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Zu guter Letzt möchte ich den wichtigsten Personen in meinem Leben, meiner Familie

Peter, Marianne und Timo Spahr danken. Danke, dass ihr immer für mich da seid und

mich mit so großer Liebe beschenkt, auch wenn wir räumlich oft voneinander getrennt
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gegeben das Leben nach meinen eigenen Vorstellungen und Wünschen zu gestalten. Zu

wissen, dass ihr immer hinter mir steht und mich bei allem unterstützt, ist unendlich

kostbar und es gibt mir die Kraft und das Vertrauen auch weiterhin spannende Themen-

felder zu erforschen, Abenteuer zu erleben und meine Träume zu erfüllen.
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Summary

Disinfection processes such as chlorination, chloramination, and ozonation are a crucial

measure to provide safe drinking water because they effectively inactivate pathogenic

microorganisms. However, these processes can also lead to the formation of harm-

ful disinfection by-products (DBPs) such as the carcinogen N -nitrosodimethylamine

(NDMA). NDMA is primarily formed during chloramination of wastewater and waste-

water-impacted surface waters, where natural organic materials and anthropogenic

pollutants serve as NDMA precursors. A better understanding of NDMA precursors

and various formation pathways is vital for developing appropriate mitigation strategies.

Compound-specific isotope analysis (CSIA) can be used to both allocate sources of

organic contaminants in the environment and elucidate their (trans)formation path-

ways. The goal of this dissertation was to explore the use of CSIA for assessing NDMA

formation mechanisms and identifying reactive precursor moieties from stable isotope

fractionation trends.

In laboratory model systems, NDMA formation was studied during chloramination

of secondary and tertiary amines, which are relevant precursor compounds in natural

waters. Reaction kinetics and stoichiometries were determined to elucidate poorly

characterized reaction steps of the NDMA formation pathway involving chloramine,

molecular oxygen, and intermediate species. Although molar NDMA yields from the

selected precursors differed significantly (1% - 90%), one O2 molecule was consumed per

N(CH3)2 moiety of the precursor. This observation indicates that the reaction of O2

with secondary and tertiary amines proceeded via the same mechanism, but did not

control the molar NDMA yield. NDMA formation coincided with the disappearance

of the precursor, demonstrating that (oxygen) intermediates were highly reactive and

short-lived. Changes of 18O/16O isotope ratios in aqueous O2 revealed that oxygen

reacted with radical species, which was confirmed by additional experiments with radical

scavengers (tert-butanol, ABTS, and trolox). Based on these results, a NDMA formation

mechanism was proposed involving N-centered aminyl radicals.
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Summary

To investigate whether changes of the natural isotopic composition of NDMA can

provide additional insights into the NDMA formation mechanism, an analytical method

for the accurate determination of C, H, and N isotope ratios of NDMA was developed

using solid-phase extraction coupled to gas chromatography isotope ratio mass spec-

trometry (SPE-GC/IRMS). During chloramination of tertiary amines, C and H isotope

ratios of NDMA remained widely unaltered. Along with quantitative deuterium nuclear

magnetic resonance spectroscopy, this result demonstrated that the N(CH3)2 moiety

of NDMA originated from the tertiary amine precursor. In contrast, the N atom of

the nitroso group of NDMA stemmed from NH2Cl as inferred from experiments with
15N-enriched NH2Cl. N isotope ratios of NDMA increased significantly during its for-

mation meaning that 14N reacted preferentially to NDMA. Several steps of the reaction

sequence leading to NDMA can be responsible for this observable N isotope fractionation.

Trends in correlated C and N isotope ratios of NDMA were nevertheless characteristic

for chloramination of four tertiary amines and might serve as probes for this class of

precursors. This important proof-of-concept work is a first step towards applying CSIA

to reveal relevant NDMA precursors in water treatment processes.

Keywords: water disinfection, chloramination, disinfection by-products, N -nitroso-

dimethylamine (NDMA), compound-specific isotope analysis (CSIA), stable isotope

fractionation
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Zusammenfassung

Die Desinfektion von Trinkwasser mit beispielsweise Chlor, Chloramin, oder Ozon

ist einer der wichtigsten Schritte der Trinkwasseraufbereitung, da pathogene Mikro-

organismen abgetötet werden und die Bevölkerung mit sauberem Trinkwasser versorgt

werden kann. Jedoch führt der Einsatz chemischer Desinfektionsmittel häufig zur

Bildung potentiell gesundheitsschädlicher Desinfektionsnebenprodukte. Eines dieser

zahlreichen Nebenprodukte ist N -Nitrosodimethylamin (NDMA), welches als krebs-

erregend eingestuft wird. Einer der Hauptwege zur Bildung von NDMA ist die Reaktion

von Chloramin mit natürlichem organischen Material oder mit Mikroverunreinigungen,

die vor allem durch gereinigtes kommunales Abwasser in natürliche Gewässer gelangen.

Um die Bildung von NDMA im Trinkwasser zu vermeiden, wird ein umfassendes

Verständnis der NDMA Bildungswege benötigt. Hierbei ist es von essentieller Bedeutung

diejenigen Vorläufersubstanzen zu identifizieren, die für die NDMA Bildung während

der Trinkwasseraufbereitung verantwortlich sind. Substanzspezifische Isotopenanalyse

(engl. compound-specific isotope analysis, CSIA) ist ein etabliertes Verfahren der

Umweltanalytik, mit dem sowohl Schadstoffquellen identifiziert, als auch abiotische

und biotische Abbauwege von Schadstoffen charakterisiert und in der Umwelt nach-

gewiesen werden können. Da CSIA bisher nur selten im Trinkwasserbereich angewendet

wurde, war es das Ziel dieser Dissertation zu evaluieren, ob CSIA (a) neue Einblicke in

NDMA Bildungswege eröffnet und (b) die Identifikation wichtiger Vorläufersubstanzen

ermöglicht.

Nach heutigem Wissensstand fungieren vor allem aminhaltige Substanzen, die oft-

mals in natürlichen Gewässern auftreten, als bedeutende NDMA Vorläufer während

der Chloraminierung. Jedoch sind die Reaktionsmechanismen noch wenig verstanden.

Um bisher unbekannte Reaktionsschritte, die vor allem Chloramin und gelösten Sauer-

stoff betreffen, besser zu charakterisieren, wurden sekundäre und tertiäre Amine in

Laborexperimenten mit Chloramin versetzt, um die resultierende NDMA Bildung sowie

Reaktionskinetiken und Reaktionsstöchiometrien zu bestimmen. Obwohl die unter-
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Zusammenfassung

suchten Substanzen zu verschiedenen molaren NDMA Ausbeuten führten (1% - 90%),

wurde das Verschwinden eines Sauerstoffmoleküls pro N(CH3)2-Gruppe der Vorläufer-

substanz beobachtet. Dieses Ergebnis deutet darauf hin, dass molekularer Sauerstoff auf

dieselbe Weise mit sekundären und tertiären Aminen reagierte, diese Reaktion jedoch

nicht bestimmend für die molare NDMA Ausbeute war. Die Bildung von NDMA fand

zeitgleich mit dem Verschwinden der Vorläufersubstanz statt, was zeigt, dass Reaktions-

zwischenprodukte sehr reaktiv und kurzlebig waren. Änderungen im 18O/16O Isotopen-

verhältnis von gelöstem O2 wiesen auf eine Reaktion von Sauerstoff mit Radikalen hin,

was in Experimenten mit Radikalfängern (tert-Butanol, ABTS, und Trolox) bestätigt

wurde. Basierend auf diesen Ergebnissen wurde ein Reaktionsmechanismus für die

NDMA Bildung vorgeschlagen, in dem N-zentrierte Aminyl Radikale eine bedeutende

Rolle spielen.

Um zu untersuchen, ob Änderungen in der natürlichen Isotopenzusammensetzung

von NDMA zusätzliche Einblicke in den Reaktionsmechanimus ermöglichen, wurde

eine analytische Methode entwickelt, mit der mittels Festphasenextraktion gekoppelt

an Gaschromatographie und Isotopenverhältnismassenspektrometrie (SPE-GC/IRMS)

eine präzise und genaue Bestimmung der C, H, und N Isotopenverhältnisse von NDMA

realisiert wurde. Während der Reaktion von Chloramin mit tertiären Aminen blieben

C und H Isotopenverhältnisse im gebildeten NDMA weitgehend konstant. Gemeinsam

mit Deuterium-Kernspinresonanzspektroskopie zeigte dieses Ergebnis, dass die N(CH3)2-

Gruppe in NDMA aus dem tertiären Amin stammt. Hingegen hat das N-Atom der

Nitroso-Gruppe seinen Ursprung in Chloramin. Während der NDMA Bildung wurde

eine signifikante Anreicherung von 15N Isotopen im NDMA beobachtet. Mehrere Reak-

tionsschritte des NDMA Bildungsmechanismus können für diese N Isotopenfraktionie-

rung verantwortlich sein. Dennoch lieferte die Korrelation von C und N Isotopenver-

hältnissen in NDMA charakteristische Trends für die Reaktion von Chloramin mit vier

ausgewählten tertiären Aminen. Diese Isotopenfraktionierungstrends könnten dazu die-

nen bestimmte Vorläufersubstanzen oder funktionelle Gruppen in Gewässern zu identi-

fizieren. Durch die vorgestellte Arbeit wird aufgezeigt, dass CSIA neue Wege eröffnen

kann, um essentielle Informationen über NDMA Bildungswege und Vorläufersubstanzen

zu gewinnen.

Schlagwörter: Wasserdesinfektion, Chloraminierung, Desinfektionsnebenprodukte,

N -Nitrosodimethylamin (NDMA), substanzspezifische Isotopenanalyse (CSIA),

Isotopenfraktionierung
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Chapter 1

1.1 Drinking water disinfection by-products (DBPs)

The disinfection of drinking water and the ensuing reduction of waterborne disease out-

breaks is one of the greatest public health achievements of the twentieth century.1 Chem-

ical disinfectants are routinely used to inactivate environmental and enteric pathogens

in drinking water, but also serve as oxidants to remove color, taste and odor compounds

as well as micropollutants and to control microbial regrowth in water distribution

systems.2 However, chemical oxidation / disinfection is associated with unintentional

health hazards through the formation of potentially toxic oxidation / disinfection by-

products (DBPs).3–5

DBPs are formed when oxidants such as chlorine, chloramines, ozone, or chlorine

dioxide react with natural organic matter, bromide, iodide, or anthropogenic contami-

nants.3,4,6 Since the discovery of trihalomethanes (THMs; e.g., chloroform, bromoform)

in chlorinated drinking water in the mid-1970s,7,8 there has been increasing concern

about adverse health effects caused by DBPs. Toxicological and epidemiological studies

showed that certain THMs as well as haloacetic acids (HAAs; e.g., dichloroacetic acid)

are genotoxic and potentially carcinogenic and that lifetime exposure to chlorinated

drinking water is associated with an increased risk for cancer, especially of the blad-

der.9–11 As a consequence, many countries introduced regulations for selected THMs and

HAAs in drinking water.12,13 To meet new and stringent drinking water quality stan-

dards, many utilities discontinued chlorination and applied alternative disinfectants.5

Ozone, chlorine dioxide, and chloramine have numerous advantages over chlorination

in that they significantly reduce THM and HAA formation, eliminate pathogens, and

remove a range of toxic organic (micro)pollutants.4,14–17 However, the efforts to reduce

regulated DBPs have had unintended consequences, that is the formation of new and

unregulated by-products of concern.16,18,19

To date, more than 600 organic and inorganic DBPs have been reported and new

classes of DBPs are continuously identified.20–23 While only few suspected human car-

cinogens such as bromate are regulated, the vast majority of DBPs are poorly char-

acterized in terms of formation, occurrence, and potential chronic health effects. In

vitro cellular bioassays have demonstrated that nitrogen-containing DBPs (N-DBPs)

such as halonitromethanes, haloacetamides, haloacetonitriles, and N -nitrosamines are

significantly more cytotoxic and genotoxic than the regulated THMs and HAAs.24–26

Increased levels of N-DBPs have especially been found in chloraminated drinking water,

which has caused great concern, because many water utilities switched from chlorina-

tion to chloramination.27 Moreover, wastewater-impacted source waters containing high
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levels of dissolved organic nitrogen promote the formation of N-DBPs.28 In times of

increasing water demand and increasing reliance on impacted surface waters and water

reuse processes, knowledge about DBP formation pathways is needed to develop appro-

priate DBP mitigation strategies.29,30

1.2 N -Nitrosodimethylamine in drinking water

1.2.1 Toxicity, occurrence, and mitigation

This study focuses on N -nitrosodimethylamine (NDMA), which belongs to a family of

non-halogenated N-DBPs that is N -nitrosamines. Although other nitrosamines such

as N -nitrosodiethylamine, N -nitrosomorpholine, and N -nitrosopyrrolidine have been

identified in drinking water,31,32 NDMA is the most commonly detected species. Within

the framework of the Unregulated Contaminant Monitoring Rule (UMCR 2, 2008-2010)

of the United States Environmental Protection Agency (U.S. EPA), NDMA accounted

for 95% of the total N -nitrosamine detections in drinking water.33,34 In addition, NDMA

is among the most mutagenic and genotoxic N -nitrosamines and has been classified as

probably carcinogenic to humans by the International Agency for Research on Cancer

(IARC) as well as by the U.S. EPA.35–37 For oral exposure, the cancer potency of NDMA

is approximately 600 times greater than that of regulated THMs and the U.S. EPA lists

a concentration of 0.7 ngL−1 NDMA in drinking water associated with a 10−6 lifetime

cancer risk.30,37

Prior to the first detection of NDMA in drinking water in Ontario, Canada,38 concern

about NDMA stemmed primarily from its widespread occurrence in food, beverages,

personal care products, and tobacco smoke.39,39–42 In contrast to initial assumptions,

NDMA in drinking water did not originate from anthropogenic sources such as rocket

fuels, polymers, or plasticizers, but was formed when chemical disinfectants react with

natural organic matter or anthropogenic pollutants present in source waters.31,43–46

Despite public and regulatory concern about potential long-term chronic health effects,

NDMA and other N -nitrosamines remain widely unmonitored and unregulated. Cur-

rently they are under evaluation for regulation by the U.S. EPA. The World Health

Organization (WHO) as well as many industrialized countries have established guid-

ance values allowing for maximum NDMA concentrations of 9 - 100 ngL−1 in drinking

water.43,47–49 A nationwide survey of NDMA in U.S. drinking waters revealed that the

average concentration of NDMA was 9 ngL−1 and thus within this acceptable range.33

However, exceedingly high concentrations of up to 600 ngL−1 were detected in chloram-
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inated drinking water, which could pose increased human health risks to consumers.33

Once NDMA has been formed in drinking water, its physical removal is challenging,

especially because NDMA can continue to form in chlor(am)inated drinking water dis-

tribution systems.50 While NDMA is not efficiently retained by reverse osmosis and only

partially removed through biodegradation in sand or activated carbon filtration,41,51 UV

treatment is an effective method to destroy NDMA.43,52 However, owing to the high UV

doses required, it is an expensive approach that can, in addition, not prevent the for-

mation of NDMA in distribution systems.43,52 To avoid drinking waters with elevated

NDMA concentration reaching the consumers tap, the best strategy is to mitigate the

formation of NDMA and other DBPs. However, even though considerable efforts have

been devoted to identify NDMA precursor compounds, reaction pathways leading to

NDMA remain poorly understood.

1.2.2 NDMA precursors and proposed formation pathways

Generally, NDMA can be formed during chlorination, chloramination, ozonation, and

chlorine dioxide treatment.41,45,46,53,54 However, the most important pathway to NDMA

is likely the chloramination of wastewater and wastewater-impacted surface waters that

contain a variety of nitrogenous NDMA precursor compounds.30,55 Most mechanistic

research has been done with dimethylamine (DMA) as model precursor because DMA

and tertiary amines containing DMA-functional groups have been identified as frequently

occurring NDMA precursors in raw waters.28,44,55 Figure 1.1 depicts three proposed

mechanisms for NDMA formation from DMA.

Pathway (i) suggests the reaction of DMA with a nitrosating agent such as N2O4 that

might be produced in the reaction of nitrite (NO2
–) with chlorine, ozone, or hydroxyl

radicals.56,57 However, NDMA yields during chlorination and ozonation in the presence of

NO2
– were low (<0.5%) indicating that these pathways are of minor relevance.45,56,57,60

Pathway (ii) shows the nucleophilic substitution reaction of the neutral DMA with

monochloramine (NH2Cl) leading to unsymmetrical dimethylhydrazine (UDMH), which

is subsequently oxidized to NDMA.44,61 This pathway was revised because the reaction

of dichloramine (NHCl2) with DMA formed two orders of magnitude more NDMA than

NH2Cl. Pathway (iii) illustrates the proposed reaction of DMA with NHCl2 leading to

chlorinated UDMH.58 Experiments with 18O-labeled water did not show an incorpora-

tion of 18O into NDMA, but molar NDMA yields from DMA increased with increasing

concentration of dissolved molecular O2 demonstrating that the latter plays an important

role for NDMA formation.58
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Figure 1.1: Proposed NDMA formation pathways for ozonation, chlorination, and chlorami-
nation of dimethylamine (DMA) leading to NDMA yields of <5%.44,56–59 The scheme depicted
here illustrates the most important reactions only.

As molar NDMA yields from chlor(am)ination of DMA are low (<0.5 - 5%), it has

been concluded that the DMA concentrations in wastewater treatment plant effluents

and surface waters in the low μg/L range cannot be responsible for the formation of

significant concentrations of NDMA in drinking water.28,55,62 Since then, numerous

other NDMA precursors have been identified including natural organic matter,63,64

algae,65 soluble microbial products,66 trimethylamine,67,68 amine-containing water treat-

ment polymers (e.g., polyDADMAC),40,55,69,70 and anthropogenic micropollutants such

as pharmaceuticals, personal care products, and pesticides.40,71–74 Although reaction

mechanisms leading to NDMA have not been studied separately for each of these com-

pounds, many NDMA precursors have one common structural feature: they contain

secondary, tertiary, or quaternary amine functional groups. Tertiary alkylamines have

been shown to degrade to secondary amines during chloramination so that NDMA for-

mation pathways in Figure 1.1 might apply.75 Indeed, molar NDMA yields from most

tertiary amines are low (<6%) and comparable to those of secondary amines.50,72

However, one subset of tertiary amines exhibits much higher NDMA yields of >60%

during chloramination.67,72,76 These potent NDMA precursors possess a dimethylamine

functional moiety bound via a methylene group to an aromatic ring.67 This structure

can be found in certain pharmaceuticals such as ranitidine.77 Owing to the high molar

NDMA yield from these tertiary amines, NDMA formation is unlikely to proceed through
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Figure 1.2: Proposed NDMA formation pathways for chloramination of ranitidine derivatives
leading to >60% molar NDMA yield.79,80

secondary amine or UDMH intermediates.78,79 Instead two different NDMA formation

pathways have been proposed as illustrated in Figure 1.2.79,80 Both pathways suggest a

common initial reaction step that is a nucleophilic substitution reaction between the ter-

tiary amine and NH2Cl leading to a dimethylhydrazine-type intermediate.79,80 Further-

more, both pathways suggest the formation of NDMA and a carbocationic leaving group

whose stability has been pointed out as key feature for high NDMA yields.67,80 NDMA

formation was significantly inhibited under anoxic conditions demonstrating the crucial

role of dissolved O2 for NDMA formation.76 However, reaction mechanisms involving

molecular O2 and reactive intermediates remain speculative owing to the difficulty to

detect short-lived (oxygen) intermediates.

Although NDMA is one of the best studied DBPs, knowledge about NDMA for-

mation pathways remains incomplete. This situation complicates the prediction and
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prevention of NDMA formation. Owing to the large number of structurally diverse

NDMA precursor compounds, new tools are needed to identify relevant precursors in

raw waters.

1.3 Assessing NDMA formation with compound -

specific isotope analysis

Assessing the formation of NDMA during water treatment is a challenging task, because

precursor compounds and formation pathways cannot be inferred solely from measure-

ments of NDMA concentrations. Compound-specific isotope analysis (CSIA) is a promis-

ing approach to elucidate NDMA formation pathways and to obtain a reaction-related

characterization of specific precursors in raw waters, because changes in the isotopic

composition of NDMA might reflect reaction mechanisms leading to its formation.

1.3.1 Stable isotope analysis - fundamentals and application

CSIA is an effective tool to (i) allocate and distinguish sources of organic compounds

and (ii) identify and quantify abiotic and biotic transformation reactions on scales rang-

ing from laboratory batch experiments to contaminated field sites (see reviews).81–85

Using gas or liquid chromatography coupled to isotope ratio mass spectrometry (GC/-

or LC/IRMS), the natural isotopic composition of organic compounds is determined as

the ratio of heavy to light isotopes of an element E (hE/lE). Stable isotope ratios are

expressed as isotope signatures, δhE, that reflect the relative difference between the iso-

tope ratio of the compound and the isotope ratio of an internationally accepted reference

material.86,87 δhE values are expressed in per mil (�).

δhE =
(hE/lE)compound

(hE/lE)reference
− 1 (1.1)

Organic compounds often have characteristic isotope signatures that are defined by

the isotopic composition of the precursor material as well as by industrial or biogenic

formation processes.82,85,88 If isotope signatures of a compound remain constant during

time or space, they can be used as fingerprint for source apportionment.83,89,90 It is

generally assumed that physical processes (i.e., transport, dilution, and phase-transfer)

only cause minor changes in the isotopic composition of an organic compound.82 In

contrast, isotope signatures exhibit significant changes (so called isotope fractionation)
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if chemical bonds in a compound are broken or formed in rate-determining steps of a

reaction. Isotope fractionation is a consequence of kinetic isotope effects (KIEs) that

arise when molecules containing a light or heavy isotope in the reactive position react

with different rates.

KIEE =
lk
hk

(1.2)

where lk and hk are the rate constants for molecules containing the light and heavy

isotope, respectively. KIEs are caused by differences in the activation energies of

molecules carrying light or heavy isotopes, which in turn depends on energy differences

between the reactant and the transition state.83 KIEs thus provide insights into tran-

sition state structures and are characteristic for elementary reactions and the chemical

bonds and functional groups involved therein.82,83,91 To determine KIEs, the observable

isotope fractionation is quantified by bulk isotope enrichment factors, εbulkE , using the

Rayleigh equation.

δhE + 1

δhE0 + 1
=

(
c

c0

)εbulkE

(1.3)

where δhE0 and δhE are isotope signatures measured at the beginning and at certain

time points of the reaction in the remaining fraction of the reactant (c/c0). If a reactant

contains more than one atom of element E, the εbulkE value reflects the average, bulk iso-

tope fractionation in the reactant. Consequently, the KIE at the reactive position will

be diluted. To interpret observable isotope fractionation in terms of the underlying re-

action mechanism, εbulkE values need to be converted to position-specific apparent kinetic

isotope effects (AKIEs) at reacting bonds. This conversion requires a priori knowledge

of the total number of atoms of an element E in a molecule (n), the number of atoms in

reactive positions (x ), and the number of atoms in intramolecular competition (z ).83,84

AKIE =
1

1 + (n/x) · z · εbulkE

(1.4)

In elementary reactions, the AKIE reflects the intrinsic KIE pertinent to a specific

bonding change. However, enzymatic and chemical reactions are often multi-step pro-

cesses in which several reaction steps can be (partially) rate-determining. In such cases,

the AKIE derived from observable isotope fractionation can significantly deviate from

the intrinsic KIE of the chemical elementary reaction step of interest, which compli-

cates mechanistic interpretations.83 83,92 If reaction steps that mask the intrinsic KIE

are non-fractionating, multi-dimensional isotope analysis allows to discern transforma-

tion pathways because all elements are affected by masking in the same way.83 In this
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approach, measured isotope signatures of two elements, δhE1 and δhE2, are correlated.

The slope of the linear correlation, Λ, is approximately equal to the ratio of the bulk

enrichment factors, εbulkE1 and εbulkE2 .83

Λ =
δhE1

δhE2

≈ εbulkE1

εbulkE2

(1.5)

Such dual isotope slopes are in many cases indicative for reaction mechanisms.83,93

However, if several reaction steps cause isotope fractionation, these slopes might not

longer be constant and the analysis of multiple isotope ratios of the reactants, reaction

intermediates, and products can be instrumental in gaining insights into the reaction

mechanism.83,92,94

To date, the investigated spectrum of compounds comprises mainly hazardous pri-

ority pollutants81 such as chlorinated organic solvents,94–97 benzene,98,99 toluene,100,101

ethylbenzene, and xylene (BTEX),102 fuel additives,103,104 nitroaromatic explosives,93,105

or aromatic amines.106 However, there is increasing interest in the application of CSIA

to study the sources and fate organic micropollutants such as pharmaceuticals,107,108

herbicides,109,110 or corrosion inhibitors111,112 in the environment.

1.3.2 CSIA to assess DBP formation

Given the potential of isotope fractionation analysis to allocate sources of organic com-

pounds and to provide unique insights into reaction mechanisms, CSIA might be a

promising tool to assess DBP formation. An initial exploratory study by Arnold et al.

indeed demonstrated that changes in 13C/12C ratios of chloroform can be used as probes

for reactive precursor moieties in NOM and chloroform formation pathways.113 Various

model compounds representing NOM functional groups produced chloroform upon chlo-

rination. However, C isotope ratios of chloroform changed in distinctly different manner

depending on the type of precursor. While chloroform from resorcinol and (di)ketones

was enriched in 13C, it was enriched in 12C when produced from (chloro)phenols. Chloro-

form produced during chlorination of Lake Zurich water was as well enriched in 12C, indi-

cating that phenolic moieties in NOM were responsible for chloroform formation. While

C isotope fractionation trends could be successfully used for the identification of chloro-

form precursors, a mechanistic interpretation was more challenging. The variability of

C isotope fractionation in chloroform hinted at differences in the chloroform formation

pathways from different NOM functional groups. Reactions leading to the observed C

isotope fractionation trends in chloroform could, however, not be identified as chloroform

9
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formation is a complex multi-step process that likely involves isotope-sensitive branching

of competing reaction pathways. Trends in C isotope ratios were nevertheless indicative

for chloroform formation pathways from specific precursor compounds.

Likewise, isotope ratios of NDMA might be indicative for its formation pathway and

could be used to link NDMA formation to the presence of specific precursor compounds

or functional groups therein. Similar to chloroform, NDMA is formed in a series of

reaction steps, which are poorly understood to date (Figures 1.1 and 1.2). Together

with the study of reaction kinetics and the identification of reactive intermediates, CSIA

might provide unique insights into reaction mechanisms leading to NDMA.

1.4 Objectives and approach

The objective of this dissertation was to explore the use of CSIA for (i) elucidating

NDMA formation mechanisms and (ii) identifying reactive precursor moieties from stable

isotope fractionation trends. To this end, the formation of NDMA during chloramina-

tion of secondary and tertiary amines was studied in laboratory model systems using

conditions similar to those in water treatment. The specific goals of this work were:

1. To develop and validate an analytical method for the accurate determination of

the isotopic composition of NDMA and four additional N -nitrosamines in aqueous

water samples including the identification of optimal extraction efficiencies and

quantification limits.

2. To gain new insights into central reaction steps leading to NDMA during chlorami-

nation of the selected amine model precursors with special emphasis on reactions

of molecular oxygen and radical intermediates.

3. To evaluate changes in the C, N, and H stable isotope ratios of NDMA during

chloramination of tertiary amines as proxies for NDMA formation pathways and

precursors responsible for NDMA formation.
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Chapter 2 presents the newly developed method for the analysis of 13C/12C, 15N/14N,

and 2H/1H ratios of NDMA and four N -nitrosamines using solid-phase extraction

coupled to gas chromatography isotope ratio mass spectrometry (SPE-GC/IRMS). To

test the applicability of this method, C, N, and H isotope ratios of NDMA were de-

termined during chloramination of the pharmaceutical ranitidine. The comparison of

H isotope ratios in NDMA with site-specific H isotope ratios of the N(CH3)2 moiety

of ranitidine measured with quantitative deuterium nuclear magnetic resonance spec-

troscopy demonstrated the accuracy of the developed SPE-GC/IRMS method.

Chapter 3 focuses on the elucidation of central reaction steps of the NDMA formation

mechanism involving molecular oxygen, monochloramine, and transient intermediate

species. In laboratory experiments, NDMA formation was studied during monochlor-

amination of amine-containing model precursors. To evaluate the relevance of short-lived

reactive (oxygen) intermediates, the reaction was characterized in terms of reaction

kinetics and stoichiometries. To this end, concentrations of the precursor, NDMA,

NH2Cl, and O2 were quantified. The presence or absence of various radical species was

revealed by oxygen isotope analysis of aqueous O2 and experiments with various radical

scavengers. Based on these results, potential NDMA formation pathways involving N-

centered radical species are proposed.

Chapter 4 addresses the question whether changes in isotope ratios of NDMA can

provide insights into the NDMA formation mechanism and can function as proxies for

NDMA precursors. The origin of the atoms in NDMA was inferred by determining the

initial isotope ratios of the precursors and by studying isotope fractionation in NDMA

and selected precursors. With this approach, reaction steps that could be responsible

for the observed N isotope fractionation in NDMA and precursors were revealed. Irre-

spective of the molar NDMA yield, linear trends in δ15N versus δ13C values of NDMA

were characteristic for the chloramination of four tertiary amines and robust even under

varying reaction conditions. This indicates the potential diagnostic power of CSIA to

identify NDMA precursor compounds during water disinfection.

In a general conclusion section, open questions and directions for future research are

discussed (Chapter 5).
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Chapter 2

Abstract

Mitigation of N -nitrosodimethylamine (NDMA) and other hazardous water disinfection

by-products (DBP) is currently hampered by a limited understanding of DBP forma-

tion mechanisms. Because variations of the stable isotope composition of NDMA can

potentially reveal reaction pathways and precursor compounds, we developed a method

for the compound-specific isotope analysis (CSIA) of 13C/12C, 15N/14N, and 2H/1H

ratios of NDMA by gas chromatography coupled to isotope ratio mass spectrometry

(GC/IRMS). Method quantification limits for the accurate isotope analysis of NDMA,

N -nitrosodiethyl-, -dipropyl-, and -dibutylamine as well as N -nitrosopyrrolidine were

between 0.18 to 0.60 nmol C, 0.40 to 0.80 nmol N, and 2.2 to 5.8 nmol H injected on

column. Coupling solid-phase extraction to GC/IRMS enabled the precise quantifica-

tion of C, N, and H isotope ratios of NDMA in aqueous samples at concentrations of

0.6μM (45μgL−1). We validated the proposed method with a laboratory experiment, in

which NDMA was formed with stoichiometric yield (97± 4%) through chloramination of

the pharmaceutical ranitidine (3μM). δ13C and δ2H values of NDMA remained constant

during NDMA formation while its δ15N value increased due to a reaction at a N atom in

the rate-limiting step of NDMA formation. The δ2H value of NDMA determined by SPE-

GC/IRMS also corresponded well to the δ2H value of the N(CH3)2-group of ranitidine

measured by quantitative deuterium nuclear magnetic resonance spectroscopy. This ob-

servation implies that the N(CH3)2-moiety of ranitidine is transferred to NDMA without

being chemically altered and illustrates the accuracy of the proposed method.
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Stable Isotope Analysis of N -Nitrosamines

2.1 Introduction

N -nitrosamines are of public and regulatory concern because these potent carcinogens

can be formed as unintentional by-products during drinking and waste water disinfection.

Among the typically surveyed N -nitrosamines, N -nitrosodimethylamine (NDMA) is the

most frequently detected disinfection by-product in drinking water.50,114,115 Because of

its mutagenicity, maximum NDMA concentrations in drinking water should not exceed

guidance values in the range of 9 to 100 ngL−1.49,116,117 Preventing NDMA formation is,

however, a challenging task. Numerous compounds have been identified as precursors

that lead to NDMA when source waters are disinfected by chlorine, chloramine, or

ozone.118 NDMA precursors typically contain aliphatic amine functional groups and

include natural organic materials66,119 as well as compounds of anthropogenic origin

such as additives for water treatment,69 pesticides,41,54,73,120 pharmaceuticals,72,76,79 and

potential CO2-capture systems.121,122 Depending on the precursor compound, NDMA

yields vary by orders of magnitude. Whereas chloramination of dimethylamine gives rise

to molar NDMA yields of a few percent,55,60,123 yields increase to up to 90% for chlor-

amination of a dimethyl-aminomethyl furfuryl alcohol.123 It is evident that in addition

to the presence of an alkylamine moiety, other structural features impact the NDMA

formation potential.124 Unfortunately, understanding the mechanisms of N -nitrosamine

formation is challenging. It remains very difficult to predict NDMA formation potentials

of different water constituents and to develop efficient mitigation strategies.

We have shown previously that the formation pathways of disinfection by-products

can be inferred from changes of their stable isotope ratios.113 The 13C/12C ratio of

chloroform produced upon chlorination of natural organic matter in lake water evolved in

a way that chloroform was depleted in 13C. This inverse C isotope fractionation of chloro-

form was typical for a reaction of phenolic precursor moieties due to a characteristic 13C

kinetic isotope effects (13C-KIE). As in many applications of compound-specific isotope

analysis (CSIA) for contaminant degradation assessment, KIEs are specific measures of a

reaction mechanism82–84,125 and thus also reflect the reactions of the precursor material.

CSIA-based methodology works at natural isotope abundances and can be applied to

track reaction products in general, for example, to infer the origin of naturally produced

chloroform from soil organic matter.126–129 However, elucidation of NDMA formation

pathways during disinfection processes by CSIA has not been attempted to date, because

procedures for isotopic analysis of N -nitrosamines at natural isotope abundances are still

missing.
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It is currently unclear which of the four chemical elements of NDMA is accessi-

ble by stable isotope ratio measurements and whether this information reveals the

identity of precursor moieties and reaction mechanisms. Current hypotheses suggest

that the N,N -dimethylamine moiety of NDMA originates from the organic precursor

molecule.43,55,79,123 The nitroso group of NDMA, in contrast, stems from nitrite or from

different processes including reaction of the disinfectant and molecular O2 with the pre-

cursor compounds. On the basis of such a simplistic assumption, one could speculate

that the two N -methyl groups are not involved in the NDMA formation reaction and

its 13C/12C and 2H/1H ratios function as isotopic fingerprints of N -methyl groups of the

organic precursor molecule. In contrast, 15N/14N and 18O/16O ratios are expected to

change during NDMA formation and convey information on the reaction mechanism.

In this study, we present a method for the analysis of C, N, and H isotope ra-

tios of NDMA in aqueous samples in the micromolar concentration range. Note that

chemically pure NDMA, which could be used as isotopic reference material for method

development, is not available commercially in Europe. Therefore, we used four alterna-

tive N -nitrosamines, namely N -nitrosodiethylamine (NDEA), N -nitrosodipropylamine

(NDPA), N -nitrosodibutylamine (NDBA), and N -nitrosopyrrolidine (NPYR), to estab-

lish sensitive procedures for accurate, that is true and precise C, N, and H isotope

analysis by coupling solid-phase extraction to gas chromatography / isotope ratio mass

spectrometry (SPE-GC/IRMS).105,111,130–132

We validated our method by studying a model reaction, in which NDMA is formed

stoichiometrically upon chloramination of the pharmaceutical ranitidine. This com-

pound is a frequently detected micropollutant in sewage treatment plants and surface

waters28,133,134 and shows one of the highest NDMA formation yields reported for chlor-

amination reactions.76,79 Moreover, ranitidine exhibits a N,N -dimethylamine functional

group that has been suggested to lead to NDMA.79 Here, we applied quantitative deu-

terium nuclear magnetic resonance (NMR) spectroscopy to determine the 2H/1H ratio

of the N,N -dimethylamine functional group of ranitidine for comparison with the cor-

responding H isotope ratios measured in NDMA by SPE-GC/IRMS.
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2.2 Experimental Section

A list of all chemicals including suppliers and purities is provided in the Supporting

Information (SI).

2.2.1 Safety considerations

N -nitrosamines are potent carcinogens. The pure substances and concentrated solutions

should be handled with great care. Work should be done in a well-ventilated chemical

fume hood and appropriate protective clothing, goggles, and gloves should be worn.

They should be kept away from heat, sparks, and flame.

2.2.2 Solid-phase extraction (SPE)

We compared the performance of two different SPE methods for the extraction and

enrichment of N -nitrosamines from 1L of aqueous solution. For SPE method 1 (modified

from Yoon et al.135), SepPak Aminopropyl Plus Short cartridges (360mg, Waters) were

placed on top of SepPak AC-2 Plus Short cartridges (400mg, Waters). Cartridges were

conditioned with 5mL dichloromethane, 5mL methanol, and 5mL NANO-pure water

or phosphate buffer (1mM, pH7.0). A volume of 1 L of aqueous sample was passed

through at a flow rate of 2-3mL/min. AC-2 cartridges were dried for 2 h and eluted with

10mL dichloromethane. For SPE method 2 (modified from Krauss and Hollender136),

Oasis HLB cartridges (6mL, 200mg, Waters) were conditioned with 10mL pentane,

10mL ethyl acetate, 10mL methanol, and 15mL tap water or phosphate buffer (10mM,

pH7.0). Coconut activated carbon cartridges (EPA method 521, Charcoal for NDMA,

6mL, 2 g, Restek, BGB) were conditioned with 15mL pentane, 20mL ethyl acetate,

15mL methanol, and 20mL tap water or phosphate buffer. A volume of 1 L of aqueous

sample was passed through both connected cartridges (Oasis HLB on top, charcoal in

bottom) at a flow rate of 2-3mL/min. Cartridges were washed with 5mL tap water or

buffer and dried separately for 2 h by applying vacuum. Cartridges were reconnected and

analytes were eluted with 5mL ethyl acetate. The Oasis HLB cartridge was removed

and analytes were eluted from the charcoal cartridge with 10mL of ethyl acetate. Both

ethyl acetate extracts were combined in the same collection tube and evaporated at 30◦C

under a gentle stream of N2 to 10mL for analysis by GC/MS or to 1mL for isotope ratio

measurements with GC/IRMS.

We evaluated SPE methods 1 and 2 in terms of N -nitrosamine recovery. We pre-

pared a methanolic stock solution containing 10mMNDMA, NDEA, NDPA, NDBA, and
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NPYR with which we made 1L aqueous solutions (tap water or phosphate buffer) con-

taining 0.5 - 3μM of each analyte. Blank samples did not contain any N -nitrosamines.

Samples and blanks were processed identically as described above. N -Nitrosamine con-

centrations in dichloromethane (method 1) or ethyl acetate (method 2) were analyzed by

GC/MS after dilution to the concentration range calibrated on our instrument. Owing

to higher recoveries, method 2 was further evaluated to rule out SPE-induced isotope

fractionation. According to the linear range for C, N, and H isotope analysis (Figure 2.2

and Figure S2.4), we prepared three methanolic stock solutions with different concentra-

tions of NDMA, NDEA, NDPA, NDBA, and NPYR. Note that for N isotope analysis,

the methanolic stock solution contained all five analytes in equal concentration (10mM),

whereas C and H isotope analysis required different concentrations for each analyte be-

cause of differing number of C and H atoms. Subsequently, we spiked 1L of tap water

and 1L of 10mM phosphate buffer (pH 7.0) to achieve final NDMA concentrations of

0.5 - 1.2μM, 1 - 3μM, and 1.5 - 2.5μM for C, N, and H isotope analysis, respectively. All

samples were processed with SPE method 2. To achieve a 1000-fold analyte enrichment,

we evaporated the ethyl acetate extracts to 1mL. Solvent evaporation to less than 1mL

led to a decrease in N -nitrosamine recovery of up to 30% (Table S2.2).

2.2.3 Chemical analysis

Concentrations of NDMA, NDEA, NDPA, NDBA, and NPYR in organic solvents were

quantified using a GC/MS system (TRACE GC Ultra and TRACE DSQ EI 250,

Thermo). A sample volume of 1μL in ethyl acetate or dichloromethane was injected with

a CombiPAL autosampler (CTC) in a split/splitless injector operated at 200◦C for 1min

in splitless and thereafter in split mode. The split flow was 50mL/min. Helium carrier

gas was used at constant pressure of 150 kPa. Chromatographic separation was achieved

with a 1m DPTMDS (methyl/phenyl) deactivated fused-silica guard column (530μm

i.d., BGB Analytik), a 60m x 0.32mm RTX-VMS column (1.8μm df, Restek), and a

DPTMDS (methyl/phenyl) deactivated fused-silica postcolumn (180μm i.d., BGB Ana-

lytik). The temperature program started at 40◦C (5min) and increased with 20◦C/min

to 220◦C (6min). The mass spectrometer ran in the full scan mode within a mass-

to-charge (m/z) range of 50 - 205. N -nitrosamines were quantified with an external

calibration in the range of 0.8 - 16μM.

Concentrations of NDMA and ranitidine in aqueous samples from NDMA formation

experiments were quantified without analyte enrichment by reverse phase HPLC (Dionex

UltiMate 3000) with UV-vis detection at wavelengths corresponding to the absorption
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maxima of the analytes (228 nm for NDMA and 320 nm for ranitidine). The limit of

quantification was 0.1μM for both analytes. For NDMA analysis, an aqueous sample

volume of 50μL was analyzed using a Supelcosil LC-18 column (25 cm x 4.6mm, 5μm,

Supelco) with a LC-18 guard column. The eluent mixture consisted of 90% phosphate

buffer (1mM, pH 7.0) and 10% methanol at a flow rate of 1mL/min. For quantification

of ranitidine, 40μL of aqueous sample were analyzed using a XBridge column (LC-18,

5 cm x 3mm, 2.5μm, Waters) equipped with a XBridge guard column (C18, 2.5μm,

Waters). Ranitidine analysis was carried out with an eluent mixture of 65% phosphate

buffer (1mM, pH 11.5) and 35% methanol at a flow rate of 0.5mL/min.

Monochloramine (NH2Cl) stock solutions (30mM) were prepared daily by mixing

hypochlorite and ammonium chloride at pH 9.5 (molar Cl/N ratio of 1:1.05) with

a dual syringe pump (T-mixing system).137 A Varian Cary 100 Bio UV-visible spec-

trophotometer was used to quantify HOCl at λ=292 nm (ε292nm=350M−1cm−1) and

NH2Cl at λ=245 nm (ε245nm=445M−1cm−1) and to check for the absence of NHCl2

at λ=295 nm (ε295nm=267M−1cm−1), which could alter the transformation kinetics

of ranitidine.137,138 In reaction mixtures containing ranitidine or NDMA, NH2Cl was

quantified photometrically with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-

ammonium salt (ABTS) using potassium iodide (KI) as catalyst. Prior to reagent addi-

tion, samples were diluted to NH2Cl concentrations of 1 - 10μM. NH2Cl oxidizes iodide

to hypoiodous acid, which reacts with ABTS. The colorless ABTS is oxidized to a sta-

ble, green colored radical (ABTS•+), which was quantified photometrically at λ=405 nm

(ε405nm=28500± 950M−1 cm−1).139

2.2.4 Stable isotope analysis

C, N, and H isotope measurements of NDMA, NDEA, NDPA, NDBA, and NPYR in

ethyl acetate were conducted with a TRACE GC coupled to an isotope ratio mass

spectrometer (GC/IRMS) via a GC Combustion III interface (Thermo). GC setup

and temperature program were identical to GC/MS analysis except for a larger inner

diameter of the postcolumn (320μm). For all δ13C and δ15N measurements, a self-made

Ni/Ni/Pt reactor111 was operated at 1000◦C and reoxidized for 20min with a continuous

O2 stream after every measurement. For N isotope analysis, a standard reduction reactor

(Thermo) was operated at 650◦C and liquid N2 was used for cryogenic trapping of CO2.

Isotope ratio analysis of H was achieved by pyrolysis using a non-porous alumina tube

reactor heated to 1440◦C. A GC/IRMS chromatogram for C isotope analysis is shown

in Figure S2.1.
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δ13C, δ15N, and δ2H values are reported relative to Vienna PeeDee Belemnite, air,

and Vienna standard mean ocean water, respectively.

δhE =
R(hE/lE)sample

R(hE/lE)standard
− 1 (2.1)

where δhE is the isotope signature of the respective element, and R(hE/lE) are the iso-

tope ratios of heavy (h) and light (l) isotopes in sample or standard.140 If not stated

otherwise, isotope signatures are reported as arithmetic mean of triplicate measurements.

The trueness of isotope measurements is expressed as ΔhE, which is the deviation of

isotope signatures measured by GC/IRMS (δhEGC/IRMS) from reference isotope signa-

tures of in-house standards (NDEA, NDPA, NDBA, NPYR) determined independently

by elemental analyzer IRMS (δhEEA/IRMS).

ΔhE = δhEGC/IRMS − δhEEA/IRMS (2.2)

The deviation of isotope signatures measured after solid-phase extraction (SPE-

GC/IRMS) is reported from isotope signatures of N -nitrosamine in-house standards

measured by GC/IRMS (ΔStd
hE).

We used a series of 14 different compounds with known isotopic composition

(Table S2.1) from A. Schimmelmann (Indiana University, USA) to calibrate C, N, and

H isotope ratios in the following ranges: δ13C from −55� to +8�; δ15N from −6�
to +41�; δ2H from of −230� to +500� (Table S2.1). Method quantification limits

(MQLs) for accurate isotope analysis of N -nitrosamines were defined with the moving

mean method using uncertainty intervals of ±0.5�, ±1�, and ±5� for C, N, and H

isotope analysis, respectively.87,111,141 We calculated operational conversion efficiencies

of N -nitrosamines to the analyte gases (CO2, N2, and H2) in the combustion interface

between GC and IRMS. For this reason, we established linear regressions of peak areas

in Vs at the respective m/z ratios (44, 28, and 2) vs. the nominal amount of injected

mass of C, N, and, H, respectively.111

Quantitative deuterium NMR spectroscopy

The site-specific deuterium abundance of the N(CH3)2-group of ranitidine was deter-

mined by quantitative deuterium nuclear magnetic resonance (NMR) spectroscopy. The

NMR sample was prepared by dissolving ranitidine hydrochloride (150mg) in a water-

ethanol mixture (1:2, v:v, 600μL) containing 0.8M sodium bicarbonate. The 2H/1H
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ratio of the methyl group of the ethanol was calibrated by comparison of its NMR

signal to tetramethylurea (Joint Research Centre of the European commission, Geel,

Belgium, 2H/1H ratio= 153.7 (±0.8) x 10−6). A C6F6 capillary was added for locking.

Deuterium NMR spectra with proton decoupling were recorded at 323K on an Avance

III 850 spectrometer (Bruker, Fällanden, Switzerland) equipped with a cryogenic probe

optimized for deuterium detection and with 19F lock. A recycle time of 7.4 s (7T1) was

chosen to ensure complete relaxation. Spectra were processed in the program Topspin

(version 3.2; Bruker) using exponential line-broadening; signal integrals were determined

by deconvolution. To determine the 2H/1H ratio of the N(CH3)2 group, the integral of

its 2H signal was compared to the methyl group of ethanol, taking into account the

compounds’ molar ratio determined by 1H NMR on the same sample. Error estimates

include standard errors of the ethanol calibration and of the ranitidine measurements.

The 2H/1H ratio of the N(CH3)2 group was expressed as δ2H value relative to Vienna

standard mean ocean water.

2.2.5 NDMA formation experiments

Experiments were carried out in 14 amber glass bottles containing 1 L of 10mM phos-

phate buffer (pH = 8.0), to which we added 100μL of a 30mM methanolic stock solution

of ranitidine. Initial ranitidine concentrations were 3μM. To initiate the NDMA form-

ing reaction, we added 1.5mL of a 30mM aqueous solution of NH2Cl to each reactor

to obtain a final concentration of 45μM. At predefined time points, we measured the

NH2Cl concentration with ABTS as well as the solution pH. Reactions were quenched

by adding 1 g of Na2S2O3. All samples were stored in the dark at 4℃ until concen-

tration and isotope analysis. Two types of control experiments were set up identically

except for addition of NH2Cl and ranitidine. In the absence of NH2Cl, we quantified

the recovery of ranitidine. The second control experiment enabled us to quantify the

pseudo-first order decay rate constant of NH2Cl over a time period of 30 h (0.004 h−1)

in the absence of ranitidine. All NH2Cl concentrations measured in NDMA formation

experiments were corrected by taking into account the self-decay of NH2Cl. From the

disappearance kinetics of ranitidine, we calculated the second-order rate constant for its

reaction with NH2Cl.
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2.3 Results and Discussion

2.3.1 C, N, and H isotope analysis of N -nitrosamines

We developed a procedure for stable C, N, and H isotope analysis of N -nitrosodimethyl-

amine (NDMA) and four additional N -nitrosamines, namely N -nitrosodiethylamine

(NDEA), -dipropylamine (NDPA), -dibutylamine (NDBA), and -pyrrolidine (NPYR).

The latter four N -nitrosamines are available in Europe in chemically pure form and were

used as isotopic reference materials, whereas NDMA can only be purchased as dilute

solution. As we will show in the following sections, C, N, and H isotope signatures

(δ13C, δ15N, and δ2H) of NDMA could be determined with high precision from solutions

containing at least 0.1, 0.4, and 0.6mM of NDMA, respectively.

Carbon isotope analysis

C isotope ratio measurements of N -nitrosamines by GC/IRMS were very reproducible

over a time period of 8 months (Figures 2.1a and S2.2). The δ13C values of N -

nitrosamines ranged from −25.8 ± 0.3� to −40.6 ± 0.3� and showed good precisions

(expressed as ± one standard deviation) of ≤ ±0.3� (n=161, Table 2.1). As shown in

Figure 2.1b, δ13C of NDEA, NDPA, NDBA, and NPYR measured with GC/IRMS were

slightly larger than δ13C reference signatures determined by EA/IRMS. δ13C of NDEA,

NDPA, and NPYR showed a small and reproducible offset (Δ13C) of +0.8 ± 0.2�,

+1.1 ± 0.4�, and +1.5 ± 0.3�, respectively (Table 2.1). The trueness of C isotope

measurements of NDBA was within the typical total uncertainty of ±0.5�.142

We calculated operational conversion efficiencies of N -nitrosamines to CO2 in the

IRMS as area of the m/z 44 signal per nominally injected mass of C.111 Conversion

efficiencies of NDMA, NDEA, NDPA, and NDBA ranged from 7.5 to 10.2Vs/nmol C

(Figure S2.3). A lower value of 5.6Vs/nmol C was found for NPYR what might be

due to less efficient combustion of the heterocyclic ring to CO2. Conversion efficiencies

of all N -nitrosamines were higher than those of four benzotriazole derivatives (3.7 to

5.0Vs/nmolC) and dodecane (5.9Vs/nmol C) determined recently with the same type

of Ni/Pt combustion reactor.111 This comparison suggests that N -nitrosamines can be

efficiently transformed into analyte gases enabling a sensitive measurement by IRMS.

High conversion efficiencies were, however, not necessarily a measure for greater accuracy

of isotope ratio measurements. For example, the Δ13C of NPYR (+1.5±0.3�) exceeded

that of benzotriazole (+0.5± 1.0�111) despite a ≈ 50% more efficient combustion (5.6

vs. 3.7Vs/nmolC).
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Figure 2.1: (a) Long-term reproducibility of 430 measurements of δ13C, δ15N, and δ2H of
N -nitrosodimethylamine (NDMA) by GC/IRMS over a total time period of 12 months. (b)
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Finally, we determined method quantification limits (MQLs) for C isotope analysis

of N -nitrosamines. MQLs represent the lowest analyte concentration with which δ13C

can be determined accurately given the typical total uncertainty of C isotope ratio

measurements of ±0.5� (see Jochmann et al.141 for procedural details). In Figures 2.2a

and b, we show exemplarily the derivation of MQLs for NDMA and NDPA as well as

the fact that their C isotope ratios can be determined reliably in a concentration range

of 0.1 - 1mM and 0.03 - 0.3mM, respectively. Data for NDEA, NDBA, and NPYR can

be found in Figure S2.4. The MQLs for all five N -nitrosamines are listed in Table 2.2

and range from 0.18 (for NDPA) to 0.60 nmolC (for NPYR) injected on column. As

suggested by the high operational conversion efficiencies, MQLs of all N -nitrosamines

are low. Even though comparisons across different procedures and instrumentations

are difficult, our data show that MQLs for N -nitrosamines are substantially lower than

typically reported values of 0.8 - 1 nmol C.81,111,125

Nitrogen isotope analysis

Measurements of N isotope ratios of N -nitrosamines were carried out with similar preci-

sion (≤ ±0.3�, n= 167) and reproducibility as those for C isotope ratios over one year

(Figures 2.1a and S2.2). δ15N values varied more than those for δ13C and ranged from

−19.7±0.1� to +3.1±0.2�. Figure 2.1b shows a comparison of δ15N values of NDEA,

NDPA, NDBA, and NPYR determined by GC/IRMS with data from pure compound

analysis by EA/IRMS. For NDEA and NDBA, deviations of N isotope ratio measure-

ments by GC/IRMS were within typical uncertainties of ±1� (Table 2.1). δ15N values

of NDPA and NPYR, in contrast, showed a very reproducible off-set by +1.3 ± 0.1�
and +3.6± 0.5� (Table 2.1). An elucidation of the origins of the offsets is beyond the

scope of this work.

Operational N2-conversion efficiencies to the analyte gas N2 were between

2.8Vs/nmol N for NDMA and NPYR and 3.7Vs/nmol N for NDPA (Figure S2.3). Our

numbers for N -nitrosamines are again higher than N2-conversion efficiencies for pre-

vious measurements of aromatic amines (0.8 - 1.7Vs/nmol N) and benzotriazoles (1.7 -

2.2Vs/nmol N).111 This observation supports the above interpretation of high CO2-

conversion efficiencies.
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The efficient conversion of N -nitrosamines is reflected in low MQLs for N isotope

analysis. Figures 2.2c and d show the wide concentration range for which δ15N of NDMA

(0.4 - 3mM) and NDPA (0.2 - 3mM) could be determined accurately. Based on an un-

certainty interval of ±1�, we derived MQLs for all five N -nitrosamines. MQLs amount

to 0.40 - 0.80 nmol N injected on column (Table 2.2, Figure S2.4) and did not show any

specific trend with the type of N -nitrosamine.

Hydrogen isotope analysis

H isotope signatures of N -nitrosamines were determined over a time period of 2 months

with precisions between ±4.2 to ±6.4� (n=90, Table 2.1). This uncertainty is within

the range of reported precisions for δ2H of ±5�.81 δ2H values of the N -nitrosamines

were distinctly different between −222± 4� to −89± 6� (Table 2.1, Figures 2.1a and

S2.2). The conversion to H2 was most efficient for NDEA (0.95Vs/nmol H) and NDPA

(0.94Vs/nmol H), but the differences among the five N -nitrosamines were small (i.e.,

0.8Vs/nmol H for NDBA, NPYR, and NDMA, Figure S2.3). Figures 2.2e and f show the

operational concentration ranges for accurate H isotope analysis of NDMA (0.6 - 2mM)

and NDPA (0.2 - 0.8mM). MQLs determined for all N -nitrosamines with an uncertainty

interval of ±5� were between 2.2 nmol H (for NDPA) and 5.8 nmol H (for NPYR) in-

jected on column (Table 2.2, Figure S2.4). Note that despite widespread application of

δ2H-analysis of organic compounds by GC/IRMS,86 only few MQLs for δ2H determina-

tion93,104 and no H2-conversion efficiencies have been reported so far.

Table 2.2: Method quantification limits (MQL) for C, N, and H isotope analysis of N -
nitrosamines and corresponding amplitudes (Amp) determined according to the moving mean
procedure141 with intervals of ±0.5�, ±1�, and ±5�, respectively. MQLs are expressed
as concentrations of the N -nitrosamine solutions and as corresponding masses of C, N, and
H injected on column.

δ13C δ15N δ2H

MQL Amp 44 MQL Amp 28 MQL Amp 2

(mM) (nmolC) (mV) (mM) (nmolN) (mV) (mM) (nmolH) (mV)

NDMA 0.10 0.20 440±10 0.40 0.80 670±30 0.60 3.6 850±10

NDEA 0.10 0.40 930±20 0.40 0.80 750±40 0.30 3.0 790±10

NDPA 0.03 0.18 400±10 0.20 0.40 370±10 0.16 2.2 570±10

NDBA 0.03 0.24 480±10 0.20 0.40 320±10 0.24 4.3 860±20

NPYR 0.12 0.60 790±20 0.20 0.40 270±10 0.72 5.8 1210±30
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2.3.2 C, N, and H isotope analysis of N -nitrosamines after

solid-phase extraction (SPE) from aqueous samples

Even though several SPE procedures for the analysis of N -nitrosamines with GC/-

or LC/MS analysis exist, none of them addressed the consequences for stable isotope

ratios of the analytes. We modified two existing SPE methods135,136 described above

and compared their performance for the enrichment of N -nitrosamines from 1L of tap

water and from buffered aqueous solutions. Method 1 is based on the use of activated

carbon as sorbent, whereas method 2 relies on a combination of Oasis HLB with coconut

charcoal. No difference was observed for extraction from tap water vs. buffered solution

and the average recoveries are reported in Table S2.2. Both methods performed equally

well for the extraction of NDEA, NDPA, and NDBA and recoveries ranged from 77±3%

to 83±6% (method 1) and 79±11% to 86±4% (method 2, Table S2.2). With method 1,

however, we obtained a NDMA recovery of only 31±6%. In contrast, NDMA recoveries

with method 2 were within the range found for the other N -nitrosamines, that is 88±3%.

Note that the SPE-procedure with NPYR was only conducted with method 2 and showed

the same recovery as for NDMA (Table S2.2). Owing to the higher NDMA recovery,

we evaluated SPE method 2 coupled to GC/IRMS analysis in terms of measurement

accuracy.

The deviation of C, N, and H isotope signatures of the N -nitrosamines after solid-

phase extraction with method 2 from GC/IRMS reference values are denoted as ΔStd
13C,

ΔStd
15N, and ΔStd

2H and are shown in Table 2.1. Neither the SPE procedure, nor

evaporation of the final SPE eluates from 10mL of ethyl acetate to 1mL induced any

significant isotope fractionation in one of the N -nitrosamines. All ΔStd
hE values were

within total uncertainties of ±0.5�, ±1�, and ±5� for C, N, and H isotope analysis,

respectively (Table 2.1). The SPE-GC/IRMS procedure based on SPE method 2 was

therefore considered suitable for C, N, and H isotope analysis of N -nitrosamines in

aqueous samples.

2.3.3 Tracking NDMA isotope signatures during water chlor-

amination

Figure 2.3a shows the kinetics of NDMA formation during chloramination of

ranitidine at pH 8 for 48 hours. Ranitidine disappearance followed pseudo-first order

kinetics (Figure S2.5) due to a 17-fold excess of NH2Cl. The corresponding second-order

rate constant for the reaction of ranitidine with NH2Cl was 9.5± 0.3M−1s−1. Compared
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Stable Isotope Analysis of N -Nitrosamines

Figure 2.3: (a) NDMA formation from reaction of 2.5 μM ranitidine with 43 μM NH2Cl at
pH8.0 and (b) C, N, and H isotope signatures of NDMA (data points) measured by GC/IRMS.
Standard deviations of all C and N isotope measurements were ≤0.2� and are not shown here.
The blue and gray line represent the bulk average δ13C and δ15N values of ranitidine used in
the chloramination experiment. The red line represents the δ2H value of H atoms in the
N(CH3)2-moiety of ranitidine from NMR measurements.
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to the measured initial ranitidine concentration (2.5μM), the molar NDMA yield was

97 ± 4%. Previously reported NDMA yields were based on nominal ranitidine concen-

trations and amounted to up to 80% for experiments conducted at the same pH but

with NH2Cl in 10’000-fold excess.76

Figure 2.3b illustrates the trends of C, N, and H isotope signatures in NDMA over

the course of 48 hours. δ15N values increased, that is they became less negative as

NDMA formed. In contrast, δ13C and δ2H values remained largely constant throughout

the experiment. This observation implies that the C–H bonds in the N(CH3)2-group

were not directly involved in the elementary reaction step leading to NDMA. The H

isotope signature of −168 ± 8� represents the average δ2H value of the 6 H atoms in

NDMA. This number is identical within error with the δ2H value of the H atoms in the

N(CH3)2-group of ranitidine determined by quantitative deuterium NMR (−163±12�).

Because NDMA was formed stoichiometrically from ranitidine, one can assume that

every N(CH3)2-moiety of ranitidine was transformed to NDMA. The agreement of δ2H

values for the N(CH3)2-group in NDMA and ranitidine therefore confirms the trueness

of isotope ratio measurements by SPE-GC/IRMS.

The constant δ13C values of NDMA (−43.7 ± 0.6�, Figure 2.3b) also support the

above hypothesis that the N(CH3)2-group in ranitidine remains intact during conversion

to NDMA. Because of the stoichiometric yield of NDMA, this value also represents the

δ13C value of the N(CH3)2-group in ranitidine. The difference between the δ13C value

of the N(CH3)2-group and that of the entire ranitidine molecule (−28.2 ± 0.3�) was

−15.4� and shows that 12C and 13C atoms are not equally distributed over all C atoms

in ranitidine. In fact, 12C isotopes are located preferentially in the N(CH3)2-group,

whereas 13C is more likely to be found in the other 11 C atoms with an average δ13C

of −25.4�. Such site-specific C and H isotope ratios are commonly used to detect food

adulterations143,144 but they have only rarely been used so far to track sources of organic

contaminants.145,146

The enrichment of 15N in NDMA from −18.9±0.2� to −3.5±0.04� over time hints

at the mechanism of its formation reaction, even though an elucidation of NDMA forma-

tion mechanisms is beyond the scope of this study. The trend shown in Figure 2.3b is due

to a strong, normal N isotope fractionation. This behavior, which was observed in var-

ious (photo)chemical and biological contaminant transformation reactions,106,108,147–152

is likely associated with the cleavage of a bond to N in the rate-limiting step. We can

therefore speculate that important reaction steps that may be responsible for NDMA

formation such as the addition of NH2Cl to N(CH3)2 and its oxidation to a N-nitroso
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compound,58,79 happen prior to the N-bond cleavage step or are not rate-limiting. Note

that the final δ15N value of NDMA matches the one for the average of 4 N atoms of

ranitidine (Figure 2.3b). In contrast to the δ13C values of NDMA, the agreement of δ15N

values is merely coincidental, because N isotopes are presumably distributed unevenly

in ranitidine and the final δ15N value also reflects a currently unknown contribution of

NH2Cl.

2.4 Conclusion

Analysis of C, N, and H isotope ratios of NDMA and other N -nitrosamines can

be made accurately using standard procedures for SPE-GC/IRMS and the proposed

analytical procedure is well-suited for laboratory studies on the different mechanisms

of N -nitrosamine formation. Current knowledge suggests that pathways to NDMA dif-

fer depending on the disinfectant used as well as on the type of precursor molecule.50

However, it is currently unknown whether C, N, or H isotope fractionation trends of

NDMA could be used to distinguish alternative pathways, for example those involving

hydrazine intermediates55,58 from nitrosation reactions.56,60,80 Future work also needs

to address the question whether pathway-dependent isotope fractionation changes with

NDMA-yield, NH2Cl consumption, and δ15N value of NH2Cl.

Finally, the concentrations of NDMA in this work are approximately 1000-fold above

the recommended NDMA guidance values. Substantial amounts of water thus need to

be processed to obtain N -nitrosamines in quantities that are large enough for accurate

stable isotope analysis. Solid-phase extractions of up to 10 L have been used success-

fully for C and N isotope ratio measurements of pesticides in the sub-μgL−1-range.153

Similar procedures need to be developed for NDMA to exploit the information obtained

from CSIA for the mitigation of NDMA and other N -nitrosamines in water treatment

facilities.
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S2.1 Chemicals

All chemicals in this study were used as received. N -nitrosodimethylamine (NDMA,

5000 μg/ml in methanol, 99.9%), N -nitrosodiethylamine (NDEA, 99.9%), N -nitroso-

dipropylamine (NDPA, 99.9%), N -nitrosodibutylamine (NDBA), N -nitrosopyrrolidine

(NPYR, 99%) and ranitidine hydrochloride were purchased from Sigma-Aldrich. Ana-

lyte stock and calibration solutions were made in ethyl acetate (≥ 99.7%, Sigma-Aldrich).

Other solvents used were methanol (99.99%, Fisher Scientific), pentane (≥ 99.0%, Sigma-

Aldrich) and dichloromethane (EMSURE for analysis, Merck). Aqueous solutions were

prepared with deionized water (18.1 MΩ · cm, Barnstead NANOpure Diamond Water

Purification System). For NH2Cl preparation, ammonium chloride (≥99.5%, Fluka)

and sodium hypochlorite (6-14% HOCl, Sigma-Aldrich) were used. 2,2’-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, ≥98%), sodium nitrite

(≥99%), potassium iodide (≥99%), and sodium thiosulfate (Na2S2O3, ≥98%) were pur-

chased from Sigma-Aldrich. The pH-value of the potassium phosphate buffer (KH2PO4,

puriss, ≥99.5%, Sigma-Aldrich) was adjusted by addition of sodium hydroxide pellets

(NaOH, puriss, ≥99%, Sigma Aldrich) or NaOH solution (Sigma-Aldrich).

For gas chromatographic analysis helium (He, 99.999%) was used as carrier gas.

GC/IRMS analysis required CO2 (99.999%) and N2 (99.999%) as reference gases as well

as O2 (99.9995%) from Carbagas (Rümlang, Switzerland).

Table S2.1: C, N, and H isotope reference standards purchased from A. Schimmelmann
(Indiana University, USA).

Compounds Formula δ13C (�) δ15N (�) δ2H (�)

Iodomethane #1 CH3I –54.59±0.02
N-methyl-piperidine C6H13N –33.73±0.02
Acetic anhydride C4H6O3 –20.98±0.03
Icosanoic acid methyl ester #Y C21H42O2 –0.72 ±0.02
Nicotine #2 C10H14N2 +7.72±0.02

Nicotine #5 C10H14N2 –6.03 ±0.04
N-methyl-piperidine C6H13N +0.34 ±0.13
Acetanilide #2 C8H9NO +19.56±0.03
Acetanilide #3 C8H9NO +40.57±0.06

Ethyl myristate #n14E C16H32O2 –231.2±2.7
Heptadecane #2 C17H36 –117.9±2.3
N,N-dimethylaniline C8H11N –48.2 ±2.2
Hexadecane #2 C16H34 –9.1 ±1.4
Icosanoic acid methyl ester #20M C21H42O2 +505.5±1.7
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S2.2 GC/IRMS chromatogram of N -nitrosamines

Figure S2.1: Chromatogram of C isotope analysis of 1mM NDMA, 0.5mM NDEA, 0.3mM
NDPA, 0.6mM NPYR, and 0.3mM NDBA as well as the S-shaped 45 / 44 ratio signal (isotope
swing).
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S2.3 Reproducibility of C, N, and H isotope analysis

of N -nitrosamines

Figure S2.2: Reproducibility of δ13C, δ15N, and δ2H measurements of NDMA, NDEA,
NDPA, NDBA, and NPYR by GC/IRMS over a time period of 8 months for C, 12 months for
N, and 2 months for H isotope analysis.

36



Stable Isotope Analysis of N -Nitrosamines

S2.4 Conversion efficiency of N -nitrosamines to

analyte gases for IRMS analysis

Figure S2.3: Operational conversion efficiencies of N -nitrosamines to a)CO2, b)N2, and
c)H2 for C, N, and H isotope analysis, respectively. Conversion efficiency was defined as linear
regression of peak areas in Vs at the respective m/z ratio vs. the nominal amount of injected
mass of C, N, and H.
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S2.5 Method quantification limits for accurate

isotope analysis of N -nitrosamines

Figure S2.4: Accuracies of C, N, and H isotope signatures of a)NDEA, b)NDBA, and
c)NPYR. Amplitudes increased linearly with increasing concentrations. MQLs were deter-
mined according to the moving mean procedure with intervals of ±0.5�, ±1�, and ±5� for
C, N, and H isotope analysis (blue lines), respectively. MQLs are indicated by gray bars and
moving means by dashed lines.
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S2.6 C, N, and H isotope analysis of N -nitrosamines

after solid-phase extraction (SPE) from

aqueous samples

Table S2.2: Solid-phase extraction (SPE) of N -nitrosamines from aqueous solution
at pH 7 using Method 1 (activated carbon cartridges) and Method 2 (combination of
Oasis HLB and coconut charcoal cartridges). Analyte recoveries are reported after
the SPE procedure and after solvent (ethyl acetate) evaporation from 10mL to 1mL
or to smaller volumes. Reported values are averaged recoveries from tap water and
phosphate buffer.

Recovery (%)

after SPE after solvent evaporation to

Method 1a Method 2b 1mL 0.5mL 0.1mL

NDMA 31±6 88±3 83±4 71±4 51±1

NDEA 77±3 86±4 90±5 82±6 65±3

NDPA 78±4 81±10 92±7 87±6 70±0.4

NDBA 83±6 79±11 92±7 88±9 73±1

N PYR -c 88±4 92±7 88±9 72±2

a n = 4 b n = 6 cNPYR not included in the analysis
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S2.7 NDMA formation during chloramination of

ranitidine

Figure S2.5: Panel (a): Close-up of initial ranitidine concentration trend and NDMA
formation during chloramination of ranitidine. Panel (b): Disappearance of ranitidine during
reaction with 43μM NH2Cl. The solid line represents the linear regression with the slope
corresponding to a pseudo-first order rate constant, kobs of (4.08± 0.11) x 10−4 s−1.
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Chapter 3

Abstract

N -nitrosodimethylamine (NDMA) is a carcinogenic disinfection by-product from water

chloramination. Despite the identification of numerous NDMA precursors, essential

parts of the reaction mechanism such as the incorporation of molecular O2 are poorly

understood. In laboratory model systems for the chloramination of secondary and

tertiary amines, we investigated the kinetics of precursor disappearance and NDMA

formation, quantified the stoichiometries of monochloramine (NH2Cl) and aqueous O2

consumption, derived 18O-kinetic isotope effects (18O-KIE) for the reactions of aqueous

O2, and studied the impact of radical scavengers on NDMA formation. While the molar

NDMA yields from five N,N -dimethylamine-containing precursors varied between 1.4%

and 90%, we observed the stoichiometric removal of one O2 per N,N -dimethylamine

group of the precursor indicating that the oxygenation of N atoms did not determine

the molar NDMA yield. Small 18O-KIEs between 1.0026 ± 0.0003 and 1.0092 ± 0.0009

found for all precursors as well as completely inhibited NDMA formation in the presence

of radical scavengers (ABTS and trolox) imply that O2 reacted with radical species. Our

study suggests that aminyl radicals from the oxidation of organic amines by NH2Cl and

N -peroxyl radicals from the reaction of aminyl radicals with aqueous O2 are part of the

NDMA formation mechanism.
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3.1 Introduction

N -nitrosodimethylamine (NDMA) and other N -nitrosamines are potent carcinogens

that can be formed as disinfection by-products (DBPs) during chlorination, chlor-

amination, and ozonation of drinking water and wastewater.45,50,115,154,155 Despite the

identification of numerous NDMA precursor compounds and suggestions for NDMA

mitigation under different treatment conditions,41,50,66,68,70,72,74,156–161 many aspects of

the reaction mechanisms leading to NDMA remain elusive. In fact, the chlorami-

nation of amine-containing organic compounds has been identified as a major source

of N -nitrosamines.30,50,61 Secondary amines such as dimethylamine (DMA) are re-

ported as frequently occurring NDMA precursors with molar NDMA yields of up to

4%.55,58,123 Similar yields (< 6%) observed during chloramination of tertiary amines

with N,N -dimethylamine functional groups were interpreted as evidence for their trans-

formation to secondary amines prior to NDMA formation.30,55,72,73,75,123,124 However,

NDMA yields are substantially higher (>60%) if the tertiary N,N -dimethylamine moiety

is bound via one methylene group to a (hetero)aromatic ring such as in the pharma-

ceutical ranitidine.67,72,76,123,162 These high yields suggest that secondary amines are

probably not central intermediates in reactions leading to NDMA. It remains unclear,

however, whether differing NDMA yields from secondary and tertiary amines indeed

reflect differing reaction mechanisms.

To date, there is only limited understanding of how NDMA is formed during the

reaction of chloramine with tertiary amines. Based on the detection of cationic dimethyl-

hydrazine intermediates during chloramination of ranitidine, Le Roux et al. proposed

that NH2Cl is attacked through nucleophilic substitution by the tertiary amine moiety

of the precursor compound.79 Moreover, the extent of NDMA formation depends on the

molecular structure of the tertiary amine.67,80 Heterolytic bond dissociation energies for

the elementary reaction to NDMA suggest that leaving groups capable of forming stable

carbocations (e.g., methylfuranes) are key for high yields of NDMA.67,80 These studies

provide important evidence for the initial chloramination reaction and possible factors

influencing the formation of NDMA. However, information about the consumption of

NH2Cl and O2 in central reactions, such as the incorporation of aqueous O2 into the

N–O bond of NDMA, is scarce and mainly circumstantial due to the challenges of

characterizing transient reactive (oxygen) intermediates.

Regardless of the yield of NDMA formation during chloramination, reactions of

aqueous O2 play an important role in the NDMA formation pathway. While chloramina-

tion experiments with 18O-labeled H2O showed no incorporation of 18O into NDMA, the
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amount of NDMA formed increased with increasing concentrations of aqueous O2.
58,76

Although thermodynamically feasible, reactions of ground state triplet oxygen (3O2)

with even-electron species such as the known NDMA precursors are spin forbidden

elementary reactions and thus too slow to lead to the oxygenation of organic amines

or NH2Cl.
163–166 As a consequence, molecular O2 can only react after activation to

singlet oxygen (1O2), through reduction to superoxide (O•−
2 ), or in reactions with radi-

cal species.163,166–168 Previous work suggests that the latter is the most likely option for

NDMA formation during chloramination because neither the addition of β-carotene as
1O2 scavenger nor the addition of superoxide dismutase as O•−

2 quencher had an effect

on NDMA formation during chloramination of DMA.58 In contrast, formation of NDMA

through radical intermediates has been proposed for breakpoint chlorination of DMA169

as well as for chloramination of quaternary amines.78 But direct experimental evidence

for radical reactions with aqueous O2 is still lacking.

The goal of this study was to elucidate the reactions of aqueous O2 and NH2Cl

with regard to contributions of radical intermediates to NDMA formation during

chloramination. To this end, we performed laboratory experiments with five NDMA

precursor compounds, namely, ranitidine, 5-(dimethylaminomethyl)furfuryl alcohol

(DFUR), N,N -dimethylbenzylamine (DMBA), 2,4,6-tris(dimethylaminomethyl)phenol

(TDMAP), and dimethylamine (DMA). Evidence for potential NDMA formation

mechanisms was obtained from (i) the kinetics of precursor disappearance and NDMA

formation, (ii) the quantification of aqueous O2 and NH2Cl consumption, (iii) the

analysis of oxygen isotope fractionation of aqueous O2, and (iv) the study of the im-

pact of various radical scavengers on NDMA formation. We used the analysis of oxygen

isotope ratios (18O/16O) of aqueous O2 for the first time in the context of DBP formation.

This methodology is well established for studies on activation of oxygen in enzymes and

by transition metal complexes170–173 and reveals the mechanisms of O2 activation from

the magnitude of 18O-kinetic isotope effects.
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3.2 Experimental Section

3.2.1 Chemicals

A list of all chemicals including suppliers and purities is provided in the Supporting

Information (SI). Monochloramine (NH2Cl) stock solutions (30mM) were prepared daily

by mixing hypochlorite and ammonium chloride at pH 9.5 (molar Cl:N ratio of 1:1.05)

as described previously.137,138

3.2.2 Chloramination experiments

Chloramination experiments were carried out with five NDMA precursors as listed in the

introduction section and in Table 3.1. Unless stated otherwise, reactors contained 10mM

phosphate buffer at pH8.0 in amber glass bottles of volumes between 100 and 1000mL.

Organic amines were added from either methanolic, ethanolic, or aqueous stock solutions

to reach initial concentrations of 15μM (see Figure S3.4). Reactions were initiated by

addition of NH2Cl in 15- to 18-fold excess corresponding to initial concentrations of 225 -

270μM. For concentration analysis and reaction product identification, 1mL of aqueous

sample was withdrawn at selected time points and the reaction was quenched by adding

5μL of a Na2S2O3 solution (100 g/L). Note that the use of Na2SO3 is not recommended

owing to its reactivity with DFUR (Figure S3.5). NH2Cl concentrations were quantified

by either membrane introduction mass spectrometry (MIMS) or colorimetric methods

(see chemical analyses). For continuous monitoring of the concentration of aqueous

O2, we filled an aliquot of the reaction solution in 11mL amber glass vials that were

closed without headspace with butyl rubber stoppers and aluminum crimp caps, and

immersed a needle-type fiber-optic oxygen microsensor into each vial. Two types of

control experiments were set up identically to assess the stability of the organic amine

in the absence of NH2Cl and to quantify the self-decay rate constant of NH2Cl in the

absence of the organic amine. Molar NDMA yields were calculated by dividing the

measured concentration of NDMA by the initial concentration and the number of N,N -

dimethylamine groups of the precursor.

To assess the reactivity of NH2Cl with the furfuryl alcohol moiety of DFUR, we

quantified the concentration of NH2Cl during the reaction of 3μM furfuryl alcohol

with 45μM NH2Cl in 10mM phosphate buffer at pH 8.0. To study the impact of

radical scavengers on NDMA formation, we added either the hydroxyl radical scav-

enger tert-butanol (t-BuOH, 40mM final concentration) or peroxyl radical scavengers,

namely 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS, 2mM) or rac-6-
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hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (trolox, 0.5mM), to the reaction

of DFUR (3μM or 15μM) with NH2Cl (45μM or 225μM). Experiments with radical

scavengers differed regarding to the sequence of reactant addition and NH2Cl quantifi-

cation method. t-BuOH was spiked to a phosphate buffered solution containing DFUR

before the addition of NH2Cl. In contrast, ABTS was added immediately after spiking

the DFUR-containing buffer with NH2Cl. Trolox was dissolved in phosphate buffer to

which DFUR as well as NH2Cl were added. We quantified the NH2Cl concentration

with the ABTS method and MIMS in the presence of t-BuOH and trolox, respectively.

When ABTS was added as a radical scavenger, we observed the oxidation of ABTS

which was used to quantify the amount of consumed NH2Cl (Figure S3.21). Control

experiments were set up to assess the reactivity of the organic amine or NH2Cl with the

radical scavengers.

To quantify the formation of H2O2 during the reaction of DFUR (50μM) with NH2Cl

(750μM), we filled the reaction solution into 11mL amber glass vials that were closed

headspace-free and monitored the decrease of O2 concentration as described above.

When the consumed O2 was stoichiometrically equal to the initial nominal concentration

of DFUR, we added 100μL catalase from bovine liver (0.3 g L−1 final concentration). The

observed increase in aqueous O2 concentration upon addition of catalase corresponds to

half of the H2O2 concentration. To assess the stability of H2O2 during the NDMA forma-

tion reaction, we added 50μM H2O2 immediately after the reaction of DFUR (50μM)

with NH2Cl (750μM) was initiated and determined the recovery of H2O2 by addition of

catalase after 3.3 h. A more detailed description of experiments with catalase is provided

in the SI (section S3.13).

3.2.3 Oxygen isotope fractionation experiments

The fractionation of stable O isotopes of aqueous O2 was studied in amber reactors

containing a magnetic stir bar and 11mL of a 3mM NH2Cl solution in 10mM phosphate

buffer (pH 8.0). The vessels were closed without headspace and an oxygen microsensor

was introduced to measure continuously the concentration of aqueous O2. 15 to 200μM

of the organic amine (ranitidine, DFUR, DMBA, or TDMAP) was added to the reactor

while stirring to initiate the reaction. Once the amount of consumed O2 equaled the

initial nominal concentration of the added organic amine, the reaction was quenched by

creating a N2 headspace following the procedure of Pati et al.174 To this end, 3mL of

solution was replaced by N2 gas with a gas-tight glass syringe. Partitioning of O2 to

the N2-headspace was promoted through horizontal shaking for 30min at 200 rpm while
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keeping the vessels upside down. Control samples containing 3mM NH2Cl without

organic amine or 200μM organic amine without NH2Cl were prepared similarly. Owing

to much slower reaction kinetics of DMA and NH2Cl, we prepared twelve replicate

samples containing 200μM DMA and 3mM NH2Cl as well as twelve control samples

with 3mM NH2Cl. Two reactive batches and one control batch were processed at

selected time points over a time period of 4 days. In experiments with DMBA, TDMAP,

and DMA, we additionally determined the concentration of NDMA immediately after

sample quenching in the withdrawn reaction solution.

3.2.4 Chemical analyses

Concentrations of ranitidine, DFUR, and NDMA were quantified with reverse phase

HPLC coupled to a UV-vis detector using previously described methods (see section

S3.3 for details).162 Transformation products formed during chloramination of ranitidine

and DFUR were analyzed by liquid chromatography-high-resolution tandem mass spec-

trometry (LC-HR-MS/MS) using an adjusted analytical method described in Gulde et

al.175 (see section S3.4 for details).

Quantification of aqueous O2

Concentrations of aqueous O2 were continuously measured with needle-type fiber-optic

oxygen microsensors connected to a 4-channel transmitter (PreSens Precision Sensing

GmbH, Germany). Four oxygen sensors were operated simultaneously after daily cali-

bration with air-saturated and oxygen-free water. O2 concentrations were corrected for

variations in temperature.

Quantification of NH2Cl

Concentrations of NH2Cl were determined spectrophotometrically using ABTS,139 N,N -

diethyl-p-phenylenediamine (DPD),176 and indophenol177 as well as by membrane intro-

duction mass spectrometry (MIMS).178 A Varian Cary 100 Bio UV-visible spectro-

photometer was used for colorimetric assays which are described in the SI (section

S3.5). MIMS analysis was performed using a MIMS 2000 (Microlab, Aarhus, Denmark)

equipped with a multi-port valve to enable an automatic measurement of multiple

samples. The membrane inlet temperature was set to 40◦C and the sample flow rate was

4mLmin−1. Steady-state signals ofm/z 51 andm/z 53 were reached after 2 minutes and

measured for 6 - 8 minutes. The software used for analysis of MIMS signals is described
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elsewhere.178 We used NH2Cl calibration rows from either 10 - 50μM or 50 - 300μM. Note

that ranitidine, DFUR, NDMA, and trolox did not produce any interfering signals in

the mass spectrometer. In NDMA formation experiments, we detected an interference

at m/z 51 that was presumably created from an unknown reaction intermediate (see

Figure S3.2). In this case, quantification of NH2Cl was performed at m/z 53. All re-

ported NH2Cl concentrations were corrected by the self-decay of NH2Cl observed in

controls containing chloramine only. Note that the four methods used for determining

NH2Cl concentrations led to differing results when NH2Cl was quantified during NDMA

formation (Figure S3.3). The total turnover of NH2Cl determined at the end of these

experiments was, however, identical (section S3.5).

3.2.5 Stable oxygen isotope analysis

18O/16O ratios of aqueous O2 were measured with gas chromatography isotope ratio

mass spectrometry (GC/IRMS) following recently developed procedures of Pati et al.174

Briefly, sample vials to which a 3mL N2 headspace had been introduced were mounted on

a CombiPAL autosampler (CTC Analytics) equipped with a 2.5mL gas-tight headspace

syringe. The syringe was flushed with N2 gas for 1min before withdrawing 250μL of the

headspace from the sample. The gaseous sample was injected into a split injector (5mm

ID quartz liner, 200◦C) of a Trace GC (Thermo Fisher Scientific) that was equipped

with a Rt-Molsieve 5Å PLOT column (Restek, 30m x 32mm ID, 30μm film thickness

at 30◦C) to separate O2 from N2. Helium (99.999%) was used as carrier gas at 80 kPa

and the split flow was 40mLmin−1. O2 pulses were introduced into a GC combustion

III interface (Thermo Fisher Scientific) equipped with a Nafion membrane for removal

of water and subsequently entered a Delta Plus XL IRMS (Thermo Fisher Scientific).

O isotope ratios are expressed in the delta notation as δ18O in permil (eq. 3.1) relative

to Vienna Standard Mean Ocean Water (VSMOW). Sample sequences included stan-

dards generated from air-saturated phosphate buffer, which were measured after every

6 samples to ensure accuracy of δ18O measurements in a standard bracketing procedure.

Blank samples containing oxygen-free water were analyzed in triplicates at the end of

each sequence for blank corrections of diffusive O2 input during sample preparation and

injection (see Pati et al.174 for details).

δ18O =
(18O/16O)sample

(18O/16O)VSMOW

− 1 (3.1)
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We used Igor Pro software (WaveMetrics Inc., Lake Oswego OR, USA) to derive

O isotope enrichment factors, εO, with a nonlinear least-square regression according

to equation 3.2, where δ18O and δ18O0 are O isotope signatures determined in samples

from oxygen isotope fractionation experiments and in standards, respectively. c/c0 is

the fraction of remaining aqueous O2.

δ18O+ 1

δ18O0 + 1
= (c/c0)

εO (3.2)

Average 18O-kinetic isotope effects (18O-KIE) of both O atoms were determined with

equation 3.3.172,179 Uncertainties of εO and 18O-KIEs are reported as 95% confidence

intervals.

18O-KIE =
1

1 + εO
(3.3)

3.3 Results and Discussion

3.3.1 Chloramination of amines: Kinetics, reaction products,

and stoichiometry of NH2Cl and O2 consumption

Chloramination of ranitidine

The reaction of ranitidine (14μM) with NH2Cl (270μM) at pH 8.0 produced NDMAwith

a molar yield of 89.9% in agreement with previous observations.67,72,76,162 Figure 3.1a

shows the kinetics of the disappearance of ranitidine, dissolved O2, and NH2Cl as well

as the formation of NDMA. Within one hour, ranitidine was depleted following pseudo-

first order kinetics (Figure S3.8). The second-order rate constant for the reaction of

ranitidine with NH2Cl was 6.1± 0.3M−1s−1 in agreement with a previous study.162

The formation of NDMA only started after 1.6 h (dashed vertical line in Figure 3.1a)

when ranitidine had disappeared completely suggesting the presence of a critical inter-

mediate. Indeed, NDMA formation was concomitant with the decline of a transient

reaction product (yellow stars, Figure 3.1a) with m/z [M+H+] = 365.1049 corresponding

to the molecular formula C13H21N4O4SCl. We report this intermediate with arbitrary

peak areas due to the lack of standard materials. The mass of C13H21N4O4SCl

exceeds that of ranitidine (m/z [M+H+] = 315.1485) by 50Da, which corresponds to
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Figure 3.1: NDMA formation during the reaction of NH2Cl (270μM) with (a) ranitidine
(15μM) over 11 h and (b) DFUR (15μM) over 6.5 h in 10mM phosphate buffer at pH 8.0.
Consumption of NH2Cl and aqueous O2 is depicted as grey circles and light blue line, respec-
tively. Note break in y-axes and scale change.

the presence of an additional hydroxyl group ( + OH), an additional Cl atom ( + Cl),

and a loss of 2 hydrogen atoms (−2H). The intermediate, which we refer to as

Ran-OH-Cl, was identified in a previous study for the chloramination of ranitidine under

similar experimental conditions.79 MS/MS fragmentation patterns of Ran-OH-Cl sug-

gest that the 2-(dimethylamino)methylfuran moiety remained intact during chloramina-

tion (Figure S3.15). Apparently, chlorination and hydroxylation of ranitidine occurred

at the thioethyl-N -methyl-2-nitroethene-1,1-diamine moiety. Note that we measured

only minor concentrations of 5-(dimethylaminomethyl)furfuryl alcohol (DFUR, m/z

[M+H+] = 156.1021, Figure 3.1a), a known NDMA precursor.67 Small amounts of DFUR

as well as the coincidence of NDMA formation with the disappearance of Ran-OH-Cl

suggest that the latter was the primary NDMA precursor during chloramination of

ranitidine.

The concentration trends of NH2Cl and O2 reveal that the transformation of ranitidine

within the first 1.6 h involved NH2Cl but not dissolved O2 because its concentration

remained constant until ranitidine disappeared. In contrast, the disappearance of Ran-
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OH-Cl and the concomitant formation of NDMA after 1.6 h were accompanied by a

decline in NH2Cl and O2 concentration (Figure 3.1a). The total amount of consumed

NH2Cl during chloramination of ranitidine amounted to 124± 2μM corresponding to

8.7 times the initial ranitidine concentration (Table 3.1). NH2Cl consumption rates

were distinctly different before and after 1.6 h and enabled us to attribute the loss of

NH2Cl to the transformation of ranitidine vs. the formation of NDMA (Figure S3.9a).

To compare the two kinetic regimes, we report operational pseudo-first order rate con-

stants for the consumption of NH2Cl. During the transformation of ranitidine, 60.5μM

NH2Cl were consumed with a rate constant k
NH2Cl

obs, 1 of (7.2 ± 0.5) · 10−5 s−1. This

share of NH2Cl consumption equaled 4.3 times the initial ranitidine concentration. The

overstoichiometric NH2Cl consumption suggests that multiple sites of the thioethyl-N -

methyl-2-nitroethene-1,1-diamine moiety (e.g., S and N atoms) were chlorinated as sug-

gested previously by Le Roux et al.79 During the formation of NDMA, 63μMNH2Cl were

consumed corresponding to 4.4 times the initial ranitidine concentration (Table 3.1). The

rate constant of NH2Cl consumption (k
NH2Cl

obs, 2 = (1.1± 0.04)·10−5 s−1) was 7-fold smaller

than the one observed during transformation of ranitidine implying differing reactions of

NH2Cl with ranitidine and reaction intermediates such as Ran-OH-Cl, respectively. The

overstoichiometric NH2Cl consumption during NDMA formation indicates that NH2Cl

might be involved in several reactions of the multi-step NDMA formation pathway.

Experiments with differing ranitidine to NH2Cl ratios underscore the importance of

NH2Cl because maximum NDMA yields from ranitidine were only reached in presence

of ≥15-fold excess of NH2Cl (Figure S3.7).

In contrast to overstoichiometric NH2Cl consumption, we observed a stoichiometric

disappearance of dissolved O2 during the formation of NDMA. After 10 h, NDMA for-

mation was complete and the amount of consumed O2 (14.3± 0.3μM) matched the

initial concentration of ranitidine (14.2± 0.1μM) within analytical uncertainty. The

stoichiometries of O2 and NH2Cl consumption are compiled in Tables 3.1 and S3.1. To

assess whether the molar reaction stoichiometry determined in the ranitidine experiment

also applies for other amine-containing NDMA precursors, we chloraminated two tertiary

amines, which are known to produce high molar NDMA yields, namely DFUR and

N,N -dimethylbenzylamine (DMBA) as well as 2,4,6-tris-(dimethylaminomethyl)phenol

(TDMAP) and dimethylamine (DMA), which are known to produce significantly lower

molar NDMA yields.
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Chloramination of other tertiary amines with high molar NDMA yield

Chloramination of DFUR and DMBA under experimental conditions that were identical

to experiments with ranitidine (pH 8.0, 270μM NH2Cl, Figure 3.1b and S3.10) led to

high molar NDMA yields of 84.6% and 82.5%, respectively, in agreement with previously

reported values.67,123 DFUR and DMBA are structurally similar to ranitidine and are

likely transformed to NDMA by the same reaction mechanism. This interpretation

is supported by almost identical reaction stoichiometries (Table 3.1). The consump-

tion of aqueous O2 was stoichiometric (15.2± 0.3μM vs. 14.5μM of initial DFUR

concentration), while the consumption of NH2Cl (68.2± 2.9μM) exceeded the initial

DFUR concentration by a factor of 4.7 (Table 3.1, data for DMBA see Table S3.2). To

assess whether reactions of NH2Cl with the heterocyclic ring of DFUR contributed to

the overall NH2Cl consumption, we conducted experiments with 3μM furfuryl alcohol

and 45μM NH2Cl under otherwise identical experimental conditions (Figure S3.17). No

significant decrease in the NH2Cl concentration was observed within 30 h indicating that

the initial reaction of NH2Cl and DFUR happens exclusively at the N,N -dimethylamine

group of DFUR.

While the molar NDMA yield and the reaction stoichiometries were almost

identical for ranitidine, DFUR, and DMBA, the reaction kinetics differed significantly.

Figures 3.1b and S3.10 show that NDMA formation during chloramination of DFUR and

DMBA was completed within 4 h and 6 h, respectively, and was thus faster than NDMA

formation from ranitidine (within 10 h). During chloramination of DFUR, we observed

a short lag phase within the first 0.3 h of the reaction in which only 0.3μM of NDMA

were formed but no measurable amounts of O2 and NH2Cl disappeared. After 0.3 h, the

reaction accelerated and the formation of NDMA coincided with the disappearance of

DFUR, O2, and NH2Cl (Figure S3.8b). NH2Cl was consumed with a pseudo-first order

rate constant of (2.2 ± 0.1) · 10−5 s−1, which is twice the k
NH2Cl

obs, 2 observed during NDMA

formation from ranitidine. Even after NDMA formation ceased (after 4 h), the consump-

tion of NH2Cl continued with a smaller k
NH2Cl

obs of (7.7 ± 0.7) · 10−6 s−1 (Figure S3.9b).

This finding suggests that some additional minor reactions of NH2Cl contributed to

the observed overstoichiometric NH2Cl consumption. A tentatively identified reaction

product with molecular formula C5H5ClO2 (m/z [M+H+] = 133.0053) indicates that

NH2Cl reacts with intermediates of the NDMA formation reaction leading to chlori-

nated furfuryl alcohol as final reaction product (for possible molecular structures see

Figure S3.16).
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Chloramination of tertiary and secondary amines with low molar NDMA

yield

Molar NDMA yields from chloramination of TDMAP and DMA were normalized to the

number of N,N -dimethylamine groups of the precursor molecule and amounted to 15.8%

and 1.4%, respectively. Our data is in good agreement with previously reported NDMA

yields of 18.4% for TDMAP123 and 1.2 - 2.3% for DMA.67,123 The kinetics of NDMA for-

mation and concomitant NH2Cl and O2 consumption are shown in Figure S3.11. Despite

significantly smaller molar NDMA yields from TDMAP and DMA, the stoichiometries

of NH2Cl and O2 consumption were similar to the one for ranitidine, DFUR, and

DMBA. The consumed amount of O2 corresponded with the initial concentration of

N,N -dimethylamine groups, while the amount of reacted NH2Cl exceeded the initial

concentrations of N,N -dimethylamine groups by a factor of 3.9 and 2.2 for TDMAP

and DMA, respectively (Tables 3.1 and S3.2). The overstoichiometric consumption

of NH2Cl in experiments with low-yield NDMA precursors indicates that unidentified

reactions other than NDMA formation likely contribute to the disappearance of NH2Cl.

The stoichiometric O2 consumption in experiments with high- and low-yield NDMA

precursors hints at the same mechanism of N-atom oxygenation of secondary and ter-

tiary amines. However, reactions with dissolved O2 do not necessarily lead to the for-

mation of NDMA and it is likely that other factors such as the molecular structure of

the precursor molecule determine the molar NDMA yield. Note that chloramination of

DMA was too slow to carry out reliable O2 concentration measurements over the entire

experiment period (> 3 days, Figure S3.11). The reported reaction stoichiometry of > 0.6

in Table 3.1 indicates that a higher number should be expected based on an observed

stoichiometric O2 consumption in experiments with higher initial concentrations of DMA

(43μM) and NH2Cl (1000μM, Figure S3.12).

53



Chapter 3

T
a
b
le

3
.1
:
N
D
M
A

fo
rm

a
tio

n
fro

m
th
e
rea

ctio
n
o
f
ra
n
itid

in
e,

5-(d
im

eth
y
la
m
in
o
m
eth

y
l)fu

rfu
ry
l
a
lco

h
o
l
(D

F
U
R
),
N
,N

-d
im

eth
y
l-

b
en

zy
la
m
in
e
(D

M
B
A
),

2
,4
,6
-tris(d

im
eth

y
la
m
in
o
m
eth

y
l)p

h
en

o
l
(T

D
M
A
P
),

a
n
d

d
im

eth
y
la
m
in
e
(D

M
A
)
w
ith

N
H

2 C
l
in

1
0
m
M

p
h
o
sp
h
a
te

b
u
ff
er

a
t
p
H

8
.0

in
th
e
p
resen

ce
a
n
d
a
b
sen

ce
o
f
tert-b

u
ta
n
o
l
(t-B

u
O
H
),

A
B
T
S
,
an

d
tro

lox
.
R
ep

o
rted

are
m
o
lecu

la
r

stru
ctu

re
o
f
th
e
p
recu

rso
r,

m
o
la
r
N
D
M
A

y
ield

s,
rea

ctio
n
sto

ich
io
m
etries,

a
n
d
ox
y
g
en

k
in
etic

iso
to
p
e
eff

ects
(
1
8O

-K
IE

s).

p
recu

rso
r

m
o
lecu

la
r
stru

ctu
re

N
D
M
A

y
ield

a
m
o
la
r
rea

ctio
n
sto

ich
io
m
etry

1
8O

-K
IE

(%
)

N
(C

H
3 )

2 -g
ro
u
p
:
O

2
b
:
N
H

2 C
l b

(-)

R
a
n
itid

in
e

89.9±
0.1

1.0
:

1.0
:
8.7

c
(4
.4

d)
1
.0061±

0.0004

+
t-B

u
O
H

(4
0
m
M
)

8
7.8±

0.2
n
.m

. e
:
n
.m

.
:
6
.6

c

D
F
U
R

84.6±
0.4

1.0
:

1.1
:
4.7

1
.0060±

0.0006

+
t-B

u
O
H

(4
0
m
M
)

8
0.6±

0.1
n
.m

. e
:
n
.m

.
:
4
.0

c

+
A
B
T
S
(2

m
M
)

<
0
.7

f
0
.9

:
0

:
1
6

+
tro

lox
(0
.5

m
M
)

<
0
.7

f
0
.1

:
n
.m

.
:
7.5

D
M

B
A

82.5±
0.2

1.0
:

1.1
:
4.7

1
.0026±

0.0003

T
D
M

A
P

15.8±
0.0

1
1
.0

:
1
.0

:
3
.9

1
.0092±

0.0009

D
M

A
1.4±

0.1
1.0

:>
0
.6

g
:
2.2

1.0077±
0.0012

a
p
er

N
(C

H
3 )

2 -g
ro
u
p
o
f
th
e
p
recu

rso
r

b±
0
.1
-0
.2

c
to
ta
l
N
H

2 C
l
co
n
su
m
p
tio

n
d
N
H

2 C
l
co
n
su
m
p
tio

n
d
u
rin

g
N
D
M
A

fo
rm

a
tio

n
e
n
o
t
m
ea
su
red

f<
0
.1
μ
M

N
D
M
A

g
d
eterm

in
ed

a
fter

ap
p
rox

.
5
0
%

o
f
th
e
to
ta
l
rea

ctio
n
tim

e

54



Mechanism of NDMA Formation During Chloramination of Amines

3.3.2 Oxygen isotope fractionation during the reaction of

aqueous O2

To gain new insights into the reaction of O2 during chloramination of secondary and

tertiary amines, we conducted oxygen isotope analyses of aqueous O2. Figure 3.2a

shows that the consumption of O2 measured after completion of the chloramination

of ranitidine was stoichiometric regardless of the initial ranitidine concentration. The

same observation was made for all of the five studied organic amines (Figures S3.18,

S3.19). In these experiments, we determined the 18O/16O ratios of aqueous O2 at

natural abundance, which are reported as δ18O-values (eq. 3.1). As shown for ranitidine

in Figure 3.2b, δ18O-values of aqueous O2 increased with decreasing fraction of remaining

aqueous O2. The observed O isotope fractionation shows that O2 molecules containing
16O reacted preferentially. The extent of O isotope fractionation was quantified with an
18O-kinetic isotope effect (18O-KIE, eq. 3.3) of 1.0061± 0.0004, which reflects the ratio

of reaction rate constants of light and heavy O isotopes (16kO2/
18kO2). In the present

case, 16O2 reacted approximately 0.6% faster than 16O18O molecules. The reaction of

aqueous O2 during the chloramination of DFUR, DMBA, TDMPA, and DMA resulted

in similar 18O-KIE values between 1.0026 and 1.0092 (Table 3.1).

The 18O-KIEs found in our experiments are small compared to the range of known

values of up to 1.05 for the reduction of O2 and the activation of O2 by enzymes and

transition metal complexes.170–173,180–183 The magnitude of 18O-KIEs is a proxy for the

number of electrons transferred to O2 as well as for the formation and cleavage of

bonds to oxygen atoms in reactions up to and including the first irreversible reaction

step.172,173 Theoretical calculations show that one and two electron reductions of O2 to

O•−
2 and O

(−II)
2 are accompanied by the largest 18O isotope effects in the order of 1.03

and 1.05, respectively.170,171 The small 18O-KIE values below 1.01 measured here for

chloramination reactions imply that the disappearance of aqueous O2 was not associated

with the formation of O•−
2 and O

(−II)
2 . Indeed, none of the studied organic amines are

powerful reductants that would enable the reduction of O2. Such an interpretation

is in agreement with the previously reported lack of O•−
2 detection after addition of

superoxide dismutase to the chloramination of DMA.58 Moreover, O•−
2 and O

(−II)
2 could

react with organic amine precursors, chloramine, or reaction intermediates thus causing

an overstoichiometric consumption of O2.
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Figure 3.2: Reaction of ranitidine (15 - 200μM) with NH2Cl (3mM) in 10mM phosphate
buffer at pH 8.0. (a) Consumption of aqueous O2 after completion of the chloramination
reactions vs. initial concentration, c0, of ranitidine. (b) Oxygen isotope fractionation shown
as changes of δ18O-values in aqueous O2 vs. fraction of remaining O2 (c/c0). The solid line
represents the nonlinear least-square regression with eq. 3.2 and dashed lines are 95% confidence
intervals of the fit.

Much smaller 18O isotope effects between 1.01 and 1.03 are known for the reversible

binding of O2 to transition-metal complexes (e.g., with CoII, CuII) and the reductive

activation of O2 at enzyme active site metal centers.172,179,180,182,183 The smallest 18O

isotope effects of 1.004 - 1.005 have been assigned to the reversible binding of O2 to

oxygen transport proteins such as myoglobin.170 These proteins have paramagnetic

transition metals (e.g., FeII) in their active site, which allows binding of triplet state

O2. The 18O-KIE values associated with chloramination of amines (Table 3.1) are in

the same range than observed for the O2 binding to odd electron chemical species

but we exclude the presence of transition metals in our experiments. Small 18O-KIE

values thus suggest that the NDMA formation mechanism involves the binding of O2

to not yet identified radical intermediates. Such elementary reactions could explain the

stoichiometric disappearance of aqueous O2 but require the presence of organic radicals,

with which ground state O2 can react in a spin allowed process. Because O2 neither

reacts with any of the organic amines nor with NH2Cl alone, we hypothesize that radical

intermediates are formed after the initial reaction of the organic amine with chloramine.
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3.3.3 Impact of radical scavengers on NDMA formation

The presence of radical intermediates was investigated by chloramination of ranitidine

and DFUR in the presence of three radical scavengers, namely tert-butanol (t-BuOH),

ABTS, and trolox. t-BuOH, which serves as a scavenger for hydroxyl radicals (•OH),184

did not affect the formation of NDMA (Table 3.1). In agreement with previous

studies,58,169 we found almost identical molar NDMA yields from the reaction of

ranitidine or DFUR (both 15μM) with NH2Cl (225μM) in the presence and absence of

40mM of t-BuOH. Addition of t-BuOH did also not influence the extent of chloramine

consumption (see Tables 3.1 and S3.1, Figure S3.20). These observations suggest that

hydroxyl radicals neither contributed to the formation of NDMA nor to the consumption

of NH2Cl.
185

Chloramination experiments with ABTS or trolox strongly contrast those with

t-BuOH in that NDMA formation from DFUR was completely suppressed. In the

presence of 2mM ABTS or 0.5mM trolox, the reaction of DFUR with NH2Cl did not

lead to the formation of NDMA over a time period of 36 h and 4 days, respectively

(Figures S3.21b and S3.24b). This finding contrasts the formation of >80% NDMA

within 4 - 8 h without radical scavenger (Figures 3.1b and S3.24a). ABTS and trolox are

both known to react with a wide range of reactive oxygen species including (alk)oxyl

(R–O•), nitroxyl (N–O•), (aryl)peroxyl (R–O–O•), and nitryl (N–O–O•) radicals

through a one electron or H atom transfer, respectively.186–194 Control experiments con-

taining radical scavengers and either DFUR or NH2Cl showed that ABTS and trolox

did not react with DFUR and that reactions with NH2Cl were of minor relevance within

the time frame of the reactions (Figures S3.21 and S3.23). Hence, ABTS and trolox

reacted with reaction intermediates formed from the reaction of DFUR and NH2Cl.

The inhibition of NDMA formation in the presence of ABTS or trolox implies that

reaction intermediates were radicals. Similar observations regarding lower NDMA yields

in the presence of trolox were made by Schreiber and Mitch169 using DMA as precursor

under differing experimental conditions. Furthermore, in experiments with trolox, we

did no longer observe an interference at m/z 51 during MIMS measurements, which

was indicative for a transient intermediate formed during chloramination of DFUR

(Figure S3.25).

To gain additional insights into the impact of radical scavengers on the NDMA for-

mation mechanism, we quantified the consumption of DFUR, NH2Cl, and O2. In the

presence of ABTS or trolox, DFUR disappeared at an approximately 15-fold and 8-fold

smaller rate, respectively, compared to experiments without radical scavenger (Tables 3.1
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and S3.1, Figure S3.24). The significantly retarded DFUR transformation suggests that

radical scavengers reduce radical intermediates concomitant with the regeneration of

DFUR. Regenerated DFUR again reacts with NH2Cl leading to a continuous consump-

tion of NH2Cl until the latter is completely consumed as shown in the experiment with

ABTS (Figure S3.21). The amount of consumed NH2Cl increased by a factor of 3.3 and

2.3 in the presence of ABTS and trolox, respectively (Table S3.1). Note that colorimetric

methods for NH2Cl quantification were impeded in the presence of ABTS. We ob-

served, however, that ABTS was oxidized during the reaction of DFUR with NH2Cl,

which was applied in 16-fold excess (Figure S3.21). The amount of oxidized ABTS

equaled the initial concentration of chloramine (225μM) after 23 h indicating complete

NH2Cl consumption (Table S3.1 and Figure S3.21). While aqueous O2 measurements

were unsuccessful in the presence of trolox, the concentration of O2 remained constant

in experiments with ABTS (Table 3.1, Figure S3.22). The constant O2 concentration

may be due to the fact that radical intermediates reacted more rapidly with ABTS

than with aqueous O2 and the former was present in excess (2mM ABTS vs. 0.25mM

O2). An alternative explanation is that oxygen-centered peroxyl radicals, formed from

the reaction of radical intermediates with O2, were reduced back completely to O2 by

ABTS.

3.3.4 Potential NDMA formation mechanisms involving radi-

cal intermediates

Changes of 18O/16O of aqueous O2 as well as inhibited NDMA formation in the presence

of radical scavengers point at the presence of radical intermediates in the NDMA

formation mechanism. This conclusion is also in agreement with the observed NDMA

formation kinetics in Figure 3.1. After a short lag phase, NDMA was formed concomitant

with the degradation of DFUR showing that only reaction steps at the very beginning of

the reaction were rate-determining, while later reaction steps leading to NDMA occurred

almost instantaneously in agreement with fast reactions involving radical species.

Figure 3.3 shows a potential mechanism for a precursor molecule with a N,N -di-

methylamine-methylfurane structure (ranitidine, DFUR; compound1 in Figure 3.3) but

is thought to apply likewise for other tertiary amines studied here (DMBA, TDMAP).

Previous studies showed that chloramination of tertiary amines is initiated by a

nucleophilic substitution reaction to a dimethylhydrazine-type compound (2).79,80 Our

investigation provides experimental evidence for the reaction of O2 with transient inter-

mediates that are likely of radical nature. The latter could be generated as aminyl
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moieties (1) through hypothetical intermediates: substituted hydrazine (2), aminyl radicals
(3 and •NH2), N -peroxyl radicals (4). Note that decomposition of the N -peroxyl coupling
product (6) leads to formation of 2 equivalents of NDMA and methyl-furane carbocations (8)
but only one is shown here.

radicals (3 and H2N
•) from the one-electron oxidation of 2 by NH2Cl. Support for this

assumption comes from observations that reactions of chloramines with Fe2+, phenols,

or tertiary amines (e.g., chlorpromazine, aminopyrine) lead to N-centered radicals at

considerable rates.195–198 The overstoichiometric consumption of NH2Cl during the for-

mation of NDMA (Table 3.1) indicates that NH2Cl might play an important role not only

for the initial nucleophilic substitution reaction, but also for the generation of radical

intermediates.

Reactions of short-lived aminyl radicals are key to rationalize the stoichiometric

consumption of O2 as well as 18O-KIEs. We hypothesize that aminyl radicals such as 3

exist as N-centered radicals and would not be prone to typical rearrangement to carbon

centered peroxyl radicals because the HN• moiety is not bound to a C atom.199 N-

centered aminyl radicals can be oxygenated by molecular O2 to amino-peroxyl radicals

(4 and H2N−O−O•) with rate constants of 109M−1 s−1.200–202 Such a reaction of triplet
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O2 is spin allowed, consistent with 18O-KIEs < 1.01, and could thus be responsible for

formation of the nitroso bond of NDMA.170,183

Figure 3.3 illustrates possible pathways leading from aminyl radical 3 to NDMA.

The coupling of two N -peroxyl radicals 4 to compound 6 followed by the decay of 6

through the Bennett mechanism203,204 seems a likely option. This pathway results in the

formation of two equivalents of NDMA and methyl-furfuryl carbocations (8) and one

equivalent of hydrogen peroxide (H2O2). In separate experiments, we indeed detected

H2O2 by adding catalase to reactors, in which 50μM DFUR had been transformed to

NDMA in the presence of 750μM NH2Cl (Figure S3.26). Upon addition of catalase,

which converts two molecules of H2O2 to one molecule of O2, we measured 5.0± 1.6μM

of additional O2, which corresponds to a H2O2 concentration of 7.0 - 13μM at the end of

the chloramination experiment (see section S3.13 for details). These numbers correspond

to 28 - 52% of the theoretical maximum of 25μMH2O2 assuming a stoichiometric NDMA

yield from 50μM DFUR. Because H2O2 was not stable when added at the beginning of

a chloramination experiment (40% loss of H2O2 within 3.3 h, Figure S3.26; e.g. through

partial transformation by chloramine205), we conclude that the effective concentration

of H2O2 during NDMA formation must have been higher.

The proposed reaction pathway through species 1 → 2 → 3 → 4 → 6 → NDMA is

plausible based on our experimental evidence but this interpretation strongly relies on

selective coupling of amino-peroxyl radicals (4). We cannot rule out reactions of H2N
•

with aqueous O2 what would lead to an overstoichiometric consumption of O2, except

if H2N−O−O• transforms 3 to 5, from which NDMA could be cleaved off. Moreover,

N -peroxyl radicals (4 and H2N−O−O•) could decompose by alternative routes (e.g.,

to nitric oxide) that do not lead to NDMA but inevitably consume aqueous O2.
206 If

such reactions were to happen, however, one would not expect to observe the disappear-

ance of one molecule of O2 per N,N -dimethylamine group of the precursor compound

(see Table 3.1). Based on the same reasoning, we consider it unlikely that nitrosating

agents (e.g., nitric oxide), which would be readily oxidized by O2, were involved in the

reactions leading to NDMA. Note that compounds like TDMAP and DMA may also

react along the proposed pathways to N -peroxyl radicals because these precursors also

exhibit (near) stoichiometric O2 consumption. However, their much smaller yields of

NDMA show the importance of the molecular structure of the NDMA precursor. While

tertiary amines that possess an electron-rich aromatic moiety could stabilize N -peroxyl

intermediates and lead to the formation of stable carbocationic leaving groups, these

criteria might not be fulfilled in case of TDMAP and secondary amines such as DMA.67
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Finally, the pathways shown in Figure 3.3 only account for the reaction of 2 to 3 equiva-

lents of chloramine per tertiary amine while our data suggest a more than 4-fold excess

of chloramine consumption (Table 3.1), which might be caused by side reactions leading

to reaction products other than NDMA.

3.4 Implications for water treatment

The radical pathway for NDMA formation, as described above, was proposed based on

evidence from experiments in laboratory-grade buffer solutions containing the organic

precursors and NH2Cl. During chloramination of source waters used for drinking water

production, naturally occurring antioxidants containing e.g., phenolic moieties might

effectively scavenge peroxyl radicals207,208 leading to a net decrease of NDMA formation.

However, it has been shown previously that NDMA was also formed during chlor-

amination of natural water samples which were spiked with ranitidine.71 Compared

to experiments in ultra-pure water, NDMA formation was slowed down in lake and river

water, presumably due to interactions of unidentified natural organic matter (NOM)

components with ranitidine. However, the molar NDMA yield from ranitidine was not

affected by the water matrix indicating that reactive intermediates of the NDMA forma-

tion pathway were not scavenged by natural organic matter.71 Indeed, it is known that

the selective coupling of peroxyl radicals to tetroxide species (similar to 4 → 6) occurs

in natural water samples.209–211 This selective peroxyl radical coupling is even exploited

for the determination of •OH in raw waters using t-BuOH.209–211 The NDMA formation

mechanism proposed here is thus also likely to be operational during chloramination of

amine-containing source waters used for drinking water production.

To mitigate N -nitrosamine formation during full-scale water treatment, utilities

using chloramine might need to implement additional treatment steps that lead to an

abatement of NDMA precursors using e.g., granular activated carbon or oxidative pre-

treatment with ozone.159,212 However, these approaches might not entirely prevent the

formation of NDMA owing to varying source water qualities and the wide spectrum

of precursor compounds and treatment conditions leading to NDMA.159 New methods

for the identification of relevant precursors and NDMA formation pathways in source

waters are required to select optimal water treatment conditions and NDMA mitigation

strategies.
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S3.1 Safety considerations

N -nitrosamines are mutagenic and probably carcinogenic to humans. Work in a well-

ventilated fume hood and wear appropriate protective clothing, goggles, and gloves.

Keep away from heat, sparks, and flame.

S3.2 Chemicals

All chemicals in this study were used as received. N -nitrosodimethylamine (NDMA,

5000μg/ml in methanol, 99.9%), ranitidine hydrochloride, N,N -dimethylbenzylamine

(DMBA, 99%), 2,4,6-tris(dimethylaminomethyl)phenol (TDMAP, 95%), dimethylamine

(DMA, 40wt.% in H2O), furfuryl alcohol (98%), tert-butanol (t-BuOH, ≥99.7%),

sodium citrate tribasic dihydrate (≥99%), 2,2’-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt (ABTS, ≥98%), sodium nitrite (NaNO2, ≥99%), potas-

sium iodide (KI, ≥99%), sodium thiosulfate (Na2S2O3, ≥98%), sodium sulfite (Na2SO3,

≥98%), and catalase from bovine liver (2825 units/mg) were purchased from Sigma-

Aldrich. 5-(Dimethylaminomethyl)furfuryl alcohol hydrochloride (DFUR, 96%) was

obtained from ABCR and rac-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid

(Trolox, >98%), N,N -diethyl-p-phenylenediamine sulfate (DPD, ≥99.0%), and phenol

(≥99.5%) from Fluka. Sulfuric acid (98%, for analysis), formic acid (98 - 100%),

sodium nitroprusside dihydrate, ethylenedinitrilotetraacetic acid disodium salt dihydrate

(EDTA), and hydrogen peroxide (H2O2, 30%) were purchased from Merck.

Analyte stock and calibration solutions were made in methanol (99.99%, Fisher

Scientific) or ethanol (≥99.5%, Merck). Aqueous solutions were prepared with deionized

water (18.1MΩ · cm, Barnstead NANOpure Diamond Water Purification System). For

NH2Cl preparation, ammonium chloride (≥99.5%, Fluka) and sodium hypochlorite (6 -

14% HOCl, Sigma-Aldrich) were used. The pH-value of the potassium phosphate

buffer (KH2PO4, puriss, ≥99.5%, Sigma-Aldrich) was adjusted by addition of sodium

hydroxide pellets (NaOH, puriss, ≥99%, Sigma-Aldrich) or NaOH solution (Sigma-

Aldrich). Ammonium carbonate and sodium hydrogen carbonate were purchased from

Merck (EMSURE for analysis). N2 gas (99.999%) was used to prepare O2 free water

and to create the N2 headspace necessary for isotope analysis of dissolved O2.
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S3.3 Quantification of ranitidine, DFUR, and

NDMA

Concentrations of ranitidine, DFUR, and NDMA ≥0.1μM were measured by reverse

phase HPLC (Dionex UltiMate 3000) with UV-vis detection at wavelengths correspond-

ing to the absorption maxima of the analytes (320 nm for ranitidine, 224 nm for DFUR,

and 228 nm for NDMA). For quantification of ranitidine and DFUR, 40μL of aqueous

sample were analyzed using a XBridge column (LC-18, 5 cm x 3mm, 2.5μm, WATERS)

equipped with a XBridge guard column (C18, 2.5μm, WATERS). The flow rate was

0.5mlmin−1 and eluent mixtures consisted of 65/35% and 75/25% phosphate buffer

(1mM, pH 11.5) / methanol for analysis of ranitidine and DFUR, respectively. For

NDMA analysis, an aqueous sample volume of 50μL was analyzed using a Supelcosil

LC-18 column (25 cm x 4.6mm, 5μm, Supelco) with a LC-18 guard column. The eluent

mixture consisted of 90% phosphate buffer (1mM, pH 7.0) and 10% methanol at a flow

rate of 1mLmin−1.

S3.4 Transformation product identification

Transformation products formed during chloramination of ranitidine and DFUR were

analyzed by liquid chromatography-high-resolution tandem mass spectrometry (LC-HR-

MS/MS). The analytical method described in Gulde et al.175 was adjusted as follows:

eluent mixtures consisted of either 75% ammonium carbonate buffer (1mM, pH8.9)

and 25% methanol at a flow rate of 400μLmin−1 using a XBridge column (LC-18,

5 cm x 3mm, 2.5μm, WATERS) or 90% H2O + 0.1% formic acid and 10% methanol

at a flow rate of 1mLmin−1 using a Supelcosil LC-18 column (25 cm x 4.6mm, 5μm,

Supelco). Electrospray ionization (ESI) was used in positive and negative mode, and

ion detection was performed with a QExactive (Thermo Fisher Scientific). Full-scan

HR-MS data were acquired within a m/z range of 50 - 750 with a resolution of 70 000.

Targeted HR-MS/MS spectra were recorded for pre-selected masses with a resolution

of 17 500. Xcalibur (Thermo) was used for data analysis. We confirmed suspected

transformation products with reference standards. Transformation products without

matching reference standards were tentatively identified using exact mass, proposed

molecular formula, occurrence of expected isotope peaks, and MS/MS spectra.
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S3.5 Quantification of NH2Cl

The quantification of aqueous stock solutions of HOCl (65mM) and NH2Cl (30mM)

was conducted as described previously using a Varian Cary 100 Bio UV-visible spectro-

photometer.137,138,162,213 In reaction mixtures containing tertiary amines and NDMA,

direct spectrophotometric analysis of NH2Cl, which was quantified at λ=245 nm, was

hindered because of interfering absorbance caused by the precursors, reaction inter-

mediates, or products. We therefore used membrane introduction mass spectrometry

and three different colorimetric methods as described below.

S3.5.1 Membrane introduction mass spectrometry (MIMS)
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Figure S3.1: Analysis of monochloramine (NH2Cl) using membrane introduction mass spec-
trometry (MIMS). (a) Steady-state MS signals of a calibration series of NH2Cl (50 - 300μM)
in 10mM phosphate buffer at pH 8.0. The absolute MIMS signals depend on the settings of
the amplifier, while the ratio of m/z 51 and m/z 53 remains constant. (b) MS signals from
the analysis of NH2Cl over 7.5 h in a control sample containing 250μM NH2Cl and in a reac-
tive batch containing 15μM DFUR and 250μM NH2Cl. The control and the reactive sample
were analyzed alternately by including a washing step (deionized water) in between to avoid
carry-over.
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Figure S3.2: NH2Cl consumption in NDMA formation experiments with (a, c) ranitidine and
(b, d) DFUR. NH2Cl concentrations were significantly different when evaluated with MIMS
signals of m/z 51 and m/z 53. Using m/z 53, the decrease in NH2Cl concentration corresponded
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we hypothesize that an unidentified reaction intermediate produced a fragment with m/z 51
leading to the observed interference. All reported NH2Cl concentrations quantified with MIMS
were therefore evaluated using m/z 53.
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S3.5.2 Colorimetric methods

The ABTS method was conducted according to Pinkernell et al. (2000).139 A 20mL

sample containing 1 -10μM NH2Cl was placed in a 25mL volumetric flask. 50μL of

0.1M NaNO2 was added to quench HOCl. After 4min, 1mL of 1 g L−1 ABTS, 3mL

of 0.5M phosphate buffer (pH 6.1), and 150μL of 1mM KI was added. The flask

was filled with deionized water to 25mL and mixed. After 10min, the absorbance of

ABTS•+ was measured at 405 nm using a 1 cm quartz cuvette. A molar absorbtivity of

28500± 950M−1 cm−1 was used to calculate the concentration of NH2Cl.

For the DPD method, we filled 1mL of 0.5M phosphate buffer, 1mL of DPD

reagent (0.15 g DPD + 0.8mL 13.8M H2SO4 + 0.02 g EDTA), and 50μL of 14.5mM KI

into a 20mL brown glass vial, added 10mL of a NH2Cl containing sample and mixed

the solution. After 5min, the absorbance of the stable radical cation (DPD•+, Wurster

dye) was measured at 515 nm with a 1 cm quartz cuvette.176 A calibration curve from

1 - 15μM NH2Cl was used for quantification.

The indophenol method was conducted according to Hach (2000).177 A 20mL

sample was placed in a 25mL volumetric flask with a magnetic stir bar. 0.5 g sodium

citrate tribasic dihydrate was added and dissolved. 0.1mL of nitroprusside reagent (0.5 g

sodium nitroprusside dihydrate dissolved in 100mL deionized water) and 1.2mL phenol

reagent (2.5 g NaOH + 10 g phenol in 100mL deionized water) were added and mixed.

By addition of a few droplets of 5M NaOH, the pH of the solution was adjusted to

12.1± 0.1. The flask was filled to the 25mL mark with deionized water and mixed.

After 20min, the absorbance of the formed indophenol was measured at 635 nm using

a 1 cm quartz cuvette.177 A calibration curve from 10 - 125μM NH2Cl was used for

quantification.

All colorimetric assays were measured using a Varian Cary 100 Bio UV-visible

spectrophotometer.
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S3.5.3 Comparison of different NH2Cl quantification methods
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Figure S3.3: Concentrations of NH2Cl monitored over 20 h in a control containing 225μM
NH2Cl (light colored symbols) and a reactive batch containing 15μM DFUR and 225μM
NH2Cl (dark colored symbols). NH2Cl was quantified using the MIMS signal m/z 53 (grey
circles) and three colorimetric methods based on the oxidation of ABTS (red triangles) and
DPD (green diamonds) and the formation of an indophenolic compound (purple squares).
All values were normalized to the initial NH2Cl concentration measured with the respective
method (c/c0).

We compared the analysis of NH2Cl by mass spectrometry (MIMS) to three colori-

metric methods that are based on (1) oxidation of ABTS,139 (2) oxidation of DPD176

using potassium iodide (KI) as catalyst, and (3) formation of a colored indophenolic

compound via reaction of phenol with NH2Cl.
177 While the ABTS as well as the DPD

method determine the sum of reactive chloramine species (NH2Cl, NHCl2, organo-

chloramines) in a sample, the indophenol method is supposed to be selective for mono-

chloramine.

MIMS as well as all three colorimetric methods performed equally well for the quanti-

fication of chloramine in control systems containing 225μM NH2Cl in 10mM phosphate

buffer at pH 8.0 (Figure S3.3). In NDMA formation experiments with 15μM DFUR and
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225μM NH2Cl, we observed, however, significant differences in the performance of the

selected methods. The chloramine concentrations determined with the ABTS method

(red triangles in Figure S3.3) were within error identical to those obtained with the indo-

phenol method (purple squares). Within the first 3 h of the reaction, the chloramine

concentration dropped significantly by 30% and remained almost constant thereupon.

In contrast, MIMS analysis (grey circles) showed a significantly slower and more steady

decay of chloramine over 6 h. The kinetics of chloramine decay determined with the DPD

method (green diamonds) resemble the results obtained with MIMS, but the chloramine

concentration declined even slower. However, when NDMA formation was completed

after 6 h, we obtained the same final chloramine concentration whether MIMS, ABTS,

or the indophenol method were used. The total amount of consumed NH2Cl after

6 h amounted to 34.1%, 33.8%, and 31.7% of the initial chloramine concentration for

measurements with MIMS, ABTS, and indophenol, respectively. The DPD method

seemed to underestimate the chloramine loss after 6 h (25.6%), but also showed a NH2Cl

consumption of 32.8% after 20 h (Figure S3.3).

In general, mass spectrometric measurements of chloramine seem to be more reliable

than results obtained from indirect colorimetric methods because the response signal in

MIMS analysis is directly produced by the analyte (NH2Cl). However, the produced

ions m/z 51 and m/z 53 from NH2Cl must be free from interferences because analysis

with MIMS does not include any analyte separation step. As shown in Figure S3.2, we

indeed observed an interference at m/z 51 that might stem from an unknown reaction

intermediate. Therefore, the signal m/z 53 was used for NH2Cl quantification, but we

cannot exclude the possibility that this mass is biased as well.

An indirect quantification of chloramine with the ABTS and DPD method has

the major disadvantage that ABTS and DPD are redox sensitive and readily undergo

reactions with compounds other than chloramine. Substances known to create inter-

ferences include organic chloramines, nitrite, chromate, or oxidized manganese.177 In

NDMA formation experiments, we might produce reactive intermediates that could

reduce the colored ABTS radicals back to ABTS what would lead to an overestimated

NH2Cl consumption. In contrast, the stable radical (Wurster dye) produced from

oxidation of DPD does not seem to be reduced back. It rather seems that an intermediate

species might oxidize DPD what leads to an underestimated NH2Cl consumption. In

both cases, reliable chloramine concentrations were obtained as soon as intermediate

species were depleted at the end of the NDMA formation reaction. Unlike the ABTS

and DPD method, the indophenol method is supposed to be specific for inorganic mono-
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chloramine (NH2Cl) because the colored indophenolic compound can only form if there

are two exchangeable hydrogens.177 We can, however, not exclude that intermediate

species reacted with either the catalyst (nitroprusside), phenol, or the indophenolic

product what would cause an overestimation of the consumed NH2Cl.

We here show that all of the used methods for chloramine quantification can be

prone to interferences and it is difficult to identify which method provides the most

reliable result in the studied reaction system. Caution is advised when applying any of

the tested methods for NH2Cl quantification in synthetic or natural samples in which

reactive species could cause interferences. The here reported overstoichiometric NH2Cl

consumption at the end of the NDMA formation reaction is, however, valid and not

caused by analytical errors because we found an identical NH2Cl loss between 32% and

34% of the initial NH2Cl concentration with the MIMS, ABTS, DPD, and indophenol

method.

S3.6 Aqueous vs. methanolic DFUR spike solution

2.5

2.0

1.5

1.0

0.5

0.0

ND
M

A
 c

on
ce

nt
ra

tio
n 

(μ
M

)

302520151050
Time (h)

40

30

20

10

0

NH
2 Cl concentration (μM

)

       Spike solution
methanolic     aqueous

Figure S3.4: NDMA formation (squares) and NH2Cl consumption (circles) during the re-
action of DFUR (3μM) with NH2Cl (45μM) in 10mM phosphate buffer at pH 8.0. No
difference in NDMA formation and NH2Cl consumption was observed when DFUR was added
as a methanolic or aqueous spike solution.
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S3.7 Reactivity of DFUR with chloramine quenchers:

Sulfite vs. thiosulfate
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Figure S3.5: Reaction of 3μM DFUR with 0.5 g L−1 and 1 gL−1 Na2SO3 in 10mM phosphate
buffer at pH 8.0 at room temperature and 15◦C. (a) Decline of the DFUR concentration over
time and (b) determination of pseudo-first order rate constants (kobs) for DFUR degradation
that is (4.59±0.05) · 10−6 s−1 for the reaction with 0.5 g L−1 Na2SO3, (6.77±0.51) · 10−6 s−1 for
1 g L−1 Na2SO3 at room temperature, and (2.14±0.45) · 10−6 s−1 for 1 g L−1 Na2SO3 at 15◦C.
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Figure S3.6: DFUR concentration in a control containing 3μM DFUR and a reactive batch
containing 3μM DFUR and 45μM NH2Cl in 10mM phosphate buffer at pH 8.0 in the presence
and absence of 0.5 g L−1 Na2S2O3 (green triangles and red stars, respectively). DFUR did not
react with Na2S2O3 over a time period of 4 h and the presence of Na2S2O3 had no effect on
the degradation of DFUR during chloramination.

72



Mechanism of NDMA Formation During Chloramination of Amines

S3.8 Impact of the tertiary amine to chloramine

ratio on NDMA formation
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Figure S3.7: Impact of the ratio of tertiary amine to NH2Cl on the molar NDMA yield in
percent. Panel (a) shows molar NDMA yields formed after 24 h from the chloramination of
ranitidine (3μM) or DFUR (3μM) using precursor to NH2Cl ratios from 1:1 to 1:100. Panel
(b) shows the temporal evolution of molar NDMA yields obtained for different DFUR (3μM)
to NH2Cl ratios of 1:0.1 to 1:100 after 24 hours, 6 days, and 18 days.
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S3.9 Chloramination of secondary and tertiary

amines

S3.9.1 Reaction kinetics and stoichiometry of NH2Cl and O2

consumption
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Figure S3.8: Initial kinetics of the reaction of NH2Cl (270μM) with (a) ranitidine (15μM)
and (b) DFUR (15μM) in 10mM phosphate buffer at pH 8.0. While ranitidine was trans-
formed to Ran-OH-Cl, DFUR and other unknown transient intermediates prior to NDMA
formation (panel a), the formation of NDMA was concomitant with the degradation of DFUR
(panel b). Ranitidine was transformed with a pseudo-first order rate constant (kobs) of
(1.55±0.08) · 10−3 s−1 obtained from linear regression shown in panel c. The transformation
of DFUR increased non-linearly after a short lag phase of 0.3 h (panel d).
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Figure S3.9: Three kinetic regimes were observed for the consumption of NH2Cl and O2

during the reaction of (a) ranitidine (15μM) and (b) DFUR (15μM) with NH2Cl (270μM) in
10mM phosphate buffer at pH 8.0. During ranitidine transformation, NH2Cl disappeared with

an operational pseudo-first order rate constant k
NH2Cl
obs, 1, ran=(7.2± 0.5) · 10−5 s−1. Afterwards,

NDMA formation started and a smaller rate constant of k
NH2Cl
obs, 2, ran=(1.1± 0.04) · 10−5 s−1 was

observed. When NDMA formation was completed, we observed ongoing NH2Cl consump-

tion with k
NH2Cl
obs, 3, ran=(8.6± 2.7) · 10−6 s−1. The O2 concentration remained constant during

ranitidine transformation and started to decrease after 1.6 h with a pseudo-first order rate

constant k
O2
obs, ran of (1.8± 0.1) · 10−6 s−1 (panel a). (b) During chloramination of DFUR, we

observed a lag phase of 0.3 h. Afterwards, NH2Cl was consumed with a pseudo-first order

rate constant k
NH2Cl
obs, 1, DFUR=(2.2± 0.1) · 10−5 s−1. After NDMA formation was completed,

NH2Cl consumption continued with k
NH2Cl
obs, 2, DFUR=(7.7± 0.7) · 10−6 s−1. O2 decreased with

k
O2
obs, DFUR=(4.5± 0.1) · 10−6 s−1 during chloramination of DFUR. As soon as NDMA forma-

tion was completed, O2 consumption ceased.
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Figure S3.10: NDMA formation during chloramination of (a, b) ranitidine (15μM), (c, d)
DFUR (15μM), and (e, f) DMBA (15μM) in 10mM phosphate buffer at pH8.0. The right
panels (a, c, e) show concentration profiles of the precursor, NH2Cl, O2, and NDMA. The left
panels (b, d, f) show NDMA formation as well as the amount of consumed precursor, NH2Cl,
and O2 on the same scale. Note that for ranitidine and DFUR we determined NH2Cl with
MIMS, while the ABTS method was used in the experiment with DMBA.
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Figure S3.11: NDMA formation during chloramination of (a, b) TDMAP (15μM corre-
sponding to 45μM N,N -dimethylamine groups) and (c, d) DMA (16μM) in 10mM phosphate
buffer at pH8.0. Note that we applied 600μM NH2Cl to 15μM TDMAP to reach a 13-fold
excess of NH2Cl compared to the initial concentration of N,N -dimethylamine groups. The
right panels (a, c) show concentration profiles of NH2Cl, O2, and NDMA. The left panels (b,
d) show NDMA formation as well as the concentration of consumed NH2Cl and O2 on the
same scale. In experiments with TDMAP and DMA, NH2Cl was quantified with the ABTS
method.
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S3.9.2 Transformation products

+

+

+

Figure S3.13: Retention time and exact mass of three transformation products found with
LC-HR-MS/MS during the reaction of ranitidine (15μM) with NH2Cl (270μM) in 10mM phos-
phate buffer at pH8.0. While the transformation product with m/z [M+H+] = 156.1021 was
confirmed with a reference standard, transformation products with m/z [M+H+] = 331.1436
and m/z [M+H+] = 365.1049 were tentatively identified using exact mass, proposed molecular
formula, occurrence of expected isotope peaks, and MS/MS spectra.
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Figure S3.14: (a) LC-HR-MS/MS fragmentation pattern of a transformation product with
m/z [M+H+] = 365.1049 and predicted fragmentation patterns of (b) hydroxylated, chlorinated
ranitidine (Ran-OH-Cl) with molecular formula C13H21O4N4ClS and m/z [M+H+] = 365.1048
and (c) chlorinated dimethylhydrazine (Ran-NH2-Cl) with molecular formula C13H23O3N5ClS
and m/z =364.1205.
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- NO2

+

+
+
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+

+ +

+.

+.

+ +
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Figure S3.15: MS2 spectra of molecular ion (a) m/z [M+H+] = 365.1049 corresponding to
Ran-OH-Cl and (b) m/z [M+H+] = 331.1436 corresponding to Ran-OH in ESI positive mode.
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m/z  [M+H+] = 133.0053   Molecular formula: C5 H5 Cl O2

Figure S3.16: Potential transformation product with m/z [M+H+] = 133.0053 formed during
chloramination of DFUR. Two suggested molecular structures corresponding to the formula
C5H5ClO2 using Chemspider.

S3.10 Chloramination of furfuryl alcohol
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Figure S3.17: NH2Cl concentration measured with the ABTS method over 30 h in three
different batches containing (i) 3μM DFUR and 45μM NH2Cl, (ii) 45μM NH2Cl, and (iii)
3μM furfuryl alcohol and 45μM NH2Cl in 10mM phosphate buffer at pH 8.0. Note that
NH2Cl concentrations were not corrected for the self-decay of chloramine observed in the
NH2Cl control.
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S3.11 Oxygen isotope analyses of aqueous O2
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Figure S3.18: Consumption of aqueous O2 during the reaction of NH2Cl (3mM) with
(a) ranitidine, (b) DFUR, and (c) DMBA (all 15-200μM) in 10mM phosphate buffer at pH 8.0.
Panels (d-f) show the corresponding δ18O-values of aqueous O2 over the remaining fraction of
O2 (c/c0). ε-values are oxygen isotope enrichment factors that were used to derive 18O-kinetic
isotope effects. Note that we also measured the formation of NDMA in the experiment with
DMBA. Dashed lines are 95% confidence intervals of the linear regression or nonlinear fit.
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Figure S3.19: (a) Consumption of aqueous O2 during the reaction of TDMAP (15-200μM)
with NH2Cl (3mM) in 10mM phosphate buffer at pH 8.0. Note that samples for O isotope
analysis were quenched when the molar NDMA yield per N,N -dimethylamine group was 11%
and thus slightly lower than the maximum NDMA yield of 16% (see Table S3.2). (b) δ18O-
values of aqueous O2 over the remaining fraction of O2 (c/c0) during chloramination of
TDMAP. (c) NDMA formation and O2 consumption over time in a reactive batch containing
200μM DMA and 3mM NH2Cl in 10mM phosphate buffer at pH 8.0. O2 consumption was
also quantified in a control containing 3mM NH2Cl without DMA. (d) δ18O-values of aqueous
O2 over the remaining fraction of O2 (c/c0) during the reaction of DMA (200μM) with NH2Cl
(3mM). ε-values are oxygen isotope enrichment factors that were used to derive 18O-kinetic
isotope effects. Dashed lines are 95% confidence intervals of the linear regression in panel (a)
or the nonlinear fit in panels (b) and (d).
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S3.12 Experiments with radical scavengers

S3.12.1 tert-Butanol
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Figure S3.20: The presence of tert-butanol (40mM) had no impact on NDMA formation
and NH2Cl consumption during the reaction of (a) ranitidine (15μM) and (b) DFUR (15μM)
with NH2Cl (225μM) in 10mM phosphate buffer at pH 8.0. For reaction stoichiometries see
Table S3.1.
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S3.12.2 ABTS
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Figure S3.21: Reaction of DFUR (15μM) with NH2Cl (225μM) in the presence and absence
of ABTS (2mM) in 10mM phosphate buffer at pH 8.0. Panel (a) shows the concentration of
oxidized ABTS over time in the presence of (i) 15μM DFUR (triangle), (ii) 225μM NH2Cl
(squares), and (iii) 15μM DFUR and 225μM NH2Cl (circles). Panel (b) shows molar NDMA
yields and the transformation of DFUR in percent as well as the percentage of oxidized ABTS
per NH2Cl.
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Figure S3.22: Concentration of oxidized ABTS and aqueous O2 during the reaction of DFUR
(15μM) with NH2Cl (225μM) in the presence of ABTS (2mM) in 10mM phosphate buffer at
pH 8.0.
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S3.12.3 Trolox
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Figure S3.23: Effect of the antioxidant trolox on the consumption of NH2Cl over 8 h (i) in
controls containing NH2Cl (45μM) in the absence or presence of trolox (0.5mM) and (ii) in
reactive batches containing DFUR (3μM) and NH2Cl (45μM) in the absence or presence of
trolox (0.5mM) in 10mM phosphate buffer at pH 8.0. NH2Cl concentrations were measured
with MIMS and evaluated with m/z 53.
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Figure S3.24: Effect of the antioxidant trolox on NDMA formation over 95 h. Reaction of
DFUR (3μM) with NH2Cl (45μM) in 10mM phosphate buffer at pH 8.0 (a) in the absence of
trolox and (b) in the presence of trolox (0.5mM). NH2Cl concentrations were measured with
MIMS and evaluated with ions m/z 51 and m/z 53.

89



Supporting Information to Chapter 3

4.0

3.9

3.8

3.7

3.6

86420
Time (h)

Pe
ak

 H
ei

gh
t 

Ra
tio

 
m

/z
 5

1
m

/z
 5

3 NH2Cl control

DFUR + NH2Cl

DFUR + NH2Cl + trolox

NH2Cl control + trolox
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S3.13 Quantification of H2O2 through transforma-

tion to O2 by catalase
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Figure S3.26: (a) Increase in O2 concentration after addition of catalase at 4min to 50μM
H2O2 (nominal concentration) in 10mM phosphate buffer at pH 8.0. (b) O2 consumption
over time in assays containing 50μM DFUR and 750μM NH2Cl in 10mM phosphate buffer at
pH 8.0. Catalase was added after 1.9 h when the amount of consumed O2 equaled the initial
concentration of DFUR what indicated the completion of the NDMA formation reaction. We
observed an increase of 7± 1.6μM in the O2 concentration, whereupon 2μM O2 might have
been introduced through the addition of aqueous, oxic catalase solution. (c) Recovery of H2O2

during chloramination of DFUR. 50μM H2O2 were added immediately after mixing 50μM
DFUR with 750μM NH2Cl. Catalase was added after 3.3 h and the O2 concentration increased
by 15μM. To assess the activity of catalase in the reaction solution, we spiked another 50μM
H2O2 after 3.8 h to the catalase containing assay and observed an increase of 28μM O2.

91



Supporting Information to Chapter 3

When we added catalase to 50μM H2O2 in 10mM phosphate buffer at pH 8.0, the

concentration of O2 increased by 25± 3μM (Figure S3.26a). As catalase converts two

H2O2 molecules to one O2 molecule, this value is in agreement with the theoretically

expected formation of O2.

We quantified the H2O2 concentration that was present after completion of the

chloramination reaction of DFUR in 10mM phosphate buffer at pH 8.0. Therefore,

we monitored the consumption of O2 during the reaction of DFUR (50μM) with NH2Cl

(750μM) and added catalase as soon as the consumed O2 equaled the initial concentra-

tion of DFUR (50μM). Upon addition of catalase, the O2 concentration increased by

7± 1.6μM (Figure S3.26b). As we spiked catalase as aqueous, oxic solution, we intro-

duced at most 2μM O2. Thus, an increase of at least 5± 1.6μM O2 was caused by the

presence of H2O2. Assuming the Bennett mechanism, chloramination of 50μM DFUR

would lead to 25μM H2O2. The quantified amount of 7 - 13μM H2O2 thus accounts for

approximately 28 - 52% of the theoretically formed H2O2.

The stability of H2O2 in the reactive solution containing DFUR and NH2Cl was

assessed. To this end, 50μM H2O2 were added immediately after spiking 750μM NH2Cl

to 10mM phosphate buffer (pH 8.0) that contained 50μM DFUR. When the chlor-

amination reaction was completed (indicated through stoichiometric O2 consumption

after 3.3 h), we added catalase and observed an increase of 14.9± 2.4μM in the O2 con-

centration corresponding to approximately 30μMH2O2 (Figure S3.26c). Thus, only 60%

of the initially added H2O2 could be recovered indicating that H2O2 is not stable during

chloramination of DFUR. As it is known that NH2Cl inhibits peroxidase activity,214

we tested the activity of catalase through addition of another 50μM H2O2 to the same

reaction vessel (after 3.8 h, Figure S3.26c). Indeed, the O2 concentration increased by

28± 3μM demonstrating that catalase was fully active.
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Chapter 4

Abstract

To assess the formation of N -nitrosodimethylamine (NDMA) during drinking water

disinfection and evaluate mitigation strategies, new tools are needed that systematically

relate the formation of NDMA to the presence of relevant precursor compounds. In

this study, we explore whether changes in the stable isotope ratios of NDMA can be

used as proxy for NDMA precursor moieties and formation pathways. Using compound-

specific isotope analysis (CSIA), we investigated 13C/12C, 2H/1H, and 15N/14N ratios of

NDMA during chloramination of four tertiary amines that produce high yields of NDMA,

namely ranitidine, 5-(dimethylaminomethyl)furfuryl alcohol, N,N -dimethylthiophene-2-

methylamine and N,N -dimethylbenzylamine. While minor changes in C and H isotope

ratios of NDMA revealed that the N(CH3)2 group of NDMA originates from the tertiary

amine, N isotope ratios of NDMA showed that NH2Cl is the source of the N atom of

the nitroso moiety. NDMA was enriched in 15N during its formation due to a complex

sequence of reactions at N atoms and combined kinetic isotope effects. Correlated C

and N isotope signatures of NDMA (δ15N versus δ13C) revealed trends, which were

characteristic for the NDMA formation pathway during chloramination of the selected

tertiary amines. These isotope fractionation trends were robust under various treatment

conditions and independent of the molar NDMA yield indicating the potential diagnostic

power of CSIA to identify this important class of NDMA precursors during drinking

water chloramination.
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4.1 Introduction

N -nitrosamines are drinking water disinfection by-products (DBPs) of public and regula-

tory concern because of their mutagenicity and potential carcinogenicity.10,37 N -nitroso-

dimethylamine (NDMA) is a frequently detected DBP in finished drinking waters and

often exceeds guidance values of 9-100 ng/L.31,37,115,215 NDMA is produced uninten-

tionally when disinfectants such as chlorine, chloramine, or ozone react with organic

compounds present in raw waters such as naturally occurring substances (e.g., natural

organic matter),41,64,66,76,119 or anthropogenic micropollutants (e.g., pharmaceuticals or

pesticides).54,72,156 Also chemicals used for water purification (e.g., polymeric coagulants)

can lead to NDMA formation.69,70 The different molecular structures and physico-

chemical properties of NDMA precursors suggest that reaction mechanisms leading to

NDMA differ among the various disinfection scenarios.28,30 However, detailed knowledge

about NDMA formation pathways remains scarce so that the systematic prediction and

prevention of NDMA formation during water treatment is currently hampered. New

tools are needed to relate the formation of NDMA to its precursors and to propose

adequate mitigation strategies.

Previous studies demonstrated that changes in the stable isotope composition of

DBPs at natural abundance can be used as probes for reactive precursor materials

and DBP formation pathways.113,127,128 Compound-specific isotope analysis (CSIA) was

applied to monitor the change of 13C/12C ratios in chloroform produced upon chlorina-

tion of lake water.113 Chloroform was depleted in 13C due to an inverse kinetic isotope

effect (KIE) that was indicative of the chlorination of phenolic moieties in NOM.113 In

contrast, chloroform was enriched in 13C due to a normal KIE when produced from

other NOM moieties such as resorcinol.113 KIEs are characteristic proxies for reac-

tion mechanisms, because they reflect how chemical bonds of a molecule are broken

or formed.82,83,216 To date, CSIA is frequently applied to identify degradation pathways

of contaminants in the environment.83,93,103,108 In contrast, only very few studies have

focused on applying CSIA to study formation pathways and precursors of potentially

harmful reaction products such as DBPs.94,113,127 We recently proposed an analytical

procedure for C, H, and N isotope analysis of N -nitrosamines162 but it remains un-

known if changes in stable isotope ratios of NDMA (so called isotope fractionation) can

provide information on NDMA precursors and formation pathways in a similar way as

shown for chloroform.

One major route to NDMA is chloramination of amine-containing waters. Secondary

amines (e.g. dimethylamine) and most tertiary amines produce low molar NDMA yields
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of a few percent (<6%).58,61,76 In contrast, tertiary amines with a N,N -dimethylamine

(N(CH3)2) moiety bound via a methylene group to a (hetero)aromatic ring (e.g., raniti-

dine) produce very high molar NDMA yields (>60%).67,72,76,162 Our recent study sug-

gests that radicals likely play an important role in this NDMA formation mechanism.217

The initial reaction step of the tertiary amine with NH2Cl is a nucleophilic substitution

leading to the formation of a N,N -dimethylhydrazine-type intermediate (compound 2 in

Figure 4.1).79,80 Upon reaction with NH2Cl, the latter is likely oxidized to a N-centered

aminyl radical (compound 3) that reacts with aqueous O2 to a N -peroxyl species (com-

pound 4) and subsequently to NDMA.217 While methyl groups of the N(CH3)2 moiety of

the tertiary amine are not involved in any of the reaction steps, several bonds to nitrogen

are broken and formed during NDMA formation. We hypothesize that constant C and

H isotope ratios can be used as fingerprint for N -methyl groups that are transferred

from the tertiary amine precursor to NDMA. In contrast, reactions involving nitrogen

atoms might result in N isotope fractionation in NDMA that could reveal the pathway

of its formation and the disinfectant and precursor involved.

The objective of this investigation was to evaluate whether changes in C, H, or N

isotope ratios of NDMA can be used as proxy for NDMA precursor moieties and forma-

tion pathways. To this end, we conducted chloramination experiments with four tertiary

amines, namely ranitidine, 5-(dimethylaminomethyl)furfuryl alcohol (DFUR), N,N -

dimethylthiophene-2-methylamine (DMTA), and N,N -dimethylbenzylamine (DMBA,

see Figure 4.1), and investigated C, H, and N isotope fractionation in NDMA during

its formation. (i) Sources of C, H, and N atoms in NDMA were inferred by quantifying

initial and site-specific isotope signatures of selected precursors as well as by conducting

experiments with 15N-enriched monochloramine. (ii) Isotope-sensitive reaction steps of

the NDMA formation pathway were identified from C and N isotope fractionation trends

in selected tertiary amines and NDMA. (iii) We assessed whether isotope fractionation

trends in NDMA are characteristic for its formation during chloramination of the se-

lected tertiary amines and could be used as proxy for the NDMA formation pathway.

Finally, our results enabled us to evaluate the diagnostic power of CSIA to identify this

important class of NDMA precursors during drinking water chloramination.
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4.2 Experimental Section

4.2.1 Chemicals

A list of all chemicals including suppliers and purities is provided in the Supporting

Information (SI).

4.2.2 NDMA formation experiments

Monochloramine (NH2Cl) stock solutions (30mM) were prepared daily as described pre-

viously137,138 by mixing hypochlorite (HOCl) with either ammonium chloride (NH4Cl)

or 15N-enriched ammonium sulfate ((NH4)2SO4)
218 at pH 9.5 with a molar Cl:N ratio

of 1:1.05.

Chloramination experiments were carried out in 14 amber glass bottles containing

1L of 10mM phosphate buffer (pH 8.0). Each reactor was spiked with 100μL of a

methanolic stock solution to obtain initial concentrations of 3μM ranitidine or DFUR

and 40μM DMTA or DMBA. The formation of NDMA was initiated through addition

of NH2Cl in 15-fold excess corresponding to concentrations of 45μM or 600μM NH2Cl,

respectively. At predefined time points, one flask of 1 L was sacrificed. We measured

the pH of the reaction solution, quantified the NH2Cl concentration, and quenched

the chloramine reaction by addition of 0.5 g Na2S2O3 to the reactor. To quantify the

concentrations of NDMA, ranitidine, and DFUR, 1mL of the solution was filled into

1.5mL amber autosampler glass vials. For DMTA and DMBA analyses, 40mL of the

solution was transferred to 50mL amber glass vials and the pH of the 10mM phosphate

buffer was adjusted to 11.3 through addition of 5M NaOH. All samples were stored in

the dark at 4℃ until concentration analyses and further processing for isotope analyses.

Two control experiments were set up to (i) quantify the stability of the organic amine

precursor in the absence of NH2Cl and (ii) determine the self-decay rate of NH2Cl in

the absence of organic amine. If not stated otherwise, reported NH2Cl concentrations

were corrected by the self-decay of NH2Cl.

We investigated the impact of the buffer concentration and type on the chloramina-

tion kinetics and NDMA formation. To this end, experiments with DFUR (3μM) and

NH2Cl (45μM) were conducted in 1, 5, 10, and 50mM phosphate buffer (pH 8.0) as

well as in 10mM arsenate, 10mM carbonate, and 10mM borate buffer (all pH 8.0). In

addition, we examined the impact of the solution pH on NDMA formation kinetics and

isotope fractionation of NDMA. For this purpose, the reaction of ranitidine or DFUR

(3μM) with NH2Cl (45μM) was monitored at pH 7.0 in 10mM phosphate buffer.
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4.2.3 Chemical analyses

The concentration of aqueous NH2Cl stock solutions (30mM) was quantified as described

previously using a Varian Cary 100 Bio UV-visible spectrophotometer.137,138,162,213 In

reaction mixtures containing tertiary amines, reactive intermediates, and NDMA, NH2Cl

was quantified with a colorimetric method using 2,2’-azino-bis(3-ethylbenzothiazoline-

6-sulfonic acid) diammonium salt (ABTS).139,162 Concentrations of NDMA, ranitidine,

and DFUR were determined down to 0.1μM by reverse phase HPLC with UV detection

(Dionex UltiMate 3000) as described previously.162,217

Concentration measurements of DMTA and DMBA were carried out by solid-phase

microextraction (SPME) coupled to GC/MS analysis (Thermo TRACE GC Ultra and

Thermo TRACE DSQ II). 2mL amber autosampler glass vials, which contained 0.3 g

NaCl, were filled with 1.3mL of sample (in 10mM phosphate buffer, pH 11.3) and

were shaken on a Vortex mixer to reach a final ionic strength of 4M. Using a CTC

CombiPAL autosampler, a polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65μm,

Supelco) coated SPME fibre (conditioned daily for 30min at 250℃) was immersed

directly into the samples and the analytes were allowed to adsorb for 45min at 40℃.130

In the split/splitless injector of the GC, analytes were thermally desorbed for 3min at

270℃. The GC was equipped with 1m DPTMDS (methyl/phenyl) deactivated fused-

silica guard column (0.53mm i.d., BGB) and a 30m× 0.25mm ZB-5ms column (0.25μm,

Zebron, Phenomenex). Helium carrier gas was used at a constant pressure of 130 kPa.

The temperature program was 1min at 50℃, 10℃/min to 250℃, and 5min at 250℃.

DMTA and DMBA concentrations were quantified with an external calibration of 0.1 -

1.5μM.

4.2.4 Stable isotope analyses

Stable C, H, and N isotope ratios of NDMA were measured using gas chromatography

isotope ratio mass spectrometry (GC/IRMS) coupled to solid-phase extraction (SPE) as

reported recently.162 C and N isotope analysis of DMTA and DMBA in aqueous samples

was conducted with SPME-GC/IRMS. The SPME procedure, GC setup and tempera-

ture program was identical to that for GC/MS analysis, but a 30m× 0.32mm ZB-5ms

column (1μm, Zebron, Phenomenex) was used. For all C and N isotope measure-

ments, a self-made Ni/Ni/Pt reactor was operated at 1000℃ as described previously.162

Method quantification limits (MQLs) of the SPME-GC/IRMS measurements of DMTA

and DMBA were determined according to the moving mean procedure of Jochmann
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et al.141 The linear range in which accurate C and N isotope analysis of DMTA and

DMBA could be performed was 0.3 - 0.6μM and 2.5 -16μM, respectively (DMTA data

are shown in Figure S4.1). To determine the equilibrium isotope effect associated with

the deprotonation of DMTA, we investigated the pH-dependent isotope fractionation

of DMTA by SPME-GC/IRMS at pH 8.4, 8.7, 9.4, 10.4, and 11.3 in 10mM phosphate

buffer at ionic strength of 4M using DMTA concentrations of 66μM, 12μM (pH 8.7 and

9.4), 6.6μM, and 5μM, respectively.130

Isotope ratios are reported in the delta-notation as δ13C, δ2H, and δ15N (so called

isotope signatures) relative to Vienna PeeDee Belemnite, Vienna standard mean ocean

water, and air, respectively.125,162 All isotope signatures are reported in permil (�) as

arithmetic mean of triplicate measurements (±σ). We used a series of isotopic standard

materials purchased from Indiana University219,220 (full list see Spahr et al.162) as well

as repeated measurements of in-house standards in standard bracketing procedures to

ensure the accuracy of the measured isotope ratios. In-house standards of ranitidine,

DFUR, DMTA, and NH4Cl were obtained through C and N isotope ratio measurements

with an elemental analyzer IRMS (data shown in Table S4.1). The isotopic analysis

of NH2Cl was impeded owing to its thermal instability and self-decay to ammonia.

Instead, we used N isotope reference values of NH4Cl or (NH4)2SO4, from which NH2Cl

was produced, as a proxy for the initial δ15N values of NH2Cl. This assumption was

made based on high molar NH2Cl yields (>94%) from the reaction of HOCl with NH4Cl

or (NH4)2SO4.

4.2.5 Data evaluation

To study isotope fractionation in the tertiary amine precursors, we conducted chlor-

amination experiments with two model compounds, namely DMTA and DMBA. Bulk

isotope enrichment factors, εbulkE , were derived from linear regression of δ13C and δ15N

values versus fractional amount of remaining precursor (c/c0) according to eq. 4.1 (see

Figure S4.3).83

ln

(
δhE + 1

δhE0 + 1

)
= εbulkE · ln

(
c

c0

)
(4.1)

where δhE0 and δhE are isotope ratios of an element E in the precursor at the

beginning and during the reaction, respectively. Apparent kinetic isotope effects, AKIEE,

were calculated according to eq. 4.2 considering the total number of atoms of an element

E (n), the number of atoms in reactive positions (x ), and the number of atoms in

intramolecular competition (z ). While the AKIEC is reported as an average kinetic iso-
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tope effect for all C atoms in DMTA (n = x =7, z =1) and DMBA (n = x =9, z =1),

AKIEN is position-specific as both precursors only contain one N atom (n = x = z =1).

Uncertainties of εbulkE and AKIEE are reported as 95% confidence interval.

AKIEE =
1

1 + (n/x) · z · εbulkE

(4.2)

The overall observable AKIEN in DMTA or DMBA during chloramination at pH

8.0 originates from an isotope-sensitive deprotonation step (eq. 4.3) which is associated

with an 15N-equilibrium isotope effect, EIEBH+−B
N , and the subsequent reaction of the

neutral tertiary amine to a product (eq. 4.4) which is accompanied by an apparent kinetic

isotope effect, AKIEB
N. These EIEs and AKIEs were derived according to a previously

established procedure of Skarpeli-Liati et al.130

BH+ k1−−⇀↽−−
k−1

B + H (4.3)

B
k2−−→ P (4.4)

where ki and k−i are rate constants of forward and backward reaction steps. The ob-

servable AKIEN is the weighted average of the protonated (fBH+) and deprotonated

fraction (1-fBH+) of the tertiary amines and their respective isotope effects as shown in

eq. S4.1.221 The AKIEB
N that originates from the reaction of the deprotonated species is

given by eq. 4.5. fBH+ at pH 8.0 was determined with eq. 4.6 using a pKa of 9.75± 0.3 for

DMTA (derived from SPME-GC/IRMS measurements) and a pKa of 9.0 for DMBA.222

AKIEB
N =

AKIEN

(fBH+ · EIEBH+−B
N ) + 1− fBH+

(4.5)

fBH+ = (1 + 10pH−pKa)−1 (4.6)

The deprotonation EIEBH+−B
N was calculated with eq. 4.7, where the equilibrium

isotope enrichment factor, εBH+−B
N , was derived from the slope of the regression line of

δ15N versus fBH+ (see eq. 4.8 and Figure S4.4).130

EIEBH+−B
N =

1

1 + εBH+−B
N

(4.7)

δ15N = εBH+−B
N · fBH+ + δ15Nref (4.8)
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4.3 Results and Discussion

4.3.1 Observable C, H, and N isotope fractionation trends in

NDMA

We used 5-(dimethylaminomethyl)furfuryl alcohol (DFUR) as model compound for ter-

tiary amines with high molar NDMA yield during chloramination and studied the NDMA

formation kinetics as well as C, H, and N isotope ratios of NDMA. Figure 4.2a shows

the formation of NDMA during the reaction of DFUR (3μM) with NH2Cl (45μM) in

10mM phosphate buffer at pH 8.0. The reaction was completed within 10 h with a mo-

lar NDMA yield of 65± 2%. This value is approximately 10 - 20% lower than previously

reported values.67,123,217 We observed a lag-phase of approximately one hour, in which

only 0.2μM DFUR was transformed to 0.1μM NDMA. After 1 h, DFUR disappeared at

a faster rate in agreement with previous observations.217 The formation of NDMA was

concomitant with the disappearance of DFUR. This finding implies that reactive inter-

mediates such as the N,N -dimethylhydrazine species (compound 2 in Figure 4.1) and

possible radical intermediates (compounds 3 and 4) are short-lived and transformed to

NDMA and other unidentified products more rapidly than the initial transformation of

DFUR to compound 2. It is thus likely that only one rate-determining step governs the

transformation from DFUR to NDMA, which might be the reaction of NH2Cl with the

tertiary amine precursor to compound 2. The total consumption of NH2Cl amounted

to 12.0μM and thus exceeded the initial concentration of DFUR by a factor of 4.1 in

agreement with previous findings.217 No lag-phase was observed for the disappearance of

NH2Cl (Figure 4.2a) indicating that side reactions, which did not lead to NDMA, likely

contributed to the over-stoichiometric consumption of NH2Cl.

Figure 4.2b shows C, H, and N isotope signatures of NDMA during its formation.

δ15N values of NDMA (depicted as upward directed triangles) increased within 10 h

from –24.8� to –8.7�. This N isotope fractionation is caused by primary kinetic

isotope effects that occur when chemical bonds to N are broken or formed in rate-deter-

mining reaction steps.83,106 In contrast, δ13C and δ2H values of NDMA showed only small

changes from –36.8� to –34.3� and –133.5� to –110.7�, respectively. The increase

of δ2H values by +22.8± 5� is small compared to typical large H isotope fractionations

amounting to several 100� for the chemical oxidation of CH3-groups.
103,223 Thus, small

changes in δ13C and δ2H values of NDMA are presumably due to secondary kinetic

isotope effects that arise when C and H atoms are not directly involved in chemical

reactions.
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Figure 4.2: NDMA formation from the reaction of DFUR (3μM) with NH2Cl (45μM) in
10mM phosphate buffer (pH 8.0). Panel (a) shows DFUR degradation, NH2Cl consumption,
and NDMA formation over time. Symbols in panel (b) illustrate δ15N, δ13C, and δ2H values
of NDMA. Grey and yellow solid lines represent the initial δ13C and δ15N value of DFUR,
respectively. The red and blue lines depict the initial δ15N values of two different NH2Cl
batches with which separate NDMA formation experiments were conducted leading to NDMA
with different δ15N signatures (red-yellow vs. blue-yellow triangles). The blue-yellow line
represents the average of the initial δ15N values of DFUR and NH2Cl-B. Standard deviations
of triplicate δ15N, δ13C, and δ2H measurements were <0.2�, <0.4�, and <5.0�, respectively,
and smaller than the depicted symbols.
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4.3.2 Isotope ratios of NDMA reveal the origin of C, H, and

N atoms in NDMA

Origin of the N,N -dimethylamine moiety in NDMA

C and H isotope signatures of NDMA enabled us to confirm that the N,N -dimethylamine

(N(CH3)2) moiety of NDMA originated from the tertiary amine precursor.162 Minor

changes in δ13C and δ2H values (Figure 4.2b) imply that reaction steps leading to NDMA

did not involve the cleavage or formation of bonds to C or H atoms as illustrated in

Figure 4.1. Indeed, we have shown previously that the δ2H values of NDMA corre-

sponded well with the δ2H value of the N(CH3)2 group of the tertiary amine precursor

determined with quantitative deuterium nuclear magnetic resonance spectroscopy.162

Based on δ2H measurements, it is reasonable to assume that δ13C values of NDMA also

correspond with those of the N(CH3)2 group of the tertiary amine. However, δ13C values

of NDMA were 14.5� more negative than the average δ13C value of the 8 C atoms in

DFUR (–19.8�, grey line in Figure 4.2b) what indicates that 12C and 13C atoms are un-

evenly distributed in DFUR. 12C atoms were preferentially found in the N(CH3)2 group,

whereas 13C atoms were located in the other 6 C atoms with an average δ13C value of

–14.9�.

Origin of N atoms in NDMA

N isotope signatures of NDMA reflect the average isotope ratios of both N atoms of

NDMA and can be used to reveal the sources of nitrogen. The N atom of the N(CH3)2

group stems from the tertiary amine precursor (as demonstrated above), while the N

atom of the nitroso group derives from NH2Cl. For reasons of isotopic mass balance,

the final δ15N value of NDMA should match the average value of the initial N isotope

signatures of DFUR (δ15NDFUR=–2.2�, yellow line in Figure 4.2b) and monochloramine

(δ15NNH2Cl−A=–1.4�, red line) if all N atoms were transferred quantitatively from the

precursors to NDMA (100% molar NDMA yield). However, in the present case, only 65%

of DFUR was transformed to NDMA so that 35% of the N atoms ended up in unidentified

products. Moreover, less than 5% of the N atoms of NH2Cl were incorporated into

NDMA (final concentration of 1.9μM) because NH2Cl was present in excess (initial

concentration of 45μM). Owing to the incomplete conversion of both precursors to

NDMA, the final δ15N value of NDMA (upward directed triangles in Figure 4.2b) was

6.9� more negative than the average N isotope signature of both precursors.
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Because the direct comparison of the final N isotope signature of NDMA with the

initial one of its precursors cannot reveal the sources of N atoms in NDMA, we con-

ducted a second independent NDMA formation experiment with the same DFUR of

known isotopic composition, but with a different batch of monochloramine (NH2Cl-B).

The latter had a δ15NNH2Cl−B value of +53.7� (blue line in Figure 4.2b) and was thus

enriched in 15N by +55.1� compared to NH2Cl-A. We observed the same extent of N

isotope fractionation regardless of whether NH2Cl-A or NH2Cl-B reacted with DFUR

(δ15N values changed by +16.1� versus +17.6� after completion of the reaction, re-

spectively). Compared to the experiment with NH2Cl-A, δ15N values of NDMA were

shifted towards more positive values with NH2Cl-B (downward directed triangles in

Figure 4.2b). The shift in N isotope values amounted to +26.9± 2.2� (indicated as

black arrow in Figure 4.2b) and corresponds, within analytical uncertainty, to 50% of

the difference between the two applied NH2Cl batches, that is 27.6�. This result con-

firms that one N atom in NDMA originates from NH2Cl and one N atom stems from

the tertiary amine precursor, in agreement with a previous study that applied 15N iso-

tope labeled NH2Cl to dimethylamine and measured the mass spectra of NDMA.61 δ13C

values of NDMA produced with NH2Cl-A and NH2Cl-B (grey and black diamonds, re-

spectively, in Figure 4.2b) were identical, in agreement with the fact that both C atoms

of the N(CH3)2 group of NDMA originate from DFUR.

4.3.3 Isotope fractionation trends in tertiary amines and

NDMA reflect the multistep NDMA formation pathway

As illustrated in Figure 4.1, NDMA formation is a multistep process in which N atoms

play a key role. Deprotonation of tertiary amines occurs prior to the initial reaction

with NH2Cl leading to a hydrazine-type intermediate (compound 2 in Figure 4.1).79

Subsequently, the NH2-group of 2 is oxidized to a N-centered radical 3 that reacts

with O2.
217 The final release of NDMA from compound 5 requires the formation of

a nitroso moiety as well as the cleavage of a C-N bond to the methylene group of

the tertiary amine. As molar NDMA yields were smaller than 100%, tertiary amines or

intermediate species also react to products other than NDMA. Every elementary reaction

step depicted in Figure 4.1 might be associated with an isotope effect and could cause

isotope fractionation in the precursors (tertiary amine and NH2Cl) as well as in NDMA.

In the following, we evaluate which of these reactions contribute to the observable isotope

fractionation in the tertiary amine precursor and in NDMA.
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C and N isotope fractionation in tertiary amines during chloramination

We studied C and N isotope fractionation in two tertiary amine model compounds,

namely N,N -dimethylthiophene-2-methylamine (DMTA) and N,N -dimethylbenzyl-

amine (DMBA) during chloramination. DMTA and DMBA are structurally similar

to DFUR, known to produce high NDMA yields,67 and are - in contrast to DFUR -

amenable to isotope analysis by GC/IRMS. Figure 4.3a shows NDMA formation during

the reaction of DMTA (40μM) with NH2Cl (600μM) in 10mM phosphate buffer at

pH 8.0. Similar to the experiment with DFUR, NDMA formation was concurrent with

the transformation of DMTA and consumption of NH2Cl. After 4 h, a total amount of

288± 6μM NH2Cl was consumed and a molar NDMA yield of 75.4± 0.1% was observed

in agreement with previously published data.67 Chloramination of DMTA was accom-

panied by C and N isotope fractionation in the remaining tertiary amine (Figure 4.3b).

δ13C as well as δ15N values of DMTA changed towards more positive values over time

demonstrating that precursor molecules containing 12C and 14N reacted preferentially.

While δ13C values increased by +8.6� (from –35.6� to –27.0�), a significantly stronger

increase of +52.9� was observed in δ15N values (from –4.5� to +48.4�).

Generally, isotope fractionation in a reactant reflects all reaction steps up to and

including the first irreversible one.83 In multistep processes, observable isotope fraction-

ation is, thus, a combination of several isotope effects and dominated by isotope-sensitive

reaction steps with the highest activation energy.83 While rate-determining steps of the

NDMA formation reaction cannot be identified a priori, the data in Figures 4.2a and 4.3a

provide information about the overall NDMA formation kinetics. As the transformation

of the tertiary amine and formation of NDMA occur simultaneously without formation

of long-lived intermediates, we conclude that only one rate-determining step governs the

reaction. This step might be either the formation of the first reaction intermediate (com-

pound 2 in Figure 4.1) or the formation of the N-centered radical (3) because reactions

3 → 4 → 5 are expected to be significantly faster and irreversible due to the radical

nature of the intermediates.

It is thus likely that reactions 1 → 2 or 1 � 2 → 3 in Figure 4.1 cause N isotope frac-

tionation in DMTA. However, the observed changes in N isotope ratios of DMTA, shown

in Figure 4.3b, are not only caused by the transformation reaction of DMTA but also

by its deprotonation. Recent studies showed that deprotonation of N,N -dimethylaniline

and substituted anilines is associated with a 15N equilibrium isotope effect (EIE) of

1.014 - 1.0203.130,224,225 We determined an EIE for deprotonation of DMTA, which was

in the same range (EIEBH+−B
N =1.0103± 0.0004, Table S4.2). Given that approximately
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Figure 4.3: NDMA formation from the reaction of DMTA (40μM) with NH2Cl (600μM) in
10mM phosphate buffer at pH 8.0. Panel (a) shows DMTA degradation, NH2Cl consumption,
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98% of the DMTA molecules are protonated at pH 8.0, the observed N isotope fraction-

ation in DMTA was mainly caused by its deprotonation. Compared to the apparent N

kinetic isotope effect, AKIEN, of 1.0127± 0.0007, which was derived from the measured

δ15N values of DMTA (Figure 4.3b), the AKIEB
N associated with the reaction of deproto-

nated DMTA was small (1.0025± 0.0011, Table S4.2). Assuming that the first reaction

step (1 → 2 in Figure 4.1) is irreversible, this small, normal AKIEB
N reflects the initial

nucleophilic substitution reaction of the tertiary amine with NH2Cl. In fact, nitrogen

nucleophile isotope effects are expected to be small and normal.226 Molar NDMA yields

from DMTA were <100% indicating that DMTA might form products other than com-

pound 2 in isotope-sensitive side reactions (Figure 4.1). The AKIEB
N would then reflect

combined contributions of two or more KIEs. However, we assume that NDMA yields

<100% are rather caused by side reactions involving radical intermediates such as com-

pounds 3 and 4 in Figure 4.1. DMTA is thus likely transformed stoichiometrically to

compound 2 so that the AKIEB
N reflects the nucleophilic substitution reaction.

The results obtained from chloramination of DMBA were almost identical to those

with DMTA, despite a lower molar NDMA yield of 58± 0.6% (see Figure S4.2 and

Table S4.2). Using a pKa value of 9.0 for DMBA222 and the EIEBH+−B
N obtained

for DMTA, the AKIEB
N associated with the reactive transformation of DMBA was

1.0056± 0.0007 and only slightly larger than the one for DMTA. This observation

confirms our assumption that no isotope-sensitive side reactions are involved in the

transformation of the tertiary amines and the AKIEB
N reflects the initial nucleophilic

substitution reaction leading to compound 2 in Figure 4.1.

In contrast to strong N isotope fractionation trends, changes in C isotope ratios of

DMTA and DMBA were small (Figure 4.3b and S4.2b). We did not determine EIEC

for the deprotonation of DMTA, but assume small values of ≤1.001 as found for the

deprotonation of substituted anilines.130 Small changes in C isotope ratios of DMTA

are in agreement with the observation that the methylthiophene-moiety of DMTA did

not react with NH2Cl (Figure S4.9). Consequently, the reaction of DMTA with NH2Cl

occurs exclusively at the N(CH3)2 group of DMTA and only involves the N atom of this

moiety. Small changes in δ13C values of DMTA and DMBA are thus due to secondary

isotope effects (secondary AKIEC of 1.0021± 0.0003 and 1.0014± 0.0001, respectively)

that arise because both methyl groups as well as the methylene group of the tertiary

amines are in direct proximity to the reactive site.
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N isotope fractionation in NDMA during chloramination of tertiary amines

The normal N isotope fractionation trends in the tertiary amine precursors show that
14N atoms of DMTA and DMBA reacted preferentially with NH2Cl. Indeed, NDMA

was enriched in 14N at the beginning of the reaction (Figure 4.3b). Subsequently, δ15N

values of NDMA increased over time (from –28.2� to –19.8�) because an increasing

share of 15N reacted. The N isotope fractionation trend observed in the tertiary amine

precursors is thus consistent with the one observed in NDMA.

In general, isotope fractionation in NDMA can be caused by all reaction steps of the

NDMA formation pathway (Figure 4.1). As described above, the nucleophilic substitu-

tion reaction (1 → 2) is likely associated with a measurable nitrogen KIE because a N-N

bond is formed.226 In contrast, the formation of aminyl radicals (2 → 3) is expected to

be of minor relevance for the overall N isotope fractionation in NDMA because KIEs

reported for N-atom oxidation of aromatic N -alkylamines are small.148,221 The forma-

tion of peroxyl radicals (3 → 4) might be isotope sensitive as well but its contribution

to the N isotope fractionation in NDMA is likely minor because radical reactions with

O2 are expected to be faster than other reaction steps in the NDMA formation reac-

tion.200 The coupling of two peroxyl radicals to a tetroxide species (4 → 5) will not

be reflected in the N isotope ratios of NDMA because only oxygen atoms are directly

involved in the reaction. In contrast, the final release of NDMA (5 → 6), which requires

the formation of the N=O moiety as well as the cleavage of a C-N bond, likely con-

tributed to the observable N isotope fractionation in NDMA.227 In addition, NH2Cl and

radical intermediates could react in parallel side reactions to unidentified products other

than NDMA, which might lead to isotope discrimination (Figure 4.1). Consequently, a

combination of reactions and their KIEs causes the observed trend of increasing δ15N

values of NDMA (Figures 4.2b and 4.3b), which is likely to be characteristic for NDMA

formation from chloramination of tertiary amines.

4.3.4 Isotope fractionation trends in NDMA as proxy for its

formation pathway and precursors

Even though reaction steps that cause observable changes in N isotope ratios of

NDMA cannot be identified unequivocally, we hypothesize that stable isotope fraction-

ation trends in NDMA are characteristic for the NDMA formation pathway. Linear

correlations of measured isotope signatures of two elements of a compound (e.g., δ15N

versus δ13C) have been used frequently to distinguish and identify transformation path-
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borate buffer (pH 8.0). Solid lines represent linear regressions and dashed lines are the corre-
sponding 95% confidence intervals. Standard deviations of triplicate δ13C and δ15N measure-
ments of NDMA were <0.4� and <0.6�, respectively, and smaller than the depicted symbols.

ways of organic contaminants because dual isotope slopes are a strong indicator for the

reaction mechanism.83,93,106,152 Similarly, dual isotope slopes could serve as proxy for

NDMA formation mechanisms and precursors. To test this hypothesis, we determined

δ13C and δ15N values of NDMA during its formation from four tertiary amines, namely

ranitidine, DFUR, DMTA, and DMBA, in independent chloramination experiments.

Owing to the structural similarity of these precursors, NDMA formation is expected to

proceed via the same reaction mechanism as proposed in Figure 4.1. C and N isotope

fractionation patterns in NDMA should therefore be alike.

Figure 4.4 shows δ15N versus δ13C values of NDMA during its formation from chlor-

amination of the selected tertiary amines. The initial δ15N values of NDMA were similar

110



Stable Isotope Fractionation Trends in NDMA as Proxy for Its Formation Pathway

(between –24.1� and –28.2�) what is likely due to similar initial δ15N values of the

precursors (between –2.2� and –4.5�, Table S4.1). In contrast, initial δ13C values of

NDMA differed between –36.8� and –50.7� due to distinctly different initial δ13C

values of the precursors (between –19.8� and –35.5�, Table S4.1). However, we ob-

served for all precursors that changes in δ13C values of NDMA were minor, while δ15N

values of NDMA significantly increased by +8.4� to +20.6� during its formation

(Figures 4.4 and S4.5, Table S4.3). Correlation of δ13C and δ15N values of NDMA

revealed characteristic trends that could, indeed, serve as proxy for the NDMA for-

mation pathway during chloramination of the selected tertiary amines (Figure 4.4).

δ15NNDMA / δ13CNDMA-slopes were 6.9± 0.5, 5.1± 2.1, and 6.3± 0.6 for chloramination

of DFUR, DMTA, and DMBA, respectively, in 10mM phosphate buffer at pH 8.0

(Table 4.1). These slopes were very similar and independent of the molar NDMA yield

which was 65± 2%, 75± 0.1%, and 58± 1% for DFUR, DMTA, and DMBA, respec-

tively, in agreement with previously reported values (Table 4.1, Figure S4.5).67 For chlor-

amination of ranitidine under the same reaction conditions, we observed a high molar

NDMA yield of 97± 4%162 and a bigger δ15NNDMA / δ13CNDMA-slope of 13.3± 5.0. As

our study reports the first correlated δ13C and δ15N values of NDMA, reference values

for chloramination of amines do not yet exist. Therefore, it is difficult to assess whether

differences in δ15NNDMA / δ13CNDMA-slopes are significant and indicative of changes in

the reaction mechanism.

Table 4.1: Molar NDMA yield in percent as well as dual isotope slopes δ15NNDMA/δ
13CNDMA

for the reaction of DFUR (3μM), ranitidine (3μM), DMTA (40μM), and DMBA (40μM) with
NH2Cl (45μM or 600μM, respectively) in 10mM phosphate buffer at pH 8.0. Chloramination
experiments with DFUR were conducted using differing buffer types and concentrations, and
pH values.

Precursor buffer pH molar NDMA yield δ15NNDMA/δ
13CNDMA

conc (μM) type (%) (-)

DFUR 10mM phosphate 8.0 65 ± 2 6.9 ± 0.5

10mM phosphate 7.0 66 ± 1 5.5 ± 0.6

50mM phosphate 8.0 68 ± 1 5.0 ± 0.9

10mM borate 8.0 88 ± 1 12.3 ± 3.5

ranitidine 10mM phosphate 8.0 97 ± 4 13.3 ± 5.0

DMTA 10mM phosphate 8.0 75 ± 0.1 5.1 ± 2.1

DMBA 10mM phosphate 8.0 58 ± 1 6.3 ± 0.6
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Because all four selected tertiary amines likely produce NDMA via the same reaction

pathway (Figure 4.1), we hypothesize that the here observed isotope fractionation trends

and δ15NNDMA / δ13CNDMA-slopes in the range of 5.1 - 13.3 are characteristic for chloram-

ination of the selected class of tertiary amines. Future studies need to evaluate whether

chloramination of other tertiary amine-containing precursors also leads to C and N iso-

tope fractionation trends similar to the ones observed in this study.

δ15NNDMA / δ13CNDMA-slopes could serve as proxy for the NDMA formation pathway

during chloramination of the here studied tertiary amines and might help to identify this

important class of precursors in source waters used for drinking water production. How-

ever, such an application of CSIA requires that isotope fractionation trends in NDMA are

a robust measure for NDMA formation from specific precursors. It has been shown previ-

ously that water matrix components, presumably natural organic matter, can slow down

the formation of NDMA during chloramination of ranitidine without affecting the molar

NDMA yield.71 To test whether reaction conditions that change NDMA conversion rates

affect N isotope fractionation trends in NDMA, we chloraminated the model precursor

DFUR under various experimental conditions using differing buffer types and concentra-

tions as well as differing pH values (Table 4.1). As shown in Figure S4.6, NDMA forma-

tion from DFUR was accelerated with increasing phosphate buffer concentration (from

1mM- 50mM, pH 8.0) indicating that the rate-determining reaction step is catalyzed

in the presence of phosphate. However, the δ15NNDMA / δ13CNDMA-slope determined in

the experiment with 50mM phosphate buffer (5.0± 0.9, Table 4.1) was similar to the

value observed in 10mM phosphate buffer (6.9± 0.5). Also decreasing the pH value

of a 10mM phosphate buffer from 8.0 to 7.0 did not have a significant effect on the

δ15NNDMA / δ13CNDMA-slope (5.5± 0.6), even though NDMA formation was decelerated

at pH 7.0 (Figures S4.11, S4.12, and S4.13). Likewise, the use of 10mM borate and car-

bonate buffer instead of 10mM phosphate or arsenate buffer significantly slowed down

DFUR degradation and NDMA formation (Figure S4.7). The δ15NNDMA / δ13CNDMA-

slope obtained in an experiment with borate buffer was 12.3± 0.5 and, thus, bigger than

other slopes obtained for chloramination of DFUR (Table 4.1). However, this value was

similar to the one obtained during chloramination of ranitidine. These robust isotope

fractionation trends indicate that NDMA formation during chloramination of DFUR

proceeded via the same reaction mechanism even though the reaction conditions and

NDMA formation kinetics varied.
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4.4 Implications for CSIA as a tool to identify

NDMA precursors

Our study provides first evidence that isotope fractionation trends in NDMA reflect

its formation pathway. The slope of the linear correlation of δ13C and δ15N values of

NDMA can serve as proxy for NDMA formation during chloramination of the studied

class of tertiary amines, even under varying reaction conditions. Future studies need

to investigate whether the observed range of δ15NNDMA / δ13CNDMA-slopes (from 5.0 -

13.3) is characteristic for chloramination of a broader range of tertiary amine-containing

NDMA precursors. Moreover, the potential variability of C and N isotope fractionation

trends in NDMA needs to be investigated, e.g., during chloramination of tertiary amines

in the presence of natural organic matter. Current knowledge suggests that NDMA for-

mation mechanisms differ depending on the precursor and disinfectant.30 However, it

is currently unknown if and to what extent differing NDMA formation pathways are

reflected in isotope fractionation trends in NDMA and if these trends can be used to

distinguish different pathways. Future studies need to systematically investigate whether

differing NDMA formation pathways cause unique isotope fractionation trends. Com-

piling a repository of δ15NNDMA / δ13CNDMA-slopes for NDMA formation from differing

precursors and disinfectants will be crucial to distinguish and identify relevant NDMA

precursors in source waters used for drinking water production.
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S4.1 Safety considerations

N -nitrosamines are mutagenic and probably carcinogenic to humans. Wear appropriate

protective clothing, goggles, and gloves and work in a well-ventilated chemical fume

hood. Keep away from heat, sparks, and flames.

S4.2 Chemicals

All chemicals were used without further purification. 5-(dimethylaminomethyl)furfuryl

alcohol hydrochloride (DFUR, 96%) and N,N -dimethylthiophene-2-methylamine

(DMTA) were purchased from ABCR and Santa Cruz Biotechnology, respec-

tively. Ranitidine hydrochloride, N,N -dimethylbenzylamine (DMBA, 99%), N -nitroso-

dimethylamine (NDMA, 5000μg/ml in methanol, 99.9%), 2-thiophenemethanol (98%),

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, ≥98%),

potassium iodide (≥99%), sodium nitrite (NaNO2, 99%), sodium thiosulfate (Na2S2O3,

≥98%), and potassium phosphate monobasic (KH2PO4, puriss, ≥99.5%) were purchased

from Sigma Aldrich. Sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3)

were obtained from Merck. Boric acid (>98%) and di-sodium hydrogen arsenate hepta-

hydrate (Na2HAsO4, ACS >98.5%) were from Fluka. For NH2Cl preparation, we used

sodium hypochlorite (6-14% HOCl, Sigma-Aldrich) and ammonium chloride (NH4Cl,

99.5%, Fluka) or 15N-enriched ammonium sulfate ((NH4)2SO4, USGS26) that was pur-

chased from the International Atomic Energy Agency (IAEA).218

Analyte stock solutions were made in ethyl acetate (99.7%, Chromasolv for HPLC,

Sigma Aldrich), or methanol (99.99%, Fisher Scientific). These solvents were also used

for solid phase extraction (SPE) in addition to pentane (99.0%, Sigma-Aldrich). Aque-

ous solutions were prepared with deionised water (18.1 MΩ · cm, Barnstead NANOpure

Diamond Water Purification System). The pH value of buffered solutions was adjusted

with sodium hydroxide pellets (NaOH, puriss, ≥99%, Sigma-Aldrich) or aqueous NaOH

solution (Sigma-Aldrich). For SPME-GC/MS and SPME-GC/IRMS analyses the ionic

strength of the samples was raised with sodium chloride (NaCl, 99.5%, Merck). Helium

(He, 99.999%) was used as carrier gas for GC/MS and GC/IRMS analysis. Reference

gases for GC/IRMS measurements were CO2 (99.999%), N2 (99.999%), H2 (99.999%)

and O2 (99.999%) from Carbagas (Rümlang, Switzerland).

116



Stable Isotope Fractionation Trends in NDMA as Proxy for Its Formation Pathway

S4.3 Stable isotope analysis

S4.3.1 Reference isotope signatures

Table S4.1: C and N isotope signatures of in-house standards measured
with elemental analyzer isotope ratio mass spectrometry (EA/IRMS).

Compound δ15N δ13C

ranitidine –3.36 ± 0.11 –28.24 ± 0.03

DFUR –2.22 ± 0.39 –19.76 ± 0.03

DMTA –4.52 ± 0.08 –35.54 ± 0.03

NH4Cl –1.44 ± 0.03a -

(NH4)2SO4
b +53.7 ± 0.4a -

aReported as proxy for the initial δ15N value of NH2Cl generated from the
reaction of HOCl with NH4Cl or (NH4)2SO4
b Standard reference material USG26 obtained from IAEA218

S4.3.2 Method quantification limits (MQLs) for C and N

isotope analysis of DMTA

15
 N 

(‰
)

DMTA concentration (μM)

A
m

pl
itu

de
 m

/z
 2

8 
(V

)

13
 C 

(‰
)

DMTA concentration (μM)

A
m

pl
itu

de
 m

/z
 4

4 
(V

)

-3

-2

-1

0

1

2

3

151050

3

2

1

0

M
Q

L

-1‰

+1‰

-4

-2

0

2

4

0.80.60.40.20.0

6

4

2

0

M
Q

L

-0.5‰

+0.5‰

Figure S4.1: Accuracies of (a) C and (b) N isotope signatures of DMTA as function of the
DMTA concentration. Amplitudes increased with increasing DMTA concentrations. MQLs
were determined according to the moving mean procedure of Jochmann et al.141 with intervals
of ±0.5� and ±1� for C and N isotope analysis, respectively (purple lines). MQLs are
indicated as grey bars and moving means by dashed lines.
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S4.4 Isotope fractionation in tertiary amines during

chloramination

S4.4.1 Isotope fractionation in DMTA and DMBA
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Figure S4.2: NDMA formation from the reaction of DMBA (40μM) with NH2Cl (600μM) in
10mM phosphate buffer at pH 8.0. Panel (a) shows DMBA degradation, NH2Cl consumption,
and NDMA formation over time. Panel (b) illustrates δ13C and δ15N values of DMBA (brown
symbols) and DMTA (purple symbols) over time. Standard deviations of triplicate δ13C and
δ15N measurements of DMTA and DMBA were <0.4� and <0.8�, respectively, and smaller
than the depicted symbols.
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S4.4.2 Bulk isotope enrichment factors

ln
 (

(
h E 

+ 
1)

 /
 (

h E 0
 +

 1
))

 (
‰

)

2.1 0.3‰
bulk

±C

12.5 0.7‰
bulk

±N

15
NDMTA

13
CDMTA

60x10
-3

40

20

0

ln
 (

(
h E 

+ 
1)

 /
 (

h E 0
 +

 1
))

 (
‰

)

-4 -3 -2 -1 0

15
NDMBA

13
CDMBA

14.8 0.3‰
bulk

±N

1.4 0.1‰
bulk

±C

ln (c/c0)

60x10
-3

40

20

0

-4 -3 -2 -1 0
ln (c/c0)

Figure S4.3: Linearized C and N isotope fractionation of (a) DMTA and (b) DMBA used to
derive C and N bulk isotope enrichment factors, εbulkC and εbulkN , respectively.

S4.4.3 15N equilibrium isotope effect associated with the de-

protonation of DMTA
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Figure S4.4: N isotope signatures (δ15NDMTA) measured with SPME-GC/IRMS in the
neutral fraction of DMTA (a) versus pH of the aqueous DMTA samples (from 8.4 - 11.3) in
10mM phosphate buffer and (b) versus the fraction of protonated DMTA species (fBH+).
The concentration of protonated DMTA in a sample was calculated using peak areas of the
GC/IRMS measurements. The slope of the regression line corresponds to the enrichment fac-

tor for the deprotonation of DMTA (εBH+−B
N ). The standard deviation of triplicate δ15NDMTA

measurements was <0.8� and smaller than the depicted symbols.
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S4.4.4 Isotope enrichment factors and kinetic isotope effects

associated with the reaction of DMTA and DMBA

Table S4.2: Carbon and nitrogen bulk isotope enrichment factors, εbulkC and εbulkN , and
apparent kinetic isotope effects, AKIEC and AKIEC, for the chloramination of DMTA
and DMBA. EIEBH+−B

N is the equilibrium isotope effect associated with deprotonation
of DMTA. AKIEB

N is the apparent kinetic isotope effect associated with the reaction of
deprotonated DMTA and DMBA.

Compound εbulkC εbulkN AKIEC AKIEN EIEBH+−B
N AKIEB

N

(�) (�) (-) (-) (-) (-)

DMTA –2.1±0.3 –12.5±0.7 1.0021±0.0003 1.0127±0.0007 1.0103±0.0004 1.0025±0.0011

DMBA –1.4±0.1 –14.8±0.3 1.0014±0.0001 1.0150±0.0003 -a 1.0056±0.0007b

a not determined b calculated with the EIEBH+−B
N of DMTA

The observable AKIEN is the weighted average of the protonated (fBH+) and deproto-

nated fraction (1-fBH+) and their respective isotope effects as shown in eq. S4.1.130

AKIEN = fBH+ · EIEBH+−B
N · AKIEB

N + (1− fBH+) · AKIEB
N (S4.1)

S4.5 C, H, and N isotope ratios of NDMA during

chloramination of four tertiary amines

Table S4.3: N isotope signatures of NDMA, δ15Nini
NDMA and δ15Nend

NDMA in permil, deter-
mined at the beginning and the end of the reaction of ranitidine (3μM), DFUR (3μM),
DMTA (40μM), and DMBA (40μM) with NH2Cl which was added in 15-fold excess
(45μM or 600μM), respectively. The molar NDMA yield corresponding to the δ15NNDMA

values is specified in percent.

Precursor δ15Nini
NDMA NDMA yield δ15Nend

NDMA NDMA yield Δ15NNDMA

(�) (%) (�) (%) (�)

ranitidine –24.1 9 –3.5 97 +20.6

DFUR –24.8 12 –8.7 65 +16.1

DMTA –28.2 8 –19.8 75 +8.4

DMBA –26.9 5 –13.2 58 +13.7
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S4.6 Impact of buffer concentration and type on

NDMA formation kinetics and N isotope

fractionation

S4.6.1 Phosphate buffer concentration
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Figure S4.6: Reaction of DFUR (3μM) with NH2Cl (45μM) in 1mM, 5mM, 10mM, and
50mM phosphate buffer at pH 8.0. Panel (a) shows NDMA formation over time, panel (b)
depicts the concentration of consumed NH2Cl versus formed NDMA concentration, and panel
(c) shows the pH value during the chloramination reaction. The formation of NDMA was
significantly accelerated with increasing phosphate buffer concentration, but the final NDMA
yield was independent of the buffer concentration. Note that during the NDMA formation
reaction, the pH value remained stable for all phosphate concentrations except that the pH
significantly dropped when 1mM phosphate buffer was used.
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S4.6.2 Buffer type
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Figure S4.7: Reaction of DFUR (3μM) with NH2Cl (45μM) in 10mM phosphate, 10mM
arsenate, 10mM borate, and 10mM carbonate buffer at pH 8.0. Panel (a) shows the formation
of NDMA, panel (b) the consumption of NH2Cl, panel (c) the degradation of DFUR, and
panel (d) the pH value over the time course of the reaction. Experiments in phosphate and
arsenate buffer showed similar results in terms of NDMA formation, DFUR degradation, and
NH2Cl consumption. In contrast, results from experiments in borate buffer resembled those
in carbonate buffer. The pH value of the carbonate buffer significantly increased during the
chloramination reaction, while the pH remained widely stable when phosphate, arsenate, or
borate were used.
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S4.6.3 Impact of buffer concentration and buffer type on N

isotope fractionation in NDMA
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Figure S4.8: Panel (a) shows the NDMA yield in percent formed during the reaction of
DFUR (3μM) and NH2Cl (45μM) in 10mM and 50mM phosphate buffer and in 10mM
borate buffer at pH 8.0. Panels (b) and (c) show the corresponding δ15N and δ13C values of
NDMA, respectively, versus the molar NDMA yield. Solid lines represent the initial isotope
signatures of DFUR and NH2Cl. Note that experiments in 10mM phosphate buffer were
conducted with NH2Cl-A or NH2Cl-B that had distinctly different initial δ15N values (red
vs. blue line in panel b). The experiment in 10mM borate buffer was only conducted with
NH2Cl-A, the one in 50mM phosphate buffer only with NH2Cl-B what explains the shift in
absolute δ15N values of NDMA. The initial N isotope signature of NH2Cl did not affect trends
in N isotope signatures and δ13C values of NDMA.
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S4.7 Chloramination of 2-thiophenemethanol
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Figure S4.9: NH2Cl concentration measured with the ABTS method over 30 h in three
different batches containing (i) 3μM DFUR and 45μM NH2Cl, (ii) 45μM NH2Cl, and (iii)
3μM 2-thiophenemethanol and 45μM NH2Cl in 10mM phosphate buffer at pH 8.0. Note
that NH2Cl concentrations were not corrected by the self-decay of chloramine observed in the
NH2Cl control.
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S4.8 pH-dependence of NDMA formation
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Figure S4.10: Influence of pH on the molar NDMA yield after 6 days from the reaction of
ranitidine (3μM, blue) or DFUR (3μM, green) with NH2Cl (45μM). Experiments at pH 7, 8,
and 11.5 were conducted in 10mM phosphate buffer, while 10mM carbonate buffer was used
for experiments at pH 9 and 10.
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Figure S4.11: Influence of pH on the NDMA formation kinetics during chloramination (45μM
NH2Cl) of (a) ranitidine (3μM) and (b) DFUR (3μM). Experiments at pH 7, 8, and 11.5 were
conducted in 10mM phosphate buffer, experiments at pH 9 and 10 in 10mM carbonate buffer.
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Figure S4.12: NDMA formation and corresponding C, H, and N isotope signatures of NDMA
during the reaction of DFUR (3μM) with NH2Cl (45μM) at pH 7.0 and pH 8.0 in 10mM
phosphate buffer. Upper panels (a) and (b) show the kinetics of DFUR and NH2Cl degradation
as well as NDMA formation at pH 7.0 and 8.0, respectively. Lower panels (c) and (d) show the
corresponding δ13C, δ2H, and δ15N values of NDMA over time. Solid lines represent the initial
C and N isotope signatures of the precursor compounds DFUR and NH2Cl. Note that we
report the reference isotope signature of NH4Cl (Table S4.1) as proxy for the initial δ15N value
of NH2Cl. Standard deviations of triplicate δ13C, δ2H, and δ15N measurements of NDMA were
<0.4�, <4.0�, and <0.3�, respectively, and mostly smaller than the depicted symbols.
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Figure S4.13: NDMA formation and corresponding C, H, and N isotope signatures of NDMA
during the reaction of ranitidine (3μM) with NH2Cl (45μM) at pH 7.0 and pH 8.0 in 10mM
phosphate buffer. Upper panels (a) and (b) show the kinetics of ranitidine and NH2Cl degra-
dation as well as NDMA formation at pH 7.0 and 8.0, respectively. Lower panels (c) and (d)
show the corresponding δ13C, δ2H, and δ15N values of NDMA over time. Solid lines represent
the initial C and N isotope signatures of the precursor compounds ranitidine and NH2Cl. Note
that we report the reference isotope signature of NH4Cl (Table S4.1) as proxy for the initial
δ15N value of NH2Cl. Standard deviations of triplicate δ13C, δ2H, and δ15N measurements of
NDMA were <0.3�, <11.5�, and <0.5�, respectively, and mostly smaller than the depicted
symbols.
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S4.9 N isotope signatures versus NDMA yield
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Figure S4.14: δ15N values of NDMA versus molar NDMA yield. Experiments were conducted
(a) with different precursor compounds, namely ranitidine (3μM), DFUR (3μM), DMTA
(40μM), and DMBA (40μM) with NH2Cl which was added in 15-fold excess (45μM and
600μM, respectively) in 10mM phosphate buffer at pH 8.0 and (b) with DFUR (3μM) and
NH2Cl (45μM) using either 10mM or 50mM phosphate buffer at pH 8.0, 10mM borate buffer
at pH 8.0, or 10mM phosphate buffer at pH 7.0. Solid lines represent initial δ15N values of the
precursor compounds and NH2Cl. Standard deviations of triplicate δ15N measurements were
<0.6� and smaller than the depicted symbols.
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Chapter 5

5.1 CSIA for investigating NDMA formation path-

ways

The findings presented in this study demonstrate that CSIA is a viable approach to

(i) gain new insights into NDMA formation mechanisms and (ii) obtain proxies for

NDMA formation pathways and reactive precursor moieties in form of stable isotope

fractionation trends. In laboratory model systems, NDMA formation was studied during

chloramination of secondary and tertiary amines, which have been previously identified

as important NDMA precursor compounds.30

The presented results suggest that NDMA is formed in a complex multi-step process

in which the reaction of dissolved O2 with radical intermediates plays an important role.

C, H, and N isotope signatures of NDMA enabled a source apportionment of elements

of NDMA, which revealed that the N(CH3)2 group of NDMA stemmed from the organic

amine while the N atom of the N=O moiety originated from chloramine. This finding is

in agreement with the proposed nucleophilic substitution reaction of the deprotonated

organic amine with chloramine as first reaction step. New insights into subsequent

reaction steps involving dissolved O2 were obtained from oxygen isotope analysis of

aqueous O2, which was applied for the first time in the context of a DBP formation study.

Changes in 18O/16O ratios of O2 were indicative of a reaction of O2 with radicals, which

was confirmed in experiments with radical scavengers. While the chemical structure and

properties of radical intermediates remain to be identified, the presented results hint at

NDMA formation via a N -peroxyl radical coupling mechanism. As shown previously

by Shen and Andrews, water matrix components can significantly slow down NDMA

formation during chloramination of the studied tertiary amines while only having a minor

effect on the molar NDMA yield.124 Future studies need to investigate the interactions

of water matrix components such as natural organic matter with tertiary amines or

reactive (radical) intermediates during chloramination.

The presented study further provides first evidence that isotope fractionation trends

in NDMA reflect its formation pathway. N isotope ratios of NDMA changed towards

more positive values during its formation from chloramination of four tertiary amines

with similar molecular structure and high molar NDMA yields (>60%). While the re-

action steps that caused this observed N isotope fractionation in NDMA could not be

identified unequivocally due to the complex NDMA formation mechanism, linear trends

in δ15N versus δ13C values of NDMA were characteristic for NDMA formation during

chloramination of the selected tertiary amines (Figure 5.1). δ15NNDMA / δ13CNDMA-slopes
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Figure 5.1: (a) δ15N versus δ13C values of NDMA formed during the reaction of DFUR
(3μM) with NH2Cl (45μM) under the specified reaction conditions. Solid lines represent linear
regressions. (b) δ15NNDMA / δ13CNDMA- slopes versus the molar NDMA yield from DFUR.
Experiments were conducted in 10mM phosphate buffer (pH 7.0 and 8.0), 50mM phosphate
buffer (pH 8.0), 10mM borate buffer (pH 8.0), and 10mM carbonate buffer (pH 9.0).

did not show significant changes when chloramination conditions were varied and might

thus serve as proxy for NDMA formation from this important class of precursors. This

dissertation paves the way for future studies that need to address the question of whether

isotope fractionation trends in NDMA are (i) robust under (varying) conditions encoun-

tered in water treatment, (ii) specific fingerprints for NDMA precursor compounds, and

(iii) instrumental in identifying NDMA precursors in natural waters.

5.2 Potential variability of isotope fractionation

trends in NDMA

As highlighted in Chapter 4, isotope fractionation trends in NDMA were robust even

under differing experimental conditions. Figure 5.1 shows that δ15NNDMA / δ13CNDMA-

slopes were in the same range (between 5.0± 0.9 and 6.9± 0.5) when NDMA was formed

during chloramination of DFUR in 10mM vs. 50mM phosphate buffer and at pH
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7.0 vs. 8.0. This observation demonstrates that NDMA was formed via the same

reaction mechanism even though reaction kinetics varied. However, the additional data

presented in Figure 5.1 are a first indication that observable isotope fractionation trends

can vary depending on the chloramination conditions. In 10mM borate buffer at pH 8.0,

DFUR was very efficiently converted to NDMA (88% molar NDMA yield) and a bigger

δ15NNDMA / δ13CNDMA-slope of 12.3± 3.5 was obtained. This value is, however, still in

the same range than the slope observed during chloramination of ranitidine (13.3± 5.0).

In contrast, a significantly smaller slope of 2.7± 1.6 was found in 10mM carbonate buffer

at pH 9.0, where only 33% of the initial DFUR concentration was converted to NDMA.

These data suggest a correlation between δ15NNDMA / δ13CNDMA-slopes and the molar

NDMA yield (Figure 5.1b). This finding indicates that competing reactions leading to

products other than NDMA were likely isotope-sensitive and thus influenced the isotopic

composition of NDMA. Such isotope-sensitive side reactions can also explain changes

in the initial N isotope signature of NDMA as depicted in Figure 5.1a. While NDMA

formed in phosphate and borate buffer was depleted in 15N at the beginning of the

reaction (δ15Nini≈ –20 to –25�), NDMA was approximately +20� more enriched in 15N

when formed in 10mM carbonate buffer at pH 9.0 (δ15Nini=0.3�). This observation

suggests that unidentified reaction products, which were potentially formed from the

reaction of carbonate with radical intermediates, were enriched in 14N leading to 15N-

enriched NDMA. While these preliminary data are a first indication for the potential

variability of isotope fractionation trends, further research is needed to systematically

study (i) the extent to which δ15NNDMA / δ13CNDMA-slopes vary during chloramination

of selected model precursors, (ii) the factors influencing the variability of N isotope

fractionation trends (e.g., pH, buffer catalysis, competing parallel reactions), and (iii)

the potential of using δ15NNDMA / δ13CNDMA-slopes as proxy for NDMA formation from

specific precursors under varying conditions encountered in water treatment.

5.3 Isotope fractionation trends as fingerprints for

NDMA formation pathways and precursors

Based on the current knowledge, NDMA formation pathways can be distinctly differ-

ent depending on the chemical disinfectant used and the NDMA precursor compounds

present in source waters.30 Even though most NDMA formation pathways have not yet

been fully explored, it is likely that differing reaction mechanisms are associated with
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Figure 5.2: Simplified reaction mechanism for the hypohalous acid (HOX) assisted formation
of NDMA during ozonation of N,N -dimethylsulfamide (DMS).54

different kinetic isotope effects, because different chemical bonds are broken or formed.

Changes in the isotopic composition of NDMA might thus reflect differing NDMA for-

mation pathways and could be used as fingerprints for NDMA precursor compounds or

functional groups therein.

The data presented in Chapter 4 demonstrate that trends in correlated δ15N and δ13C

values of NDMA are indeed characteristic for chloramination of the selected class of ter-

tiary amines. To investigate whether differing NDMA formation pathways cause unique

fingerprints in the form of isotope fractionation trends, the presented SPE-GC/IRMS

method (Chapter 2) should be applied to systematically study C, H, and N isotope ratios

of NDMA formed from various precursor materials and disinfection / oxidation condi-

tions in laboratory model systems. In particular, ozonation of N,N -dimethylsulfamide

(DMS), which is a transformation product of the fungicide tolylfluanide, will be inter-

esting to investigate. Similar to the tertiary amines selected in the presented study,

DMS is efficiently converted to NDMA with molar NDMA yields up to >50%.41,54

However, the NDMA formation pathway from DMS is distinctly different from the

one proposed for tertiary amines in that no hydrazine-like intermediates are formed

(Figure 5.2). Instead, DMS is transformed in a hypohalous acid assisted ozonation reac-

tion to a nitrosodimethylsulfamide which undergoes an intramolecular rearrangement to

form NDMA and SO2.
54 Similar to NDMA formation from the studied tertiary amines,

fractionation is expected to be strongest in N isotopes, because N atoms are directly

involved in the formation of the N-N bond and the nitroso-moiety of NDMA. However,

owing to different chemical reactions leading to NDMA formation, N isotope ratios in

NDMA formed during ozonation of DMS might change in a distinctly different manner

compared to chloramination of tertiary amines.

Future studies should also focus on chloramination of differing amine-containing

NDMA precursors including dimethylamine, micropollutants containing tertiary-amine

functional groups and quaternary amine-based water treatment polymers.72,78 Trends in

δ15N versus δ13C values of NDMA obtained in these reactions could reveal (i) whether
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NDMA is formed via the same reaction mechanism including, for example, dimethyl-

amine as a common intermediate and (ii) whether differing amine-containing precur-

sors in natural waters can be distinguished based on characteristic isotope fractiona-

tion trends. The results presented in Chapter 3 indicate that NDMA formation from

secondary and tertiary amines proceeds via the same reaction mechanism especially con-

cerning the reaction of dissolved oxygen with reactive intermediates. However, molar

NDMA yields from the selected precursors varied between 1.4% and 90%. It remains to

be studied whether isotope fractionation trends in NDMA formed from secondary and

tertiary amines with low molar NDMA yield match those observed from the studied

tertiary amines with high molar NDMA yield (Figure 5.1). In this case, isotope frac-

tionation trends would confirm a common reaction pathway and can serve as proxy for

the class of amine-containing precursors. It could then be evaluated whether such a

common fingerprint of amine-containing precursors differs from the fingerprint of e.g.,

organic matter-derived NDMA precursors. Such differing isotopic fingerprints would be

an important prerequisite to distinguish and identify different classes of precursors in

natural waters.

5.4 Roadmap for the application of CSIA to identify

NDMA precursors in natural waters

To enable the identification of NDMA precursor compounds in real water samples, a

repository of isotope fractionation trends needs to be compiled from systematic studies

of NDMA formation from various precursors and disinfection / oxidation scenarios in

laboratory model systems. In a next step, source waters used for drinking water produc-

tion should be spiked with selected NDMA precursors prior to disinfection to investigate

whether water matrix components affect isotope fractionation trends in NDMA pertinent

to specific NDMA formation pathways. For example, groundwater or lake water samples

could be spiked with ranitidine prior to the addition of pre-formed chloramine. Trends

in correlated δ15N and δ13C values of NDMA can then be compared to those identified

in laboratory experiments (Chapter 4) to assess the effects of natural organic matter

or other water matrix components on the NDMA formation mechanism and the result-

ing isotope fractionation in NDMA. Finally, CSIA can be applied to identify relevant

NDMA precursors in natural waters. The comparison of C and N isotope fractiona-

tion trends in NDMA formed during disinfection of source water samples with those

obtained in laboratory model systems might provide a reaction-related characterization
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of functional groups responsible for NDMA formation in the source waters. Following

this precursor identification, appropriate precursor abatement strategies such as pre-

oxidation with ozone or adsorption on activated carbon can be implemented to mitigate

NDMA formation.68,159,212

However, one major challenge that needs to be overcome towards the application

of CSIA in drinking water is the selective enrichment of NDMA to concentrations of

≥45mgL−1 required for accurate stable isotope analysis. As described in Chapter 2, the

newly developed GC/IRMS method is coupled to solid-phase extraction, which enables a

1000-fold enrichment of NDMA.162 Accurate C, H, and N isotope analysis thus works for

aqueous samples containing ≥45μgL−1 NDMA which is approximately 1000-fold above

typical NDMA drinking water guideline values. Substantial amounts of drinking water

would have to be processed, which is only feasible by the development of automated

SPE-procedures. To selectively enrich NDMA from natural water matrices, molecularly

imprinted polymers (MIP) might be used in addition to the proposed SPE procedure.

MIPs have been recently developed for NDMA and other N -nitrosamines, but have

not yet been employed as sample clean-up method coupled to GC/IRMS analysis.228,229

In the future, CSIA could also be applied to a broader range of potentially harmful

DBPs. Here, the focus should be set on investigating formation pathways and precursors

of unregulated and highly genotoxic iodinated DBPs such as iodoacetic acid or iodo-

acetamide.10,230,231
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[51] Plumlee, M. H., López-Mesas, M., Heidlberger, A., Ishida, K. P., Reinhard, M.,
N -nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment
and analysis via LC/MSMS, Water Res., 2008, 42, 347–355.

[52] Lee, C., Choi, W., Yoon, J., UV photolytic mechanism of N -nitrosodimethylamine
in water: Roles of dissolved oxygen and solution pH, Environ. Sci. Technol., 2005,
39, 9702–9709.

[53] Gan, W., Bond, T., Yang, X., Westerhoff, P., Role of chlorine dioxide in N -nitroso-
dimethylamine formation from oxidation of model amines, Environ. Sci. Technol.,
2015, 49, 11429–11437.

[54] von Gunten, U., Salhi, E., Schmidt, C. K., Arnold, W. A., Kinetics and
mechanisms of N -nitrosodimethylamine formation upon ozonation of N,N -
dimethylsulfamide-containing waters: Bromide catalysis, Environ. Sci. Technol.,
2010, 44, 5762–5768.

143



Bibliography

[55] Mitch, W. A., Sedlak, D. L., Characterization and fate of N -nitrosodimethylamine
precursors in municipal wastewater treatment plants, Environ. Sci. Technol.,
2004, 38, 1445–1454.

[56] Choi, J., Valentine, R. L., N -nitrosodimethylamine formation by free-chlorine-
enhanced nitrosation of dimethylamine, Environ. Sci. Technol., 2003, 37, 4871–
4876.

[57] Yang, L., Chen, Z., Shen, J., Xu, Z., Liang, H., Tian, J., Ben, Y., Zhai, X.,
Shi, W., Li, G., Reinvestigation of the nitrosamine-formation mechanism during
ozonation, Environ. Sci. Technol., 2009, 43, 5481–5487.

[58] Schreiber, I. M., Mitch, W. A., Nitrosamine formation pathway revisited: The
importance of chloramine speciation and dissolved oxygen, Environ. Sci. Technol.,
2006, 40, 6007–6014.

[59] Choi, J., Duirk, S. E., Valentine, R. L., Mechanistic studies of N -nitroso-
dimethylamine (NDMA) formation in chlorinated drinking water, J. Environ.
Monit., 2002, 4, 249–252.

[60] Andrzejewski, P., Nawrocki, J., N -nitrosodimethylamine formation during
treatment with strong oxidants of dimethylamine containing water, Water Sci.
Technol., 2007, 56, 125–131.

[61] Choi, J., Valentine, R. L., Formation of N -nitrosodimethylamine (NDMA) from
reaction of monochloramine: A new disinfection by-product, Water Res., 2002,
36, 817–824.

[62] Gerecke, A. C., Sedlak, D. L., Precursors of N -nitrosodimethylamine in natural
waters, Environ. Sci. Technol., 2003, 37, 1331–1336.

[63] Dotson, A., Westerhoff, P., Krasner, S. W., Nitrogen enriched dissolved organic
matter (DOM) isolates and their affinity to form emerging disinfection by-
products, Water Sci. Technol., 2009, 60, 135–143.

[64] Kristiana, I., Tan, J., Joll, C. A., Heitz, A., von Gunten, U., Charrois, J. W.,
Formation of N -nitrosamines from chlorination and chloramination of molecular
weight fractions of natural organic matter, Water Res., 2013, 47, 535–546.

[65] Fang, J., Yang, X., Ma, J., Shang, C., Zhao, Q., Characterization of algal organic
matter and formation of DBPs from chlor(am)ination, Water Res., 2010, 44,
5897–5906.

[66] Wert, E. C., Rosario-Ortiz, F. L., Intracellular organic matter from cyanobacteria
as a precursor for carbonaceous and nitrogenous disinfection byproducts, Environ.
Sci. Technol., 2013, 47, 6332–6340.

144



Bibliography

[67] Selbes, M., Kim, D., Ates, N., Karanfil, T., The roles of tertiary amine structure,
background organic matter and chloramine species on NDMA formation, Water
Res., 2013, 47, 945–953.

[68] Lee, C., Schmidt, C., Yoon, J., von Gunten, U., Oxidation of N -nitroso-
dimethylamine (NDMA) precursors with ozone and chlorine dioxide: Kinetics and
effect on NDMA formation potential, Environ. Sci. Technol., 2007, 41, 2056–2063.

[69] Padhye, L., Luzinova, Y., Cho, M., Mizaikoff, B., Kim, J. H., Huang, C. H., Poly-
DADMAC and dimethylamine as precursors of N -nitrosodimethylamine during
ozonation: Reaction kinetics and mechanisms, Environ. Sci. Technol., 2011, 45,
4353–4359.

[70] Park, S.-H., Wei, S., Mizaikoff, B., Taylor, A. E., Favero, C., Huang, C.-H.,
Degradation of amine-based water treatment polymers during chloramination as
N -nitrosodimethylamine (NDMA) precursors, Environ. Sci. Technol., 2009, 43,
1360–1366.

[71] Shen, R., Andrews, S. A., NDMA formation kinetics from three pharmaceuticals
in four water matrices, Water Res., 2011, 45, 5687–5694.

[72] Shen, R., Andrews, S. A., Demonstration of 20 pharmaceuticals and personal
care products (PPCPs) as nitrosamine precursors during chloramine disinfection,
Water Res., 2011, 45, 944–952.

[73] Padhye, L. P., Kim, J.-H., Huang, C.-H., Oxidation of dithiocarbamates to yield
N -nitrosamines by water disinfection oxidants, Water Res., 2013, 47, 725–736.

[74] Xu, B., Qin, C., Hu, C.-Y., Lin, Y.-L., Xia, S.-J., Xu, Q., Mwakagenda, S. A.,
Bi, X., Gao, N.-Y., Degradation kinetics and N -nitrosodimethylamine formation
during monochloramination of chlortoluron, Sci. Total Environ., 2012, 417-418,
241–247.

[75] Mitch, W. A., Schreiber, I. M., Degradation of tertiary alkylamines during chlo-
rination/chloramination: Implications for formation of aldehydes, nitriles, halo-
nitroalkanes, and nitrosamines, Environ. Sci. Technol., 2008, 42, 4811–4817.
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