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We use the adjoint method to compute sensitivity maps for the limit-cycle frequency

and amplitude of the Bénard-von Kármán vortex street in the wake of a circular cylin-

der. The sensitivity analysis is performed in the frame of the semi-linear self-consistent

model recently introduced by Mantič et al. (Phys. Rev. Lett. 2014; vol.113; 084501),

which allows to describe accurately the effect of the control on the mean flow, but also

on the finite-amplitude fluctuation that couples back nonlinearly onto the mean flow via

the formation of Reynolds stress. The sensitivity is computed with respect to arbitrary

steady and synchronous time-harmonic body forces. For small amplitude of the control,

the theoretical variations of the limit-cycle frequency predict well those of the controlled

flow, as obtained from either self-consistent modeling or direct numerical simulation of

the Navier–Stokes equations. This is not the case if the variations are computed in the

simpler mean flow approach overlooking the coupling between the mean and fluctuating

components of the flow perturbation induced by the control. The variations of the limit-

cycle amplitude (that falls out the scope of the mean flow approach) are also correctly

predicted, meaning that the approach can serve as a relevant and systematic guideline
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to control strongly unstable flows exhibiting non-small, finite amplitudes of oscillation.

As an illustration, we apply the method to control by means of a small secondary con-

trol cylinder and discuss the obtained results in the light of the seminal experiments of

Strykowski & Sreenivasan (J. Fluid Mech. 1990; vol. 218; pp. 71-107).

1. Introduction

The vortex shedding instability leading to the Bénard-von Kármán vortex street in

the wake of a circular cylinder is a well-known example of hydrodynamic limit cycle:

above the critical Reynolds number Rec = 47 (built from the free stream velocity and

the cylinder diameter), a self-sustained pattern of regularly alternated vortices is shed

at a well-defined frequency. This instability is very robust and the essentially periodic

nature of vortex shedding persists up to the turbulent regime (Williamson 1996).

An interesting feature of this instability is that, except in the very vicinity of the

threshold, the main space and time properties of the flow oscillations (frequency, ampli-

tude) cannot be captured by classical linear and weakly nonlinear analyses performed

on the base flow (i.e., the steady solution of the Navier–Stokes equations (NSE) that

becomes unstable at Rec). For instance, Barkley (2006) shows that the frequency pre-

diction issuing from a linear global stability analysis fails by a large amount, even at

Reynolds numbers as low as Re = 80. In the same fashion, the Stuart–Landau amplitude

equation describing the onset of limit-cycle oscillations, albeit derived rigorously from

the NSE using a multiple-scale expansion (Stuart 1960, see also Sipp & Lebedev 2007;

Meliga et al. 2009a, 2012a for an application to spatially developing flows) fails to provide

correct amplitude and frequency corrections at Reynolds numbers above the bifurcation

threshold by only 10%. This is because these approaches are perturbative in nature, and
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build all oscillating fields as successive-order corrections to the eigenmode feeding on the

neutrally stable base flow, whose spatial structure differs considerably from that of the

saturated nonlinear oscillation (Dušek et al. 1994; Noack et al. 2003).

Barkley (2006) reports that a linear global stability analysis can still satisfactorily

predict the shedding frequency well above the instability threshold provided it is per-

formed on the time-averaged mean flow, not the base flow. This is somehow reminiscent

of Hammond & Redekopp (1997) and Pier (2002), who early noticed that a linear cri-

terion applied to the mean flow was remarkably successful in predicting the frequency

of the unsteadiness in the frame of local stability analyses. In addition, Barkley (2006)

shows that the mean flow is almost neutrally stable. Such results have been rationalized

by Sipp & Lebedev (2007) analyzing the nonlinear interactions contributing to the Lan-

dau coefficient of the amplitude equation. The authors conclude that (i) the mean flow

being neutrally stable and (ii) its eigenfrequency being a good predictor of the nonlinear

frequency are due to the fact that base flow modifications dominate the flow nonlinearity

over the generation of higher harmonics, which produces close-to-harmonic oscillations.

This can be seen as a theoretical proof, valid in the vicinity of the instability threshold,

of the general picture used to describe the mechanism for nonlinear saturation in the

cylinder wake and related flows : perturbations feed on the unstable base flow, grow,

modify the base flow via the formation of Reynolds stress, which in turn reduces their

growth rate up to the point where it becomes zero. At this stage, the unstable base flow

has been distorted into the neutrally stable mean flow, and perturbations stop growing

and saturate (Maurel et al. 1995; Zielinska et al. 1997). Note, this idea of an instability

saturating itself through nonlinear terms leading to a neutrally stable mean flow has been

early formulated by Malkus (1956) in the context of turbulent flows.

Several studies have recently aimed at taking into account this distortion of the base
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flow via Reynolds stress modeled averaging the products of single eigenmode distur-

bances (Farrell & Ioannou 2012; Pralits et al. 2015 and the references therein). Of partic-

ular interest is the semi-linear model introduced by Mantič-Lugo et al. (2014) to capture

the finite-amplitude saturation of the shedding instability. This model is derived rig-

orously from the Reynolds decomposition of the NSE under the assumption that the

nonlinearity reduces to the production of mean flow modifications. The fluctuation is

modeled as the leading global eigenmode satisfying the NSE linearized about the mean

flow, while the mean flow is obtained as a steady solution of the NSE forced by the

Reynolds stress of the eigenmode (hence the semi-linearity, not to be confused with the

semi-linear terminology used to classify partial differential equations). This sets up a

self-consistent description of the mean flow/fluctuation interaction, both problems being

coupled nonlinearly and to be solved simultaneously. For given Reynolds number, the

sole free parameter is the amplitude of the eigenmode, which for a specific value leads to

a neutrally stable mean flow: this is the saturation amplitude of the model, that yields

a definite approximation of the mean flow, of the fluctuation and of the oscillation fre-

quency. Comparison with direct numerical simulations (DNS) have established that the

model captures accurately the frequency and saturation amplitude of the instability up

to Reynolds number Re ∼ 100.

In a seminal experiment, Strykowski & Sreenivasan (1990) investigate experimentally

the flow around a circular cylinder perturbed by a smaller circular cylinder positioned in

the near wake. For various Reynolds numbers and diameter ratios of the two cylinders,

they measure the influence of this secondary control cylinder in terms of sensitivity

maps showing the regions around the main cylinder where shedding is most affected. For

specific locations, Strykowski & Sreenivasan (1990) report a stabilization of the wake

accompanied by a decrease of the shedding frequency that could go towards complete
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suppression of unsteadiness. They also provide experimental evidence that suppression of

vortex shedding is correlated with negative growth rates of the instability. Since then, the

prohibitive cost of producing exhaustive sensitivity maps under traditional procedures

- which requires systematical experimental measurements, or numerical simulations to

be performed over large ranges of parameter spaces - has motivated the development

of more systematical approaches relying on theoretical analysis to map quickly the best

positions for placement of the control cylinder.

Hill (1992) has pioneered the use of Lagrangian-based adjoint methods to compute

theoretical sensitivity maps capable of assessing (within one single calculation) the effect

of given control upon the stability properties of the base flow. Hill (1992) models the

presence of the control cylinder by a point-wise supply of momentum equal and opposite

to the anticipated drag. He uses the adjoint method to compute the sensitivity of the

unstable eigenmode (representing mathematically the variational derivative of its eigen-

value to a body force or a wall velocity), whereafter he ultimately retrieves the structure

of the experimental sensitivity maps without ever having calculated the actual controlled

states. Such an approach (herein referred to as the base flow approach) offers an attractive

alternative to bottleneck “trial and error” procedures, as it allows exhaustive coverage of

large parameter spaces at very low computational costs. It has sparked renewed interest

in the last decade, through a substantial body of work focusing on steady and unsteady

effects modeling the presence of the control cylinder (Giannetti & Luchini 2007; Marquet

et al. 2008a), and is now routinely applied to a variety of flow configurations (Meliga

et al. 2010; Pralits et al. 2010; Alizard et al. 2010) and control targets, including optimal

transient growth and optimal harmonic response (Brandt et al. 2011; Boujo et al. 2013),

recirculation length (Boujo & Gallaire 2014) or aerodynamic forces (Meliga et al. 2014).

Of course, the method is bound to fail if the stability analysis is not predictive for
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the main features of the unsteadiness, hence the low Reynolds numbers (Re ∼ 47− 60)

considered in Hill (1992) and other aforementioned studies. Another approach is thus

needed to predict similarly how the control affects the finite-amplitude vortex shedding

prevailing at Reynolds numbers well above the instability threshold. Meliga et al. (2012b)

have proposed to analyze similarly the sensitivity of the mean flow stability properties,

a so-called mean flow approach that has yielded promising results (Meliga et al. 2012b;

Camarri et al. 2013; Meliga et al. 2014), but is not entirely satisfactory though : first, be-

cause its scope is limited to the vortex shedding frequency, as mean flow stability analyses

do not predict the amplitude of the oscillation. Second, because it relies on a so-called

frozen Reynolds stress modeling overlooking the effect of the control on the Reynolds

stress. This one-way mean flow/fluctuation coupling (in the sense that it allows the con-

trol to modify the mean flow and the fluctuation but does not allow the modification of

the fluctuation to feed back onto its mean flow counterpart) is obviously oversimplifying

since the mean flow distortion selecting the limit-cycle frequency and amplitude precisely

stems from the flow response to the Reynolds stress of the fluctuation. In return, the re-

lated theoretical predictions have been shown to lack accuracy in the recirculation region

and in the near wake, where the effect of the Reynolds stress is most significant.

An elegant approach to analyze the sensitivity of the shedding frequency has been

proposed by Luchini et al. (2009), computing first the nonlinear periodic state by DNS,

then scaling the time variable on the period of the limit-cycle to bring it out as an explicit

unknown, and finally computing the sensitivity by marching adjoint equations backwards

in time. Such an approach has the advantage of correctness, but it is computationally

very demanding because the adjoint simulation must be run long enough for a time-

periodic state to show up and for the adjoint solution to reach statistical equilibrium.

Moreover, the DNS solution must be available at all adjoint time-steps, which turns to
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be very costly, either in terms of storage resources if one saves all DNS time steps to disk

beforehand, or in terms of CPU-time if one saves only a few check-points and recalculates

the missing time-steps on the fly. It is proposed here to use the model of Mantič-Lugo

et al. (2014) to compute self-consistent approximations to this exact sensitivity, which we

believe stands as a valuable alternative : first, all sensitivities come at a low computational

cost, solving iteratively a couple of equations independent of time. Next, the model is

expected to yield improved theoretical predictions at Reynolds numbers not necessarily

close to the instability threshold, since it embeds the two-way coupling necessary to

describe the mean flow modification induced by the growth of unstable disturbances and

the nonlinear saturation of these disturbances as the mean flow becomes neutrally stable.

Finally, the approach addresses similarly the sensitivity of the oscillation amplitude. This

could be done also with a time-marching adjoint method (to the best of our knowledge,

no such results have been reported in the literature) but the detrimental computational

costs would then accumulate.

In order to avoid any confusion, we point out that the present research compares three

different levels of modeling : linear, semi-linear, and nonlinear (in ascending order, and

starting from the lowest level of approximation). On the one hand, nonlinear refers to

data obtained by DNS of the NSE. On the other hand, semi-linear and linear refer

respectively to data obtained from self-consistent modeling of the NSE, and to their

linear approximation computed in the frame of the current sensitivity analysis. The

paper is thus organised as follows : in section 2, we recall the main features of the

self-consistent theory, and demonstrate its ability to capture accurately the nonlinear

limit-cycle frequency and amplitude of controlled cylinder flows of interest. In section 3,

we analyze theoretically the sensitivity of the frequency to a steady force in the mean

flow equations, and to a synchronous time-harmonic force at the fundamental frequency
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in the perturbation equations. The wavemaker region responsible for the selection of

the nonlinear frequency is identified from the effect of a localized feedback proportional

to the flow velocity. We also consider application to open-loop control by means of a

small control cylinder, for which we provide comparison with semi-linear and nonlinear

results of the two-cylinder system. Section 4 addresses the sensitivity of the limit-cycle

amplitude, and follows the same organization. In concluding the paper, we discuss the

ability of the approach to predict complete suppression of vortex shedding.

2. Self-consistent model

We investigate the two-dimensional, incompressible flow past a spanwise infinite cir-

cular cylinder of diameter D. We use a Cartesian coordinate system with origin at the

cylinder center. We denote by U = (U, V ) the velocity field of components U and V

in the streamwise x and cross-stream y directions. P is the pressure, and x = (x, y)T

is the position vector. Assuming constant kinematic viscosity ν, the sole parameter is

the Reynolds number Re = U∞D/ν, where U∞ is the free-stream velocity. The flow is

governed by the nonlinear Navier–Stokes equations (NSE) written in compact form as

∂tU+N(U) = 0 , (2.1)

where N(U) is the Navier–Stokes operator defined by

N(U) = U · ∇U+∇P − Re−1
∇

2U , (2.2)

whose dependency on P is omitted to ease the notation. For the same reason, we omit

the continuity equation ∇ ·U = 0, as it is understood that all velocity fields considered

in the following must be divergence free because of incompressibility.
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2.1. Description of the model

The self-consistent theory originates from the Reynolds decomposition of the velocity

field into U(t) = Um + u′(t), where Um = 〈U〉 is the time-averaged mean velocity and

u′ is the fluctuating velocity such that 〈u′〉 = 0. Introducing L(Um) as the Navier–

Stokes operator linearized about the mean flow, substitution into (2.1) yields classical

mean flow/fluctuation equations

N(Um) = −〈u′
· ∇u′〉 , (2.3a)

∂tu
′ + L(Um)u′ = −u′

· ∇u′ + 〈u′
· ∇u′〉 , (2.3b)

defining the mean flow as a solution to the steady NSE, forced by the Reynolds stress of

the fluctuation (i.e., the steady part of its nonlinear self-interaction), and the fluctuation

as a solution to the NSE linearized about the mean flow, forced by the unsteady part of

its nonlinear self-interaction.

In the self-consistent approach, the mean flow is not taken as a given, but comes

instead as an output of a semi-linear approximation of (2.3) meant for the perturbation

structure to be the one that forces the mean flow by its Reynolds stress in a manner such

that the mean flow generates exactly the aforementioned perturbation. Expanding the

perturbation into time-harmonic eigenmodes u of linear growth rate σ and eigenfrequency

ω, retaining the dominant eigenmode and forcing its growth rate to zero for the mean

flow to be neutrally stable yields

N(Um) = −A2ψ(u) , (2.4a)

(σ + iω)u+ L(Um)u = 0 , (2.4b)

σ = 0 , (2.4c)

||u|| = 1 , (2.4d)
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where || · || is the norm induced by the L2 inner product ( · | · ) on the computational

domain, A is the real amplitude of the unit-norm eigenmode, ψ(u) = 2ℜ(u∗
· ∇u) is

the Reynolds stress divergence, and ℜ(·) and ∗ indicate respectively the real part and

the conjugate of a complex quantity. The nonlinearity in u has been neglected in (2.3b)

because vortex shedding is assumed to be dominated by a single harmonic frequency.

This is the key difference with linear stability analyses featuring an eigenvalue prob-

lem identical to (2.4b) on behalf of a small-amplitude assumption. If the nonlinearity

is neglected in both (2.3a) and (2.3b), the approach is equivalent to classical stability

analysis, as the mean flow reduces to the base flow Ub, solution to the steady NSE

N(Ub) = 0 , (2.5)

computed a priori and supposedly unaffected by the growth of unstable disturbances.

Conversely, the approach reduces to mean flow stability analysis if the nonlinearity is

neglected only in (2.3b), but taken in account in (2.3a), in which case the mean flow can

be computed exactly a priori, averaging in time the instantaneous solution of a direct

numerical simulation (DNS) of the NSE. There is however a certain lack of consistency

in doing so because the Reynolds stress in (2.3a) is that of the finite-amplitude vortex

shedding coming from the DNS, not that of the small-amplitude eigenmode. According to

Barkley (2006), the results must be properly interpreted as applying in the case where the

Reynolds stress itself is unperturbed at the order of the perturbation, thereby defining

the so-called frozen Reynolds stress assumption.

2.2. Numerical methods

In the following, we obtain all semi-linear results relaxing the neutral stability condition

and increasing the value of A up to the point where σ = 0 (which we assume is achieved

to a sufficient degree when |σ| 6 10−6). For given amplitude, the self-consistent solutions
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are computed iteratively with a finite element method adapted from Meliga et al. (2014),

to which the reader is referred for further details. At each iteration, the mean flow is com-

puted with the Newton–Raphson method, together with boundary conditions consisting

of a uniform free-stream at the inflow, symmetric conditions at the transverse bound-

aries and a stress-free outflow condition. The perturbation is computed with the Arnoldi

method, together with boundary conditions linearized about the mean quantities. This

repeats until the difference between two consecutive iterations of Um is less than 10−12

in L2 norm, which requires to under-relax the corrections made at each iteration.

In the following, we also report DNS results obtained using a second-order Crank-

Nicholson scheme, with time step ∆t = 0.05. At the outflow, a more suitable advective

condition is imposed, together with zero pressure at the upper-right corner of the do-

main. All simulations are carried out until the solution settles down to a periodic state,

whereafter it is advanced in time over 500 time units (between 75 and 100 shedding cycles

depending on the Reynolds number) sufficiently large to extract accurate frequency and

amplitude information.

2.3. Uncontrolled flow

In this section, we briefly revisit the self-consistent modeling of the natural (uncontrolled)

flow for validation purpose of our numerical tools. For various Reynolds numbers in the

range Re 6 100, figure 1 reports limit-cycle frequency and amplitude results obtained

using a mesh of the computational domain

Ω = {(x, y) | |x| > 0.5; −30 6 x 6 60; |y| 6 25} , (2.6)

made of 108,018 triangles (378,660 degrees of freedom), found to offer a good compromise

between numerical accuracy and computational effort since numerical tests carried out

at two other grid resolutions and spatial extents yield limited variations within 2%. The
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Figure 1. Limit-cycle (a) frequency and (b) amplitude as a function of the Reynolds number :

self-consistent (blue squares) vs. DNS results (red circles). Open and filled symbols correspond

respectively to the natural flow and to control with a secondary cylinder of diameter d = 0.1

positioned at (a) xc = (1.2, 1.0) and (b) xc = (0.8, 1.6). Experimental measurements from

Williamson (1988) (black line) and Strykowski & Sreenivasan (1990) (green crosses) are reported

for comparison. The dash-dotted lines in (a) correspond to the frequency obtained by linear

stability analysis of the base flow.

semi-linear results reported as the open squares exhibit excellent agreement with the

nonlinear values extracted from in-house DNS performed on the same mesh, shown as the

open circles (note, DNS amplitudes are reported in terms of 〈||u′||〉 while self-consistent

amplitudes are reported in terms of A
√
2 for the results to be comparable). At Re =

100, neutral stability is achieved for A = 2.2, or equivalently A2||ψ(u)||/||u||2 = 0.90,

which matches well the amplitude of Mantič-Lugo et al. (2014) obtained normalizing

the magnitude of the Reynolds stress instead of that of the eigenmode, and therefore

validates the present computations. The associated self-consistent frequency ω = 1.02

(St = ω/2π = 0.162) is very consistent with the value 1.03 predicted by the universal

Strouhal-Reynolds relationship of Williamson (1988), and with the mean flow stability

results of Barkley (2006). The spatial distribution of the self-consistent fields mean flow,

fluctuation and Reynolds stress also agrees remarkably well with the DNS results (not

shown here for conciseness).
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Figure 2. (a) Leading growth rate of the time-averaged mean flow as a function of the Reynolds

number for control by a cylinder of diameter d = 0.1 at xc = (1.2, 1.0) (upward triangles)

and xc = (0.8, 1.6) (downward triangles). The leading growth rate of the base flow is shown

for comparison as the dash-dotted lines. (b) Same as (a) for the leading eigenfrequency. The

nonlinear frequency extracted from the DNS is indicated by the red circles.

2.4. Relevance to vortex shedding control

It is the fundamental premise of our research that the self-consistent theory applies to

controlled flows of practical interest. While this is a point that should be addressed on

a case-by-case basis for arbitrarily large control amplitudes, we expect that it generally

holds true for small to moderate amplitudes. As an illustration, we mimic here the ap-

proach of Strykowski & Sreenivasan (1990), insert a control cylinder of diameter d = 0.1

at various positions in the flow, and recompute the limit-cycle frequency and amplitude

of the two-cylinder system using a mesh of the modified computational domain

Ωd = {(x, y) | |x| > 0.5; |x− xc| > 0.1; −30 6 x 6 60; |y| 6 25} , (2.7)

obtained distributing 300 points at the surface of the control cylinder to accurately

represent the flow (Meliga et al. 2014). For the positions xc = (1.2, 1.0) and (0.8, 1.6)

considered, all mean flows are neutrally stable, while the shedding frequency is accu-

rately predicted by the leading eigenfrequency (see figure 2 providing the results of linear

stability analysis applied to the time-averaged mean flow), meaning that the controlled
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Figure 3. (a) Self-consistent vs. (b) time-averaged distribution of mean vorticity for control by

a cylinder of diameter d = 0.1 at xc = (1.2, 1.0) - Re = 100. (c)-(d) Same as (a)-(b) for the

streamwise component of the Reynolds stress divergence.

flows satisfy the real-zero imaginary-frequency (RZIF) property (Turton et al. 2015) and

that the self-consistent theory does apply.

The effect on the frequency is illustrated in figure 1(a) for the control cylinder placed

at xc = (1.2, 1.0). For this case, the critical Reynolds number is Rec = 77.8 (as predicted

by linear stability analysis; see figure 2(a)), whereupon the frequency is reduced by ap-

proximately 20%. With the above key assumptions fulfilled, the self-consistent approach

predicts accurately not only the frequency shift (as seen from the filled squares and circles

showing the semi-linear and nonlinear results, respectively), but also the spatial structure

of the controlled mean flow and Reynolds stresses, as documented in figure 3. In contrast,

the leading eigenfrequency of the base flow (shown as the dashed line in figure 1(a)) is
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completely out of range. The self-consistent results are also fully consistent with the ex-

perimental data of Strykowski & Sreenivasan (1990) pertaining to the same position of

the control cylinder (reproduced as the cross symbols). There does exist a small quan-

titative difference, that we believe is attributable to a small bias in the experimental

results, as the natural frequencies of Strykowski & Sreenivasan (1990) exhibit similar

discrepancy with the reference data of Williamson (1988) (shown as the black line). Fig-

ure 1(b) illustrates similarly the effect of the control cylinder placed at xc = (0.8, 1.6) on

the amplitude. For this case, the critical Reynolds number is Rec = 55, whereupon the

self-consistent amplitude is reduced by approximately 30%, the agreement between the

self-consistent and the DNS results being again excellent.

These results provide clear evidence that the self-consistent theory captures well the

effect of the control on the saturation mechanics. As could have been anticipated, different

control positions yield markedly different effects on the frequency and the amplitude, for

instance a control cylinder at xc = (1.2, 1.0) reduces the amplitude twice as less as a

control cylinder at xc = (0.8, 1.6), while a control cylinder at xc = (0.8, 1.6) barely affects

the frequency (not shown here). This stresses the need to explore the parameter space

for an efficient control design, an investigation from now on performed in a systematic

way using sensitivity analysis, as further developed in sections 3 and 4.
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3. Sensitivity of the limit-cycle frequency

We assess here the effect of a control in the bulk upon the limit-cycle properties of the

self-consistent system

N(Um) = −A2ψ(u) + F , (3.1a)

A[(σ + iω)u+ L(Um)u] = f , (3.1b)

σ = 0 , (3.1c)

||u|| = 1 , (3.1d)

where the action of the control is taken into account by a steady body force F acting as

a source term in the mean flow equation (3.1a), and a (complex) harmonic body force f

oscillating at the same frequency as the fundamental eigenmode, and acting as a source

term in the perturbation equation (3.1b). From a physical standpoint, F and f can be

viewed as the mean and fluctuating components of the total (real) body force acting onto

the flow, expressed as

F+ feiωt + f∗e−iωt = F+ 2ℜ(feiωt) . (3.2)

This type of forcing is particularly appropriate to model open-loop control by means of a

small passive device inserted in the flow, which induces both steady and oscillating forces,

as further discussed in the following. Both forces modify the mean flow (directly for the

mean component F, indirectly for the fluctuating component f that changes the Reynolds

stress feeding back on the mean flow) and its stability properties. This is rigorously taken

into account in the present analysis, with section 4 assessing the change in the amplitude

δA needed for the mean flow to return to neutral stability, while the present section

addresses the resulting change in the limit-cycle frequency δω.
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3.1. Theoretical framework

In the limit of infinitesimal control amplitudes, the linear estimate of the limit-cycle

frequency variation can be expressed as the inner product between the control forces and

sensitivity functions representing the variational derivatives of the frequency to sources

of momentum in the flow. This amounts to invoking the first-order Taylor expansion

around zero of ω viewed as a function of F and f , given that only the sensitivity, not

the variation, depends on the choice of the inner product structure. We derive here an

analytical expression of the sensitivity functions ∇Fω and ∇fω such that

δω = (∇Fω | δF) + 2ℜ{(∇fω | δf)} , (3.3)

using a variational technique based on the computation of Lagrange multipliers. We use

the body forces {F, f} as control variables, the self-consistent quantities {Um,u, σ, ω,A}

as state (or direct) variables, introduce Lagrange multipliers {U†,u†, α†, β†} (also termed

co-state or adjoint variables) and define the functional

L(F, f ,Um,u, σ, ω,A,U†,u†, α†, β†) = ω −
(
U†

∣
∣ N(Um) +A2ψ(u)− F

)

−
(
u†

∣
∣ A[(σ + iω)u+ L(Um)u]− f

)

−
(
u†∗

∣
∣ A[(σ − iω)u∗ + L(Um)u∗]− f∗

)

− α†σ − β† (1− (u | u)) , (3.4)

whose gradient with respect to any variable s is

∂L
∂s
δs = lim

ǫ→0

L(s+ ǫδs)− L(s)
ǫ

. (3.5)

The adjoint fluctuation u† is complex, while the adjoint mean flow U† and the adjoint

scalar parameters α† (ensuring neutral stability) and β† (ensuring unit norm of the

eigenmode) are real, which results in L being real as well.
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Assuming all partial derivatives with respect to the direct and adjoint variables to be

zero (∂L/∂Um = . . . ∂L/∂β† = 0), the total variation of the Lagrangian reads

dL =
∂L
∂F
δF+

∂L
∂f
δf +

∂L
∂f∗

δf∗ =
(
U†

∣
∣ δF

)
+ 2ℜ

{(
u†

∣
∣ δf

)}
= δω , (3.6)

where the last equality follows from the derivatives with respect to the adjoint variables

being zero, which ensures that the direct variables are solutions to the self-consistent

system (3.1) and that the Lagrangian reduces to the limit-cycle frequency (L = ω).

Comparing relations (3.3) and (3.6), the sensitivities deduce as

∇Fω =
∂L
∂F

= U†, ∇fω =
∂L
∂f

= u† . (3.7)

Using integration by part to cancel the partial derivatives with respect to the direct

variables, the adjoint variables come as the solutions to the self-consistent system

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (3.8a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
+ 2β†u , (3.8b)

(u† |u) = −(α† + i)/2A , (3.8c)

(U† |ψ(u)) = −ℜ
(
(u† | f)

)
/A2 , (3.8d)

where L† is the adjoint of the linearized Navier–Stokes operator. At this stage, a compat-

ibility condition must be enforced to guarantee the existence of a solution to the adjoint

fluctuation equation (3.8b). This is because there exists a non-trivial solution to

(σ − iω)u† + L†(Um)u† = 0 , (3.9)

for σ = 0 and ω equal to the limit-cycle frequency, on behalf of u being a solution to

eigenvalue problem (2.4b). Said condition is derived taking the inner product of equa-

tion (3.8b) with the eigenmode u and integrating by parts the left-hand side (LHS),
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which yields

(u† | A[(σ + iω)u+ L(Um)u)]
︸ ︷︷ ︸

=f

) = −A2
(
U†

· ∇uT − u · ∇U†
∣
∣ u

)
+ 2β† (u |u)

︸ ︷︷ ︸

=1

, (3.10)

since the operators are by definition such that
(
u†

∣
∣ L(Um)u

)
=

(
L†(Um)u†

∣
∣ u

)
. Fur-

ther integrating by parts the first term in the right-hand side (RHS) and retaining the

real part, we obtain

ℜ
(
(u† | f)

)
= −A2

(
U†

∣
∣ ψ(u)

)
+ 2β† , (3.11)

and ultimately

β† = 0 , (3.12)

using (3.8d). Since we investigate the sensitivity of the natural limit cycle (f = 0), the

self-consistent adjoint system reduces to

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (3.13a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
, (3.13b)

(u† |u) = −(α† + i)/2A , (3.13c)

(U† |ψ(u)) = 0 . (3.13d)

Both problems (3.13a)-(3.13b) for the adjoint mean flow and fluctuation must be solved

simultaneously, together with normalisation condition (3.13c) and compatibility condi-

tion (3.13d). The boundary conditions are such that the the bilinear concomitant arising

on the outer boundary of the domain during the integration by part is zero, which yields

classical homogeneous conditions at the inflow, symmetric conditions at the transverse

boundaries, and an adjoint stress-free outflow condition (Marquet et al. 2008a).

Since system (3.13) is independent of time, we obtain the adjoint fields U† and u† and

the adjoint parameter α† using an iterative method detailed in appendix A.1. Suffice it to

say that convergence is achieved within a few tens of iterations, which takes less than an
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hour on a regular sequential workstation. The computational cost is thus essentially that

of solving the self-consistent system of the uncontrolled flow, which is less than that of

performing the DNS on the same mesh in the range of Reynolds number considered herein

(by more than 80% at Re = 60 and roughly 50% at Re = 100). The sensitivity of the

limit-cycle frequency to a steady control force (∇Fω = U†, physically representing the

self-consistent approximation to the mean component of the time-dependent sensitivity

computed by Luchini et al. (2009)) is presented in figure 4(a) at Re = 100. Streamlines

of the underlying vector field give the local orientation of the gradient, and color levels

indicate its magnitude. In practice, a local steady force δF oriented in the same direction

(resp., in the opposite direction) as the arrows plotted in figure 4(a) therefore increases

(resp., decreases) the frequency by a quantity proportional to the local magnitude. The

regions of highest sensitivity are located on either side of the cylinder, at the periphery

of the mean recirculating streamline (shown as the dashed line) and in the inner recir-

culation region, close to x = (1, 0). Conversely, the sensitivity to an oscillating control

force (∇fω = u†, physically representing the self-consistent approximation to the fluc-

tuating component of the time-dependent sensitivity computed by Luchini et al. (2009))

shown in figure 4(b) (with no streamlines since the underlying vector field is complex) is

concentrated close to the mean separation points and in the shear layers.

Relation (3.7) carries over to the base and mean flow approaches, provided the adjoint

fields are redefined as the solutions to

L†(U)U† = −2ℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (3.14a)

(σ − iω)u† + L†(U)u† = 0 , (3.14b)

(u† |u) = −i/2 , (3.14c)

with U being either the base flow or the time-averaged mean flow obtained by DNS.
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Figure 4. Self-consistent sensitivity of the limit-cycle frequency - Re = 100. The magnitude

of sensitivity is given by the color levels and the orientation of the underlying vector by the

superimposed streamlines. (a) Sensitivity to a steady force (∇Fω = U
†). (b) Sensitivity to an

unsteady force fluctuating at the fundamental frequency (∇fω = u
†). Note the different color

look-up tables in (a) and (b).

System (3.14) is termed uncoupled because the eigenvalue problem for the adjoint fluctu-

ation can be solved first, and then the computed solution can be used to solve the adjoint

mean flow equation. The sensitivity fields obtained doing so are however markedly dif-

ferent from their self-consistent counterparts, as can be seen comparing figures 4 and 5.

Both the base and mean flow approaches somehow end-up providing a rough approxima-

tion of the fluctuating component ∇fω, although the base flow approach overestimates

the size of the sensitive regions, and the mean flow approach overestimates the level

of sensitivity in the vicinity of the separation points. The discrepancy is more obvious

looking at the mean component ∇Fω, as the base flow approach misses completely on

the location and spatial extension of the sensitive regions (not to mention the level of

sensitivity in these regions), while the mean flow approach manages to predict, albeit

approximately, the location and spatial extension of the primary sensitive regions. Such

results clearly stress that an accurate description of the nonlinear mean flow/fluctuation

is mandatory to obtain proper sensitivity predictions, as further discussed in section 3.2.
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Figure 5. Same as figure 4 for the sensitivities computed in the frame of the (a)-(b) base flow

approach and of the (c)-(d) mean flow approach - Re = 100. The color look-up table is identical

to that used in figure 4.

3.2. Effect of a localized feedback, wavemaker

In this section, we consider the effect of a ’force-velocity’ coupling under the form of

a steady force proportional to the mean velocity and a fluctuating force proportional

to the eigenmode velocity. If spatially localized, such a forcing can also be viewed as a

feedback induced by an actuator located at the same station xc as the sensor. Both force

components can be expressed as

δF(x) = −b1 Um(x) δ(x − xc) , (3.15)

δf(x) = −Ab2 u(x) δ(x − xc) , (3.16)
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where δ(x) stands for 2D Dirac delta function, b1,2 is the amplitude of the feedback, and

the frequency variation follows straightforwardly as

δω(xc) = −b1U
†(xc) ·Um(xc)− 2Ab2ℜ

(
u†∗(xc) · u(xc)

)
. (3.17)

The Reynolds number is set to Re = 100 in the remainder of the section. For several

locations of the feedback force, figure 6 compares the linear variation δω of the limit-cycle

frequency computed in the frame of the present self-consistent sensitivity analysis (red

lines), whose correctness and numerical accuracy is carefully assessed in appendix A.2,

to those obtained by the base and mean flow approaches (dashed and dash-dotted lines).

To do so, all delta functions are smoothed out numerically into Gaussians; see Meliga

et al. (2014) for proof of relevance. For the positions xc = (1.6, 0.5) and xc = (1.0, 0.8)

documented in figure 6(a)-(b), the base flow approach underestimates considerably the

frequency variations, which is not too surprising since it even fails to provide a correct

estimation of the uncontrolled limit-cycle frequency. The mean flow approach provides

a better overall estimation at xc = (1.0, 0.8) because the position is not too far down-

stream, in a region where the mean flow velocity is large and the Reynolds stress is

weak. In contrast, at xc = (1.6, 0.5) the Reynolds stress is large, and the variation is

underestimated by approximately 25%. Looking at the individual variations caused by

the mean and fluctuating components of the feedback unveils that both contributions

are actually miscalculated but the errors somehow compensate one another (not shown

here), meaning the overall comparison is actually worse than it looks. Other comparisons

documented in figures 6(c)-(d) add to the proof that overlooking the effect of the con-

trol on the Reynolds stress (and its subsequent feedback onto the mean flow) can lead

to flawed theoretical predictions, for instance the mean flow approach overestimates the

overall variation achieved at xc = (0.0, 0.6) by more than 100%, while it squarely fails to

predict the sign of that variation achieved at xc = (1.5, 0.0).
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Figure 6. Variation of the limit-cycle frequency induced by the localized feedback defined

by (3.15) - Re = 100. Solid lines indicate linear predictions computed in the frame of the

sensitivity analysis from (3.17). The dashed and dash-dotted lines denote the results obtained

by the base and the mean flow approaches, respectively. (a) xc = (1.6, 0.5). (b) xc = (1.0, 0.8).

(c) xc = (0.0, 0.6). (d) xc = (1.5, 0.0).

A bound for the frequency variation induced by the present feedback force can be

obtained applying classical Cauchy-Schwartz and triangular inequalities to the RHS

of (3.17), which yields

|δω(xc)| 6 |b1| ||U†(xc)|| · ||Um(xc)||+ 2A|b2| ||u†(xc)|| · ||u(xc)|| . (3.18)

Equation (3.18) readily expresses that δω is non-vanishing only in the flow region where

the product of the modulus of the self-consistent direct and adjoint fields is not zero.

The associated overlapping region can thus be considered as the ‘wavemaker’ responsible

for the selection of the nonlinear frequency, thereby extending the concept introduced



Self-consistent sensitivity analysis of finite amplitude vortex shedding 25

by Giannetti & Luchini (2007) for the leading eigenvalue of the unstable base flow.

We show in figure 7(a) the spatial distribution of the product ||U†(xc)|| · ||Um(xc)||

obtained for (b1, b2) = (1, 0) and physically representing the contribution of the mean

feedback. It is almost zero downstream, but exhibits large magnitudes on either side

of the mean recirculation region, and also further upstream, offset from the centerline.

In contrast, the magnitude of the product 2A||u†(xc)||||u(xc)|| shown in figure 7(b) for

(b1, b2) = (0, 1) and physically representing the contribution of the fluctuating feedback is

almost zero everywhere, except in two lobes located symmetrically across the recirculation

region. This is due to the convective non-normality of the NSE transporting in all direct

fluctuations downstream and all adjoint fluctuations upstream (Chomaz 2005). Both

components of the force therefore sign distinct wavemaker regions, which is consistent

with the results of figure 4, but the latter regions differ from those exhibiting only large

sensitivity since the amplitude of the direct fields and their orientation with respect to

the sensitivities also come into it. Note, a similar wavemaker region has been identified

by Luchini et al. (2009) from the average in time of the exact product between the time-

dependent sensitivity and feedback force, whose self-consistent equivalent is obtained

adding up the above products for |b1| = |b2|. We have checked that almost identical

results are obtained doing so, but choose not to discuss further about it because the

present results depend on the ratio of |b1|/|b2|, so the interpretation would somehow lack

generality.

3.3. Application to control by a small circular cylinder

We now use knowledge of the sensitivity as a systematic guideline on where to insert a

small device in the attempt to modify the limit-cycle frequency. This can be of practical

interest for fluid-induced vibration problems because the only dangerous flow instabilities

are those whose frequencies match the frequencies of the structural eigenmodes, meaning
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Figure 7. Sensitivity of the limit-cycle frequency to a localized feedback as quantified by the

products (a) ||U†(xc)|| · ||Um(xc)|| and (b) 2A||u†(xc)|| · ||u(xc)||, representing respectively the

contributions of the mean and fluctuating feedback force to the wavemaker.

that shifting the threatening flow frequencies can be sufficient to prevent the onset of

synchronized regimes. Following Hill (1992), the presence of a small control cylinder at

given position xc is modeled by the force it exerts on the flow, defined conveniently as

the pointwise reacting force localized at the same location where the control cylinder is

placed, equal and opposite to the force that would act on a fictitious cylinder of same

diameter invested by a uniform flow at the local velocity. We build here on previous

studies focusing on steady and unsteady effects modeling the presence of the control

cylinder (Giannetti & Luchini 2007; Marquet et al. 2008a,b; Meliga et al. 2010, 2014),

and decompose the latter force into steady and fluctuating components reading

δF(x) = −1

2
dCd|Um|Umδ(x− xc) , (3.19a)

δf(x) = −1

2
AdCd

(

|Um|u+
Um · u

|Um| Um

)

δ(x− xc) , (3.19b)

where Cd is the drag coefficient of the control cylinder and | · | denotes the norm induced

by the dot product. The frequency variation follows straightforwardly as

δω(xc) =− 1

2
dCd|Um(xc)|U†(xc) ·Um(xc) (3.20)

−AdCdℜ
(

|Um(xc)|u†(xc) · u(xc) +
Um(xc) · u(xc)

|Um(xc)|
u†(xc) ·Um(xc)

)

.
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Of course, this cylinder force model stands as a first approximation derived in the limit of

small control cylinders. On the one hand, it assumes the diameter of the control cylinder

to be much smaller than the local inhomogeneity length scale, which results on the force

acting on the control cylinder being pure drag (as a non-uniform flow would otherwise

exert an additional lift force proportional to the local shear). On the other hand, it

assumes negligible inertia effects and thus the force acting on the cylinder at each time

instant to be identical to the force that would act if the upstream flow at the same

instant was a steady one (quasi-static assumption). This in particular is expected to hold

because the advection time scale in the vicinity of the control cylinder is much smaller

than the vortex shedding period, a regime where the drag coefficient Cd is essentially

equal to its value for steady flow, and thus depends only on the local Reynolds number

Red(xc) = |Um(xc)|d/ν. The model also assumes the fluctuating force to be harmonic at

the fundamental frequency while overlooking the effect of the higher harmonics, which

is expected to hold as long as a self-consistent description of the controlled flow remains

relevant. We show in the following that even such a basic modeling can guide appropriate

placement of the control cylinder in the sense that the localization of the sensitive regions

can be safely inferred with good accuracy despite the not-so-high degree of approximation

used to represent the control cylinder itself.

We show in figure 8 a map of the variation of the limit-cycle frequency δω induced by

a control cylinder of diameter d = 0.1 at Re = 100, for which the local Reynolds number

is below 10 and the drag coefficient Cd is approximated using the three-parameter power

law defined in Meliga et al. (2014). It exhibits only negative variations (as indicated

by the blue hue) corresponding to a decrease of the frequency, the maximum effect

being achieved in a region originating from the shear layers and surrounding the mean

recirculating streamline. Weaker yet significant decrease is noticeable further upstream,
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Figure 8. Variation of the limit-cycle frequency induced by a control cylinder of diameter

d = 0.1 whose presence is modeled by equation (3.19) - Re = 100. The circle symbol marks

the position xc = (1.2, 1.0) for which theoretical predictions are compared to self-consistent and

DNS results of open-loop control by a small control cylinder in figures 1(a) and 10.
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Figure 9. Same as figure 8 for the individual variations computed retaining the (a) mean and

(b) fluctuating components of the model force. The map in figure 8 is thus retrieved as the sum

of these two maps.

offset from the centerline. The maps of the individual variations obtained retaining either

the mean or the fluctuating component of the force, shown in figure 9, suggests that

it is the mean force (resp. the fluctuating force) that triggers the frequency decrease

observed on either side of the mean recirculation region and upstream of the cylinder

(resp. in the rear of the recirculation region). The fluctuating force is seen to additionally

increase the limit-cycle frequency just upstream of the separation points (red hue), but
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Figure 10. Limit-cycle frequency as a function of the Reynolds number for control by a cylinder

of diameter (a) d = 0.1 and (b) d = 0.02 at xc = (1.2, 1.0). Linear sensitivity predictions are

shown as the small circle symbols, with dark and light blue shades used to decompose into

the contributions of the mean and fluctuating components of the model force. Semi-linear and

nonlinear data are also reproduced from figure 1 as the various square/circle symbols.

not sufficiently to compensate for the large decrease induced by the mean force at this

location, hence the overall frequency reduction in figure 8. All in all, the mean force

produces larger variations, but because of this disjointness in the sensitive regions, the

dominant contribution can be driven by either component, depending on the location of

the control cylinder.

We return now to the experimental results of Strykowski & Sreenivasan (1990), whom

we recall report a control cylinder of diameter d = 0.1 placed at at xc = (1.2, 1.0) to

suppress vortex shedding for Re < 80 and to reduce the oscillation frequency by ap-

proximately 30% afterwards. In figure 10(a), we report the various semi-linear (blue)

and nonlinear (red) data used in figure 1(a) to evidence that this effect is well captured

by the self-consistent theory. We now use blue shades to superimpose the effect of the

control cylinder, as theoretically predicted from (3.20), with the dark (resp. light) blue

shade representing the effect of the mean (resp. the fluctuating) component of the model

force. For this position, marked by the grey circle in figure 8, both components contribute
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Figure 11. Self-consistent sensitivity of the limit-cycle amplitude - Re = 100. The magnitude

of sensitivity is given by the color levels and the orientation of the underlying vector by the

superimposed streamlines. (a) Sensitivity to a steady force (∇Fω = U
†). (b) Sensitivity to an

unsteady force fluctuating at the fundamental frequency (∇fω = u
†).

significantly to the frequency reduction, with the variation induced by the mean force be-

ing roughly twice as large as that induced by its fluctuating counterpart. The theoretical

results exhibit a satisfactory agreement with the semi-linear and nonlinear data, meaning

that the approach provides both qualitative and quantitative predictions. There does ex-

ist a discrepancy that we attribute to our cylinder force model being excessively simple

for such non-small control cylinder, as the agreement is almost perfect in figure 10(b)

reporting the same results for a smaller control cylinder of diameter d = 0.02.

4. Sensitivity of the limit-cycle amplitude

4.1. Theoretical framework

We analyze now similarly the effect of the control upon the limit-cycle amplitude. No

comparison is made with the base and mean flow approaches, since those are simply

unable to predict the saturation amplitude. In the following, we ease the presentation of

the theoretical framework using the squared amplitude A2 (physically representing the

amplitude of the Reynolds stress in the mean flow equation) as convenient direct variable.
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An analytical expression of the sensitivity functions ∇FA
2 and ∇fA

2, such that

δA2 =
(
∇FA

2
∣
∣ δF

)
+ 2ℜ

{(
∇fA

2
∣
∣ δf

)}
, (4.1)

is derived following the same steps as in section 3.1 to express the total variation of the

Lagrangian

L(F, f ,Um,u, σ, ω,A2,U†,u†, α†, β†) = A2 −
(
U†

∣
∣ N(Um) +A2ψ(u)− F

)

−
(
u†

∣
∣ A[(σ + iω)I+ L(Um)u]− f

)

−
(
u†∗

∣
∣ A[(σ − iω)I+ L(Um)u∗]− f∗

)

− α†σ − β†(1− (u | u)) . (4.2)

The sensitivities deduce as

∇FA
2 =

∂L
∂F

= U†, ∇fA
2 =

∂L
∂f

= u†, (4.3)

where the adjoint fields come as solutions to the new self-consistent system

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (4.4a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
+ 2β†u , (4.4b)

(u† |u) = −α†/2A , (4.4c)

(U† |ψ(u)) = 1− ℜ
(
(u† | f)

)
/A2 , (4.4d)

formally similar to that (3.13) governing the sensitivity of the limit-cycle frequency, but

featuring an additional forcing term in the adjoint fluctuation equation (4.4b). Again, a

compatibility condition must be enforced to guarantee the existence of a solution, which

is achieved taking the inner product of equation (3.8b) with the eigenmode u, integrating

by parts and retaining the real part. This yields the same relation

ℜ
(
(u† | f)

)
= −A2

(
U†

∣
∣ ψ(u)

)
+ 2β† , (4.5)
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as in Section 3.1, except that it reduces now to

β† = A2/2 , (4.6)

using (4.4d). Since we investigate the sensitivity of the natural limit cycle (f = 0), the

self-consistent adjoint system ultimately becomes

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (4.7a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
+A2u , (4.7b)

(u† |u) = −α†/2A , (4.7c)

(U† |ψ(u)) = 1 . (4.7d)

The boundary conditions to be used are those defined in section 3.1, namely homogeneous

conditions at the inflow, symmetric conditions at the transverse boundaries, and adjoint

stress-free conditions at the outflow.

The numerical method used to compute all adjoint quantities of interest is presented in

appendix B.1, together with validation data documented in appendix B.2. The sensitivity

of the limit-cycle amplitude to a steady control force (∇FA
2 = U†) shown in Figure 11(a)

at Re = 100 exhibits large magnitudes close to the cylinder, at the mean separating

points, as well as in the inner recirculation region, close to the centerline, which constitute

noticeable differences with respect to the frequency; see figure 4(a). In contrast, the

sensitivity to an oscillating control force (∇fA
2 = u†) is shown at the same Reynolds

number in Figure 11(b) is the largest close to the separation points and (in a lesser

extent) in the inner recirculation region, i.e., the same regions where the frequency is

most sensitive; see figure 4(b).
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Figure 12. Sensitivity of the limit-cycle amplitude to a localized feedback as quantified by the

products (a) ||U†(xc)|| · ||Um(xc)|| and (b) 2A||u†(xc)|| · ||u(xc)||, representing respectively the

contributions of the mean and fluctuating feedback force to the wavemaker - Re = 100.

4.2. Effect of a localized feedback, wavemaker

We return here to the localized feedback force (3.15) introduced in section 3.2, and

present in figure 12 the spatial distribution of the overlapping regions between the self-

consistent direct and adjoint fields, considered as the ‘wavemaker’ of the instability,

responsible for the selection of the oscillation amplitude. All results are provided for

a Reynolds number Re = 100. In figure 12(a), we show the spatial distribution of the

product ||U†(xc)|| · ||Um(xc)|| representing the contribution of the mean feedback, whose

amplitude is large in the vicinity of the mean separating points, and also moving away

from the cylinder surface in the cross-wise direction. In contrast, the magnitude of the

product 2A||u†(xc)|| · ||u(xc)|| shown in figure 12(b) and representing the contribution of

the fluctuating feedback is large in the rear part of the recirculation region, and in the

near wake, meaning that both components of the force again sign distinct wavemaker

regions.
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Figure 13. Variation of the limit-cycle amplitude induced by a control cylinder of diameter

d = 0.1 - Re = 100. The grey circle mark the positions xc = (0.8, 1.6) and (1.0, 0.7) for which

theoretical predictions are compared to self-consistent and DNS results of open-loop control by

a small control cylinder in figures 1(b) and 15.
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Figure 14. Same as figure 13 for the individual variations computed retaining the (a) mean

and (b) fluctuating components of the model force.

4.3. Control by a small circular cylinder

We use now the sensitivity as a systematic path to guide the best positions for placement

of a control cylinder in view of alleviating the shedding activity. We show in figure 13

a map of the variation of the limit-cycle amplitude δA2 induced by a control cylinder

of diameter d = 0.1 at Re = 100. Interestingly, the control cylinder can increase or

decrease the amplitude (while it has been shown to decrease exclusively the frequency in

section 3.3), as illustrated by the positive (resp. negative) variations prevailing on either
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side of the cylinder and of the mean recirculating streamline (resp. in the rear part of

the recirculation and on either side of the recirculation up to the potential flow). Both

components of the force act in different flow regions, as seen from figure 14 showing

maps of the individual variations obtained retaining either the mean or the fluctuating

component of the force. Only the reduction of the amplitude found in the rear part of

the recirculation is ascribed to the fluctuating component, while all other variations are

essentially driven by the mean force. The fluctuating force also decreases the limit-cycle

amplitude in the near-wake region, but this effect is almost exactly counter-balanced by

the increase induced by the mean force, hence the absence of any variation in this region

in figure 13.

In figure 15(a), we report the various semi-linear and nonlinear data used in figure 1(b)

to evidence that the present self-consistent approach predicts well the reduction of the

fluctuation amplitude achieved placing a control cylinder of diameter d = 0.1 at xc =

(0.8, 1.6). As in figure 10, we use blue shades to superimpose the effect of the control

cylinder as predicted in the frame of the current sensitivity analysis, with the dark (resp.

light) blue shade representing the effect of the mean (resp. the fluctuating) component of

the model force. For this position, only the dark blue shade is visible, as the contribution

of the fluctuating component is negligible, consistently with the results of figure 13. Again,

the theoretical results exhibit a good agreement with the semi-linear and nonlinear data,

meaning that the approach provides both qualitative and quantitative predictions despite

the small discrepancy due to the non-smallness of the control cylinder (see the improved

agreement in figure 15(b) showing the exact same results for d = 0.02).

Similar results are presented in figure 15(c)-(d) for a control cylinder at xc = (1, 0.7),

which is a challenging case to be recovered by sensitivity analysis because both compo-

nents of the force yield significant effects that end up canceling each other out, hence
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Figure 15. (a)-(b) Limit-cycle amplitude as a function of the Reynolds number for control by a

cylinder of diameter (a) d = 0.1 and (b) d = 0.02 at xc = (0.8, 1.6). Linear sensitivity predictions

are shown as the small circle symbols, with dark and light blue shades used to decompose into

the contributions of the mean and fluctuating components of the model force. Semi-linear and

nonlinear data are also reproduced from figure 1 as the various square/circle symbols. (c)-(d)

Same as (a)-(b) for a control cylinder at xc = (1.0, 0.7).

resulting in little overall variation of the amplitude. Still, we observe a good agreement

between the linear and semi-linear results, at least for values of Re not too close to the

instability threshold. The discrepancy observed in the vicinity of Rec however raises in-

terrogations regarding the ability of the approach in identifying those flow regions where

the control cylinder completely suppresses vortex shedding. Since the growth rate is

forced to zero in the present formulation, it seems natural to correlate such a quench-

ing of the instability to zero limit-cycle amplitude. For a control cylinder of diameter

d = 0.1, we show in figure 16 the loci of all points in the (x, y)-plane corresponding
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Figure 16. Loci of all points in the (x, y)-plane corresponding to zero controlled amplitude for a

control cylinder of diameter d = 0.1, obtained at several Reynolds numbers from the sensitivity

functions as the iso-contours of δA2 = −A2.

to such zero controlled amplitude, calculated at several Reynolds numbers as the iso-

contours of δA2 = −A2. In the range Re < 50, vortex shedding is suppressed placing

the control cylinder either in the outer region or within the recirculation region, close to

the centerline. This secondary region vanishes as the Reynolds number increases, while

the spatial extent of the outer region reduces until it vanishes as well at Re = 52. Such

behavior is qualitatively consistent with the results of Strykowski & Sreenivasan (1990)

- see the figure 20 herein - but there exist noticeable quantitative differences, since these

authors report full restabilization of the flow up to Re ∼ 80.

Part of the explanation lies in the linear nature of sensitivity methods, whose accuracy

is inherently limited by the finite control amplitude needed to stabilize the flow. This

can be perilous close to the instability threshold, where the amplitude varies very non-

linearly with Re (for such Hopf bifurcation, it varies as the square root of the departure

from criticality, opposite to the growth rate which varies linearly). Small inaccuracy in

the theoretical model may thus yield non-small discrepancy with the semi-linear results,

such miscalculations being clearly visible in figures 15(a) and 15(c), and leading to the

related instability thresholds being underestimated by 10% for both positions considered.
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Assuming this trend carries over to other positions, this makes the predicted stabilizing

regions smaller than they ought to, consistently with the results of figure 16. Another

part of the explanation lies in the correlation between suppression of vortex shedding and

zero limit-cycle amplitude. Indeed, figure 17(a) pertaining to a control cylinder located

at xc = (1.2, 1.0) shows that the control affects not only the threshold of instability, but

also the structure of the bifurcation, with a small diameter d = 0.02 yielding a classical

supercritical bifurcation, but the larger diameter d = 0.1 yielding an unexpected sub-

critical bifurcation (which has been assessed rigorously from DNS calculations and from

weakly nonlinear analysis, besides the present self-consistent results). This is because

the induced mean flow distortion is destabilizing for small amplitudes of the eigenmode

amplitude. This is best seen from the evolution of σ as the amplitude A is increased from

zero in figure 17(b), where the base flow is initially turned into an increasingly unstable

mean flow. For sufficiently large amplitudes A & 0.7, the nonlinearity becomes stabi-

lizing again and the mean flow is increasingly stabilized, up to the point where neutral

stability is achieved. In contrast, for d = 0.02, the mean flow distortion is exclusively

stabilizing and the growth rate decreases monotonically to zero. Such an effect is local

in the sense that for the same diameter d = 0.1, the bifurcation remains supercritical at

both positions xc = (0.8, 1.6) and (1.0, 0.7) documented in figure 15. Even though, the

existence of such a fold catastrophe severely impacts the identification of the stabilizing

regions because it implies that the limit-cycle amplitude needs not be zero at the critical

Reynolds number. Such results suggest that the base flow approach is best suited to

predict the suppression of vortex shedding because it allows to correlate the quenching

of the instability to zero temporal growth rate (Strykowski & Sreenivasan 1990; Marquet

et al. 2008a). Of course, this is true only if vortex shedding can be suppressed at moder-

ate control amplitudes, otherwise nonlinear effects will alter the predictions in a similar
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Figure 17. (a) Limit-cycle amplitude for control by a cylinder at xc = (1.2, 1.0). Note the

change in the bifurcation structure from supercritical for d = 0.02 (blue line) to subcritical - as

evidence by the closeup - for d = 0.1 (red line). (b) Leading growth rate of the mean flow as a

function of the amplitude. For both cylinder diameters, the results have been normalized by the

growth rate computed for A = 0.

fashion. In contrast, the present approach is best suited to guide proper control strategy

meant to alleviate finite-amplitude vortex shedding at Reynolds number well above the

instability threshold, which constitutes a promising achievement in view of controlling

efficiently turbulent flows at practically meaningful high Reynolds numbers.

5. Conclusion

We use the adjoint method to compute sensitivity maps of the limit-cycle frequency

and amplitude in the cylinder wake flow above onset of the Bénard-von Kármán vortex

street. All calculations are performed in the frame of the semi-linear self-consistent model

recently introduced by Mantič-Lugo et al. (2014), which allows to describe accurately the

effect of the control on the mean flow, but also on the finite-amplitude fluctuation that

couples back nonlinearly onto the mean flow via the formation of Reynolds stress. The

approach is valid as long as the self-consistent theory applies, which requires the limit-

cycle of the controlled flow to be close to harmonic. It provides a valuable alternative
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to time-marching adjoint methods such that used by Luchini et al. (2009) to derive the

sensitivity of the limit-cycle frequency.

The wavemaker regions responsible for the selection of the nonlinear frequency and

amplitude are identified from the effect of a localized feedback proportional to the flow

velocity. We also apply the method as a systematic guideline to insert a small secondary

circular cylinder, whose presence in the flow is modeled by a reacting force localized at the

same location where the control cylinder is placed, equal and opposite to the anticipated

drag. In doing so, we predict well not only the frequency measured experimentally by

Strykowski & Sreenivasan (1990), but also the fluctuation amplitude extracted from

in-house DNS calculations. However, the method has difficulty in predicting complete

suppression of vortex shedding because non-small control amplitudes can change the

underlying bifurcation structure from supercritical to subcritical, which challenges the

interpretation of flow stabilization in terms of the self-consistent variables. The approach

however serves as a relevant source of information in view of controlling finite-amplitude

vortex at Reynolds numbers well above the instability threshold, which cannot be done

using the base and mean flow approaches.

It remains to be seen whether the scope of the method can be extended to turbulent

flow regimes. The stability analysis of turbulent mean flows is a common practice, see Piot

et al. (2006); Meliga et al. (2009b); Hwang & Cossu (2010); Marquillie et al. (2011); Iungo

et al. (2013) among others. The approach generally relies on the triple decomposition of

Reynolds & Hussain (1972), so that two levels of mean flow-perturbations are involved.

So far, most efforts have focused on the role of the incoherent small-scale turbulence

modelled by an eddy viscosity, ranging from simple models in which the eddy viscosity

is used only in the mean flow computation (Butler & Farrell 1993) or in the mean flow

and the stability computations (del Álamo & Jiménez 2006; Pujals et al. 2009; Mettot



Self-consistent sensitivity analysis of finite amplitude vortex shedding 41

et al. 2014) to a fully coupled approach involving the linearisation of the eddy viscosity

model (Meliga et al. 2012b; Viola et al. 2014). Concerning the description of the coherent

structures, only the mean flow approach has been used so far, i.e. with no feedback of

the coherent structures onto the mean flow via the induced Reynolds stress. Promising

results have been obtained by doing so, in particular sensitivities have been determined in

good qualitative agreement with the experiments (Meliga et al. 2012b). Still, the present

results using the self-consistent approach clearly demonstrate that there remains room for

improvement. Because coherent structures are transferring energy to small scales, they

are non-monochromatic and whether the present self-consistent model can be generalized

to turbulent regimes remains an open issue.

This work is supported by the Investissements d’Avenir French Government program,

managed by the French National Research Agency (ANR) through the A*MIDEX grant

(ANR-11-IDEX-0001-02) and the LABEX MEC project (ANR-11-LABX-0092).

Appendix A. Sensitivity of the limit-cycle frequency

A.1. Numerical method

The self-consistent adjoint system governing the sensitivity of the limit-cycle frequency

has been written in section 3.1 as

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (A 1a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
, (A 1b)

(u† |u) = −(α† + i)/2A , (A 1c)

(U† |ψ(u)) = 0 . (A 1d)
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Before we proceed, it is convenient to start from the uncoupled adjoint system

L†(Um)U† = −2ℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (A 2a)

(σ − iω)u† + L†(Um)u† = 0 , (A 2b)

identical to that showing up in the mean flow approach (except that Um denotes here the

self-consistent, not time-averaged, mean flow). In the following, we denote by (U†
i ,u

†
i )

the solution to (A 2) with normalization condition

(u†
i |u) = −i/2 , (A 3)

physically representing the sensitivities of the frequency ω to steady and fluctuating body

force, and by (U†
r,u

†
r) the solution with normalization condition

(u†
r |u) = 1/2 , (A 4)

hence such that u†
r = −iu†

i , and representing the sensitivities of the growth rate σ.

The self-consistent adjoint fluctuation u† is solution to the forced eigenvalue prob-

lem (A1b) and can thus be decomposed into the sum of homogeneous and particular

solutions according to

u† = γru
†
r + γiu

†
i + u†

p = (γi − iγr)u
†
i + u†

p , (A 5)

where γr and γi are two (unknown) real coefficients, and the particular solution u†
p is by

construction such that

(u†
p |u) = 0 . (A 6)

The value of γr and γi deduces from the normalization condition (A 1c) as γr = −α†/A

and γi = 1/A. Because the adjoint mean flow equation is linear in the adjoint variables,

its solution U† can be decomposed similarly into

U† = AγrU
†
r +AγiU

†
i +U†

p = −α†U†
r +U

†
i +U†

p , (A 7)
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where U†
p is solution to the forced linear equation

L†(Um)U†
p = −2Aℜ

(
u†∗
p · ∇uT − u · ∇u†∗

p

)
, (A 8)

and the compatibility condition (A 1d) imposes that

α† =
(U†

i +U†
p |ψ(u))

(U†
r |ψ(u))

. (A 9)

In practice, solving system (A1) requires to compute all uncoupled adjoint fields

U†
r,u

†
r,U

†
i ,u

†
i and to initialize U† to any guess value. We then compute u† solving

the adjoint fluctuating equation, deduce the particular solution u†
p from the so-obtained

numerical solution as

u†
p = u† − (u† |u)

(u†
i |u)

u
†
i , (A 10)

and compute U†
p from equation (A 8). The value of α† follows from (A 9), which allows

to substitute both u† and U† with their developments (A 5)−(A 7). This repeats until

the the difference between two consecutive iterations is less than 10−12 in L2 norm (for

both U† and u†), which requires to under-relax the corrections made at each iteration.

A.2. Validation

We return to the localized feedback force (3.15) introduced in section 3.2 for validation

purposes of our sensitivity calculations. In figure 18, we compare the self-consistent limit-

cycle frequency, computed in the frame of the current sensitivity analysis as ω + δω,

to its semi-linear counterpart obtained solving system (3.1) for several values of the

feedback amplitude b1 = b2 = b. Results reported at Re = 100 for two feedback locations

xc = (1.6, 0.5) and (1.0, 0.8) show that the linear sensitivity predictions (red solid lines)

and the semi-linear values (red symbols connected by the dashed lines) superimpose one

on the other for the smallest feedback amplitudes, which validates the analysis and the

accuracy of the computed sensitivity functions since the effect of the control is then linear.
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Figure 18. Limit-cycle frequency for control by the localized feedback defined by (3.15) -

Re = 100. The solid lines indicate linear predictions computed in the frame of the present

sensitivity analysis from (3.17). The symbols connected by the dashed lines stand for semi-linear

values obtained solving the self-consistent system for the controlled flow. The variation induced

by the mean and fluctuating feedback forces are shown by the black and blue lines. The total

variation is shown by the red lines. (a) xc = (1.6, 0.5). (b) xc = (1.0, 0.8).

The agreement remains satisfying up to moderate feedback amplitudes of order b ∼ 0.01,

whereupon nonlinearities come into play. This results in increasing discrepancies, the

effect of the control being systematically overestimated by the sensitivity analysis. We

also report in figure 18 the linear sensitivity predictions obtained retaining either the

mean (black lines) or the fluctuating (blue lines) feedback, as well as the corresponding

semi-linear values obtained solving system (3.1) with either b2 or b1 to zero (black/blue

symbols). The same excellent agreement is observed for the smallest feedback amplitudes.

For both positions, both components of the feedback are cooperative in the sense that

they induce variations of the same sign (negative). At xc = (1.6, 0.5), the mean and

fluctuating components of the feedback contribute almost equally to the total variation

(figure 18(a)). Conversely, at xc = (1.0, 0.8), the contribution of the fluctuating feedback

is much weaker and the total variation is almost entirely due to the mean component

(figure 18(b)).



Self-consistent sensitivity analysis of finite amplitude vortex shedding 45

0 0.01 0.02 0.03 0.04 0.05 0.06
4.6

4.7

4.8

4.9

b

A2

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
4.7

4.8

4.9

5

5.1

5.2

b

A2

(b)

Figure 19. Same as figure 18 for the limit-cycle amplitude.

Appendix B. Sensitivity of the limit-cycle amplitude

B.1. Numerical method

The self-consistent adjoint system governing the sensitivity of the limit-cycle amplitude

has been written in section 4.1 as

L†(Um)U† = −2Aℜ
(
u†∗

· ∇uT − u · ∇u†∗
)
, (B 1a)

A[(σ − iω)u† + L†(Um)u†] = −A2
(
U†

· ∇uT − u · ∇U†
)
+A2u , (B 1b)

(u† |u) = −α†/2A , (B 1c)

(U† |ψ(u)) = 1 . (B 1d)

The method used to solve system (B 1) is identical to that presented in Appendix A.1.

The only differences are in the value of the γr and γi coefficients, now deduced from the

normalization condition (B 1c) as γr = −α†/A and γi = 0, and in the new compatibility

condition (B 1d) yielding

α† =
−1 + (U†

p |ψ(u))
(U†

r |ψ(u))
. (B 2)

B.2. Validation

In figure 19, we compare the self-consistent limit-cycle amplitude, computed in the frame

of the current sensitivity analysis as A2 + δA2, to its semi-linear counterpart obtained
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solving system (3.1) for the same feedback amplitudes. Results are reported at Re = 100

for the same positions xc = (1.6, 0.5) and xc = (1.0, 0.8) considered in appendix A.2.

The linear sensitivity predictions and the semi-linear values superimpose again one on the

other for the smallest feedback amplitudes, which validates the analysis and the accuracy

of the computed sensitivities. Similar to the frequency, the sensitivity analysis provides

a good estimate of the amplitude in the linear range b . 0.01, whereupon nonlinear

effects set in and the variation induced by the control is systematically overestimated.

This suggests that nonlinearities tend to cushion the effect of the control on both the

frequency and the amplitude. We also show in figure 19 the results obtained retaining

either the mean or the fluctuating part of the feedback, which follow the same general

behavior. For both positions, these two components are competitive in the sense that

they induce variations of opposite signs. At xc = (1.6, 0.5), both contributions are of the

same order of magnitude, but the overall decrease in the amplitude is due to the effect

of the fluctuating feedback being larger (figure 19(a)). Conversely, at xc = (1.0, 0.8),

the contribution of the fluctuating part is much weaker and the total variation is driven

almost entirely by the mean feedback (figure 19(b)).
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