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Abstract

The high temperature behavior of solute strengthening has previously been treated approximately
using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-
dependent energy barrier ∆E (τ) versus stress τ . Here, a parameter-free solute strengthening
model is extended to high temperatures/low stresses without any a priori assumptions on the
functional form of ∆E (τ). The new model predicts that the well-established low-temperature,
with energy barrier ∆Eb and zero temperature flow stress τy0, transitions to a near-logarithmic
form for stresses in the regime 0.2 < τ/τy0 ≤ 0.5 and then transitions to a power-law form at
even lower stresses τ/τy0 < 0.03. ∆Eb and τy0 remains as the reference energy and stress scales
over the entire range of stresses. The model is applied to literature data on solution strength-
ening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most
importantly, the model accurately captures the transition in strength from the low-temperature
to intermediate-temperature and the associated transition for the activation volume. Overall,
the present analysis unifies the different qualitative models in the literature and, when coupled
with the previous parameter-free solute strengthening model, provides a single predictive model
for solute strengthening as a function of composition, temperature, and strain rate over the full
range of practical utility.

1. Introduction

Computational and theoretical materials science are powerful tools that can help develop
design guidelines in the search for materials with improved performance. In particular, theoretical
models that can give quantitative predictions at finite temperatures and experimental time scales
provide the key connection between properties extracted from atomistic simulations and material
behavior relevant in engineering applications [1–4]. Such models also provide a clear mechanistic
understanding for observed macroscopic phenomena, and are able to replace phenomenology that
does not have predictive capability.

One general domain of interest in metallurgy is that of “solute strengthening”, i.e. the addition
of solutes to a matrix to enhance the plastic flow/yield stress. Solute strengthening is a thermally-
activated process, and so finite-temperature/finite-strain rate solute strengthening is controlled
by the energy barriers to dislocation motion, created by the solutes, that are overcome with
the assistance of temperature and stress. The energy barrier ∆E (τ) at a stress τ must thus be
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described accurately to achieve quantitative predictability. At low temperatures, for fcc materials,
the stress-dependent energy barrier takes the general form [5],

∆E (τ) = ∆Eb

[
1−

(
τ

τy0

)]3/2
, (1)

where ∆Eb is the characteristic energy barrier, τ is the resolved shear stress and τy0 is the zero-
temperature yield stress. A recent model gives parameter-free predictions for ∆Eb and τy0 as a
function of solute types and solute concentrations [6, 7] that are in good agreement with various
experimental results. Mechanistically, solute strengthening arises because the dislocation adopts
a wavy character with some characteristic wavelength ζc and characteristic amplitude wc that
allows the dislocation to find statistically-favorable regions of solute fluctuations that lower the
overall energy of the dislocation. The random statistics of the solutes, the solute/dislocation
interaction energies, and the dislocation line tension uniquely determine the scales ζc and wc,
from which ∆Eb and τy0 are derived (see Sec. 2).

With increasing temperature (corresponding to lower flow stresses), Labusch and also Zaiser
note that the dislocation can become wavy on larger scales, finding even lower-energy configura-
tions that have larger barriers that control the plastic flow. Labusch et al. estimated that ∆E (τ)
increases logarithmically with decreasing stress τ as ∆E (τ) ∝ ∆Eb ln(τy0/τ) [8] while Zaiser pro-
posed a power-law scaling of the energy ∆E (τ) ∝ ∆Eb(τy0/τ)α [9] with 1/7 < α < 2/5. Despite
these scaling arguments, the high temperature/low stress behavior of ∆E (τ) has never been ex-
plicitly calculated, never been related directly to the low-temperature energy and stress scales,
nor have the regimes of “high temperature” or “low stress” been clearly quantified. In this paper,
we extend our previous solute strengthening model [6, 7] valid at “low temperature/high stress”
to the “high temperature/low stress” regime. We show that an analytic model predicts that the
energy barrier can be well-approximated by a logarithmic form over the range 0.2 < τ/τy0 ≤ 0.5
with a transition to a power-law form at even lower stresses τ/τy0 ≤ 0.03, with ∆Eb as the ref-
erence energy across all regimes. We then show that the predictions of the new model are in
good agreement with literature experiments, in particular capturing the transition in strength
and activation volume with increasing temperature and/or decreasing strength.

2. Solute strengthening at low-temperatures: single-scale bow-out

We first review the major salient results of our solute strengthening model [6, 7] from which
follow the new analyses that extend the model to high temperatures.

The input to the model is the solute/dislocation interaction energy U(xi, yj) for a solute
located at position (xi, yj) relative to the center of the dislocation core, where x is the glide
direction, y normal to the slip plane, and z is the dislocation line direction. The model then
envisions an initially straight dislocation of length L exists in a field of randomly distributed
solutes with concentration c. This dislocation is then able to bow out into a wavy configuration
in the glide plane to lower its overall energy by residing in regions of where the statistical solute
fluctuations lead to net binding of the solutes and the dislocation. The waviness has a cost,
however, due to the increased dislocation line length, and so there is some optimal configuration.
A general configuration of the dislocation is defined by a wavelength ζ and roughening amplitude
w, and the the total energy change of the dislocation in this configuration compared to a straight
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dislocation is given by the elastic cost of bowing, proportional to the dislocation line tension Γ,
and the potential energy gain due to interactions with favorable solute configurations,

∆Etot(w, ζ) =

[(
Γ
w2

2ζ

)
−
(
cζ√
3b

) 1
2

∆Ẽp (w)

]
·
(
L

2ζ

)
. (2)

The term ∆Ẽp(w) is the change in energy, per unit length, of a straight segment of dislocation as
it moves a distance w through the solute field,

∆Ẽp (w) =

[∑
ij

(U(xi − w, yj)− U(xi, yj))
2

] 1
2

. (3)

The characteristic dislocation wavelength ζc and amplitude wc are found by minimizing the total
energy of the dislocation line. Minimizing Eqn. (2) with respect to ζ yields

ζc(w) =

(
4
√

3
Γ2w4b

c∆Ẽ2
p(w)

) 1
3

. (4)

Substituting Eqn. (4) into Eqn. (2), and then minimizing with respect to w gives the character-
istic roughening amplitude wc and characteristic energy ∆Ec = ∆Etot (wc, ζc(wc)) / (2ζc/L); this
minimization must usually be performed numerically.

The characteristic energy barrier ∆Eb for the trapped dislocation segments of length ζc is
related to the characteristic energy ∆Ec as (see Ref. [7])

∆Eb =

(
4
√

2− 1

3
· 35/6

25/3

)(
cw2

cΓ∆Ẽ2
p(wc)

b

) 1
3

. (5)

For a locally-sinusoidal energy landscape with barrier height ∆Eb located wc away from the
minimum, the work done on the dislocation segment by an applied stress τ over a distance x tilts
the energy landscape and reduces the barrier. At a critical stress, the barrier becomes zero, so
that flow requires no thermal activation. This critical stress is the zero-temperature yield stress,
and is given by

τy0 =
π

2

∆Eb
bζc(wc)wc

= 1.01

(
c2∆Ẽ4

p(wc)

Γb5w5
c

) 1
3

, (6)

The stress-dependent energy barrier for this energy landscape can then be written in the form
of Eq. (1). Using Orowan’s law and an Arrhenius model for the thermal activation, the finite-
temperature, finite-strain-rate yield stress τ is then obtained by solving

∆E(τ) = kBT ln
ε̇◦
ε̇
, (7)

where kB is the Boltzmann constant, T is the temperature, ε̇ is the strain rate and ε̇◦ is the
reference strain rate, typically ranging from 104–106 s−1. This completes the general theory for
solute strengthening.
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Specific applications of the model require the solute/dislocation interaction energy versus
solute position, U(xi, yj). For simplicity and generality, in this paper we use only the elastic
interaction energy due to the interaction of the solute misfit volume ∆vm with the dislocation
pressure field p(xi, yj), U(xi, yj) = −p(xi, yj)∆vm. We also use a simple spread-core model for the
dissociated edge dislocation in an fcc matrix. The solute-dislocation interaction energy is then
given by

U (xi, yj) = − (1 + ν)µ

3π (1− ν)

b

n+ 1

n/2∑
l=−n/2

yj∆vm[
xi − l

(
b
2

)]2
+ y2j

, (8)

where ν is the Poisson ratio, µ is the shear modulus, b is the Burgers vector, and the core
width is n = 10 corresponding to the core width in aluminum. The general results of this
paper are unchanged when more-detailed descriptions of the solute-dislocation interaction energy
(i.e., considering the chemical interaction between solutes and the stacking fault, using a Peierls-
Nabarro description of the dislocation core) are used.

An important additional feature of the above model is that the minimization of the total
energy of dislocation in a random solute field may have multiple solutions. Whether or not this
occurs depends on the details of the solute/dislocation interactions and including the dislocation
structure. In an Al matrix, only one solution is found. For basal slip in Mg, however, where the
low stacking fault energy leads to a wider dissociation distance of the two partial dislocations,
two solutions emerge. One solution has a high strength and low energy barrier, and controls the
low-T strengthening, while the other solution has a lower strength but higher energy barrier and
controls the strength at high-T. One cannot determine how many solutions exist without precise
results. Here, we focus on the low-T solution and extend the analysis to higher temperatures
but recognize that the existence of other energy-minimizing solutions could also contribute or
determine the strengthening at higher temperatures.

3. Solute-strengthening at elevated temperatures: multiscale bow-out

The previous analysis minimizes the total energy of the dislocation by allowing it to bow
out with a single set of length scales w and ζ. However, the dislocation can reduce its energy
further by bowing out over multiple length scales, and thus taking advantage of larger-scale solute
fluctuations. Fig. 1 shows a schematic of the multiscale bowout, using a simple sinusoid for the
wavy dislocation at each scale. To start, consider that the dislocation can bow out over two
length scales ζ1 and ζ2. We assume that the two scales are well separated (i.e. ζ2 � ζ1), such
that the total line length is well-approximated by the sum of the two line lengths. The change in
total energy has contributions from both scales [10],

∆Etot = ∆Ebow
1 (w1, ζ1) + ∆Etot

2 (w2, ζ2), (9)

The contribution at the smallest scale, ∆Ebow
1 (w1, ζ1), is precisely the low-temperature theory,

with minimized energy at wc,1 = wc and ζc,1 = ζc. The additional energy at the second scale
again has two terms. There is an additional line length (w2 − wc,1)

2/2ζ2 per 2ζ2 that costs
elastic energy according to the line tension. There is also, however, an additional potential
energy corresponding to larger-scale solute fluctuations. This energy should not include the
energy of fluctuations already contained at the smaller scale wc,1, however. Therefore, the energy
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Figure 1: Schematic representation of the multi-scale bow-out configuration (bold black line) for three scales of
bow-out (dashed lines), using a simple sinusoid to represent the bow-out at each scale.

contribution ∆Etot
2 (w2, ζ2) is

∆Ebow
2 (w2, ζ2) =

[(
Γ

(w2 − wc,1)2
2ζ2

)
−
(
cζ2√

3b

) 1
2 (

∆Ẽp (w2)−∆Ẽp (wc,1)
)]
·
(
L

2ζ2

)
. (10)

Generalizing the above result, the dislocation can bow out over an arbitrary number of scales
(e.g. Fig. 1). The total energy change can then be expressed as ∆Etot =

∑
i ∆E

bow
i where

∆Ebow
i (wi, ζi) =

[(
Γ

(wi − wc,i)2
2ζi

)
−
(
cζi√
3b

) 1
2 (

∆Ẽp (wi)−∆Ẽp (wc,i−1)
)]
·
(
L

2ζi

)
. (11)

with wc,0 = 0 and ∆Ẽp (w0) = 0. The total dislocation energy is minimized by minimizing
the additional energy at each successive bow-out scale, i.e. minimizing Equation (11) at fixed
wc,i−1, ζc,i−1 to give the characteristic length scales wc,i, ζc,i. The resulting relationship between
ζc,i and wc,i is shown in Fig. 2, and approximately follows a power-law. Fig. 2 shows the first four
length scales but in practice only the first few configurations are relevant at temperatures below
the metal melting point. We note that truncating the solute/dislocation interaction energies would
limit the number of bowout scales, and so the robust scaling here emerges from considering the
long-range nature of the solute/dislocation interactions. Generalizing the scaling to continuous
values of w and ζ, the power-law is

ζ (w)

ζc
=

(
w

wc

)φ
, (12)

where wc and ζc now refer exclusively to the lowest scale, low-temperature values. The roughening
exponent φ = 1.47 is very close to the value 3/2 estimated in previous literature for related but
not identical problems [9, 11] and using very different scaling arguments.

The above analysis shows that the dislocation can minimize its total energy by adopting
multiple bowouts at scales (wc,i, ζc,i), However, to reach the larger-scale bowout configurations
requires overcoming increasingly large energy barriers; this was a key general insight by Labusch
that we quantify within the context of our model. Specifically, kinetic considerations prevent
the dislocation from reaching the successive configurations corresponding to the global energy
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Figure 2: Characteristic wavelength ζc,i versus characteristic roughening amplitude wc,i for the multiple bow-out
model (solid symbols). Dashed line: power law fit with roughening coefficient φ = 1.47.

minima. However, the dislocation can lower its total energy by bowing out over kinetically-
accessible additional length scale(s), even if it is unable to reach the global minimum. We now
pursue this idea quantitatively.

Following the general analysis above, we now consider two-level bow-out with the second level
having a continuous range of possible bow out scales. That is, we consider bow-out at wc,1 = wc,
ζc,1 = ζc and at a second level w > wc and ζ > ζc. At any w > wc, we minimize the energy with
respect to ζ by using the scaling relation of Eqn. (12) for ζ(w). The additional energy reduction
by adding this second scale is

∆Ebow
2 (w2, ζ2) =

[(
Γ

(w2 − wc)2
2ζ2

)
−
(
cζ2√

3b

) 1
2 (

∆Ẽp (w2)−∆Ẽp (wc)
)]
·
(
L

2ζ2

)
. (13)

Figure 3 shows that indeed the energy is reduced steadily with increasing w2 until the energy
reaches the minimum at w2 = wc,2. The dislocation therefore evolves to increase w2, with ζ2
evolving according to the scaling law, and minimizes its total energy.

However, exploring increasing w2 requires overcoming energy barriers. For bow-out at a given
(ζ2, w2), the corresponding energy barrier and zero-temperature strength are

∆Eb (w2) =

(
2cζ (w2)√

3b

) 1
2

∆Ẽp (w2)−
(

Γ
w2

2

2ζ (w2)

)
, (14)

and

τy0 (w2) =
π

2

∆Eb (w2)

bζ (w2)w2

. (15)

At a given applied stress τ , the evolution of the dislocation toward larger w2 is impeded by the
maximum barrier encountered. Flow, i.e. motion of the dislocation, is then controlled by the
rate at which the dislocation can overcome this maximum barrier. At a given τ , the barrier
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/Å

)

w2/wc

Figure 3: Total energy change of a dislocation versus bow-out amplitude at a second scale, for two-scale bow-out
with the characteristic length ζ2 determined by Eqn. (12). Open circle: minimum energy point at wc = wc,2.

versus w2 is computed using the above equations and the results are shown in Figure 4, with
the maximum barrier at each stress level indicated. At high stresses τ/τy0 > 0.5, the maximum
barrier is at wc, i.e. the single-level bow-out solution determines the flow behavior. Although the
total energy of the dislocation could be decreased by introducing w2, the dislocation is only able
to move over the original barrier at scale wc and so cannot access the larger fluctuations. With
decreasing stress, the maximum barrier occurs at increasing w2 > wc. Thus, at lower stresses,
the dislocation adopts a second scale of waviness that lowers the total energy, but increases the
energy barrier for flow. Once w2 = wc,2, the dislocation can then bow-out at a third scale w3,
further minimizing the total energy but kinetically limited by an ever-increasing energy barrier;
the analysis is similar to that presented just above. The theory here thus provides a quantitative
calculation of the controlling energy barrier as a function of the stress τ .

By considering a continuous range of stresses τ , we can compute the maximum, controlling,
barrier as a function of τ , as shown in Fig. 5. Consistent with Fig. 4, the energy barrier
is monotonically increasing with decreasing stress. For reference, Fig. 5 also shows the energy
barrier for the single-scale bow-out model, which is valid at high stresses (τ/τy0 > 0.5). Thus, as
postulated in our original work, the single-scale minimum total energy configuration for the wavy
dislocation corresponds to the largest barrier at stresses near the zero-temperature yield stress
τy0. However, we now see that the barrier increases even faster at lower stresses, with deviations
from the low-temperature/high-stress model at τ/τy0 < 0.5.

Examining the multiscale bow-out prediction in Fig. 5, we find that the energy barrier versus
stress can be well-approximated by a logarithmic relationship

∆E (τ) = Cl∆Eb ln
(τy0
τ

)
(16)

at intermediate stresses 0.2 < τ/τy0 < 0.5 with the constant Cl = 0.55. Here, and for the rest
of this paper, ∆Eb and τy0 refer to the characteristic energy barrier and the zero-temperature
yield stress of the minimum energy single-scale bow-out configuration. As mentioned earlier,
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Figure 4: Energy barrier ∆E (τ) versus second-scale bow-out amplitude w2, for various applied stresses. Open
circles: maximum energy barrier at each stress.

the logarithmic form was first proposed by Labusch [8] with a similar physical rationale but less
quantification. The value Cl = 0.55 differs slightly from the value 0.51 we have used previously
[6, 7, 12] because in the earlier work we simply assumed a Labusch-type model and fit a logarithmic
model to match the low-temperature model over the range 0.3 < τ/τy0 < 0.6. The new value
of 0.55 provides an accurate fit to our new derived model in the range of 0.2 < τ/τy0 < 0.5,
where the low temperature solution begins to fail. Using the logarithmic model with coefficient
0.55 at larger stresses 0.5 < τ/τy0 slightly overestimates the barrier and thus overestimates the
strength relative to the accurate low-temperature predictions, but only by at most 6.4% so that
the logarithmic form with Cl = 0.55 can provide a single model with good accuracy over a wide
range of stress.

Furthermore, at lower stresses (τ/τy0 < 0.2), the logarithmic model underestimates the energy
barrier predicted by the full multiscale bow-out model, which predicts a gradual transition to a
power-law scaling. At stresses (τ/τy0 < 0.03), the transition to a power-law is essentially complete
and the scaling of the energy barrier can be well-approximated as

∆E (τ) = Cp∆Eb

(τy0
τ

)ϕ
, (17)

where Cp = 0.52 and ϕ = 0.54. A similar power-law relationship was proposed by Zaiser [9]
using scaling arguments for the relationship between w and ζ. However, Zaiser only estimated
the power-law exponent as ϕ = 0.25. Here, the power-law form emerges as the very low-stress
limit of a multiscale bow-out analysis.

Overall, the new multiscale bow-out model reconciles all the functional forms for solid solution
strengthening versus temperature proposed in the literature and clearly identifies the regimes
where each form is valid/useful. The analysis also demonstrates that the energy barrier and
strength scale with the single-scale bow-out model energy barrier Eb and zero-temperature yield
stress τy0. Therefore, predictions over the entire range of stress and temperature emerge from
quantities computed in the original predictive solute strengthening model.
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Figure 5: Energy barrier ∆E (τ) versus applied stress τ . Red line: full multiscale bow-out model; Black line:
low temperature model; Dashed line: intermediate temperature model (logarithmic form); Dashed-dot line: high
temperature model (power law form).

4. Solute strengthening at high temperatures: predictions

We now demonstrate that the predictions of the multiscale bow-out model explain detailed
trends in the long-standing experimental literature on solid solution strengthening. Experiments
measure the yield stress and/or the activation volume as a function of the temperature, the im-
posed strain rate, and the alloy composition. The full solute strengthening theory provides values
for the concentration-scaled energy barrier Eb/c

1/3 and concentration-scaled zero-temperature
yield strength τy0/c

2/3 for a matrix with a concentration c of one solute type. As noted earlier,
we envision only one solution, and thus one combination of (Eb/c

1/3, τy0/c
2/3), being predicted by

the model. Some materials may have multiple solutions that further affect the strength at higher
T. Generalization to multiple solutes is straightforward but here we consider binary alloys only.

Given the energy barrier and zero-T strength, we use the standard Arrhenius model as in
Section 2 to compute desired quantities. The full solution over the entire temperature range is
numerically calculated. The analytic functional forms permit approximate analytic solutions over
the relevant domains of applicability. Specifically, using Eqns. (7), (16), and (17), we obtain the
approximate finite temperature yield stress as

τy (T ) =



τy0

[
1−

(
kBT

∆Eb
ln
ε̇◦
ε̇

) 2
3

]
τy/τy0 > 0.5, (18)

τy0 exp

(
− 1

Cl

kBT

∆Eb
ln
ε̇◦
ε̇

)
0.2 < τy/τy0 < 0.5, (19)

τy0

(
1

Cp

kBT

∆Eb
ln
ε̇◦
ε̇

)− 1
ϕ

τy/τy0 < 0.03, (20)

(21)

The activation volume V = −∂∆E/∂τ is obtained by taking the indicated derivatives with respect
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Table 1: Normalized characteristic energy barrier and normalized zero temperature yield stress for various copper
alloys, as obtained by fitting to experiment for each alloy, Cu-Al [13]; Cu-Ge and Cu-Mn [14].

Solute Al Ge Mn

∆Eb/c
1/3 (eV) 3.96 3.02 4.11

τy0/c
2/3 (MPa) 187.3 227.2 416.8

to τ . For the approximate analytic models, the activation volumes are

V (τy, T ) =



3

2

∆Eb
τy0

(
kBT

∆Eb
ln
ε̇◦
ε̇

) 1
3

τy/τy0 > 0.5, (22)

Cl∆Ebτ
−1
y 0.2 < τy/τy0 < 0.5, (23)(

ϕkBT ln
ε̇◦
ε̇

)
τ−1
y τy/τy0 < 0.03, (24)

The transition from logarithmic to power-law form in the stress range 0.03 < τ/|tauy0 < 0.2 can
be approximated by some interpolation; Fig. 5 indicates the differences between the approximate
and numerical results.

We now validate the model by comparing predictions to experimental data on copper alloys
containing Al [13], Ge and Mn [14] at various solute concentrations and temperatures. We do
not have all of the solute/dislocation interaction energies necessary to make full parameter-free
predictions, but this is not crucial since we are interested in the behavior versus temperature
and yield stress. Therefore, for each type of solute, the normalized characteristic energy barrier
∆Eb/c

1/3 and the normalized zero temperature yield stress τy0/c
2/3 are used as fitting parameters

obtained by a least-squares fit to all of the measured strengths over a range of compositions and
temperatures. The Peierls stress of pure Cu is neglected as small, reported by Basinski to be
0.198 MPa [13]. The values obtained for the normalized quantities range from 187 to 416 MPa
for τy0/c

2/3 and 3.02 to 4.11 eV for ∆Eb/c
1/3, and are summarized in Table 1. These are roughly

comparable to the values we have obtained for entirely different systems. For Al-X alloys (X=Mg,
Cu, Cr, Mn), τy0/c

2/3 = 137–711 MPa and ∆Eb/c
1/3 = 2.58–7.53 eV [6, 7] with the larger values

for Cr and Mn, which have very large volume misfits in Al. For basal slip in Mg-X (X=Al, Zn),
we obtain τy0/c

2/3 ∼ 223 MPa and ∆Eb/c
1/3 ∼ 1.92 eV [12] Thus, the fit parameters for the alloys

considered here are quite reasonable.
With the fitted quantities, the predictions of flow strength as a function of temperature and

composition using the full multiscale bow out model are shown in Fig. 6. The results for Cu-1%Ge
are very slightly underestimated by the model, but in all other cases the predictions are in excellent
agreement with the experimental data. Thus, the concentration-normalized energy barrier and
zero temperature strength parameters are sufficient to explain the strengthening behavior of these
alloys over a wide range of solute concentrations and temperature without the need to invoke any
other mechanisms. Also shown in Fig. 6 are the predictions of the low-temperature model The
experimental data clearly deviate from the low-temperature model generally around 300K, and
the deviation is captured well by the full model. The predictions of the logarithmic model with
the 0.55 coefficient are, as noted earlier, above the experiments at low temperature but coincide
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Figure 6: Yield stress versus temperature for various Cu-based alloys: (a) Cu-Al [13]; (b) Cu-Ge [14]; (c) Cu-Mn
[14]. Open symbols correspond to experimental measurements, bold solid lines are predictions of the full multiscale
bow out model using parameters shown in Table 1, and the dashed lines are predictions using the low-temperature
model.

with the full model at the higher temperatures. In these experiments, no transition toward the
power-law regime of Eqn.(21)) is evident nor is it expected based on the parameter values.

Further verification of the multiscale bow-out model is seen in the dependence of the activation
volume V on the yield stress τy. Figure 7 shows a log-log plot of the model predictions, using
the various approximate models to facilitate identification of transitions in form, along with the
experimental measurements for Cu-Al at two temperatures [13]. Due to the very low stresses
for some of these materials at 298K, we do account for the low but finite Peierls stress of pure
Cu at T=298K. At the low temperature of T = 78 K, the low-temperature model captures most
of the data well, qualitatively and quantitatively, but at the lowest strengths (corresponding to
low Al concentration alloys), there is a clear deviation from the low-T result toward a trend that
is well-captured by the logarithmic model. At the higher temperature of T = 298K, the low-T
model is poor over the entire range while the logarithmic model captures the trend well over
most of the range, although with a difference in magnitude that is typical of differences found in
previous applications of our model to Al alloys. At this higher temperature, the lowest strength
data also starts to show a more-rapid increase in the activation volume with decreasing strength.
This coincides with the regime in which the power-law model begins to control the predicted
activation volume; while the data is not sufficient to draw a strong conclusion, the emerging
trend is qualitatively captured by the present model.

The predicted activation volume versus temperature is also compared with experimental mea-
surements by Wille et al. [14] on the Cu-Mn and Cu-Ge alloys, as shown in Fig. 8. For both
alloy systems, the model predicts the correct scaling behavior of the activation volume at high
temperatures (i.e. lnV ∼ T ), clearly improving on the predictions of the low-T results. With
trends in strength and activation volume well-predicted by the model, the results of Wille et al.
are seen to be fully consistent with solute strengthening and there is no need to introduce possible
effects of solute clusters, as pursued by Wille et al., to rationalize the measured behavior. How-
ever, the predictions for activation volume are not quantitatively accurate, deviating by factors
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Figure 7: Activation volume V versus yield stress τy for Cu-Al alloys at (a) 78 K and (b) 298 K. Open symbols are
experimental measurements from Basinski et al. [13]. Solid line and dashed lines correspond to the full multiscale
bow out and low temperature model predictions, respectively. τpure is the yield stress of pure Cu.

of ∼ 1.3 and ∼ 1.6for Cu-Mn and Cu-Ge, respectively. Being a derivative of the energy barrier
versus stress, the activation volume is much subtle quantity, and deviations between theory and
experiment occur even in Al-X alloys. Thus, we emphasize that the model captures the trend
lnV ∼ T and defer quantitative differences until more detailed results can be obtained for solute
interactions with dislocations in Cu. In fact, the low fitted energy barrier for Cu-Ge and the low
stacking fault energy of Cu might suggest that a full analysis would reveal a second solution for
the equilibrium configuration (as found for Mg-Al and Mg-Zn [12]) which might also contribute
to the high-T strengthening and activation volume. Again, resolution of these questions awaits
more detailed analysis.

5. Summary

We have extended our previous single-scale bow-out model for low temperature solution
strengthening to account for larger-scale waviness of the dislocations that can take advantage
of larger-scale fluctuations in the random solute distributions. As a result of such fluctuations, it
is energetically favorable for the dislocation to undergo multiscale bow-out, creating a range of
energy barriers that control the thermally-activated dislocation motion at lower stresses or higher
temperatures. Our analytic model yields a scaling of the energy barrier versus stress that recon-
ciles different functional forms proposed in the literature, and provides the overarching framework
for predicting the domains where the different forms become apparent. We have validated the
model using literature data with the two key parameters fit for any given alloy, independent of
alloy concentration or temperature. The multiscale bow-out model captures the quantitative and
qualitative trends in both yield stress and activation volume measured in the experiments. Thus,
the new model provides a complete and predictive framework for solute strengthening over the
wide range of experimentally-relevant conditions.
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Figure 8: Activation volume V versus temperature T for (a) Cu-Ge and (b) Cu-Mn alloys at various concentrations.
Open symbols are experimental measurements from Wille et al. [14]. Solid line and dashed lines correspond to the
full multiscale bow out and low-temperature model predictions, respectively.
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