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1 Introduction
In this article, we introduce the notion of ext-int. one convex functions and study the structure of its a�ne
analogue. This class of functions arise naturally in the context of calculus of variations whenwe consider the
minimization problem for integrals of the form

I(ω) = ∫
Ω

f(dω, δω),

where 1 ⩽ k ⩽ n − 1, f : Λk+1 × Λk−1 → ℝ is continuous, Ω ⊆ ℝn is open, ω : Ω → Λk is a k-form, and d and
δ are the exterior derivative and the codi�erential operator, respectively. In particular, when k = 1, by iden-
tifying one-forms with vector fields, the minimization problem can be seen as one involving the curl and
the divergence, see [3, 6] and references therein. A subclass of the class of functions aforementioned above,
namely the class of ext. one convex functions, was first introduced in [1] to handle minimization problems,
where f depends only on the exterior derivative. In the same article, a characterization theoremwas obtained
for ext. one a�ne functions, see [1, Theorem 3.3]. To extend the framework to the case where f has explicit
dependence on the codi�erential as well, one needs to introduce the notion of ext-int. one convex functions
which play a role as crucial as that of ext. one convex functions in the aforementioned context.

The main goal of this article is to prove a characterization theorem for ext-int. one a�ne functions, see
Theorem 5.6. In the process, we also find a new proof of the theorem (cf. Theorem 5.1) that characterizes ext.
one a�ne functions. The new proof is more algebraic in spirit, constructive through a recursion and provides
a di�erent perspective on the result. Additionally, the technique we employ here to handle order-preserving
permutations of multiple number of orderedmulti-indices, in the course of the proof, is of independent value
and implicitly already played an important role in connecting the calculus of variations with forms with the
classical vectorial calculus of variations, see [2].
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The rest of the article is organized as follows. In Section 2, we collect the notations we have used
throughout the article. Section 3 introduces various classes of exterior convex functions, i.e., functions that
are convex with respect to the exterior structure. A few algebraic lemmas are proved in Section 4, which are
used in Section 5 to prove the main theorem that reads as follows.

Theorem 1.1. Let 1 ⩽ k ⩽ n − 1. Then, f : Λk+1 × Λk−1 → ℝ is ext-int. one a�ne if and only if there exist
cs ∈ Λ(k+1)s and dr ∈ Λ(n−k+1)r for all 0 ⩽ s ⩽ [ n

k+1 ], 0 ⩽ r ⩽ [ n
n−k+1 ] such that

f(ξ, η) =
[ n
k+1 ]

∑
s=0

⟨cs; ξ s⟩ +
[ n
n−k+1 ]

∑
r=0

⟨dr; (∗η)r⟩ for all ξ ∈ Λk+1, η ∈ Λk−1.

The aforementioned theorem has a curious implication. Note that we have nonlinearity in ξ and η if and only
if k is odd, n is even, n ⩾ 2(k + 1) and n ⩾ 2(n − k + 1). Since the two inequalities are never satisfied simul-
taneously, we have nonlinearity at most in one variable, the other variable appearing as an a�ne term, see
Corollary 5.7. This observation is an important one in the context of calculus of variations involving di�eren-
tial forms as it controls the way a variational problem behaves as a function of the order of the form. In spite
of being a problem of vectorial nature, the variational problem always behaves as though it is a scalar one
with respect to one of the variables.

2 Notations
Let n ∈ ℕ and k ∈ ℕ ∪ {0}.
(i) Λk(ℝn) (or simply Λk) denotes the vector space of all alternating k-linear maps. For k = 0, we set Λ0 = ℝ.

Note that Λk(ℝn) = {0} for k > n, and for k ≤ n, dim(Λk(ℝn)) = (nk).
(ii) For 1 ⩽ k ⩽ n, we write Tk := {(i1, . . . , ik) ∈ ℕk : 1 ⩽ i1 < ⋅ ⋅ ⋅ < ik ⩽ n} and for each r ∈ {1, . . . , n}, we set

Trk := {I ∈ Tk : r ∉ I}. Let I ∈ Tk and I := (i1, . . . , ik). For each 1 ⩽ p ⩽ k, we set I(ip) := (i1, . . . , ip̂ , . . . , ik),
where p̂ denotes the absence of the index p. Note that I(ip) ∈ Tk−1 for all 1 ⩽ p ⩽ k.

(iii) The symbols “∧”, “⌟”, “⟨ ⋅ ; ⋅ ⟩” and “∗” denote the exterior product, the interior product, the scalar
product and the Hodge star operator, respectively.

(iv) We use the multi-index notation often. For I = (i1, . . . , ik) ∈ Tk, we write eI to denote ei1 ∧ ⋅ ⋅ ⋅ ∧ eik .
In this notation, if {e1, . . . , en} is a basis ofℝn, then by identifying Λ1 withℝn, it follows that {eI : I ∈ Tk}
is a basis of Λk.

(v) Let ω ∈ Λk and let 0 ⩽ s ⩽ k ⩽ n. The space of interior annihilators of f of order s is

Ann⌟(ω, s) := {f ∈ Λs : f ⌟ω = 0}.

Furthermore, we define the rank of order s of ω as

ranks(ω) := (
n
s)

− dim(Ann⌟(ω, s)).

See [4, 7] for more details on rank and annihilators.
(vi) Let m, n ∈ ℕ and r1, . . . , rm ∈ ℕ such that r1 + ⋅ ⋅ ⋅ + rm ⩽ n. For all j = 1, . . . ,m, let Ij ∈ Trj satisfy

Ip ∩ Iq = 0 for all p ̸= q. Then, we define [I1, . . . , Im] to be the permutation of (I1, . . . , Im) such that

[I1, . . . , Im] ∈ Tr1+⋅⋅⋅+rm .

Furthermore, we define the sign of [I1, . . . , Im], denoted by sgn(I1, . . . , Im), as

e[I1 ,...,Im] := sgn(I1, . . . , Im)eI1 ∧ ⋅ ⋅ ⋅ ∧ eIm .

Concerning the last notation, the following properties are easy to check, which we record for the sake of
completeness.
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Proposition 2.1. Let m, n ∈ ℕ and r1, . . . , rm ∈ ℕ such that r1 + ⋅ ⋅ ⋅ + rm ⩽ n. For all j = 1, . . . ,m, let Ij ∈ Trj
satisfy Ip ∩ Iq = 0 for all p ̸= q. Then,
(i) [I1, I2] = [I2, I1] and [I1, I2, I3] = [I1, [I2, I3]] = [[I1, I2], I3].
(ii) sgn(I1, I2) = (−1)r1r2 sgn(I2, I1).
(iii) sgn(I1, I2, I3) = sgn(I2, I3) sgn(I1, [I2, I3]) = sgn(I1, I2) sgn([I1, I2], I3).
(iv) If I ∈ Tk is written as I := (i1, . . . , ik), then

sgn(I(iμ), iμ) = (−1)k−μ and sgn(iν , I(iν)) = (−1)ν−1 for all μ, ν = 1, . . . , k.

(v) For all ω ∈ Λk, φ ∈ Λl and I ∈ Tk+l,

⟨ω ∧ φ; eI⟩ = ∑
R∈Tk , S∈Tl ,
R∪S=I, R∩S=0

sgn(R, S)⟨ω; eR⟩⟨φ; eS⟩.

3 Notions of exterior convexity
Let us introduce the following classes of functions, convex with respect to the exterior structure. We will
restrict ourselves to the corresponding a�ne classes in the subsequent sections.

Definition 3.1. Let 1 ⩽ k ⩽ n − 1 and let f : Λk+1 × Λk−1 → ℝ.
(i) We say that f is ext-int. one convex if for every ξ ∈ Λk+1, η ∈ Λk−1, a ∈ Λ1 and b ∈ Λk, the function

g : ℝ → ℝ, defined as
g(t) := f(ξ + ta ∧ b, η + ta⌟b) for all t ∈ ℝ,

is convex. Furthermore, f is said to be ext-int. one a�ne if f and −f are both ext-int. one convex.
(ii) We say that f is ext-int. quasiconvex if f is locally integrable, Borel measurable and

∫
Ω

f(ξ + dω, η + δω) ⩾ f(ξ, η)meas Ω

for every open bounded set Ω ⊆ ℝn, ξ ∈ Λk+1, η ∈ Λk−1 and ω ∈ W1,∞
0 (Ω; Λk). Moreover, f is said to be

ext-int. quasia�ne if f and −f are both ext-int. quasiconvex.
(iii) We say that f is ext-int. polyconvex if there exists a convex function

F : Λk+1 × ⋅ ⋅ ⋅ × Λ(k+1)[ n
k+1 ] × Λn−k+1 × ⋅ ⋅ ⋅ × Λ(n−k+1)[ n

n−k+1 ] → ℝ

such that, for all ξ ∈ Λk+1, η ∈ Λk−1,

f(ξ, η) = F(ξ, . . . , ξ [
n
k+1 ], ∗η, . . . , (∗η)[

n
n−k+1 ]).

Furthermore, f is said to be ext-int. polya�ne if f and −f are both ext-int. polyconvex.

Recall that the following classes were introduced in [1].

Definition 3.2. (i) Let 1 ⩽ k ⩽ n. We say that f : Λk → ℝ is ext. one convex if for every ω ∈ Λk, a ∈ Λ1 and
b ∈ Λk−1 the function g : ℝ → ℝ, defined as

g(t) := f(ω + ta ∧ b) for all t ∈ ℝ,

is convex. Furthermore, f is said to be ext. one a�ne if f and −f are both ext. one convex.
(ii) Let 0 ⩽ k ⩽ n − 1. We say that f : Λk → ℝ is int. one convex if for every ω ∈ Λk, a ∈ Λ1 and b ∈ Λk+1, the

function g : ℝ → ℝ, defined as

g(t) := f(ω + ta⌟b) for all t ∈ ℝ,

is convex. Furthermore, f is said to be int. one a�ne if f and −f are both int. one convex.
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The notion of Hodge transform allows us to go back and forth between ext. one convex and int. one convex
functions, see Remark 3.4.

Definition 3.3 (Hodge transform). Let 0 ⩽ k ⩽ n and f : Λk → ℝ. The Hodge transform of f is the function
f∗ : Λn−k → ℝ defined as

f∗(ω) := f(∗ω) for all ω ∈ Λn−k .

Remark 3.4. (i) Evidently, every convex function is ext-int. polyconvex. Furthermore, using standard tech-
niques of calculus of variations (see [5]), we have the following chain of implications:

ext-int. polyconvexity ⇒ ext-int. quasiconvexity ⇒ ext-int. one convexity.

(ii) Ext-int. polyconvexity is equivalent to convexity when k and n are even or when n ∈ {2k − 1, 2k, 2k + 1}.
(iii) The duality between the aforementioned notions of convexity is reflected through the following observa-

tion.When0 ⩽ k ⩽ n − 1, f is int. one convex if and only if f∗ is ext. one convex. Similarly,when1 ⩽ k ⩽ n,
f is ext. one convex if and only if f∗ is int. one convex.

(iv) When k = 1, n − 1, n or k = n − 2 with n odd, ext. one convexity is equivalent to convexity. See [1] for
more details on ext. one convex functions.

The following lemma relates ext-int. one convexity with ext. one and int. one convexity.

Lemma 3.5. Let 1 ⩽ k ⩽ n − 1 and f : Λk+1 × Λk−1 → ℝ be ext-int. one convex (resp. ext-int. one a�ne). Then,
the following hold true:
(i) The function fη : Λk+1 → ℝ, defined as

fη(ξ) := f(ξ, η) for all ξ ∈ Λk+1,

is ext. one convex (resp. ext. one a�ne) for every η ∈ Λk−1.
(ii) The function f ξ : Λk−1 → ℝ, defined as

f ξ (η) := f(ξ, η) for all η ∈ Λk−1,

is int. one convex (resp. int. one a�ne) for every ξ ∈ Λk+1.

Remark 3.6. The converse of Lemma 3.5 is false. This can be easily seen by considering the function
f : Λ2 × Λ0 = Λ2 × ℝ → ℝ with k = 1, n = 2, defined as

f(ξ, η) := (∗ξ )η for all ξ ∈ Λ2, η ∈ ℝ.

While f ξ , fη are a�ne for all ξ ∈ Λ2 and η ∈ ℝ, f is not ext-int. one convex. In Theorem 5.6 and Corollary 5.7
we discuss about the validity of the converse of Lemma 3.5 for the category of ext-int. one a�ne functions.

Proof of Lemma 3.5. To prove (i), it is enough to see that for any a ∈ Λ1, b ∈ Λk, there exist c ∈ Λ1, d ∈ Λk
such that c ∧ d = a ∧ b and c⌟d = 0, which is a consequence of Lemma 4.1. One can prove (ii) in the same
spirit.

4 Some algebraic lemmas
In this section, we prove a few algebraic results required to prove the main theorem. The following lemma is
elementary.

Lemma 4.1 (Decomposition lemma). Let 1 ⩽ k ⩽ n, ω ∈ Λk and x ∈ Sn−1. Then, there exist ωT(x) ∈ Λk−1({x}⊥)
and ωN(x) ∈ Λk({x}⊥) such that

ω = x ∧ ωT(x) + ωN(x).

Remark 4.2. Note that ωT(x) = x⌟ω, x⌟ωT(x) = 0 and x⌟ωN(x) = 0. In the sequel, we will write ωT and ωN
instead of ωT(e1) and ωN(e1), respectively.
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The following function will have a recurrent appearance in the subsequent discussion.

Definition 4.3. Let k, p, n ∈ ℕ, 2 ⩽ k ⩽ n and let us suppose thatDA ∈ Λkp satisfy e1⌟DA = 0 for all A ∈ T1k−1.
We define Fp : Λk × Λk → ℝ as

Fp(ω, α) := ∑
A∈T1

k−1

⟨DA;ωp−1 ∧ α⟩⟨α; e1 ∧ eA⟩ for all ω, α ∈ Λk .

The following lemma isolates the algebraic consequence of ext. one a�nity.

Lemma 4.4. Let k, n ∈ ℕ and 2 ⩽ k ⩽ n. For all J ∈ T1k−1, letD
J ∈ Λk satisfy e1⌟DJ = 0 and let

F1(ω, a ∧ b) = 0 for all ω ∈ Λk , a ∈ Λ1, b ∈ Λk−1. (4.1)

Then, for all I, R ∈ T1k−1 and all J, S ∈ Tk satisfying I ∩ J = R ∩ S = 0 and I ∪ J = R ∪ S, we have

sgn(I, J)⟨DI; eJ⟩ = (−1)k sgn(R, S)⟨DR; eS⟩ (4.2)

Hence, if either k is odd or 2k > n,
F1(ω, ω) = 0 for all ω ∈ Λk . (4.3)

Remark 4.5. Aswewill see later, the formsDJ are connected to the coe�cients of an ext. one a�ne function,
which, as it will turn out, is a polynomial. In the proof of Theorem 5.1, we will see that equation (4.1) is
basically the property of being a�ne in the direction of one-divisible forms in a di�erent guise.

Proof of Lemma 4.4. We begin by noting that for all J ∈ T1k−1, we have eJ⌟DJ = 0. Indeed, for a fixed R ∈ T1k−1,
it follows from equation (4.1) that

0 = ∑
J∈T1

k−1

⟨eR⌟DJ; a⟩⟨eR⌟(e1 ∧ eJ); a⟩ = −⟨eR⌟DR; a⟩⟨e1; a⟩ for all a ∈ Λ1.

This implies that eR⌟DR = 0. Therefore, for all R, S ∈ T1k−1 with R ̸= S and on setting b := eR + eS, it follows
from equation (4.1) that

0 = ∑
J∈T1

k−1

⟨(eR + eS)⌟DJ; a⟩⟨(eR + eS)⌟(e1 ∧ eJ); a⟩

= ⟨(eR + eS)⌟DR; a⟩⟨(eR + eS)⌟(e1 ∧ eR); a⟩ + ⟨(eR + eS)⌟DS; a⟩⟨(eR + eS)⌟(e1 ∧ eS); a⟩
= −⟨eS⌟DR; a⟩⟨e1; a⟩ − ⟨eR⌟DS; a⟩⟨e1; a⟩
= −⟨eS⌟DR + eR⌟DS; a⟩⟨e1; a⟩

for all a ∈ Λ1. Hence, we have proved that

eR⌟DS + eS⌟DR = 0 for all R, S ∈ T1k−1. (4.4)

We now claim that, for all J ∈ T1k−1,

ej⌟DJ = 0 for all j ∈ {1} ∪ J. (4.5)

To see this, let R ∈ T1k−1 and p ∈ {1} ∪ R be fixed. To avoid the trivial case, let us assume that p ∈ R. It is enough
to prove that

⟨ep⌟DR; eS⟩ = 0 for all S ∈ Tk−1. (4.6)

Let S ∈ Tk−1 be given. If 1 ∈ S, it follows from the hypothesis that ⟨ep⌟DR; eS⟩ = 0. Also, if p ∈ S, we deduce
that ⟨ep⌟DR; eS⟩ = ⟨DR; ep ∧ eS⟩ = 0. Therefore, we can assume that 1, p ∉ S. Note that, R ̸= S because p ∈ R.
It follows from equation (4.4) that, as p ∈ R,

0 = ⟨eS⌟DR + eR⌟DS; ep⟩ = ⟨DR; ep ∧ eS⟩ = ⟨ep⌟DR; eS⟩,
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which proves equation (4.6). It remains to prove equation (4.2). To avoid the trivial case, we assume
that 1 ∉ J ∪ S. Let us now write

I := (i1, . . . , ik−1), J := (j1, . . . , jk),
R := (r1, . . . , rk−1), S := (s1, . . . , sk).

Note that, using equation (4.4), we deduce that, for all P, Q ∈ T1k−1 and r ∈ {1, . . . , n},

⟨DP; eQ ∧ er⟩ + ⟨DQ; eP ∧ er⟩ = 0. (4.7)

We prove equation (4.2) by induction on card(I ∩ R). First, let us prove equation (4.2) when card(I ∩ R) = 0,
i.e., I ∩ R = 0. In this case, for some 1 ⩽ p, q ⩽ k, we have that I = (s1, . . . , sp̂ , . . . , sk) = S(sp) and also that
R = (j1, . . . , jq̂ , . . . , jk) = J(jq) with sp = jq. Therefore, it follows from equation (4.7) that

⟨DI; eJ⟩ = (−1)k−q⟨DS(sp); eJ(jq) ∧ ejq⟩
= (−1)k−q+1⟨DJ(jq); eS(sp) ∧ ejq⟩
= (−1)k−q+1⟨DR; eS(sp) ∧ esp⟩
= (−1)p+q+1⟨DR; eS⟩. (4.8)

Furthermore, we observe that
sgn(I, J) = (−1)q+1+k−p sgn(R, S). (4.9)

When card(I ∩ R) = 0, equation (4.2) follows by combining equations (4.8) and (4.9). Let us now assume that
equation (4.2) holds true when card(I ∩ R) = 0, . . . , p for some p ∈ {0, . . . , k − 1}. We prove equation (4.2)
when card(I ∩ R) = p + 1,where p + 1 ⩽ k − 1. Since J \ (I ∪ R), S \ (I ∪ R) ̸= 0, let us choose 1 ⩽ μ ⩽ k − 1 and
1 ⩽ ν ⩽ k such that iμ ∈ I ∩ R and jν ∈ J \ (I ∪ R). Clearly, iμ ̸= jν. It follows from equation (4.7) that

⟨DI; eJ⟩ = (−1)k−ν⟨DI; eJ(jν) ∧ ejν⟩ = (−1)k−ν+1⟨DJ(jν); eI ∧ ejν⟩
= (−1)μ+ν sgn(I(iμ), jν) sgn(J(jν), iμ)⟨D[I(iμ);jν]; e[J(jν);iμ]⟩. (4.10)

Since
(I(iμ) ∪ {jν}) ∪ (J(jν) ∪ {iμ}) = R ∪ S, (I(iμ) ∪ {jν}) ∩ (J(jν) ∪ {iμ}) = 0

and card((I(iμ) ∪ {jν}) ∩ R) = p, it follows from the induction hypothesis that

sgn([I(iμ), jν], [J(jν); iμ])⟨D[I(iμ);jν]; e[J(jν);iμ]⟩ = (−1)k sgn(R, S)⟨DR; eS⟩. (4.11)

On noting that

sgn([I(iμ), jν], [J(jν), iμ]) = (−1)μ+ν sgn(I, J) sgn(I(iμ), jν) sgn(J(jν), iμ),

it follows from equations (4.10) and (4.11) that

⟨DI; eJ⟩ = (−1)k sgn(R, S)sgn(I, J) ⟨D
R; eS⟩,

which proves the induction step. This proves equation (4.2). To prove equation (4.3), it is enough to prove
thatDJ = 0 for all J ∈ T1k−1. If k is odd, this follows from equations (4.2) and (4.5).When 2k > n, let us assume
to the contrary that DJ ̸= 0 for some J ∈ T1k−1. Then, rank1(D

J) ⩾ k, see [4, Proposition 2.37]. Furthermore,
using equation (4.5), we deduce that

{e1, er : r ∈ J} ⊆ Ann⌟(DJ , 1).

Therefore,
k ⩽ rank1(DJ) = n − dim(Ann⌟(DJ , 1)) ⩽ n − |J| − 1 = n − k.

This implies that 2k ⩽ n which is a contradiction. Hence,DJ = 0.
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Lemma 4.6. Let k, p, n ∈ ℕ, k ⩾ 2, letDA ∈ Λkp satisfy e1⌟DA = 0 for all A ∈ T1k−1 and let

Fp(ω, a ∧ b) = 0 for all ω ∈ Λk , a ∈ Λ1, b ∈ Λk−1. (4.12)

Then, for some Hp ∈ Λkp+k−1 with e1⌟Hp = 0,

Fp(ω, ω) = ⟨e1 ∧ Hp;ωp+1⟩ for all ω ∈ Λk . (4.13)

Proof. Let us begin by proving that if k is even, for all I, R ∈ T1k−1, and J, S ∈ Tkp satisfying I ∩ J = R ∩ S = 0
and I ∪ J = R ∪ S, we have

sgn(I, J)⟨DI; eJ⟩ = sgn(R, S)⟨DR; eS⟩. (4.14)

The proof is very similar to that of equation (4.2) of Lemma 4.4. To avoid the trivial case, let us assume
that kp ⩽ n. If p = 1, equation (4.14) follows from Lemma 4.4. So, we assume p ⩾ 2. At the outset, let us
observe that for all Q ∈ T(p−1)k, there exists ω ∈ Λk satisfying

ωp−1 = eQ . (4.15)

Indeed, for Q := (q1, . . . , q(p−1)k) ∈ T(p−1)k, the form ω ∈ Λk, defined by

ω := 1
(p − 1)!

p−2
∑
r=0

eqrk+1 ∧ ⋅ ⋅ ⋅ ∧ eq(r+1)k ,

satisfies equation (4.15). Therefore, it follows from equations (4.12) and (4.15) that for all a ∈ Λ1, b ∈ Λk−1
and Q ∈ T(p−1)k,

∑
A∈T1

k−1

⟨eQ⌟DA; a ∧ b⟩⟨a ∧ b; e1 ∧ eA⟩ = 0. (4.16)

The rest of the proof of equation (4.14) follows essentially from Lemma 4.4 and its proof. Note that

ei⌟DI = 0 for all i ∈ {1} ∪ I, I ∈ T1k−1. (4.17)

It remains to prove equation (4.13). To avoid the trivial case,we assume kp ⩽ n.When k is odd,Fp is evidently
zero on the diagonal when p ⩾ 2. Hence, one can take Hp = 0 in this case. When p = 1 and k is odd, it follows
from Lemma 4.4 that F1 is zero on the diagonal. Therefore, we can set H1 = 0 in this case as well. Hence, it
is enough to settle the lemma for the case when k is even. To define Hp ∈ Λkp+k−1, using equation (4.14), we
note that for all R ∈ T1k−1, S ∈ T1kp and R ∩ S = 0, there exists αR∪S ∈ ℝ such that

⟨DR; eS⟩ = αR∪S sgn(R, S). (4.18)

Let us now define Hp ∈ Λkp+k−1 by
Hp :=

1
p + 1 ∑

I∈T1
kp+k−1

αIeI .

It follows from equation (4.18) that Hp is well-defined. Note that e1⌟Hp = 0. Furthermore, for all ω ∈ Λk,
it follows from equation (4.17) that

Fp(ω, ω) = ∑
R∈T1

k−1

⟨DR;ωp⟩⟨ω; e1 ∧ eR⟩

= ∑
R∈T1

k−1

( ∑
S∈T1

kp , R∩S=0
⟨DR; eS⟩⟨ωp; eS⟩)⟨ω; e1 ∧ eR⟩

= ∑
R∈T1

k−1

( ∑
S∈T1

kp , R∩S=0
αR∪S sgn(R, S)⟨ωp; eS⟩)⟨ω; e1 ∧ eR⟩

= ∑
I∈T1

k−1+kp

αI( ∑
R∈T1

k−1 , S∈T
1
kp ,

R∪S=I, R∩S=0

sgn(R, S)⟨(ωp)N ; eS⟩⟨ωT ; eR⟩)

= ∑
I∈T1

k−1+kp

αI⟨ωT ∧ (ωp)N ; eI⟩ = (p + 1)⟨Hp;ωT ∧ (ωp)N⟩.
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Since e1⌟Hp = 0 and k is even, it follows that

Fp(ω, ω) = (p + 1)⟨Hp;ωT ∧ (ωp)N⟩ = ⟨e1 ∧ Hp;ωp+1⟩ for all ω ∈ Λk ,

which proves the lemma.

5 Characterization of ext-int. one a�ne functions
Let us begin by characterizing ext. one a�ne functions.

Theorem 5.1. Let1 ⩽ k ⩽ n and f : Λk → ℝ. Then, f is ext. one a�ne if and only if there exist m ∈ ℕwith m ⩽ n,
ar ∈ Λkr, where r = 0, . . . ,m such that

f(ω) =
m
∑
r=0

⟨ar;ωr⟩ for all ω ∈ Λk . (5.1)

Remark 5.2. Note that, since ωr = 0 for all r > [ nk ], it follows that m ⩽ [ nk ].

Proof of Theorem 5.1. We show that any ext. one a�ne function f : Λk → ℝ is of the form (5.1). The con-
verse is easy to check. In view of Remark 3.4, let us assume that k ⩾ 2. The proof proceeds by induction
on the dimension n. When n = k, the result follows easily. Let us assume that the theorem holds true
when n = k, . . . , p, for some p ⩾ k. We prove the result for n = p + 1. It is given that f : Λk (ℝp+1) → ℝ is
ext. one a�ne.

Since f is ext. one a�ne,

f(ω) = f(ωN) + ∑
J∈T1

k−1

ω1,J(f(ωN + e1 ∧ eJ) − f(ωN))

= f(ωN) + ∑
J∈T1

k−1

ω1,J(fe1∧eJ (ωN) − f(ωN)) for all ω ∈ Λk , (5.2)

where, for all J ∈ T1k−1, the function fe1∧eJ : Λk({e1}⊥) → ℝ is defined as

fe1∧eJ (ξ ) := f(ξ + e1 ∧ eJ) for all ξ ∈ Λk({e1}⊥).

Since f : Λk(ℝp+1) → ℝ is ext. one a�ne, so are f |Λk({e1}⊥) and fe1∧eJ for all J ∈ T1k−1. Therefore, the induc-
tion hypothesis ensures the existence of m(p, k) ∈ ℕ, m(p, k) ⩽ p, and a00, aJ0 ∈ ℝ, a0r , aJr ∈ Λkr({e1}⊥) for all
J ∈ T1k−1 and r = 1, . . . ,m(p, k), satisfying

f(φ) = a00 +
m(p,k)
∑
r=1

⟨a0r ;φr⟩ for all φ ∈ Λk({e1}⊥)

and

fe1∧eJ (φ) = a
J
0 +

m(p,k)
∑
r=1

⟨aJr;φr⟩ for all φ ∈ Λk({e1}⊥).

Thus, it follows from equation (5.2) that for all ω ∈ Λk,

f(ω) = (a00 +
m(p,k)
∑
r=1

⟨a0r ;ωrN⟩) + ∑
J∈T1

k−1

ω1,J(aJ0 − a
0
0 +

m(p,k)
∑
r=1

⟨aJr − a0r ;ωrN⟩)

= (a00 +
m(p,k)
∑
r=1

⟨a0r ;ωr⟩) + ∑
J∈T1

k−1

m(p,k)
∑
r=1

⟨DJ
r;ωr⟩⟨ω; e1 ∧ eJ⟩

= (a00 +
m(p,k)
∑
r=1

⟨a0r ;ωr⟩) +
m(p,k)
∑
r=1

Fr(ω, ω), (5.3)
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where

a0r :=
{{{
{{{
{

a01 + e
1 ∧ ( ∑

J∈T1
k−1

(aJ0 − a
0
0)e

J) if r = 1,

a0r if r = 2, . . . ,m(p, k).
and

D
J
r := aJr − a0r for all J ∈ T1k−1 and r = 1, . . . ,m(p, k).

Note that for all J ∈ T1k−1 and r = 1, . . . ,m(p, k), we have that e1⌟DJ
r = 0. Since f is ext. one a�ne,

m(p,k)
∑
r=1

rFr(ω, c ∧ d) = 0 for all ω ∈ Λk , c ∈ Λ1, d ∈ Λk−1.

Hence, by di�erent degree of homogeneity, for all r = 1, . . . ,m(p, k),

Fr(ω, c ∧ d) = 0 for all ω ∈ Λk , c ∈ Λ1, d ∈ Λk−1.

We invoke Lemma 4.6 at this point to find that Gr ∈ Λkr+k for all r = 1, . . . ,m(p, k) and

Fr(ω, ω) = ⟨Gr;ωr+1⟩ for all ω ∈ Λk ,

which the result follows using equation (5.3).

Invoking the Hodge transform, see Remark 3.4, the characterization of int. one a�ne functions follows
immediately from Theorem 5.1.

Corollary 5.3. Let 0 ⩽ k ⩽ n − 1 and f : Λk → ℝ. Then, f is int. one a�ne if and only if there exists ar ∈ Λ(n−k)r,
for all r = 0, . . . , [ n

n−k ], such that

f(ω) =
[ n
n−k ]

∑
r=0

⟨ar; (∗ω)r⟩ for all ω ∈ Λk . (5.4)

An interesting consequence of Theorem 5.1 and Corollary 5.3 is the following theorem.

Theorem 5.4. Let 1 ⩽ k ⩽ n − 1 satisfy 2k ̸= n. Then, f : Λk → ℝ is a�ne if and only if f is both ext. and int. one
a�ne.

Remark 5.5. Theorem 5.4 does not hold if 2k = n with k even. To see this, define f : Λk(ℝ2k) → ℝ by

f(ω) := ⟨e1 ∧ ⋅ ⋅ ⋅ ∧ e2k;ω ∧ ω⟩ for all ω ∈ Λk(ℝ2k).

Proof of Theorem 5.4. If 2k > n, the conclusion follows trivially fromTheorem5.1. If 2k < n, i.e., n < 2(n − k),
then since f is int. one a�ne, using Corollary 5.3, we deduce that f is a�ne.

Theorem 5.6 (Characterization of ext-int. one a�ne functions). Let 1 ⩽ k ⩽ n − 1 and f : Λk+1 × Λk−1 → ℝ.
Then, the following statements are equivalent:
(i) f is ext-int. polya�ne.
(ii) f is ext-int. quasia�ne.
(iii) f is ext-int. one a�ne.
(iv) For all 0 ⩽ s ⩽ [ n

k+1 ] and 0 ⩽ r ⩽ [ n
n−k+1 ], there exist cs ∈ Λ(k+1)s, dr ∈ Λ(n−k+1)r such that

f(ξ, η) =
[ n
k+1 ]

∑
s=0

⟨cs; ξ s⟩ +
[ n
n−k+1 ]

∑
r=0

⟨dr; (∗η)r⟩ for all ξ ∈ Λk+1, η ∈ Λk−1.

Theorem 5.6 has the curious implication that nonlinearity can trickle into an ext-int. one a�ne function at
the most through one variable. This is formally stated in the following corollary whose proof is easy enough
to skip over.
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Corollary 5.7. Let 1 ⩽ k ⩽ n − 1. Then, f : Λk+1 × Λk−1 → ℝ is ext-int. one a�ne if and only if there exist
g : Λk+1 → ℝ and h : Λk−1 → ℝ such that

f(ξ, η) = g(ξ ) + h(η) for all ξ ∈ Λk+1, η ∈ Λk−1

and one of the following holds true:
(i) g is a�ne and h is int. one a�ne when n ⩽ 2k − 2.
(ii) g, h are a�ne when n = 2k − 1, 2k, 2k + 1, or both k and n are even.
(iii) g is ext. one a�ne and h is a�ne when n ⩾ 2k + 2.

Remark 5.8. There is no analogue of Corollary 5.7 at the level of ext-int. polyconvexity. In other words, there
are ext-int. polyconvex functions that cannot be written as a sum of ext. polyconvex and int. polyconvex
functions. To see this, one may consider the following function f : Λ2 × ℝ → ℝ with k = 1, n = 4, defined as

f(ξ, η) := e|ξ∧ξ |2+η2 for all ξ ∈ Λ2, η ∈ ℝ.

Proof of Theorem 5.6. The chain of implications (i)⇒ (ii)⇒ (iii) follows from standard techniques of classical
calculus of variations, see [8] for details. It is obvious from the definition of ext-int. polyconvexity that (iv)
implies (i). It remains to prove (iii)⇒ (iv). Let us divide the proof in four steps.

Step 1: For each η ∈ Λk−1, we use Lemma 3.5 and Theorem 5.1 to find cs(η) ∈ Λ(k+1)s for all s = 0, . . . , [ n
k+1 ],

such that

f(ξ, η) = fη(ξ ) =
[ n
k+1 ]

∑
s=0

⟨cs(η); ξ s⟩ for all ξ ∈ Λk+1, η ∈ Λk−1, (5.5)

where cs : Λk−1 → Λ(k+1)s is such that the function η Ü→ f(ξ, η) is int. one a�ne for every ξ ∈ Λk+1. Defining

fs(ξ, η) := ⟨cs(η); ξ s⟩ for all ξ ∈ Λk+1, η ∈ Λk−1,

we see that due to di�erent degrees of homogeneity in ξ , for each s, fs is ext-int. one a�ne. Hence, it is enough
to consider each fs separately with 0 ⩽ s ⩽ [ n

k+1 ].

Step 2: Let 0 ⩽ s ⩽ [ n
k+1 ] be fixed. Let us write

fs(ξ, η) = ∑
I∈T(k+1)s

cIs(η)(ξ s)I , (5.6)

where cIs(η) and (ξ s)I denote the I-th component of cs(η) and ξ s, respectively, for all I ∈ T(k+1)s. We claim that
for each multiindex I ∈ T(k+1)s, cIs is int. one a�ne.

Indeed, there is nothing to prove when s = 0. When 1 ⩽ s ⩽ [ n
k+1 ] and I = (i1, . . . , i(k+1)s) ∈ T(k+1)s, on

setting
ξ1 := ei1 ∧ ⋅ ⋅ ⋅ ∧ eik+1 + eik+2 ∧ ⋅ ⋅ ⋅ ∧ ei2(k+1) + ⋅ ⋅ ⋅ + ei(k+1)(s−1)+1 ∧ ⋅ ⋅ ⋅ ∧ ei(k+1)s ,

we see that
fs(ξ1, η) = s! cIs(η) for all η ∈ Λk−1,

fromwhere it follows that cIs is int. one a�ne as fs is ext-int. one a�ne, see Lemma 3.5. This proves the claim.

Step 3: Invoking Corollary 5.3, it follows from Step 2 that

cIs(η) =
[ n
n−k+1 ]

∑
r=0

⟨dIr,s; (∗η)r⟩ for all η ∈ Λk−1.

Therefore, using equation (5.6),

fs(ξ, η) = ∑
I∈T(k+1)s

(
[ n
n−k+1 ]

∑
r=0

⟨dIr,s; (∗η)r⟩)(ξ s)I

=
[ n
n−k+1 ]

∑
r=0

( ∑
I∈T(k+1)s

⟨dIr,s; (∗η)r⟩(ξ s)I) for all ξ ∈ Λk+1, η ∈ Λk−1.
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Once again, by di�erent degree of homogeneity in ∗η, it is enough to consider fixed but arbitrary r with
0 ⩽ r ⩽ [ n

n−k+1 ]. To this end, we define fr,s : Λk+1 × Λk−1 → ℝ as

fr,s(ξ, η) := ∑
I∈T(k+1)s

⟨dIr,s; (∗η)r⟩(ξ s)I for all ξ ∈ Λk+1, η ∈ Λk−1.

This can be written as
fr,s(ξ, η) = ∑

I∈T(k+1)s

∑
J∈T(n−k+1)r

dI,Jr,s((∗η)r)J(ξ
s)I . (5.7)

Step 4: To finish the proof, it is enough to prove that for all I ∈ T(k+1)s and J ∈ T(n−k+1)r,

dI,Jr,s = 0 for all 1 ⩽ s ⩽ [
n

k + 1], 1 ⩽ r ⩽ [
n

n − k + 1]. (5.8)

To prove (5.8) let 1 ⩽ s ⩽ [ n
k+1 ], 1 ⩽ r ⩽ [ n

n−k+1 ] be fixed. Note that, for any I ∈ T(k+1)s and J ∈ T(n−k+1)r, I ∩ J
has at least one element (in fact, there must be at least two). Let us write I = (i1, . . . , i(k+1)s) ∈ T(k+1)s and
J = (j1, . . . , j(n−k+1)r) ∈ T(n−k+1)r with ip = jq for some p, q.

Let us divide I into s blocks of multiindices Iα each containing k + 1 indices, i.e.,

Iα := (i(α−1)(k+1)+1, . . . , iα(k+1)) for all 1 ⩽ α ⩽ s.

Similarly, we divide the multiindex J into r blocks of multiindices Jβ each containing n − k + 1 indices, i.e.,

Jβ := (j(β−1)(n−k+1)+1, . . . , jβ(n−k+1)) for all 1 ⩽ β ⩽ r.

Furthermore, for the sake of clarity, let Ip ∈ Tk+1 denote the block of k + 1 indices of I containing ip and
Jq ∈ Tn−k+1 denote the block of n − k + 1 indices of J which contains jq. Note that in our notation, this implies
that

Ip = I[
p−1
k+1 ]+1 and Jq = J[

q−1
n−k+1 ]+1.

Let us choose
{{{{
{{{{
{

a := eip = ejq , b := eIp(ip) + ∗ eJq(jq),

ξ := 1
(s − 1)! ∑

1⩽α⩽s
α ̸=[ p−1k+1 ]+1

eIα , ∗η := 1
(r − 1)! ∑

1⩽β⩽r
β ̸=[ q−1

n−k+1 ]+1

eIβ . (5.9)

Of course, if s = 1, we choose ξ = 0, and if r = 1, we choose ∗η = 0. Clearly,

a ∧ b = eip ∧ eIp(ip) + ejq ∧ (∗eJq(jq))
= sgn(ip , Ip(ip))eIp ,

a ∧ ∗b = eip ∧ (∗eIp(ip)) + (−1)k(n−k)ejq ∧ eJq(jq)

= sgn(jq , Jq(jq))(−1)k(n−k)eJq .

Moreover, we observe that
ξ s−1 = eI\Ip and (∗η)r−1 = eJ\Jq . (5.10)

Note that herewe implicitly used the following facts. If s = 1 or 2, equation (5.10) is trivially true, and if s ⩾ 2,
it follows that k + 1 is even, otherwise, terms containing ξ s are absent from the expression for f . If k + 1 is
even, equation (5.10) is easily seen to hold for any 2 ⩽ s ⩽ [ n

k+1 ]. One can similarly argue for ∗η.
Henceforth, we will disregard questions of signs, as it is not important for the argument and use ± to

denote that either sign is possible. Using Equation 5.7, we have, for any t ∈ [0, 1],

fr,s(ξ + ta ∧ b, η + ta⌟b) = ∑
K∈T(k+1)s , L∈T(n−k+1)r

dK,Lr,s ((∗(η + ta⌟b))r)
L
((ξ + ta ∧ b)s)K

= ∑
K∈T(k+1)s , L∈T(n−k+1)r

dK,Lr,s ((∗η ± ta ∧ (∗b))r)
L
((ξ + ta ∧ b)s)K .
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With our choice of a, b, ξ, η in equation (5.9), the quadratic term in t, say Q(t), in the above expression on
the right-hand side is, for all t ∈ [0, 1],

Q(t) = ±t2r!s! ∑
K∈T(k+1)s , L∈T(n−k+1)r

dK,Lr,s ((∗η)r−1 ∧ a ∧ (∗b))L(ξ
s−1 ∧ a ∧ b)K

= ±t2r!s! ∑
K∈T(k+1)s , L∈T(n−k+1)r

dK,Lr,s (eJ\Jq ∧ (±eJq ))L(e
I\Ip ∧ (±eIp ))K

= ±t2r!s! ∑
K∈T(k+1)s , L∈T(n−k+1)r

dK,Lr,s (±eJ)L(±eI)K

= ±t2r!s!dI,Jr,s .

Since fr,s is ext-int. one a�ne, Q(t) = 0 for all t ∈ [0, 1], which forces dI,Jr,s = 0. This proves equation (5.8) and
the proof is complete.
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