
Delaying arrays
Bachelor Project Report

Alfonso2 Peterssen
Supervised by Dmitry Petrashko

{first.last}@epfl.ch
LAMP @ EPFL

1. Motivation
Current persistent array implementations provide a rea-
sonable balance between reads and persistent updates;
but supporting efficient updates comes at the cost of
slowing down read operations.

Since reads are far more frequent than updates, slow-
ing down all reads in exchange for speeding up a few
updates seems like a bad compromise.

State-of-the-art persistent arrays (RRB-Vectors) [Stucki
et al. 2015] are heavily optimized for the common
use cases, namely sequential access and updates. To
achieve blazing-fast performance these optimizations
wrap additional mutable state behind the immutable
interface.

Even with all these optimizations there’s still a wide
gap between the faux constant-time random access and
native arrays performance. An alternative approach to
support persistent updates was developed to address
this inefficient trade-off; a lazy, persistent array, which
evolves and seamlessly adapts to the use pattern. Most
notably it provides real amortized constant-time ran-
dom access, while maintaining constant-time amor-
tized persistent updates.

2. Persistent re-sizable arrays
A very specific implementation of persistent re-sizable
arrays was chosen for this project, having an ideal mix
of complexities and trade-offs. The final data-structure:
Delaying-array, is just a higher-level abstraction which
can be plugged to different implementations under the
hood.

2.1 Structure
A sequence of n elements, is stored in several chunks,
basically, arrays of powers-of-two elements, following

the binary representation of the total number of ele-
ments: n. The number of chunks needed equals the
number of bits in the binary representation of n. The
chunks are stored in a lg(n)� sized array, which is an
extra level of indirection. This idea is nothing new, sim-
ilar structured data-structures exists in the functional
world [Bagwell 2002] as well as non-persistent (imper-
ative) variants [Brodnik et al. 1999].

This representation allows constant-time random ac-
cess on architectures providing fast COUNT-LEADING-
ZEROS and/or COUNT-TRAILING-ZEROS instruc-
tions.

Below is the basic index calculation routine,

def apply(idx: Int): Int = {
val hb = 32 � Integer.numberOfLeadingZeros(idx)
val mask = (1 << hb) � 1
val maskedSum = arraysTotalSize & mask
var arrayId = 0
var elemId = 0
if (maskedSum > idx) {
arrayId = hb � 1
elemId = idx � (arraysTotalSize & (mask >>> 1))

} else {
val clearedIdx = arraysTotalSize & ˜mask
arrayId = Integer.numberOfTrailingZeros(clearedIdx)
elemId = idx � maskedSum

}

/⇤ return ⇤/ arrays(arrayId)(elemId)
}

The index calculation cost is dwarfed by the two
memory accesses (see last line); but, due to locality,
it’s very likely that the first memory access is cached in
a read intensive scenario, vastly boosting performance.

Unlike current Vector or RRB-Vector implementa-
tions, that claims a faux constant-time random ac-



Figure 1. Re-shape after prepending 0, in a resizable
array of size 23.

cess, this impementation provides a real constant-time
random access, completely independent of the number
or elements.

2.2 Additional operations
prepend, and it’s counterpart tail (pop head) are very
popular in the functional world. In this case, it’s possi-
ble to implement these operations in a rather efficient
manner, through simple re-shapes.

The aggregated complexity of n prepend operations,
is surprisingly just O(nlgn), we can conclude that
single-element prepend and tail have O(lgn) amor-
tized complexity.

It’s worth mentioning that these operations based
on re-shapes are very efficient in practice. Benchmarks
show that the performance matches it’s counterparts:
Vector and RRB-Vector.

Single-element updates still have linear-time com-
plexity, and appends are just not supported, those op-
erations are implemented quite efficiently in the upper
level of abstraction, namely Delaying-arrays.

2.3 Lazy updates
Applying a single-element update have linear-time
complexity, since a whole chunk must be copied. But

instead of eagerly applying updates, one by one, they
can be accumulated, and applied all at once, which also
have linear-time complexity.

The remaining problem is that reads must be kept in
sync with the accumulated updates, so, those grouped
updates must be checked on every read, which can
seriously slow down reads.

[Okasaki 1999] provides techniques to analyze and
improve amortized complexity, the key idea is to keep
track and quantify the slow down, and once the slow
down surpasses a certain threshold, apply all updates,
making reads constant-time again; amortizing the slow
down.

2.4 Lazy updates implementation
Several ways were considered, a promising one, mainly
because its simplicity consists of storing chained lists
of updates. Every chunk keeps a single-linked list of
updates, where the head is the most-recent one.

When reading an element from a certain chunk, the
list of accumulated updates must be traversed, looking
for the specified index. In order to quantify the cost of
this traversal, the concept of coins is introduced.

Whenever an element of the updates list is checked,
a coin is spent. When the number of coins exceeds
the size of the chunk, all updates are applied. This
amortizes the cost of updates and makes future reads
constant-time.

Looking for recently updated indices is cheap in
terms of coins, since only a few recent updates are
checked; this works nicely with the fact that rencently
updated elements are usually the most frequently ac-
cessed.

The trade-off consist of improving performance at
the expense of memory, in the worst case the memory
needed will be proportional to the number of reads and
updates; but this will only happen when persistency is
heavily (abu)used (deep nesting).

Accumulated updates must be checked even if there’s
no update for the searched index; this can be improved,
at the expense of memory, by using a Bloom filter.

Pending updates are also applied on re-shapes, since
memory will be anyways copied.

2 2016/6/7



Figure 2. Delaying array’s left and right components.
The right component is reversed.

3. Delaying arrays
3.1 Structure
A well-known trick, widely used to implement double-
ended queues (deques) is used to support append oper-
ations out of prepend-only re-sizable arrays.

3.2 Support for append

One consequence of the described structure is that
append operations can be simply translated into a
prepend to the right component, keeping the O(lgn)
amortized complexity.

3.3 Re-shapes an balance
Keeping a balance between both, left and right com-
ponents is not needed. The cost of keeping a balance
shadows the constant factor (2) that could be saved for
just very few operations.

4. Optimizations
4.1 Caching prepends
Prepends are expensive due to frequent re-shapes,
which are memory intesive. To improve performance,
instead of performing a re-shape on every prepend
operation, a cache is added to re-sizable arrays. This
cache stores at most 16 elements of the head, when it
becomes full it performs a re-shape, merging a chunk
of 16 elements toghether into the re-sizable array. With
this simple optimization, prepends become pretty ef-
ficient, reaching equivalent performance to it’s coun-
terparts, despite having a worse (by a constant factor)
complexity.

4.2 Imperative constructs (ab)use
Scala constructs add a considerable overhead. For per-
formance tuning, Java-like loops and traversals were
used, leading to code duplication. Several optimiza-
tions were considered but only the less intrusive were
implemented, maintaining the readability and structure
of the code as much as possible.

5. Benchmarks
A set of microbenchmarks was developed to ease com-
parison against existing implementations, namely Vec-
tor, RRB-Vector and plain arrays.

The Java Microbenchmark Harness (JMH) was cho-
sen over any other fancy benchmarking tools because
it’s stability and predictability, it also makes very ex-
plicit how to properly ensure these properties when us-
ing the tool [Shipilev 2014].

Figure 3. n single-element appends. Surprisingly
Delaying-array matches IntRRBVector despite having
a higher-constant factor.

6. Conclusions
Performance-wise, Delaying-arrays are really fast, most
notably for large sequences. Read performance im-
proves with usage at the cost of memory. It proved
to be a feasible alternative to existing data-structures
for non-online applications.

7. Drawbacks
Delaying-arrays are memory hungry and assumes that
memory is an abundant resource. Contrary to intuition,
random updates perform better than sequential ones.

3 2016/6/7



Figure 4. Random-access. Here the real constant-
time access bests current implementations by a huge
margin. Still, Vector and RRB-Vector perform better on
small arrays.

Figure 5. n sequential accesses. Once again, real
constant-time complexity gives superior performance,
still, RRB-Vector performs really well.

It’s still impractical for small sequences, since there’s
a considerable overhead due to index computation.

Figure 6. .foreach: This benchmark yields confusing
results, a quick inspection reveals that these are derived
from particular conditions. RRB-Vector .foreach im-
plementation does not take advantage of the RRB-
Vector structure to improve traversal, and most surpris-
ingly, native arrays have a huge overhead. This is not a
win for Delaying-arrays, it’s more of a warning about
weaknesses on the other implementations.

Figure 7. Random single-element updates. Delaying-
arrays performs better since, unlike Vector and RRB-
Vector, update complexity is independent of the num-
ber of elements.

4 2016/6/7



References
P. Bagwell. Fast functional lists, hash-lists, deques and

variable length arrays. In In Implementation of Functional

Languages, 14th International Workshop, page 34, 2002.
A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and

R. Sedgewick. Resizable arrays in optimal time and
space. In Proceedings of the 6th International Work-

shop on Algorithms and Data Structures, WADS ’99,
pages 37–48, London, UK, UK, 1999. Springer-Verlag.
ISBN 3-540-66279-0. URL http://dl.acm.org/

citation.cfm?id=645932.673194.
C. Okasaki. Purely Functional Data Structures. Cambridge

University Press, New York, NY, USA, 1999. ISBN
0521663504.

A. Shipilev. Nanotrusting the nanotime, 2014.
URL http://shipilev.net/blog/2014/

nanotrusting-nanotime/.
N. Stucki, T. Rompf, V. Ureche, and P. Bagwell. Rrb vector:

A practical general purpose immutable sequence. SIG-

PLAN Not., 50(9):342–354, Aug. 2015. ISSN 0362-1340.
doi: 10.1145/2858949.2784739. URL http://doi.

acm.org/10.1145/2858949.2784739.

5 2016/6/7


