Pd-Nanoparticles Confined Within Hollow Polymeric Framework as Effective Catalysts for the Synthesis of Fine Chemicals

Encapsulation of metal nanoclusters in porous solid polymer materials is a promising approach to combine the outstanding properties of both, heterogeneous and homogeneous catalysts. We report heterogeneous nano-engineered catalysts containing Pd-nanoparticles (NPs) confined within highly-porous hollow polymeric framework of hyper cross-linked polystyrene (HPS). HPS with different surface functionalities (amine vs. sulfonate) were used for impregnation by Pd precursors of different nature and followed by a variety of catalyst post-treatments. The catalysts have been tested in two model key reactions for the synthesis of fine chemicals: selective hydrogenation of 2-methyl-3-butyne-2-ol to 2-methyl-3-butene-2-ol (MBE) and Suzuki cross-coupling of 4-bromoanisole with phenylboronic acid. Optimization of the Pd/HPS preparation and reaction conditions allowed attaining high selectivity (similar to 99 %) to target MBE at close to full conversion. For Suzuki cross-coupling more than 90 % yield of coupling product was obtained under mild reaction conditions and the absence of phase transfer agent. Our results demonstrate the potential of HPS as a suitable support for tailoring metal NPs properties and circumvent undesirable metal leaching.

Published in:
Topics In Catalysis, 59, 13-14, 1185-1195
New York, Springer/Plenum Publishers

 Record created 2016-10-18, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)