Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electro-catalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs. (C) 2016 Published by Elsevier B.V.


Published in:
Journal Of Power Sources, 328, 543-550
Year:
2016
Publisher:
Amsterdam, Elsevier Science Bv
ISSN:
0378-7753
Keywords:
Laboratories:




 Record created 2016-10-18, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)