
Axel Angel Report Scala BlitzView

Abstract
Scala is a powerful language which cur-
rently provides a built-in library for non-
strict Views with some important shortcom-
ings for the users such as unexpected and
unintuitive behaviors. In this work we cre-
ated a new library, based on Scala Blitz, to
provide lightweight, non-strict and parallel-
efficient collections. We present the library
API design, implementation and how pro-
grammers can use and extend it.

1 Introduction
Scala is a powerful and fast-moving language
that fuses object-oriented programming with
a wide range of function programming con-
cepts [?]. It runs on the JVM and as such
it stays compatible with Java and its ecosys-
tem. Scala itself provides an important num-
ber of libraries, for example Scala collection,
which implements Lists, Arrays, Maps and
Sets with immutable and mutable variants.
They are more in accord within the Scala en-
vironment than the Java collections, more-
over they provide the functional program-
ming concepts like constructors.
A View in Scala is a non-strict version

of some collection set. Non-strictness here
is a mean to post-pone computations over
a collection until the final result is actually
needed, this type of view is called a proxy.
The View is said to be forced when the com-
putation need to be performed over all the
elements. A View captures the operations
that are postponed over its inner collection
in constant memory O(1) and stacks them
to provide efficient computation in a single
pass over the collection O(n).
In practice this is used when multiple op-

erations, such as multiple map and filter,

are called consecutively. As Views are usu-
ally immutable, as in our design, performing
a new operation actually returns a new View
where all previous operations are captured
along the new one. Immutability greatly
simplifies the implementation and open new
possibilities for the programmer to combine
and reuse Views in his code.
Therefor a View allows us to use special

optimisations such as merging these opera-
tions to compute them all at once for each
element of the inner collection. As the op-
erations are done element by element, we
can split the inner collections into a dynamic
number of chunks and compute the opera-
tions in parallel depending on the number of
cores of the computer.
The design of the Views API is primor-

dial because it can greatly limit the opti-
misations thus influencing the efficiency of
the computations, as far as deciding whether
they can be done in parallel and not. There
exists two types of operations over Views:

Transformers: These can be postponed
and captured in the View without eval-
uating (forcing) the elements, eg: map
and filter. Usually their type is
[a] -> [b].

Folders: These are the last operations that
actually force the View to be computed
and in general returns a single element,
eg: aggregate and max. Usually their
type is [a] -> b.

In this work, we focused on a powerful sub-
set of the actual Scala collections API to
preserve the efficiency of the Views while
providing very powerful and functional non-
strict collections.

June 3, 2014 Page 1 of 8

Axel Angel Report Scala BlitzView

2 Previous works
Scala and its collection offer a large toolbox
of functions taken from functional paradigm
such as flatMap and aggregate in a object-
oriented hierarchy of classes with common
interfaces. This collection interface is de-
clared in the parent class Traversable [?]
which is inherited by multiple types of col-
lection in order to provide a common API
that operates uniformly on all these dif-
ferent structures transparently for the pro-
grammer: whatever he uses is a List, an
Array, a Map, a LinkedList or any descent
of these classes, they all share this common
methods. The programmer has to learn and
understand it once, then he can use his ex-
perience for any of these collections easily:
it’s intuitive and greatly increase the pro-
ductivity. The built-in collections in Scala
are strict in the sense all operations are di-
rectly computed because Scala is a strict lan-
guage, although the programmer can specify
the lazy variable-keyword, this doesn’t solve
the problem optimally.
Since Scala 2.8, the Views joined the

built-in toolbox to offer non-strict collections
using the common interface of collections.
They allow to create a proxy over a collection
that captures the operations on them until
an operation force it. The purpose of the
proxy is to change the evaluation strictness
of the collections by handling the computa-
tion itself when it see fits. For example a
call to flatMap over a View returns imme-
diately whereas over a strict collection this
may take some time to return. This is done
by implementing all methods of the collec-
tion interface in a way the operations are
remembered and done when necessary The
wrapper is kept to use non-strict operations
then the programmer can force the conver-
sion into a regular collection: this is done

by unwrapping the proxy after the compu-
tations and filling a regular collection with
the result. This design decision has great
advantages when it comes to people experi-
enced with Scala collections because there is
no external difference between them. Unfor-
tunately it has two important costs for Scala
in terms of the implementation and for the
programmer who expect consistent and ef-
ficiently results. We will develop these as-
pects in the section and how we approached
differently the problem.
Independently, Scala added later a way to

convert collections to parallel variants in or-
der to compute the operations with multiple
cores. The thin wrapper is specialized de-
pending on the underlying type, most of the
types requires constant time for this conver-
sion. The wrapper provides the same inter-
face with the usual collections, thus there is
no difference again in the code after the con-
version. The programmer applies the meth-
ods as usual then he can call a method to
convert back to the regular collections (un-
wrapping).
Java 8 was recently released with a new

toolbox dedicated to functional program-
ming (eg: lambda functions) and the new
package Stream. These concepts allow the
programmer to finally manipulate concisely
sequences with flatMap and the similar
functions well known in Scala. The con-
cept of Stream in Java 8 is different of the
Streams in Scala. The first is the Java im-
plementation of the non-strict Views we dis-
cussed above whereas Scala Streams are in-
finite non-strict sequences, usually defined
recursively. Moreover the Java Stream can
be converted to a parallel variant as the
Scala Views, the main difference is that Java
implemented a specialized version only for
Streams and the interface is very different
than the usual Java collections. Java Stream

June 3, 2014 Page 2 of 8

Axel Angel Report Scala BlitzView

and Scala Views have an important number
of common methods such as flatMap, find,
min/max and the like. They both wrap the
inner structure and require the programmer
to call specific methods to unwrap, such as
toArray, or when he calls a folding method.
They both require to explicitly convert to
non-strict versions and then to parallelized
variants if needed. The main difference is
that Java has severe limitations with re-
turn values depending on Generics type: this
is visible for all variants of flatMap whose
name is postfixed by the type explicitly, eg:
flatMapToInt and return a specialized type,
eg: IntStream. An important problem with
Java Stream is the lack of transparent refer-
enceability and reusability: after a terminal
operation (Folders) on a Stream, it cannot
be reused, it is consumed by the operation
(side-effect) and can never be reused. This
limits greatly the combinatorial power of
Streams as one needs to create new Stream
for each new use whereas a single View can
be reused alone and be part of other Views.

3 Views
We now define the properties of Views and
describe the constraints we must satisfy in
our API based on the experience of the pre-
vious works.
As we said, Views are non-strict collec-

tions and they guarantee constant time and
constant memory for transformers. This is
possible because the View (the proxy that
wraps the underlying collection) remembers
all transformers the programmer requested.
As the computations are bookmarked into
the view internals, no change is actually
made to the inner collection, these only hap-
pen in the proxy. In the current Scala in-
frastructures, it was decided these Views are

immutable, thus each time a transformer is
applied on it, a new View is returned. Mul-
tiple advantages are offered this way: first
the programmer can rely on the immutabil-
ity, for example he can store multiple Views
over the same data without worrying about
side-effects on his original collection nor his
intermediate Views.
Views should be seen as an adaptor

over a collection where each element passes
through its pipeline made of operations (the
transformers) which are computed and are
collected by the last operators (the folder)
as they pass by. The choice of whether an
operation is a transformer or a folder will de-
pend on the internal implementation of the
library.
The problem that interest us in this

project was to overcome the limitations seen
in the current implementation of Views. One
such problem is due to the fact Views inherit
from the whole collection API which con-
tains all usual operations that were designed
to work on strict and mostly on sequen-
tial structures. Although operations such as
permutations makes perfectly sense for the
usual collections, these operations cannot be
efficiently implemented in the case of Views.
Despite this fact, this kind of operations is
available in current Views but they are not
correctly implemented which can make it
crash, leading to an unexpected behavior:
val xs = 0 to 3
xs. permutations . toArray
// correct result
xs.view. permutations . toArray
// UnsupportedOperationException

There exists other operations that doesn’t
play nice when they are used on Views and
this is a problem for programmer who ex-
pect the least surprise. For example flatten
does not return a flatten View but a new List
containing the result of the flattening, even
if we use Views inside and outside, this op-

June 3, 2014 Page 3 of 8

Axel Angel Report Scala BlitzView

eration should have been non-strict as well.
Other important problems with Scala

Views arise when we want to combine non-
strictness of Views with parallelism of Par
together. The following is permitted al-
though one version doesn’t make sense:
val xs = (0 to 1000). par.view
val ys = (0 to 1000). view.par

Which one is correct? Are they equiva-
lent? In fact they are not equivalent, worse,
the second version seem to loose its non-
strictness.
From these problems we can see there is

a leak of coordination between the collec-
tion API and the way we can construct par-
allelized Views. Scala collections offer too
many methods that cannot be efficiently im-
plemented or that does not make sense in a
non-strict context, and the use of both Views
and Par together should be done in a unified
way to avoid these problems.

4 Design
In this work we propose an alternative imple-
mentation of Scala Views that solves the is-
sue of coordination between available meth-
ods and efficiency in non-strict and paral-
lelized context.
The first design decision we made is

to create a new interface, a trait, that
does not contain problematic methods.
There are different types of such meth-
ods: some are inherently sequential (eg:
reduceRight), some require forcing the
View (eg: ordered), some are inefficient
anyway (eg: permutations) and some are
possible but trickier to implement (eg:
takeWhile).
We focused our prototype on the most im-

portant ones:

• [a] -> [b]: map, filter which are
transformers.

• [a] -> b: aggregate is the most im-
portant. It is the building block for the
other folders such as min, sum, find,
exists, count which are folders.

The transformers are represented by the
trait ViewTransform[-A, +B], in our inter-
nal implementation, this is inspired from the
work of Martin Odersky in a prototype [?].
It represents a function from A to B where
A is contravariant and B covariant. This
trait is used to pipeline operations when we
are folding: we first apply the transformers
then we apply the given folder, this is the
purpose of the method fold. The important
feature of these transformers are they are re-
cursive: a transformer can contain an other
transformer and so on, this is the purpose of
>>. In our design, there are three types of
transformers: Map which applies a function
on each element, Filter which drops ele-
ments according to the given predicate func-
tion and Identity used at the bottom of the
stack.
Here is the structure of the objects hierar-

chy for our Views:
BlitzView : the top trait that describe the

available operations (transformers and
folders) on all Views. It contains all the
methods we just discussed above.

BlitzViewImpl : contains the trait for our
implementation. Anyone is free to cre-
ate a new implementation next to it, see
section 6. This trait inherits BlitzView
and provides the common implementa-
tion of all methods for subclasses in
terms of a method aggInternal. The
children classes then must only imple-
ment this method to inherit all opera-
tions of this design.

June 3, 2014 Page 4 of 8

Axel Angel Report Scala BlitzView

BlitzViewC : is the View that contains an
underlying collection. This is the class
that is used as a proxy closest to a
wrapped collection and the only one
that actually captures operations in a
stack. It inherits BlitzViewImpl.

BlitzViewVV : is the View that concate-
nates two Views together. This would
be the result of ++ on two Views. It
inherits BlitzViewImpl.

BlitzViewFlattenVs : is the View that
contains a list of View and concatenate
the elements together in a single flat-
tened View. It inherits BlitzViewImpl.

A second important design choice we
made is to use ScalaBlitz1 for the actual
computations. This library offers first-class
collections in terms of performance because
it was designed for efficiency by using paral-
lelism and specialized code to avoid unneces-
sary boxing. Some novel ideas developed in
a paper [?] such as work stealing are imple-
mented in this library. We won’t cover the
details of the internal algorithms but suffices
it to say the computation are dynamically
dispatched among the processors according
to the programmer policy.
The library itself provides the usual high-

level operations on the major collections we
need (Array, Range, Map and Set). Al-
though we could have used multiple calls
for transformers then reducers, we decided
to augment ScalaBlitz with a new method
(mapFilterReduce) that we used to im-
plement our internal methods (such as
aggInternal). This new function combines
a flatMap (map and reduce at once) and
a general fold in a single step. In practice,
that means folding a View only require a sin-
gle iteration over the underlying collection,

1Homepage: http://scala-blitz.github.io/

each element is only used once This prop-
erty stays true even as the number of trans-
formers increase, this won’t be true for regu-
lar collection transformers without optimisa-
tion. Moreover, in our design the program-
mer gains parallelism for free, this is fully
integrated by the use of Scala Blitz whose
algorithm can be configured: by importing
some careful chosen implicits (which form
the context).
An interesting part of Scala API design

contains implicits methods or values [?].
They can help to augment classes of certain
shapes with more operations and sometimes
they can provide a way to construct values
given a number of possible underlying rep-
resentation. We will now show how we used
both of these two mechanisms to design a
fluent and powerful API for the program-
mer. The first type augments specific type
shape is referred as implicit-extensions and
the second type where the we construct a
class based on the representation is referred
as implicit-evidence (like a proof).
In our design implicit-extensions are used

to allows the programmer to flatten a View,
by just calling flatten on it. Even though
there is no such method anywhere in our
public API, the programmer can call it
when it makes sense to do so. The re-
quirement is that the View contains itself
Views inside and as such there is no par-
ticular class to represent this, it’s just a
plain BlitzView[B] where B is the type of
the elements. In this case B has a special
shape: B = BlitzView[C], and the implicit-
extension kicks when the user calls flatten.
The Scala compiler searches for an implicit
conversion then, provided the requirements
are satisfied, it’s applied behind the scene
to produce what we designed: a special hid-
den class that has the flatten method, in
our case ViewWithFlatten. To implement

June 3, 2014 Page 5 of 8

Axel Angel Report Scala BlitzView

such implicit conversion we need an implicit
method that specifies the constraint and
the conversion (see addFlatten). Then the
call to flatten (now on ViewWithFlatten)
returns a special View instance that con-
catenates all its inner Views, in our case
BlitzViewFlattenVs.
The second part with implicit-evidence is

used to create Views, that happens when the
programmer calls bview on any supported
collection. We support an interesting subset
of Scala Blitz collections (see above) but we
decided to evict Lists because they cannot
be used efficiently in parallel context and it’s
easy for users to convert them to Array any-
way. We created a “proof-performer” that
given a suitable evidence can convert a col-
lection to a View, here the evidence is an
implicit value (of type IsViewable). The
“proof-performer” is an implicit conversion,
called toViewable. There is at least one
evidence per collection we support, each re-
quires an implicit Scala Blitz context (to de-
cide how to parallelize the collection) and
some require an implicit ClassTag (to de-
cide how to pack in Arrays). When applied,
the “proof-performer” returns an ephemeral
instance of Viewable whose sole purpose is
to augment the collection with the bview
method. In practice our “proof-performer”
is called only when the bview method is it-
self called, thus the class Viewable is only
an internal detail of our implementation.

5 Usability
We now talk about the programmer perspec-
tive when using our View implementation:
how to create Views, how usual operations
are performed and the extend of possibilities
with our prototype.
Let’s first take an example to illustrate the

creation and use of Views:
val xs = (0 to 10). toArray
val v = xs. bview
val u = v.map(_ + 10)

The user already familiar with Scala
built-in Views will notice the similarity:
the only difference is bview instead of
view. One needs to import our package:
collection.views.Scope._ and a Scala
Blitz context2.
The programmer has the guarantee xs will

never be affected by the actions he is per-
forming on the Views, here v or u. Moreover
u is independent of u and both can be used
as many time as needed.
The very nice properties of Views are im-

portant because they increase the possible
use cases. For example Views can be used
with mutable collections (without any spe-
cial treatment): just create a View on an
underlying mutable HashMap for example,
this can be seen as a view in SQL, over
any table (collection) where the View is al-
ways synchronized with the underlying data
changes. In our prototype, the View stays
up to date because the computation are al-
ways done from scratch each time.
import collection . mutable . HashMap
val m = HashMap ((1 ,2))
val v = m.view.map(case (x,y) => x+y)
v. toArray // Array (3)
v.sum // 3
m += ((3 ,4))
v. toArray // Array (7, 3)
v.sum // 10

Let’s take a concrete example, let say we
have a collection of departments, each con-
taining people. We want to compute the
ratio of people having certain properties,
like people over a certain age union3 people
whose name begins with an A.
case class Person (n: String , a: Int)

2For example par.Scheduler.Implicits.sequential
3Note that in our example we use ++ which

counts duplicates twice

June 3, 2014 Page 6 of 8

Axel Angel Report Scala BlitzView

// xs: MSet [(String , MSet [Person])]
val v = xs.map(_._2. bview). bview . flatten
val vf = v. filter (_.a > 30)

++ v. filter (_.n[0] == ’A’)
vf.size / v.size

There are multiple remarks necessary to
understand the purpose of this code. First
we used MSet, a mutable Set so we can mod-
ify the collection as the number of people
come and depart. Second we explicitly re-
quire the programmer to convert inner col-
lections to Views, necessary if the user wants
to flatten the structure, this is to avoid
unnecessary work (for example when the
programmer does not need to use View in-
side) and to avoid problematic implicit con-
versions (some conversions change the type
which wouldn’t be desirable all the time).
Third there is a major difference with the
built-in Scala Views shown here: flatten
does return a View which inner Views are
flattened, that means the flatten operation
keeps our non-strict semantic, all other op-
erations following it (here size) are on the
always-synchronized Views. The program-
mer can continue to update the MSet and
still use v and vf to get the desired result.
Scala Blitz offers different schedulers for

parallelism based on work-stealing such
as Sequential (no parallelism), ForkJoin
(kernel pool) and even the programmer can
create new ones. The scheduler is an implicit
that can be imported or explicitly passed to
the methods of our Views.

6 Extensibility
We now present how a programmer can ex-
tend our hierarchy to create new implemen-
tation or new classes and how well it is inte-
grated seamlessly.
The programmer can create a new class

under BlitzViewImpl that implements a

certain shape of Views. The advantage of
creating a class that inherit our implemen-
tation is there are only two methods to im-
plement:

> >: this method must save the provided
transformer into its state, depending on
the case it should propagate this to the
children Views.

aggInternal: this method is responsible for
the application of the transformers fol-
lowed by the folding. This method is
called by all others in the public API,
this allowed us to keep children classes
very thin where most of the implemen-
tation resides in the common heritage
(BlitzViewImpl).

Then to use it, the programmer can create a
new implicit-extension if this should be used
for certain shape of Views.
We take a toy example: let’s imple-

ment a View that contains a single element:
BlitzViewS4. We use BlitzViewC as code
base, it has: a hidden underlying type A (for
its source), a transformers stack transform
and now we need to store a single element
x (instead of a collection xs). Our im-
plementation of >> stays the same whereas
aggInternal needs to only apply the trans-
form on op (as usual) but on the single el-
ement to return it (we don’t need to fold
here). The trick here is to provide an empty
ResultCell to our folder second argument
(it plays the role of an identity element).
We can now create either an implicit-

evidence for the singleton type, for example
an Int:
import collection . views . ViewTransforms ._
implicit def intIsViewable =

new isViewable [Int , Int] {

4We provide this implementation in the code
repository

June 3, 2014 Page 7 of 8

Axel Angel Report Scala BlitzView

override apply (i: Int) =
new BlitzViewS [Int] {

type A = Int
val x = i
def transform = new Identity ()

}
}

The programmer can now write: 5.bview
as expected. There is a similar but more
interesting example of implementation for
Option in BlitzViewO, it can be flatten
as for regular collections.

7 Conclusion
Sed commodo posuere pede. Mauris ut est.
Ut quis purus. Sed ac odio. Sed vehicula
hendrerit sem. Duis non odio. Morbi ut
dui. Sed accumsan risus eget odio. In hac
habitasse platea dictumst. Pellentesque non
elit. Fusce sed justo eu urna porta tincidunt.
Mauris felis odio, sollicitudin sed, volutpat
a, ornare ac, erat. Morbi quis dolor. Donec
pellentesque, erat ac sagittis semper, nunc
dui lobortis purus, quis congue purus metus
ultricies tellus. Proin et quam. Class aptent
taciti sociosqu ad litora torquent per conu-
bia nostra, per inceptos hymenaeos. Prae-
sent sapien turpis, fermentum vel, eleifend
faucibus, vehicula eu, lacus.

References
[1] Aleksandar Prokopec Tiark Rompf Phil

Bagwell Martin Odersky. A generic
parallel collection framework. Techni-
cal report, EPFL Lausanne, Switzerland,
2010.

[2] Martin Odersky. Scala 2.8 collec-
tions. Technical report, EPFL Lausanne,
Switzerland, 2009.

[3] Martin Odersky. scalax: Parallel
views. https://github.com/odersky/
scalax, 2013. [Online; last commit
6f74549e].

[4] Martin Odersky and al. An overview of
the scala programming language. Techni-
cal Report IC/2004/64, EPFL Lausanne,
Switzerland, 2004.

[5] Bruno C.d.S. Oliveira, Adriaan Moors,
and Martin Odersky. Type classes as
objects and implicits. SIGPLAN Not.,
45(10):341–360, October 2010.

June 3, 2014 Page 8 of 8

https://github.com/odersky/scalax
https://github.com/odersky/scalax

	Introduction
	Previous works
	Views
	Design
	Usability
	Extensibility
	Conclusion

