMSO (Fig. 4.15).
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Figure 4.13 – FURIN inhibition results in a reduced signal of the rhodamine assay. Human
keratinocytes were co-cultured with irradiated 3T3-J2 cells in presence or absence of a FURIN
inhibitor (I24) for 7 days. FURIN inhibition drastically reduced the signal intensity of the
rhodamine assay.
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Figure 4.14 – Immunofluorescence analysis of KI67 expression. Human keratinocytes were
co-cultured with irradiated 3T3-J2 cells in presence or absence of a FURIN inhibitor (I24) for 7
days. Scale bars: 1.58 mm.
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Figure 4.15 – Quantification of KI67 positive cells. Human keratinocytes were co-cultured with
irradiated 3T3-J2 cells in presence or absence of a FURIN inhibitor (I24) for 7 days. The number
of KI67 positive cells was increased in presence of the FURIN inhibitor. Immunofluorescence
images (n=3) were anazyled with the Fiji software. Error bars: 95% Student t-test confidence
interval. *: paired t test two-tailed p-value = 4.35E−3.

Keratinization (or stratification) increases the intensity of the rhodamine B staining (Rhein-

wald and Green, 1975a). Indeed, stratified colonies of epithelial cells stain well with rhodamine

B while unstratified (or refringent) colonies do not (Pluchinotta, 2016). Human keratinocytes

form stratified colonies in vitro. Thus, we investigated the effect of FURIN inhibition on the

expression of genes known to be differentially expressed during keratinocyte differentiation

and stratification by RT-qPCR. We observed no difference in the expression of DNP63 (Delta N

isoform of TP63), HOPX & LEKTI. However, we did observe an increase in KRT1 expression and

a decrease in IVL expression (Fig. 4.16). IVL is a marker of keratinocyte terminal differentiation.

It is also the main component of the cornified envelope. In human keratinocytes, KRT1 is also

a marker of differentiation. KRT1 expression also precedes IVL expression during keratinocyte

differentiation in vivo (Hsu et al., 2014). Together, the qPCR and rhodamine assay results

suggest that FURIN inhibition did disturb the late stages of keratinocyte differentiation and

the formation of the cornified envelope.
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Figure 4.16 – FURIN inhibition impacts the transcription of several genes associated with
keratinocytes differentiation. Human keratinocytes were co-cultured with 3T3-J2 cells in
presence or absence of a FURIN inhibitor. Total RNA was extracted after 7 days and used
for RT-qPCR. We analyzed the expression of DNP63, KRT1, HOPX, IVL and LEKTI (n=4).
Endogenous controls: EEF1A1, SDHA and TBP. Error bars: 95% Student t-test confidence
interval. *: paired t test two-tailed p-value = 8.01E−4. **: paired t test two-tailed p-value =
2.58E−3
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4.2 The impact of ROCK inhibition on cultured keratinocytes

4.2.1 ROCK inhibition increases TP63 expression

Since Terunuma and colleagues (2010) published their paper on the impact of ROCK inhibition

on primary keratinocytes, our laboratory repeated and confirmed their results on freshly

isolated cells from multiple patients (unpublished data, A. Rochat). Keratinocytes treated with

Y-27632 can still regenerate an epidermis when transplanted on an animal model (unpublished

data, A. Rochat & F. Gorostidi). In addition, our laboratory also observed that freshly isolated

cells form mostly holoclone- and meroclone-like colonies (Barrandon et al., 2012). Therefore,

we thought to investigate if ROCK inhibition was improving stem cell survival during isolation

and in vitro expansion or if it was promoting non stem cells to have a holoclone-like phenotype.

First, we hypothesized that the cellular phenotype produced by ROCK inhibition would

also correlate with changes in gene expression in keratinocytes. The holoclone phenotype is

positively correlated with the expression of P63 (Pellegrini et al., 2001). Human keratinocytes

(strain YF29) were cultured in presence or absence of Y-27632 for both mRNA and protein

extraction. In our culture conditions, P63 expression was increased after Y-27632 treatment.

We also observed a decrease in IVL (involucrin) mRNA level and an increase in TERT mRNA

level (Fig. 4.17). Although the qPCR data were not statistically significant, the western blot

analysis did confirm the increased P63 expression (Fig. 4.18). Keratinocytes treated with Y-

27632 did not stratify in vitro (unpublished data, A. Rochat). These results confirmed the effect

of Y-27632 on P63 expression (Zhou et al., 2012; Suprynowicz et al., 2012; Palechor-Ceron et al.,

2013a) and also suggested that Y-27632 prevented keratinocyte differentiation.
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Figure 4.17 – RT-qPCR results for the expression of human DNP63, IVL and TERT (n=3).
Keratinocytes were expanded on normal feeders (3T3-J2) in presence or absence or Y-27632.
Endogenous controls: EEF1A1, SDHA and TBP. Error bars: 95% Student t-test confidence
interval.
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Figure 4.18 – Western blot analysis of TP63 expression. Keratinocytes were expanded in
presence or absence of Y-27632. ROCK inhibition resulted in an increase of TP63 expression.

4.2.2 ROCK inhibition does not induce cellular immortalization

To further assess the cellular impact of Y-27632 treatment, we investigated two markers of

cellular immortalization. First, YF29 cells were serially cultivated in presence or absence of

Y-27632. The cells were cultivated over several weeks and genomic DNA was extracted at each

passages. The telomere length was measured by Southern blot analysis of terminal restriction

fragment lengths (Fig. 4.20). We compared three different passages (VII, X & XII) which covered

around 35 cell doublings. Surprisingly, the average telomere length did diminish over time,
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but very slowly. Y-27632 did not prevent telomere shortening in normal keratinocytes.

In addition, we investigated the phosphorylation state of the retinoblastoma protein (RB,

RB1). The RB protein is often constantly hyper-phosphorylated in immortalized cell lines. The

treatment with Y-27632 did not result in an increase of the hyper-phosphorylated form of RB

(ppRB). Both ppRB and pRB showed similar levels by western blot analysis in both culture

conditions (Fig. 4.19).

Together, these results argued against an induced cellular immortalization by ROCK inhibi-

tion. Moreover, when Y-27632 was withdrawn from the culture medium, a strong decrease

in colony forming efficiency could be observed (Gorostidi (2012), unpublished data from A.

Rochat).

TE +Y SCC-13

pRB

P53

H3

Figure 4.19 – Western blot analysis of pRB, P53 and H3 expression in normal human ker-
atinocytes (YF29) or derived from a squamous cell carcinoma (SCC-13). Nuclear proteins were
extracted from human keratinocytes cultured with (+Y) or without (TE) Y-27632 and from
keratinocytes of the SCC-13 cell line. ROCK inhibition did not impact pRB phosphorylation in
normal human keratinocytes.
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Figure 4.20 – Telomere length analysis of human keratinocytes in vitro. YF29 were cultured
in presence or absence of Y-27632 for several passages (from passage number VII to passage
number XII, equivalent to 35 cell doublings on average). Shortening of telomeres was analyzed
by Southern blot (A). The analysis revelead that telomere did shorten in both conditions (B
and C).
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4.2.3 ROCK inhibition does not increase the expression of ITGA6 or CTNNB1

Suprynowicz and colleagues (2012) suggested that ROCK inhibition could reprogram epithe-

lial cells to a stem-like phenotype instead of promoting cellular immortalization. In their

2012 paper, they showed that Y-27632 treatment results in an increase expression of ITGA6

and CTNNB1 in human normal ectocervical cells. To assess if their observations could be

reproduced in human keratinocytes, we analysed the expression of ITGA6 and CTNNB1 (β

catenin) with or without Y-27632 treatment.

YF29 cells were cultured with feeder cells in presence or absence of Y-27632. For CTNNB1

expression, subcellular protein fractionation was performed. Western blot analysis revealed

that there was no difference in CTNNB1 expression between the two conditions (Fig. 4.21).

To assess if Y-27632 treatment did impact ITGA6 expression, we performed flow cytometry

analysis on cells cultured with or without Y-27632. Again, Y-27632 treatment did not result in

an increased ITGA6 expression (Fig. 4.22).

pan-CADHERIN

CTNNB1

GAPDH

Histone H3

Y-27632 - +- + - +

cytoplasmic membrane nuclear

Figure 4.21 – Western blot analysis of CTNNB1 (β-catenin) expression. Human keratinocytes
(YF29) were cultivated in presence or absence of Y-27632. There was no difference in the
expression of CTNNB1 in all subcellular compartments.
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Figure 4.22 – Flow cytometry analysis of ITGA6 (CD49f) expression. Human keratinocytes
were cultured in presence or absence of Y-27632. In one condition, Y-27632 was added at the
first feeding (3 days of culture). There were no difference in the pattern of expression of ITGA6.

4.2.4 ROCK inhibition increases the colony forming efficiency of ITGA6 positive

cells

To investigate which cell populations were impacted by Y-27632 treatment, we decided to sort

human primary keratinocytes based on their ITGA6 expression and perform colony forming

efficiencies in presence or absence of Y-27632. We decided to sort on the basis of ITGA6

expression as it marks clonogenic epidermal basal cells (Li et al., 1998).

Skin biopsies were obtained from adult patients undergoing mastectomy. The biopsies were

processed to obtain a single cell suspension of epidermal cells. Cells were then incubated

with a conjugated antibody targeting ITGA6 and processed by FACS. Two populations could

be identified based on ITGA6 expression. After the sort, ITGA6high and ITGA6low cells were

seeded at low density on 60 mm petri dishes in presence or absences or Y-27632. After 14 days,

the plates were fixed and stained with rhodamine B to count the number of colonies. First,

we confirmed that ITGA6 expression levels correlated positively with the number of colony

forming keratinocytes (Fig. 4.23 and Table 4.5). However, there was a strong variation between

the repeats as the biopsies were from different patients. Nevertheless, we found that Y-27632
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treatment improved the colony forming efficiencies of all fractions (Table 4.5). However, it

never allowed the ITGA6low fraction to reach the ITGA6high fraction’s performance. Again,

these results confirmed the impact of ROCK inhibition on primary keratinocytes procurement,

regardless of their age or genotype. Y-27632 is known to improve keratinocyte adhesion and to

inhibit keratinocyte differentiation (McMullan et al., 2003; Gorostidi, 2012). Both properties

are fundamental for the preparation of CEA.
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Figure 4.23 – Colony forming efficiency of freshly isolated keratincoytes. Epidermal cells were
sorted based on their expression of ITGA6 (A) and cultured for 14 days. 1000 cells were seeded
in each 60 mm petrid dish (B). Scale bar: 3 mm.
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Table 4.5 – Colony forming efficiency of freshly isolated keratincoytes. Epidermal cells were
sorted based on their expression of ITGA6 (CD49f) and cultured for 14 days. 1000 cells were
seeded in each 60 mm petrid dish. The table indicates the number of colonies for all 3 patients.

Control Y-27632

Patient Sample 1 2 3 mean 1 2 3 mean

1 Unsorted 21 16 x 19 42 50 x 46
ITGA6low 2 2 x 2 41 42 x 42
ITGA6high 241 231 x 236 368 328 x 348

2 Unsorted 0 1 3 1 18 20 12 17
ITGA6low 0 0 0 0 5 6 7 6
ITGA6high 2 6 1 3 48 28 39 38

3 Unsorted 14 14 22 17 93 91 110 98
ITGA6low 1 3 1 2 24 38 30 31
ITGA6high 10 19 13 14 108 133 136 126

4.2.5 ROCK inhibition does not impact YAP subcellular localization in human

keratinocytes

The Hippo pathway is one of the signaling pathway that is modulated by the activity of

RHO/ROCK signaling. We chose this signaling pathway because it has been demonstrated

that the Hippo pathway integrates different signals, such as integrin signaling, local stiffness

and cellular crowding, into proliferative decisions (Halder et al., 2012). Briefly, the molecular

effectors of the Hippo pathway, YAP/TAZ, can translocate from the cytoplasm to the nucleus

when phosphorylated and act as co-transcription factors with other molecules. ROCK inhibi-

tion can influence the subcellular localization of YAP in various cell lines (Dupont et al., 2011).

Moreover, overexpression of mutant YAP (S127A, a mutation that leads to enhanced nuclear

localization) in mouse epidermis results in hyperproliferation of the basal layer in vivo (Zhang

et al., 2011; Schlegelmilch et al., 2011). Therefore, we hypothesized that Y-27632 would also

produce similar changes in YAP/TAZ subcellular localization in human keratinocytes.

YF29 cells were grown in presence or absence of Y-27632. Subcellular protein extraction was

performed 30 minutes or 1 day after the last feeding with EGF. YF29 cells were also cultivated

on coverslips for immunofluorescence analysis of YAP subcellular localization. Both Western

blot and immunofluorescence analysis did not reveal a change in YAP localization (Fig. 4.24 &

Fig. 4.25). In both experimental conditions, similar levels of YAP were detected in all cellular
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compartments. These results suggested that YAP subcellular localization was not impacted by

ROCK inhibition in human keratinocytes cultivated with 3T3-J2 feeder cells.

Histone H3

GAPDH

pYAP

YAP

pan-CADHERIN

Y-27632 - +- + - +

NuclearMembraneCytoplasmic

24H post EGF treatmentA

CANX

Histone H3

GAPDH

pYAP

YAP

pan-CADHERIN

Y-27632 - +- + - +

NuclearMembraneCytoplasmic

B 30min post EGF treatment

Figure 4.24 – Western blot analysis of YAP expression. Keratinocytes were cultivated in pres-
ence or absence of Y-27632. Protein fractions were extracted 24h after the last feeding (A) or
after 30 minutes (B). There was no difference in the expression of YAP & pYAP.
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Y-27632
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Figure 4.25 – Immunofluorescence analysis of YAP localization. There was no evident dif-
ference in the expression and localization of YAP in human keratinocytes. Scale bars: 100
μm.





5 Discussion & Perspectives

5.1 Deconvolution of the 3T3-J2 culture system

High-throughput RNAi is a powerful tool to study molecular and cellular processes (Berns

et al., 2004; Hasson et al., 2013; Gonzales et al., 2015). Here, we described how we implemented

this technology to investigate the culture system developped by Rheinwald and Green. The

3T3-J2 cells are essential for promoting the growth and self-renewal of human keratinocyte

stem cells in vitro. However, the molecular effectors are unknown. Our strategy to dissect

the system was very simple. We designed an assay to specifically target the 3T3-J2 cells with

siRNAs and then measure the impact on human keratinocytes using the rhodamine assay.

Using this approach, we only identified a small number of genes. When these genes were

down-regulated in 3T3-J2 cells, it resulted in a reduced signal intensity of rhodamine B total

fluorescence. Surprisingly, all of the hits were unexpected. However, when we screened the

literature, we found several studies that linked these genes to epidermal homeostasis and

wound repair. For example, IL20, FURIN and MMP1B are linked with epidermal wound repair

(Ouyang et al., 2011; Ovaere et al., 2009; Rohani et al., 2014). IL20 is also linked to psoriasis

(Wolk et al., 2009), a hyperproliferative disorder of the epidermis. EFNA1, an ephrin ligand, is

also expressed in the basal layer of the epidermis and it is overexpressed in psoriasis (Gordon

et al., 2013). In addition, we also identified SMC3 (Bamacan), the gene that encodes the

major proteoglycan of the epidermal basement membrane. BAMACAN is also one of the

major proteoglycan present in the protein mixture produced by Engelbreth-Holm-Swarm
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(EHS) mouse sarcoma cells, also known as Matrigel® (Couchman et al., 1996). Matrigel is

the key component of the culture system used by Sato and colleagues for the growth of

intestinal epithelial stem cells (Sato et al., 2009). Proteoglycans, such as BAMACAN, might

have a fundamental role in shaping the signaling landscape of the extracellular matrix, both

in vivo and in vitro. We tried to produce recombinant BAMACAN (SMC3) with the protein

expression core facility, but it did not work. It would be of interest to clone the SMC3 cDNA in a

plasmid containing an additional signal peptide for protein secretion and retry the production.

Nevertheless, the identification of Bamacan and other putative “feeder” genes suggest that

the 3T3-J2 cells produce an artificial wound-like microenvironment to sustain the in vitro

expansion of human keratinocytes.

To further confirm the results of the screen, we decided to use the CRISPR-Cas9 technology

to generate a Furin knockout 3T3 cell line. This approach is based on the CRISPR/CAS

adaptive immune system found in some prokaryotic organisms (Westra et al., 2014). Cas9 is

very convenient as it can be programmed to specifically cut DNA at a specific location using a

single chimeric guide RNA (Jinek et al., 2012). A mistake in the DNA repair process will result in

a mutation that can lead to a loss of function. We decided to use this technology to confirm the

results of RNAi for the Furin gene in 3T3-J2 cells. Using the plasmid gifted by Prof. Constam

and Dr. S. Bessonnard, we generated multiple 3T3 clones and selected them by Western blot

analysis for FURIN expression. Then, we co-cultured human keratinocytes with these new

3T3 cell lines. When co-cultured with a Furin KO 3T3 clone (clone 52), human keratinocytes

attached to the dish but produced smaller colonies. We thought that IGF1, a known growth

factor produced by the 3T3-J2 cells and a FURIN substrate, could compensate for the loss

of Furin. Barreca and colleagues had previously demonstrated that IGF1 could enhance

keratinocyte proliferation in vitro (Barreca et al., 1992). In our experimental conditions,

recombinant human IGF1 did not result in a higher rhodamine signal. The results of Barreca

and colleagues were obtained in insulin-, EGF- and serum-free media. This could explain why,

in normal cFAD (EGF-free) medium, IGF1’s effect is not noticeable. The presence of serum

and recombinant insulin could act redundantly of IGF1. Other FURIN substrates could also

account for the decreased rhodamine signal and therefore would require additional work for

their identification. However, using an alternative approach to study the role of FURIN in the
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culture system, we found a very striking and unexpected phenotype.

In parallel to the CRISPR experiments, we also investigated the effect of a cell permeable

FURIN inhibitor (PC inhibitor or I24) on the culture system. In this case, both cell types (feeder

cells and human keratinocytes) are targeted by the inhibitor. When human keratinocytes were

treated with the FURIN inhibitor, the signal of the rhodamine assay also decreased. At first,

it confirmed what we expected as both Furin RNAi and CRISPR targeting in 3T3-J2 cells also

did result in a decreased rhodamine B signal intensity. However, FURIN inhibition resulted in

an increase in both cell confluency and number of KI67 positive keratinocytes. These results

suggested that treatment with the inhibitor increased keratinocyte proliferation. Moreover,

RT-qPCR analysis revealed different mRNA levels of KRT1 and IVL in human keratinocytes.

Together with the rhodamine B signal intensity, these results suggested that FURIN inhibition

had an effect on keratinocyte differentiation. Although the results of FURIN inhibition are in

opposition with the results of Furin RNAi and CRISPR targeting in 3T3-J2 cells, they are likely

due to the fact that the inhibitor targets both human keratinocytes and feeder cells. Moreover,

the phenotype that we observed with FURIN inhibition is consistent with the fact that several

FURIN substrates (TGFβ and NOTCH1) are positive regulators of keratinocytes differentiation

in vitro and in vivo (Pietenpol et al., 1990; Shipley et al., 1986; Rangarajan et al., 2001; Nicolas

et al., 2003). Interestingly, ITGA6 (a basal cell marker) also harbours a proteolytic cleavage site

that can be recognized and cleaved by FURIN in vitro. However, uncleaved pro-ITGA6 can

still form a complex with ITGB4 at the cell surface in some cell lines (Lehmann et al., 1996).

This suggests that FURIN inhibition might not be deleterious for ITGA6 mediated signaling

and cell adhesion. Both flow cytometry analysis of ITGA6 expression and cell adhesion assays

with neutralizing antibodies for ITGA6 could assess if FURIN inhibition does impact ITGA6

molecular function. Moreover, A. Amici demonstrated that FURIN activity is modulated by

LEKTI (Amici, 2011). His results showed that a strong FURIN activity was deleterious for LEKTI

knockout keratinocytes, which further support the idea that FURIN inhibition could improve

keratinocyte in vitro expansion.

FURIN is not the only proprotein convertase that is expressed in the epidermis. PACE4

and PC5/6 are also expressed by epidermal keratinocytes (Pearton et al., 2001). The FURIN

inhibitor, or I24, can also inhibit these two PCs (Becker et al., 2012). It is known that PACE4
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and FURIN can have redundant activities in the epidermis (Pearton et al., 2001). Currently,

we don’t know if the phenotype that we observed with the inhibitor is solely the consequence

of FURIN inhibition. It is likely that broad proprotease inhibition in keratinocytes might be

responsible for the effect in our culture system.

Recently, Mou and colleagues demonstrated that dual inhibition of TGBβ and BMP signaling

(with A-83-01 and DMH1 respectively) could inhibit keratinocyte differentiation in vitro and

enable their long term growth without feeder cells. To achieve this result, they also had

to supplement the culture medium with the ROCK inhibitor (Y-27632) (Mou et al., 2016).

TGFβ and BMP4 are processed by FURIN and both promote keratinocyte differentiation

in vitro (Constam, 2014; Constam and Robertson, 1999; Mou et al., 2016). It suggests that

the phenotype of FURIN inhibition could result from reduced TGFβ and BMP signaling. To

confirm this hypothesis, we could first investigate the level of active TGFβ and BMP4 in the

culture supernatant when we supplement the culture medium with the PC inhibitor. Then,

we could also investigate the pattern of SMAD phosphorylation in keratinocytes treated with

the PC inhibitor.

In the context of CEA based therapies, the starting material is often small. Large burn

patients have only few cm2 left of intact skin that can be used for CEA production. Thus,

several rounds of culture passages are required to produce enough therapeutic cell sheets.

As mentioned before, the current system relies on the use of animal feeder cells and animal

serum, which raises strong concerns from the regulatory affairs and clinicians. The system

is also unable to prevent the progressive loss of growth potential of cultured cells. Mou and

colleagues suggest that these issues could be addressed by combining both TGFβ/BMP/SMAD

signaling inhibition and ROCK inhibition (Mou et al., 2016). To some extent, this approach can

alleviate the use of feeder cells and enable long term growth of cultured basal epithelial cells.

However, we don’t know if this new implementation of the culture system is compatible with

CEA production. Two important questions will have to be addressed. First, does it work with

small starting cell densities? High starting cell densities can alleviate the use of feeder cells,

but large burn patients don’t have that luxury. Second, we don’t know if TGFβ/SMAD/ROCK

inhibition allows long-term growth of human keratinocytes in vitro. These two questions are

also valid for PCs inhibition. Our results suggest that FURIN inhibition or PCs inhibition could
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also benefit the culture system. We are going to investigate if dual inhibition of proprotein

convertases and ROCK can also benefit the culture of human keratinocytes.

Last year, two studies published different high-throughput strategies to investigate the 3T3

co-culture system (Ligaba et al., 2015; Burleigh et al., 2015). In the first study, Ligaba and

colleagues used siRNA to reverse transfect 3T3 cells alone and stored the conditioned medium

for further testing. Then, they assessed the ability of the conditioned medium to enhance

keratinocyte growth in normal culture condition (with non-transfected 3T3 cells). In the

second study, Burleigh and colleagues also used RNAi to investigate the genes required for

mammary epithelial cell proliferation in vitro. Their study differed completely as they targeted

an immortalized mammary epithelial cell line that was co-cultured with 3T3 cells. They did

not target the feeders with siRNA. Both studies identified different genes from the ones we

identified. This difference might be explained by the fact that we all used a different approach.

Nevertheless, Ligaba and colleagues identified the Fstl3, Lefty1 and Lefty2 genes which are

known antagonists of TGFβ (Ulloa and Tabibzadeh, 2001). It is interesting that multiple studies

landed on TGFβ signaling. Together they further support the idea that inhibition of TGFβ

signaling would be required for feeder-free culture of keratinocytes.

Although we did not confirm the biological function of all our hits, the literature suggests

that they all would be strong candidates for further studies. It would be of interest to confirm

their expression and biological activity. Then, it will also be important to study the putative

candidates’ impact on keratinocyte stem cells both in vivo and in vitro. The required work is

out of this thesis, but it will likely provide the foundation for the development of a defined in

vitro microenvironment for epithelial stem cells.

Our RNAi strategy successfully identified several genes influencing human keratinocyte

in vitro expansion. But, we could not identify genes with redundant function or genes that

were not covered by the siRNA library. Nevertheless, we and others have demonstrated that

the Rheinwald & Green culture system is compatible with a high-throughput setting. We

believe that the same procedure could be used to screen either siRNAs or small molecules

to answer other biological questions using the same culture system. In the context of this

thesis, we only had one measurement, the rhodamine signal. But, the same approach could
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be applied in high content screening by looking at the expression of various markers such as

cell morphology, cell cycle dynamics or keratinocyte differentiation.

5.2 The impact of ROCK inhibition on cultured keratinocytes

In parallel to the screening project, we investigated the impact of ROCK inhibition on cultured

keratinocytes. Indeed, similarly to rapamycin, Y-27632 is one of the first molecule that showed

a potential to improve the culture system developed by Rheinwald & Green. However, the

literature has been very cautious about the phenomenal effect of ROCK inhibition on the

culture of normal human epithelial cells. In this work, we showed that ROCK inhibition could

be compatible with the current system for CEA production.

Previous studies argued that Y-27632 could trigger cellular immortalization of normal

keratinocytes (Chapman et al., 2010; Palechor-Ceron et al., 2013b). Some of the observations

to support this idea were the increased maximum number of cell doublings and the increased

expression of TERT mRNA in presence of Y-27632. To test their hypothesis, we decided to

investigate the impact of ROCK inhibition on telomeres maintenance. We found that telomere

shorten in both culture conditions. It is known that telomere shortening can induce cellular

senescence when telomeres reach a critical length. Indeed, the limit in cell doublings of

normal diploid fibroblasts theorised by L. Hayflick (HAYFLICK, 1965) was later correlated

with telomere shortening. Overexpression of TERT can allow normal diploid cells to grow

indefinitely. Therefore, TERT expression and increased cell doublings in vitro have been

interpreted as cellular immortalization. However, there are multiple evidences which suggest

that it is more complex than that. First, the number of cell doublings in vitro is dependant

on both the cellular type and the culture system. For example, the holoclone (epidermal

stem cell) can undergo 180 doublings in vitro, which is more than twice than the limit (40-60)

proposed by L. Hayflick (Rochat et al., 1994; Claudinot et al., 2005). Moreover, the maximum

number of keratinocyte doublings is dependant on the addition of EGF to the culture medium

(Rheinwald and Green, 1977). Second, the role of TERT in cellular immortalization does not

require telomere length maintenance (Stewart et al., 2002). While, it is known that TERT

can have other non-canonical functions, its precise role in cellular immortalization is still

elusive (Martínez and Blasco, 2011; Park et al., 2009). In addition, the role of TERT is poorly
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characterized in adult stem cells. Unfortunately, we could not verify that cultured keratinocytes

express TERT by Western blot analysis (lack of working primary antibody for TERT). Telomere

length analysis and telomeric repeat amplification protocol (TRAP) assays are both able to

assess the activity of TERT. However, we could not perform the TRAP assay as 3T3-J2 cells

also express TERT. In addition to telomere length analysis, we also demonstrated that the two

phosphorylated forms of RB are present in keratinocytes cultured with or without Y-27632.

Immortalized keratinocyte cell lines only display the hyperphosphorylated form of RB, which

allows E2F to be constantly active and promote DNA synthesis (Lathion Droz-Georget et al.,

2015). Altogether, the telomere length analysis and Western blot analysis of pRB support the

idea that Y-27632 did not induce the immortalization of human keratinocyts.

We also investigated if Y-27632 treatment did increase the expression of ITGA6 and CTNNB1.

Suprynowicz and colleagues suggested, based on the increased expression of these two mark-

ers, that Y-27632 could reprogram epithelial cells to a stem-like state (Suprynowicz et al., 2012).

Unexpectedly, we were unable to reproduce their results. Indeed, we found similar expression

levels of both ITGA6 and CTNNB1 in human keratinocytes treated with or without Y-26732.

We think that the discrepancy between our observations and their results could be explained

by different control conditions for human keratinocytes culture.

ROCK inhibition improves the colony forming efficiency of freshly isolated keratinocytes

(Terunuma et al., 2010). Keratinocytes colonies are also larger. F. Gorostidi also demonstrated

that the cell cycle of epidermal cells is shorter in presence of Y-27632 in vitro (Gorostidi, 2012).

In this work, we confirmed the previous observation that Y-27632 increased the number of

colony forming cells (CFC) in freshly isolated human keratinocytes. In addition, we demon-

strated that it also increased the number of CFC in the ITGA6high fraction. Epidermal stem

cells are located within the basal layer of the epidermis, which is marked by the expression of

ITGA6. With the results discussed previously, our data suggested that there might be more

stem cells in the basal layer of the epidermis than what was previously thought. In addition,

recent lineage tracing studies in mouse epidermis suggest that all basal cells contribute to

epidermal homeostasis (Clayton et al., 2007; Jones et al., 2007; Doupé et al., 2010; Mascré

et al., 2012). In this context, our data would support a similar model for human epidermal

homeostasis.
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We know that epidermal stem cells can self-renew in vitro. Otherwise, the development of

CEA would not have been possible. However, these cells display a behavior that is different

from what can be observed in vivo. Keratinocytes express both basal keratins (KRT5 and

KRT14) and wound induced keratins (KRT17) in vitro (Lindberg and Rheinwald, 1990). The re-

sults of the screen are in agreement with the opinion that the 3T3-J2 cells promote keratinocyte

proliferation through a wound-like microenvironment. But, this surrogate microenvironment

is suboptimal. After few divisions or serial cultivation, the growth potential of clonogenic

keratinocytes is lost through clonal conversion. When keratinocyte colonies reach a certain

size (after 7 days), they stop to grow exponentially (Barrandon and Green, 1987a). However,

EGF or TGFα can sustain exponential grow by stimulating keratinocytes migration in vitro

(Barrandon and Green, 1987a). Recently, it has been shown by Roshan and colleagues that

Y-27632, similarly to EGF and TGFα, could also delay this process (Roshan et al., 2016). The

molecular mechanism underlying the effect of Y-27632 on both keratinocyte adhesion and

proliferation is still unknown. In our culture conditions, we could not link ROCK inhibition to

the Hippo pathway. It is possible that ROCK inhibition impacts other signaling pathways. It is

well known that ROCK is a key regulator of actin filament organization (Schober et al., 2007).

Actin filament dynamics can modulate the response to EGF in human keratinocytes and affect

stem cell maintenance (Nanba et al., 2013). Moreover, Nanba and colleagues demonstrated

that keratinocyte migration in vitro is a good indicator of epidermal stemness (Nanba et al.,

2015). Together, these results suggest that the phenotype of ROCK inhibition could act through

its impact on actin filament dynamics and keratinocyte migration in vitro. It could be possible

that Y-27632 promotes a constant cellular migration, allowing keratinocytes to maintain an

active growth phase while also improving their adhesion to the culture dish.

In this work, we have identified several genes that might be used one day as recombinant

products to replace the 3T3-J2 cells. In addition, we also provided multiple evidences to

support the use of Y-27632 for the culture of epidermal cells. Together, these two complemen-

tary approaches provide several ideas for the development of a new culture system for CEA

production and basic stem cell research. Our work opens the door to complementary projects

to pursue our goal.

80







A Abbreviations

3T3 Mouse embryonic fibroblasts 3T3 cell line
3T3-J2 3T3 clone J2
BMP Bone morphogenetic protein
BS Bovine serum
BSA Bovine serum albumin
CANX Calnexin
Cas9 Crispr associated protein 9
CEA Cultured epidermal autografts
cFAD Complemented F12 Adenine DMEM
COL4 Collagen type IV
CRISPR Clustered regularly interspaced short palindromic repeats
CTNNB1 Catenin beta 1
DACT1 Dishevelled-binding antagonist of Beta-Catenin 1
DAPI 4’,6-diamidino-2-phenylindole
DMEM Dulbecco-Vogt Modification of Eagle’s Medium
DNA Deoxyribonucleic acid
ECM Extracellular matrix
EDA Ectodysplasin A
EDTA Ethylenediaminetetraacetid acid
EEF1A1 Eukaryotic translation elongation factor 1 alpha 1
EGF Epidermal growth factor
ELISA Enzyme-linked immunosorbent assay
EPFL Ecole Polytechnique Fédérale de Lausanne
EPU Epidermal proliferative unit
ES cells Embryonic stem cells
F10 Coagulation factor 10
FACS Fluorescence activated cell sorting
FCS Fetal Calf Serum
FGF2 Fibroblast growth factor 2
FN1 Fibronectin
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GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GFP Green fluorescent protein
GSK3 Glycogen synthase kinase 3
H3 Histone H3
HBSS Hank’s balanced salt solution
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HOPX Homeodomain only protein X
HTS High throughput screening
ICC Immunocytochemistry
ICM Inner cell mass
IGF1 Insulin-like growth factor 1
IHC Immunohistochemistry
IL1A Interleukin 1 alpha
IL1B Interleukin 1 beta
IL1R Interleukin 1 receptor
IL-20 Interleukin 20
IPS Induced pluripotent stem cells
ITGA6 Integrin alpha 6
IVL Involucrin
KEGG Kyoto encyclopedia of genes and genomes
KGF Keratinocyte growth factor
KRT Keratin
LEKTI Lympho-epithelial kazal-type inhibitor
LIF Leukemia inhibitory factor
LRC Label-retaining cell
LRIG1 Leucine-rich repeats and immunoglobulin-like domains protein 1
MEF Mouse embryonic fibroblasts
MEK Mitogen-activated protein kinase/ERK kinase
miRNA Micro RNA
MMP Matrix metalloproteinase
MMP1 Matrix metallopeptidase 1
mRNA Messenger RNA
mTOR Mammalian target of rapamycin
P53 Tumor protein 53
P63 Tumor protein 63
PACE Paired basic amino acid cleaving enzyme
PBS Phosphate-buffered saline
PC Proprotein convertase
PCR Polymerase chain reaction
PDGF Platelet derived growth factor
Plk1 Polo-like kinase 1
qPCR Quantitative polymerase chain reaction
RB Retinoblastoma
RHO Rho GTPase
RNA Ribonucleic acid
RNAi Ribonucleic acid interference
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ROCK Rho associated kinases
S1P Sphingosine-1-phosphate
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
siRNA Small interfering RNA
SMC3 Structural maintenance of chromosome 3
TACE Tumor necrosis factor alpha converting enzyme
TBP Tata-box binding protein
TERT Telomerase reverse transcriptase
TGFβ Transforming growth factor beta
TNFα Tumor necrosis factor alpha
TFRC Transferin receptor
TUBB Tubulin Beta Class I
WNT Wingless-related integration site
YAP Yes associated protein 1
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