A nickel iron diselenide-derived efficient oxygen-evolution catalyst

Efficient oxygen-evolution reaction catalysts are required for the cost-effective generation of solar fuels. Metal selenides have been reported as promising oxygen-evolution catalysts; however, their active forms are yet to be elucidated. Here we show that a representative selenide catalyst, nickel selenide, is entirely converted into nickel hydroxide under oxygen-evolution conditions. This result indicates that metal selenides are unstable during oxygen evolution, and the in situ generated metal oxides are responsible for their activity. This knowledge inspired us to synthesize nanostructured nickel iron diselenide, a hitherto unknown metal selenide, and to use it as a templating precursor to a highly active nickel iron oxide catalyst. This selenide-derived oxide catalyses oxygen evolution with an overpotential of only 195 mV for 10 mA cm(-2). Our work underscores the importance of identifying the active species of oxygen-evolution catalysts, and demonstrates how such knowledge can be applied to develop better catalysts.

Published in:
Nature Communications, 7, 12324
London, Nature Publishing Group

 Record created 2016-10-18, last modified 2018-01-28

External links:
Download fulltextPublisher's version
Download fulltextn/a
Rate this document:

Rate this document:
(Not yet reviewed)