Infoscience

Conference paper

Investigation of the micro-mechanical properties of femtosecond laser-induced phases in amorphous silica

Femtosecond pulses used in the regime where self-organized patterns are found have two noticeable effects in amorphous silica's (a-SiO2) optical and chemical properties: The decrease of the material's refractive index as well as an enhanced etching selectivity. However, the effect on the material mechanical properties is unexplored. In this paper, we present elastic modulus measurements of fused silica exposed to femtosecond laser pulses in the regime where nanogratings are found. The measurement principle is based on the use of femtosecond laser fabricated displacement amplification mechanism combined with a discrete stiffness model. In this laser exposure regime, a significant decrease of the elastic modulus is observed. Our findings are consistent with the existence of a porous structure found within nanogratings lamellas.

Fulltext

Related material