
Common Subexpression
Elimination in Dotty

Allan Renucci

School of Computer and Communication Sciences
Semester Project Report

Supervisor
Dmytro Petrashko
EPFL / LAMP

Supervisor
Prof. Martin Odersky

EPFL / LAMP

January 2016

Common Subexpression Elimination in Dotty

Allan Renucci
EPFL, Switzerland

allan.renucci@epfl.ch

Abstract

Common subexpression elimination is a well-known compiler optimisa-
tion that improves running time of compiled applications by avoiding the
repetition of the same computation. Although it has been implemented
on a low level such as bytecode, it misses multiple opportunities that
are available on high level, such as optimizing lazy vals. We developed
and implemented the transformation for Scala in a new mini-phase in the
Dotty Compiler.

1 Introduction

The purpose of common subexpression elimination (CSE) is to reduce the run-
ning time of a program through avoiding the repetition of a computation. The
transformation identifies a repeated computation by locating multiple occur-
rences of the same expression. Repeated computations are eliminated by stor-
ing the result of evaluating an expression and using the previously computed
value instead of reevaluating the expression. However, expressions can have side
effects and return different values when executed multiple times which makes it
hard to perform CSE. For instance consider the following example:

val a = f oo () + 2
val b = f oo () + 3

it may be worth transforming the code to:

val tmp = f oo ()
val a = tmp + 2
val b = tmp + 3

But this transformation is not valid if foo is defined as follows:

def f oo = Random . next Int ()

as it changes the behavior of the program.
In this report, we will define sufficient conditions under which the elimination

of common subexpressions is possible and explain how CSE is implemented in
the Dotty compiler.

1

mailto:allan.renucci@epfl.ch

2 Background

2.1 The Dotty Compiler

Dotty [1] is a platform to try out new language concepts and compiler technolo-
gies for Scala. Dotty compiler transformation pipeline is based on the notions of
Mini-Phases [8]. These abstractions allow to modularize code transformations
without sacrificing performance. Currently Dotty pipeline has more than 40
very finely grained mini-phases, compared to 25 phases in scalac [2], and this
number is likely to increase.

Mini-Phases constitute transformations of trees, which can be efficiently
pipelined, as they share a single tree traversal. Comparing with scalac, if you
were to write a non-trivial phase in your compiler plugin, you will need a sepa-
rate traversal of tree, slowing down the compilation. Unlike this, in Dotty you
define a mini-phase, that typically doesn’t trigger extraneous traversals.

CSE is implemented as a mini-phase in the compiler pipeline before type
erasure. The transformation operates at source code level on a typed tree.

2.2 Idempotent expressions

As showed previously CSE cannot be performed for expressions which return
different results if called multiple times. However, CSE can be performed on
successive idempotent function calls. A function is said to be idempotent if,
when called with the same arguments twice, the second call returns the same
value and has no side effect which can distinguish it from the first call. For
instance, consider the following example:

var i n i t = false
def idem (x : Int) = {

i f (! i n i t) {
p r i n t l n (” I n i t i a l i s e ”)
i n i t = true

}
x

}

val a = idem (1) // Pr in t s ” I n i t i a l i s e ” and re turns 1
val b = idem (1) // Returns 1 wi th no s i d e e f f e c t

Here, idem is idempotent because the second call to idem (with the same ar-
gument) returns the same value and does not change the visible program state.
We can replace the two calls to idem by a variable holding the computed value
without altering the behavior of the program:

val tmp = idem (1)
val a = tmp
val b = tmp

2

In Scala, lazy vals are idempotent as well as most of the implicit conversions.
CSE can reduce the overhead of using such features.

3 Implementation

3.1 General Idea

CSE is performed during the traversal of method’s body. As we recursively
traverse the tree, we collect available idempotent function calls. The result of a
function call can be reused if:

1. It is idempotent. The function must return the same value when called
with the same arguments multiple times and subsequent calls must have
no side effect. Otherwise, subsequent calls cannot be eliminated without
changing the program’s behavior.

2. It can be extracted with no impact on the program’s behavior. Consider
the following example:

val a = f oo () + idem ()
val b = idem ()

// Rewri t ten
val tmp = idem ()
val a = f oo () + tmp
val b = tmp

We eliminate the second call to the idempotent function idem by reorder-
ing the instructions. We evaluate idem before foo and reuse the com-
puted value. However, this transformation is only valid if the function
foo doesn’t have side effect. For instance, the first call to idem may have
side effects, and reordering the instructions will reorder the effects which
eventually, will change the behavior of the program.

Purity, idempotency and side-effect detection is an extremely hard problem
and is not in the scope of this project [7]. This is why CSE in Dotty relies on
the following assumptions:

1. Constants and immutable references are idempotent (i.e. val, this, super).

2. Lazy vals are idempotent. In Scala, when a val is declared with the lazy

modifier the right-hand side of the value (the definition) will not be exe-
cuted until the first time the value is accessed.

3. A method is idempotent if and only if it is annotated with the @Idempotent
annotation. Idempotent methods are either final or can be be overridden
only by idempotent ones.

3

4. A method call of the form qual.fun(args) is not idempotent unless the
method is idempotent, its (optional) qualifier is idempotent and its argu-
ments are idempotent.

3.2 Nested Functions

Scala lets you define functions inside other functions. Nested functions are
frequently used in high level languages and are generated by the compiler for
constructs such as pattern matching and closures so it is very important to
handle them properly. Consider the following example:

def example = {
def i nne r () = idem ()
val a = idem ()
foo () + a

}

At the time the function inner is executed, the expression idem() is available.
Thus this code snippet can be rewritten as follows:

def example = {
def i nne r () = a
val a = idem ()
inner () + a

}

Note that such code cannot be written by users but the compiler can perfectly
emit such code. Indeed, nested functions capture their environment and any
free variables will be passed as argument of the function. This transformation
is done in a subsequent phase of the compiler.

To obtain the set of available expressions of a function, we simply perform the
intersection of available expressions between all the call to the nested function.
In the example above, there is only one application of the function inner and
the result is straightforward but consider the following example:

val a = idem1 ()
i f (cond i t i on)

idem2 () + inner ()
else

idem3 () + inner ()

The set of available expression to inner is {idem1, idem2} ∩ {idem1, idem3} =
{idem1}.

4 Related Work

To our knowledge, CSE has not yet been implemented in any Java or Scala
compiler at source level although it has been implemented at bytecode level in

4

JIT Compilers. ”Just-In-Time” (JIT) compilers such as Java HotSpot [9] or the
SELF compiler [5] eliminates redundant loads and stores, arithmetic operations,
and constants.

CSE is implemented in many compilers for imperative languages [3]. The
program to be optimised is represented as a flow graph whose nodes are ba-
sic blocks, that is sequences of 3-address instructions. An expression on the
right hand side of an assignment is a common subexpression if it has been com-
puted before and there is no assignment to any variable of the expression in
between. CSE for imperative languages can only eliminate an expression, if all
its subexpressions including itself only handle primitive values.

CSE has been implemented for compilers in strict functional languages [4].
It uses continuation passing style as intermediate language on which all transfor-
mations operate. Whereas 3-address code consists of a sequence of instructions,
continuation passing style code makes control flow explicit by nesting. Hence an
expression is evaluated before another expression, if it syntactically dominates
that expression. Only in case of syntactic domination common subexpressions
can be eliminated. Common subexpressions are restricted to those built from
primitive operations that operate only on primitive types.

CSE has been implemented for lazy functional languages [6]. It uses an aug-
mented version of the λ-calculus as intermediate language on which all trans-
formations operate. The referential transparency of these languages makes the
identification of common subexpressions very simple. Furthermore, more com-
mon subexpressions can be recognised because they can be of arbitrary type
whereas standard common subexpression elimination only shares primitive val-
ues. However, analysing its effects and deciding under which conditions the
elimination of a common subexpression is beneficial proves to be quite diffi-
cult.

5 Conclusion

In this project we have developed a version of CSE for the Dotty compiler.
It eliminates redundant idempotent function calls in method bodies and inner
functions. We have defined conditions under which our transformation is sound
(i.e. it does not change the program behavior).

Our optimization complements the existing ones as they perform CSE at
different levels. We recognise redundant idempotent function calls which makes
it particularly relevant for optimizing lazy vals or implicit conversions.

Furthermore, CSE in Dotty currently relies on user annotated methods and
poor heuristics to determine an expression purity. Therefore, it could greatly
benefit from purity and side effect analysis as well as general idempotency de-
tection.

5

References

[1] Dotty. https://github.com/lampepfl/dotty.

[2] Scala. https://github.com/scala/scala.

[3] J. Ullman A. Aho, R. Sethi. Compilers: Principles, Techniques, and Tools.
Cambridge University Press, 1992.

[4] Andrew W Appel. Compiling with Continuations. Pearson, 2013.

[5] Craig Chambers. The Design and Implementation of the SELF Compiler,
an Optimizing Compiler for Object-Oriented Programming Languages. PhD
thesis, Stanford University, 1992.

[6] Olaf Chitil. Common subexpressions are uncommon in lazy functional lan-
guages. Technical report, Aachen University of Technology, 1998.

[7] Martin Odersky Lukas Rytz and Philipp Haller. Lightweight polymorphic
effects. Technical report, EPFL, 2012.

[8] Dmitry Petrashko. Hands-on dotty. https://www.youtube.com/watch?v=

aftdOFuVU1o, 2015. Scala World.

[9] Hanspeter Mössenböck Thomas Rodriguez Kenneth Russell David Cox
Thomas Kotzmann, Christian Wimmer. Design of the java hotspotTM client
compiler for java 6. Technical report, Johannes Kepler University Linz, Aus-
tria, Sun Microsystems, Inc., Santa Clara, CA, 2008.

6

https://github.com/lampepfl/dotty
https://github.com/scala/scala
https://www.youtube.com/watch?v=aftdOFuVU1o
https://www.youtube.com/watch?v=aftdOFuVU1o

	Introduction
	Background
	The Dotty Compiler
	Idempotent expressions

	Implementation
	General Idea
	Nested Functions

	Related Work
	Conclusion

