GigaRad Total Ionizing Dose and Post-Irradiation Effects on 28 nm Bulk MOSFETs

C.-M. Zhang, Student Member, IEEE, F. Jazaeri, A. Pezzotta, C. Bruschini, Member, IEEE, G. Borghello, F. Faccio, S. Mattiazzo, A. Baschirotto, Fellow, IEEE, and C. Enz, Senior Member, IEEE

Abstract—The DC performance of both n- and pMOSFETs fabricated in a commercial-grade 28 nm bulk CMOS process has been studied up to 1 Grad of total ionizing dose and at post-irradiation annealing. The aim is to assess the potential use of such an advanced CMOS technology in the forthcoming upgrade of the Large Hadron Collider at CERN. The total ionizing dose effects show limited influence in the drive current of all the tested nMOSFETs. Nonetheless, the leakage current increases significantly, affecting the normal device operation of the nMOSFETs. These phenomena can be linked to the charge trapping in the oxides and at the Si/oxide interfaces, related to both the gate oxide and the shallow trench isolation oxide. In addition, it has been observed that the radiation-induced effects are partly recovered by the long-term post-irradiation annealing. To quantify the total ionizing dose effects on DC characteristics, the threshold voltage, subthreshold swing, and drain induced barrier lowering have also been extracted for nMOSFETs.

Index Terms—Total ionizing dose, TID, 28 nm bulk CMOS, gate oxide, shallow trench isolation, annealing, HL-LHC

I. INTRODUCTION

To extend the discovery potential at the forefront of research in high-energy physics, the Large Hadron Collider (LHC) at CERN will soon be upgraded for a tenfold increase in the integrated luminosity. This gives rise to an unprecedentedly high radiation level up to 10 M Gy (1 Grad) of total ionizing dose (TID) and 10^{19} neutrons/cm2 of hadron fluence over ten years of operation. Nowadays, the majority of the radiation-tolerant front-end (FE) Application-specific integrated circuits (ASICs) in the detector systems of the LHC are built in a commercial 250 nm CMOS technology, by adopting circuitual and layout radiation-hardness techniques. To go through a 10-year operation reliably under a much higher event rate and radiation level, ATLAS and CMS experiments need to be equipped with much more radiation-hardened tracking systems with a higher granularity and bandwidth [1], [2].

It has been demonstrated that without any special processing, the radiation damage in MOSFETs gets reduced by thinning the gate oxide [3]. However, the gate stack has been replaced by the high-k metal gate (HKMG) in advanced CMOS technologies, whose radiation-induced effects remain to be explored [4]. Furthermore, the role of the shallow trench isolation (STI) oxide in the radiation-induced effects needs further investigation in ultra-scaled MOSFETs [5]. In consideration of the foreseen radiation level for the innermost circuits of the detector systems, this work conducted the first characterization of up to 1 Grad of TID and post-irradiation annealing effects on both n- and pMOSFETs, which are fabricated in a commercial 28 nm bulk CMOS process. DC measurements were performed to assess the impact of such a high level of TID on those crucial device parameters. This includes the threshold voltage, subthreshold swing, drive current, leakage current, and drain induced barrier lowering (DIBL).

II. EXPERIMENTAL DETAILS

Both n- and pMOSFETs are fabricated in a high-performance 28 nm bulk CMOS process. The test chip includes ten transistors for each type with several widths ($W_{\text{max}} = 3 \mu m, W_{\text{min}} = 100 \mu m$) and lengths ($L_{\text{max}} = 1 \mu m, L_{\text{min}} = 30 \mu m$). The same type of MOSFETs share the contacts for source and substrate but have individual contacts for gate and drain. The irradiation and DC measurements have been performed sequentially at room temperature on both n- and pMOSFETs. The irradiation was conducted with CERN’s in-house X-ray generator at a dose rate of 8.82 Mrad/h(SiO$_2$), reaching 1 Grad of TID. In order to maximize the radiation damage, the chips were powered on ($|V_{GS}| = |V_{DS}| = V_{DD}$) during irradiation. In addition, DC measurements were carried out after irradiation so as to explore the post-irradiation annealing effects. More experimental details can be referred to [6].

III. RESULTS AND DISCUSSIONS

A. TID effects on $I-V$ characteristics

The main degradation mechanism of TID in MOSFETs is linked to the radiation-induced charge buildup in the oxides (Q_{ot}) and at the Si/oxide interfaces (Q_{it}), which can be related to both the STI oxide and the gate oxide [7], [8]. From a circuit design perspective, TID effects manifest as a threshold voltage (V_{TH}) shift, a subthreshold swing ($SubS$) degradation, a drive current (I_{on}) variation, and an increased leakage current (I_{off}), as seen from the DC characteristics of two representative transistors for both n- and pMOSFETs in Fig. 1 and Fig. 2.
will focus on voltage shift (∼voltage shift with that shift due to the oxide trapped charges. Moreover, it is much less than the reported value (∼235 mV) for the same size of nMOSFET (1 µm/60 nm) fabricated in a 65 nm CMOS bulk technology [5].

Fig. 1. Normalized I_D versus V_{GS} characteristics of the nMOSFETs with the largest and smallest W/L ratio (3 µm/30 nm and 100 nm/1 µm) with respect to total ionizing dose at $V_{DS} = 1.1$ V.

![Normalized ID versus VGS characteristics of the nMOSFETs](image1)

Fig. 2. Normalized I_D versus V_{SG} characteristics of the pMOSFETs with the largest and smallest W/L ratio (3 µm/30 nm and 100 nm/1 µm) with respect to total ionizing dose at $V_{SD} = 1.1$ V.

1) Threshold voltage: The oxide trapped charges are positive, tending to decrease the threshold voltage for both n- and pMOSFETs [9]. The interface charged traps are negative for nMOSFETs and positive for pMOSFETs [10]. Therefore, the interface charged traps can add up the negative threshold voltage shift with that shift due to the oxide trapped charges for pMOSFETs, as seen in Fig. 2. The following analysis will focus on nMOSFETs, while pMOSFETs are out the scope of our discussion. For nMOSFETs, the interface charged traps can cause a positive threshold voltage shift, making compensation for the effect of oxide trapped charges. Since the charge trapping at the Si/oxide interfaces occurs slowly at a long time after the radiation [11], oxide trapped charges are dominant in the beginning. Therefore, the threshold voltage decreases first for all the irradiated transistors, as seen in Fig. 3. Then both kinds of charged traps start to show competing effects. The net effect is strongly dependent on the device geometry. For the transistors with a larger W/L (3 µm/30 nm, etc.), the oxide trapped charges are dominant throughout the whole irradiation process. This leads to a continuously decreasing threshold voltage, as shown in Fig. 1(a) and Fig. 3. However, for the transistors with a smaller W/L (100 nm/1 µm, etc.), the interface charged traps start from a certain point to be dominant and compensate the negatively shifting effect of oxide trapped charges. This results in an overall positive threshold voltage shift, which is clearly illustrated in Fig. 1(b) and Fig. 3. It should be mentioned that the maximum threshold voltage shift (∼80 mV) is within the process-related variation. Moreover, it is much less than the reported value (∼235 mV) due to the charge trapping at the radiation-induced interface traps. Remember that this explanation does not exclude the possibility of the mobility reduction, which can lower down the drive current and affect the subthreshold region.

Then both kinds of charged traps start to show competing effects. The net effect is strongly dependent on the device geometry. For the transistors with a larger W/L (3 µm/30 nm, etc.), the oxide trapped charges are dominant throughout the whole irradiation process. This leads to a continuously decreasing threshold voltage, as shown in Fig. 1(a) and Fig. 3. However, for the transistors with a smaller W/L (100 nm/1 µm, etc.), the interface charged traps start from a certain point to be dominant and compensate the negatively shifting effect of oxide trapped charges. This results in an overall positive threshold voltage shift, which is clearly illustrated in Fig. 1(b) and Fig. 3. It should be mentioned that the maximum threshold voltage shift (∼80 mV) is within the process-related variation. Moreover, it is much less than the reported value (∼235 mV) for the same size of nMOSFET (1 µm/60 nm) fabricated in a 65 nm CMOS bulk technology [5].

Fig. 3. Threshold voltage shift (ΔV_{TH}) with respect to total ionizing dose and post-irradiation annealing time for nMOSFETs at $V_{DS} = 1.1$ V.

![Threshold voltage shift](image2)

2) Subthreshold swing: The subthreshold swing degrades due to the charge trapping at the radiation-induced interface traps. A moderate subthreshold swing degradation is seen in Fig. 4 for all the irradiated nMOSFETs. The subthreshold swing degradation is much less, compared with the reported value for the same size of nMOSFET (1 µm/60 nm) in the 65 nm CMOS bulk process [5]. Most of the irradiated nMOSFETs present a negligible subthreshold swing degradation. Two narrowest transistors (100 nm/1 µm, 100 nm/30 nm) have the most significant increase of the subthreshold swing (∼40 mV/dec). It can be seen from the subthreshold region of the I-V curves, as shown in Fig. 1(b) for the transistor with 100 nm/1 µm. This is attributed to the dominant effect of charge trapping in radiation-induced interface traps. Remember that this explanation does not exclude the possibility of the mobility reduction, which can lower down the drive current and affect the subthreshold region, too.

![Subthreshold swing degradation](image3)

3) Drive current and off-state leakage current: A maximum of 25% of drive current variation can be observed in Fig. 5(a), which is acceptable for most applications. This demonstrates the limited radiation-induced effects of both the STI oxide and the gate oxide on the strong inversion region of the irradiated nMOSFETs. These transistors should be able to work well in the switched-on operation region. It is also noted that the trend of the drive current variation in Fig. 5(a) is corresponding with that of the threshold voltage shift, as shown in Fig. 3. This
indicates that in most cases, the threshold voltage shift is the major factor for the drive current variation. The most serious effect on all the tested nMOSFETs is the significantly increased off-state leakage current, as demonstrated in Fig. 5(b). It can be attributed to the positive charge trapping in the STI oxide, which is able to invert the adjacent p-type silicon layer along the STI sides of channel, forming parasitic conductive paths. The latter allows a current to flow from drain to source, even when the transistor is switched off [12]. However, for most of irradiated nMOSFETs, this charge trapping is not strong enough to influence the electrostatic potential in the middle of the channel, to shift the threshold voltage and to affect the drive current. Therefore, there are still three orders of magnitude of the I_{on}/I_{off} ratio, remaining as a sufficient margin for most applications, as seen in Fig. 5(c).

4) Radiation-induced gate leakage current: The obvious increase of the gate leakage current is shown in Fig. 6. The mechanism for this increase has been mainly attributed to the trap-assisted inelastic tunneling process [13]. The electrons can tunnel to the traps and then to the gate electrode. The related traps are most likely to be the trivalent silicon atoms with an unpaired electron, back bonded to three oxygen atoms. This kind of traps can be generated through the breaking of the strained Si-Si bonds by the radiation-induced hole trapping in oxygen vacancies. Therefore, the increase of the gate leakage current gives information about the trapped holes in the gate oxide.

Fig. 5. Variation of the drive current (I_{on}), off-state leakage current (I_{off}) and on-to-off current ratio (I_{on}/I_{off}) with respect to total ionizing dose and post-irradiation annealing time at $V_{DS} = 1.1$ V for nMOSFETs. I_{on} is extracted when $V_{GS} = 1.1$ V and I_{off} is extracted when $V_{GS} = 0$ V.

B. Radiation-enhanced drain induced barrier lowering

The DIBL effect represents one of the most fundamental short-channel effects in nano-scale MOSFETs, especially in weak inversion. It has been demonstrated that the positive charge trapping in the STI oxide enhances the DIBL by decreasing the drain to gate coupling, enhancing the electric field near the STI corner, and increasing the surface potential of low-doped substrate along STI oxide [14]. The radiation-enhanced DIBL effect is illustrated in Fig. 7, with respect to the total ionizing dose. The DIBL effect is calculated as $DIBL = \frac{1}{(1.1 - 0.01 V)} \frac{(V_{TH} - V_{TH})}{(V_{TH} - V_{TH})}$. It is seen that the radiation enhancement of the DIBL effect is negligible for nMOSFETs with a longer channel, while the enhancement increases a lot for the nMOSFETs with a much smaller area. The minimum size nMOSFET shows the strongest radiation-enhanced effect, approaching almost 80 mV/V after 1 Grad of TID.

Fig. 6. Gate leakage current (I_G) with respect to total ionizing dose and post-irradiation annealing time for nMOSFETs at $V_{G} = V_{D} = 1.1$ V.

Fig. 7. Radiation-enhanced drain induced barrier lowering (DIBL) with respect to total ionizing dose for nMOSFETs. The values are calculated using the drain current at $V_{DS} = 10$ mV and $V_{DS} = 1.1$ V.

C. Post-irradiation annealing effects on $I - V$ characteristics

To observe the long-term post-irradiation annealing, all the irradiated nMOSFETs are kept biased at $V_{G} = V_{D} = 1.1$ V and $V_{S} = V_{D} = 0$ V, and measured every 24 hours at room temperature. The extracted parameters are plotted together with...
As seen in Fig. 4, the subthreshold swing degradation recovers slightly for all the transistors, indicating the slight annealing of interface charged traps. Besides, there is a insignificant increase for the threshold voltage (Fig. 3) and the drive current doesn’t change a lot (Fig. 5(a)), telling the competitive annealing of oxide trapped holes over the interface charged traps. The radiation-induced off-state leakage current, as shown in Fig. 5(b), decreases significantly. This presents the annealing of the oxide trapped holes in the STI oxide. As seen in Fig. 6, there is a significant decrease for the radiation-induced gate leakage current. Since the radiation-induced gate leakage current is most likely to be linked to the traps generated during hole trapping in the gate oxide, the recovery of the gate leakage current tells the information about the annealing of the trapped holes in the gate oxide.

In this work, the long-term post-irradiation process partly recovers the overall performance degradation. Especially, both the gate and off-state leakage current recover significantly, showing that the annealing of the oxide trapped charges in both the gate oxide and STI oxide can happen even at room temperature. For the ASICs in the detector systems, this might be represented as the problematic operation immediately after receiving a continuous irradiation and the later normal operating behavior after a certain time of post-irradiation annealing.

IV. CONCLUSION

In this work, 1 Grad of total ionizing dose and post-irradiation annealing effects have been investigated in both n and p-MOSFETs fabricated in a commercial 28nm bulk CMOS technology. Due to the interplaying effects of oxide and interface charged traps, the radiation-induced effects are strongly dependent on the device geometry. The irradiated n-MOSFETs show a maximum 25% of drive current variation, a less than 80 mV of threshold voltage shift and a up to 38 mV/dec of subthreshold swing degradation. Total ionizing dose shows insignificant effect on the strong inversion region of the irradiated n-MOSFETs. However, the off-state leakage current increases significantly. Notwithstanding, three orders of magnitude of the I_{on}/I_{off} ratio still remain as a sufficient margin for most applications. In addition, a significant increase of the gate leakage current is observed. The most strongest radiation enhancements of the DIBL effect is seen for the minimum size of n-MOSFET. Finally, the long-term post-irradiation annealing recovers part of the overall performance degradation, especially for the gate and off-state leakage current, even at room temperature.

REFERENCES

ACKNOWLEDGMENT

The authors would like to thank Alessandro Marchioro from the CERN EP-ESE Group as well as Dario Bisello and Alessandro Paccagnella from the Department of Physics at University of Padova for fruitful collaborations.