Supporting Information

Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)Hydroxides as Oxygen

Evolution Catalysts

Carlos G. Morales-Guio, Laurent Liardet and Xile Hu*

Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École

Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

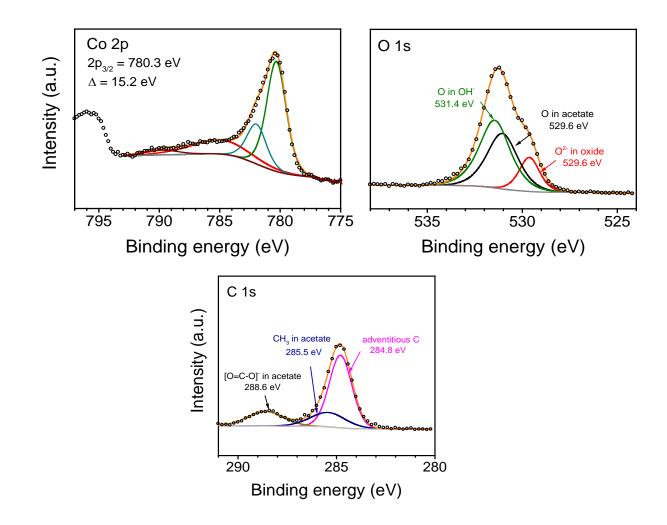
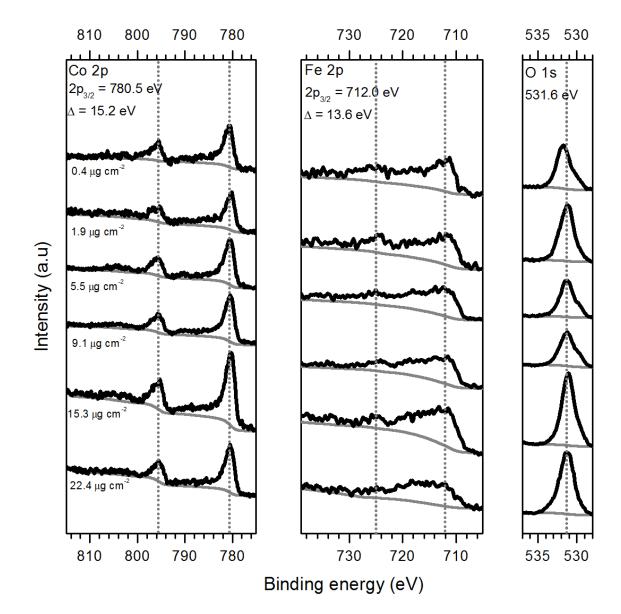
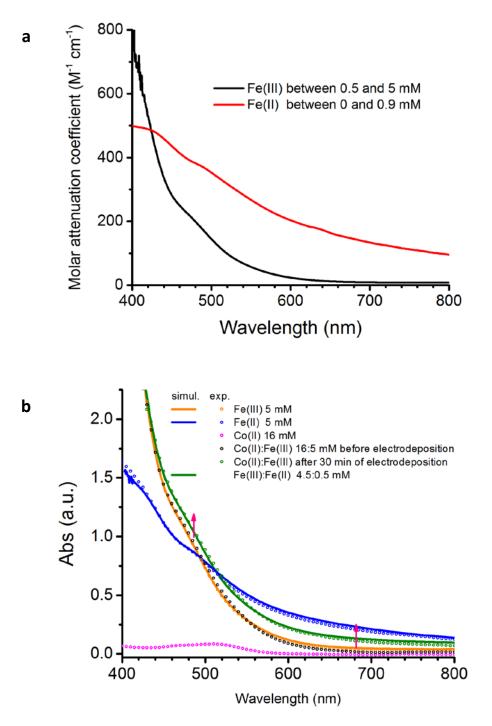




Figure S1 | Co 2p, O 1s and C 1s regions of the XPS spectra of CoO_x.

Figure S2 | XPS spectra of CoFeO_x films electrodeposited on Au.

Figure S3 | UV-vis absorbance. (a) Molar attenuation coefficients for Fe(III) and Fe(II) in 0.1M NaOAC at pH 5.3 in the range of concentrations relevant to in situ UV-vis measurements. **(b)** *In situ* UV-vis absorbance measurements during CoFeO_x electrodeposition. Dotted lines correspond to experimental data while solid lines correspond to simulated absorbance using the molar attenuation coefficients in (a) for mixtures of Fe(III) and Fe(II).

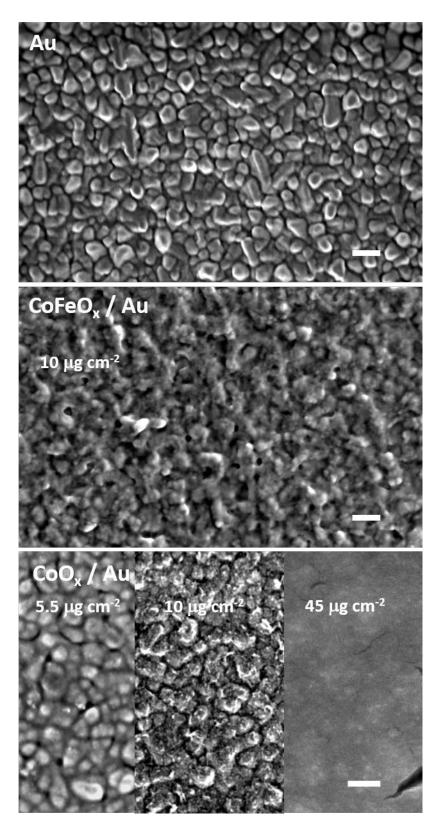


Figure S4| SEM images of CoFeO_x and CoO_x films on Au. Scale bar size corresponds to 200 nm.

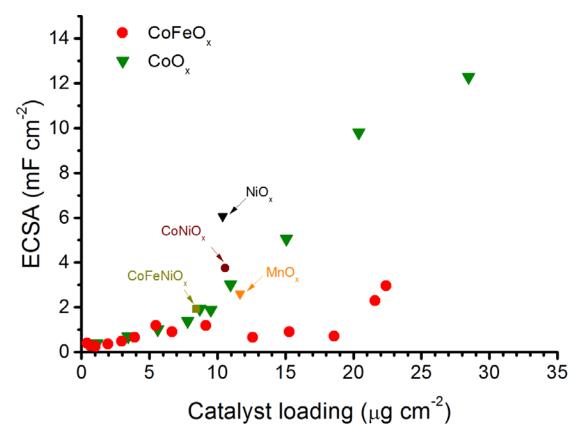
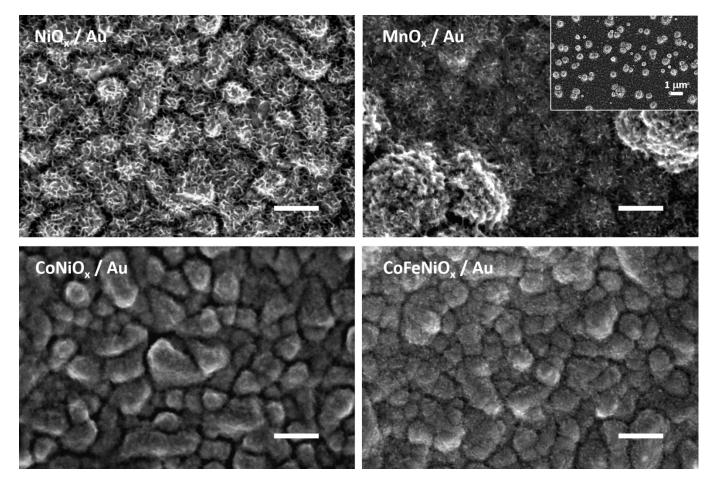



Figure S5 | ECSA of $CoFeO_x$ and CoO_x at various catalyst loadings.

Figure S6 SEM images of NiO_x, MnO_x, CoNiO_x and CoFeNiO_x films on Au. The catalyst loading is ~10 μ g cm⁻². Scale bar size corresponds to 200 nm.

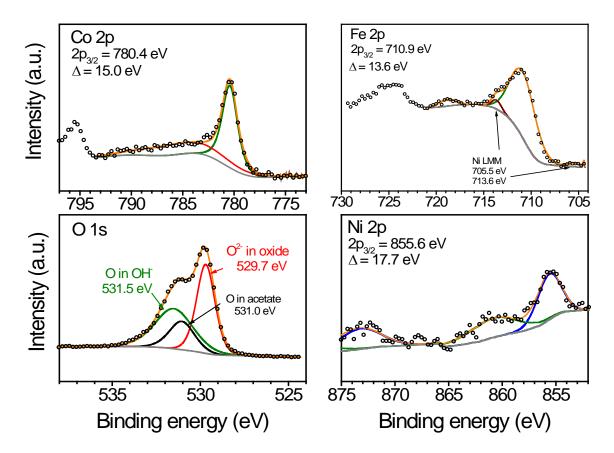
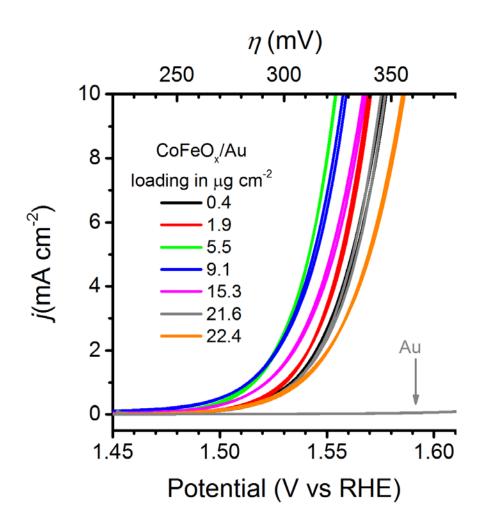



Figure S7 | XPS spectra of CoFeNiO_x films electrodeposited on Au substrates.

Figure S8 Current density-potential curves for $CoFeO_x$ films of different loadings electrodeposited on Au. Conditions: 1 M KOH, 5 mV s⁻¹.

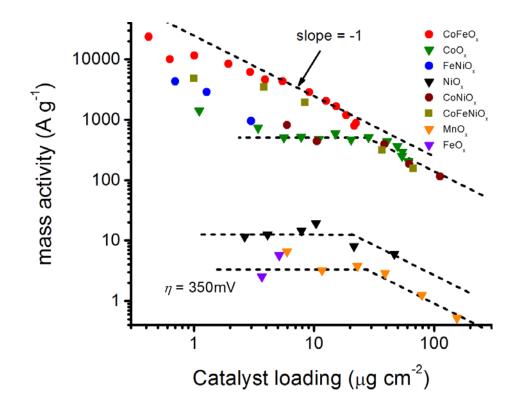
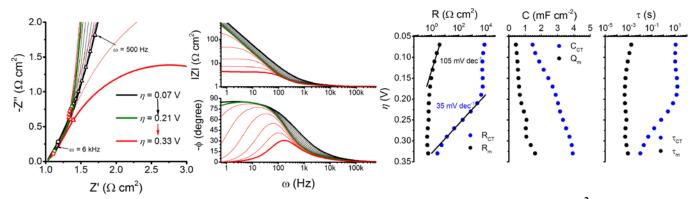
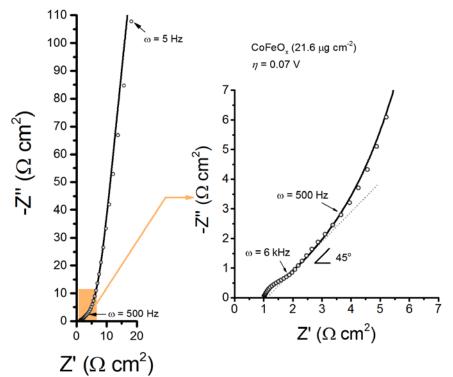
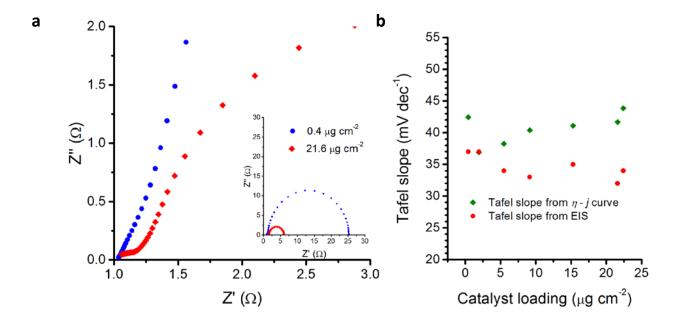
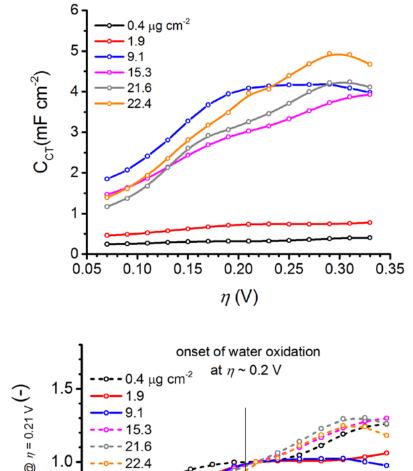


Figure S9 | Activity-mass loading relation for various transition metal (oxy)hydroxides.


Figure S10| EIS response and fitting parameter of CoFeO_x films at loadings of 15.3 μ g cm⁻². Conditions: Au substrate, iron-free 1 M KOH. The EIS response was measured every 20 mV between 1.3 and 1.56 V vs. RHE.

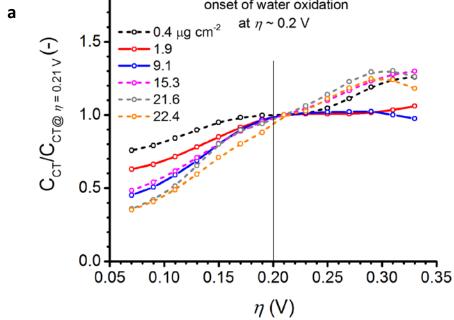
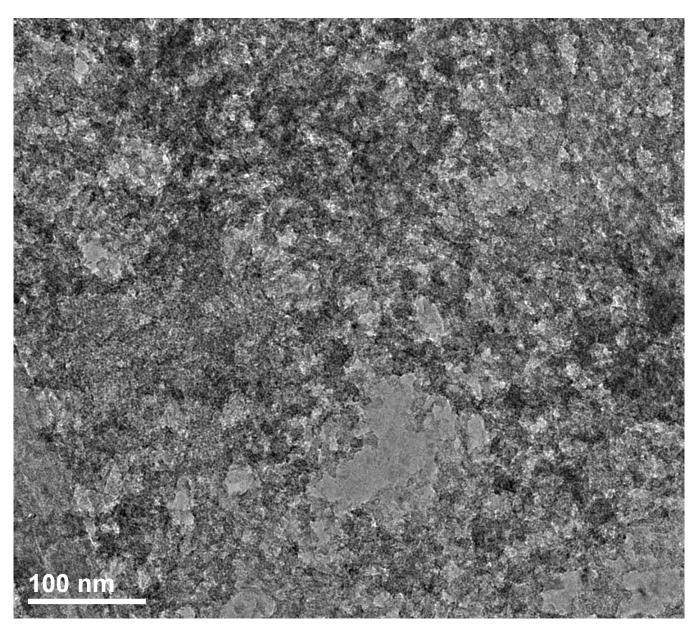
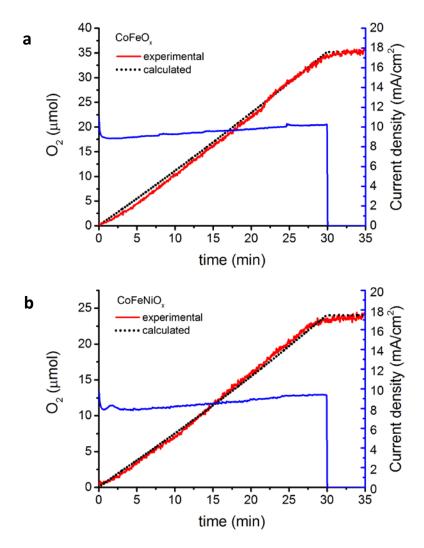

Figure S11| EIS response for the CoFeO_x catalyst film at a loading of 21.6 \mug cm⁻² at \eta = 0.07 V. The transmission line components for charge transport for the thick catalyst film is indicated by a 45° component between 0.5 and 6 kHz. At \omega > 6 kHz the EIS response corresponds to the fast electron transferat the back contact and electron transport through a thin inner (oxy)hydroxide layer as shown in model (b) in Scheme 1 of the main text. At \omega < 500 Hz the EIS response approaches almost a vertical straigh line corresponding to the charging/discharging of the chemical capacitance of the CoFeO_x.¹

Figure S12 | Characterization and OER activity of CoFeOx by EIS. (a) Nyquist plot (η = 310 mV) and (b) Tafel slopes determined from the η - *j* curve and EIS for the CoFeO_x catalyst at different loadings.

а

Figure S13 | Charge transfer capacitance variation with overpotential for CoFeO_x films determined by EIS. (a) Charge transfer capacitance. (b) charge transfer capacitance in (a) normalized to the capacitance value at the onset for water oxidation.

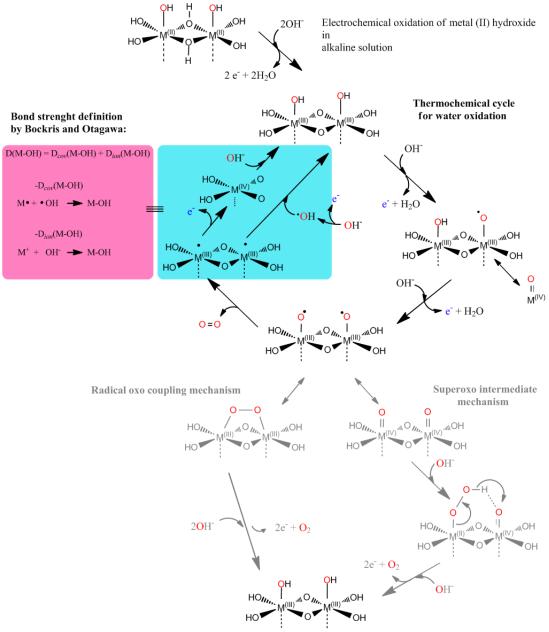

Figure S14 | TEM of detached CoFeO_x film.

Figure S15 | O_2 quantification during water oxidation in 1M KOH. (a) CoFeO_x and (b) CoFeNiO_x. The potential was fixed to pass a current density of ~10 mA cm⁻².

Water splitting:	$2H_2O \longrightarrow 2H_2 + O_2$	$\Delta H^0_{water splitting} = 136.7 \text{ kcal/mol O}_2$
Cathode half-reaction:	$4H_2O + 4e^- \longrightarrow 2H_2 + 4OH^-$	572 kJ/mol O ₂
Anode half-reaction:	$4\mathbf{OH}^{-} \longrightarrow \mathbf{O}_{2} + 2\mathbf{H}_{2}\mathbf{O} + 4\mathbf{e}$	Ē.

Equivalent Oxygen evolution reaction mechanisms:

Figure S16 Thermochemical cycle (298 K) in support of the optimum M-OH bond strength. The total energy to split water in a thermochemical cycle is independent of the reaction mechanism.

Material/substrate	Electrolyte	Current density/ mA cm ⁻²	Overpotential /mV	Reference
CoFeO _x /Ni foam	1М КОН	10 100	270 299	This work
CoFeNiO _x /Ni foam	1М КОН	10 100	240 272	This work
NiFe/Ni foam	1M KOH	10	245	Nat. Commun. 2015 , (6), 6616
Co ₃ O ₄ /Ni foam	1M KOH	10	328	J. Phys. Chem. C, 2009 , 113, 15068
Co₃O₄/N-rmGO/Ni foam	1М КОН	10	310	Nat. Mater. 2011 , 10, 780.
Ni _{0.9} Fe _{0.1} O _x /Au	1M KOH	10	336	J. Am. Chem. Soc. 2012 , 134, 17253
Ni-Fe/Au	1M KOH	10	280	J. Am. Chem. Soc. 2013 , 135, 12329
[Ni-Fe]-LDH/HOPG	1M KOH	10	260	J. Am. Chem. Soc. 2014 , 136, 13118
CoMn LDH/CFP	1M KOH	10	293	J. Am. Chem. Soc. 2014 , 136, 16481
NiFe-LDH/CNT/CFP	1M KOH	10	247	J. Am. Chem. Soc. 2013 , 135, 8452
NiFe-NS/Ni foam	1M KOH	10	302	Nat. Commun. 2014 , (5), 4477

Table S1. Summary of performance of representative anodes for water oxidation in 1M and 25wt% KOH.

Metal (oxy)hydroxide	Mass activity (A g ⁻¹ at η = 350 mV)
MnO _x	3
FeO _x	6
CoO _x	510
NiO _x	12
Fe _{0.8} Ni _{0.2} O _x	4301
$Co_{0.6}Fe_{0.4}O_x$	4727
$Co_{0.5}Fe_{0.4}Ni_{0.1}O_x$	3438
Co _{0.96} Ni _{0.04} O _x	442

Table S2. Summary of intrinsic mass activity of various transition metal (oxy)hydroxides for OER in 1M KOH at η = 350 mV.

Mixture of metal (oxy)hydroxide	M-OH bond strength (Kcal mol ⁻¹)
Mn-OH	150
Fe-OH	141.8
Со-ОН	130.4
Ni-OH	122.1
0.8Fe-OH + 0.2Ni-OH	137.9
0.6Co-OH + 0.4Fe-OH	135.0
0.5Co-OH + 0.4Fe-OH + 0.1Ni-OH	134.1
0.96Co-OH + 0.04Ni-OH	130.1

Table S3. Bond strength of various transition metal (oxy)hydroxides and average values for physical mixtures calculated using the method proposed by Bockris and Otagawa².

References

- 1 Bisquert, J., Grätzel, M., Wang, Q. & Fabregat-Santiago, F. Three-Channel Transmission Line Impedance Model for Mesoscopic Oxide Electrodes Functionalized with a Conductive Coating. *J. Phys. Chem. B* **110**, 11284-11290, (2006).
- 2 Bockris, J. O. M. & Otagawa, T. The Electrocatalysis of Oxygen Evolution on Perovskites. *J. Electrochem. Soc.* **131**, 290-302, (1984).