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Chapter 1

Introduction

Type Specialisation is an optimisation feature allowing efficient use of generics. It is

therefore an important feature of statically typed languages, and adding support for it

in Dotty was a step that had to be taken eventually.

This report first briefly recalls what type specialisation is. It compares the compilation

result (using scala 2.11.6) of a function making use of parametric polymorphism with

and without type specialisation, and discusses results.

The implementation of method type specialisation in Dotty is then described. It is

broken down into four parts, each of which is detailed out. Major issues encountered

are then explained, as well as the consequences they had on design choices.

Finally, a road map of future developments is outlined.
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Chapter 2

Parametric Polymorphism &

Type Specialisation

Parametric polymorphism is an important feature in statically typed languages, as it

allows efficient writing of generic code, without forsaking static typing richness. For

instance, defining a head method on lists of any type can be summarised to a single

function, instead of defined for each possible type:

1 def head[A](list: List[A]): A = list(0)

2

3 instead of

4

5 def head_Int(list: List[Int]): Int = list(0)

6 def head_Char(list: List[Char]): Char = list(0)

7 ...

2.1 Boxing and Unboxing

By default, parametric polymorphism is compiled away by the scala compiler through

erasure. This means type parameters are erased and replaced by their upper-bound -

Object by default. For primitive types to adapt to that, they have in turn to be boxed

as Objects.[1]

The following code snippet proposes a generic method, and its compilation result (using

scala 2.11.6):

1 object Test {

2 def checkWithDefault[T](elem: T, p: T => Boolean, default: T): T = if (p(elem)) elem else

default

3 checkWithDefault[Int](5, _<4, 0)

2
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4 }

1 package <empty> {

2 object Test extends Object {

3 def checkWithDefault(elem: Object, p: Function1, default: Object): Object = if

(scala.Boolean.unbox(p.apply(elem)))

4 elem

5 else

6 default;

7 def <init>(): Test.type = {

8 Test.super.<init>();

9 Test.this.checkWithDefault(scala.Int.box(5), {

10 (new <$anon: Function1>(): Function1)

11 }, scala.Int.box(0));

12 ()

13 }

14 };

15 @SerialVersionUID(value = 0) final <synthetic> class anonfun$1 extends

scala.runtime.AbstractFunction1$mcZI$sp with Serializable {

16 final def apply(x$1: Int): Boolean = anonfun$1.this.apply$mcZI$sp(x$1);

17 <specialized> def apply$mcZI$sp(x$1: Int): Boolean = x$1.<(4);

18 final <bridge> <artifact> def apply(v1: Object): Object =

scala.Boolean.box(anonfun$1.this.apply(scala.Int.unbox(v1)));

19 def <init>(): <$anon: Function1> = {

20 anonfun$1.super.<init>();

21 ()

22 }

23 }

24 }

As expected, the integer values 5 and 0 are boxed at lines 9 and 11 in order to be passed

to the function as an Object. Once the function receives elem, it passes it to the p

predicate function (line 3), which needs to unbox the value, compute the boolean result,

box that again and return it (line 18). checkWithDefault then has to unbox that result

again to a Boolean (line 3), and use it to determine its return value.

A lot of boxing and unboxing - which can have a high impact on performance.

It is interesting to notice that specialisation is already involved in this example: the

anonymous function < 4 has been translated by the compiler to specialised variants

of AbstractFunction1 and apply, as illustrated by the $mcZI$sp suffixes.

2.2 Specialisation

Specialisation is a technique aimed at solving parametric polymorphism’s efficiency is-

sues. In order to avoid for methods to go through the process of boxing and unboxing
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values, the compiler creates variants of each method where generic parameters are re-

placed by primitive types. Here is the same code as before, with specialisation activated

on Ints:

1 object Test {

2 def checkWithDefault[@specialized(Int) T](elem: T, p: T => Boolean, default: T): T = if

(p(elem)) elem else default

3 checkWithDefault[Int](5, _<4, 0)

4 }

1 package <empty> {

2 object Test extends Object {

3 def checkWithDefault(elem: Object, p: Function1, default: Object): Object = if

(scala.Boolean.unbox(p.apply(elem)))

4 elem

5 else

6 default;

7 <specialized> def checkWithDefault$mIc$sp(elem: Int, p: Function1, default: Int): Int = if

(p.apply$mcZI$sp(elem))

8 elem

9 else

10 default;

11

12 // Same as before

13 // ...

14

15 }

16 }

The effect of specialisation is here obvious, as lines 7 to 10 now define a new function

checkWithDefault$mcI$sp, which no longer takes Objects as parameters, but Ints,

and as hoped, no longer needs to box and unbox values.

The drawback of specialisation is apparent as well: the generated code’s size has grown.

Had the specialized annotation not been completed with ”(Int)”, specialised variants

of checkWithDefault would have been generated for all primitive types (Int, Short,

Long, Double, Float, Char, String, Boolean, Unit), resulting in nine extra function

definitions. And had it been a function with two generic types, this could have amounted

to 81 more functions generated. This exponential growth is specialisation’s main draw-

back, as it creates a tradeoff between significant code size blow-up if not careful, and

efficient running times.

2.3 A Word on Miniboxing

A word concerning Miniboxing is of interest here.[2]

Miniboxing is an alternative to specialisation, aimed at getting the best of both worlds

by ensuring the run-time efficiency of specialisation whilst avoiding any code blow-up.
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It is based on the simple realisation, that at the low-level perspective of the JVM, there

are only values and pointers - primitive types are not distinguished. Using this fact, a

rough explanation is that miniboxing encodes types into long integers, and thus only

produces 2n new methods instead of 9n for normal specialisation.

That being said, miniboxing also adds a lot of complexity; something which was decided

unnecessary as specialisation in Dotty works only on-demand.



Chapter 3

Method Type Specialisation in

Dotty

3.1 Scheme

Method type specialisation in Dotty works on-demand. It follows the current scala

syntax.

3.2 Breakdown of Functionality

Specialisation of methods in Dotty can be broken down into four components:

• Retrieval of @specialized annotations

• Generation of new symbols

• Generation of trees based on the new symbols

• Dispatching of the new methods to appropriate call sites

3.2.1 Annotations Retrieval

Specialisation in Scalac is triggered by the use of the @specialized annotation, and the

same scheme is used in Dotty. Therefore, the first task of specialisation is the retrieval

of those annotations; for reasons discussed below (3.3.1) this is done in a separate phase

called PreSpecializer.

6
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Its implementation relies on the following code:

1 def getSpec(sym: Smbol)(implicit ctx: Context): List[Type] = {

2 if (allowedToSpecialize(sym)) {

3 val annotation = sym.denot.getAnnotation(defn.SpecializedAnnot).getOrElse(Nil)

4 annotation match {

5 case annot: Annotation =>

6 val args = annot.arguments

7 if (args.isEmpty) primitiveTypes

8 else args.head match {

9 // Matches simple ‘@specialized(...)‘ annotations

10 case a @ Typed(SeqLiteral(types), _) =>

11 types.map(t => primitiveCompanionToPrimitive(t.tpe))

12

13 // Matches ‘@specialized‘ annotations on Specializable Groups

14 case a @ Ident(groupName) if a.tpe.isInstanceOf[Type] =>

15 specializableToPrimitive(a.tpe.asInstanceOf[Type], groupName)

16

17 case _ => ctx.error("unexpected match on specialized annotation"); Nil

18 }

19 case nil => Nil

20 }

21 } else Nil

22 }

The call to allowedToSpecialize(sym) ensures that no specialisation happens on meth-

ods that should not be so - which includes isInstanceOf and asInstanceOf methods,

Java defined methods, and constructors (because of design decisions in Dotty, speciali-

sation of constructors creates errors further down the pipeline.)

Looking for specialisation annotations then eventually leads to five possible cases:

1 - an @specialized annotation with no parameters, in which case specialisation is

activated on all primitive types.

2 - an @specialized annotation with primitive types as parameters, in which case

specialisation is activated on all the concerned primitive types.

3 - an @specialized annotation with AnyRef given as parameter, in which case spe-

cialisation is activated on AnyRef. This case is distinguished, as an AnyRef could

not be handled exactly the same way as a primitive type.

4 - an @specialized annotation where parameters are groups of the Specializable

trait. In this case, types of the group are gathered from a mapping instantiated

during an ovverriding call to prepareForUnit.

5 - no @specialized annotation, in which case specialisation is not activated.
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All the specialisation types that are thus gathered are passed to the TypeSpecializer

phase through a PhaseCache called specializePhase:

1 ctx.specializePhase.asInstanceOf[TypeSpecializer]

2 .registerSpecializationRequest(tree.symbol)(types)

3.2.2 Symbols Generation

Once the methods to specialise have been determined, it is up to the ‘TypeSpecializer‘

phase to take care of generating and using the specialised methods appropriately.

The first step of the process is the generation of symbols representing those methods.

This is done during an overriding call to transformInfo.

Types found in annotations are fetched, combinations of specialised types are created

by the generateSpecializations method, and corresponding specialised symbols are

generated by the generateSpecializedSymbols method. Those symbols are stored in

a map from generic method to specialized variants and their list of types.

1 def generateSpecializations(remainingTParams: List[Name], specTypes: List[Type])

2 (instantiations: List[Type], names: List[String], poly: PolyType, decl: Symbol)

3 (implicit ctx: Context): List[Symbol] = {

4 if (remainingTParams.nonEmpty) {

5 specTypes.map(tpe => {

6 generateSpecializations(remainingTParams.tail, specTypes)

7 (tpe :: instantiations, specialisedTypeToSuffix(ctx)(tpe) :: names, poly, decl)

8 }).flatten

9 }

10 else {

11 generateSpecializedSymbols(instantiations.reverse, names.reverse, poly, decl)

12 }

13 }

14 def generateSpecializedSymbols(instantiations: List[Type], names: List[String],

poly: PolyType, decl: Symbol)

15 (implicit ctx: Context): List[Symbol] = {

16 val newSym =

17 ctx.newSymbol(decl.owner, (decl.name + "$mc" + names.mkString + "$sp").toTermName,

18 decl.flags | Flags.Synthetic, poly.instantiate(instantiations.toList))

19 val map = newSymbolMap.getOrElse(decl, mutable.HashMap.empty)

20 map.put(instantiations, newSym)

21 newSymbolMap.put(decl, map)

22 map.values.toList

23 }

3.2.3 Trees Rewriting

With the symbols generated, ‘TypeSpecializer‘ next overrides ‘transformDefDef‘ to gen-

erate variants of all ‘DefDef‘s. They are then passed on as a Thicket.
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The specialised symbols generated previously are first fetched, and a new PolyDefDef

is created for each.

The treeTypeMap instance which is passed as parameter to that PolyDefDef has a

treeMap argument which is built to make calls to transformApply, which will take care

of inner method dispatching. The typeMap argument will substitute generics and type

parameters of arguments as defined by the specialised symbol.

Casts are also introduced here, through the calls to ensureConforms(...). Their ne-

cessity is discussed in the issue regarding type information below.

1 polyDefDef(newSym.asTerm, { tparams => vparams => {

2 val tmap: (Tree => Tree) = _ match {

3 case Return(t, from) if from.symbol == tree.symbol => Return(t, ref(newSym))

4 case t: TypeApply => transformTypeApply(t)

5 case t: Apply => transformApply(t)

6 case t => t

7 }

8

9 val typesReplaced = new TreeTypeMap(

10 treeMap = tmap,

11 typeMap = _

12 .substDealias(origTParams, instantiations(index))

13 .subst(origVParams, vparams.flatten.map(_.tpe)),

14 oldOwners = tree.symbol :: Nil,

15 newOwners = newSym :: Nil

16 ).transform(tree.rhs)

17

18 val tp = new TreeMap() {

19 // needed to workaround https://github.com/lampepfl/dotty/issues/592

20 override def transform(t: Tree)(implicit ctx: Context) = super.transform(t) match {

21 case t @ Apply(fun, args) =>

22 assert(sameLength(args, fun.tpe.widen.firstParamTypes))

23 val newArgs = (args zip fun.tpe.widen.firstParamTypes).map{case(t, tpe) =>

24 t.ensureConforms(tpe)}

25 if (sameTypes(args, newArgs)) {

26 t

27 } else tpd.Apply(fun, newArgs)

28 case t: ValDef =>

29 cpy.ValDef(t)(rhs = if (t.rhs.isEmpty) EmptyTree else t.rhs.ensureConforms(t.tpt.tpe))

30 case t: DefDef =>

31 cpy.DefDef(t)(rhs = if (t.rhs.isEmpty) EmptyTree else t.rhs.ensureConforms(t.tpt.tpe))

32 case t => t

33 }}

34 val expectedTypeFixed = tp.transform(typesReplaced)

35 expectedTypeFixed.ensureConforms(newSym.info.widen.finalResultType)

36 }
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3.2.4 Method Dispatching

The specialised variants are finally dispatched to call sites, according to inferred types.

Overriding calls to transformApply and transformTypeApply replace method calls

with specialised variants whenever possible. Parameterless TypeApply instances are

specialized as such, whereas Apply instances need extra casts to be added to their

arguments.

The choice of the specialised variant to apply is based on checking that all expected

argument types of the method are subtypes of the variant in question.

3.3 Issues Encountered

3.3.1 Lost Annotations

One of the first major issues encountered regarded annotations.

As explained, specialisation relies on Types annotated with @specialized, and is trig-

gered only then. TypeSpecializer’s first task was therefore initially to check all DefDefs

for annotations, and specialise them accordingly.

However, because annotations are not stored in Types but in Trees, they cannot be

retrieved by TypeSpecializer itself.

Suppose the following code:

1 val s = foo[Int]

2 def foo[@specialized T]: T

3 val d = foo[Double]

When TypeSpecializer finishes transforming s, it has not yet read the definition of

foo, and so cannot know in advance that it should be specialised and s be dispatched

to the appropriate variant.

To avoid the issue, the selected solution was to have another phase - PreSpecializer -

run earlier in the pipeline, gather the necessary information, and store it in a PhaseCache

for the later-running TypeSpecializer phase.

3.3.2 Loss of Type Information

As described earlier, method specialisation in Dotty relies on casts when the typechecker

cannot infer suitable types.
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Consider the following:

1 trait A {

2 type T1

3 type T2

4 def foo[B <: T1 >: T2] = ...

5 }

In this instance, it would seem safe to assume that T2 <:< T1 in the body of the method.

The following snippet of code exhibits a similar case:

1 trait Foo[@specialized +A] {

2 def bop[@specialized B >: A]: Foo[B] = this

3 }

which should compile to:

1 def bop_sp[@specialized B >: A <: Int & Any]: Foo[B] = this

this has type Foo[A], and based on the knowledge that B >: A, it seems clear that

Foo[A] <:< Foo[B]. However, the typechecker does not infer such a result currently,

leading to errors.

The introduction of casts appears therefore unavoidable in all places where expected

types could lead to such issues. The following snippet illustrates a few:

1 trait Foo[@specialized +A] {

2 // all those examples trigger bugs due to https://github.com/lampepfl/dotty/issues/592

3 def bop[@specialized B >: A]: Foo[B] = new Bar[B](this)

4 def gwa[@specialized B >: A]: Foo[B] = this

5 def gwd[@specialized B >: A]: Foo[B] = {

6 val d: Foo[B] = this

7 d

8 }

9 }

10 case class Bar[@specialized a](tl: Foo[a]) extends Foo[a]

This issue has been reported to the github repository as issue #592. (https://github.com

/lampepfl/dotty/issues/592)
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3.3.3 Multiple Specialisation Options

As described, when dispatching specialised methods, the choice of which specialised

variant to use is based on the inferred type of the function, and arguments to the

function being subtypes of the variant’s argument types. While this seems reasonable,

there exists a corner case: what if the expected type is Nothing? Then all specialised

variants will match, and there is à priori no way of selecting one over the other.

In such cases, Dotty will default to not specialising.

1 object nothing_specialization {

2 def ret_nothing[@specialized(Char) T] = {

3 def apply[@specialized(Char) X](xs : X*) : List[X] = List(xs:_*)

4 def apply6[@specialized(Char) X](xs : Nothing*) : List[Nothing] = List(xs: _*)

5 }

3.3.4 Super Calls

Calls to super() will not be specialised with the current implementation. The reason

for that is super methods are generated as early as PosTyper, which does not pass

annotations onto them. PreSpecializer has therefore currently no way of finding

them.

Issue #631 has been opened in the repository in this matter. (https://github.com/

lampepfl/dotty/issues/631)

3.4 Testing

Several tests were written to check for those various features, and issues. While avoiding

errors is done in pos tests, checking that code is generated and used as it should be is

tested in run tests.

3.4.1 Pos Tests

Several tests have been written to check for compilation errors. Those check for correct

specialisation in the following cases:

- simple methods

- mutually recursive methods
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- inner methods (both with regard to an outer method or an outer class)

- methods with multiple generic types

- methods requiring the introduction of casts in order to typecheck

- methods using different @specialized annotations (no argument, type arguments,

Specializable Group argument)

3.4.2 Run Tests

A run test has been designed, checking for the generation of the correct amount of

specialised variants, and with the correct type parameters.



Chapter 4

Future Developments

We go over the next implementation steps necessary before type specialisation is com-

plete in Dotty.

4.1 Partial Method Specialisation

Currently, method specialisation is implemented fully - that is, for all type parameters

of the method. In the following, both U and T would therefore be specialised :

1 object Test {

2 def foo[@specialized T, U](t: T): T = ???

3 }

such that Dotty would output the following tree after specialisation:

1 package <empty> {

2 final lazy module val Test: Test$ = new Test$()

3 final module class Test$() extends Object() { this: Test.type =>

4 def foo[@specialized() T, U](t: T): T = ???

5 def foo$mcCC$sp(t: Char): Char = ???

6 def foo$mcZC$sp(t: Boolean): Boolean = ???

7 ... (78 other methods)

8 def foo$mcVB$sp(t: Unit): Unit = ???

9 }

10 }

Perhaps however is specialising only T sufficient to the writer’s goal. Partial method

specialisation would allow that, while keeping U as a generic type; Dotty would then

output something along the lines of the following:

14
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1 package <empty> {

2 final lazy module val Test: Test$ = new Test$()

3 final module class Test$() extends Object() { this: Test.type =>

4 def foo[@specialized() T, U](t: T): T = ???

5 def foo$mcC$sp[U](t: Char): Char = ???

6 def foo$mcZ$sp[U](t: Boolean): Boolean = ???

7 ... (6 other methods)

8 def foo$mcV$sp[U](t: Unit): Unit = ???

9 }

10 }

As of the writing of these lines, implementation of partial specialisation is partially

realised, but still contains too many bugs to be included in a pull request.

4.2 Class Specialisation

Once partial method specialisation is complete, specialisation will have to be extended

to classes, as described in [1].
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