
Sound Proof of Proximity of Knowledge

Serge Vaudenay

EPFL
CH-1015 Lausanne, Switzerland

http://lasec.epfl.ch

Abstract. Public-key distance bounding schemes are needed to defeat
relay attacks in payment systems. So far, only five such schemes exist,
but fail to fully protect against malicious provers. In this paper, we solve
this problem. We provide a full formalism to define the proof of prox-
imity of knowledge (PoPoK). Protocols should succeed if and only if a
prover holding a secret is within the proximity of the verifier. Like proofs
of knowledge, these protocols must satisfy completeness, soundness (pro-
tection for the honest verifier), and security (protection for the honest
prover). We construct ProProx, the very first sound PoPoK.

1 Introduction

Relay attacks can be a serious threat against applications such as NFC-based
payment: for small payments, there is typically no action required on the cred-
itcard or smartphone (beyond approaching to the terminal) such as typing a
PIN code. So, a man-in-the-middle adversary could just relay communications
between the payment device of the victim and the terminal to make payments
on the behalf of the holder. The limit of the speed of communication was pro-
posed to solve this problem [4]. Brands and Chaum [11] introduced the notion
of distance-bounding protocol to prove that a prover is close enough to a verifier.
This relies on information being local and unable to travel faster than the speed
of light. So, an RFID reader can identify when participants are close enough
because the round-trip communication time in challenge/response rounds have
been small enough.

The literature considers several threat models.

– Relay attack : an adversary relay messages between a far-away honest prover
and a verifier, trying to make the verifier accept. This is extended by Mafia
fraud [15] where the adversary can also modify messages. This is further
extended by Man-in-the-Middle attack [6,8,9] where the attack follows a
learning phase where the prover could be close-by. In Impersonation fraud [2],
the prover is absent and the adversary tries to impersonate the prover to the
verifier. These threat models have in common that the prover is honest.

– Distance fraud [11]: a far-away malicious prover tries to pass the protocol.
– Terrorist fraud [15]: a far-away malicious prover, with the help of an ad-

versary, tries to make the verifier accept, but without giving the adversary

any advantage to later pass the protocol alone. This extends to Collusion
fraud [6,8,9] where the goal of the adversary is to run a man-in-the-middle
attack. Terrorist fraud is also related to the notion of soundness [25]: when-
ever the verifier accepts, there must be an extractor who can reconstruct
the secret of the prover based on the view of all close-by participants, pos-
sibly after several iterations. An hybrid model between distance fraud and
terrorist fraud is the one of Distance hijacking [14]: A far-away prover takes
advantage of some honest, active provers to make the verifier accept.

One of the first models to capture these notions was proposed by Avoine et al. [1].
However, it was not formal enough. Then, two parallel models were developed:
the BMV model [6,8,9] and the DFKO model [16]. There exist many symmetric
distance-bounding protocols but so far only the SKI protocol [5,6,7,9] (based on
the BMV model), the Fischlin-Onete (FO) protocol [18] (based on the DFKO
model), and DB1, DB2, and their extensions [10,24] (combining both SKI and
FO in the BMV model) provide an all-encompassing proven security.

Public-key distance bounding. In interactive proofs, the prover does not share
a secret key with the verifier. The verifier only knows a public key. However,
so far, only the following distance-bounding protocols are in the public key
model: the Brands-Chaum protocol [11], the Bussard-Bagga protocol [12], the
Hermans-Peeters-Onete (HPO) protocol [22]1, and PrivDB [26]. The Bussard-
Bagga protocol was broken by Bay et al. [3] and none of the others protect
against terrorist fraud. Additionally, the protocol VSSDB was presented at the
BalkanCryptSec’14 conference by Gambs et al. It is based on the random oracle
model, but the instanciability is questionable, as it requires a NIZK proof on
statements of form {x : c = f(x,H(x))} where H is a random oracle. As far as
we know, this does not exist. So, the problem of making a fully secure public-key
distance-bounding protocol is still open.

In Table 1 we update the list from [26] with all known public-key distance
bounding protocols and the proven status of their security with respect to Man-
in-the-Middle (MiM), Distance Fraud (DF), Distance Hijacking (DH), Collusion
Fraud (CF), Privacy, and Strong privacy.

Contribution. In clear, our contributions in this paper are as follows.

– We adapt the framework of [10] in the BMV model to provide a full formal-
ization of public-key distance-bounding. We specify our new primitive: the
proof of proximity of knowledge (PoPoK).

– We change the definition of soundness from [10] and [25] to make it closer
to the one of interactive proofs. So, our model is pretty natural and nicely
connects recent work on distance bounding (such as the BMV model [6,8,9])
and interactive proofs.

– We construct ProProx, the very first sound PoPoK. It is based on the
quadratic residuosity problem, using the Goldwasser-Micali encryption [20,21]

1 A variant of the HPO protocol offers anonymous authentication [19].

2

Table 1. Existing Public-Key Distance Bounding Protocols

protocol MiM DF DH CF Privacy Strong privacy

Brands-Chaum [11] secure secure insecure insecure insecure insecure
DBPK-Log [12] insecure insecure insecure insecure
HPO [22] secure secure insecure secure insecure
GOR [19] secure secure insecure insecure insecure insecure
privDB [26] secure secure secure insecure secure secure
ProProx (this paper) secure secure secure secure insecure insecure
eProProx [27] secure secure secure secure secure secure

as a homomorphic perfectly binding commitment Com(b; ρ) and the Fiat-
Shamir protocol [17]. We also use a function H which is assumed to be such
that x 7→ (Com(b1;H(x, 1)), . . . ,Com(bn;H(x, n))) is a one-way function,
where x = (b1, . . . , bn). (An easy instance is when H is a random oracle.)

– We provide a technique to prove security and soundness. Essentially, we
construct a straightline extractor based on the “Fundamental Lemma” and
prove that the protocol is zero-knowledge.

2 Model and Definitions

We refine the security definitions and other tools from the BMV model [6,8,9,25].
Constructions depend on some security parameter λ which is omitted for more
readability. A constant does not depend on λ, while parameters defining cryp-
tographic constructions do. Algorithms run in probabilistic polynomial-time
(PPT) in terms of λ. A real function f(λ) is negligible if for any d, we have
f(λ) = O(λ−d), as λ → +∞. We denote f(λ) = negl(λ). We also define

Tail(n, τ, ρ) =
n∑

i=τ

(n
i

)
ρi(1− ρ)n−i

2.1 Computational, Communication, and Adversarial Models

In our settings, participants are interactive Turing machines running PPT algo-
rithms. We follow the BMV model [6,8,9]: we assume that participants have a
location which is an element of a metric space S, with a distance function d. If
a participant π1 at a location loc1 executes a special command send(π2,m) at
time t to send a message m to a participant π2 at location loc2, the message m
is received by π2 at time t + d(loc1, loc2). Furthermore, any malicious partici-
pant π3 at some location loc3 could see this message m at time t+ d(loc1, loc3).
We assume no authentication: π2 does not know if the message really comes
from π1. There is however an exception preventing m from being delivered to
π2: if π2 is honest and some (malicious) participant π3 at some location loc3
has sent a special signal corrupt(π1, π2) at time t′, m is not delivered to π2 if

3

t+d(loc1, loc2) ≥ t′+d(loc3, loc2). This condition is a consequence of the informa-
tion traveling with a speed limit: whenever a malicious participant π3 corrupts a
π1 → π2 channel, π2 will only receive the messages from π1 until his corruption
signal emitted from π3 reaches π2.

Note that once the π1 → π2 channel is corrupted, π3 can still see the message
m sent by π1 and decide to send any m′ to π2, either depending on m if he waits
to receive m, or not. The crux is that either m′ is independent of m, or it is
delivered at a later time, when d(loc1, loc2) < d(loc1, loc3) + d(loc3, loc2).

The communication model is only used to prove the “Fundamental Lemma”.
We take here a version of it inspired from [24].

Lemma 1 (Fundamental Lemma). Assume a multiparty protocol execution
with a distinguished participant V, the set Far of all participants within a distance
to V larger than B, and the set Close of all other participants. At some time t
in the execution, V broadcasts a random challenge c based on some fresh coins
and waits for a response r for up to 2B time. (If no answer is received, we set
r = ⊥.) We let expc be the experiment in which the challenge is equal to c. For
each instance U , we denote by ViewU his initial view. For U ̸= V, this is common
to all expc. We further denote by IncomingcU (E) the list of all incoming messages
seen by U until time t+2B− d(V, U) in expc and coming from an instance in a
set E. Finally, OutgoingV denotes all messages sent by V before time t. This is
common to all expc. There exists an algorithm Algo such that for all c and c0,
we have in expc that

r = Algo
(
c, (ViewU)U∈Close , (Incomingc0U (Far))U∈Close∪{V} ,OutgoingV

)
If Close is empty, we can further write r = Algo (Incomingc0V (Far)).

To make the lemma short: r cannot depend on any message which was sent from
a far away U after receiving c. So, if we simulate expc0 in a straightline way, we
can compute for each c what would have been r if c was sent instead of c0.

We provide below a detailed proof of this lemma in the BMV model.

Proof. We first show that there exists an algorithm such that for all c,

r = Algo
(
c, (ViewU)U∈Close , (IncomingcU (Far))U∈Close∪{V} ,OutgoingV

)
Indeed, we show below that for each U ∈ Close we can compute the view of U at
time t+2B−d(V, U). Then, we can see if U sends a message r to V. We can also
see in IncomingcV(Far) if there is a message r coming from far away. We can then
compute the first of these messages which arrives to V. We note that if r comes
from some U ∈ Close, then it must have been sent no later than t+2B−d(V, U).
So, it must be among the computed messages.

Then, we show that for all U ∈ Close ∪ {V}, IncomingcU (Far) is independent
from c, so we can replace c by c0. Indeed, every message w in IncomingcU (Far) is
seen by some U ∈ Close∪{V} at time t′ ≤ t+2B−d(V, U) and comes from some
U ′ ∈ Far. So, it must have been sent at time t′ − d(U,U ′) ≤ t+ 2B − d(V, U)−

4

d(U,U ′) ≤ t + 2B − d(V, U ′) ≤ t + B. We define exp′ like in expc, except that
each participant U ′′ is stopped at time t+B − d(U ′, U ′′). In exp′, V is stopped
before time t, so c is not used. We show by induction that for each U ′′, the view
of U ′′ at the stopping time of U ′′ is the same in expc and exp′. We deduce that
w is independent from c0.

What remains to be shown is that for each U ∈ Close we can compute the
view of U at time t + 2B − d(V, U). This is shown by induction on the time.
Indeed, this view is composed of the initial view ViewU of U and of the incoming
messages. These messages either come from V, so are either c or something in
OutgoingV , or come from U ′ ∈ Close, so can have been computed in the view of
U ′, by induction, or come from U ′ ∈ Far, so is in IncomingU . ⊓⊔

Participants can move, but not faster than communication. For simplicity, we
assume that far-away participants (as defined in Def. 3) remain far away during
the entire execution. Honest participants move as instructed by the adversary.

We sometimes consider that when an honest participant receives a message
from another honest participant, it may be subject to noise. As for malicious par-
ticipants, we could assume that they use a better equipment which eliminates
noise. Also: whenever the honest-to-honest communication is not time-sensitive,
we may also assume that they use error correction means so that the communi-
cation is noiseless.

2.2 PoPoK: Proofs of Proximity of Knowledge

Definition 2 (Proof of proximity of knowledge). A proof of proximity of
knowledge (PoPoK) is a tuple (K,Kgen, P, V,B), consisting of: a key space K
depending on a security parameter λ, with elements of polynomially-bounded size
in terms of λ; a PPT algorithm Kgen; a two-party PPT protocol (P (sk), V (pk)),
where P (sk) is the proving algorithm and V (pk) is the verifying algorithm; a
distance bound B. The algorithm Kgen maps the secret sk ∈ K to a public key
pk. pk is given as input to all participants. At the end of the protocol, V (pk)
sends a final message OutV . He accepts (OutV = 1) or rejects (OutV = 0).

The protocol must be such that when running P (sk) and V (pk) at locations
within a distance up to B, in a noiseless environment, the verifier always accepts.
This property is called completeness.

If the protocol specifies a list of time-critical challenge/response exchanges,
we say that it is complete with noise probability pnoise if, in an environment in
which all challenge/response rounds are independently corrupted with probability
pnoise and other exchanges are not subject to noise, the probability that the verifier
accepts is 1− negl(λ).

In practice, if we want to have B = 10m, assuming that an adversary can do
computation in negligible time, the timer for receiving a response r to a challenge
c in Lemma 1 should be limited to 67ns. So, an honest prover at a zero distance
must respond within less than 67ns. This clearly excludes any cryptographic
computation. To be realistic, a PoPoK can only consider boolean (or very small)
challenges and responses when it comes to use Lemma 1.

5

We adopt the multiparty setting from [10] and only adapt it to accommodate
public-key distance bounding. We consider a setting with participants which are
called either provers, verifiers, or other actors. In public-key settings, we assume
only one verifier V (other verifiers can be taken as other actors). Similarly, we
often assume that provers correspond to the same identity so share the same
secret sk (provers with other secrets are considered as other actors). Other actors
are malicious by default. The difference between malicious provers and malicious
actors is in the input: they receive sk or only pk.

We assume that participants run their algorithm only once. Multiple exe-
cutions are modeled by multiple instances which can be at different location or
time. We only assume that instances of honest provers never run concurrently. A
malicious prover may however clone himself at different locations and run many
algorithms concurrently.

Definition 3 (Experiment). Given a PoPoK (K,Kgen, P, V,B), we define an
experiment exp by several participants who are a verifier V, provers, and other
actors, and each instance of the participants. Instances who are within a distance
of at most B to V are said close-by. Instances who are within a distance larger
than B to V are called far-away. We say that the prover is always far-away if
all its instances are far away. We adopt a static adversarial model: either the
prover is honest, in which case all its instances run the P (sk) algorithm, or the
prover is malicious, in which case its instances can run any PPT algorithm.

If the prover is honest, its instances are assumed to be non-concurrent: at
each time, it must be defined which is the current instance. An instance of a
honest participant can only be active if it is the current one and if it has received
a special Activate message from a malicious participant. The first current in-
stance must be defined in the experiment. Instances store an address of the next
current instance. This address can be updated by a special Destination message
from a malicious participant. It can also receive a special Halt message mak-
ing the algorithm terminate, and a special Move message. After receiving this
message and as soon as the algorithm terminated, the instance sends a special
Moving message to the instance specified in his destination address. Only current
instances can send this message to an instance of the same participant.2

At the beginning of the experiment, for malicious provers, (sk, pk) is set arbi-
trarily. If the provers are honest, sk ∈ K is randomly selected and pk = Kgen(sk)
is computed. Then, sk is given as input to all prover instances, while pk is given
as input to all participants. V runs V (pk). All participants are then activated and
run concurrently. (If the prover is honest, only one is activated.) The experiment
terminates when V produces its final output OutV .

We formalize security following [10].

Definition 4 (Honest Prover Security of PoPoK). We say that a PoPoK
(K,Kgen, P, V,B) is HP-secure if Pr[OutV = 1] = negl(λ) for any experiment
with a single prover, where the prover is honest and always far-away from V.
2 All these special messages are defined in order to avoid participants moving faster
than messages and to allow arbitrary movements influenced by the adversary.

6

This definition clearly captures relay attacks, Mafia fraud [15], man-in-the-
middle attacks in general, and even models (like in [6,8,9]) which distinguish
a learning phase (with provers which could be close-by) and an attack phase
(with far-away provers).

We now formalize the protection for the honest verifier. Intuitively, we want
that if the proof is accepted, it must be because the information about the secret
sk is in the close-by neighborhood.

Definition 5 (Soundness of PoPoK). Given a function p(λ), we say that
a PoPoK (K,Kgen, P, V,B) is p(λ)-sound if for any experiment exp in which
Pr[OutV = 1] > p(λ), there exists an algorithm E called extractor, with the
following property. exp defines an oracle which simulates an execution of exp
and returns the views of all participants which are close-by (excluding V) and
the transcript of the protocol seen by V. E can invoke the oracle many times.
Then, E finally outputs sk′ such that Kgen(sk′) = pk, using an expected time

complexity of Poly(λ)
Pr[OutV =1]−p(λ) .

This is trivial for experiments with a close-by prover as sk is in the view of
the prover. For experiments with no close-by participant at all, the transcript
as seen by V would leak. Otherwise, close-by actors would extract the prover’s
credential. So, a far away malicious prover is bound to leak.

Compared to the soundness of interactive proofs, our notion uses a straight-
line extractor: we extract the secret from close-by participants without rewind-
ing them and after several independent executions. This makes the treatment
of multiparty settings much easier. As we will see, our extractor essentially uses
Lemma 1. Interestingly, the extractor is also used to prove HP-security: if the
protocol is zero-knowledge, the oracle extractor can be transformed into a stand-
alone extractor which contradicts the one-wayness of Kgen.

Clearly, our definition nicely connects the infamous terrorist-fraud resistance
to the soundness of interactive proofs. To compare with the literature, we could
see that terrorist frauds in our model make the secret leak instead of only making
man-in-the-middle attack feasible as in the notion of collusion fraud proposed in
[6,8,9], and on which the SKI protocol is based, or only making impersonation
attack feasible as in [10]. Our soundness is thus stronger.

Our notion and the one of [10] are close to soundness as defined in [25], except
that we no longer require 1/Pr[OutV = 1] to be polynomial. Also, compared to
[10], we no longer need the condition on the success of the experiment to extract
and we call an oracle O many times instead of using m views.

Just like other notions of TF-resistance, soundness is incomparable with
SimTF-security [16] or GameTF-security [18] in the DFKO model.

Definition 6 (Distance-fraud security). A PoPoK (K,Kgen, P, V,B) resists
to distance fraud if for any experiment exp where all participants are far away
from V, we have that Pr[OutV = 1] = negl(λ).

We adapt the definition of distance-hijacking security from [26].

7

Definition 7 (Resistance to Distance Hijacking [26]). We say that the
PoPoK (K,Kgen, P, V,B) is DH-secure if for all PPT algorithms K and A, the
following game makes V accept with negligible probability:

1: pick sk′ ∈ K, pk′ = Kgen(sk), K(pk′) → (sk, pk); if pk = pk′, the game aborts
2: let A run A(sk, pk, pk′), let V runs V (pk), let P ′, P ′1, P

′
2, . . . run P (sk′)

3: let A interact with P ′, P ′1, P
′
2 . . . and V concurrently until the initialization

phase ends for V
4: let P ′ and V continue interacting with each other until the challenge phase

ends for V; A receives the exchanged messages but remains passive
5: let A continue interacting with P ′, P ′1, P

′
2 . . . and V concurrently during the

verification phase

3 ProProx: a PoPoK Scheme

3.1 Building Blocks

Perfectly binding bit commitment. Depending on the security parameter λ, we
use a (multiplicative) group structure with two Abelian groups L and G and
an element θ such that G is generated by L and θ, θ ̸∈ L, and L is the set of
all squares of G. We further assume that it is easy to do group operations and
comparisons in G and to sample elements in G uniformly.3 Finally, we assume
it is computationally hard to distinguish elements from L and from G.

We define Com(b; ρ) = θbρ2 for a bit b and a random ρ ∈ G, like in the
Goldwasser-Micali cryptosystem [20,21]. So, Com is computationally hiding as
defined by Def. 8. We will not require any secret key to extract b, although there
exists a function Com−1 such that Com−1(Com(b; ρ)) = b for all b ∈ {0, 1} and
ρ ∈ G. We will rather use the homomorphic properties of the commitment and
prove the correct commitment in a zero-knowledge way.

Definition 8 (Bit commitment). A bit commitment consists of a PPT al-
gorithm Com taking as input λ, a bit b ∈ Z2, and some random ρ ∈ G. It
computes Com(b; ρ) ∈ G. We define the following properties: 1. homomorphic:
for all b, b′ ∈ Z2 and ρ, ρ′ ∈ G, Com(b; ρ)Com(b′; ρ′) = Com(b + b′; ρρ′); 2. per-
fectly binding: for all b, b′ ∈ Z2 and ρ, ρ′ ∈ G, Com(b; ρ) = Com(b′; ρ′) implies
b = b′; 3. computationally hiding: for ρ random, the distributions of Com(0; ρ)
and Com(1; ρ) are computationally indistinguishable.

For instance, we can take a Blum integer N , i.e., N = PQ for two distinct
primes P and Q which are congruent to 3 modulo 4. We set L to the set of
quadratic residues modulo N and θ = −1: a residue modulo N such that

(
θ
P

)
=(

θ
Q

)
= −1. The algorithm Com is given N and θ. We sample r ∈ G by r =

θbρ2 mod N , for b ∈ Z2 and ρ ∈ Z∗N . Distinguishing G from L is the (supposedly
hard) quadratic residuosity problem. In this case, N is assumed to come from a
Common Reference String (CRS).

3 So, we can sample an element of L uniformly by taking r2 with r uniform in G.

8

A zero-knowledge proof for z being a square. We use the Fiat-Shamir proto-
col [17]. Namely, we show that z is a commitment to zero with a witness ζ (i.e.,
z = ζ2) with the protocol from Fig. 1, based on a perfectly hiding trapdoor
commitment. Concretely, we use Def. 9 and Def. 10 with the NP language L of
all squares. If z = ζ2, we say that z is a member of L with witness ζ.

Verifier Prover
public: z z = ζ2 secret: ζ

pk←−−−−−−−−−−−−− generate sk, pk = Gen(sk)

pick e ∈ Z2, pick r
Commitpk(e;r)−−−−−−−−−−−−−→

h←−−−−−−−−−−−−− pick g ∈ G, h = g2

e,r−−−−−−−−−−−−−→ open commitment

check ze = ℓ2h−1, pk = Gen(sk)
ℓ,sk←−−−−−−−−−−−−− ℓ = gζe

OutV−−−−−−−−−−−−−→

Fig. 1. ZKP(z : ζ): a Sound and Zero-Knowledge Proof for z Being a Square.

Definition 9 (Sound proof of membership). An interactive proof for a lan-
guage L is a pair (P (ζ), V (z)) of PPT algorithms such that 1. completeness: for
any z ∈ L with witness ζ, Pr [OutV = 1 : P (ζ) ↔ V (z)] = 1; 2. κ-soundness: for
any z ̸∈ L and any algorithm P ∗ then Pr [OutV = 1 : P ∗ ↔ V (z)] ≤ κ.

Definition 10 (Zero-knowledge protocol). A protocol (P (ζ), V (z)) for a
language L is computationally zero-knowledge for P (ζ) if for any PPT interac-
tive machine V ∗(z, aux) there exists a PPT algorithm S(z, aux) and a negligible
ε such that for any PPT distinguisher, any (z : ζ) ∈ L, and any aux, the advan-
tage for distinguishing the final view of V ∗(z, aux) in P (ζ) ↔ V ∗(z, aux) and the
output of S(z, aux) is bounded by ε.

The protocol of Fig. 1 is 1
2 -sound and zero-knowledge. It must be run k times

in parallel to achieve a soundness level κ = 2−k. We denote it by ZKPκ(z : ζ).
By using parallel composition, we extend the protocol to prove that z1, . . . , zk

are some commitments to zero with witness ζ1, . . . , ζk respectively, and denote
it by ZKPκ(z1, . . . , zk : ζ1, . . . , ζk). I.e., it succeeds with probability up to κ if
there exists i such that zi ̸∈ L.

(Perfectly binding) deterministic commitment. Given a hash function H making
coins for Com, we define a deterministic commitment by

ComH(sk) = (Com(sk1;H(sk, 1)), . . . ,Com(sks;H(sk, s)))

for sk ∈ Zs
2. We assume that ComH is a one-way function (as defined by Def. 11).

We assume the existence of Com and H such that ComH is one-way as indepen-
dent primitives. This is the case in particular when H is a random oracle, but H

9

is not necessarily assumed to be a random oracle. Constructions without using
a random oracle are left to future work.

Definition 11 (One-way function). We consider a function Com taking as
input λ and a message sk ∈ Zs

2 which is computable in deterministic polynomial
time. The function is one-way if for any algorithm receiving Com(sk), for sk ∈ Zs

2

random, the probability that it outputs sk is negligible.

3.2 The ProProx Protocol

We define the ProProx protocol, as depicted on Fig. 2 (there, double arrows
indicate messages which can be subject to noise). We consider s (the size of
the secret), n (the number of rounds per iteration), τ (the minimal number of
correct rounds per iteration for acceptance) as functions in terms of the security
parameter λ. We assume s and n are asymptotically linear. We use a matrix
b ∈ Zsn

2 . The use of b will only appear in Theorem 18 to treat distance fraud.
There, we will consider two variants.

Variant I: b is constant and the columns must have a Hamming weight of
⌊
n
2

⌋
to make sure that bi,j + xj ̸= 0 in half of the rounds. This requires n ≥ 2.

Variant II: b is randomly selected by V and sent to P during the initialization
phase. This requires n ≥ 1.

Verifier Prover
public: pk pk = ComH(sk) secret: sk

initialization phase
for i = 1 to n and j = 1 to s

pick ai,j ∈ Z2, ρi,j
Ai,j←−−−−−−−−−−−−−−−−−−− Ai,j = Com(ai,j ; ρi,j)

challenge phase
for i = 1 to n and j = 1 to s

pick ci,j ∈ Z2

start timeri,j
ci,j

====================⇒ receive c′i,j

receive ri,j , stop timeri,j
r′i,j⇐==================== r′i,j = ai,j + c′i,jbi,j + c′i,jskj

verification phase

check #Ij = τ , timeri,j ≤ 2B
agree on I1,...,Is←−−−−−−−−−−−−−−−−−−→

for i ∈ Ij , j = 1, . . . , s

zi,j = Ai,j

(
θbi,j pkj

)ci,j
θ−ri,j

ZKPκ(zi,j :ζi,j ;i∈Ij ,j=1,...,s)
←−−−−−−−−−−−−−−−−−−−−−→ ζi,j = ρi,jH(sk, j)

c′i,j

OutV−−−−−−−−−−−−−−−−−−−→

Fig. 2. ProProx: a Sound and Secure PoPoK.

The prover holds a secret sk ∈ Zs
2 and the public key is pk = ComH(sk). We

iterate s times and in parallel a protocol which we call an iteration and which

10

corresponds to an index j. First, the prover selects n bits a1,j , . . . , an,j ∈ Z2 and
commits to them using some fresh coins ρ1,j , . . . , ρn,j , respectively. So, Ai,j =
Com(ai,j ; ρi,j), i = 1, . . . , n. The Ai,j ’s are sent to the verifier.

In the challenge phase, we have n time-critical rounds (in each iteration).
These rounds may be subject to noise. The verifier picks a challenge ci,j ∈ Z2

at random and sends it to the prover. The prover receives c′i,j (which may be
different, due to noise). He computes his response r′i,j = ai,j + c′i,jbi,j + c′i,jskj
and sends it back to the verifier at once. The verifier receives ri,j . The verifier
measures the elapsed time timeri,j taken to receive ri,j after ci,j was sent. Below,
pnoise is the probability that some noise corrupts a challenge/response round. We
assume that the noise corrupts each round independently.

Thus, the c′i,j 7→ r′i,j function maps one bit to one bit.
In the verification phase, the prover and the verifier determine a set Ij of τ

round indices which they believe are correct. The way this agreement is done is
not important (as long as the prover does not leak). Then, the verifier checks
whether Ij has cardinality τ and the corresponding timers are small enough. If
this fails, the verifier rejects. As a concrete instance for Ij agreement, we suggest
that the prover sends (through the lazy noiseless channel) the c′i,j and r′i,j to the
verifier. The verifier then takes the first τ rounds for which ci,j = c′i,j , ri,j = r′i,j ,
and timeri,j ≤ 2B to define Ij and sends Ij to the prover. If there are not enough
correct rounds, the protocol aborts.

Next, the prover and the verifier run the interactive proof ZKPκ to show that
the responses ri,j ’s are consistent with the Ai,j ’s and pkj ’s. Namely, for all j and
i ∈ Ij , they compute

zi,j = Ai,j

(
θbi,jpkj

)ci,j
θ−ri,j , ζi,j = ρi,jH(sk, j)c

′
i,j

Since Ai,j = θai,jρ2i,j and pkj = θskjH(sk, j)2, it is easy to verify that ri,j =

ai,j + ci,jbi,j + ci,jskj is equivalent to the existence of ζi,j such that zi,j = ζ2i,j .
That is, zi,j ∈ L. If this fails, the protocol aborts. When the protocol aborts, the
verifier sends OutV = 0. Otherwise, he sends OutV = 1.

3.3 Analysis

Theorem 12 (Completeness). Let ε > 0 be a constant. We assume either
that n = Ω(λ) and τ

n < 1 − pnoise − ε or that pnoise = 0. We assume that Com
is a homomorphic bit commitment [Def. 8] and that ZKPκ is complete [Def. 9].
The ProProx protocol is a PoPoK which fails with probability bounded by

pComp = 1− Tail (n, τ, 1− pnoise)
s

(1)

when the challenge/response rounds are subject to a noise level of pnoise [Def. 2].

Proof. Completeness for pnoise = 0 is trivial. Proving completeness when τ
n <

1 − pnoise − ε is straightforward: in an iteration, we have less than τ noiseless
rounds with probability 1 − Tail(n, τ, 1 − pnoise) < e−2ε

2n due to the Chernoff-
Hoeffding bound (Lemma 13), which is negligible since n = Ω(λ). Then, the
completeness failure is bounded by pComp which is also negligible. ⊓⊔

11

We recall here some useful bound on the tail of the binomial distribution.

Lemma 13 (Chernoff-Hoeffding bound [13,23]). For any ε, n, τ, q we have
τ
n < q− ε =⇒ Tail(n, τ, q) > 1− e−2ε

2n and τ
n > q+ ε =⇒ Tail(n, τ, q) < e−2ε

2n.

We construct an extractor giving an output which is close to the secret.

Lemma 14 (Straightline extractor). Under the assumption that Com is a
perfectly binding homomorphic bit commitment, and that ZKPκ is a κ-sound
proof of membership, for any experiment, there is a PPT algorithm Extract which
takes the views of all close-by participants and the transcript of the protocol seen
by V and which aborts if V rejects, otherwise produces a vector sk′ ∈ {0, 1}s. For
any w, the probability that V accepts and the Hamming distance between sk and
sk′ is at least w + 1 is lower than

pSound = Tail

(⌈n
2

⌉
, τ −

⌊n
2

⌋
,
1

2

)w+1

+ κ (2)

We will often define pB = Tail(⌈n
2 ⌉, τ − ⌊n

2 ⌋,
1
2). We note that if we assume that

s = Ω(λ) and τ ≥ n− (12 −2ε)⌈n
2 ⌉ with a constant ε, we have

τ−n+⌈n2 ⌉
⌈n2 ⌉

≥ 1
2 +2ε.

So, pB ≤ e−8ε
2n due to the Chernoff-Hoeffding bound (Lemmma 13), which is

negligible. This case will be use subsequently.

Proof. We assume that we have an experiment making V accept with probability
p. We define pB = Tail(⌈n

2 ⌉, τ − ⌊n
2 ⌋,

1
2).

We take the viewpoint of V. Since we have a perfectly binding commitment,
the value pkj uniquely defines skj = Com−1(pkj), and the value of Ai,j uniquely

defines ai,j = Com−1(Ai,j). (We stress that we need not compute these values,
we just mathematically define them given the view of the verifier.) The purpose
of the proof is to show that we can extract a good approximation of sk (i.e., at
a distance lower than w), except with some negligible probability pSound.

Let p = Pr[OutV = 1]. Let S be the event that for all j and for at least τ
values of i (for each j), we have ri,j = ai,j + ci,j(bi,j + skj) (where the values are
those seen by V). In the case where the statement proven by ZKPκ is true, for
all j and i ∈ Ij , zi,j is clearly a commitment to zero. Due to the homomorphic
property of Com, we know that zi,j is the commitment to ai,j+ci,j(bi,j+skj)−ri,j .
So, we deduce that S occurs. By using the κ-soundness of ZKPκ (Def. 9), we
deduce Pr[OutV = 1|¬S] ≤ κ. So, Pr[¬S,OutV = 1] ≤ κ.

Since the ci,j challenges are sent in sequence, in what follows we denote by
cq = ciq,jq the qth challenge sent. We further denote by ρ all random coins of the
experiment except those defining the challenges. So, we compute probabilities
over the independent distributions of ρ and all ci,j .

Thanks to Lemma 1, we can write ri,j = Algoi,j (ci,j ,Datai,j) with Datai,j =
(Views, Incomingi,j ,Outgoingi,j), where Views lists the initial view of close-by
participants, Incomingi,j gives the list of incoming messages from far away that
they can see until the sender can see ci,j , and Outgoingi,j includes the list
of outgoing messages from V before ci,j . Note that Datai,j can be computed

12

from the final views of the close-by participants but depends on the selected
challenges before ci,j . So, thanks to Lemma 1, we can compute in this case
both respi,j(0) = Algoi,j(0,Datai,j) and respi,j(1) = Algoi,j(1,Datai,j) with-
out rewinding (i.e., from the final view only). Since ri,j is supposed to be
ai,j + ci,j(bi,j + skj), we can compute the guess ξi,j = respi,j(1)− respi,j(0)− bi,j
for skj . (Note that if the answer ri,j comes to V from far-away, we can still apply
Lemma 1 and deduce that the answer is the same for ci,j = 0 and ci,j = 1, so
ξi,j = −bi,j .) In all cases, we can always compute the vectors ξj = (ξ1,j , . . . , ξn,j)
of guesses for skj . The extractor is taking all Algoi,j(.,Datai,j) to compute ξj
then sk′j = majority(ξj) for all j.

Given c, if ai,j + c(bi,j + skj) = respi,j(c), we say that the answer to ci,j = c
is correct relative to the previous challenges (we recall that Datai,j depends on
all challenges which are sent before ci,j). Based on ρ, we construct a binary tree
T of depth ns in which a node at depth q corresponds to the selection of cq. We
denote by G(c|c1, . . . , cq−1) the predicate that c is correct relative to c1, . . . , cq−1.
Let S

c1,...,cq
T be an s-tuple of integers such that (S

c1,...,cq
T)j = #{q′ ≤ q; jq′ =

j,G(cq′ |c1, . . . , cq′−1)}. This counts how many good answers we had until step q
for the c.,j challenges which are based on skj . We let Sρ denote the event that

(SC1,...,Cns

T)j ≥ τ for all j where C1, . . . , Cns are the random challenges from the
experiment. V only accepts when Sρ holds. Let R

c1,...,cq
T be an s-tuple of integers

such that (R
c1,...,cq
T)j = #{q′ ≤ q; jq′ = j,G(0|c1, . . . , cq′−1), G(1|c1, . . . , cq′−1)}.

This counts how many times both values lead to good answers for the c.,j chal-
lenges. If G(0|c1, . . . , cq′−1) and G(1|c1, . . . , cq′−1) hold, then ξiq,jq = skj . So,
if (R

c1,...,cns−1

T)j ≥ ⌊n
2 ⌋ + 1, we have sk′j = skj . We let Wρ be the number of

j such that (RC1,...,Cns

T)j ≤ ⌊n
2 ⌋. We show below that for all ρ, Pr[Sρ,Wρ >

w] ≤ pSound − κ over the distribution of the ci,j . By averaging over ρ, we have
Pr[S,W > w] ≤ pSound − κ. Thus, by splitting with the S and ¬S events,

Pr[W > w,OutV = 1] ≤ Pr[¬S,OutV = 1] + Pr[S,W > w] ≤ pSound

So, having that V accepts and the extractor gives at least w + 1 errors occurs
with probability bounded by pSound, which is what we wanted to prove.

To show that Pr[Sρ,Wρ > w] ≤ pSound−κ in the fixed tree T , we first modify
the tree in a way which only make this probability increase. Namely, we add
more G(cq|c1, . . . , cq−1) so that for all j, (Rc1,...,cns

T)j is either n or
⌊
n
2

⌋
. Then,

we show a more general property. We consider a balanced binary tree of depth
q with some indexing q ↔ (iq, jq). We denote qj the number of k ∈ {1, . . . , q}
such that jk = j. So, q = q1 + · · ·+ qs. We let WT (J,w) be the event that for at
least w + 1 values of j ∈ J we have (R

c1,...,cq
T)j ≤ qj −

⌈
n
2

⌉
, for other values of j

we have (R
c1,...,cq
T)j = qj , and for all j ∈ J we have (S

C1,...,Cq

T)j ≥ τ − (n− qj).

13

We show that for all J , τj ’s, and µj ’s, we have

Pr

WT (J,w),
∧
j ̸∈J

(S
C1,...,Cq

T)j ≥ τj , (R
C1,...,Cq

T)j ≤ µj


≤ pw+1

B ×
∏
j ̸∈J

tail

(
qj − µj , τj − µj ,

1

2

)
(3)

Then, we apply it with J = {1, . . . , s}. We obtain Pr[Sρ,Wρ > w] ≤ pw+1
B =

pSound − κ.
The (3) property is proven by induction on q. It is trivial for q = 0. Assuming

it holds for q − 1, we prove it for q by looking at the two subtrees T0 and T1 of
T . We have

(S
c1,...,cq
T)j=(S

c2,...,cq
Tc1

)j (R
c1,...,cq
T)j=(R

c2,...,cq
Tc1

)j if j ̸= j1
(S

c1,...,cq
T)j=(S

c2,...,cq
Tc1

)j + 1G(c1) (R
c1,...,cq
T)j=(R

c2,...,cq
Tc1

)j + 1G(0),G(1) if j = j1

If j1 ̸∈ J or G(0)∧G(1) holds, WT (J,w) is equivalent to WTC1
(J ′, w′) for J ′ = J

and w′ = w. If now j1 ∈ J and ¬G(0)∨¬G(1) holds, we define τj1 = τ−(n−qj1),
µj1 = qj1 −

⌈
n
2

⌉
, J ′ = J − {j1}, and w′ = w − 1. Then, WT (J,w) is equivalent

to, (S
C1,...,Cq

T)j1 ≥ τj1 , (R
c1,...,cq
T)j1 = µj1 , and WTC1

(J ′, w′). So,

Pr

WT (J,w),
∧
j ̸∈J

(S
C1,...,Cq

T)j ≥ τj , (R
C1,...,Cq

T)j ≤ µj


=

1∑
c1=0

Pr

WT (J,w),
∧
j ̸∈J

(S
c1,C2,...,Cq

T)j ≥ τj , (R
c1,C2,...,Cq

T)j ≤ µj , C1 = c1


≤

1∑
c1=0

Pr

WTc1
(J ′, w′),

∧
j ̸∈J ′

(S
c1,C2,...,Cq

T)j ≥ τj , (R
c1,C2,...,Cq

T)j ≤ µj , C1 = c1


=

1∑
c1=0

1

2
Pr
[
WTc1

(J′,w′),
∧
j ̸∈J′ (S

C2,...,Cq
Tc1

)j≥τj−1j=j1,G(c1),(R
C2,...,Cq
Tc1

)j≤µj−1j=j1,G(0),G(1)

]

≤
1∑

c1=0

1

2
pw

′+1
B

∏
j ̸∈J ′

tail
(
qj−1j=j1

−µj+1j=j1,G(0),G(1),τj−1j=j1,G(c1)−µj+1j=j1,G(0),G(1),
1
2

)
When j1 ∈ J ′, this proves (3). For j1 ̸∈ J ′, we obtain

pw
′+1

B

(
1∑

c1=0

1

2
tail

(
qj1 − 1− µj1 + 1G(0),G(1), τj1 − 1G(c1) − µj1 + 1G(0),G(1),

1

2

))

×
∏
j ̸∈J′
j ̸=j1

tail

(
qj − µj , τj − µj ,

1

2

)

14

If both G(0) and G(1) are true the sum in parentheses is clearly equal to tail(qj1−
µj1 , τj1 − µj1 ,

1
2). If either G(0) or G(1) is true but not both, the sum is

1

2
tail

(
qj1 − 1− µj1 , τj1 − µj1 ,

1

2

)
+

1

2
tail

(
qj1 − 1− µj1 , τj1 − 1− µj1 ,

1

2

)
which is also equal to tail(qj1 −µj1 , τj1 −µj1 ,

1
2). Finally, if neither G(0) nor G(1)

hold, the sum is tail(qj1 − 1 − µj1 , τj1 − µj1 ,
1
2) which is bounded by tail(qj1 −

µj1 , τj1 − µj1 ,
1
2). So, in all cases this proves (3). ⊓⊔

Theorem 15 (Soundness). We assume that Com is a perfectly binding ho-
momorphic bit commitment, and that ZKPκ is a κ-sound proof of membership.
ProProx is a pSound-sound proof of proximity, where pSound is defined by (2).

More precisely, for all constant w, if the experiment succeeds with probability
p > pSound there exists an extractor following Def. 5 with complexity

Texp.O
(

1

p− pSound

)
+ TComH

.O (Bs
w)

where Texp is the complexity of the experiment, TComH
is the complexity to com-

pute ComH , and Bs
w =

∑w
i=0

(
s
i

)
. The second term is actually the complexity of

an exhaustive search with Bs
w iterations on sk until pk = ComH(sk).

To use (2) with concrete parameters, w is chosen as the maximal value such that
an adversary could afford an exhaustive search of Bs

w trials.

Proof. We can use the extractor of Lemma 14 on views taken from an experiment
run. If V rejects, the extraction produces nothing. We iterate this extraction
O(1p) times until one experiment succeeds. So, we obtain for sure a guess sk′

for sk (with possible errors). The probability that at least w errors occurs in
the extracted pairs is bounded by pSound

p . When there are less errors, we can

correct them by exhaustive search in time TComH .O(Bs
w) (which is polynomial).

If this fails (i.e., if it gives no preimage of pk by ComH) as some extracted pairs
may have too many errors, we can just iterate. With a number of iterations of

O
((

1− pSound

p

)−1)
, we finally extract sk. The overall expected complexity is

thus Poly(λ)/(p−pSound). More precisely, it is Texp.O
(

1
p−pSound

)
+TComH .O (Bs

w).

⊓⊔
Our technique to prove HP-security relies on Lemma 14 and zero-knowledge.

Lemma 16 (Zero-knowledge). Under the assumption that Com is a com-
putationally hiding bit commitment and that ZKPκ is a computationally zero-
knowledge proof of membership, The ProProx protocol is zero-knowledge follow-
ing Def. 10. More precisely, for any malicious verifier, given a simulator for
ZKPκ of complexity TSim producing views which are pZKP-indistinguishable to the
real ones, we construct a simulator for ProProx of complexity TSim + ns.TCom

and producing views which are pZK-indistinguishable to the real ones, where

pZK = pZKP + ns.pCom (4)

15

where pCom is the bound on the hiding property of Com.

Proof. We have to prove that, given two participants P (sk) and V ∗(pk, aux),
there exists a simulator S(pk, aux) such that V ∗(pk, aux) ↔ P (sk) produces a
view of V ∗(pk, aux) which is computationally indistinguishable from the output
of S(pk, aux). We actually construct a sequence of simulations. We define an
interactive V ′(pk, aux) to replace V ∗(pk, aux), and some interactive P ′(sk) and
P ′′ to replace P (sk).

We denote z̄ the vector of all zi,j for j = 1, . . . , s and i ∈ Ij , and ζ̄ the vector
of all ζi,j . We split V ∗(pk, aux) into two protocols V1(pk, aux) and V2(z̄, aux

′),
where V1 mimics V ∗ until the ZKPκ(z̄ : ζ̄) protocol must start. V2 executes
only ZKPκ(z̄ : ζ̄) where aux′ is the final view of V1(pk, aux). The final view of
V2(z̄, aux

′) is of form v = (z̄, aux′, t). We write g(v) = (aux′, t), which is the final
view of V ∗(pk, aux). Similarly, we split P (sk) into P1(sk) and P2(sk, u) where
(sk, u) is the view of P1(sk). Running either V ∗(pk, aux) ↔ P (sk) and taking the
final view of V ∗, or V1(pk, aux) ↔ P1(sk), V2(z̄, aux

′) ↔ P2(sk, u), then taking
g(v) is the same. This simulation is illustrated on the left-hand side of Fig. 3.

V ∗(pk, aux)

V1(pk, aux)

?aux
′

V2(z̄, aux
′)

?
(aux′, t)

-�

-�

P (sk)

P1(sk)

?
P2(sk, u)

V ′(pk, aux)

V1(pk, aux)

?aux
′

S′(z̄, aux′)

?
g(v′)

-� P1(sk)

?6ai,j Ai,j

Com(ai,j ; ρi,j)

S(pk, aux)

V1(pk, aux)

?aux
′

S′(z̄, aux′)

?
g(v′)

-� P ′′

Fig. 3. Applying a ZK Reduction.

First, V ′(pk, aux) runs a simulation of V1(pk, aux) interacting with P1(sk).
Then, V ′(pk, aux) runs the simulator S′(z̄, aux′) of the ZKPκ(z̄ : ζ̄) protocol
associated to the verifier V2(z̄, aux

′) with complexity TSim. Let v
′ be the output

of S′(z̄, aux′). Finally, V ′(pk, aux) produces g(v′) as an output. This simulation
is illustrated on the middle of Fig. 3. Due to the zero-knowledge property of
ZKPκ(z̄ : ζ̄), v′ is pZKP-indistinguishable from the final view of V2(z̄, aux

′). So, the
final view of V ′(pk, aux) in V ′(pk, aux) ↔ P1(sk) and the final view of V ∗(pk, aux)
in V ∗(pk, aux) ↔ P (sk) are pZKP-indistinguishable.

Note that P1(sk) makes no longer extra use of the coins ρi’s (as P2(sk, u) does
in ZKPκ). So, the commitment can be outsourced to a challenger playing the
real-or-random hiding game for Com. We modify P1(sk) into an algorithm P ′(sk)
who sets Ai,j to the commitment to some random bit instead of ai,j . Thanks to
the hiding property of Com applied ns times, the output of V ′(pk, aux) ↔ P1(sk)
and of V ′(pk, aux) ↔ P ′(sk) are ns.pCom-indistinguishable.

Finally, r′i in P ′(sk) is now uniformly distributed and independent from all the
rest, so we change P ′(sk) into an algorithm P ′′ which sends a random r′i instead.
Note that P ′′ no longer needs sk. So, the view of V ∗ in V ∗(pk, aux) ↔ P (sk) and

16

the output of V ′(pk, aux) ↔ P ′′ are indistinguishable. This defines a simulator
S(pk, aux), as illustrated on the right-hand-side of Fig. 3. ⊓⊔

Theorem 17 (HP-Security). We assume that Com is a perfectly binding, and
computationally hiding homomorphic bit commitment, that ComH is one-way,
and that ZKPκ is a κ-sound computationally zero-knowledge proof of membership
for κ = negl(λ). For all w, we take an experiment with r instances of the honest
prover and we split it into r successive experiments, with one honest prover per
splitted experiment. Each of them is associated to a simulator Simi for the ZKPκ

protocol and we denote by TSimi the complexity of the simulator. Assuming that
the experiment succeeds with probability at least

pSec = pSound + r.pZK + pCom (5)

(where pSound is defined by (2)) we construct an inversion algorithm for ComH

with complexity
r∑

i=1

TSimi + TComH .O (Bs
w) + rns.TCom

where pZK, pCom, and TCom are defined as in Lemma 16, TComH
is the complexity

of ComH , and Bs
w is defined in Th. 15. For s = Ω(λ) and that τ ≥ n−(12−2ε)⌈n

2 ⌉
with a constant ε, pSec is negligible. So, ProProx is HP-secure.

Proof. We consider an experiment exp with an honest always far-away prover.
Let p be the probability that V accepts. We want to show that p = negl(λ).

We define pB = Tail(⌈n
2 ⌉, τ − ⌊n

2 ⌋,
1
2). We use Lemma 14 to extract the

vector sk′ when V accepts, with at least w errors to sk with probability bounded
by pSound. Then, by a TComH .O(Bs

w)-time exhaustive search on the errors, we
correct sk′ and check if we obtain a preimage of ComH like in Th. 15. This
gives sk in polynomial time and a probability of success of at least p − pSound,
by playing with some non-concurrent instances of P (sk). For each of the non-
concurrent instances of P (sk), we then use the ZK property of P (sk) to construct
an algorithm inverting ComH with probability of success of at least p− pSound −
r.pZK, where r is the number of P (sk) instances in one experiment. By assumption
on ComH , this must be bounded by some negligible pCom. So, we have p ≤ pSec
with pSec defined by Eq. (5). The values κ, pZK, and pCom are negligible, while r
is polynomial and w is constant. So, pSound and pSec are negligible. ⊓⊔

Note that a malicious prover can run a distance fraud in each round such
that bi,j = skj , as ri,j no longer depends on ci,j . For sk = 0 (as allowed in the
malicious prover model) and b = 0, this can be done in all rounds, so we can
have a distance fraud. There is no contradiction with soundness: an observer
seeing that the verifier accepts can deduce that skj is likely to be zero, for all j.
So, the malicious prover leaks.

To have distance fraud resistance, we adopt a trick from DB2 [10]: we select
a vector bj with Hamming weight

⌊
n
2

⌋
so that half of the rounds will really use

ci,j . Actually, bj has a maximal distance to the repetition code.

17

Theorem 18 (DF-Resistance). We assume that Com is a perfectly binding
bit commitment and that ZKPκ is a κ-sound proof of membership for κ = negl(λ).
Every distance fraud in ProProx succeeds with a probability bounded by

pDF =

{
κ+ Tail

(⌊
n
2

⌋
, τ −

⌈
n
2

⌉
, 1
2

)s
in variant I

κ+
(
3
4

)ns
in variant II

(6)

For n = Ω(λ) and τ ≥ n− (12 − 2ε)⌊n
2 ⌋ with a constant ε, pDF is negligible. So,

ProProx is DF-resistant.

Proof. We concentrate on the jth iteration. Let wj be the weight of the vector
bj ⊕ (skj , . . . , skj). Due to the perfectly binding property, the view of V uniquely
defines skj and ai,j . Thanks to Lemma 1, ri,j is obtained from IncomingV(Far), so
independent from ci,j . So, for bi,j ̸= skj (which happens for wj rounds), we have
that Pr[ri,j = ai,j + ci,jbi,j + ci,jskj] =

1
2 . So, the probability that the statement

in ZKPκ holds is bounded by
∏s

j=1 Tail(wj , τ −n+wj ,
1
2) which is negligible for

τ−n+wj

wj
≥ 1

2 + 2ε, due to the Chernoff-Hoeffding bound (Lemma 13) for n =

Ω(λ). Due to the fact that ZKPκ is sound, the verifier accepts with probability
bounded by κ+Tail(⌊n

2 ⌋, τ − ⌈n
2 ⌉,

1
2)

s in the first variant of the protocol. In the

second variant, we first note that E(Tail(wj , τ − n+ wj ,
1
2)) = E(2−wj) =

(
3
4

)n
since n = τ . So, the verifier accepts with probability bounded by κ+

(
3
4

)ns
. ⊓⊔

We also treat distance hijacking [14] specifically.

Theorem 19 (DH-Resistance). We assume that Com is a perfectly binding
bit commitment, that ComH is one-way, and that ZKPκ is a κ-sound proof of
membership for κ = negl(λ). For any constant w, given a DH attack succeeding
with probability at least

pDH =

{
κ+ Tail

(
n, τ, 1

2

)w
in variant I

κ+
(
1
2

)w⌈n
2 ⌉ in variant II

(7)

we can construct an inversion algorithm for ComH with complexity TComH
.O (sw)

where TComH is the complexity of ComH . For n = Ω(λ) and τ ≥ n− (12 − 2ε)⌈n
2 ⌉

with a constant ε, pDH is negligible. So, ProProx is DH-resistant.

Proof. We consider a DH attack with a malicious prover P ∗ = P (sk) with a
public key pk and an honest prover P ′ = P (sk′) with a public key pk′. During the
initialization, P ′ chooses some a′i,j bits which are committed in some A′i,j . He also
receives some b′i,j bits while V has some bi,j bits. The malicious prover P ∗ sends

some Ai,j to V and we denote ai,j = Com−1(Ai,j). During the challenge phase,
V and P ′ interact in a noisy channel. We write r′i,j = ei,j + a′i,j + ci,j(b

′
i,j + sk′i)

the response by P ′, where Pr[ei,j = 1] = pnoise and all ei,j are independent.
As the verifier expects ri,j = ai,j + ci,j(bi,j + skj), this holds if and only if
ai,j + a′i,j + ei,j = ci,j(bi,j + b′i,j + skj + sk′j). This can only hold with probability
1
2 when the content of the parenthesis is equal to 1.

18

Let wj be the number of i such that bi,j + b′i,j ̸= skj + sk′j . Clearly, the jth
iteration has τ correct responses with probability bounded by Tail(wj , τ − n +
wj ,

1
2). If wj ≥ ⌈n

2 ⌉, this is bounded by Tail(⌈n
2 ⌉, τ − ⌊n

2 ⌋,
1
2). Otherwise, the

probability is bounded by 1, but the majority of bi,j + b′i,j matches skj + sk′j so

the adversary deduces sk′j . Let w be the number of j such that wj ≥ ⌈n
2 ⌉. Clearly,

the responses are overall acceptable with a probability bounded by Tail(⌈n
2 ⌉, τ −

⌊n
2 ⌋,

1
2)

w. Due to the soundness of ZKPκ, the probability of success is bounded
by κ + Tail(⌈n

2 ⌉, τ − ⌊n
2 ⌋,

1
2)

w. Furthermore, by the majority decoding, we have
an inversion algorithm for ComH with complexity O (sw.TComH).

We note that when b is fixed in the protocol, wj is equal to either 0 or n.
So, in the first variant of the protocol, the same analysis as above concludes to
a probability of success bounded by κ+Tail(n, τ, 1

2)
w. In the second variant, we

have n = τ and the probability simplifies to 2−w⌈
n
2 ⌉. ⊓⊔

3.4 Simplification in the Noiseless Communications Case

The protocol could be simplified in noiseless environment. For this, we would
take n = τ . There is clearly no need to agree on Ij which is always the full set
Ij = {1, . . . , n}. The protocol is much simpler. Variant I and Variant II use in (6)

the bounds
(
1
2

)⌊n2 ⌋s and
(
3
4

)ns
, respectively. For n even, the Variant I is better,

but if we want to lower n down to n = 1, we must use Variant II.

3.5 Concrete Parameters

To see if the proven bounds Eq. (2), Eq. (5), Eq. (6), and Eq. (7) are tight
or not, we look at the best known attacks. They correspond to the following
probabilities of success:

pIDF = Tail

(⌊n
2

⌋
, τ −

⌈n
2

⌉
,
1

2

)s

pIIDF =

(
3

4

)ns

pSec = pDH = Tail

(
n, τ,

1

2

)s

pSound = Tail

(⌈n
2

⌉
, τ −

⌊n
2

⌋
,
1

2

)s

where pDF depends on Variant I or Variant II. The DF attack with success
probability pDF consists of guessing ci in half of the rounds for which bi,j ̸= skj .
So, the proven bound Eq. (6) is pretty tight.

The MF attack with success probability pSec follows the post-ask strategy:
the adversary first guesses the answers to all challenges then plays with the
prover with the same challenges. Clearly, there is a gap between pSec and the
proven bound of Eq. (5). The DH case is similar: the malicious prover commits
to some random ai,j which will make the correspondence between ci,j and ri,j
between P ′ correct for P with probability 1

2 .
The TF attack with success probability pSound consists of giving a table of all

c′i,j 7→ r′i,j which is corrupted in half of the rounds (selected at random) in each
iteration, so that it gives no information about skj . Having the table c′i,j 7→ r′i,j

19

corrupted means that one of the two entries (selected at random) is flipped.
There is also a gap with the proven bound Eq. (2).

So, it may be the case that either the bounds Eq. (2), Eq. (5), and Eq. (7)
can be improved, or that there exist better attacks. To select the parameters,
we could either use the proven bounds or the above equations based on the best
known attacks that we call the empirical bounds.

As concrete parameters, we could suggest λ = 80 bits as the security parame-
ter and a modulus N of 1 024 bits. Then, we look for n and τ which minimize the
total number of rounds n while keeping pComp ≈ 1−2−7 and different objectives:
we propose several vectors of parameters to reach the online security of either
σ = 2−20 (high) or σ = 2−10 (low), with proven bounds or empirical bound,
and with either pnoise = 1% or the noiseless variant (pnoise = 0) from Section 3.4.
In the computation of Eq. (2) and Eq. (5), we took κ = σ

4 and w such that the
exhaustive search is not more for a random s-bit string, i.e., Bs

w ≤ 2λ. For that,
we took s = λ+ 1 and w = ⌈ s

2⌉.
The total number of rounds is ns.

security bounds pnoise ns s n w τ Variant pComp pDF pSec pSound pDH

high proven 1% 648 81 8 41 6 I 1− 2−8 2−22 2−21 2−21 2−22

high empirical 1% 640 80 8 – 6 I 1− 2−8 2−43 2−223 2−43 2−223

low proven 1% 567 81 7 41 5 I 1− 2−9 2−12 2−12 2−12 2−12

low empirical 1% 560 80 7 – 5 I 1− 2−9 2−15 2−171 2−43 2−171

high proven 0 162 81 2 41 2 I 1 2−22 2−22 2−22 2−22

high empirical 0 160 80 2 – 2 I 1 2−80 2−160 2−80 2−160

low proven 0 162 81 2 41 2 I 1 2−12 2−12 2−12 2−12

low empirical 0 160 80 2 – 2 I 1 2−80 2−160 2−80 2−160

high proven 0 81 81 1 41 1 II 1 2−22 2−22 2−22 2−22

high empirical 0 80 80 1 – 1 II 1 2−33 2−80 2−80 2−80

Clearly, there is a big gap between proven and empirical parameters in the
high security values. We can observe that the noise has a huge impact on the
complexity. Sometimes, the obtained parameters with low and high security are
the same. This comes from pSec and pSound being basically equal to κ. As we can
see, the noiseless case with n = 1 and s = 80 offers pretty efficient parameters.

For other parameters, ns may look high. However, we shall keep in mind that
distance bounding rounds are exchanging bits very quickly. A challenge/response
round shall take much less than 100ns. So, even by “wasting” 10µs in between
rounds, ns = 648 takes less than 7ms. So, the round-complexity is not so
important. What matters more is the impact on other cryptographic opera-
tions. Indeed, the prover needs to compute ns commitments, so 3

2ns multipli-
cations, and −τs log2 κ parallel rounds of ZKP, so −3

2τs log2 κ multiplications.
So, 3

2 (n− τ log2 κ)s multiplications in total. Hence, we shall consider the regular
tricks to perform batch ZKP proofs to reduce the complexity.

20

4 Conclusion

We proposed ProProx, the very first PoPoK addressing soundness. It is provably
secure. A remaining challenge is to construct a more efficient PoPoK. Another
open question would be to have a tight security proof for ProProx.

Acknowledgements. This work was partly sponsored by the ICT COST Action
IC1403 Cryptacus in the EU Framework Horizon 2020.

References

1. G. Avoine, M. Bingöl, S. Kardas, C. Lauradoux, B. Martin. A Framework for
Analyzing RFID Distance Bounding Protocols. Journal of Computer Security, vol.
19(2), pp. 289–317, 2011.

2. G. Avoine, A. Tchamkerten. An Efficient Distance Bounding RFID Authentication
Protocol: Balancing False-Acceptance Rate and Memory Requirement. In Infor-
mation Security ISC’09, Pisa, Italy, Lecture Notes in Computer Science 5735, pp.
250–261, Springer-Verlag, 2009.

3. A. Bay, I. Boureanu, A. Mitrokotsa, I. Spulber, S. Vaudenay. The Bussard-Bagga
and Other Distance-Bounding Protocols under Attacks. In INSCRYPT’12, Beijing,
China, Lecture Notes in Computer Science 7763, pp. 371–391, Springer-Verlag,
2012.

4. T. Beth, Y. Desmedt. Identification Tokens or: Solving The Chess Grandmas-
ter Problem. In Advances in Cryptology CRYPTO’90, Santa Barbara, California,
U.S.A., Lecture Notes in Computer Science 537, pp. 169–176, Springer-Verlag,
1991.

5. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Secure & Lightweight Distance-
Bounding. In Lightweight Cryptography for Security and Privacy LightSec’13,
Gebze, Turkey, Lecture Notes in Computer Science 8162, pp. 97–113, Springer-
Verlag, 2013.

6. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Practical & Provably Secure Distance-
Bounding. IACR Eprint 2013/465 report, 2013.

7. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Towards Secure Distance Bounding. In
Fast Software Encryption’13, Singapore, Lecture Notes in Computer Science 8424,
pp. 55–67, Springer-Verlag, 2013.

8. I. Boureanu, A. Mitrokotsa, S. Vaudenay. Practical & Provably Secure Distance-
Bounding. To appear in the proceedings of ISC’13.

9. I. Boureanu, K. Mitrokotsa, S. Vaudenay. Practical and Provably Secure Distance-
Bounding. Journal of Computer Security (JCS), vol. 23 (2), pp. 229–257, 2015.

10. I. Boureanu, S. Vaudenay. Optimal Proximity Proofs. In Information Security and
Cryptology Inscrypt’14, Beijing, China, Lecture Notes in Computer Science 8957,
pp. 170–190, Springer-Verlag, 2014. Eprint 2014/693.

11. S. Brands, D. Chaum. Distance-Bounding Protocols (Extended Abstract). In Ad-
vances in Cryptology EUROCRYPT’93, Lofthus, Norway, Lecture Notes in Com-
puter Science 765, pp. 344–359, Springer-Verlag, 1994.

12. L. Bussard, W. Bagga. Distance-Bounding Proof of Knowledge to Avoid Real-Time
Attacks. In IFIP TC11 International Conference on Information Security SEC’05,
Chiba, Japan, pp. 223–238, Springer, 2005.

21

13. H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based
on the sum of Observations. Annals of Mathematical Statistics, vol. 23 (4), pp.
493-507, 1952.

14. C.J. F. Cremers, K.B. Rasmussen, B. Schmidt, S. Čapkun. Distance Hijacking
Attacks on Distance Bounding Protocols. In IEEE Symposium on Security and
Privacy S&P’12, San Francisco, California, USA, pp. 113–127, IEEE Computer
Society, 2012.

15. Y. Desmedt. Major Security Problems with the “Unforgeable” (Feige-)Fiat-Shamir
Proofs of Identity and How to Overcome Them. In Congress on Computer and
Communication Security and Protection Securicom’88, Paris, France, pp. 147–159,
SEDEP Paris France, 1988.

16. U. Dürholz, M. Fischlin, M. Kasper, C. Onete. A Formal Approach to Distance-
Bounding RFID Protocols. In Information Security ISC’11, Xi’an, China, Lecture
Notes in Computer Science 7001, pp. 47–62, Springer-Verlag, 2011.

17. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology CRYPTO’86, Santa Barbara,
California, U.S.A., Lecture Notes in Computer Science 263, pp. 186–194, Springer-
Verlag, 1987.

18. M. Fischlin, C. Onete. Terrorism in Distance Bounding: Modelling Terrorist-Fraud
Resistance. In Applied Cryptography and Network Security ACNS’13, Banff AB,
Canada, Lecture Notes in Computer Science 7954, pp. 414–431, Springer-Verlag,
2013.

19. S. Gambs, C. Onete, J.-M. Robert. Prover Anonymous and Deniable Distance-
Bounding Authentication. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS’14), Kyoto, Japan, pp. 501–506, ACM Press,
2014.

20. S. Goldwasser, S. Micali. Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. In Proceedings of the 14th ACM Symposium
on Theory of Computing, San Fransisco, California, U.S.A., pp. 365–377, ACM
Press, 1982.

21. S. Goldwasser, S. Micali. Probabilistic Encryption. Journal of Computer and Sys-
tem Sciences, vol. 28, pp. 270–299, 1984.

22. J. Hermans, R. Peeters, C. Onete. Efficient, Secure, Private Distance Bounding
without Key Updates. In ACM Conference on Security and Privacy in Wireless
and Mobile Networks WISEC’13, Budapest, Hungary, pp. 195–206, ACM, 2013.

23. W. Hoeffding. Probability Inequalities for Sums of Bounded Random Variables.
Journal of the American Statistical Association, vol. 58, pp. 13–30, 1963.

24. H. Kılınç, S. Vaudenay. Optimal Proximity Proof Revisited. To appear in ACNS’15.
25. S. Vaudenay. On Modeling Terrorist Frauds. In Provable Security ProvSec’13,

Melaka, Malaysia, Lecture Notes in Computer Science 8209, pp. 1–20, Springer-
Verlag, 2013.

26. S. Vaudenay. Private and Secure Public-Key Distance Bounding: Application to
NFC Payment. In Financial Cryptography and Data Security (FC’15), San Juan,
Puerto Rico, Lecture Notes in Computer Science 8975, pp. 207–216, Springer-
Verlag, 2015.

27. S. Vaudenay. On Privacy for RFID. In these proceedings.

22

