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Abstract

In many problems of interest to materials scientists and engineers, the evolution of crystalline
extended defects (dislocations, cracks, grain boundaries, interfaces, voids, precipitates) is controlled
by the flow of point defects (interstitial/substitutional atoms and/or vacancies) through the crystal
into the defect. Precise modeling of this behavior requires fully atomistic methods in and around the
extended defect, but the flow of point defects entering the extended defect region can be treated
by coarse-grained methods. Here, a multiscale algorithm is presented to provide this coupling.
Specifically, direct accelerated molecular dynamics (AMD) of extended defect evolution is coupled
to a diffusing point defect concentration field that captures the long spatial and temporal scales of
point defect motion in the presence of the internal stress fields generated by the evolving defect. The
algorithm is applied to study vacancy absorption into an edge dislocation in aluminum where, under
a sufficient driving stress and vacancy supersaturation, vacancy accumulation in the core leads to
nucleation of a double-jog that then operates as a sink for additional vacancies; this corresponds
to the initial stages of dislocation climb modeled with explicit atomistic resolution. The method
is general and so can be applied to many other problems associated with nucleation, growth, and
reaction due to accumulation of point defects in crystalline materials.
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1. Introduction

In many engineering materials, the interaction of mobile point defects (interstitial or substitu-
tional atoms, or vacancies) and extended crystalline defects (dislocations, grain boundaries, voids,
interfaces, precipitates) controls the microstructural evolution and mechanical properties of the
material. Specific examples across the range of possibilities include precipitate growth, dynamic
strain aging, and dislocation climb. These interactions are difficult to model due to the wide range
of time and spatial scales involved. With regard to timescales, diffusion of point defects in the
bulk usually takes nanoseconds to microseconds for each individual hop among atomic sites while
diffusion among atomic sites within an extended defect can be orders of magnitude faster due to the
non-crystalline environment in the defect. With regard to spatial scales, point defect concentrations
are usually low, so that long-range diffusion is required to accumulate point defects in a local region.
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Furthermore, the diffusion into the defect is affected by the stress fields generated by the extended
defect itself, which can be long-ranged in the cases of dislocations and cracks, and these stress
fields raise or lower the point defect formation energy at each atomic site. The long-range diffusion
of point defects is thus affected by the precise stress fields generated by the extended defect as it
evolves.

Typical modeling strategies cannot handle the above diversity of time and length scales. Ac-
celerated molecular dynamics (AMD) can model atomic diffusion [1, 2, 3, 4, 5, 6] but is limited,
for computational reasons, to relatively small volumes and is not amenable to long-range diffusion.
There are also no associated methods for injecting or extracting point defects into such an atom-
istic model. Large scale diffusion in the presence of weak stress gradients can be modeled using
the diffusion equation, and discrete diffusion (DD) methods can be used when field gradients are
stronger [7] and resolution of the concentration on a site-by-site basis is desired [8]. But these
methods are inapplicable in and around extended defects since the underlying migration barriers
in the defects are unknown and because the defect structure can be changing as point defects are
absorbed. Here, we propose a multiscale method to couple AMD and Discrete Diffusion directly
and accurately. The method captures the long-range, long-time diffusion around an evolving defect
using DD in the presence of the stress field generated by the defect, the injection of point defects
into the extended defect region via algorithms to be described below, and the atomistic evolution
of the extended defect as the point defects are absorbed via AMD. The method, which we label
DD-MD, is quite general and uses rigorous methods and controllable approximations that enable
extended defect evolution in an atomistic simulation.

The rest of this paper is organized as follows. Section 2 describes the coupled DD-MD diffusion
algorithm and the numerical methods used within it. Section 3 applies the DD-MD method to study
vacancy absorption into an edge dislocation core in aluminum. Concluding remarks are presented
in section 4.

2. Methods and Algorithms

This work focuses on the interaction of two classes of defects: atomic-sized point defects and
multi-atom extended defects. When far from an extended defect, point defects (e.g. interstitial
atoms, substitutional atoms, or vacancies) diffuse through the distorted crystalline lattice. The
transition rate of a point defect from one site to another depends on the formation energies at
the initial and final site and the migration barrier between them, all of which vary with the local
distortion caused by applied loads or eigenstrains of remote defects. Extended defects contain many
atoms and include dislocations, cracks, grain boundaries, bi-material interfaces, voids, precipitates,
and stacking-fault tetrahedra. Ideal structures of these extended defects can be represented at the
atomic scale, but we are interested in the evolving structures due to absorption/interaction with
point defects. For specificity, we present the DD-MD algorithm using the specific case of vacancies
interacting with an edge dislocation, with the evolution of the ideal edge dislocation ultimately
corresponding to jog formation and jog motion, i.e. the dislocation climb process.

The general problem of interest is a large domain subject to both mechanical and chemical
boundary conditions, i.e. applied displacements/tractions and imposed concentrations/fluxes, as
shown schematically in Figure 1. An extended defect resides inside the domain; in some region
around the defect, the atomic distortions are too large for the application of standard point defect
diffusion and linear elasticity, and so this region must be treated by explicit AMD. Outside this
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region, standard diffusion (see below) and/or coarse-grained mechanics (linear elasticity, finite el-
ements, etc.) can be applied. There is a boundary between the extended defect region and the
surrounding domain where mechanical and chemical coupling must be achieved. The mechanical
coupling of atoms to continuum is well-established and will not be addressed here [9, 10, 11]; here
we use fully-resolved molecular statics in the outer domain and avoid introduction of any multiscale
mechanical coupling. Our focus is thus on the chemical coupling, i.e. the flow of point defects
between extended defect region and the surrounding domain.

Fixed
Displacement
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Tractions

Bulk Material

Interface

Defected
Region

Fixed
Concentration

Applied 
Fluxes

Figure 1: A general schematic of the chemo-mechanical system of interest. Mechanical boundary conditions consisting
of prescribed displacements and/or tractions are applied the the outer boundary of the system, along with fixed
concentration and/or flux boundary conditions. The model is divided into bulk (white area) and defected (grey area)
regions that define which numerical technique is used to model the point defect diffusion. The volume of material
that forms the interface between the two regions (dark grey surface) uses both AMD and the diffusion equation so
that information can be passed between the two regions.

Within the overall domain, we define different zones as indicated in Figure 2 for the case of an
edge dislocation embedded in a large cylindrical geometry. Zone 0 contains the outer boundary of
the overall problem where the external boundary conditions are applied. Zone 1 corresponds to the
domain where the material is crystalline with small distortions, where the standard diffusion (and
continuum mechanics) is applied. Zones 2 and 3 denote two adjacent atomic surfaces where a well-
defined (but distorted) crystal structure still exists adjacent to the extended defect, and where the
coupling of the DD and AMD methods is achieved. Zone 4 is the domain containing the evolving
extended defect and surrounding highly-distorted atomistic regions where AMD is required. As
the simulation proceeds, point defects flow into Zone 3 from the surrounding crystal (Zone 2) as
dictated by Discrete Diffusion and then those point defects evolve and react with other defects in
Zones 3 and 4 as dictated by the AMD simulations. The definitions of Zones 1,2,3, and 4 can evolve
adaptively during the evolution; for description of the method we consider them as fixed over some
window of time. Diffusion of point defects is executed in Zones 0-3 using Discrete Diffusion since the
crystalline sites (substitutional or interstitial) are well defined (Figure 2c). Boundary conditions for
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sites in Zone 0 are imposed. Boundary conditions for sites i in Zone 3 are determined in part by the

concentration in Zone 3 that comes from the AMD simulation containing n point defects, c
(3,MD,n)
i .

Accelerated Molecular Dynamics is executed in Zones 2-4 with atoms in Zones 0-1 held fixed at
their mechanical equilibrium positions and serving as mechanical boundary conditions (Figure 2d).
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Figure 2: (Color online) Decomposition of entire problem domain into Zones 0-4, for the example of a dissociated
edge dislocation in aluminum. The overall domain is a cylindrical volume with the periodic axis along the dislocation
line direction. a) Cross section of the simulation volume with the dislocation line perpendicular to the plane of
the image, showing Zones 0-4. Zone 4 (orange) contains the two partial dislocation cores and stacking fault (black
symbols plus gray line) and surrounding atoms. Zone 3 (green) consists of the shell of atoms surrounding Zone 4.
Zone 2 (light blue) consists of the next shell of atoms surrounding Zone 3. Zone 1 (dark blue) consists of all other
outer atoms aside from the boundary atoms in Zone 0 (red). b) Cut-away cross-section of the same system showing
the extent along the dislocation line. c) Domain of Zones 0-3 within which the discrete diffusion problem is solved.
d) Domain of Zones 2-4 in which the AMD simulation is run, with Zones 0-1 held fixed as mechanical boundary
conditions.

The overall DD-MD algorithm operates in a staggered fashion, described succinctly as follows,
with all details given subsequently below. We start with n = 0 defects in Zones 3 and 4 and
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thus c
(3,MD,n=0)
i = 0. One point defect is then inserted randomly into the AMD domain (Figure

2d), and an AMD simulation is run until the system achieves an estimated equilibrium in Zones
2-4 with Zones 0-1 held fixed as boundary conditions. From the distribution of point defects in
Zone 3 found in the AMD simulation, the concentration of point defects in Zone 3 with n = 1 is

computed as c
(3,MD,n=1)
i . Diffusion in Zones 0-3 is then executed for some time increment with an

initial concentration in Zone 3 c
(3)
i (t) that is determined by the AMD concentrations with n = 0, 1

defects, c
(3,MD,n=0)
i and c

(3,MD,n=1)
i . When the integrated flux of point defects flowing into Zone 3

reaches unity, the actual time tn=1 at which there is exactly n = 1 point defect contained in Zones
3 and 4 (corresponding to the AMD simulation with n = 1 point defects) has been reached. A
second point defect (n = 2) is then inserted randomly into the AMD domain, and AMD is run until
estimated equilibrium is achieved in Zones 2-4. The concentration of point defects in Zone 3 with

n = 2 is then computed as c
(3,MD,n=2)
i and diffusion in Zones 0-3 is then run with evolving initial

conditions for c
(3)
i (t) determined by c

(3,MD,n=1)
i and c

(3,MD,n=2)
i . The time at which the integrated

flux of point defects into Zone 3 has again reached unity is the actual time at which there are n = 2
point defects contained in Zones 3 and 4, tn=2. The algorithm continues in the loop of inserting
point defects into the AMD domain, running AMD in Zones 2-4, and running diffusion in Zones
0-3. As point defects flow into Zone 3 by the diffusion equation and are distributed into Zones 3
and 4 by AMD, the extended defect structure may evolve and the mechanical state of the entire
system of Zones 0-4 is automatically updated to reflect this evolution. Under some conditions, the
entire system may reach equilibrium, at which point the extended defect has accommodated some
number of point defects but is in equilibrium with the surrounding crystal; the algorithm reaches
this point automatically as the flux from Zone 3 into Zone 2 is equal to the flux of Zone 2 into Zone
3. Under other conditions, the extended defect may absorb point defects forever, with the extended
defect evolving in structure continuously.

The DD-MD algorithm sketched above requires elaboration of the following key parts: (i) ini-
tialization of the entire system and problem; (ii) specifying the diffusion equation that is solved in
Zones 0-3; (iii) definition of the evolving initial conditions for the concentrations in Zone 3 emerg-
ing from the AMD simulation; (iv) specifying the AMD method; (v) the method of inserting point
defects into Zone 4; and (vi) definition of equilibrium during an AMD simulation. We now address
these parts of the algorithm in detail.

2.1. Initialization for Each New Defect Structure

Before the DD-MD algorithm is run, the formation or solution enthalpy ∆Hf and misfit volume
tensor ∆Vf of the point defect of interest are computed independently in the perfect crystal at
zero temperature and zero pressure. The migration enthalpy ∆Hm and misfit volume tensor in the
transition state ∆Vt for site-to-site transitions of the point defect in the perfect crystal are also
computed at zero pressure and zero temperature. The details concerning how these properties can
be found are provided by Olmsted et al. 2004 [12].

The desired geometry of the problem of interest is then constructed in an atomistic simulation
using standard methods, with no point defects in the system, and relaxed to mechanical equilibrium.
Zones 0-4 are then defined by computing the local atomic stress tensor (σ) and common neighbor
analysis (CNA). Zone 4 is then identified as the set of atoms not in the bulk crystal (e.g. fcc)
environment plus extra shells of atoms surrounding these non-crystalline atoms where the stress
gradients are too large to be handled by discrete diffusion [12]. Zone 3 consists of the shell of
near-crystalline atoms surrounding Zone 4. Zone 2 is the shell of atoms surrounding Zone 3. Zone
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0 consists of the outer atoms where boundary conditions (mechanical and chemical) are applied,
and Zone 1 atoms are all other atoms in between Zones 0 and 2. Figure 2 shows this decomposition
of the example problem studied here.

2.2. Diffusion in Zones 0-3

The diffusion of point defects through the strained crystalline lattice of Zones 0-3 can be effi-
ciently modeled by considering discrete (site-by-site) diffusion (DD) using transition state theory
along with the formation and migration enthalpies appropriate to each site or transition [12]. In
most problems, the size of Zones 0-3 is hugely larger than that of Zone 4 and the point defect
transition rates in Zones 0-3 are much slower than those in Zone 4, so that this efficient diffusion
model captures the large length and time scales of the problem. The discrete diffusion equation
is based on the Master Equation approach and defines the time rate of change of the point defect
concentration/probability at a crystalline site i, ci in terms of the flux of point defects into(out of)
i from(to) neighboring sites j with transition rates Wji(Wij). Expressing the transition rates in
terms of thermal activated events following an Arrhenius law, the evolution of any site i in Zones
0-3 is, following notation of Zhang and Curtin [8],

∂ci
∂t

=

Nn∑
j=1

[
cj (1− ci) ν0exp

(
−Qj→i
kBT

)
− ci (1− cj) ν0exp

(
−Qi→j
kBT

)]
. (1)

In Eq. 1, ν0 is the attempt frequency of the diffusional hop, Qi→j is the activation energy for a
point defect at site i moving to site j, kB is Boltzmann’s constant, T is the temperature of the
system, and the sum is over the Nn nearest neighbor sites of a site i within Zones 0-3. Boundary
conditions imposed on sites in Zone 0 can either be fixed concentrations, where ci is imposed and

not solved using Eq. 1 above, or fixed flux, where an additional term dc
(flux)
i is added to Eq. 1.

The activation energy is a function of the migration and formation enthalpy barriers, ∆Hm
ij and

∆Hf
i respectively, associated with sites i and j as

Qi→j = ∆Hm
ij −∆Hf

i , Qj→i = ∆Hm
ij −∆Hf

j . (2)

The migration enthalpy barrier between sites i and j is approximated as a linear function of the
stress tensor at the transition state, σt, as

∆Hm
ij

(
σt
)
≈ ∆Hm − σt∆Vt (3)

where the stress at the transition state, σt, is approximated by the average of the stresses at sites
i and j as

σt =
σi + σj

2
. (4)

Similarly, the formation enthalpy barrier at site i is approximated as a linear function of the stress
at site i and externally applied stress, σapp, as

∆Hf
i (σi,σapp) ≈ ∆Hf − σi∆Vf − Tr (σapp)

3
va, (5)

where va is the volume per atom in the bulk at zero pressure and zero temperature. The accu-
racy of the linear approximations for the formation and migration barriers has been demonstrated
previously [12].
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The Discrete Diffusion equation is solved during the time interval tn < t < tn+1, i.e. the time
interval between the times at which n and n + 1 point defects have entered Zone 3 from Zone 2.
Within this interval, the diffusion equation is solved over sub-intervals from t to t′ = t+ ∆t. At the

start of the sub-interval, the concentration in Zone 3, c
(3)
i (t) is obtained from the concentrations

c
(3,MD,n)
i and c

(3,MD,n+1)
i as described in the next section. During the sub-interval, the diffusion

equation is solved using an embedded 4th- and 5th-order Runge-Kutta method [13]. Starting with a
test increment ∆t(test), this method computes 4th- and 5th-order estimates of the concentrations in
each site at t′ = t+∆t(test). The error between the two estimates is then computed at each site, and
the maximum time step ∆t(max) that would ensure a maximum absolute error of 1 × 10−6 or less
is estimated. If ∆t(test) < ∆t(max) then the 5th-order solution is accepted. If ∆t(test) > ∆t(max)

then the time step is reduced to ∆t(test) = ∆t(max) and the concentrations are recomputed. A new
∆t(max) is then computed, and if smaller than the previous value, the time step is reduced by a
factor of 10, and the concentrations are again recomputed. The final value of ∆t(max) is then used
as the initial ∆t(test) for the next time step.

2.3. Coupling: Boundary Conditions in Zone 3

At the start of each sub-interval at time t, the site concentrations c
(3)
i (t) are initialized by

using a combination of (i) the net flux into Zone 3 from Zone 2 and (ii) the concentrations in
Zone 3 emerging from the AMD computations. After diffusion has been run to time t′, the site

concentrations in Zone 3 computed by Discrete Diffusion are c
(3,DD)
i (t′) where the superscript DD

indicates that these concentrations come from the Discrete Diffusion equation. The total number
(fraction) of point defects that have entered Zone 3 from Zone 2 since tn, the time at which there
were n point defects in Zones 3 and 4, is

∆N3(t′ − tn) =
∑
i

(
c
(3,DD)
i (t′)− c(3)

i (tn)
)
. (6)

If ∆N3(t′ − tn) < 1.0 then t′ is less than the time tn+1. The site concentrations in Zone 3 at
t′ are then interpolated from the Zone 3 site concentrations derived from the AMD simulations
corresponding to n and n+ 1 point defects at times tn and tn+1. We use a linear interpolation

c
(3)
i (t′) = c

(3,MD,n)
i

(
1−∆N3(t′ − tn)

)
+ c

(3,MD,n+1)
i ∆N3(t′ − tn). (7)

This new value for the concentrations in Zone 3 is then used as the initial condition for the next
time increment in the Discrete Diffusion evolution. If N3(t′ − tn) ≥ 1.0 at time t′, then t′ has
exceeded tn+1. A new AMD simulation containing n + 2 point defects is then executed to obtain

c
(3,MD,n+2)
i , and the Discrete Diffusion algorithm is then executed with site concentrations in Zone

3 interpolated between the AMD site concentrations measured at times tn+1 and tn+2, starting
with

c
(3)
i (t′) = c

(3,MD,n+1)
i

(
2−∆N3(t′ − tn)

)
+ c

(3,MD,n+2)
i

(
∆N3(t′ − tn)− 1

)
. (8)

In addition, the atomic positions and stresses in Zones 0-3 are updated to those corresponding to
the minimum energy configuration discovered during the AMD simulation with n+ 1 point defects.
To do so, we start with the minimum energy configuration when n+ 1 defects are present, as found
from the AMD simulation, and find the corresponding zero temperature minimum energy structure
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for the entire system of Zones 1-4, given the mechanical boundary conditions of Zone 0. The
atomic stresses in Zones 0-3 are then updated using this new structure, with corresponding changes
to the activation and formation enthalpies in Zones 0-3. The zero-temperature atomic structure in
Zones 0-3 is then scaled to the finite temperature lattice constant, and this structure provides the
mechanical boundary conditions for the AMD simulation of Zones 2-4 with n + 2 defects. Thus,
the entire problem evolves as the extended defect evolves.

2.4. Accelerated Molecular Dynamics in Zones 2-4: Method, Insertion, Reaching Equilibrium

Hyperdynamics is applied to accelerate the diffusive motion of the point defects in Zones 2-4
so that the complex system (extended defect plus absorbed point defects) explores the dominant
region of phase space. Hyperdynamics biases the dynamics so that activated states are explored
very frequently [5, 14], as compared to standard MD. To bias the system dynamics in this work,
we have implemented the self-learning simplified bond-boost potential of Perez and Voter [2] (see
Appendix A for our specific implementation), based on original work by Miron and Fichthorn [1].
The bond-boost potential is based on the bond breaking picture of deformation and assumes that
bonds must stretch or compress beyond a certain threshold in order for a transition to occur.
Before using the bond-boost hyperdynamics potential, one must choose which atoms receive the
bond-boost potential and measure the average bond lengths between all boosted atoms. Here,
bonds are built between all pairs of nearest neighbor atoms in Zones 2-4 that contain at least one
atom that is not in FCC stacking as determined by the atom’s CNA.

An AMD simulation corresponds to a simulation of Zones 2-4 around the extended defect con-
taining n additional point defects in the AMD domain. At the start of the simulation, all atoms are
in their mechanical equilibrium position corresponding to the minimum energy state of the system
containing n− 1 point defects and expanded to the finite-T lattice constant. Zone 0 and 1 atomic
sites are held fixed and provide boundary conditions for the dynamic simulation. Zone 2 atoms are
included in the dynamic AMD simulation so that sites in Zone 3 see dynamic neighbors in Zone 2;
otherwise, the probability of finding the point defects in Zone 3 sites is unduly affected. Before the
dynamics is started, the positions of possible point defects sites in Zones 2 and 3 are recorded. The
nth point defect is then inserted into Zone 4 (for a vacancy, by randomly deleting one of the Zone
4 atoms) and the energy is minimized using molecular statics holding Zones 0-1 at the expanded
lattice. The bond lengths at the resulting minimum energy configuration are used as the average
bond lengths for the bond-boost method until the next minimum energy configuration is found.

During AMD, the system of atoms in Zones 2-4 evolves from one minimum energy basin to
another via thermally-activated transitions. Information is collected for each basin visited. The
potential energy minimum Ej of the jth basin is computed via molecular statics at the expanded

lattice constant. The total number of point defects in Zones 2 and 3, m
(2)
j and m

(3)
j , in the jth

basin is also recorded. Once there is a transition out of the jth basin into another basin, the real
time tj spent in the jth basin is computed using the standard hyperdynamics procedure.

As the AMD simulation continues, more energy basins are explored. The AMD simulation must
be run until enough basins have been sampled to approach the equilibrium distribution of states.
To assess the approach to equilibrium, we create two distinct estimates of the underlying probability
distribution p(E) of the total potential energy. Both distributions are discretized into bins of width
kBT because this is a natural energy scale at the operating temperature and is related to range of
accessible energy states of the system. The first estimate of the probability distribution, denoted
as pcount(Ei), is simply the probability (fraction) of basins having minimum energy in bin i, i.e.
Ei ≤ Ej < Ei + kBT . Over the range of basins starting with j = j0 and ending with j = jf ,
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the probability p(Ei) of encountering any basin in the ith energy bin is the total number of energy
basins in the interval [Ei, Ei + kBT ) divided by the total number of basins explored j = j0, ...jf ,

pcount(Ei) =
1∑jf
j=j0

1

jf∑
j=j0

Ej∈[Ei,Ei+kBTeV )

1. (9)

The second estimate of the probability distribution is based on the average number of basins
explored between repeat visits to the same energy bin. Given an infinitely long, positive recurrent
Markov chain drawn from the underlying probability distribution p(Ei), the probability of being in
an energy bin i is given by the inverse of the average number of basins visited between repeat visits
to bin i [15]. This estimate of the probability distribution, denoted as preturn(Ei), is calculated as
the simulation proceeds by computing the number of basins explored between every return visit to
each bin, then computing the average across the number of return visits.

Near-equilibrium is defined here as the point at which the two probability distribution estimates
converge to each other, with some additional constraints to ensure good overall sampling statistics.
We thus impose three criteria for convergence: at least 1000 basins are explored, the number of
basins explored divided by the number of non-zero energy bins must be greater than 100, and the
distance between the distributions as defined by the Hellinger distance metric [15] must be less than
0.10 for 500 consecutively explored basins. The Hellinger distance between the two distributions is
computed as

H
(
pcount, preturn

)
=

√√√√Nbins∑
i=1

(√
pcount(Ei)−

√
preturn(Ei)

)2

, (10)

where Nbins is the number of bins that have a non-zero probability in either pcount or preturn.
When all of the criteria are met, the distribution is deemed to have reached near-equilibrium.
True equilibrium is never obtained but the AMD has sampled a large collection of basins suffi-
cient to approximate equilibrium. As an illustration, Figure 3 shows the Hellinger distance and
the corresponding final binned “near-equilibrium” distributions pcount and preturn for three AMD
simulations of a dislocation core containing n = 1, 3 and 5 vacancies, respectively, which will be
described in detail in the Application section.
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3 Vacancies

5 Vacancies

a) b)

Figure 3: a) Hellinger distance between the two distributions pcount and preturn used here, versus the number
of energy basins explored, for three different AMD simulations containing an edge dislocation (as in Figure 2d)
and n = 1, 3 and 5 vacancies, respectively. Using three convergence criteria (see text), the controlling criterion
for convergence (1000 basins explored; Hellinger distance < 0.1 for 500 basins or more; average number of basins
explored per occupied energy bin > 100) was different for each of these simulations ( n = 1: 1000 basins explored;
n = 3 vacancies: Hellinger distance; n = 5 vacancies: number of basins explored per occupied energy bin). b) The
two distributions pcount and preturn at convergence, for all cases n = 1, 3, 5.

Once the AMD attains near-equilibrium, we use the resulting information on the distribution
of point defects in Zones 2 and 3 to establish boundary conditions for the subsequent Discrete
Diffusion simulation. First, the total number of point defects contained in Zone 2 or 3, where point
defects are well-defined within the distorted crystalline lattice, is computed as the fraction of time
any point defects spends in Zone z = 2 or z = 3 during the accelerated MD simulation

NMD
z =

∑jf
j=j0

m
(z)
j tj∑jf

j=j0
tj

, (11)

where m
(z)
j was defined earlier as the total number of point defects in Zone z in the jth energy

basin. Recall that Zone 2 was included in the dynamics only so that the the sampling of point
defect concentrations in Zone 3 is not affected by the fixed atom boundary conditions in Zones 0
and 1. Since the n defects that are inserted into the AMD simulation have already passed from
Zone 2 into Zone 3 by the diffusion equation, the total number of point defects measured in Zone
2 must be redistributed back into Zones 3 and 4 so that all n defects are contained within Zones 3
and 4. The fraction of NMD

2 that is distributed back into Zone 3 is given by

∆NMD
3 = NMD

2

NMD
3

n−NMD
2

. (12)

The total number of point defects in Zone 3 is then NMD
3 + ∆NMD

3 . These defects are then
distributed among all the sites i in Zone 3 according to the concentrations computed using the site
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formation enthalpies (Eq. 5) as

c
(3,MD,n)
i =

e−β∆Hv
i∑

i∈3

e−β∆Hv
i

(
NMD

3 + ∆NMD
3

)
, (13)

where β = 1/kBT . This computation of the site concentrations in Zone 3 is performed because
it is too computationally intensive to allow AMD to explore all possible positions of all the point
defects to achieve a full equilibrium of point defects in Zone 3. Therefore when near-equilibrium is
reached in an AMD simulation, the individual site concentrations will not precisely match the true
equilibrium distribution. However, the total averaged number of point defects measured in Zones
2 and 3 (i.e. the sum of the site concentrations) converges much faster. Thus, above, we compute
the total number of point defects in Zone 3 and analytically compute the individual equilibrium
site concentrations in Zone 3. The computed site concentrations in Zone 3 in the presence of n and

n + 1 defects in Zones 3 and 4, i.e. c
(3,MD,n)
i and c

(3,MD,n+1)
i , are then used to updated by the

Discrete Diffusion equation at any time in the interval tn < t < tn+1 as described in the previous
section.

3. Application: Edge Dislocation Climb in Aluminum

As a demonstration, the DD-MD algorithm is applied to study the transport of vacancy defects
into an edge dislocation, which is associated with the nucleation and expansion of jog pairs that
represents the initial stages of dislocation climb. Because the dislocation is an extended defect, we
can only study evolution of a short segment of an infinite line, without addressing issues such as
pipe-diffusion along the dislocation core over long distances. Thus, this preliminary application is
not a full study of the problem of dislocation climb. There is a long-standing theoretical framework
for double-jog nucleation [16, 17, 18, 19, 20] but, because of the huge range of spatial and temporal
scales involved, only a few recent attempts have been made to model the climb process at the
atomistic scale [21, 22, 23, 24]. We discuss our simulations with respect to theory and earlier
models in the discussions sections.

3.1. Geometry and Material Properties

We simulate an edge dislocation core in Aluminum at T = 600K. The crystal orientation has
the x axis along [11̄0], y axis along [1̄1̄1̄], and z axis along [112̄]. To create a sample under stress,
a fully-periodic crystal of size 308.0Å × 307.3Å × 44.4Å is equilibrated under the desired uniform
applied stress tensor (specified below). An edge dislocation is then created in a two-step procedure.
First, an edge dislocation is created by superimposing the elastic displacement field for a perfect
edge dislocation displacement with the Burgers vector b = a/2 [11̄0] (where a is the lattice constant
of 4.032 Å) and line direction along the z axis. Atoms within 10 Å of the outer boundary along x and
y were then held fixed and the remaining atoms then relaxed to a minimum energy structure using
molecular statics in LAMMPS [25] to create the relaxed dislocation core structure, which consists
of two partials separated by a stacking fault. To reduce the computational cost of subsequent
simulations, a much smaller cylindrical sample with radius 70 Å around the dislocation line is
extracted and the outer 10 Å of this smaller cylinder are then held fixed during the simulation. We
define Zones 0-4, which contain 13815, 26352, 612, 504, and 684 atoms, respectively, with the final
configuration shown in Figure 2. The fraction of Zone 3+4 atoms within Zone 3 is thus ∼ 0.42.
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The Ercolessi and Adams embedded atom potential for Aluminum is used [26]. For this potential,
the vacancy formation enthalpy at zero pressure and temperature is ∆Hf = 0.69 eV and the vacancy
misfit volume is ∆V f = 9.75Å3 [12]. At T = 600K, the vacancy concentration in bulk Al is then
c = 1.6× 10−6. The vacancy migration enthalpy at zero temperature and pressure is ∆Hm = 0.61
eV and the principal values of the vacancy misfit volume tensor at the transition state for site-to-
site hopping are (11.15,−1.97,−5.74)Å3, where the first value corresponds to the 〈100〉 direction
perpendicular to jump direction, the second value corresponds to the 〈110〉 jump direction, and the
third value corresponds to the 〈110〉 direction perpendicular to jump direction [12].

In the discrete diffusion simulations, we use an attempt frequency ν0 = 1 × 1013/s. For the
bond-boost hyperdynamics method, we use a value of 0.35 for the maximum bond strain (εα from
[2]) and a maximum boost-energy (Sα from [2]) that is determined adaptively as the simulation
proceeds to maintain efficient sampling of the boosted potential yet provide accelerated transitions
to configurations that would sampled less frequently using standard MD. Appendix A provides an
overview of the self-learning bond-boost hyperdynamics procedure, with further details provided in
[2].

The applied stress tensor is chosen such that there is a large climb force on the dislocation but
with a pressure near zero. The far-field vacancy concentration is thus independent of the applied
stress field. This is achieved by applying a displacement field that generates a compressive uniax-
ial stress in the Burgers vector direction with corresponding tensile stresses in the perpendicular
directions to keep the pressure at zero,

σ =

σxx 0 0
0 −σxx/2 0
0 0 −σxx/2

MPa,

with σxx < 0. Since Al is slightly anisotropic and the elastic constants depend on temperature, zero
pressure is not achieved exactly, but the differences are negligible. Here, we consider an applied
stress of σxx = −972.1 MPa with a small residual pressure p = −13.7 MPa and shear σyz = 65.5
MPa.

We envision a region of bulk material at the equilibrium vacancy concentration c into which
a dislocation glides and arrests at the origin at time t = 0. Thus, the initial concentrations in
all Zones are set to c. However, the vacancy concentration boundary condition in Zone 0 is then
set to the eventual concentration in the presence of the dislocation. This ensures that the system
(simulation cell) eventually reaches a correct equilibrium with the bulk concentration of vacancies,
but also causes a (small) artificial jump in the initial site concentrations between Zones 0 and 1
(maximum difference of 28%). At the equilibrium concentration, and with ∼ 1000 atoms in Zones
3+4, there are only a total of 0.002 vacancies in these regions at t = 0. The case of 0 vacancies
requires no AMD, and so the first AMD simulation contains 1 vacancy in Zones 3+4.

3.2. Results: Equilibrium

The AMD simulation with one vacancy in Zones 3+4 predicts that there are 0.20 vacancies
in Zone 3. If the one vacancy were simply equally distributed among all sites in Zones 3 and 4,
the concentration in Zone 3 would be ∼ 0.42. Thus, the lower measured value of 0.20 indicates
that there is weak binding of the single vacancy around the dislocation. The Discrete Diffusion
algorithm is then executed for Zones 0-3 using boundary conditions interpolated from the AMD
concentrations for Zone 3 for 0 and 1 vacancy, as described earlier. The predicted total number
of vacancies in Zones 3+4 versus time is shown in Figure 4a. Equilibrium is reached within a few
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microseconds, at which point the net flux into Zone 3 becomes zero. At equilibrium, the total
number of vacancies in Zone 3 is 1.36× 10−3 and in Zones 3+4 is 6.89× 10−3. With far less than
one vacancy in the dislocation core region, there is no nucleation of any jog structure and no climb,
in spite of the very large applied climb force.
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Figure 4: a) Number of vacancies in Zones 3+4 versus time, for an edge dislocation initially placed into the bulk
crystal. Equilibrium is achieved with far less than one vacancy in Zones 3+4 so that no climb processes occur. b)
Number of vacancies in Zones 3+4 versus time with labels indicating the imposed vacancy supersaturation in the
bulk crystal. Below a supersaturation of 146, the total number of vacancies plateaus to an equilibrium concentration.
For a supersaturation of 146 or greater, the number of vacancies in Zones 3+4 increases continuously, due to the
nucleation of a double-jog that acts as a vacancy sink. The dotted lines indicate a constant, steady-state rate of
vacancy absorption after the double-jog becomes a sink for vacancies.

The total number of vacancies is proportional to the length of the simulation cell (equal to the
dislocation line length, 44.44 Å ). To achieve two separated vacancies inside the atomistic region
would require a simulation cell/dislocation line of 12905 Å = 2(44.44 Å)/6.89 × 10−3. The two
vacancies could then possibly merge to form a different more-stable defect such as a tiny jog. For
an even longer simulation cell, the total number of vacancies could increase further. However, the
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binding energy of two or more vacancies (including any work done by the applied stress) would need
to be sufficiently large to overcome the entropy associated with the localization of the vacancies.
The energies of defects with additional vacancies are shown further below, and would form the basis
for estimates of their formation under equilibrium conditions, but such an investigation is outside
the scope of the present study.

3.3. Results: Climb with a Vacancy Supersaturation

To drive jog nucleation in the (small) atomistic region requires the imposition of non-equilibrium
conditions. Since the equilibrium number of vacancies in Zone 3 is 145.2 times smaller than the
prediction from AMD with one vacancy, the supersaturation must be greater than 145.2 to absorb
the first vacancy. We thus run the same dynamic simulation but with far-field vacancy supersatura-
tions of 10×, 50×, 100×, 145×, 146×, 150×, and 200× the equilibrium far-field concentration. The
number of vacancies in Zones 3+4 versus time for each vacancy supersaturation is shown in Figure
4b. For supersaturations of 145 or lower, the system reaches equilibrium prior to the injection of a
single vacancy into Zones 3+4. For a supersaturation greater than 145, the system does not reach
equilibrium in Zones 3+4 and, after a transient period of 1-15 microseconds, Zones 3+4 steadily
absorb vacancies that flow in from the surrounding region. In this regime, the predicted number of
vacancies in Zone 3 as a function of the total number of vacancies in Zones 3+4 evolves as shown in
Figure 5. At these supersaturations values, when more than one vacancy is introduced into Zones
3+4, the vacancies bind together near the core and become less likely to appear in Zone 3. The
concentration in Zone 3 thus remains below the “equilibrium” value (sum of the site concentra-
tions c = e−β∆Hv

multiplied by the supersaturation) and far-field diffusion thus injects additional
vacancies into Zones 3+4 that move into Zone 4. When 2 or 3 vacancies exist in Zones 3+4, their
binding is moderate (see below) so that the decrease in concentration in Zone 3 is small. But since
it remains below the equilibrium value, further vacancies diffuse in from Zones 0-2. When 4 va-
cancies have diffused into Zones 3+4, the AMD-measured number of vacancies in Zone 3 becomes
almost zero, indicating strong binding of the 4 vacancies to the dislocation to create some sort
of very stable defect (see below). When 5 vacancies have diffused into Zones 3+4, the measured
number of vacancies in Zone 3 becomes zero to within the limits of computational accuracy; this
indicates that a vacancy sink has formed in the defect region (see below). Additional vacancies flow
from the far-field into Zone 4 and are absorbed at the sink and thus never diffuse out into Zone
3, independent of the supersaturation above the critical value. The coupled simulations are halted
before the 8th vacancy is absorbed.
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Figure 5: Number of vacancies in Zone 3 versus the number of vacancies that have flowed into Zones 3 and 4. Solid
symbols are computed and the lines are a guide to the eye. The open symbols, labeled by the imposed vacancy
supersaturation, show the equilibrium number of vacancies in Zone 3 achieved for supersaturations below 146. For
supersaturations of 146 or larger, the “equilibrium value”, calculated by summing the site concentrations using the
formation enthalpies in Zone 3 multiplied by the bulk concentration, cannot be obtained because the vacancies remain
trapped near the dislocation. The inset figure provides a close up around the values corresponding to 1 vacancy in
Zones 3 and 4.

The creation of a sink is confirmed by measuring the potential energy change in the atomistic
domain upon adding one additional vacancy into the AMD simulation, ∆E(n) = (E(n) + Ea) −
E(n− 1), where n is the number of vacancies and Ea is the potential energy of an atom in the bulk
under zero stress, −3.36 eV [26]. The inclusion of Ea accounts for the potential energy of the atom
that is replaced by the new vacancy after it has moved far away from the dislocation core out of the
AMD domain. The addition of a new vacancy into the AMD domain has two contributions: the
bulk vacancy formation energy ∆Hf = 0.69 eV and the binding energy ∆Eb(n) due to interactions
of the nth vacancy and the defect including the previous n−1 vacancies, ∆E(n) = ∆Eb(n) + ∆Hf .
If the cost to add a vacancy is greater than zero, ∆E(n) ≥ 0, then equilibrium between the far-field
Zones 0-2 and the defect structure in Zones 3+4 can be reached. In this regime, the defect acts as a
trap that absorbs and emits vacancies. When the cost of adding a vacancy is negative, ∆E(n) < 0,
the system gains energy by adding a vacancy to the defect, and a sink exists. A sink annihilates
the vacancy, lowering the energy by more than the vacancy formation energy ∆Hf relative to a
vacancy far from Zone 4. In the presence of the sink, there is a driving force for the flow of vacancies
from the bulk crystal (which is in equilibrium with a surface far away from the simulation domain)
into the defect structure. Figure 6 shows the incremental potential energy cost to add a vacancy
∆E(n) = (E(n) + Ea)−E(n−1) where E(n) and E(n−1) are taken as the potential energies of the
minimum energy structures discovered in the respective AMD simulations. When 1 vacancy enters
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Zones 3+4, the energy cost is only 0.18 eV lower than the vacancy formation enthalpy, indicating
weak binding to the dislocation. When 2, 3, and 4 vacancies are in Zones 3+4, the binding energies
are all positive but ∼ 0.4 − 0.5 eV below the formation enthalpy, indicating stronger binding and
less probability of finding vacancies in Zone 3. When the 5th vacancy diffuses into Zone 4, the cost
to adding a vacancy decreases precipitously, and becomes negative. Moreover, the energy gain is
nearly equal to the work done by the climb force on the dislocation, σxxva = 0.099 eV where va
is the volume per atom. Additional vacancies (6, 7, ...) diffuse into Zones 3+4 and are absorbed
into the sink, with an energy change corresponding to the work done by the applied stress. Once
the sink is formed, AMD is unable to measure a finite vacancy concentration in Zone 3 within
reasonable times because the energy cost of removing a vacancy from the sink to Zone 3 is large,
approaching ∆Hf+σxxva. We note that in these simulations, the AMD simulations would probably
measure zero concentration in Zone 3 even at zero stress, since the jog annihilates the vacancy and
requires approximately 0.69 eV to release it again. Thus, the simulations here that measure zero
concentration in Zone 3 do not correspond precisely to the true situation for double-jog nucleation
and growth; this difficulty is address more fully in the discussion section.
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Figure 6: A plot of the change in the total potential energy of the system between each AMD simulation. When
the energy change is negative, the system gains energy by placing a vacancy into the defect indicating that a sink
has been formed. The dotted line corresponds to the vacancy formation enthalpy in the bulk, and the dashed line
corresponds to −σxxva.

The various atomic structures associated with double-jog nucleation due to vacancy absorption
have not been examined previously using molecular dynamics, and so we show some results emerging
from our extensive AMD simulations. Figure 7 shows some of the low-energy configurations that
dominate the AMD for various numbers of vacancies introduced into Zones 3+4. As was surmised
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through inspection of the energies, when 3 vacancies are present, they coalesce into a defect that
reside near one of the partials of the dissociated core. This defect dissociates and reforms over
time. When 4 vacancies are present, they form a prismatic dislocation loop on one of the partial
dislocation cores, as seen in more detail in Figure 8 and as postulated by Hirsch [27]. This loop
can diffuse between the two partial dislocation cores or form a double-jog structure corresponding
to dislocation to climb. The 4-vacancy dislocation loop very occasionally decomposes by emitting
a vacancy that diffuses into Zone 3, but in general the loop acts as a strong trap for vacancies in
the core region. Once 5 or more vacancies are absorbed, a distinct double jog is created that rarely,
if ever, decomposes into a smaller dislocation loop/jog structures with separated vacancies. The
double jog then acts as a perfect sink: vacancies incorporated into the jog never detach from the
jog within time scales measurable in AMD.
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Figure 7: (Color online) The atomic structure of typical dislocation structures when a) 3, b) 4, c) 5, d) 6, and e) 7
vacancies are present in the dislocation core. The color corresponds to the CNA of each atom, where the red atoms
are disordered and the blue atoms have HCP stacking. Atoms with FCC stacking are not shown. Each structure is
shown looking down on the dislocation slip plane and from the sides so that the 3D structure is visible.
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Figure 8: (Color online) a) The atomic structure of three typical prismatic loop and double jog configurations when
four vacancies are present in the AMD simulation. The color corresponds to the CNA of each atom, where the
red atoms are disordered and the blue atoms have HCP stacking. Atoms with FCC stacking are not shown. b) A
close-up of the full dislocation double-jog, only showing the plane of atoms on the top of the original slip plane (with
the jogged plane of atoms removed), in which the dislocation structure closely resembles a partial-vacancy structure
described by Hirsch [27].

Once the sink has formed, i.e. after 5 vacancies have been absorbed, the number of vacancies in
Zone 3 remains zero and the system approaches a steady state with a near-constant flux of vacancies
into the dislocation, as indicated by the dashed lines in Figure 4. We have measured the flux at
the point where the simulations have been halted (not perfect steady state), and it is found to be
linearly proportional to the applied background concentration. This behavior is expected because
analysis of the diffusion equation in the presence of a sink shows that the flux into the sink is
proportional to the far-field vacancy concentration, and our coupled DD-MD algorithm faithfully
reproduces the full diffusion problem.

3.4. Discussion on Simulations of Dislocation Climb

Our results show that, starting from a straight dislocation, double-jog nucleation does not occur
even with a large climb force (σxx = 0.97 GPa). This may seem at odds with standard theory
for climb. However, in the absence of jogs, the climb force plays no role since it only does work
on the system when an existing jog moves by absorption of a vacancy; our result is thus physical
within the context of the simulation conditions. Standard climb theory (e.g. as in Hirth and Lothe
[16]) implicitly assumes the existence of a jog, even if the diffusion problem is solved for an infinite
straight jog-free dislocation. In the theory, the existence of the jog is indirect, via imposition of an
effective vacancy concentration near the core that is enhanced by the work done by the climb force.
Thus, theory and simulation on nominally the same problem are not actually studying the same
microscopic problem.

Atomistic simulations can only study a short segment of dislocation. For an infinite dislocation,
equilibrium corresponds to a finite (although very small) density of double-jogs of various lengths
along the core, as dictated by the formation energy of such jogs [16, 28]. Therefore, simulations of
climb perhaps should probably start with an initial double jog of some length, focusing on the (rare)
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atomistic region where such a double jog has formed at equilibrium. However, such simulations will
then most likely predict that double jog lengthening (climb) will occur at zero driving force because
the double jog acts as a sink (the jog never emits a vacancy). Since the introduction of a vacancy
“by hand” into the MD region automatically increases the potential energy of the MD system by
approximately the vacancy formation energy ∆Hf , the absorption of the vacancy into the sink will
then occur naturally in the MD since this process lowers the system energy by ∼ ∆Hf even at zero
climb force. Missing in such an MD simulation is the complementary behavior occurring elsewhere
in the real material where vacancies are actually injected into the bulk (e.g. near free surfaces). It is
in these regions that the system energy is first increased by ∼ ∆Hf upon injection of vacancies. In
equilibrium under zero climb force, this energy is exactly regained/balanced by vacancy absorption
into the dislocation jog sink. Conversely, a dislocation jog can emit a vacancy back into the lattice,
at a cost of ∆Hf , which is regained/balanced by absorption of a vacancy at the surface. The
nucleation process that creates the necessary vacancies in the bulk, at a cost of ∆Hf , is not easily
achieved within atomistic simulations. MD simulations of climb must thus be supplemented by
global energetic considerations to provide meaningful information on climb rates, although the MD
simulations do provide information about the local processes/configurations around the jogs.

Dislocation climb is complex and rich, which is why the details of the climb process are still
poorly understood. Here, using a rigorous AMD approach within the coupled simulation, detailed
atomistic processes and structures are revealed that provide a wealth of new information about
the jog nucleation and climb process. Future work will provide a more-detailed analysis of the
thermodynamics, kinetics, and atomistic processes associated with the climb process.

4. Discussion and Summary

The coupled DD-MD method presented here provides a path to studying some challenging
problems involving point defect diffusion into extended defects. However, there are some important
limitations that merit discussion.

First, as evident in our discussion of dislocation climb, even AMD is not capable of efficiently
simulating local equilibrium point defect concentrations in systems with strong traps or sinks. For
problems with complex defects, identifying the emergence of a sink is not simple. One signature of
a sink, as opposed to a trap, is a reduction in the potential energy in the MD domain equal to or
larger than the bulk point defect formation energy (as in Figure 6). Another associated signature
is the measurement of essentially zero point defect concentrations in Zone 3 (as in Figure 5). Once
a sink is formed, local AMD simulations (with or without coupling to a far field) will usually miss
the global energetics associated with point defect nucleation far from the sink.

Second, this DD-MD method provides a deterministic, equilibrium approach to point defect
diffusion into the distributed defect. Fluctuations in the point defect concentration field that
occur in real materials may cause fundamentally different behavior from the equilibrium diffusion
solution. In order to account for fluctuations, a stochastic model would be needed. A stochastic
model might require pre-knowledge of attainable fluctuations and might require use of stochastic
boundary conditions in coupling to the AMD measurements (which must also measure or quantify
the fluctuations in the number of vacancies measured in Zone 3).

Third, in substitutional solid solutions, the solute atom diffusion is meditated by vacancies. This
can be handled at the Discrete Diffusion level by introducing coupled equations for the evolution of
both vacancies and solute atoms. However, vacancy concentrations in metals are quite low so that a
single vacancy may never be injected into the AMD domain. And, even if one vacancy is artificially
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added to the defect to facilitate solute diffusion, the diffusion of the solute atoms only occurs during
a small fraction of the vacancy hops and so AMD must be run for much longer times, increasing
the computational demand. Depending on the distributed defect, using an on-the-fly kinetic Monte
Carlo approach may be more efficient once many of the migration barriers are discovered. As
mentioned above, fluctuations in the vacancy concentration may also be important to this class of
problems since a small increase in the number of vacancies in the defect may lead to very different
defect structures or rates of equilibration.

Fourth, the linear interpolation of the Zone 3 point defect site concentrations between the values
calculated using AMD is an approximation that could be enhanced.

Fifth, AMD is computationally expensive since it involves waiting for transition events to occur,
even if they are at an accelerated rate. Fortunately, different types of AMD can be combined to
simulate longer MD times. Hyperdynamics, used here, can be combined with the parallel replica
method [6]. In this approach, many independent instances of the same AMD system are executed
using hyperdynamics until one system transitions to a new state, at which point all systems are
updated to the new state and all replicas then evolve further from that point to create a single
dynamic trajectory at an accelerated pace. Also, since the objective of the AMD simulations is to
measure the average number of point defects in a specific region, parallel sampling of phase space
can be done using many independent hyperdynamics simulations run in parallel. Since each AMD
simulation uses a relatively small number of atoms, multiple dynamic trajectories could be run
independently on a large number of processors and the trajectories combined to measure averages
more accurately.

In spite of these limitations, the present method has merits compared to other more com-
putationally efficient methods such as the phase-field-crystal method [29] and diffusive molecu-
lar dynamics [30] that have been recently introduced to study similar classes of problems. The
currently-implemented PFC methods addressing the evolution of distributed defects from point
defect diffusion [21, 31, 32] lack an accurate description of the true atomic-scale point defects, with
neither defect structures, energies, nor transition rates, computed accurately [33]. Related to the
application here, while “climb” processes have been simulated, the nucleation processes are not
captured with true atomistic fidelity and climb mechanisms that do not rely on double kink nu-
cleation are reported [21]. The DMD method combines a classical density functional approach for
the free energy with a Master Equation-type diffusion model to follow the evolution of defects over
“diffusive” time scales [24, 30]. The energetics of any atomic state are thus accurately described in
DMD but the time evolution remains approximate because the method does not use actual atomic
transition barriers in the region around the complex evolving defect. In problems/regions with
small point defect concentrations and concentration gradients, there is no need for atomistic detail
and so, while all three methods become similar, the Discrete Diffusion algorithm here is by far
the most efficient. All of the methods have similar difficulties with the simulation of sinks, which
is a general issue of molecular-level simulation methods. Also, none of the methods incorporate
natural fluctuations in the point defect concentration without adding them artificially. Since PFC
and DMD are far more computationally-efficient than the current method, the choice of method
depends on the level of realism and quantitative accuracy being sought in the simulation.

In summary, we have presented a concurrent multiscale approach to model transient mass diffu-
sion over long spatial and temporal scales using detailed atomistic modeling to capture evolution of
complex defects as point defects are absorbed or emitted into/from the defect. The coupled DD-MD
algorithm is applicable to a general atomistic system with interstitial or substitutional point defects.
Important algorithmic details have been presented, including the key issue of coupling between the
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discrete-diffusion and fully-atomistic domains and also the assessment of near-equilibrium during
the fully-atomistic AMD simulations. The latter issue transcends the coupled method and may find
value in assessment of convergence in other AMD studies. The coupling DD-MD methodology has
been demonstrated using the problem of vacancy diffusion and absorption into an edge dislocation
core in Aluminum to cause dislocation climb, with various insights into the climb process revealed.
Beyond the current application, the new DD-MD algorithm represents a powerful method to study
many physical problems where the transient evolution of crystalline defects is controlled by long-
range diffusion of point defects from the surrounding crystal. Taking advantage of both accelerated
atomistic simulations and a rate theory approach, defect structures and bulk diffusion are both
captured accurately in this new method.
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Appendix A: Self-Learning Bond-Boost Hyperdynamics

Our implementation of self-learning bond-boost hyperdynamics is based on the work of Perez
et al. 2009 [2]. They state that the potential of the mean force (PMF) for each pair of nearest
neighbor atoms defining a bond i can be estimated as a function of the strain in bond i, εi, as

PMFi(εi) = −kBT ln

[
〈ρi(εi)〉
〈ρi(εi = 0)〉

]
(14)

where 〈ρi(εi)〉 is the ensemble average of ρi(εi), which is the probability of finding bond i at a bond
strain strain of εi. The bond strain of any bond i is given by

εi =
ri − reqi
reqi

(15)

where ri is the instantaneous distance between the two atoms that make up bond i, and reqi is the
equilibrium distance between the atoms of bond i.

In this work, we use time averages to approximate the ensemble averages. The average prob-
ability of finding a bond with a bond strain of zero must be computed with standard MD, and is
computed by

〈ρ(εi = 0)〉 =
1

tMD
tot

NstepsMD∑
j=1

εi∈[0,q/20)

∆t, (16)

where tMD
tot is 5 ps, so that NstepsMD = tMD

tot /∆t = 5000, and ∆t is the time step of 1 fs. This
value is computed prior to turning on the bond-boost potential, and is observed to converge rapidly
within the 5 ps sampling time. After standard MD is run for 5 ps, the bond-boost potential is
turned on and ensemble average at εi = q is computed by

〈ρ(εi = q)〉 =
1

tAMD
tot

NstepsAMD∑
j=1

εi∈[q,q+q/20)

∆t, (17)
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where tAMD
tot is the total time spent running AMD (which is accelerated due to the bond-boost

potential), and NstepsAMD is the number of steps taken after the bond-boost potential is turned
on. The time step of 1 fs is used in the sum because at εi ≥ q the bond-boost potential goes to zero
and the time is not accelerated.

When the bond-boost potential is activated, the value of Si is initially set to 0.3 eV. Once the
value of 〈ρ(εi = q)〉 becomes non-zero the value of Si given by

Si = max

(
−kBT ln

[
〈ρi(εi = q)〉
〈ρi(εi = 0)〉

]
+ kBT, 0.3eV

)
. (18)

An extra kBT is added to the estimate of the PMF of bond i to increase the acceleration, and a
minimum value for Si is set to the initial value of 0.3 eV. As stated in Perez et al. 2009, adding
extra energy to the PMF estimate will create an energy maximum that may trap the system into
exploring a limited region of phase space, lowering the accuracy of the hyperdynamics method.
Since the temperature used in this work is quite high (600K is 2/3 of the melting temperature
of the material), adding an additional kBT provides a significant increase of Si while creating a
maximum in potential energy that is easily overcome by thermal fluctuations. The lower bound of
Si = 0.3eV is chosen because the smallest potential energy barriers calculated previously for this
system are around 0.25 eV (so that 0.3 eV = 0.25 eV + kBT ).

5. Appendix B: Evolving Zone Descriptions

Since an energy minimization is performed after each point defect is absorbed or emitted from
the distributed defect, the defect structure and atomic sites in each zone may change. Since the site
concentrations in Zone 4 are not known, it is required that the list of atoms in Zone 4 can grow,
but never shrink. Once an atom is included in Zone 4, its site concentration becomes undefined.
Likewise, if Zone 4 includes more atoms after the defect evolves, Zone 3 will change to include all
atomic sites surrounding the Zone 4 atoms. Since all of these new Zone 3 sites had a defined site
concentration at t′ (they belonged to Zones 1-3), the site concentrations will stay the same, but
those sites will be a part of a different zone. Similarly, this process of reassigning the zone number
applies to Zones 1-2 as well, while Zone 0 will not change as long as it is far away from the defect.

If this reassignment is necessary due to the defect changing size or shape, the interpolation of
Zone 3 site concentrations from the AMD simulations must correspond to the same list of atomic
sites in each zone. The Zone 3 site concentrations cannot be updated from AMD values calculated
for a different set of atomic sites. Therefore, the original zone configuration at n defects must be
remapped to the zone configuration with n + 1 defects. If the initial zone definitions are created
with one or more extra shells of atoms around the distributed defect structure, as done in this
work, it is possible that the zone sizes will not change unless the distributed defect grows or moves
beyond these extra shells of atoms.
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