B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Auto-Collections

Allan Renucci
allan.renucci@epfl.ch

School of Computer and Communication Sciences

Optional Semester Project Report

Supervisor Supervisor
Dmytro Petrashko Prof. Martin Odersky
EPFL / LAMP EPFL / LAMP
dmitry.petrashko@epfl.ch martin.odersky@epfl.ch

June 2016


mailto:allan.renucci@epfl.ch
mailto:dmitry.petrashko@epfl.ch
mailto:martin.odersky@epfl.ch

Auto-Collections

Allan Renucci
EPFL, Switzerland
allan.renucci@epfl.ch

Abstract

Modern programming languages such as Scala, Java and C# make
extensive use of collections.

A collection implementation represents a fixed choice in the dimensions
of operation time and space utilization. Using the collection in a manner
not consistent with this fixed choice can cause significant performance
degradation.

Often programmers have to choose between under-performing generic
collection and specific data-structures at the cost of modularity and ex-
tensibility.

In this paper, we present and evaluate a generic collection library that
automatically chooses the appropriate collection implementations for an
application.

We implemented our solution in the Dotty compiler for Scala and
showed that our implementation can choose optimal collections for com-
mon basic algorithms.

1 Introduction

Programs are a combination of algorithms and data-structures [7]. Performance
of program and performance of data-structures are inherently related. For ex-
ample, if one manipulates data in a last-in-first-out order, one will use a data-
structure optimized for this use-case such as a Stack. Choosing non-optimal
data-structures may incur significant performance costs. Software algorithms
require input data and produce output results. As a rule, these input/output
data representations are closely tied to a given algorithmic implementation and
hence impose limitations on modularity and extensibility. Often programmers
have to choose between under-performing generic data-structures and specific
data-structures at the cost of modularity and extensibility.

In this report, we propose and evaluate an alternative collections library
designed for good performance without sacrificing modularity and extensibility.
The user can choose between three abstract data types (i.g. Seq, Map and Set)
and the compiler will automatically select an optimal data structure implemen-
tation from a given use case. The compiler selects the appropriate collection


mailto:allan.renucci@epfl.ch

implementation based on instance profiles (e.g. elements’ type, set of methods
called on one instance) collected during call-graph construction.

Modern programming languages make extensive use of collection classes. Al-
though, we will present an implementation for Scala inside the Dotty Compiler,
it is conceivable to apply the proposed techniques to other languages that have
abstraction features such as inheritance and generics. The report presents exper-
imental results showing that our implementation can choose optimal collections
for common basic algorithms.

The rest of the report is organised as follow. In Section [2] we motivate
the use of automatic collections. In Section |3] we explain the basic algorithm
behind auto-collections. Section[d]describes the implementation inside the Dotty
compiler. Section [5| presents and discusses our experimental results. We discuss
related work in Section [6l and conclude in Section [

2 DMotivation

Correct choice of data-structure is hard A programmer’s choice of data
structure ultimately determines which operations on a data-set will be efficient,
meaning the operation can complete within the time and storage constraints
imposed. Every data structure represents a particular trade-off between time
and storage space, making some operations faster (or less space-consumptive)
and some operations slower. An ordered list makes finding the smallest element
fast, but inserting new elements slow. A hash set allows for quick insertions
and retrievals of specific items, but finding the smallest element is slow. Un-
derstanding these trade-offs and selecting a data structure appropriate for the
application at hand is hard. Thus, freeing the user from managing and choosing
the right data structure for their application is particularly relevant.

Correct choice of data-structure breaks modularity All algorithms re-
quire input data and the results of algorithms are also stored in data structures.
Modularity and extensibility demands that algorithmic implementations be in-
dependent from these input and data-structures. Indeed, if one specifies the
most specific type of collection that works best in his tests / his intention, he
is going to hit users if his assumptions are proved wrong. What library authors
do instead now is using collections that decently support all operations, which
in turn means that it is under-performing in every particular use cases. With
automatic collections chosen based on the use cases, one would not need to trade
modularity for performance.

3 Algorithm

Now that we justified the need for automatic collections, our goal is to find an
assignment of collection implementations that is optimal for a given program.
An optimal choice of collection implementations tries to balance two dimensions:



minimizing the time required to perform operations while also minimizing the
space required to represent application data. Our approach is to select collection
implementations based on collection usage statistics extracted from the client
program. Here is a non-exhaustive list of statistics that can be used during the
decision process:

e The set of methods called on a collection instance. We want to find the
collection that minimizes the cost of each operations.

e The type of underlying elements. There exists specific implementation
that are optimised for a particular type of element (e.g. LongMap).

e The presence of pattern in the underlying elements. For example, if all
element are numbers with a constant delta value, we can use a Range.

e The operation counts. We want to emphasize on operations that are
performed multiple time, inside loops or inside recursive functions.

Although, this information can be obtained either statically or dynamically,
we choose to do it statically at compile time which has the advantage of not
inducing an overhead at runtime.

4 Implementation

We implemented our solution inside the Dotty Linkelﬂ a modified version of the
Dotty Compilerﬂ supporting language specific and library-specific optimizations.
Dotty is a new compiler under active development for the future evolution of
the Scala language.

Our implementation relies on call graph construction [2]. A call graph is
a directed graph that represents calling relationships between functions in a
computer program. We use the call graph to track the method called on a
specific collection instance. We proceed in two steps:

1. In a first phase preceding call graph construction, we substitute each auto-
collection creation site by the creation of a new anonymous class which
defines a unique type and uniquely identifies a collection instance.

2. In a second phase after call graph construction, we traverse the call graph
and collect all the methods called on each auto-collection instances now
identified by a unique type.

We can then pick an optimal collection implementation based on the set of
methods called on this instance and the type of the underlying elements.

Consider the example in Figure [I] describing the successive transformations
performed by the compiler. The code written by the user on Line 2 creates

Thttps://github.com/dotty-1linker/dotty
%https://github.com/lampepfl/dotty


https://github.com/dotty-linker/dotty
https://github.com/lampepfl/dotty

0O Ui Wi+

— =
N = O O

// User code
val seq = AutoSeq[Int](1, 2, 3)
val h = seq.head

// After first transformation

val seq: Seq[Int] = {
class AnonSeq() extends Seq[Int] { ... }
new AnonSeq ()

}

// After second transformation
val seq: Seq[Int] = Queue[Int]|(1, 2, 3)

Figure 1: Compiler Transformations

a new automatic sequence of integers. During the first transformation, the
compiler substitute the code on Line 2 by the code on line 6, 7, 8 and 9: a
unique anonymous class which extends the Seq abstract type is created as well
as an instance of this class. At this time, the compiler builds a call graph for
the program and makes it available to later phases. On line 12, the compiler
finally substitutes the previously generated code by an optimal implementation
of sequence for this program.

Table [4] lists the supported collection implementations as well as the condi-
tions under which one implementation is chosen over the others. Conditions are
listed by precedence order. If multiple conditions match then the first one will
be chosen.

At the moment, our solution is limited by the amount of information avail-
able during the decision process. Indeed, we would benefit from information
such as the number of times a function is called, if a function is called inside
a loop or a recursive function. Then, one could give more importance to one
function other the others and the decision process would be improved. Such
information can be extracted via data-flow analysis [I] or pointer analysis [3].

5 Evaluation

We evaluated our solution on common basic algorithms and made sure that it
selected optimal data-structures.

QuickSort QuickSort sorts a sequence in-place and does not use additional
data-structures but the sequence to be sorted. However QuickSort performs
several random accesses on the sequence and the performance of the algorithm
is inherently related to the cost of these accesses.

In our experiment, our solution picked an array for the collection to be sorted
as it offers the best performance for random accesses.



’ Type \ Semantic | Condition \ Implementation

head and tail are the only operations | List
elements are appended or prepended | immutable.Queue
N e
Seq operations are by indexes WrappedArray
elements are integers Range
with a constant delta
default immutable Seq Vector
operations are by indexes WrappedArray
Mutable elements’ type is known UnrolledBuffer
default mutable sequence ListBuffer
elements are added immutable.HashMap
Immutable keys’ type %s subtype of AnyRef mutable. AnyRefMap
Map keys’ type is Long LongMap
default immutable Map mutable.HashMap
Mutable default mutable Map mutable.HashMap
Set Immutable | default immutable Set immutable.HashSet
Mutable default mutable Set mutable.HashSet

Table 1: Supported Collection Implementations

MergeSort We implemented the top-down MergeSort algorithm which re-
cursively divides the input sequence into smaller sub-sequences until the sub-
sequences are trivially sorted, and then merges the sub-sequences while return-
ing up the call chain. The algorithm needs a sequence implementation which
provides good performances for split, append, head removal and size tests.

In our experiment, our solution picked a queue. It provides constant time
append and head removal. Size tests and split take linear time. A queue is a
correct choice of data-structure as long as the Scala Standard Library does not
provide an optimal collection for this particular use case.

BFS Breadth-first search on a tree maintains a sequence of nodes to visit next.
BF'S appends nodes to the sequence and removes nodes from the head of the
sequence.

In our experiment, our solution picked a queue where both append and head
removal run in constant time.

DFS [Iterative Depth-first search on a tree also maintains a sequence of nodes
to visit next. DFS removes nodes from the head of the sequence but prepends
nodes to the sequence as opposed to BFS.

In our experiment, our solution also picked a queue as the queue imple-
mentation from the Scala Standard Library provides a constant time preprend
operation.



PageRank In our implementation of PageRank, we initially start with a map
from page to their score and iteratively improve the score until convergence of
the algorithm. The page need to be uniquely identified but its type is arbitrary.

In our experiment, we computed PageRank using Long as unique identifiers
for pages. Our solution chose a LongMap which is a specialised implementation
of Map for Long keys. It provides significantly faster operation than the default
map implementation (i.e. HashMap).

6 Related Work

There exists several tools that assist the programmer in choosing the appropriate
collection implementations for his application.

One of them is called CHAMELEON [5]. CHAMELEON computes elab-
orate trace and heap-based metrics on collection behavior. These metrics are
consumed on-the-fly by a rules engine which outputs a list of suggested collection
adaptation strategies. The tool can apply these corrective strategies automat-
ically or present them to the programmer. As opposed to our solution which
collects information on collection at compile time, CHAMELEON does it dur-
ing program execution. CHAMELEON is implemented on top of the JVM and
induces an overhead during program execution. Our solution is implemented on
top of the Dotty Compiler which induces an overhead at compile time but none
at runtime.

Bjorn De Sutter [6] presents another approach for rewriting applications
to use customized versions of library classes that are generated using a com-
bination of static analysis and profile information. Type constraints are used
to determine where customized classes may be used, and profile information
is used to determine where customization is likely to be profitable. This ap-
proaches requires static analysis unlike our work where programs are correct by
construction. In this setting, static analysis is needed to guarantee type correct-
ness in cases where objects are exchanged with the standard libraries (or other
components). This greatly limits the number of possible optimisations and the
programmers has to choose collections with this constraints in mind. In our
setting, the programmer has access to a generic collection API which exempt
him from choosing specific collection implementations. The compiler will take
care of choosing an optimal collection for a given use case.

The challenge of freeing the user from managing and choosing the right data
structure for their application is not a new one. Schonberg [4] discusses tech-
niques for automatically selecting concrete data structures to implement the
abstract data types set and map in SETL programs. Depending on whether
or not iterators and set-theoretic operations such as union and intersection are
applied to abstract data types, their optimizing compiler selects an implemen-
tation from a predetermined collection of implementations in which sets are
represented as linked lists, hash-tables, or bit-vectors. Our solution extends
this idea by using additional information on the underlying elements as well as
the methods applied to a collection.



7 Conclusion & Future Work

We presented our solution for automatic collections that frees the user from
managing and choosing the right data structure for their application. It has the
benefit of improving program efficiency with no negative impact on modularity
and extensibility.

We implemented our solution in the context of the Dotty compiler and
showed that our implementation can choose optimal collections for common
basic algorithms.

While our work was primarily focused on Scala, the ideas of our work are
applicable to other statically typed languages that have abstraction features
such as inheritance and generics such as Java, C#, C++, Haskell, Swift, and
D.

In the future, we plan to support more collections from the Scala Standard
Library as well as customized version of library classes. We also plan to improve
our decision process with more collection usage statistics extracted via data-flow
analysis.



References

1]

Gary A. Kildall. A unified approach to global program optimization. Pro-
ceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Princi-
ples of programming languages - POPL 73, 1973.

Dmytro Petrshko, Vlad Ureche, Ondrej Lhotak, and Martin Odersky. Call
graphs for languages with parametric polymorphism. In Proceedings of the
2016 ACM International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2016, part of SPLASH 2016, Am-
sterdam, Netherlands, October 80 - November 4, 2016. ACM, 2016.

Barbara G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. Lecture Notes in Computer Science Com-
piler Construction, page 126-137, 2003.

Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. An automatic
technique for selection of data representations in setl programs. ACM Trans-

actions on Programming Languages and Systems ACM Trans. Program.
Lang. Syst. TOPLAS, 3(2):126-143, Jan 1981.

Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon. ACM SIG-
PLAN Notices SIGPLAN Not., 44(6):408, 2009.

Bjorn De Sutter, Frank Tip, and Julian Dolby. Customization of java li-
brary classes using type constraints and profile information. ECOOP 200
— Object-Oriented Programming Lecture Notes in Computer Science, page

584-608, 2004.

Niklaus Wirth. Algorithms + data structures = programs. Prentice-Hall,
1976.



	Introduction
	Motivation
	Algorithm
	Implementation
	Evaluation
	Related Work
	Conclusion & Future Work

