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Abstract
The molecular clock has been conserved from cyanobacteria to mammals and is believed to

align behavioral and biochemical processes with the diurnal cycle. This cellular mechanism

has been an advantage to increase the fitness of organisms through the ability to anticipate

food availability or predator presence. It has been recently suggested that the molecular clock

is used to optimize the energy consumption of cells and accumulating evidence has revealed

that the circadian clock is intimately interconnected with the metabolic cycle. The nature of

these interconnections is yet not clear at the transcriptional level, and the contribution of

cis-regulatory modules has not been elucidated.

The emergence of novel high-throughput technologies, in the field of next generation sequenc-

ing, as ChIP-seq, and DNase I-seq, unveiled chromatin landscape with an unprecedented

resolution. These techniques allow a genome-wide investigation of accessible chromatin

regions and DNA-binding proteins such as transcription factors, as well as histones mod-

ifications or Polymerase II (Pol II) presence. Accessible chromatin regions of the genome

are implicated in diverse processes, such as gene regulation through enhancers and promot-

ers, insulation of genomic domains or alternative splicing. For instance, these regions are

important in the differentiation process during development. They allow cell-type specific

programs that are controlled by tissue-specific transcription factors and chromatin modifiers.

The tissue-specific regulation of the circadian clock remains unclear. Therefore, we com-

pared genome-wide BMAL1 binding and chromatin accessibility in the liver and in NIH3T3

fibroblasts.

Moreover, For the first time, our study explores the dynamics of accessible regions every 4

hours over one day in mouse liver. In this study, we show that a substantial fraction of these

accessible sites are oscillating during a diurnal cycle with a circadian period. Furthermore,

these sites are coordinated in time and space (with respect to their genomic location) using

Pol II transcription and some histone modifications, such as histone 3 lysine 27 acetylations

(H3K27ac).

We observed that these accessible regions are enriched in the proximity of actively transcribed

genes, and that they are dynamically affected by the binding of transcription factors such as

BMAL1. We investigated wild-type (WT) and Bmal 1−/− genotypes, in night restricted feeding

regimen and in Light-Dark cycle, to study the circadian clock regulatory network underlying

diurnal transcription. Our analysis revealed that a certain fraction of genes was still fluctuating

with a 24h period in Bmal1−/− genotype. We observed that these genes were related to fatty

acid, or steroid metabolism, suggesting food entrainment. Unexpectedly, a large proportion
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of genes with a diurnal behavior in the Bmal1−/− context were not cycling in the WT and

were related to insulin signaling, TCA cycle, proteolysis and amino acid or sugar metabolism.

In order to investigate the transcriptional control of these biological processes, we applied a

penalized generalized linear model to infer the activity of transcription factor binding motifs

in oscillating accessible sites using Pol II loadings at the transcription start sites of nearby

genes. We were able to recapitulate the known regulatory elements of the circadian clock,

notably E-box, D-Box, and ROR-responsive elements (RRE) in the WT genotype. On the other

hand, we found that Forkhead box (FOX), glucocorticoids responsive elements (GRE), C-AMP

Response Element (CRE) were the main contributors of the regulation of oscillating genes in

Bmal 1−/−. Finally, using a mixture model to detect footprints with a base pair resolution, we

studied the dynamics of the accessibility overlapping E-box. Our last analysis suggested that

BMAL1/CLOCK is binding on double E-boxes with a spacer of 6 or 7 bp in a hetero-tetramer

configuration. A 3D structure model further supported this binding mode.

In Summary, we used DNase I-seq, ChIP-seq of H3K27ac and Pol II to study the circadian

chromatin landscape in a 4h time-resolved experimental design. We uncovered the underlying

circadian transcriptional regulatory network and, we dissected the chromatin accessibil-

ity around BMAL1 binding sites at a base pair resolution, which led to an unappreciated

mode of binding of BMAL1/CLOCK in a hetero-tetramer conformation on double E-boxes.

Lastly, we found tissue-specific factors that might contribute to tissue-specific binding of

BMAL1/CLOCK.

Key words: Circadian clock, chromatin accessibility, ChIP-seq, metabolism, nutrient response

cycle, mouse liver, Bmal1 knockout, DNase I hypersensitive sites, transcriptional regulation,

tissue-specificity, NIH3T3 fibroblasts
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Résumé
L’horloge moléculaire est un mécanisme présent depuis la cyanobactérie jusqu’aux mam-

mifères. Ce mécanisme cellulaire est censé aligner le comportement ainsi que les processus

biochimiques au cycle journalier. Il a représenté de formidables avantages en termes d’évo-

lution en permettant d’améliorer la survie d’un organisme grâce à sa capacité à anticiper la

présence de prédateurs ainsi que la disponibilité de la nourriture. Il a été récemment suggéré

que l’horloge moléculaire permet aussi d’optimiser la consommation d’énergie des cellules.

Un nombre croissant d’études permettent d’établir un lien entre cette horloge interne et le mé-

tabolisme. En revanche, la nature de cette relation n’est pas claire au niveau transcriptionnel

et la contribution de sites régulateurs en cis n’a pas été expliquée.

L’avènement de nouvelles technologies de séquençage à haut débit, comme les techniques de

ChIP-seq ou de DNase-seq, ont révélé la complexité de la chromatine à un niveau de résolution

sans précédent. Ces techniques permettent d’étudier l’accessibilité de la chromatine et de

découvrir les sites de fixation des facteurs de transcription. Elles permettent aussi de révéler

les modifications épigénétiques comme les marques d’histones ou la présence de l’ARN

polymérase II à l’échelle du génome. Ces régions accessibles du génome sont impliquées dans

divers processus biologiques, notamment la régulation de l’expression des gènes au travers

des sites promoteurs et amplificateurs (enhancers), la séparation de domaines génomiques

grâce aux insulateurs ou encore l’épissage alternatif des ARN messagers. Ces régions jouent un

rôle important lors de la différentiation cellulaire pendant le développement. Elles permettent

des programmes spécifiques aux tissus, contrôlés par des facteurs de transcription ainsi que

des modificateurs de la chromatine.

Malgré son importance, la régulation des processus biologiques spécifiques aux tissus par

l’horloge interne reste méconnue. Afin de progresser dans la compréhension de ce méca-

nisme, nous avons comparé, d’une part, les différents sites de liaison de BMAL1, d’autre part,

l’accessibilité de la chromatine à l’échelle du génome dans le foie et dans les fibroblastes

NIH3T3.

Notre étude est la première à explorer la dynamique de ces régions accessibles, lors d’un

échantillonnage de foie de souris prélevé toutes les 4 heures sur une période d’une journée. Ce

travail met en évidence les oscillations d’une faction non négligeable de ces sites lors du cycle

diurne. De plus, l’on voit qu’ils sont coordonnés dans le temps et le long du génome. Leur

accessibilité est également en phase avec l’ARN polymérase II et l’acétylation des histones 3

sur la lysine 27.

Nous avons observé qu’il existe davantage de ces régions accessibles à proximité de gènes
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activement transcrits, et qu’elles sont dynamiquement affectées par la liaison de facteurs de

transcription tels que BMAL1. Afin d’étudier la régulation de la transcription circadienne,

nous avons comparé les génotypes de type sauvage (WT) ainsi que des souris mutées pour le

gène BMAL1 (Bmal1−/−) en ne leur fournissant de la nourriture que de nuit et en alternant

douze heure d’exposition à la lumière et douze heure d’obscurité. L’analyse a révélé que

dans le contexte Bmal1−/−, une faction des gènes fluctuent toujours avec une périodicité

de 24 heures. Ces gènes sont impliqués dans le métabolisme des acides gras ainsi que des

stéroïdes, ce qui suggère une synchronisation par la nourriture. De manière inattendue, une

large partie des gènes fluctuant dans le contexte Bmal 1−/− n’oscille pas dans le type sauvage.

Ces gènes participent au métabolisme des sucres et des acides aminés, au cycle de Krebs, à la

signalisation liée à l’insuline ainsi qu’à la protéolyse.

Nous avons appliqué un modèle linéaire généralisé et pénalisé afin d’étudier la régulation

transcriptionnelle de ces processus biologiques. Il s’agissait d’inférer l’activité des motifs de

liaison des facteurs de transcription sur l’ADN dans les régions accessibles en utilisant le

signal de la RNA polymérase II aux sites d’initiation de la transcription des gènes actifs à

proximité. Nous avons détecté les principaux motifs connus de l’horloge dans le type sauvage,

notamment les boîtes E (E-box), les boîtes D (D-box) ainsi que les éléments répondant à ROR

(RRE). De plus, nous avons découvert que dans les souris Bmal1−/−, les principaux motifs

actifs étaient les boîtes F (Forkhead box, FOX), les éléments de réponse aux glucocorticoïdes

(GRE) et les éléments de réponse aux AMP cycliques (CREB). Enfin, en utilisant un modèle

mixte pour détecter les empreintes des facteurs de transcription sur le signal DNase avec une

résolution à la paire de base, nous avons étudié la dynamique de l’accessibilité autour des

boîtes E. Notre analyse suggère que BMAL/CLOCK peut se lier à deux boîtes E séparées par six

ou sept paires de bases dans une configuration d’hétéro-tétramères. Un modèle de structure

en 3D sous-tend ce mode de fixation.

En résumé, nous avons utilisé les techniques de DNase I-seq et de ChIP-seq pour Pol II et

H3K27ac afin d’étudier la dynamique de la chromatine lors du cycle circadien avec un échan-

tillonnage toutes les quatre heures. Nous avons découvert le réseau circadien de régulateurs

transcriptionnels et avons disséqué le mode de liaison de BMAL1 à la chromatine, ce qui

nous a conduit à découvrir un mode de liaison à l’ADN méconnu de BMAL1/CLOCK avec

une conformation en hétéro-tétramère. Enfin, nous avons détecté des facteurs propres à un

tissu qui participent probablement à la fixation spécifique de BMAL1 à ce dernier le long du

génome.

Mots-clefs : horloge circadienne, accessibilité de la chromatine, ChIP-seq, métabolisme, cycle

de réponse à la nourriture, foie de souris, sites hypersensibles à la DNase I, régulation trans-

criptionnelle, spécificité tissulaire, fibroblastes NIH3T3.
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1 Introduction

1.1 Chronobiology: the study of periodic events in living organisms

1.1.1 Early circadian pioneers discovered endogenous near 24 h rhythms in plants

Jean-Jacques d’Ortous, Lord of De Mairan (1678–1771) wrote the first publication, in the

field of chronobiology [74] almost three centuries ago, and is still cited in scientific articles.

He studied a sensitive plant which was given an evocative name of Mimosa pudica. The

branches and leaves of Mimosa pudica always turn in the direction of where there is most

light. He observed that the leaves and their peduncles fold themselves away and contract

around sunset, in a similar manner as they do when the plant is touched or shaken. More

importantly, this phenomenon takes place even when the plant is not in the sun or outdoors.

This phenomenon is less pronounced when the plant is always kept in a dark place. The

plant still opens up during the day and closes for the night at the same time every evening.

De Mairan performed his experiment towards the end of summer and repeated it several

times. The leaves rhythm persisted despite their lack of perception of night and day. This

persistence is the signature of what would be known as circadian rhythms from the Latin circa

(around) and diem (day) based on the terminology initiated by Franz Halberg in 1959. De

Mairan suggested that diurnal variations in temperature, likewise in light, could synchronise

circadian rhythms. Indeed, these two oscillating environmental factors are considered as

“time givers” or "zeitgebers" of circadian rhythms. In the same epoch as De Mairan, Carl von

Linne (1707–1778) constructed a “floral clock” noting the predictability of petal opening and

closing times of various species of flowers (figure 1.1). Afterward, The Swiss botanist Augustin-

Pyramus de Candolle (1778–1841) was the first to show that when plants are deprived of

natural light, their “plant sleep” follows a circadian rhythm. Moreover, The German botanist

and physiologist Wilhelm Pfeffer (1845–1920) performed similar experiments on many plant

species, thereby confirming that leaf movements are not simply determined by the earth’s

rotation. Indeed, the leaf movements are not performed in an exactly 24-hour period and vary

from species to species [67, 84, 168, 180].
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Chapter 1. Introduction

Figure 1.1 – The flower clock was designed by Carl von Linne in 1745. The left part of the figure
(6 AM–12 PM) depict when the petals of different species are opening; the right part (12 PM–6
PM) presents when the petals are closing. Reproduced from [306].

1.1.2 Modern chronobiology: the study of biological rhythms in mammals, in-
sects, fungi and bacteria

Erwin Bünning provided the first evidence for the genetic basis of circadian rhythms gen-

eration by showing that period length is heritable in bean plants [45]. He also delivered a

prominent hypothesis that circadian oscillators can be used to monitor seasonal changes

in addition to measuring daily cycles and pointed out the adaptive importance of tracking

seasonal changes. Thus, the field of circadian rhythms began from intense observation of

plants. At the same epoch, the first observations of endogenously driven rhythms in bacteria

[228], single-cell eukaryotes [127], insects [30], birds [179], rodents [276], primates [303],

and humans [14] were discovered [180].

A major breakthrough in characterizing the genetic basis for rhythms generation was made by

Ronald Konopka and Seymour Benzer in 1971 using a mutant screen in Drosophila melanogaster

[172]. Mutagenized flies were investigated for the persistence of two circadian behaviors: loco-

motor activity and pupal eclosion. Flies presented one of three categorical mutant phenotypes:

a shortening of the circadian period, a lengthening of the circadian period, or arrhythmia. All

phenotypes were associated with a single locus, now referred to as the Period gene. Two years
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1.1. Chronobiology: the study of periodic events in living organisms

after this discovery in fruit flies, the Frequency gene was shown to be essential for rhythms to

persist in the filamentous fungus Neurospora crassa [97]. These unexpected results revealed

that single-gene mutations could perturb a complex behavior and, together with the discovery

of a heritable timing mutation in hamsters by Martin Ralph and Michael Menaker [262], pro-

vided the motivation for conducting a large-scale mutant screen in mice [225]. Subsequently,

using a collection of strategies, dozens of clock genes have been identified in both prokaryotic

and eukaryotic systems, including cyanobacteria, fungi, plants, insects, and mammals. Even

human rhythms are significantly impacted by clock gene mutations [260]. An impressive com-

mon principle appears from inspecting these various clock gene systems. All organisms seem

to have evolved transcriptional/posttranslational feedback loops to establish high-amplitude,

near 24-hour, rhythms production. The development of real-time bioluminescent and fluores-

cent reporters, in combination with to the identification of specific clock genes, has allowed

the spatial resolution required to track rhythmicity at the single cell [129]. Such resolution is

essential to study how individual oscillators are coupled within a population of rhythmic cells.

However, there was a critical lesson to be learned from a decisive experiment performed using

clock components of cyanobacteria. In 2005, Nakajima et al. [235] reconstructed a circadian

oscillator in a test tube using only ATP and cyanobacterial proteins. This experiment showed

that it is possible to construct a near 24-hour oscillator in the absence of gene transcription.

Moreover, a non-transcriptional oscillator have been recently observed in human red blood

cells, where peroxiredoxins, highly conserved antioxidant proteins, undergo 24-hour redox

cycles, which persist for many days under constant conditions [244, 91].

1.1.3 Concepts and definitions in chronobiology

This section will put forward several important concepts and definitions in chronobiology.

These definitions are essential to the understanding of the circadian field and the variety of

related research area.

Chronobiology

Chronobiology is a domain of biology that studies periodic (cyclic) event in living organisms

and their adaptation to solar- and lunar-related rhythms. These cycles are known as biological

rhythms. Chronobiology derives from the ancient Greek "chronos", meaning "time", and biol-

ogy, which refers to the science of life. Chronobiological studies consist non-exhaustively of

physiology, genetics, molecular biology and behavior of organisms within biological rhythms

mechanics. Other aspects of chronobiology cover development, reproduction, evolution, and

ecology [73].

Circadian rhythm

A circadian rhythm is any biological process that displays an endogenous, entrainable oscilla-

tion with a period of about 24 hours.

Infradian rhythm
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An infradian rhythm is a biological rhythm with a period of oscillations longer than 24 hours.

For instance, seasonal cycle (or circannual rhythm), or monthly variations as circalunar

rhythm (one lunar cycle 29.5 days) or menstrual cycle.

Ultradian rhythm

An ultradian rhythm is a biological rhythm with a period of oscillations shorter than 24 hours.

For example, the developmental oscillator in somite segmentation in mouse embryo has a

period of 2 hours. This process is called the segmentation clock [160].

Period

The period is the length of time separating two consecutive maxima in a periodic signal. (figure

1.2).

Phase

The phase is the instantaneous state of an oscillation within a period. It corresponds to the

fraction of the wave cycle (measured in angular units) that has elapsed relative to the origin.

The acrophase can be described as the time at which the peak of a rhythm occurs (figure 1.2).

In general in this work we use the term phase to refer to the acrophase.

Amplitude

We defined the amplitude as the ratio between the peak and the trough of a waveform cycle

using the log2 scale. Though in general, the amplitude is defined as half the value of the range

of oscillation (the distance between the mesor and the peak, figure 1.2).

Mesor

The mesor is defined as the average value around which the variable oscillates. The mesor is a

circadian rhythm-adjusted mean based on the parameters of a cosine function fitted to the

raw data (figure 1.2).

Period

A
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pl
itu

de

M
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Time

Q
ua

nt
ity

Acrophase

Figure 1.2 – Illustration of phase, amplitude, period and mesor definitions
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Phase shift

A phase shift is any change that occurs in the phase of a rhythm (e.g. in a gene, protein,

metabolite), typically following a perturbation.

Phase resetting curve (PRC)

Phase resetting is a behavior observed in different biological oscillators and plays a role in

creating synchronization (or re-synchronization with the environment in the example of

jet- lag). Phase resetting curves (PRCs) are measured by administering a precisely timed

perturbation (light cues, food cues, drugs) to an oscillator and measuring the ensuing phase

shift (figure 1.3). In other words, the PRC illustrates a change in the cycle phase of an oscillation

induced by a perturbation as a function of the phase at which it is received. PRCs can be

divided into two groups based. Type 1, or weak resetting, indicates perturbations in which the

final phases cover all phases. Type 0, or strong resetting, indicates perturbation in which the

final phases only cover a subset (typically a subinterval) of all phases [28].

original phase new phase

 Amplitude 

 Period 

 Phase 
(Phase Shift)

environmental
light cycle

internal
circadian time

typ
e 

1

type 0

old CT

ne
w

 C
T

Phase-Resetting Types

dead zone

Time of the perturbation

Phase-Resetting Curves Perturbation effect 

phase delay zone

phase advance zone

Figure 1.3 – Illustration of circadian disruption and phase resetting types. The phase response
curve can be represented by plotting the time of the phase shift vs the perturbation. A PRC
may include a "dead zone" where the perturbation has no effect, a "phase delay zone" or
"phase advance zone". Modified from [28, 113].
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Transcriptional-translational delayed feedback loop (TTFL)

The transcriptional-translational delayed feedback loop is a gene regulatory network motif.

In its minimal form an oscillation in gene expression can be produced and sustained. In a

minimal TTFL, a protein A activates a gene b. The protein B is produced and represses the

gene a. After a moment as gene a is not transcribed and the protein A is degraded, the gene b is

not activated anymore. When the protein B is degraded the gene a is not repressed and can be

transcribed again (figure 1.4). Delays are crucial in order to obtain an oscillatory behavior, and

includes transcription to mRNA, splicing and post-transcriptional modification, translation

to protein and post-translational modifications followed by trans-location to the nucleus.

Mathematical models of TTFL represent an important area of the circadian research. TTFL

are used to perform in silico knockout studies in order to understand core clock perturbation

effects [305, 29, 194].

a bA
transcription translation
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delayed repression

Time
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transcription translation

A

B

Figure 1.4 – Illustration of the transcriptional-translational delayed feedback loop principle.

Entrainment

The entrainment is defined as the coupling of an endogenous rhythm to an environmental

oscillator with the result that both oscillations have the same periods. In addition, the phase of

the endogenous rhythm is affected by entrainment. For instance in Light-Dark (LD) conditions

the circadian clock is entrained by light cues and consequently the period is exactly 24 hours.

In contrast to the Dark-Dark (DD) condition, where the period is slightly longer.

Zeitgeber

Zeitgeber is a german word meaning “time giver”. A cue (such as light or food) that entrains the

circadian clock [89]. ZT refers to “zeitgeber time” and ZT0 typically corresponds to the switch
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between dark and light, whereas CT refers to "Circadian Time". CT is used in free running

conditions (no entrainment cues).

Temperature compensation A defining property of the circadian rhythm is that the period

of the circadian rhythm is kept relatively constant within a physiological range of tempera-

tures, which imply that the oscillator is temperature compensated. The mechanisms behind

temperature compensation and temperature entrainment are not fully understood, neither

biochemically nor mathematically [33].

Clock controlled genes (CCGs) Clock controlled genes are downstream core clock genes in

the regulatory networks. These CCGs contain transcription factor binding sites (TFBS) related

to the clock in their promoter or nearby enhancers.

Chronotype The chronotype is defined as the mid-sleep time. It allows to compare an indi-

vidual to the population. A morning person has an early chronotype (larks profile) and an

evening person has a late chronotype (owl profile). The chronotype can be assessed using

standard questionnaires as the Munich Chronotype questionnaire (MCTQ) [282].

Actogram

Actograms are used to represent the rhythm of an organism over the 24-h cycle. An actogram

consists of digitized activity values that are displayed as a double plot, where a line contains

data for that day as well as the preceeding day (figure 1.5). This visualization is used to monitor

wheel-running activity of mice, or sleep/wake cycle in humans [89].

7



Chapter 1. Introduction

D
ay

s

48 hours

Light/Dark

Figure 1.5 – Actogram of human activity measured using a smartphone over one month. The
grey/black squares represent the intensity of the activity at a certain time (see appendix A.2).

1.1.4 Human chronobiology

Our innate inclination for mornings or evenings is determined by the phase of our circadian

rhythms. A recent study performed a genome-wide association study (GWAS) of self reported

morningness on 90000 individuals, followed by analyses of biological pathways and related

phenotypes. Hu et al. identified 15 significantly associated loci, including seven established

circadian genes. Circadian and phototransduction pathways were enriched in their results. In

addition,they reported that morningness was associated with insomnia, sleep phenotypes,

body mass index and depression [140]. Several GWAS have also suggested interrelationship

between clock gene variations and metabolism. For instance, Cry2 was shown to be associ-

ated with a propensity to type 2 diabetes [86], while Clock haplotypes were associated with

metabolic syndrome and obesity [297]. Single nucleotide polymorphisms (SNP) in Clock are

associated with high plasma ghrelin concentration, obesity, altered eating behaviors, evening

preference, short sleep [104, 105]. Intriguingly, recent GWAS studies also indicated that mela-

tonin, a circulating hormone whose diurnal expression is tightly controlled by the circadian

clock, and its G-protein-coupled receptors MTNR1A and MTNR1B are associated with the

development of type 2 diabetes and impaired insulin secretion [86, 208, 288]. Melatonin,

whose receptors are present in both the pancreatic islets and the SCN, has been shown to

affect a collection of physiological processes, including glucose metabolism, insulin secretion

and sleep [254].

8
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Furthermore, a familial advanced sleep-phase syndrome was reported in 1999 as a short-

period (FASPS) circadian rhythm variant in humans (figure 1.6) [260]. In this study, the

authors have investigated three kindreds with a profound phase advance of the sleep–wake,

melatonin and temperature rhythms associated with a very short period. The mutation

segregates as an autosomal dominant with high penetrance. These kindreds served as a well-

characterized familial circadian rhythm variant in humans and contributed to the genetic

analysis of human circadian physiology.

Figure 1.6 – Free-running period of the circadian sleep–wake and temperature rhythms in one
FASPS subject. Sleep–wake rhythms of a 69-year-old female, studied in time isolation for 18 d.
Data are double-plotted. Sleep data (filled bars) are derived from polygraphically-recorded
sleep. Chi-squared periodogram analysis showed a free-running period of 23.3 h during the
18-day recording interval. Modified from [260].

To better understand the genetic basis of temporal organization in humans, a questionnaire

was developed to document individual sleep times, self-reported light exposure, and self-

assessed chronotype, considering work and free days separately [284]. This questionnaire

is known as the Munich Chronotype Questionnaire (MCTQ). The authors of the study sum-

marized the results of 500 surveys completed in a pilot experiment in 2003. Individual sleep

times depicted large differences between work and free days, except for extreme early types.

During the workweek, late chronotypes accumulated a substantial sleep debt, for which they

counterbalanced on free days by prolonging their sleep by several hours. For all chronotypes,

the quantity of time spent outdoors in broad daylight significantly impacts the timing of sleep:

Increased self-reported light exposure advances sleep [284].

In a follow-up study using the MCTQ done by the same research group, they wanted to explore

9



Chapter 1. Introduction

what zeitgebers entrain the human clock in real life by exploiting the common discrepancy

between social time and sun time. At the time of the study, their MCTQ database comprised

more than 40,000 individuals (including 22000 Germans). The results of the study showed that

the human clock entrains to sun time (figure 1.7). Within a given time zone, people live with

respect to a common social time — which tells them, for example, when to go to work. Dawn

and dusk, however, progress from East to West, generating a continuum in sun time. This

continuum creates differences between, for instance, the actual mid-dark phase and midnight

according to local clock time. In general, exposure to natural light decreased statistically in

the bigger the city thereby weakening the strength of this zeitgeber.The fact that inhabitants of

even larger cities are less coupled to sun time could be due to less exposure to outdoor light,

resulting in a weaker zeitgeber strength of the natural light–dark cycle. Light and darkness

even play a role when humans are entirely entrained by social cues: when we sleep, we close

our eyes and in most cases, avoid light. That social cues alone cannot entrain the human

circadian clock — without concurrent (behavioral) light changes [283].

A B

C

Figure 1.7 – A) The geographical distribution of the German places of residence of the study
participants (N = 21,600). B) The dependence on the longitude of normalized chronotype
of people living in areas with up to 300,000 inhabitants, representing 82% of the German
population. C) The dependencies of average chronotype on longitude for nine towns with
populations between 300,001 and 500,000 (gray symbols) and 11 cities with more that 500,000
inhabitants (black symbols). All correlations are also highly significant for the respective raw,
un- binned datasets. For reference, the slopes of the shaded areas in (B,C) reflect approximate
discrepancies in dawn times at the different longitudes on June 21st. Standard error of the
mean is present for all data points but often is smaller than the size of the dots. Reproduced
from [283].

The effects of social cues on sleep remain largely unquantified. A recent study showed how

a smartphone app can accurately collect data on sleep habits around the world [336]. The
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authors observed that social pressures increase and/or cover biological signals in the evening,

leading participants to delay their bedtime and shorten their sleep. They observed that a

country’s average bedtime, but not average wake time, predicted sleep duration. Moreover,

they confirmed that women schedule more sleep than men and that users reporting that they

are more exposed to outdoor light go to sleep earlier and sleep more than those reporting

indoor light. Finally, they confirmed that age is the primary determinant of sleep timing and

that age plays a critical role in the variability of population-level sleep habits.

A second smartphone app-based study revealed that erratic diurnal eating patterns in humans

can be modulated for health benefits [112]. A diurnal rhythm of eating-fasting improves

health, but the eating pattern of humans is rarely measured. Thanks to their app, they were

able to monitor ingestion events in healthy adults with no shift-work for several days. Most

subjects ate frequently and erratically throughout wakeful hours, and overnight fasting du-

ration paralleled time in bed. They reported a bias toward eating late, with an estimated

<25% of calories intake before noon and >35% after 6 p.m. “Metabolic jet lag” arising from

weekday/weekend changes in eating pattern similar to travel across time zones was frequent.

The daily consumption duration (95% interval) exceeded 14.75 hr for half of the cohort. When

overweight individuals with >14 hr consumption duration ate for only 10–11 hr daily for 16

weeks supported by a data visualization (raster plot of dietary intake pattern called “feedo-

gram”) that they developed, study participants decreased their body weight, reported being

energetic, and improved sleep.

The link between social jet lag and obesity has been extensively studied [88]. Social jet

lag quantifies the differences that often arises between circadian and social clocks, which

induces chronic sleep loss. Besides, the circadian clock regulates energy homeostasis, and its

perturbation such as social jet lag, may participate to weight-related pathologies. A large-scale

epidemiological study showed that beyond sleep duration, social jet lag is associated with

increased BMI [281]. They demonstrated that living “against the clock” may be a factor leading

to the epidemic of obesity. This is crucial in pending considerations on the implementation of

Daylight Saving Time and on work or school schedules, which all contribute to the amount of

social jet lag accrued by an individual. They suggested that improving the correspondence

between biological and social clocks will help the management of obesity.

Circadian clocks affect nearly all facets of our physiology and behavior, including rest–wake

cycle, cardiovascular activity, hormone secretion, body temperature and metabolism (figure

1.8). In summary, circadian desynchrony, a characteristic of shift work and sleep disruption

in humans, also leads to metabolic pathologies [28]. Together, these epidemiologic and

association studies highlight the clinical importance of interrelationships between melatonin,

glucose homeostasis, circadian rhythms, and sleep.
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Figure 1.8 – The circadian clock controls suitable metabolic responses within peripheral
tissues over the diurnal cycle. For instance, the liver clock promotes gluconeogenesis and
glycogenolysis during the sleep/fasting period, while it promotes glycogen and cholesterol
synthesis during the wake/feeding period. Correct functioning of peripheral clocks keeps
metabolic processes in sync with the environment, which is necessary for maintaining the
health of the organism. Different tissues depict distinct clock-controlled functions; In addition,
clock defect in certain tissues will provoke opposing effects on the metabolic function as
revealed by changes in nutrient conditions. Aging, diet, and environmental perturbations such
as shift work may also impact the integration of circadian and metabolic systems. Reproduced
from [28].
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1.2 Chromatin structure and accessibility

Since we aimed at investigating the transcriptional regulation of the clock, I have to present some

general concepts about chromatin structure and transcriptional regulation, before describing

the molecular organization of the circadian clock. In addition, technologies to investigate the

chromatin landscape such as ChIP-seq and DNase I-seq will be introduced in this section.

1.2.1 Chromatin structure and transcriptional regulation

Transcription is a highly regulated process (figure 1.9). It starts with the recognition of a

piece of genomic DNA, defined as the promoter of a gene, by a set of transcription factors,

which modify the local chromatin structure and recruit RNA polymerase II to produce mRNA

[299]. Transcription factors (TF) bind to specific transcription factor binding sites (TFBS)

that are either close or distant to a transcription start site (proximal/distal regulation). Sets

of TFs can cooperate on cis-regulatory modules (CRM), stretches of DNA of about 100-1000

bp, to achieve specific regulatory events. One cis-regulatory element can regulate several

genes, and one gene can have several cis-regulatory modules. Interactions between bound

transcription factors and cofactors stabilize the transcription initiation process to allow gene

expression [170]. The regulation conferred by sequence-specific binding is highly restrained

by the three-dimensional structure of chromatin [50].

The basic units of chromatin are nucleosomes, which are formed by octamers of core his-

tone proteins. Eukaryotic genomes are tightly wrapped around nucleosomes to achieve the

10,000–20,000-fold compaction necessary to fit a genome into the small volume of the nucleus

but that must also allow proteins involved in transcription, replication, and repair to access

DNA [342]. A thermodynamic equilibrium model has been used to describe experimentally

observed genome-wide in vivo nucleosome occupancy arrangements. In this model, both

nucleosomes and transcription factors have a constitutive affinity for DNA sequence, which is

dependent on sequence composition [264]. Transcription factors compete with nucleosomes

for DNA, and the thermodynamic equilibrium defines the configuration of nucleosomes and

transcription factors. In addition, nucleosome presence is shaped by kinetic elements; in

particular by chromatin-remodeling factors using the energy driven from ATP hydrolysis to ac-

tively influence DNA-histone interactions [62]. Several mechanisms of chromatin remodeling

have been put forward, including nucleosome sliding, nucleosome eviction, and looping of

DNA away from the histone core [207, 304]. Important aspects of the chromatin environment

may include post-translational histone modifications, the composition of the nucleosomes

themselves, and the binding of other protein complexes. Histone post-transcriptional mod-

ifications may affect transcription factor binding by enhancing the affinity of transcription

factor related protein complexes for the modified histones or by diminishing the affinity of the

histone for DNA.

The improvements of methods such as Chromatin Immuno-Precipitation followed by sequenc-

ing (ChIP-seq, figure 1.10), for the genome-wide mapping of individual histone modifications
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Figure 1.9 – Transcription factors (TFs) bind to specific locations (transcription-factor binding
sites; TFBS) that are either proximal or distal to a transcription start site. Sets of TFs can act in
functional cis-regulatory modules (CRMs) to achieve specific regulatory events. Interactions
between bound TFs and cofactors stabilize the transcription-initiation complex to enable
gene expression. The regulation that is allowed by sequence-specific binding TFs is highly
dependent on the three-dimensional structure of chromatin. Reproduced from [340]

or DNA binding proteins, has enabled the detection of correlations between histone modifica-

tion patterns or transcription factor binding and distinct states of gene activity [71, 358, 27].

Undoubtedly histone modifications can serve as a marker for a particular gene activity (or

inactivity), but the question of causality remains (figure 1.11).
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Figure 1.10 – Illustration of the ChIP-seq principle. The schema of the different methods (top
panel of each part) and the matching data signature (such as read density) that is used for
regulatory element investigation (bottom panel of each part) are presented. A) Chromatin
immunoprecipitation followed by deep sequencing (ChIP–seq) uses antibodies to find the
location of transcription factor binding sites genome-wide. B) Nucleosomes that flank active
enhancers carry characteristic histone modifications that can be identified by ChIP–seq using
specific antibodies. C) Enhancers are brought into close proximity of their respective target
promoters through the formation of chromatin loops, which are established by cohesin and
Mediator complexes. ChIP–seq can detect the contact points of cohesin and Mediator at
promoters and enhancers, and has been used to predict enhancers. Modified form [71]

The role of distal cis-regulatory elements, such as enhancers, and their interactions with

promoters, is not well characterized in the circadian context. The identification of a core

regulatory network of cis-regulatory modules, promoters, and corresponding transcription

factors will provide a comprehensive picture of the regulation and the interplay between

metabolism and internal clock.
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Figure 1.11 – Histone modification and chromatin organization. Promoters, gene bodies,
enhancers and boundary elements are illustrated on a schematic genomic region. Active pro-
moters are marked by histone H3 lysine 4 dimethylation (H3K4me2), H3K4me3, acetylation
(ac), and histone variant H2A.Z. The structure of the nucleosome core may also determine
nucleosomes as being more or less permissive to transcription factor binding. Histones that
constitute nucleosomes cores variants, such as H2A.Z, have been reported to alter nucleosome
properties [153]. Transcribed regions are enriched for H3K36me3 and H3K79me2. Repressed
genes may be placed in large regions of H3K9me2 and/or H3K9me3 or H3K27me3. Enhancers
are relatively enriched for H3K4me1, H3K4me2, H3K27ac and for the histone acetyltransferase
p300. The transcriptional repressor CTCF binds many sites that may act as insulators, bound-
ary elements or structural scaffolds. These various features of chromatin help to organize the
DNA and determine functional elements. Reproduced from [358]
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1.2.2 Measuring chromatin accessibility using DNase I hypersensitivity

DNase I hypersensitivity is a measure of chromatin accessibility and its dynamics. It provides a

general method for predicting cell-type specific cistromes. DNase I hypersensitive sites (DHS),

small regions of chromatin of 200-1000 bp, which are extremely sensitive to cleavage by DNase

I, typically occur in nucleosome-depleted regions and often arise as the result of transcription

factor binding. DNase I digestion followed by high throughput sequencing has developed

into a powerful technique to identify genome-wide DHS [199, 124, 302]. Because transcrip-

tion factor binding sites favor DNase I hypersensitivity yet DNAse I-seq does not require a

factor specific antibody, DNA sequence motif analysis on DHS data has been highlighted as a

method to identify the binding sites of multiple transcription factors in a single experiment

[257, 37]. While DNA sequence motifs may not be entirely predictive of transcription factor

binding across the entire genome, they are good predictors within regions of open chromatin

[131]. Thus, DNase I hypersensitivity patterns are likely to be dependent on the structure

of TF-DNA interactions and the chromatin environment at binding sites. Furthermore, at

a high sequencing depth, it is possible to identify depleted narrow regions in the DHS core,

corresponding to protein footprints of 8-30 bp [138, 57] (figure 1.12). Differential DNase I

hypersensitivity analysis proved the utility of quantitative analysis of chromatin accessibility

differences between condition to predict transcription factor activity [131].

17



Chapter 1. Introduction

+TF

–TF

Massively parallel sequencing: digital readout

Genomic position
(per nt)

Protected nucleotides Sequences with 5  end
mapping to position

Tag
count

5  end

5  end

DNase I 
cleavage

event

Ligated
sequencing 
adaptor

5  label

A B

Gel electrophoresis: analog readout

Purified protein or
nuclear extract

Purified
nuclei

Cis -regulatory 
element
(i.e., DHS)

DNase I–released
fragment

Labeled 
DNA template

DNase I

DNase I

TF

Protected
nucleotides

P
P
P
P

P

P

P

+ –

Deep footprint

Cut DNA
fragments

TF with residence time
of seconds

Cu
ts

 p
er

 b
as

e 
pa

ir

DNase I hypersensitive site

TF with
long residence time

Shallow or no
footprint

DNase I hypersensitive site

TF binding-
motif elements

C

Figure 1.12 – Principles of a DNase I footprinting experiments. A) The classical DNase I foot-
printing method was executed in vitro and combined purified protein or nuclear extract with
a radiolabeled DNA probe. A shallow DNase I digestion resulted in a series of fragments that
were separated using gel electrophoresis. B) DNase I-seq combines exposure of nuclei to
DNase I, purification of small DNase I–released fragments, and massively parallel sequenc-
ing of fragment ends (DNase I cleavage sites) to generate a digital signal of per-nucleotide
cleavages genome-wide. C) DHSs versus TF footprints. An accessible site is detected as a DHS
enriched for sequencing reads in DNase I-seq signal. In the DHS, one or more narrow sites may
be identified as putative TF footprints thanks to the local protection from DNase I cleavage.
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influence the degree of protection from DNase I cleavage at the binding sites. The DNase I
cleavage pattern can be present over motif elements with deep, very shallow or no footprints.
Modified from [331, 224]
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1.3. The organization of the mammalian circadian clock

1.3 The organization of the mammalian circadian clock

This section will introduce the structure of the mammalian molecular clock, Moreover, a review

of recent transcriptomics and functional genomics studies as well as computational research

(modeling and promoter sequence analysis) of the transcriptional regulation of circadian genes

will be presented. Finally, molecular mechanisms that are implicated in the cross-talk between

the circadian clock and the metabolism will be described.

1.3.1 The hierarchical organization of the mammalian clock

In mammals, the main zeitgeber is the light signal. Daylight is detected by photoreceptors in

the retina and transmitted to the suprachiasmatic nucleus (SCN) in the anterior hypothalamus

by the retinohypothalamic tract (RHT). Reception of the light signal rapidly induces the

expression of the mPer1 or mPer2 genes in a time-dependent manner. Thus, light input at

the onset of the night activates both mPer1 and mPer2, whereas mPer1 only is activated if a

stimulus is provided at the end of the night. This activation is mediated through pathways

implying cAMP, Ca+2 and phosphorylated CREB which activates the Per genes [272].

The SCN is the master circadian oscillator, where the rhythm is generated, and then converted

to systemic signals such as hormones like the glucocorticoids, which affect the metabolic

processes and behavior of the entire animal [280] (figure 1.13). Ablation of the SCN leads to a

loss of phase coordination between the different tissues [351]. Therefore, SCN is crucial for

the proper function of the circadian clock in the whole animal.

Indirect signals such as temperature cycles can also induce synchronization. The peripheral

oscillators are sensitive to temperature entrainment via the heat-shock response pathway.

Several studies showed that heat-shock protein (HSP) and the transcription factor heat-shock

factor 1 (HSF1) are involved in the mechanism of clock resetting by temperature cycles [291,

175].

Another indirect signal such as feeding rhythm can entrain peripheral oscillators such as in the

liver. The intracellular redox state (assessed by the NADH/NAD+ ratio) is a direct measure of

the nutritional state of a cell. The redox state affects the activity of the core clock transcription

factor BMAL1/CLOCK through the interaction with the NAD+ dependent deacetylase SIRT1

[15].

In addition, the presence of mammalian peripheral clocks has been demonstrated by recording

gene expression in cultured fibroblasts or tissue explants [25]. The circadian clock is involved

in the regulation of several biological processes. For instance sleep-wake cycles, heartbeat,

blood pressure, renal plasma flow, body temperature, sensorial perception, and the secretion of

many hormones fluctuate during the day in a coordinated manner [128]. These physiological

changes persist under constant conditions, which suggests their regulation by one or more

circadian regulators.
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The hierarchical synchronization of the peripheral clocks supports the coordination of the

different tissues. However, due to tissue-specific functions, the group of clock-controlled

genes are different between tissues. The molecular mechanisms underlying tissue specificity

are not determined yet but, several studies showed significant differences in the nature, the

number and the phase of the rhythmic transcripts in various tissues [312, 248, 5, 355]
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Figure 1.13 – The hierarchical structure of the mammalian clock. Central and peripheral
clocks coordinate external cues with behavior and metabolic outputs. Light entrains the
master pacemaker in the SCN, which in subsequently synchronizes extra-SCN and peripheral
clocks. Brain clock outputs involve behavioral rhythms such as sleep and feeding. In the
other hand, peripheral clock outputs consist of metabolic rhythms such as glucose and
lipid homeostasis. The hierarchical structure of the mammalian clock is described by “non-
autonomous” regulation of peripheral tissue clocks meaning the regulation of peripheral tissue
oscillators through direct neural and humoral signals, and “autonomous” control indicating
the intrinsic regulation of local cellular oscillators independently of the brain clock. Modified
from [28]
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1.3.2 The mammalian molecular core clock

At a molecular level, the circadian oscillator consists of two interacting transcriptional-translational

feedback loops (figure 1.14). The PAS domain helix-loop-helix transcription factors BMAL1

and CLOCK are the principal constituents of a positive feedback loop [41, 167, 225, 139].

They form a heterodimer, which binds to the E-box with a consensus sequence 5’-CACGTG-3’.

This E-box is a DNA binding site, known as a cis-regulatory element of target genes such as

Period genes (Per1, Per2 and Per3) and Cryptochromes (Cry1 and Cry2). A negative feedback

loop is formed when CRYs and PERs form heterocomplexes, which are translocated back to

the nucleus and inhibit their own expression [182, 54, 191]. A secondary feedback loop is

mediated by the orphan nuclear receptors REVERBα and RORα, which are also controlled

by the CLOCK/BMAL1 heterodimer. There is a competition in the nucleus between REVERB

alpha and ROR alpha for binding to the ROR-responsive element (RRE) with a consensus

sequence 5’-AGGTCA-3’ preceded by a 5-bp A/T-rich sequence, in the Bmal1 promoter. RORα

activates the transcription of Bmal1, whereas REVERBα represses it [259, 4].
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Figure 1.14 – The key components of the mammalian transcription/translation delayed feed-
back loop (TTFL) model. Both BMAL/CLOCK(NPAS2) and REVERBs contribute to the produc-
tion of rhythmic transcription at the Per, Cry, and Reverb promoters. PER and CRY proteins are
degraded via F-box proteins, whereas REVERB depends on E3 ligases. Reproduced from [274]

In addition to these TTFL, the clock requires numerous post-translational modifications

to achieve a sufficient delay to set a 24h period. Protein kinases, notably CK1ε and CK1γ,

modulate the activity and/or stability of positive and negative components of the feedback

loop [203, 204, 332]. The general mechanism of the circadian clock and the genes required

for its maintenance are mostly conserved between different tissues. Nevertheless, circadian

output genes are tissue-specific, as one would expect given the diverse physiologies regulated

by the clock [146]. Metabolically active tissues, such as liver, have their own clock that

regulates tissue-specific functions [48].
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1.4 Circadian transcription and gene regulation

1.4.1 Transcriptome-wide studies of the circadian clock

To study circadian regulation of gene expression, several groups have performed transcriptome-

wide studies to detect circadian transcription, using mRNA microarrays, RNA-seq or nascent

RNA-seq time-series with two to four hours resolution over several cycles (or replicates) of 24

hours in mouse liver.

Roughly 2-20 percent of transcripts undergo circadian oscillation in the liver (table 1.1), includ-

ing enzymes and regulators of major metabolic processes [248, 312]. Though this percentage

depends mainly on the applied criteria, such as the set of genes (all the genes of the organism

or only the expressed genes in a given condition), cutoffs considered, experimental conditions,

such as feeding regimen and Light-Dark (LD) or Dark-Dark (DD), temporal resolution and

the number of replicates. However, even in the liver, the number of cyclic mRNAs with large

amplitudes (larger than two-fold) is relatively low.

Table 1.1 – Non-exhaustive list of circadian transcriptome studies in mouse liver based on a
collection of techniques. About 2-20 percent of transcripts undergo circadian oscillation in
the liver.

Method(s) #rhythmic
genes

Reference

Microarray 335 Panda et al. (2002) [248]
Microarray 575 Storch et al. (2002) [312]
Microarray 716 Miller et al. (2007) [227]
Microarray 3667 Hughes et al. (2009) [144]
Microarray 2997 [333]
RNA-seq 1160 Vollmers et al.(2009) [334]
Microarray 2828 Eckel-Mahan et al. (2012) [90]
RNA-Seq 3408 Koike et al. (2012) [171]
PoI II ChIP-Seq 892 Le Martelot et al. (2012) [188]
Microarray 885 Le Martelot et al. (2012) [188]
Nascent-Seq 822 Menet et al. (2012) [223]
RNA-Seq 1204 Menet et al. (2012) [223]
RNA-Seq 1630 Du et al. (2014) [83]
RNA-Seq and Microarray 3186 Zhang et al. (2014) [355]
GRO-Seq 1261 Fang et al. (2014) [95]
RNA-Seq 4544 Atger et al. (2015) [17]

In a landmark publication, Panda et al. compared the circadian oscillation in the liver and

the suprachiasmatic nuclei (SCN) of the hypothalamus. They observed that about 650 genes

were oscillating in both tissues, while the overlap between the two set of genes was quite

low with only 27 genes. Nutrient metabolism, in liver, appeared as an important target of

circadian regulation. Furthermore, genes related to metabolism of sugar were expressed
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during feeding in the early evening, and enzymes for cholesterol biosynthesis peaking at night,

when nutrients are absorbed. In particular, so-called "rate-limiting" steps were shown to

be subject to a precise circadian control [248]. Panda et al. suggested that both core clock

mechanisms and feeding cues regulate these circadian patterns of gene expression.

Storch et al. compared the heart and the liver and transcriptome using mRNA microarray. They

observed that about 10% of all expressed genes in those tissues depict a circadian oscillation.

They found that the overlap between the oscillating transcripts in both tissues was low, notably

a core set of 37 genes with similar circadian regulation in both tissues. The authors observed

that the distributions of circadian phases in the two tissues are considerably different as well

as the downstream biological processes enriched in their gene ontology analysis.

In addition, Miller et al. compared liver and skeletal muscle from WT and Clock mutant mice

[227]. In WT tissue, they observed that a large percentage of expressed genes were transcrip-

tion factors that were rhythmic in either muscle or liver, but not in both, suggesting that

tissue-specific output of the pacemaker is regulated at a transcriptional level. The comparison

between WT and Clock mutant mice tissues revealed that the Clock mutation affects the

expression of many genes that are rhythmic in WT tissue, but also deeply affects many non-

rhythmic genes. In both liver and skeletal muscle, a significant number of CLOCK-regulated

genes were associated with the cell cycle and cell proliferation.

Another study by Hughes et.al compared oscillating transcription from mouse liver, NIH3T3,

and U2OS cells [144]. The authors reported a 100-fold difference in the number of cycling

transcripts in autonomous cellular models of the oscillator versus tissues harvested from

intact mice. Moreover, they observed two clusters of genes that cycle with a period of 12 hours

and 8 hours in liver, but not cultured cells. They confirmed that 12-hour oscillatory transcripts

occur in several other peripheral tissues as well including heart, kidney, and lungs and the

reported that these harmonics are lost in cell cultures, as well as under restricted feeding

conditions.

Vollmers et al. were interested in understanding the main drivers of oscillations in hepatic

transcripts in dark-dark conditions [333]. They wanted to study the contribution of the

endogenous oscillator and the food intake. To address this question, they used distinct feeding

and fasting experimental conditions on wild-type (WT) and circadian clock-deficient mice.

They monitored temporal patterns of feeding and hepatic transcription. They reported that in

the absence of feeding, only a small subset of transcripts continued to exert circadian patterns.

Conversely, temporally restricted feeding restored rhythmic transcription of hundreds of genes

in oscillator deficient mouse liver. They concluded that both temporal pattern of food intake

and the circadian clock drive rhythmic transcription.

In recent past, Eckel-Mahan et al. compared the hepatic circadian transcriptome with a

comprehensive dataset of over 500 metabolites identified by mass spectrometry [90]. They

observed that many metabolites depict clock-controlled oscillation, including those within

the amino acid and carbohydrate metabolic pathways as well as the lipid, nucleotide, and
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xenobiotic metabolic pathways.

Menet et al. have investigated rhythmic transcription by quantifying genome-wide nascent

mRNA produced around the clock in mouse liver [223]. They compared nascent mRNA

with the amount mRNA expressed. Although the authors found that many genes exhibit

rhythmic mRNA expression in the mouse liver, about 70% of them did not show comparable

transcriptional rhythms. As in Le Martelot et al. They conclude that the post-transcriptional

regulation must have a critical role in the circadian system. In addition, Menet et al. observed

that the influence of CLOCK:BMAL1 differed from what was expected, which suggests that

it collaborates with several other transcription factors to control the transcription of target

genes.

As post-transcriptional mechanisms seems to contribute to mRNA abundance rhythms. Du

et al. have investigated how microRNAs (miRNAs) affect the core clock and clock-controlled

gene expression using mice with an inducible defect in miRNA biogenesis [83]. The au-

thors observed that cyclic transcription paired with miRNA-mediated regulation was a fre-

quent phenomenon that affected up to 30% of the rhythmic transcriptome and served to

post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation.

Nevertheless, only few mRNA rhythms were actually generated by miRNAs. They hypothesized

that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements.

Using a similar technique to nascent mRNA sequencing called Global Run-On sequencing

(GRO-seq) Fang et al. studied the underlying mechanisms of multiple phases of gene expres-

sion in the liver [95]. Their examination of enhancer RNAs (eRNAs) that cluster in specific

circadian phases lead to the identification of functional circadian enhancers driven by dis-

tinct transcription factors (TFs). In addition, on a global scale some components of the TF

cistromes, such as D-box, E-box, and RRE, that function to orchestrate circadian gene ex-

pression were identified. Integrated genomic analyses also revealed putative mechanisms by

which a single circadian factor controls opposing transcriptional phases.

Another impressive study was performed by Zhang et al. to elucidate the role of the circadian

clock in mouse physiology and behavior [355]. The authors performed RNA-seq and mRNA

microarray to quantify the transcriptomes of 12 mouse organs around the clock. They reported

that 43% of all protein coding genes showed circadian rhythms in transcription one or more

tissue, but mainly in an organ-specific fashion. In most organs, the authors reported the

characteristical bi-modal phase distribution with many oscillating genes peaking during

transcriptional "rush hours" preceding dawn and dusk (as in Vollmers et al. and Le Martelot et

al.). Moreover, by looking at the genomic landscape, the authors reported that rhythmic genes

clustered together, were longer, and had more spliceforms than non-rhythmic genes. Systems-

level analysis depicted a complex rhythmic orchestration of gene pathways throughout the

body. In addition, they observed rhythmic expression of more than 1,000 known and novel

noncoding RNAs (ncRNAs). Importantly, the authors claim that the majority of drugs and

World Health Organization essential medicines directly target the products of rhythmic genes,
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which may represent a turning-point for advancement in chronotherapy.

More recently, Atger et al. measured transcription, accumulation, and translation, of mouse

liver mRNAs under light–dark conditions and ad libitum or night-restricted feeding in WT

and Bmal1 knockout animals [17]. The authors reported that rhythmic transcription mostly

leads to rhythmic mRNA accumulation and translation. Comparison of wild-type and Bmal1

KO mice confirmed that circadian clock and feeding rhythms have large effect on rhythmic

gene expression, Bmal1 deletion affecting both transcriptional and post-transcriptional levels

unexpectedly.

1.4.2 Genome-wide studies of the circadian chromatin landscape

Thanks to the development of recent sequencing-based technologies, as Chromatin Immuno-

Precipitation followed by sequencing [27], it is possible to study the chromatin landscape at a

genome-wide scale, including transcription factor binding sites and histones modifications.

Several studies in the circadian field used this approach in order to investigate the transcrip-

tional regulation of the core clock as well as transcription factor related to feeding/fasting

cycle.

For instance, Koike et al. [171] performed an impressive large-scale study using ChIP-seq

for genome-wide temporal profiling of core clock factors such as BMAL1, CLOCK, CRY1,

CRY2,PER1, PER2 and NPAS2. Moreover, they measured PolII loadings (RNAPII-8WG16) and

elongating PolII (RNAPII-Ser5P), as well as coactivators p300 and CBP, and histone variants,

such as H3K27ac, H3K9ac, H3K4me3, H3K4me1, H3K36me3, and H3K79me2. In addition,

they performed a whole transcriptome RNA-seq with the same temporal resolution. The

phase of activity of the transcriptional regulators displayed expected specificity, with CLOCK,

BMAL1 and NPAS2 binding at ZT6-ZT8, PER1, while PER2 and CRY2 were reported at ZT15-

ZT17, and CRY1 binding at ZT0. For the circadian transcriptional control, Koike et al. suggest

that an activation phase from the early inducer BMAL1/CLOCK dimer recruits p300 and

promote histone acetylation at regulatory elements, including enhancers marked by H3K4me1.

Subsequently, transcription then occurs with nascent transcription starting around ZT13 to

peak around ZT15, followed by a repression phase by PER1/2 and CRY2. In addition, they

showed that only 22% of cycling mRNA are driven by de novo transcription, suggesting that

both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian

clock. Moreover, they found that circadian modulation of RNAPII recruitment and chromatin

remodeling occurs on a genome-wide scale.

At the same time, Vollmers et al. used genome-wide temporal profiles of H3K4me1, H3K4me3,

H3K36me3, H3K27ac, H3K9ac, DNA methylation and strand-specific RNA sequencing to study

epigenetic modifications associated with transcript oscillations [334]. They observed that 9%

of expressed transcripts undergo circadian oscillation, notably protein-coding genes as well as

lincRNAs, miRNAs and antisense transcripts such as asPer2. Transcripts phase distribution was

bimodal with a cluster of genes expressed in the morning and a second cluster expressed in the
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evening. Robust transcript rhythms were correlated with rhythmic histone modifications in

promoters, gene bodies, or enhancers, while promoter DNA methylation levels were constant.

Coupling of cycling histone modifications with nearby circadian transcripts consequently

established a temporal relationship between enhancers, genes, and transcripts on a genome-

wide scale in mouse liver.

Le Martelot et al. performed a genome-wide analysis of PolII, H3K4me3 and H3K36me3,

combined with mRNA microarray [188]. PolII oscillations in the promoter were correlated

with Pol II loading in the transcribed region. In addition, H3K4me3 in the promoter depicted

a phase delay of 1.3 hours, while H3K36me3 signal oscillated at the end of a transcript with

a phase delay of 3 hours. Moreover, Pol II occupancy preceded mRNA accumulation by 3

hours, consistent with mRNA half-lives. They observed, as in Vollmers et al. that transcripts

phase distribution was bimodal with a group of genes expressed in the morning and a second

group expressed in the evening. Finally, they were able to distinguish three classes of genes

using modeling profiles of Pol II occupancy and mRNA accumulation. The first one showing

rhythmicity both in transcriptional and mRNA accumulation, the second class with rhythmic

transcription but flat mRNA levels, and a third with constant transcription but rhythmic

mRNAs. The last class suggested post-transcriptional regulation in the mouse liver.

Several studies have focused on one or more transcription factors or DNA binding proteins to

investigate the transcriptional regulation in the liver. Current models of time-specific transcrip-

tion include the core clock transcription factors BMAL1/CLOCK that activate transcription

maximally at ZT8 [273, 171], as well as the nuclear receptors RORs and REVERBs, whose

targets are maximally transcribed around ZT20 [60, 43, 316]. Rhythmically active TFs also

include clock-controlled outputs, notably the PAR-bZIP proteins (DBP, TEF, HLF), maximally

active near ZT12 [277, 103]. Furthermore, diurnally fluctuating systemic signals may drive

rhythmic TF activities, for example, HSF1 shuttles to the nucleus and activates transcription at

ZT14 [270, 291], and similarly, SRF shows activity at the night-day transition [109]. Moreover,

regulators controlled by feeding-fasting cycles include FOXO TFs that are active during the day,

CREB/ATF family members at the light-dark transition, and SREBP during the night [333, 111].

Finally, the glucocorticoid receptor (GR) signals the onset of behavioral activity (light-dark

transition) [266].

1.4.3 Chromatin remodelers and topological domains

Chromatin remodelers including histone-modifying enzymes, such as MLL1 [163], MLL3

[327] and JARID1A [79] have been lately associated with the circadian rhythm. In addition,

CLOCK has been shown to possess a histone acetyltransferase activity [80]. Constitutive

binding of BMAL1 in the presence of HDAC inhibitors was impaired which imply that proper

chromatin environment is needed for correct BMAL1 binding [313]. While Menet and col-

leagues reported that CLOCK:BMAL1 can exhibit a pioneer-like function and thus open the

chromatin [222]. These chromatin remodels or some pioneer factor are potentially responsi-
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ble for the mechanism of tissue-specific gene regulation in cooperation with core clock factor,

but it is still an open question. Finally, the 3D structure of the chromatin or more precisely

topological associated domains (TADs) have been shown to be dynamic along the circadian

cycle [3] although the precise mechanisms and the role of these TADs remain unclear.

1.4.4 Computational analysis of the transcriptional regulation of oscillating genes

Bozek et al. addressed the question of tissue and phase specificity using a large scale promoter

analysis of clock-controlled genes (CCGs) [38]. They performed a meta-analysis of microarray

data from mouse tissues, notably heart, liver, SCN, skeletal muscle, by looking at promoter

regions of 2065 CCGs for highly enriched transcription factor binding sites (TFBS). Many of

the enriched transcription factors displayed themselves circadian oscillations. As expected

TFBS associated with the clock were overrepresented such as CLOCK/BMAL1, DBP, HLF,

E4BP4, CREB, RORα and the lately described regulators notably HSF1, STAT3, SP1 and HNF4α.

Moreover, additional putative circadian transcriptional regulators were enriched such as

PAX-4, C/EBP, EVI1, IRF, E2F, AP1, HIF1 and NFY. In addition, GC-rich motifs (SP1, EGR,

ZF5, AP2, WT1, NRF1) and AT-rich motifs (MEF2, HMGIY, HNF1, OCT1) were significantly

overrepresented in promoter regions of CCGs. The authors suggested putative tissue-specific

TFBS such as HNF3 (FOXA) for liver, NKX2.5 for heart or Myogenin for skeletal muscle.

In a subsequent study from the same authors, they used a similar approach but focused

on mouse liver [39]. Again motifs such as E-boxes (CLOCK/BMAL), D-boxes (DBP, HLF,

E4BP4) and cAMP responsive elements (CREB) appeared as enriched TFBS in the promoter

of circadian genes. In addition GC-rich motifs (SP1, ETF, NRF1), AT-rich motifs (TBP, FOX04,

MEF2), Y-box motifs (NF-Y, C/EBP) and cell cycle regulators (E2F, ELK1) were among the

enriched factors. In a subset of genes regulated by systemic signals such as hormones and

body temperature, they were able to detect motifs of the serum response factor (SRF) and the

estrogen receptor (ER). Finally, they confirmed their predictions using published ChIP-seq

datasets by demonstrating that some of their predicted circadian transcriptional regulators

(C/EBP, E2F, HNF1, MYC, MEF2) targeted clock-controlled genes.

Two studies on core clock motifs, notably D-box, E-box and RRE, proved their phase-setting

ability [325, 326]. In the first study, using computational approach and synthetic constructs,

the authors were able to produce high amplitude circadian oscillations in vitro and in silico.

Ukai-Tadenuma et al. performed an in vitro assay with mammalian cells to test the role of

motifs in promoter regions driving the expression of a reporter gene at a particular phase. They

hypothesized that the control of downstream output by the circadian cycle was determined

by the phase of expression of activators and repressors, targeting regulatory elements. The

activator and the repressor were placed under the control of three core-clock elements, notably

D-box, E-box or RRE. A morning phase for the activator (under E-box control) and a night-time

phase for the repressor (under RRE control) resulted in reporter oscillation at phase around

ZT8. Thus, they reproduced the endogenous gene regulation where a morning activator
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DBP (controlled by E-box) targets D-boxes under competition by the night-time repressor

E4BP4 (controlled by RRE), where the phase of D-box controlled expression was found to

be around ZT8 in this artificial system. Moreover, Authors could also reproduce a similar

output around ZT16 by expressing the repressor under E-box control in the morning (similar

to REVERB promoter) and the activator in the evening under D-box control (as RORα). This

experiment demonstrated how phase setting was the product of transcription factor binding

at promoters of target genes. Furthermore, the group was able to synthesize promoters

leading to unusual output phases by combining different phases for activators and repressors,

concluding that combinations of transcription factors with the three main phases in the

core-clock can generate a phase-specific transcriptional output at various times of the day.

In the second study, by investigating the Cry1 locus, and assessing the significance of an

intronic RRE for the phase control of expression of Cry1 transcript, Udai-Tadenuma et al.

[326], showed that phase-specific expression could also occur from combinations of several

clock controlled elements. Adding an RRE to the luciferase reporter gene under control of

D-boxes or E-boxes in its promoter resulted in an output phase similar to a prediction from a

vector sum of the contributions of both regulatory elements. Such a vector additive model

could explain how phase-specific circadian control of output genes results in the variety of

phases observed in the mouse liver. This simple additive vector model is called the phase

vector model.

In addition, Rey et al. studied oscillations of BMAL1 binding in mouse liver [273]. The authors

applied a linear model approach to infer transcription factor activities for several factors which

were shown to be targeted by BMAL1 binding. This method used the mRNA expression of

BMAl1 target genes combined with transcription factor binding sites, determined by position

weight matrix scans (PWMs from SwissRegulon) in promoter regions. The results of this

analysis showed a circadian activity for DBP/HLF/TEF/E4BP4, REVERB/ROR, HIF1A, PPARa,

and BACH1 motifs.

A last interesting study from Westermark and Herzel focused on the mechanism producing

rhythms with a period of 12 hours [341]. They hypothesized that previously reported 12

hours rhythms in gene expression are the results of an interplay between components of the

circadian clock. Therefore, they constructed a theoretical model involving pairs of circadian

transcription factors. Using this model, they observed that the conditions required for these

12 hours oscillations include a certain circadian phase relationship between the two compo-

nent of the clock as well as a non-competitive binding to the promoters of regulated genes.

Finally, the authors demonstrated that binding sites for transcription factor pairs with phase

relationships predicted by theory were overrepresented in promoters of genes displaying 12 hr

rhythms using published mRNA microarray and position-weight matrices scan.
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1.5 Interplay between circadian clock and metabolism

1.5.1 Impaired metabolic phenotypes associated with mutations of core clock genes

Liver-specific deletion of Bmal1 disrupts the rhythm of glucose metabolism (table 1.2) and

causes a low fasting glucose level [185]. Shimba and colleagues reported that BMAL1 is

an essential regulator of adipogenesis and lipid metabolism in matured adipocytes [300].

Embryonic fibroblast cells deficient in BMAL1 gene fail to differentiate into adipocytes except

with the introduction of an exogenous BMAL1 copy. Bmal1 knockout mice show increased

respiratory quotient, reduced fat storage, increased circulating fatty acid, and increased

ectopic fat formation in liver and muscles. Most of the genes implicated in adipocyte function

(e.g., PPARγ, C/EBPα, SREBP1c, and lipin1) are expressed at a low level in BMAL1 deficient

mice, whereas the preadipocyte marker PREF-1 is expressed at a high level. The impaired

adipogenesis in BMAL1 knockout mice prevent the increase of the adipose tissue upon nutrient

excess and thus lead to ectopic accumulation of fat in liver and muscles. Intriguingly, the

differences in adipose tissue size appear in adults but not juveniles of BMAL1 knockout mice,

linking a functional clock to aging.

In addition, hepatic overexpression of Cry1 inhibits gluconeogenesis and reduces blood

glucose levels [354], whereas a whole body double knockout of Cry1 and Cry2 leads to Glucose

intolerance and constitutively high levels of circulating corticorsterone [158]. Several other

clock mutants depict perturbed metabolic phenotypes. More intriguingly the whole-body

knockout of PPARγ coactivator-1α (PGC-1α), a metabolic regulator, exhibits an abnormal

circadian pattern of gene expression, suggesting a feedback mechanism of the metabolism to

the clock through PGC-1α.

In summary, genetic disruption of clock genes in mice perturbs metabolic functions of specific

tissues at distinct phases of the diurnal cycle.
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Table 1.2 – Metabolic phenotypes associated with mutations of key component of the circadian
clock in mice. Reproduce from [210]

Protein Mutation Metabolic Phenotype Reference

CLOCK whole-body
loss-of-
function

Attenuated feeding rhythm,
obesity, hyperphagy, hyperlipi-
demia, hyperglycemia, hepatic
steatosis, hypoinsulinemia

Turek et al. (2005),
Marcheva et al. (2010)
[324, 214]

BMAL1 whole-body
knockout

Glucose intolerance, hypoinsu-
linemia, increased respiratory
quotient, reduced fat storage, in-
creased circulating fatty acid, in-
creased ectopic fat formation in
liver and muscles, hypoinsuline-
mia

Lamia et al. (2008),
Shimba et al. (2011),
Andrews et al. (2010),
Marcheva et al.(2010)
[185, 300, 12, 214]

BMAL1 Liver-
specific
knockout

Hypoglycemia in the rest phase Lamia et al. (2008) [185]

CRY1 CRY2 whole-body
double
knockout

Glucose intolerance and consti-
tutively high levels of circulating
corticorsterone

Lamia et al. (2011) [158]

REVERBα
REVERBβ

whole-body
double
knockout

Hepatic steatosis, hyper-
glycemia, hyperlipidemia

Bugge et al. (2012), Cho
et al. (2012) [43, 60]

HDAC3 Liver-
specific
knockout

Hepatic steatosis Feng et al. (2011) [98]

PGC-1α whole-body
knockout

Abnormal diurnal rhythms of
activity, body temperature and
metabolic rate

Liu et al. (2007) [200]

AMPK whole-body
knockout

body temperature and
metabolic rate

He et al. (2003) [133]
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1.5.2 Clock controlled metabolism in mouse liver

The liver is a central metabolic organ where various processes occur during a diurnal cycle,

such as carbohydrate metabolism, protein metabolism, and lipid metabolism [47, 151]. Sev-

eral other liver functions controlled by the internal clock implies blood detoxification [103]

through drug metabolism, blood homeostasis, through the production of albumin, a major

osmolar component of blood serum, immune function, through Kupffer cells (macrophages

located in the liver), and blood pressure regulation, trough production and secretion of

angiotensinogen [136].

Opposing metabolic processes, such as glycolysis/gluconeogenesis, and lipogenesis/fatty acid

oxidation, necessitates temporal separation; therefore circadian clock plays a significant role

in the regulation of hepatic function. For example, the rate-limiting enzymes of glycolysis

and gluconeogenesis oscillate and peak in the early morning and early evening, respectively.

Metabolic phenotyping studies of clock mutant mice illustrate the importance of a functional

clock on liver metabolism [286].

Studies on the "rate-limiting" gluconeogenic enzyme, phosphoenolpyruvate carboxylase

(PEPCK), have revealed important links between metabolism and circadian cycle [286]. The

PEPCK activity is diurnal in mouse liver, implying rhythmic glucose production. The oscillation

of enzymatic activity is mainly due to a cyclic cellular accumulation of PEPCK since this

enzyme has a short half-life and the major control mechanism is mediated by transcriptional

regulation, through CREB and FOXO1 [116] (figure 1.15). Feeding/fasting cycles generate

daily oscillation of metabolic hormones, such as glucagon, glucocorticoid hormone, thyroid

hormone, and insulin. In addition, Glucagon activates CREB through the cAMP/PKA axis [8].

Glucocorticoid hormone activates the transcription of Pepck. Recently, Evans and colleagues

have characterized the glucocorticoid-dependent interaction between CRYs and glucocor-

ticoid receptor [158]. CRYs inhibit glucagon and glucocorticoid hormone signaling, which

constitute a negative feedback loop to the transcriptional control of Pepck. The REVERB/ROR

pair directly regulates Pepck expression. PPARγ coactivator-1α (PGC1α) exhibits circadian

gene expression and contributes to Pepck gene regulation by protein-protein interaction with

FOXO1 and ROR [46]. PGC1α, which is a transcriptional coactivator for the regulation of

energy metabolism, is also involved in circadian regulation and promotes the expression of

Bmal1 and RevErbα through the RRE site [200]. Thus, the core metabolic genes are tightly

related to the clock systems, and their activities undergo circadian changes.
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Figure 1.15 – A) Transcriptional control of hepatic gluconeogenesis under fasting conditions.
Under fasting conditions, elevated secretion of pancreatic glucagon initiate activation of PKA,
which phosphorylates CREB at the serine 133 residue, driving the increased association of
this factor with co-activator CBP/p300 onto the chromatin. Moreover, PKA dephosphorylates
CRTC2 at the serine 171 residue by inactivating SIK kinases and activating serine/threonine
phosphatases SMEK/PP4C and PP2B, inducing the nuclear localization and increased as-
sociation of CRTC2 with chromatin-bound CREB. These events induces the expression of
gluconeogenic genes such as PEPCK and G6Pase, during the early phase of fasting. Simultane-
ously, CREB/CRTC2 can increase the expression of PGC-1α and ERRγ, which are controlling
hepatic gluconeogenesis during the later phase of fasting. PRMP1 is implicated in the reg-
ulation of gluconeogenesis by modifying the arginine residues (Arg 248 and 250) of FoxO1
during this process. B) Transcriptional repression of hepatic gluconeogenesis under feeding
conditions. On the other hand, feeding induces the reduced plasma concentration of glucagon
and increases secretion of pancreatic insulin, which activates insulin signaling pathways in
the liver. Akt activation control subsequent SIK kinases activation, consequently increasing
phosphorylation of CRTC2. Simultaneously, Akt phosphorylates critical residues of FoxO1,
switching off the transcription of hepatic gluconeogenesis. In addition, transcriptional repres-
sors implicated in hepatic gluconeogenesis such as SHP, DAX-1, and TCF7L2 are expressed
under this condition, which allow the inactivation gluconeogenic genes as well as PGC-1α.
Reproduced from [240]
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Key metabolic factors like AMPK, SIRT1, PPARα, and PGC1α act as important regulators for

core circadian mechanisms (figure 1.16). AMPK, which is a nutrient sensor, play a role in the

destabilization of the CRY protein in the core of the circadian system [159]. Sirt1 is related to

anti-aging and is regulated by NAD+. Furthermore, Sirt1 regulates HAT activity of the CLOCK

protein [346] and promotes deacetylation and degradation of PER2 [15]. PPARα, which is a

nuclear receptor for lipid metabolism in the liver, binds with PER2 [294] and increases Bmal1

expression through a peroxisome proliferator-activated receptor (PPAR) response element in

the promoter of Bmal1 [149].
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Figure 1.16 – Direct and indirect outputs of the core clock mechanism. The core clock consists
of a series of transcription/translation feedback loops that synchronize diverse metabolic
processes through both direct and indirect outputs, including gluconeogenesis and oxidative
metabolism. The clock also receives reciprocal input from nutrient signaling pathways (in-
cluding SIRT1 and AMPK), which function as rheostats to couple circadian cycles to metabolic
flux, especially in peripheral tissues. Reproduced from [28]

Perturbation of lipid homeostasis in the liver is involved in the development of obesity-related

metabolic diseases, such as hyperlipidemia, insulin resistance, coronary artery disease, non-

alcoholic fatty liver disease and diabetes. In recent years, molecular mechanisms of how

circadian clocks regulate lipid metabolism have been studied extensively. It has been known

for years that regulators of lipid metabolism oscillate in the liver [210]. Circadian clocks

directly or indirectly regulate these regulators. For example, Schibler and colleagues have

studied the modulation of SREBP in Reverbα KO mice. SREBP targets such as Hmgcr, Acas,
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Fas and Elov6 are involved in cholesterol and lipid metabolism. REVERBα repress Insig2,

which sequester SREBP to the endoplasmic reticulum membrane and thereby interfere with

the proteolitic activation of SREBP in the Golgi membrane. A rate-limiting enzyme of the

conversion from cholesterol to bile acid, known as Cyp7a1, is modulated by REVERBα. This

control is mediated by the stimulation of LXR by rhythmic production of oxysterols [189].

More recently SREBP binding sites have been identified genome-wide. Targets of SREBP

were divided into clusters based on their expression pattern. One of the clusters showed a

high enrichment of HNF4 binding sites and a phase shift of 8h compared to SREBP binding,

which strongly suggest cross talk between these factors. Interestingly the expression of targets

co-regulated by HNF4 and SREBP1 is strongly impaired in the Bmal1 KO mice [111].

Taken together, these researches done in the past decades revealed several key factors impli-

cated in the cross talk between the nutrient cycle and the circadian rhythm.
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1.6 Objectives

At the molecular level, the relationship between the circadian cycle and nutrient response

cycle (or metabolism) is poorly understood. Therefore, the CycliX consortium aimed at

characterizing the changes in genomic states and transcriptional programs that are implicated

in both cycles. The CycliX consortium studied the transcriptional and epigenetic basis of

diurnal rhythms in mouse liver genome-wide, using temporal DNA occupancy profiles of RNA

polymerase II (Pol II) as well as profiles of histone modifications [188]. Thus, they showed that

the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle.

Currently, the circadian transcriptional regulation is mostly explained by three groups of

transcription factors, bHLH proteins, such as BMAL1 or CLOCK, PAR b-Zip proteins, such as

DBP, TEF or HLF, and nuclear receptors, such as ROR or REVERB, respectively acting at ZT8,

ZT12, and ZT22. In addition, the contribution of the distal regulatory elements to circadian

regulation as well as the tissue-specific regulation of the circadian cycle remains unclear.

Therefore we aimed at:

• Investigating the chromatin accessibility, as well as RNA polymerase II and histone 3

lysine 27 acetylation genome-wide profiles over 24h in the circadian context.

• Identifying the cis-regulatory modules and transcription regulators acting at the mapped

cis-regulatory sites.

• Investigating genome-wide differences between Bmal 1−/− and WT mice to understand

the contribution of the circadian cycle and the nutrient response cycle regarding diurnal

oscillations in mouse liver.

• Identifying of core clock and metabolism transcription factors as well as downstream

effectors.

• Explaining phase-specific regulation by transcription factors.

• Identifying putative tissue-specific transcription factors by comparing NIH3T3 cells and

the liver.

• Identifying putative co-regulatory elements involved in differential regulation of BMAL1-

CLOCK binding in different contexts, namely NIH3T3 cells and mouse liver.

1.7 Achievements

• Investigation of genome-wide DNase I hypersensitive sites (DHSs) in mouse liver. About

62000 DHSs were detected in mouse liver. In addition, 98000 Footprints were detected in

about 3/5 of DHSs. We observed that DHS around TSS tend to contain more footprints.
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• Study of the temporal dynamic of Pol II loadings, H3K27ac and DNase I signal at DHSs

in WT and Bmal 1−/−. About 10 % of the DHSs depicted a circadian behavior.

• Analysis (and optimization) of transcription factor binding site using digital genomic

footprinting methods in WT and at ZT6 in Bmal1−/−. Chromatin accessibility was

dynamically influenced by the binding of transcription factors and DNase I cleavage

pattern reflected DNA binding of protein complexes such as a BMAL1:CLOCK hetero-

tetramer on double E-boxes.

• Study of putative BMAL1 cooperating transcription factor and tissue-specific factors in

liver and fibroblasts. Our analysis revealed several putative BMAL1 co-regulators such

as NRF1 and ZEB1, and tissue-specific factors such as HNF4, CEBP, FOXA and GATA1.

• Analysis (and optimization) of putative circadian regulators and regulators implicated

in nutrient response cycle using a linear model approach in WT and Bmal1−/−. Our

genome-wide description of WT compared to BmalI KO mice revealed the importance

of GR, FOX, and CREB in clock impaired mice under night restricted feeding. Thus,

we observed a partial disorganization of transcriptional control in the absence of a

peripheral clock, which underlined the strong effect of nutritional synchronization.

Global Bmal1 knockout in mice lead to important effects on metabolism and behavior

that could be traced to dysregulation of BMAL1 target genes.

• Analysis of the contribution of distal regulatory element involved in the circadian tran-

scription regulation. We observed that about 47% of DHS are located at more than 10 Kb

from the closest active TSS. In addition distal DHSs up to 50 Kb improved the variance

explained by our penalized linear model in WT and Bmal 1−/−.

• Inspection of diurnal biological processes such as lipid and sugar metabolism and their

regulation in WT and Bmal1−/−. Our analysis confirmed the implication of SREBP,

ChREB, CREB and FOX in these processes.
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Context

In the past decade, the emergence of various next-generation sequencing technologies and

experimental procedures allowed querying our epi-genome and our gene expression with an

unprecedented precision at a genome-wide or transcriptome-wide scale. These experiments

includes chromatin immuno-precipitation followed by sequencing (ChIP-seq) [27] and DNase

I-sequencing (DNase I-seq) [64] to study respectively DNA-binding proteins and chromatin

accessibility. These techniques have gained a substantial interest thanks to consortiums like

ENCODE, which have produced a tremendous amount of data in a wide variety of tissue

and for a lot of different DNA-binding proteins [110, 237, 292, 311]. In the circadian field

several groups have produced time series of liver ChIP-seq of histone marks as H3K27ac or

H3K4me3, as well as core clock transcription factor (TF) as BMAL1, CLOCK, PER1,2, CRY1,2

RORα,β,γ, REVERBα,β, or metabolism related TF like CREB, SREBP, FOX, and more [171,

111, 188, 94, 95, 273, 334]. These studies have unveiled the dynamic nature of the chromatin

landscape, upon time or stimulation or stress. Our goal in this project was to decipher the

transcriptional regulatory logic of the diurnal cycle using a high-quality dataset produced by

the CycliX consortium ,in WT and Bmal1−/− in mouse liver.

Most of the results presented in the following sections were produced for the paper in preparation

entitled "Transcriptional regulatory logic of the diurnal cycle in the mouse liver".

Abstract

Most forms of life exhibit temporal rhythms in gene expression that propel diurnal cycles

in physiology. These rhythms are controlled by transcription-translation feedback loops of

the core circadian clock and modulated by feeding-fasting rhythms. To better understand

the regulatory interplay between the circadian clock and feeding-rhythmic metabolism, we

examined DNase I hypersensitive sites (DHSs) in mouse liver during a diurnal cycle. DNase I

signals cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory

elements controlling rhythmic transcription. Using ChIP-seq, we found that hypersensitivity
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cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac. We exploited the DHSs

to design a penalized linear regression model to infer the activity of transcription regulators

using Pol II loading in WT and in Bmal1−/− mice. While our model identified most known

circadian regulators, we also found motifs for the transcription factors (TFs) CREB, SREBP,

FOX and GR, that exhibited diurnal activity both in WT and Bmal1−/− livers. Since these

TFs regulate genes that display circadian oscillations due to food entrainment under night

restricted feeding, our results suggest that these regulators are impacted by systemic cues or

food driven in Bmal 1−/− mice. In addition, we observed that hypersensitivity was only mildly

affected genome-wide in arrhythmic Bmal 1−/− mice, in contrast to BMAL1 binding sites that

exhibited a strong reduction of hypersensitivity. Interestingly, though, nucleotide resolution

DNase I footprints at locations harboring BMAL1 bound tandem E-box motifs changed in

shape over the diurnal cycle, suggesting a transient hetero-tetramer binding configuration at

those loci between ZT6 and ZT10. Overall, DNase I mapping provided significant additional

insights into the mechanisms of diurnal transcription regulation in mouse liver.
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2.1 Chromatin landscape in mouse liver

2.1.1 Genome-scale mapping of DNase I hypersensitivity in mouse liver

To comprehensively map putative regulatory elements genome-wide, we merged the seven

DNase I hypersensitivity time points and performed peak finding (Methods section 4.2). This

revealed 62’418 DNase I hyper sensitive sites (DHS), covering around 2% of the mappable

genome (taking a width of 600bp for each DHS), which is comparable to previous studies

across mouse tissues [352]. Because we aimed at associating DHSs with nearby genes to infer

regulatory relationships, we first decided to remove from ENSEMBL annotations transcripts

that were not expressed in our samples. Similar to our previous approach [188], we used

histone modifications, Pol II profiles, and now also DNase I signals at transcription start

and end sites of annotated transcripts to train a supervised learning method (support vector

machine) that distinguishes expressed (active) from non-expressed genes (Methods section

4.8). To infer putative regulatory relationships, we then annotated each DHS to the nearest

active TSS. Distances between DHSs and TSSs followed a bimodal distribution, with a first

mode around 100bp from the TSSs and a second 10kb from the TSS (Figure 2.1 A).

Consistent with previous reports [320, 330], one third of our DHSs were found within 1kb of

TSSs, while almost half were located more than 10kb from a TSS (Figure 2.1 B), suggesting

that the identified DHSs contained both promoter-proximal and distal control regions. For

the promoter proximal DHSs, the genomic distributions of DNase I cuts, Pol II, and H3K27ac

signals (centered on TSSs) were consistent with the accessibility of DNA being determined by

nucleosome displacement and Pol II complex assembly (Figure 2.1 C) [343]. At distal DHSs,

profiles of H3K27ac showed a dip in the peak center, consistent with occupation by TFs and

nucleosome displacement (Figure 2.1 D), while the weaker Pol II signals could reflect distal

assembly of the transcriptional complex [170], or interactions between enhancer regions and

the TSS through DNA looping [252, 263].
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Figure 2.1 – Genome-wide localization of DNase I accessibility. A. Histogram of the distance
between each DHS and the nearest active TSS. We observe a bimodal distribution, with a first
mode corresponding to DHS in the promoter region (centered on 100bp from the TSS) and
a second mode centered on 10kb from the TSS. B. Repartition of DHS within three classes
depending on their distance from the nearest TSS: 47% are more than 10kb from a TSS and are
classified as distal, 28% are between 1kb and 10kb away and are classified as proximal, and
finally TSS DHS 1kb or less from a TSS represent 24% of all sites. C. Pol II, DHS and H3K27ac
average signal around TSSs and distal DHSs. Profiles were adjusted so that the maximum
around the TSS represents 100%. At the TSS, patterns of accessibility, Pol II loading and
acetylated histone occupation correspond to previously observed characteristics [320, 58, 35].
D. At distal DHSs, DNase I signal is 60% lower on average. H3K27ac profiles display even
further decrease. However they are also are suggestive of nucleosome displacement at the
center of the region. Corresponding centered signal of Pol II is also seen, albeit on average less
than one-tenth the intensity of TSS Pol II.
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2.1.2 DHS dynamics and correlation with Pol II and H3K27ac signals

To validate our assays, we examined the known circadian output gene Dbp, maximally tran-

scribed at ZT8, to determine whether cutting frequency at DHSs exhibited diurnal variation.

We detected several DHSs in the vicinity of Dbp, with high intensity and narrow signals sur-

rounded by low noise levels. We observed that DNase I hypersensitivity was oscillating around

Dbp locus (figure 2.2 A)

Ripperger et al. (2000) studied the Dbp locus using classical DNase I footprinting experiments

on gel (figure 2.2 B). DBP Intronic DNase I hypersensitive regions embody E-box motifs

that bind BMAL1/CLOCK. Because intragenic enhancer sequences appear to be essential for

robust circadian Dbp expression, the hypersensitive regions located downstream of the cap

site were investigated by [278] in greater detail. Ripperger’s study uncovered seven putative

Dbp regulatory sequences, of which two are located upstream (6 and 7) and four downstream

(1–4) of the transcription initiation site. The sensitivity towards DNase I digestion of four

of these regions (2, 4, 6, and 7) and that of the promoter region including the transcription

initiation site oscillate with the same phase as Dbp transcription and high amplitudes are

represented in green, whereas sites 1,3 and 5 with low amplitudes are represented in blue.

Three of the putative regulatory sequences (2, 4, and 7) contain E-boxes that are binding sites

for CLOCK and BMAL1. These sites were successfully detected in the current DNase-seq study

with similar properties and we confirmed some of their hypothesis regarding BMAL1 binding

at sites 6,4,and 2 using BMAL1 ChIP-seq from G. Rey study.

As exemplified by a DHS nearby the transcription start site (TSS) of Dbp, we observed that

DHSs were located in regions with lower H3K27ac signals in between H3K27ac-enriched

islands, suggestive of TF-induced nucleosome displacement [153, 131, 222]. Moreover, the

DNase I hypersensitivity changed diurnally, notably at the TSS where the oscillations in DNase

I hypersensitivity, Pol II, and H3K27ac peaked in sync at ZT10. However, all DHSs within 15 kb

of the Dbp TSS displayed oscillations with the same phase as the TSS, suggesting regulatory

relationships between these regions and gene transcription (see figure 2.3).

We next analyzed the Npas2 gene (see figure 2.4), another known clock target [32]. Npas2

is a target of RORs and peaks in the late night-time around ZT22 [66]. We detected several

DHSs along the transcribed region of Npas2 (Figure 2.4 A), including proximal (defined as

1-10kb from a TSS) and distal (defined as >10kb from a TSS) sites. The distal sites displayed

high amplitude oscillations of DNase I cuts and H3K27ac (Figure 2.4 B). Normalized signals

at the Npas2 TSS also peaked at the expected phase with maximal signal at ZT22 for all three

marks studied (Figure 2.4 c). Finally, all DHSs associated with Npas2 (those having Npas2

as their closest TSS), including numerous distal regions, likewise cycled with phases around

ZT22 (Figure 2.4 D). Together, observations at the Dbp and Npas2 loci show that DHSs were

detected genome-wide with high resolution, and that the temporal patterns of DNase I cuts

reflected diurnal activity of these elements at different times of the day.
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Figure 2.2 – DNase I accessibility at Dbp locus. DNase I hypersensitive sites within the Dbp
locus. A) Detected DHS using DNase I-seq at ZT02-ZT26, overlapped with BMAL1 ChIP-seq,
E-box prediction scores and previously detected hypersensitive sites by Ripperger et al. B)
Original Ripperger analysis of Dbp locus: Schematic representation of the Dbp gene with its
four exons (E1–E4) and three introns. The positions of the DNA hybridization probes and
the restriction fragments used in the indirect end-labeling experiments are indicated. The
approximate positions of the seven DNase I hypersensitive regions detected in both gels are
depicted on top of the cartoon. Left gel: Mapping of DNase I hypersensitive sites starting from
exon 4. Equal aliquots of liver nuclei harvested at the indicated times were treated with DNase
I (ZT23 to ZT19) or without DNase I (lane C, derived from ZT7). After exhaustive digestion
with EcoRV and BglII, the fragments were visualized using probe A. Right gel: Fine mapping of
DNase I hypersensitive sites in the 5’ moiety of the Dbp locus. The DNA was digested with
HindIII and probed with probe B [278].
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2.1. Chromatin landscape in mouse liver

ZT02

ZT06

ZT10

ZT14

ZT18

ZT22

ZT26

TSS

TSS

Figure 2.3 – DNase I accessibility, Pol II and H3K27ac dynamics at Dbp locus. A) DNase I
hypersensitivity, Pol II, and H3K27ac enrichment at the Dbp locus. The DHS track shows a
nucleotide resolved cutting frequency while H3K27ac and Pol II ChIP-seq signals are smoothed
over 100bp. The seven time points are overlaid. B) A zoom-in around the DHS at the TSS
of Dbp reveals DHS enrichment dynamics around the clock. Both DHS and H3K27ac are
maximal at ZT10 and minimal at ZT22, consistent with BMAL1-mediated activation of Dbp
transcription. Note that DHS signal is strongest in between adjacent histones, probably
reflecting nucleosome displacement around transcription factor binding sites at the center
of highly accessible regions. C) Read counts (in log2 units) for DHS signal (in windows of +/-
300bp) centered on the Dbp TSS. Idem for Pol II and H3K27Ac ChIP-seq (in windows of +/-
1000bp) centered on the same DHS and cosine fits show a common peak phase around ZT10.
Amplitudes are about 16 fold for Pol II, and approximately 4 fold for both DHS and H3K27ac.
D) Phases and amplitudes of all DHSs that are located in the neighborhood of the Dbp gene
(nearest-TSS association according to annotation). Each dot represents a region, with black
for a TSS (x alternative TSS), dark blue for a near-TSS DHS, light blue for a proximal DHS and
grey for a distal DHS. Log2-amplitudes are shown as distances from the center of the plot,
phases as radial position clockwise from ZT0 at the top, and -log10(p-value) determine the
size of the dots. We observed that all regions oscillate around a common phase at ZT10.
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Figure 2.4 – DNase I accessibility, Pol II and H3K27ac dynamics at Npas2 locus. A) DNase I
hypersensitivity, Pol II, and H3K27ac enrichment at the Npas2 locus. B) A zoom-in around
the DHS at the enhancer of Npas2 (starred) reveals DHS enrichment dynamics around the
clock. Both DHS and H3K27ac are maximal at ZT22. C) Read counts (in log2 units) for
DHS signal (in windows of +/- 300bp) centered on the Npas2 enhancer. Idem for Pol II and
H3K27Ac ChIP-seq (in windows of +/- 1000bp) centered on the same DHS and cosine fits show
a common peak phase around ZT22. D) Phases and amplitudes of all DHSs that are located
in the neighborhood of the Npas2 gene (nearest-TSS association according to annotation).
Each dot represents a region, with black for a TSS (x alternative TSS), dark blue for a near-TSS
DHS, light blue for a proximal DHS and grey for a distal DHS. Log2-amplitudes are shown
as distances from the center of the plot, phases as radial position clockwise from ZT0 at the
top, and -log10(p-value) determine the size of the dots. We observed that all regions oscillate
around a common phase at ZT22.
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2.1. Chromatin landscape in mouse liver

We next studied whether DNase I hypersensitivity, accumulation of Pol II, and H3K27ac quan-

tified at the identified DHSs displayed diurnal rhythms using harmonic regression (Methods

section 4.4). The number of cyclic regions identified at different significance thresholds

(p=0.01, 0.05 and 0.1, harmonic regression) clearly indicated that Pol II and H3K27ac oscillated

at a larger number of DHSs compared to the DNase I signal itself, both for proximal (defined

as 1-10kb) and more distal sites (>10kb) (Figure 2.5 A). To select high confidence rhythmically

active regions, we assessed the combined rhythms of the three marks at each DHS using

Fisher’s method [188, 231], which yielded 4606 (7.3%, FDR<0.05) regions with diurnal patterns

of activity. For all three signals, the amplitude of the oscillations was larger at distal sites (the

median amplitude was twofold for DNase I and H3K27ac, and higher for Pol II) compared to

TSSs, and Pol II had larger amplitudes than either DNase I or H3K27ac (Figure 2.5 B). Moreover,

the phases (peak times) of the oscillations in DNase I signals were, except for some small

deviations, similarly distributed as gene transcription and H3K27ac with a weak evening peak

around ZT10 and a marked late night peak around ZT22 (Figure 2.5 C). We next considered

the phase relationships of the DNase I, Pol II and H3K27ac rhythms.
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As previously demonstrated, chromatin marks exhibit diurnal rhythms that are tied to tran-

scription [334, 171, 188, 277]. Similarly, enhancer RNAs (eRNAs) are transcribed in sync with

their cognate transcripts [95].
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Figure 2.5 – Rhytmicity assessment, phases and amplitudes of DHS in DNase I, Pol II and
H3k27ac signal. A) Number of DHSs with statistically significant cycling DNase I signal (left),
H3K27ac-signal (middle) or Pol II signal (right) at three different thresholds (p<0.1, p<0.05
and p<0.01) partitioned according to their genomic location: TSS (1 kb), proximal (1-10 kb
from TSS), or distal (>10 kb from TSS). B) Comparison of relative amplitudes for DHSs in each
class (TSS, Proximal and Distal) and in each signal (Pol II, H3K27ac and DNase I). P-values
were combined using Fisher’s method and sites were selected with an FDR-corrected p-value
threshold of 0.05. Higher amplitudes were observed in distal and proximal regions compared
to TSS (t-test p< 2.2e-16). In addition, Pol II patterns had higher peak-to-trough ratios than
other signals. C) Circular histograms representing the distribution of phases for each mark at
DHS selected as in B. All signals display the characteristic evening peak between ZT20 and
ZT22, with DNase I peaking slightly in advance of other marks. The evening peak is also visible
for DNase I data but appear weakly enriched in Pol II and H3K27ac.
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2.1. Chromatin landscape in mouse liver

We observed that DNA accessibility (DNase I cuts), Pol II, and H3K27ac displayed synchronous

oscillations at DHSs (Figure 2.6 A). Such relationships were maintained after removing DHSs

situated in the transcribed regions of active genes (data not shown), indicating that this is

not a mere consequence of transcriptional elongation [275]. To test whether distal and TSS

DHSs showed temporally correlated signals for each of the three signals, we examined pairs of

oscillating DHSs (FDR adjusted p-value < 0.1, Fisher’s combined test) of which one was located

near a TSS (< 1kb) and one in an intergenic region required to be positioned at least 2kb and

at most 20kb from any TSS. While no pair reached statistical significance for DNase I signals,

probably reflecting that DNase I signals are noisier than the two other marks, we found 1611

pairs oscillating for H3K27ac and 630 for Pol II. The two phases were highly correlated with

phase differences lower than one hour (Figure 2.6 B), suggestive of enhancer-TSS interactions

[320].
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Figure 2.6 – Phase correlations of DHS in DNase I, Pol II and H3k27ac signal. A) Phase compar-
isons between DNase I, Pol II and H3K27ac at DHSs with a combined p-value threshold of 0.05.
Scatter-plots display a concentration along the diagonal (shown in grey). Circular correlation
values are indicated. Delays appear shorter than half an hour, which is within experimental
variations, suggesting that the three marks peak synchronously. B) Phase relationship between
intergenic accessible regions and their nearest TSS. Selection was done by combining p-values
for cosine fits for each accessible regions and its nearest TSS for each signal and applying FDR
correction, with a threshold of 0.1. Respectively 1611 and 630 significant pairs (intergenic
accessible regions - TSS) were observed for H3K27ac and Pol II signals. The scatter-plots dis-
play a distribution along the diagonal. Circular correlation values are indicated and are high.
This suggests that regulatory sites in the vicinity of active TSSs show coordinated temporal
changes.
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2.1.3 DNase I Footprint detection, localization and characteristics

To determine whether DHSs reflected DNA-bound transcription regulators, we searched for

short windows protected from cleavage, also called footprints, using a published method

[256] within a +/- 300 bp window around the center of each DHS. This identified previously

reported footprints as illustrated for the well-characterized promoter of the Albumin (Alb)

gene [196] ( Figure 2.7).
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Figure 2.7 – DNase I accessibility and Footprint at Alb promoter. Albumin locus with a focus
on promoter region displaying the DHS signal (bottom, red), the Wellington detected foot-
print regions (top, black) and the experimentally verified protein binding sites in the region
(multicolor track, center). Many accessible intragenic regions in this locus does not display
any footprint, but show a high DNase I signal, probably due to intense transcription of this
gene in liver. The large protected region at the Alb TSS we detect in our data corresponds to
previously established transcription factor binding sites [196].

In the promoter region of Reverbα (Nr1d1), the detected footprints coincided with E-boxes

and high BMAL1 ChIP-seq signals (Figure 2.8 A). Overall, the vast majority (70%) of DHSs near

a TSS contained at least one footprint, while this proportion dropped to one half for the distal

and proximal DHSs (Figure 2.8 B). Since transcribed DNA is known to be DNase I sensitive

[310], the DHSs without footprints might reflect the process of transcription. To test this, we

analyzed the number of footprints in DHSs outside of promoter regions and further marked

with H3K36me3, a mark coinciding with transcribed gene bodies [119, 188]. Indeed, DHSs

without footprints were frequently (90%) linked with highly transcribed regions (Figure 2.8 C).

Thus, DHSs at TSS seem to contain more footprints than distal DHSs and highly transcribed

regions explain why some of our DHS do not exhibit a footprint.
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2.1. Chromatin landscape in mouse liver

The region 8 Kbp upstream of Reverbα (Figure 2.9) revealed a distal DHS with several footprints

detected by Wellington algorithm [256]. This putative enhancer contains multiple predicted

TFBS using FIMO [114] with the PWMs from Wang study [338]. We found several E-box motifs

(with a similar consensus CACGTG sequence), such as USF, BHLHE40 or MAX, and other

motifs such as HNF4 or CEBPB. Using various ChIP-seq data-sets from the literature, such

as BMAL1 [273], HNF4A, CBP, CEBPA, p300, FOXA1 (also called HNF3α), FOXA2 and GABPA

[96], we observed that this distal DHS is bound (directly or indirectly) by several transcription

factors. This example illustrate the potential cooperative/competitive nature of the regulation

of TFs at accessible regions. TFs rarely act alone at enhancers, their functions should be

considered in a more integrated, combinatorial manner [308]. When the associated TFs are

expressed in overlapping spatial domains, this combinatorial binding can result in discrete

and precise patterns of transcriptional activity. For example, the recruitment of phase-specific

activators and repressors gives rise to more refined expression patterns, such as a combination

of day-time elements (D box) within the Cry1-proximal promoter and night-time elements

(RREs) within its intronic enhancer gives rise to evening-time expression [326].
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Figure 2.8 – Location-dependent footprint characteristics of DHSs. A) Visualization of DHS
signal (red) around the Reverbα promoter with the footprints detected by Wellington analysis
annotated in black, on top. This region contains BMAL1 binding sites (blue) with one overlap-
ping an E-box, annotated on the bottom line, that is marked by a characteristic footprint in
which DNase I signal is virtually absent in the center, reflecting protection of the DNA from
digestion, whereas high signal is observed on the edges of the binding site. B) Distribution of
number of footprints within DHSs (+/- 300 bp around the peak center). TSS regions contain
more footprints on average. More than half the distal regions contain a footprint, strongly
supporting their identity as distal regulatory elements. C) Number of footprints detected in a
given DHS as a function of H3K36me3 enrichment.

50



2.1. Chromatin landscape in mouse liver

Scale
chr11:

Peak_Calling

500 bases mm9
98,644,500 98,645,000 98,645,500

CTCF-ext
HNF4

UA12
GATA1

RXRA
NR2C2
PRDM1

PU1
ZNF263
ZNF281

ETS1
ZNF281

CTCF
ZNF143

MAX
USF

BHLHE40

EGR1
MYC
EGR1

SP1
ZNF281

MAX
MYC

USF
MAX
MYC
USF

BHLHE40
EGR1

ZNF281
UA12
ETS1

ZNF263
CEBPB

PU1

ZNF281

UA6
TAL1

Wellington_footprinting

0 -

-755.972 _

WT_DNAse_ZTALL
1 -

0 _

CLOCK-BMAL1 Liver
50 -

0 _

HNF4A
15 -

0 _

CBP
30 -

0 _

CEBPA
15 -

0 _

p300
30 -

0 _

FOXA1
15 -

0 _

FOXA2
15 -

0 _

GABPA
15 -

0 _

Figure 2.9 – Reverbα enhancer footprint characteristics. In a region 8Kbp upstream of Reverbα
a DHS with multiple footprints was detected. These footprints contain several E-box related
motifs, such as MAX, MYC, BHLH40 or USF (in blue). In addition, several predicted binding
sites for HNF4, ETS1, CEBPB, and GATA1 were detected. The overlap with various ChIP-seq
signal of BMAL1, HNF4A, CBP, CEBPA, p300, FOXA1, FOXA2 and GABPA revealed that multiple
transcription factors can bind to this accessible region.
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2.1.4 Genome wide impact of BMAL1 on DNA accessibility

We next sought to study how BMAL1 binding impacts DNA accessibility. We used a mouse

model in which BMAL1 is unable to bind DNA (Bmal 1−/−) [300] and performed DHS mapping

at ZT6, near the maximal DNA binding activity of BMAL1 (Methods section 4.2). DNase I

hypersensitivity at BMAL1-bound sites (detected in ChIP-seq) [273], such as the Reverbα

locus, was markedly decreased in Bmal1−/−, whereas control (unbound) regions like the

Gsk3 promoter showed no difference (Figure 2.10 A). Genome-wide, using the same methods

as in wild-type mice (WT), we detected 56’201 DHSs at ZT6 in the Bmal1−/− animals. Of

those, more than 38’000 sites were shared with the DHSs in WT. The imperfect overlap might

largely reflect lower sampling when analyzing only one time point instead of the seven time

points used for WT. Indeed, the overlap when considering only ZT6 in the WT was comparable

(around 40’000 shared peaks).

Nevertheless, clear differences at DHSs with BMAL1 binding sites were observed. Namely,

regions bound by BMAL1 [273] in the WT showed fewer DNase I cuts in the Bmal1−/−

compared to the WT. This indicates that BMAL1 binding specifically impacts DNA accessibility

at its target sites (Figure 2.10 B), consistent with the proposed pioneering function of BMAL1

[222]. While DNase I signals at those sites were also significantly lower at trough BMAL1

activity in the WT (ZT18), the KO showed even lower signals (Figure 2.10 C). The same analysis

at sites bound by the E-box binding protein USF1 [301] did not show similar differences

between WT and KO (Figures 2.10 D and E).
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Figure 2.10 – Genome wide impact of BMAL1 on DNA accessibility. A) The Reverbα (left) and
Gsk3a (right) promoters where DHSs are indicated with black ticks at the top. DNase I signal
(in red) is strongly reduced in the KO at BMAL1-bound sites (Reverbα promoter, as indicated
by Bmal1 ChIP-seq signal in blue) but is similarly enriched in WT and KO at sites not bound
by BMAL1 (at the Gsk3a) The vertical scale is the same for all 4 DNase I tracks, as well as for
both Bmal1 tracks.
B) Comparison of DNase I signal in Bmal1−/− versus WT at DHSs overlapping BMAL1 ChIP-
seq peaks at ZT6. Almost all DHSs containing a BMAL1 binding site display lower accessibility
in the Bmal1−/− suggesting fewer factors are bound to these regions at ZT6.
C) Boxplots showing DNase I intensity at the same sites as B, at peak (ZT6) and trough (ZT18)
activities of BMAL1 in the WT and at ZT6 in the Bmal 1−/−. Sites appear less accessible in the
KO than during trough activity in the WT consistent with the lack of compensatory binding by
other factors in the Bmal1−/−.
D-E) Same as B-C using overlap with USF1 ChIP-seq peaks to select DHSs. This protein targets
similar motifs as BMAL1 (E-boxes). Lower signal in the KO is not observed at these sites.
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2.1.5 Digital genomic footprinting and transcription factor binding around the
clock

Owing to the 3D structures of protein-DNA interactions, genomic patterns of DNase I cleavage

around transcription factor binding sites display factor-specific footprints [138, 237, 236, 132,

314, 350]. A previous study showed that BMAL1 binds DNA rhythmically, and that strong

BMAL1 binding was frequently associated with tandem E-boxes [249] separated by 6 or

7 nucleotides bound by one or two BMAL1/CLOCK dimers, respectively [273]. Thus, we

analyzed DNAse I footprints at BMAL1 binding sites in function of time. Starting from BMAL1

ChIP-seq sites, we modified a mixture model for DNase I cuts to determine the optimal

boundaries of the footprints at each time point, as well as the probability that the factor is

bound to DNA (showed a footprint) for every site (see Methods section 4.6.1 and Appendix

section A.1). We then analyzed footprints in BMAL1 binding sites containing tandem E-boxes

separated by 6bp (E1E2-sp6). These DNA elements were previously shown to be bound in vitro

by two BMAL1/CLOCK dimers [273]. Here, both E-boxes in the E1E2-sp6 motif appeared to be

protected from digestion at ZT6, close to the maximal DNA binding activity of BMAL1, while

at ZT18 only the 5’ E-box displayed a footprint consistent with occupation by a transcription

factor (Figure 2.11).
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Figure 2.11 – Time-dependent footprint on double E-box motif with a spacer of 6bp overlapped
by BMAL1 binding sites. DNase I hypersensitivity profile around double E-boxes with a spacer
of 6 bp (E1-E2 sp6). We selected E1-E2 sp6 motifs overlapping a BMAL1 ChIP-seq peak and
show the average of profiles classified as protected by the model. At ZT6, we observe that
nucleotides of both E-boxes of the site are less accessible than flanking regions, indicating
occupation by hetero-tetramers of CLOCK:BMAL1. In contrast, at ZT18, the width of the
protected region is reduced by half, with the second, less conserved E-box no longer protected
from digestion. In the KO, only the first E-box appears occupied.
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2.1. Chromatin landscape in mouse liver

Moreover, the footprint at ZT18 was undistinguishable from that in the Bmal1−/−, suggest-

ing that other transcription factors bind BMAL1 sites when BMAL1 expression is low. The

proportion of E1E2-sp6 motifs showing a footprint indicative of two BMAL1/CLOCK dimers

varied across time points, with a maximum of 65% at ZT10, and minimum of 20% in the

Bmal1−/−. Also, the binding dynamics of BMAL1 at E1-E2-sp7 was largely similar to that

for E1-E2-sp6, though E1-E2-sp7 had both E-boxes predominantly protected only at ZT6,

suggesting spacer-specific binding dynamics. In contrast, the footprints at BMAL1 binding

sites with single E-boxes did not show significant changes in time or in the Bmal1−/−, again

suggesting that other bHLH transcription factors compete with BMAL1. In fact, footprints of

the bHLH transcription factor USF1 were largely similar to that of BMAL1 sites with single

E-boxes, though the fraction of sites with clear footprints was reduced for USF1 compared to

BMAL1 (Figure 2.12).
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Figure 2.12 – Time-dependent footprint on single E-box of USF1 and BMAL1, and double E-box
footprint with a spacer of 7 bp. Base-pair resolution patterns of DNA accessibility at USF1,
BMAL1 single E-box, and BMAL1 double E-box motifs with a spacer of 7 bp, were studied
to reveal dynamic changes. Using our mixture model to fit the width of protected regions at
transcription factor motifs, within DHSs, overlapped by a high ChIP-seq signal (Z-score > 2) we
computed the fraction, which appeared occupied at each time point. DNase I hypersensitivity
average profile around each motif bound at ZT6, ZT18 and ZT6 in Bmal1−/−. The shape of
the footprint reflects the protein-DNA interaction architecture. The bound fraction and the
percentage of the maximum width are represented respectively in blue and green for each
motif at each time point and at ZT6 in Bmal1−/− context.
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Finally, we examined temporal footprints at DHSs bound by other well-studied circadianly

active TFs, ROR/REVERB, HSF1, SREBP and CREB (Figure 2.13). Interestingly, unlike for

BMAL1/CLOCK, the shapes of the footprints for those factors did not change with time, and

was also not affected in the Bmal1−/− condition. However, the fraction of sites showing

footprints coincided well with the maximal transcriptional activity of the different factors. For

example, footprints centered on REVERBα-bound ROR response elements (ROREs) showed

the largest proportion of footprints at ZT22, which coincides with the phase of maximal ROR

activity. We detected a low percentage of binding for ROREs, which is consistent with the fact

that nuclear receptors have a low residence binding times [314] and therefore display a lower

DNase I cleavage-protection pattern.

For HSF1, the number of footprints was maximal at ZT18, approximately four hours later than

the previously reported peak activity [176], and for the feeding-induced SREBP this number

peaked during the night, as expected [111, 211]. Finally, high confidence CREB binding

sites [211] showed clearly marked and invariable footprints throughout the day, including in

Bmal 1−/− mice, consistent with the finding that CREB activity is regulated post-translationally

on the DNA [94, 192, 298].
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Figure 2.13 – Time-dependent footprint of ROR, HSF, SREBP and CREB. Base-pair resolution
patterns of DNA accessibility at ROR, HSF, SREBP and CREB, were studied to reveal dynamic
changes. Using our mixture model to fit the width of protected regions at transcription factor
motifs, within DHSs, overlapped by a high ChIP-seq signal (Z-score > 2) we computed the
fraction, which appeared occupied at each time point. DNase I hypersensitivity average profile
around each motif bound at ZT6, ZT18 and ZT6 in Bmal1−/−. The shape of the footprint
reflects the protein-DNA interaction architecture. The bound fraction and the percentage of
the maximum width are represented respectively in blue and green for each motif at each time
point and at ZT6 in Bmal1−/− context.
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2.1.6 3D structure of BMAL1/CLOCK hetero-tetramer model bound on DNA

To better understand the time-varying footprint at BMAL1 sites and gain insights into how

the BMAL1/CLOCK heterodimer occupies its tandem E-box-containing target sites, we used

recently established 3D protein structures of single BMAL1/CLOCK complexes combined

with structural modeling performed by Alexandra Styliani Kalantzi from Matteo Dal Peraro’s

lab (see Methods section 4.9). Two 3D models of the hetero-tetramer configuration were

constructed. In a first model, the spacing between the two E-boxes was 6 bp (sp6) (figure 2.15

and figure 2.16) and in a second model the spacing was 7 bp (sp7). For the model of the single

CLOCK:BMAL1 complex, we used the crystal structure of the heterodimeric BMAL1/CLOCK

(pdb id: 4F3L) [141], in which we built the missing parts of the flexible loops. To link the single

BMAL1/CLOCK model to the E-box, we used the complex crystal structure of BMAL1/CLOCK

basic helix-loop-helix domains bound on the E-box (CACGTG) (pdb id: 4H10) [339]. We

then superimposed the two single BMAL1/CLOCK E-box models, with the sp6 DNA and

the sp7 DNA, forming the respective symmetric hetero-tetramer models. We found that

the 6bp spacing between the two E-Boxes was suggesting an interaction between the two

BMAL1/CLOCK complexes [234], although the 7 bp spacing seemed also favorable with a

twist of 1° in the three interval base pairs. However, a conformation with base pair spacing

less than 6 or more than 7 would make complex formation difficult because of conformational

constraints. Thus, we found that the dynamics of transcription factor complexes on the DNA

can change during the diurnal cycle, as reflected by the shape changes of DNase I footprints

(section 2.1.5).

Using our 3D structure model with a spacer of 6 bp and molecular dynamic simulations (see

Methods section 4.9), we were able to identify several residuals that are at the interface of

the two hetero-dimers. These residuals are located in the PAS-B domain of CLOCK (table

2.1, figure 2.16). We observed two symmetrical interactions implicating a glutamic acid

(E380) interacting with a glutamine (Q352) and a lysine (K335) interacting with a tyrosine (Y338)

through a hydrogen bond. Moreover, the glutamic acid is negatively charged and the lysine is

positively charged, suggesting a potential ionic interaction. There might be more hydrogen

bonds forming between the two dimers on flexible loops on BMAL1 PAS-A domain. The

flexible loops are more dynamic and therefore harder to characterize.

Table 2.1 – Residuals implicated in the interaction of the two hetero-dimers BMAL1:CLOCK

Residuals A Residual B Distance (Å)

E380 Q352 2.827
K335 Y338 2.835
Q352 E380 2.887
Y338 K335 2.882

Using our model with a spacer of 7bp and the molecular dynamic simulation, we calculated

the distance of the center of mass between the two dimers (figure 2.14). The initial distance
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2.1. Chromatin landscape in mouse liver

between the two dimers is 68.3 Å and after 130 ns of simulation, the distance decreased with a

value of 62.4 Å, suggesting that the two BMAL1/CLOCK dimers are attracted by each other.
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Figure 2.14 – Molecular dynamic simulation BMAL1/CLOCK hetero-tetramer model bound
on DNA. Center of mass between the two BMAL1/CLOCK dimers calculated with a molecular
dynamic simulation on the sp7 model.

Overall, these interactions might be critical for a functional molecular clock, and they deserve

further experimental validations.
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CACGTG

BMAL1
CLOCK

BMAL1

CLOCK
CACGTG

Figure 2.15 – 3D structure of BMAL1/CLOCK hetero-tetramer model bound on DNA. Two
views of the 3D model of the CLOCK:BMAL1 hetero-tetramer based on the crystal structure of
a dimer of two CLOCK:BMAL1 heterodimers occupying an E1-E2 sp6 site. Each heterodimer
is drawn in a different color, green and blue respectively, while darker green and darker blue
correspond to BMAL1 and lighter colors to CLOCK proteins. Information content along the
DNA strands is shown in grey with highly constrained nucleotides of the motif in red. The
proximity between two heterodimers suggests strong interaction between these complexes,
and is consistent with the published data where cooperativity at tandem E-boxes has been
shown by [249, 234], which has since been further corroborated by [273].
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BMAL1CLOCK BMAL1CLOCK CLOCK CLOCK

Figure 2.16 – BMAL1/CLOCK hetero-tetramer model bound on DNA: side view with interacting
residuals. Side view of the 3D model of the CLOCK:BMAL1 hetero-tetramer with a zoom on the
interface between the two CLOCK:BMAL1 hetero-dimers. The interacting residuals are mainly
located on CLOCK. These residuals were identified thanks to molecular dynamics simulation
[198] performed by Alexandra Styliani Kalantzi.
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2.2 System specific chromatin accessibility and BMAL1 co-regulators

2.2.1 BMAL1 binding and DNase I hypersensitivity differ between fibroblasts and
hepatocytes

As previously described, the rhythm in the core clock is produced and sustained by a transcription-

translation feedback loop (TTFL), whose main activator is a heterodimer formed by two bHLH-

PAS transcription factors, BMAL1 and CLOCK, which bind rhythmically to E-box motifs in the

regulatory regions, such as TSS or enhancers of clock controlled genes [277, 108]. Genome-

wide a large number of BMAL1-CLOCK targets have been identified by ChIP-seq in mouse

liver [171, 273]. While the core TTFL is active and rhythmic genes have been observed in most

cell types and tissues [312, 355], much less is known about the cell type-specific regulatory

network and rhythmic output functions connected to it.

In a project in collaboration with Julia Cajan (a former PhD student in the Naef lab), we

compared at BMAL1 ChIP-seq and DNase I hypersensitive sites in mouse liver and in NIH3T3

fibroblasts cells [273, 311].

To further identify the extent of circadian clock-controlled genes in NIH3T3 fibroblasts we

set out to study DNA-binding of BMAL1 in dexamethasone (Dex) synchronized NIH3T3 cell

cultures. Samples taken at the minimum (12h after Dex) and maximum (20h after Dex) binding

time points were then submitted for deep sequencing (ChIP-seq). To assess similarities and

divergences in BMAL1 binding in cultured NIH3T3 cells and mouse liver tissue (figure 2.17),

the NIH3T3 fibroblasts data were compared to BMAL1 binding sites in liver from Rey et al.

[273].

Figure 2.17 – Context specific binding of BMAL1/CLOCK. Examples of rhythmic BMAL1 and
CLOCK. The left panel shows an example of a shared binding site in the promoter region of
the Per1 gene; the right panel shows the Atf6b promoter as an example of fibroblast-specific
binding. Modified from Cajan, Sobel et al. (in preparation)

After standard peak detection, we filtered peaks that exhibited a low signal-to-noise ratio,

which we also applied to the mouse liver data in [273] We obtained a list of 463 BMAL1 binding
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2.2. System specific chromatin accessibility and BMAL1 co-regulators

sites in NIH3T3, and 1132 liver BMAL1 binding sites with an overlap of 319 shared sites. The

observation that many BMAL1 sites were bound in a liver- or fibroblast-specific way raises

the question whether the unbound sites are just weakly occupied or whether the chromatin

surrounding those sites is in a poorly accessible, repressed state. We used published data sets

of DNase I hypersensitives sites (DHSs) from the ENCODE consortium [311] to address this

ambiguity. We re-analyzed DNase I signal to identify peaks in both conditions. We detected

about 82000 DHSs in liver and 78000 DHSs in fibroblasts with an overlap of 26000 DHSs. This

low overlap of DHSs between Liver and NIH3T3 suggest that the cellular regulatory programs

are quite different between these two data sets. Moreover, we observed that 88% of BMAL1

binding sites were in a DHS in NIH3T3 (409/463) and 84% of BMAL1 binding sites were in a

DHS in Liver (959/1132), which indicates that the chromatin accessibility is crucial for BMAL1

binding.

2.2.2 BMAL1 co-regulators are enriched in a cell-type specific manner

To identify putative BMAL1 co-regulators that could explain how BMAL1 can bind at different

sites in hepatocytes and in NIH3T3 fibroblasts, we conducted a motif scan in a ±250 bp window

around the center of the binding sites. Since motif searches only indicate the occurrence of a

certain sequence, but contain no information about the occupancy of the site, we also used

DHS footprints (using Wellington algorithm from [256])as a measure of bound (and hence

presumably active) sites.

To control for general liver- or fibroblast-specific regulators, we used the combined set of

DHSs from liver or fibroblasts [311], respectively, as input for the motif search since those

should cover most active regulatory elements. This allowed to assess which motifs found

around BMAL1 sites were associated with BMAL1 specifically in the liver or the fibroblasts

(figure 2.18). As positive controls, E-box binding motifs (BHLHE40, MYC, MAX and USF) )

were clearly the dominant signal in both systems, although E-boxes seemed to be slightly

overrepresented in NIH3T3 sites compared to liver.
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Figure 2.18 – Context specific-chromatin accessibility and BMAL1 co-regulators. A motif
search using a PWM database derived from ENCODE ChIP-seq of 119 transcription factors
[338] on all DHSs, as well as BMAL1 binding sites in liver and NIH3T3 fibroblasts, reveals
motifs that are preferentially enriched in one dataset or the other and differentiates between
general regulators (DHSs) or BMAL1-specific coregulatory elements. the X-axis represent the
enrichment of motifs (in a footprint) in sites of BMAL1 versus DNase I hypersensitive sites,
and the Y-axis represent the enrichment in Liver versus NIH3T3.

In the liver, we detected several motifs for known tissue-specific regulators that showed,

however, low specificity for BMAL1 sites. These include RXRA (three-fold enriched in the liver

and five-fold enriched in BMAL1 over all DHSs) or members of the FOXO family (four-fold

enriched in liver, four-fold enriched in BMAL1 over all DHSs). Other factors, notably ZEB1,

were more specifically associated with BMAL1 binding, but less specific for the liver (2.1 fold

enriched in liver, seven-fold enriched in BMAL1 over all DHSs). However, in liver, specific

recruitement of BMAL1 to DNA seems to be overall achieved mainly through general tissue-

specific regulators. This is in contrast to fibroblasts where we observed stronger enrichment

of specific motifs that were preferentially associated with BMAL1 sites. These motifs pointed

to transcription factors such as E2F1 (3 fold enriched in NIH3T3, 15 fold enriched in BMAL1

over all DHSs) and NRF1 (2.1 fold enriched in NIH3T3, 15 fold enriched in BMAL1 over all

DHSs). Overall, the overrepresentation of these motifs that coincides with a DNase I footprint

indicates that a large percentage of these motif-containing sites were occupied and thus

potentially active.
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In order to confirm these observations, we analyzed the motif content of 100K random ge-

nomic locations, and we computed the ratio of the number of motif match over the sum

of regions considered for several interesting candidates (figure 2.19 and 2.20). Again, we

observed that EGR1, NRF1 BHLH40 and ZEB1 are highly enriched in BMAL1 sites in both

conditions, and it seems that NRF1 and EGR1 are more enriched in fibroblasts. These motifs

are not enriched in the random context which suggests a functional role of potential tissue-

specific BMAL1 co-regulators. On the other hand, we detected several potential liver-specific

co-regulators as DBP, NR3C1, HNF4, HNF1, HSF1, CEBPB, TCF7L2 and FOXO1. Interestingly

some of these factor as HNF1 and HNF4 are already known as liver-specific factors, and FOXO1

and TCF7L2 are related to feeding-fasting cycle [241]. Moreover, DBP is a direct target of

BMAL1 [278, 277] and its binding site (D-box) is upstream of many clock controlled genes,

which are implicated in hormonal and metabolic control [296]. Finally, NR3C1 (also called

Glucocorticoid receptor,GR),has been shown to synchronize hepatic circadian transcriptome

[266].
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Figure 2.20 – Predicted liver/NIH3T3 specific regulators. Motif occurrence over total site counts
for several candidates TF in BMAL1 and DNase I hypersensitive sites in liver (NB M AL1,l i ver =
1132,ND HS,l i ver = 81973 ) or NIH3T3 (NB M AL1,N I H3T 3 = 463,ND HS,N I H3T 3 = 77618 ) and in
100K random genomic locations as control.
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2.2.3 E2F1 was identified as a putative fibroblasts-specific regulator enriched in
BMAL1 sites

E2F1 was highlighted as a fibroblasts-specific regulator. This is not surprising as fibroblasts

are still dividing in culture, while hepatocytes are mostly not dividing in liver tissue. Indeed

hepatocytes are normally quiescent (G0 phase) in the liver [6]. In order to substantiate this

prediction, we looked at the promoter of the E2f1 gene (figure 2.21). We observed that the E2f1

promoter is less accessible in liver and there is no Pol II signal, which indicate that the gene is

not transcribed. In addition, we found several TFBS motifs that are preferentially enriched

in NIH3T3 fibroblasts, suggesting that these factors might contribute to the tissue-specific

expression of E2f1.
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Figure 2.21 – Promoter state of E2f1 in fibroblasts and liver. Using UCSC Genome Browser to
visualize Pol II loading at the promoter of E2f1 in fibroblasts and in liver, we observed that
E2f1 is not transcribed in liver. Moreover the DNase I signal (from ENCODE) demonstrated
that in the NIH3T3 fibroblasts, the promoter was more accessible than in the liver. Finally
using PWMs from the Wang et al. study [338], we showed that this promoter contains many
motifs of EGR1, E2F1 itself and NRF1 that were enriched more specifically in fibroblasts. Note
that the DNase I signal is represented with full reads instead of the cleavage positions.
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2.2.4 ZEB1 was identified as a potential co-regulatory factor of BMAL1

Julia Cajan tested the potential implication of ZEB1 (Zinc Finger E-Box Binding Homeobox 1)

in circadian gene regulation using ChIP-qPCR and shRNA. She found that this protein binds

upstream and at the TSS of Nr1d1 in a rhythmic manner (28h-32h after Dex) but in anti-phase

of BMAL1 (20h after Dex) in NIH3T3 cells (figure 2.22 A and B). Moreover, the knock-down

experiment of Zeb1 mRNA using shRNA, monitored with a Dbp-luciferase reporter, resulted in

a significantly prolonged period phenotype in NIH3T3 fibroblasts (figure 2.22 C), consistent

with results of an RNAi screen in human U2OS cells [353]. In addition, ZEB1 was recently

associated with adipogenesis [118] and may represent another link between the circadian

clock and the metabolism.
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Figure 2.22 – ZEB1 was identified as a potential co-regulatory factor of BMAL1. (A) ZEB1 binds
to shared BMAL1 sites rhythmically, but in antiphase to BMAL1, peaking at 28-32h after Dex in
NIH3T3 and (B) undifferentiated 3T3-L1 cells. (C) Dbp-luc as a circadian reporter in NIH3T3
fibroblasts shows substantial period elongation upon Zeb1 KD (mean for stable KD cell line:
26.1h ± 0.1h, control cell line: 25.2h ± 0.1, p-value = 5e-4, t-test, N=6). Modified from Cajan,
Sobel et al. (in preparation)
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2.2.5 Digital genomic footprinting confirms predicted liver/NIH3T3 specific fac-
tor

To study the transcription factor occupancy of the above motifs in more details, we analyzed

nucleotide resolved DNase I cleavage pattern obtained for each motif (ENCODE DHS data,

[311]) (figure 2.23) using the same sites in both tissues. DHS footprints detected at E-box sites

(here BHLHE40) in liver and NIH3T3 fibroblasts show similar mean DNase signals and clear

signatures of a bound protein. In contrast, footprints found at the Nuclear respiratory factor 1

(NRF1) and Hepatocyte nuclear factor 4 (HNF4) motifs show clear preferences for fibroblast-

or liver-specific BMAL1 sites, respectively. Interestingly, a decrease of NRF1 expression was

associated with insulin resistance in skeletal muscle in diabetic individuals [250]. Moreover,

NRF1 targets encode key enzymes in oxidative metabolism and mitochondrial function.
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Figure 2.23 – Context-specific chromatin accessibility of E-box, NRF1 and HNF4. DNase I
footprint in Liver or NIH3T3 around E-Box (BHLH40) a motif enriched in BMAL1 binding sites,
NRF1 a motif enriched in NIH3T3 and HNF4 a liver-specific motif. These cleavage patterns
were obtained using the same sites (PWM match in DHS in liver and/or NIH3T3 fibroblasts) in
both tissues.

Taken together, these observations suggest that tissue-specific programs mediated by co-

regulatory factors are necessary to support tissue-specific circadian gene regulation.
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Chapter 2. Results

2.3 Phenotypic consequences of whole body Bmal1 knockout

2.3.1 Phase specific regulation by transcription factors in WT and in Bmal 1−/−

mouse liver under night restricted feeding

To further study how the core clock and feeding-fasting cycles regulate diurnal oscillations of

gene expression in the liver at the transcriptional level, we combined temporal Pol II loadings at

TSSs in WT and Bmal 1−/− mice and transcription factor binding sites in accessible chromatin

regions. Using DHSs and a collection of about 1900 position-weight matrices for TF-DNA

affinities (Methods section), we identified DNA sequence motifs that explain rhythmic Pol II

patterns in wild-type and KO. Therefore, we modified previously described linear regression

models [273, 26, 44], but used sparse regression to identify a set of transcriptional activities

(strictly speaking DNA motifs) represented by phase (time of maximal activity) and amplitude

(Methods). In this model, motif activities are linearly combined according to the presence of

the corresponding DNA motifs within DHSs, as in the phase vector model [326]. Specifically,

we fitted the TSS Pol II signal of all genes using the motif content in all DHSs annotated to the

corresponding genes, as described above. This enabled us to take into account, in addition

to the proximal promoter, a collection of putative regulatory regions that may control the

expression of the focal gene at a given vicinity of their respective TSS (Figure 2.24 A). We

observed that the inclusion of Distal DHSs up to a vicinity of 50Kbp was increasing deviance

ratio in both genotypes (Figure 2.24 B). This emphasized that enhancers (as represented by

distal DHSs) play an important role in fine-tuning circadian gene transcription.
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Figure 2.24 – Computational method for discovering phase specific activity of cis-regulatory
elements. A) Scheme of the penalized generalized linear model. The distance threshold is
symmetric regarding the TSS; it allows including intergenic or intragenic DHS motif content
in the linear model. A DHS might be assigned to a multiple active gene thanks to the distance
threshold around the TSS. B) Deviance ratio in WT and in Bmal 1−/− for Pol II loading (at the
TSS of all actives genes) is represented in function of the distance threshold. The deviance
ratio is defined as the fraction of (null) deviance explained by the model.
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In WT mice, our predictions revealed that core clock transcription factors were among the

key phase determinants, and in particular Ror responsive elements (RRE), as reflected by

the strong inferred activity of RRE motifs at late night using Pol II-bound regions (Figure

2.25). Other major motif groups included D-Box factors with a peak activity around ZT12 and

E-boxes around ZT8, as previously described. However, motifs for factors that are not part

of the core circadian clock also emerged in our analysis, as illustrated by Forkhead TF (FOX)

motifs around ZT3, the CREB motif at ZT7, and GR motifs around ZT10. In Bmal1−/− mice

(Figure 2.25), it was immediately apparent that the contribution from E-Box, RREs, and D-Box

motifs was greatly reduced, and that other factors were responsible for phase-specific Pol II

accumulation. One of the Forkhead box motif (FOX) appeared as the variable with the highest

coefficient and a phase-specific contribution around ZT5 (FOXO). The FOX family contains

41 protein in mouse, and we can not know which protein of the family is responsible for this

important phase-specific activity. Moreover we observed that some other FOX motifs from our

database (FOXA1,FOXB1,FOXJ) had a small phase specific activity at ZT18. Interestingly, at

the nuclear protein level, two FOX proteins, namely FOXA1 and FOXA3, were detected using

mass-spectrometry with similar phase (personal communications with Jingkui Wang and

Frederic Gachon). We also noted a larger relative role for the HSF, GR and CREB motifs in

Bmal1−/−. On the other side, several motifs showed stable activity such as SREB.
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Figure 2.25 – Phase-specific activity of cis-regulatory elements in WT and Bmal1−/− mouse
liver. We performed a penalized linear model in WT and in Bmal 1−/− with a distance threshold
of 50Kbp, and with a parameter α of 0.1 (Elastic-net mode) and a λ of 0.1. We used motifs
(PWMs) from four databases, notably JASPAR, SELEX, ENCODE (ChIP-seq) and TRANSFAC. In
addition, We highlighted with the same color closely related motifs from the different sources
(CREB, D-box, E-box, FOX, GR, HSF, RRE and SREB). The 40 motifs with highest inferred
activity in WT and in Bmal1−/− are presented in table 2.2 and 2.3
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Table 2.2 – Top 40 inferred motif activity in WT mouse liver

PWM ID Activity Phase Consensus Sum in-
formation
content

Motif sum
in DHS

Target gene
sum

Source Annotated
Family

NFIL3_MA0025.1 2.826E-2 12.4 TTATGTAACGT 14.13 3597 2447 Jaspar D-box
V_RORA2_01 2.454E-2 21.7 GTAAACAT 11.92 5690 4005 Transfac RRE
NFIL3_M135 2.443E-2 11.3 AGAGATAAGA 9.8 4455 3410 Selex D-box
RORA_M208 2.268E-2 22.1 GGGGGGGGGGCCA 14.23 8234 5079 Selex RRE
V_RORA_Q4 1.937E-2 20.1 GGTAAGTA 6.50 7188 4786 Transfac RRE
V_CREBP1_01 1.877E-2 11.8 TTGACCTTTG 12.90 2287 1914 Transfac D-box
RORA_1_MA0071.1 1.847E-2 20.5 CAAACGTAAACAAT 14.82 10192 5835 Jaspar RRE
V_SOX13_03 1.710E-2 5.6 CACATTCCTCCG 15.67 3438 2546 Transfac other
V_DMRT7_01 1.579E-2 2.0 AGGTCAG 8.34 6270 4288 Transfac other
V_PAX2_01 1.471E-2 10.5 GGAGAAGCAG 6.44 5262 3781 Transfac other
Cebpb_M130 1.354E-2 7.9 GGGAACAGATGGTCTC 15.89 3776 3007 Selex other
SREBF1 1.286E-2 19.9 CTGAACTTTGACC 13.81 11144 6405 Encode SREB
V_AR_02 1.243E-2 6.6 GATGAACTTCCTGACCCGTTT 16.44 9443 5654 Transfac GR
V_CEBPE_Q6 1.226E-2 19.1 CTTTGTG 7.77 6529 4405 Transfac other
V_VDR_Q6_01 1.195E-2 12.1 ACCGTTAACGGT 15.28 14751 7165 Transfac other
V_HSF1_Q6 1.193E-2 16.8 ACCGGAAGTG 10.25 11599 6735 Transfac HSF
V_GCM1_04 1.189E-2 22.0 TTCCGAGAAGACCA 14.92 10327 6126 Transfac other
V_PBX1_01 1.172E-2 4.3 GGGGGGGGCGGGGCC 12.80 4635 3166 Transfac other
V_MYB_03 1.156E-2 6.0 ATCCACAGGTGCGAAAA 12.01 8157 5325 Transfac other
PAX1_M87 1.144E-2 13.7 GATTTAATGACC 13.62 6997 4893 Selex other
V_FOXO3A_Q1 1.133E-2 8.2 CTTTAAGTACTTAATG 13.19 10652 5524 Transfac FOX
V_CMAF_01 1.125E-2 21.0 GCCCTCCCC 13.55 9443 5708 Transfac other
V_ATF4_Q6 1.112E-2 8.5 CGGGGG 6.57 8126 5184 Transfac other
V_FOXO4_01 1.103E-2 3.8 TATTGGTAATTACCTT 10.66 10040 5771 Transfac FOX
V_MSX3_01 1.103E-2 6.9 GGTCCCGCCCCCTTCTC 14.38 3222 2558 Transfac other
V_AIRE_02 1.099E-2 20.9 AGATAAG 8.22 4206 3250 Transfac other
ZNF784_M30 1.075E-2 11.0 TACCCACAATGCATTG 22.05 7763 5056 Selex other
V_DOBOX4_01 1.073E-2 5.1 AACCCCTTTGTTATGC 13.70 3420 2758 Transfac other
FOXB1_M138 1.065E-2 3.9 GGGGAATTAGAGTTG 10.66 7497 4869 Selex FOX
V_IPF1_05 1.047E-2 16.5 ACCGGAAGTG 11.35 4420 3230 Transfac other
V_IK3_01 1.028E-2 11.7 TTGGCA 6.00 7618 5080 Transfac other
V_MYCMAX_02 1.018E-2 7.0 TTATGTACTAATAA 16.78 8613 5412 Transfac E-box
ESRRA_M190 1.012E-2 20.8 TTGGTGACGTCC 11.55 11845 6395 Selex other
PBX1_MA0070.1 1.01E-2 9.1 CCATCAATCAAA 14.64 4844 3152 Jaspar other
V_PBX1_02 1.010E-2 19.5 TTTGACCTCCAGTGACCCCC 17.17 5228 3392 Transfac other
V_IRF2_01 1.007E-2 21.1 ACCGGAAGTA 10.85 8725 5377 Transfac other
En1_MA0027.1 1.006E-2 7.2 AAGTAGTGTTC 6.42 6931 4794 Jaspar other
V_STAT5A_Q6 1.005E-2 15.0 AACCCGGAAGTG 16.25 12414 5612 Transfac other
V_HNF3B_Q6 9.7E-3 6.8 AGATAA 8.19 14860 6475 Transfac other
V_AR_Q6_01 9.6E-3 10.0 TAGCCAGACAG 9.99 14242 6919 Transfac GR
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Chapter 2. Results

Table 2.3 – Top 40 inferred motif activity in Bmal1−/− mouse liver

PWM ID Activity Phase Consensus Sum in-
formation
content

Motif sum
in DHS

Target gene
sum

Source Annotated
Family

V_FOXO4_01 1.664E-2 7.3 TATTGGTAATTACCTT 10.66 10040 5771 Transfac FOX
V_DMRT7_01 1.628E-2 4.1 AGGTCAG 8.34 6270 4288 Transfac other
V_SOX12_03 1.544E-2 7.1 GATTTCCCATCATGCCTTGC 17.54 4107 3065 Transfac other
V_FOXO1_Q5 1.453E-2 5.0 GAAAACTAGTTAACATC 12.86 17895 7098 Transfac FOX
Ar_M188 1.368E-2 8.2 TAAACCGGAAGTTCGT 16.94 5199 3708 Selex GR
FOXB1_M138 1.289E-2 5.0 GGGGAATTAGAGTTG 10.66 7497 4869 Selex FOX
SREBF1 1.26E-2 20.9 CTGAACTTTGACC 13.81 11144 6405 Encode SREB
V_ZEC_01 1.265E-2 17.8 AGCTCATTAT 11.69 7146 4752 Transfac other
V_COUPTF2_Q6 1.262E-2 21.3 GGTACAGGGTGTTCT 14.12 24206 8644 Transfac other
V_DOBOX4_01 1.141E-2 8.4 AACCCCTTTGTTATGC 13.70 3420 2758 Transfac other
V_FOXJ3_06 1.139E-2 4.1 AAAAGCGGATTATTG 14.29 10263 5586 Transfac FOX
Ar_MA0007.1 1.102E-2 11.8 ATAAGAACATCGTGTACCCGCC 15.70 8149 5122 Jaspar GR
V_HDX_01 1.089E-2 22.9 TCAGGAGTTCGAGACC 15.76 4598 3434 Transfac other
RARA_M207 1.072E-2 15.9 TTGTTGTTTACATA 16.38 15370 7296 Selex other
V_PITX2_Q2 1.043E-2 17.2 CATTTCCTGTT 11.63 6023 4144 Transfac other
V_PPARG_03 1.009E-2 9.3 GATTTCCGGGAAATG 15.21 17565 7729 Transfac other
V_HNF1_Q6_01 1.002E-2 23.4 CCACACCCTG 13.40 6169 4030 Transfac other
V_KAISO_01 9.879E-3 19.8 AAAGGTCAAA 9.62 15679 7585 Transfac other
NR1H2::RXRA_MA0115.1 9.4E-3 9.65 AAAGGTCAAAGGTCAAC 27.87 16448 7417 Jaspar other
V_PAX_Q6 9.425E-3 15.6 GGCCCGGGCGG 14.31 15042 7272 Transfac other
V_CDPCR3HD_01 9.385E-3 19.2 TCTACCGGAAGTGGGT 10.95 2812 2206 Transfac other
V_FOXO3A_Q1 9.345E-3 8.0 CTTTAAGTACTTAATG 13.19 10652 5524 Transfac FOX
V_XBP1_02 9.234E-3 14.4 TATTACATAACA 11.55 4097 3250 Transfac other
V_HNF3G_Q4 9.1E-3 7.4 TTGTTA 4.56 14879 6504 Transfac other
V_AR_Q6_01 9.099E-3 9.3 TAGCCAGACAG 9.99 14242 6919 Transfac GR
V_ICSBP_Q6 9.080E-3 4.9 GCCGCCATTTTG 16.30 9755 5777 Transfac other
V_SF1_Q6_01 8.629E-3 7.7 CTCAGCCAATCAGCGC 12.92 16821 7412 Transfac other
V_FOXK1_04 8.506E-3 5.1 TGAAGGGATTAATCATC 12.98 7917 4252 Transfac FOX
V_RSRFC4_01 8.430E-3 10.6 AGATAG 6.62 3075 2477 Transfac other
V_CREB_Q2_01 8.238E-3 10.0 GCTGAC 6.23 10250 5886 Transfac CREB
V_HOXA7_01 8.175E-3 5.3 ACCGGAAGTG 9.81 3810 3001 Transfac other
V_HES1_Q6 8.080E-3 13.5 CCCTCCCCCA 12.67 19505 8557 Transfac other
V_HNF6_Q6 7.906E-3 1.5 TGCGTGGGCGT 14.61 4803 3361 Transfac other
V_IRF4_04 7.569E-3 10.7 ACCGGATGTA 10.23 7264 5030 Transfac other
Ddit3::Cebpa_MA0019.1 7.2E-3 16.8 AGATGCAATCCC 11.65 4990 3756 Jaspar other
V_NFYC_Q5 7.200E-3 17.9 CGACCAACTGCCGTG 12.31 12888 6811 Transfac other
V_FREAC2_01 7.154E-3 1.9 AGTAATTAATTACTTC 13.78 6198 4334 Transfac other
V_HSF1_Q6 7.102E-3 18.2 ACCGGAAGTG 10.25 11599 6735 Transfac HSF
V_HNF4_Q6 7.021E-3 21.3 ATTGATTGACAGGG 13.90 15858 7449 Transfac other
V_ATF_01 6.963E-3 11.0 GAAGTGTTGTTTCAGAC 17.72 7111 5004 Transfac CREB
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2.3. Phenotypic consequences of whole body Bmal1 knockout

2.3.2 CREB phosphorylation is still oscillating in Bmal 1−/− mouse liver

During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluco-

neogenesis. Hepatic gluconeogenesis is known to be regulated by hormonal cues as circulating

glucagon and more recently by the circadian clock, which coordinates glucose metabolism

with changes in the external environment [154, 162]. CREB activity during fasting was shown

to be modulated by CRY1 and CRY2, which are rhythmically expressed in the liver [354].

In our analysis, CREB was found among the most delayed TF activities inferred by the gen-

eralized linear model in Bmal1−/− mouse liver. To test this prediction, Benjamin Weger (A

post-doc from the Gachon lab) measured nuclear levels CREB and pCREB using Western blots

in nuclear extract from four independent livers every two hours in WT and Bmal1−/− mice

(figure 2.26 A and B). In this analysis we were able to replicate the pattern of CREB activity in

WT as in [354] and we showed that CREB activity is still oscillating in the Bmal1−/− context.

On average, we observed a phase delay of approximately two hours in Bmal 1−/−, though this

was not significant (p=0.5, Chow test), presumably owing to individual feeding patterns [354].

Our results confirm that CREB is regulated by the food related signaling in clock impaired

mouse upon night restricted feeding regimen. The phase delay of two hours suggests that the

circadian clock is implicated in the fine tuning of the hepatic glucose metabolism.
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Figure 2.26 – CREB validation by western blot in WT an in Bmal1−/−. A) Representative
Western blot of CREB and pCREB in WT and Bmal1-/- genotypes. B) Quantification of log2
(pCREB/CREB) Western blots in WT and Bmal1-/- genotypes. Nuclear extracts from four
independent livers (n=4) were harvested every two hours. Both genotypes showed a significant
oscillation (p<0.05, Harmonic regression) of the mean signal from the four mice. Though the
peak time in Bmal1-/- is delayed, the comparison of the rhythm in the two conditions is not
significant (p= 0.49, Chow test).
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2.3.3 Oscillating gene expression and related pathway in WT and Bmal 1−/− mouse
liver

In order to understand how the circadian clock and the feeding-fasting cycle control diurnal

gene expression in liver, we studied differences in mRNA expression and between Bmal1−/−

and wild-type mice subject to the same night restricted feeding regimen. We looked at oscil-

lating genes in WT and in Bmal1−/− (p-value < 0.05, log2 amplitude > 0.5, FDR < 0.3) and we

observed that a substantial fraction of genes is still oscillating in the Bmal 1−/− genotype (fig-

ure 2.27 A). In addition the overlap of genes cycling in WT and Bmal 1−/− was of intermediate

size indicating that genes with a diurnal expression pattern are quite different between WT

and Bmal1−/− mice. By computing the cumulative count from the genes with the highest

amplitude to the lowest (figure 2.27 B), we observed that genes in WT had bigger amplitudes

than in Bmal1−/− as expected. The phase distribution of mRNA in WT and in Bmal1−/−

suggest a phase delay of gene expression in the absence of the clock (figure 2.27 C).
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Figure 2.27 – Rhythmicity analysis of mRNA from microarray in WT and Bmal1−/−. A) Venn
diagram of oscillating genes in WT and in Bmal1−/− using mRNA expression.B) Cumulative
count of oscillating genes (with a multi linear regression p-value below 0.05 and a log2 ampli-
tude greater than 0.5) in Bmal 1−/− and WT with log2 amplitude greater or equal to x.C) Phase
histograms of oscillating genes in WT, in Bmal1−/− and in both genotypes.

Subsequently, we wanted to identify the function of genes oscillating in WT, oscillating in

Bmal 1−/− and oscillating in both conditions. Therefore we did a functional pathway analysis

with g:Profiler [269] using Kegg and Reactome pathway annotations (figure 2.28, table 2.4). In

the WT context, genes annotated for circadian rhythm as well as lipid and sugar metabolism

related pathway annotations were enriched. In the Bmal1−/−, we observed that pathway

related to sugar, and lipid metabolism are still oscillating. We found that amplitudes of genes

related to the glucose-dependent ChREBP signaling were increased in the absence of the

clock and the amplitudes of genes annotated with bile acids secretion are decreased in the

Bmal1−/− genotype. ChREBP has emerged as a central regulator of glycolysis and de novo

fatty acid in liver [148]. Taken together, these changes proved once more that the clock is

implicated in the precise regulation of the liver metabolism.
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Figure 2.28 – Kegg and Reactome Pathway enrichment and amplitudes analysis. Boxplot of
log2 mRNA amplitude of genes from significantly enriched Kegg or Reactome pathway in WT
and in Bmal1−/− genotypes. These pathways were retrieved using g:Profiler with a p-value
threshold below 0.1 in one or both genotype. Boxplots were generated with the amplitude of
each oscillating genes annotated with a specific pathway. Genes used for each annotation are
reported in the table 2.4.
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Table 2.4 – Reactome and Kegg pathway analysis of oscillating genes in WT and Bmal1−/−

mouse liver

genotype p-value Source ID Pathway Genes

WT 7.84E-8 REAC:508751 Circadian Clock CRY1, SREBF1, NAMPT, NR1D1, PER1, FBXL3, PPARA, CPT1A, NPAS2,
CLOCK, BHLHE40, BHLHE41, ELOVL3, ARNTL, PER2, DBP, CRY2

WT 4.92E-7 REAC:1368110 Bmal1:Clock,Npas2 activates cir-
cadian gene expression

CRY1, NAMPT, NR1D1, PER1, PPARA, NPAS2, CLOCK, BHLHE40,
BHLHE41, ARNTL, PER2, DBP, CRY2

WT 3.69E-5 KEGG:04710 Circadian rhythm CRY1, NR1D1, PER1, FBXL3, NPAS2, RORC, PER3, CLOCK, BHLHE40,
BHLHE41, ARNTL, PER2, CRY2

WT 3.71E-4 REAC:7083403 Triglyceride Biosynthesis ELOVL1, LPIN1, ACLY, ACOT3, ACOT12, LPIN2, FASN, AGPAT2, ACOT7,
AGK, AGPAT6, ELOVL5, AGPAT1, ELOVL3, ELOVL6, GPD1L, ACOT4,
LCLAT1, ACOT1

WT 6.92E-4 KEGG:04976 Bile secretion ADCY6, SLC10A2, ABCG8, ATP1B1, ABCB11, CAR2, NCEH1, CYP7A1,
SLC2A1, SLCO1A4, AQP8, LDLR, AQP9, ATP1A1, NR0B2, ABCG5,
ABCB1A, NR1H4, SLC4A4

WT 7.61E-4 REAC:7084372 Regulation of cholesterol biosyn-
thesis by SREBP (SREBF)

KPNB1, MVD, SREBF1, SQLE, SREBF2, FASN, PMVK, SCAP, LSS,
ELOVL6, MVK, ACACB, DHCR7

WT 1.14E-3 REAC:7084024 Nuclear Receptor transcription
pathway

PPARD, NR1I3, NR2C2, RXRG, ESR1, NR1D1, NR1D2, PPARA, NR4A1,
RORC, NR3C2, NR0B2, AR, NR1H4, THRA, NR2C2AP

WT 3.34E-3 REAC:7084371 Activation of gene expression by
SREBF (SREBP)

MVD, SREBF1, SQLE, SREBF2, FASN, PMVK, LSS, ELOVL6, MVK,
ACACB, DHCR7

WT 1.95E-2 REAC:7083346 Pyrimidine salvage reactions UPP1, TYMP, TK1, UCK2, UPP2, CDA
WT 3.07E-2 KEGG:03008 Ribosome biogenesis in eukary-

otes
NOB1, GTPBP4, RIOK2, RCL1, NOP58, NAT10, NOP56, SPATA5, POP4,
MPHOSPH10, WDR43, CIRH1A, GNL3, RPP38, HEATR1, UTP18,
UTP14B

WT 3.98E-2 REAC:1368092 Rora activates gene expression SREBF1, NR1D1, CPT1A, NPAS2, CLOCK, ARNTL
WT 4.68E-2 REAC:7083820 Cholesterol biosynthesis MVD, FDFT1, SQLE, PMVK, NSDHL, SC4MOL, LSS, MVK, DHCR7
Bmal1-/- 1.89E-13 REAC:7084372 Regulation of cholesterol biosyn-

thesis by SREBP (SREBF)
KPNB1, CYP51, MVD, NFYB, ACACA, SREBF1, SQLE, SREBF2, NFYA,
GPAM, FASN, SCD2, PMVK, RAN, SC5D, LSS, ELOVL6, MVK, ACACB,
DHCR7, FDPS

Bmal1-/- 3.52E-13 REAC:7084371 Activation of gene expression by
SREBF (SREBP)

CYP51, MVD, NFYB, ACACA, SREBF1, SQLE, SREBF2, NFYA, GPAM,
FASN, SCD2, PMVK, SC5D, LSS, ELOVL6, MVK, ACACB, DHCR7, FDPS

Bmal1-/- 9.31E-8 REAC:7083820 Cholesterol biosynthesis CYP51, MVD, FDFT1, HMGCR, SQLE, HSD17B7, PMVK, NSDHL,
SC4MOL, SC5D, LSS, MVK, DHCR7, FDPS

Bmal1-/- 1.15E-6 KEGG:00100 Steroid biosynthesis CYP51, FDFT1, SQLE, SOAT2, HSD17B7, CYP2R1, NSDHL, SC4MOL,
SC5D, LSS, DHCR7

Bmal1-/- 1.22E-6 REAC:7083228 Activation of the pre-replicative
complex

MCM2, MCM5, CDT1, POLA1, POLE, RPA3, MCM4, POLA2, PRIM1,
PRIM2, MCM6, MCM8, MCM7, MCM3

Bmal1-/- 3.70E-6 REAC:7083665 ChREBP activates metabolic gene
expression

MLXIPL, MLX, ACACA, ACLY, FASN, AGPAT1, ACACB

Bmal1-/- 6.51E-5 KEGG:03008 Ribosome biogenesis in eukary-
otes

NOB1, XPO1, GTPBP4, RCL1, GNL3L, SBDS, WDR75, NOP58, NOP56,
SPATA5, RAN, MPHOSPH10, WDR43, CIRH1A, GNL3, CSNK2A2,
RPP38, HEATR1, MDN1, UTP14B

Bmal1-/- 6.71E-5 KEGG:03030 DNA replication MCM2, MCM5, POLA1, POLE, RPA3, POLD2, MCM4, POLA2, PRIM1,
PRIM2, MCM6, MCM7, MCM3

Bmal1-/- 3.72E-3 REAC:7083225 DNA replication initiation POLA1, POLE, POLA2, PRIM1, PRIM2
Bmal1-/- 3.72E-3 REAC:7083769 Telomere C-strand synthesis initia-

tion
POLA1, POLE, POLA2, PRIM1, PRIM2

Bmal1-/- 8.09E-3 KEGG:00900 Terpenoid backbone biosynthesis MVD, HMGCR, NUS1, ACAT2, PDSS1, PMVK, MVK, FDPS
Bmal1-/- 3.88E-2 REAC:7083217 M/G1 Transition MCM2, MCM5, CDT1, POLA1, POLE, UBC, RPA3, E2F2, MCM4,

POLA2, PRIM1, PRIM2, MCM6, PSMD14, MCM8, MCM7, MCM3
Bmal1-/- 3.88E-2 REAC:7083216 DNA Replication Pre-Initiation MCM2, MCM5, CDT1, POLA1, POLE, UBC, RPA3, E2F2, MCM4,

POLA2, PRIM1, PRIM2, MCM6, PSMD14, MCM8, MCM7, MCM3
Bmal1-/- 4.15E-2 REAC:7084173 Synthesis of UDP-N-acetyl-

glucosamine
UAP1, GFPT1, GNPNAT1, PGM3

WT and Bmal1-/- 2.33E-7 REAC:7084372 Regulation of cholesterol biosyn-
thesis by SREBP (SREBF)

KPNB1, MVD, SREBF1, SQLE, SREBF2, FASN, PMVK, LSS, ELOVL6,
MVK, ACACB, DHCR7

WT and Bmal1-/- 3.13E-7 REAC:7084371 Activation of gene expression by
SREBF (SREBP)

MVD, SREBF1, SQLE, SREBF2, FASN, PMVK, LSS, ELOVL6, MVK,
ACACB, DHCR7

WT and Bmal1-/- 2.62E-5 REAC:7083820 Cholesterol biosynthesis MVD, FDFT1, SQLE, PMVK, NSDHL, SC4MOL, LSS, MVK, DHCR7

WT and Bmal1-/- 2.84E-4 KEGG:00100 Steroid biosynthesis FDFT1, SQLE, SOAT2, NSDHL, SC4MOL, LSS,DHCR7

WT and Bmal1-/- 6.35E-4 KEGG:03008 Ribosome biogenesis in eukary-
otes

NOB1, GTPBP4, RCL1, NOP58, NOP56, SPATA5, MPHOSPH10,
WDR43, CIRH1A, GNL3, RPP38, HEATR1, UTP14B

WT and Bmal1-/- 1.35E-2 REAC:7083665 ChREBP activates metabolic gene
expression

ACLY, FASN, AGPAT1, ACACB
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2.3. Phenotypic consequences of whole body Bmal1 knockout

2.3.4 Glucose, lipids and fatty acids metabolism in WT and Bmal 1−/−

During fasting, glucose homeostasis is achieved by triggering expression of gluconeogenic

genes in response to glucagon and glucocorticoids. Glucagon exerts its strongest action when

mice wake up and begin to eat. The response to glucagon by liver cells varied depending on a

direct circadian regulation of the transcriptional activity of cAMP response element–binding

protein (CREB), which was inhibited by CRYs [354]. CREB was found to induce expression of

the gluconeogenic program through the nuclear receptor coactivator PGC-1 [137].

As demonstrated in a previous section (see 2.3.2) CREB is still rhythmic in Bmal 1−/− genotype

upon night restricted feeding. In addition, our analysis (section 2.3.3) showed that ChREBP

and SREBP signaling were affected by the Bmal1−/−. These two transcriptions factors are

implicated in glucose metabolism and lipid synthesis in liver [75].

Glucose metabolism in WT and Bmal 1−/−

As developed in the introduction (section 1.5.2), the glucose homeostasis is controlled by the

circadian clock. Thus, during the feeding period blood glucose is mainly of dietary origin,

while during the starvation period glucose is produced in the liver through gluconeogenesis .

Therefore, we wanted to study gene related the glucose metabolism at Pol II and mRNA levels.

We looked (figure 2.29 and gluconeogenesis pathways A) at the gluconeogenesis and at the

glycolysis pathways and we labeled several irreversible steps at physiological conditions that

are specific to one or the other pathway. Indeed the conversion of the oxaloacetat to phospho-

enol pyruvate by the phosphoenolpyruvate carboxykinase (PCK1) is one key regulatory step

of the gluconeogenesis. Furthermore, the conversion of fructose 1,6-bisphosphate to β-D-

fructofuranose 6-phosphate by the enzyme fructose-1,6-bisphosphatase (FBP1,FBP2) and the

conversion of D-glucopyranose 6-phosphate to D-glucopyranose by glucose-6-phosphatase

(G6pc) are located at the end of the pathway. These two reactions are critical steps of the gluco-

neogenesis pathway. Interestingly, in the glycolysis the inverse conversion steps are regulated

by different enzymes with an irreversible action notably the β-D-glucopyranose 6-kinase (Gck)

and the 6-phosphofructokinase (Pfkm). The conversion of phospho enol pyruvate to pyruvate

by the pyruvate kinase (Pklr) is the last irreversible reaction of the glycolysis. These key regula-

tory steps are essential to allow the temporal separation of glycolysis and gluconeogenesis

in the liver. Several enzymes of these two pathways were detected with a circadian behavior

in Pol II loading at the TSS and mRNA accumulation in WT and in Bmal1−/− (figure 2.29 B).

Our data suggest that these enzymes are co-regulated by the circadian clock and by feeding

cues at the transcriptional level, as the oscillations were maintained in Bmal 1−/− context but

with different amplitudes and phases compared to the WT genotype. More precisely, these

genes depict lower amplitudes in Bmal1−/− (figure 2.30), notably Gck and Pck. In addition

the phases of these genes are quite impacted by the impaired clock genotype, while the mesor

is not affected.
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Figure 2.29 – Glycolysis and gluconeogenesis pathways. A) Gluconeogenesis is a mechanism
which maintains blood glucose levels, avoiding low levels (hypoglycemia) during fasting phase.
It is a pathway consisting of a series of eleven enzyme-catalyzed reactions. Many of the
reactions are reversible steps, and irreversible steps are important regulatory steps highlighted
using red boxes. Glycolysis converts glucose to pyruvate by via a series of intermediate
metabolites. Each chemical modification (arrows) is performed by a different enzyme encoded
by different genes (purple). B) Temporal profiles in mRNA (in pink) and Pol II loadings at
TSS (in blue) of key regulators of the glycolysis/gluconeogenesis in WT (dotted line) and in
Bmal1−/− (dashed line) context.
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Figure 2.30 – Effect of Bmal1 knockout on key steps of glycolysis/gluconeogenesis. A) Phase
and amplitude of key steps of the glycolysis/gluconeogenesis in WT and in Bmal 1−/− reported
in a polar scatter plot. B) boxplot of log2 amplitudes and mesor in WT and in Bmal1−/−. C)
Mesor, amplitudes and phase in WT versus Bmal1−/−.
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Chapter 2. Results

In order to explain changes in phase and amplitude of Gck and G6pc we looked at the promoter

region of these two enzymes, which play an opposite role during glycolysis/gluconeogenesis

(figure 2.31). We did a PWM scan with FIMO and Wang PWMs [338, 114] and we overlapped

DNase I-seq signal which was analyzed with Wellington algorithm to detect TFBS footprints

[256]. We observed that Gck contained several E-box motifs (MYC/MAX) that are under an

important footprint about 100bp upstream the TSS. Moreover, in the same DHS we found a

motif of CEBPB, which was linked already with the regulation of gluconeogenesis [13] as an

essential factor underlying glucocorticoid-dependent activation of Pepck gene transcription.

In the DHS 1 Kbp upstream of Gck promoter, we found motifs of CREB, GR (NR3C1) and HSF1,

which were TFBS motifs with a high-activity in the Bmal 1−/− when we did our penalized linear

model. These motifs might be responsible for the remaining oscillations in Gck transcription

and mRNA accumulation. The analysis of G6pc promoter revealed a CREB and a TCF7L2

motif a 100bp upstream of the TSS.In addition, TCF7L2 has been recently shown to inhibit

adjacent promoter occupancies of CREB, CRTC2, and FOXO1, which are critical transcriptional

modules in hepatic gluconeogenesis [241]. Taken together, our motif predictions may explain

the transcriptional regulation of Gck and G6pc. However, this analysis was centered on the

promoter of these two genes, which are regulated as well by distal cis-regulatory elements

and the phase of expression of these genes is quite difficult to explain only by looking at the

TFBS in the promoter. As demonstrated before (section 2.3.1), distal sites might add useful

information to the fine tuning of the gene expression. In addition some transcription factors

depict a weak footprint that might be difficult to detect, such as nuclear receptors. Therefore,

some of the motifs inside DHS without footprints might play a role in the transcriptional

regulation. Moreover in glycolysis/gluconeogenesis the protein expression and activation,

such as phosphorylation of F6P during glycolysis for example, are key regulatory events of

these pathway. Therefore the results obtained at the transcriptional level are not as accurate

as at the protein activity level, although the regulation of transcription seems to play a role. In

conclusion, we confirmed that the glucose metabolism is fine tuned by the circadian clock

and that this regulation is performed at least partially at a transcriptional level.
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Figure 2.31 – Gck and G6pc promoter: example of transcriptional control of glucose
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our PWM scan using Wang [338] motifs and with DNase I signal analyzed with Wellington
algorithm for digital genomic footprint detection [256].
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Chapter 2. Results

lipids and fatty acids metabolism in WT and Bmal 1−/−

As lipid metabolism is affected by the circadian clock and the feeding-fasting cycle [111]

and as ketone bodies are produced by the liver through fatty acid oxidation during fasting

conditions [238] , we wanted to study free fatty acids (FFA), β-hydroxybutyrate (BHB) and

triglycerides (TG) temporal pattern in blood of WT and Bmal1−/− mice.
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Figure 2.32 – Free Fatty acides, triglycerides and ketone bodies in WT and in Bmal1−/−. FFA
TG and BHB were monitored in blood of n = 3 - 5 mouse per time point at ZT 2,6,10,14,18,22
and 26 in wild-type and Bmal1−/− by Dr. Federica Gilardi at UNIL. ZT0 represent the switch
between dark and light phase.

In wild-type condition FFA level in blood decreases during the light phase (ZT0-ZT12), where

the mice are fasting and sleeping, and increase during the dark phase when the mice are awake

and eating. The Bmal 1−/− condition exhibits significantly higher level of FFA (ZT10, ZT14 and

ZT22) throughout the day. BHB levels are significantly higher in Bmal1−/− during the light

phase at ZT6 and ZT10 and the beginning of the dark phase at ZT14. The wild-type temporal

pattern of triglycerides show a low concentration during the light phase and a peak during

the dark phase at ZT18 with a rapid decrease at ZT22. Interestingly, in the Bmal1−/− context,

the level of triglycerides is slightly more elevated during the day, especially at ZT 10. During

the night phase the Bmal 1−/− mice didn’t succeed to reduce the concentration of triglyceride

notably at ZT 22 and in the beginning of the light phase at ZT 26. This effect might be due to a

phase shift of the de novo lipogenesis in the Bmal1−/−.

Elevated levels of FFA are usually associated with obesity and insulin resistance. Higher BHB

levels in Bmal1−/− suggest increased FFA oxidation and diabetic ketoacidosis, leading to

reduced mitochondrial redox state [329]. Interestingly, a recent study showed that liver-

derived ketone bodies such as BHB are necessary for food anticipation. They have shown

that Per2 regulates β-hydroxybutyrate (BHB) and that food anticipation originates in the

liver [56]. Finally, the level of TG suggests a potential shift of 2h in de-novo lipogenesis in

the Bmal1−/− genotype. Potential relationships with diabetes and non-alcoholic fatty liver

disease are suggested by the literature [232, 289, 214] , but in our night restricted feeding

regimen the Bmal1−/− did not exhibit liver steatosis, as reported by Dr. Federica Gilardi.

In conclusion, the night restricted feeding regimen seems to counteract deleterious effect

induced by a defect of the molecular clock.
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3 Discussion

3.1 Abundant diurnal DHSs in the mouse liver

This work is to our knowledge the first study to map genome-wide DNase I hypersensitivity

(DHS) in the mouse liver as well as to profile DHS sites (DHSs) around the clock with 4h

resolution. The resulting data set provides an unprecedented view of circadian chromatin

accessibility. Other studies [334, 171, 65] profiled the enrichment of the active chromatin

mark H3K27ac for a similar purpose. However, using new and previously published H3K27ac

enrichment data, we found that the genomic resolution and extent of regulatory insight

offered by DHS profiling is superior to that of H3K27ac mapping [237, 320, 311] because DHS

enables higher resolution in mapping transcription factor binding sites and allows dynamic

footprinting analyses. Nevertheless, these molecular signals are complementary, and display a

high correlation with each other and Pol II genome-wide and across circadian time. In contrast

to the observed delay between H3K4me3 enrichment and Pol II, reported previously [188],

no significant delays are observed between accessibility as measured by DHS and H3K27ac

enrichment at a given site, which likely reflects the fact that histone acetylation turnover is

faster than that of histone methylation [213].

Comparing average signals, we observed that transcription start sites (TSSs) displayed higher

intensity for all marks studied compared to distal or proximal DHSs; however, relative ampli-

tudes in oscillations appeared higher in non-TSS sites. This suggests that TSS accessibility

is less variable than putative enhancer accessibility, which likely reflects increased protein

binding dynamics at putative enhancers compared to TSSs. This suggests that enhancers may

have a dominant role in the control of diurnal gene expression, consistent with the notion

that modulation of histone marks and accessibility of chromatin at enhancers is one of the pri-

mary regulatory mechanisms underlying cell type specificity [134]. This hypothesis is further

supported by our observation of close phase relationships between putative enhancers and

the nearest TSS. As such, our data constitute a valuable resource to explore the involvement of

putative enhancer regions in mediating cyclic recruitment of Pol II at the TSSs and subsequent

transcription of the respective target genes.
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The core clock factor BMAL1 is essential for rhythmic transcription in mammals. Liver-specific

and global Bmal1 knockout in mice lead to important effects on metabolism and behavior that

can be traced to dysregulation of BMAL1 target genes [300, 286, 251]. Importantly, comparing

clock wild-type with BMAL1 mutant suggested that feeding, rather than the clock, is the main

driver of rhythmic translation in the liver [17]. It has been suggested that BMAL1 is a pioneer-

like factor enabling easier access of regulatory sites by other TFs [222]. Its dimerization

partner CLOCK has been shown to have histone acetyltransferase activity [80]. Therefore, we

sought to verify whether its presence in the mouse liver led to large-scale differences in DNA

accessibility as measured by DNase I digestion.

3.2 Limited impact of BMAL1 removal onto the liver chromatin land-

scape

Comparing DHS signals between wild-type and Bmal 1−/− samples at ZT6 revealed relatively

few changes as the signal correlation between the two samples was above 0.8. Thus, only a

minority of DHSs appear to be affected, consistent with the limited number of target sites for

BMAL1 [171, 273]. However, the majority of these BMAL1 binding sites showed a decrease in

DHS signal, which may be consistent with a pioneer-like function for BMAL1 [222]. Higher

resolution, footprint- and protein structure-based analyses further revealed a CLOCK:BMAL1

DNA binding pattern at tandem E-box sites consistent with a hetero-tetramer configuration

at peak activity of these TFs [273, 249, 234]. Interestingly, at the daily minimum of BMAL1

activity, only the strongest E-boxes still display a footprint, further supporting the notion that

other TFs, such as USF1, compete with CLOCK:BMAL1 to occupy similar target sites, although

in distinct biophysical fashion [301, 76].

In order to compare the binding pattern of BMAL1:CLOCK with another important TF in the

liver we looked at the rhythm of the CREB footprint. CERB binds to cAMP responsive elements

(CRE motif) in a strong/stable manner, which explains why we do not see any change in the

DNase I pattern during the diurnal cycle [211]. Our data support the hypothesis that CREB

is constitutively bound to its cognate DNA binding site and that its circadian activation is

mediated through other mechanisms, such as phosphorylation in a circadian manner in the

liver by PKA, PKC or CK2 [93, 107].

Studying other transcription factor binding sites such as HSF, SREBP and RRE, we found that

the number of bound targets changed diurnally, but that the footprints remained constant.

Heat shock transcription factor 1 (HSF1), which drives the expression of heat-shock proteins

at the onset of the dark phase [270, 291], had an apparent enrichment of bound sites between

ZT14 and ZT22. The number of targets of HSF1 was low, suggesting that this regulator is

highly specific for the temperature-stress-related pathway [270]. REVERBα participates

in the circadian modulation of sterol regulatory element-binding protein (SREBP) activity,

and thereby in the daily expression of SREBP target genes involved in cholesterol and lipid

metabolism [189]. The SREB motif showed a complex circadian pattern with two modes
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at ZT10 and ZT22. However, the temporal mRNA expression of SREBP1 targets was not

always synchronized with its binding pattern. In particular, different expression phases were

described for SREBP1 target genes depending on their function, indicating the implication

of other transcription factors in their regulation [111]. The DNase I footprint at RRE (ROR

responsive element) showed two modes of activity with a small peak at ZT10 (binding of the

repressor RevErb) and a higher peak at ZT22 (binding of the activator ROR). This bimodal

activity suggests a possible dynamic exchange of TFs, namely RORs and REVERBs, on their

cognate binding sites [120].

3.3 Tissue specific regulation of the circadian clock

The liver tissue, composed mainly of hepatocytes, is subject to systemic cues such as feeding/-

fasting cycle, body temperature variations and hormonal cues, while circadian oscillation in

NIH3T3 fibroblasts (cultured in a dish) originate only from the endogenous molecular clock.

In our comparative study of liver tissue and NIH3T3 fibroblasts, we discovered and described

the varying motif content and chromatin landscape found around BMAL1 binding sites. We

observed that BMAL1 sites are accessible, active and in turn repressed in a context-specific

manner. This observation raised the question of how tissue specific regulation of the circadian

clock is achieved.

The result of our analysis of BMAL1 sites located in accessible regions (DHS), supports the

hypothesis that the chromatin state determines context specific binding. Our motif analysis

indicated that co-regulatory elements in NIH3T3 fibroblasts seemed to be more specifically

linked to BMAL1 sites rather than being overall cell-type specific factors. For instance, mem-

bers of the E2F family appear to colocalize strongly with BMAL1. E2F factors are notably

involved in cell cycle regulation [271], which is consistent with fibroblasts still actively cycling,

as opposed to most of the cells in the liver. Another interesting factor enriched in fiborblast is

NRF1, which targets key enzymes in oxidative metabolism and mitochondrial function [293].

On the other hand, in liver we found previously reported tissue-specic regulators potentially

driving the context-specic expression of clock gene. Among the identified factors we found

FOXA, a well-known pioneer factor [61, 117, 206], HNF4 and several nuclear receptors (as

reported in [349]). Strikingly, in liver, one of the most enriched factors with a high percentage

of bound motifs was GATA1. A recent publication [220] describing the tissue-specific binding

of CLOCK and CYCLE in Drosophila identified serpent (SRP), which is a member of the GATA

family in flies, as a cis-regulatory factor necessary for driving CLOCK-CYCLE mediated tran-

scriptional activation in Drosophila body. The majority of its targets is linked to metabolism

and detoxification and is active in the fat body, midgut and Malpighian tubules. Thus, there

might be an evolutionary link to the enrichment of GATA1 in liver. In addition, several other

studies [38, 39, 341] have reported a list of motifs overrepresented in promoter regions of

clock-controlled genes, many of which were detected in our analysis. While this gives confi-

dence in our motif finding, we further extended their analysis by appointing context-specificity
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and distal regulatory elements to the motifs discovered. In conclusion, it will be appealing

to study further the networks containing the circadian clock machinery as well as putative

co-regulatory factors, including distal regulatory elements, in their respective cell type and

possibly considering an evolutionary perspective.

3.4 Regression models uncover factors which maintain cycling pat-

terns in gene expression in the absence of BMAL1 activity

Our genome-wide study of the oscillating genes using Pol II loadings at TSSs or mRNA ex-

pression in WT and Bmal1−/− genotype revealed that a similar proportion of genes ( about

10% of genes expressed in the liver) depict a diurnal pattern in both contexts, but the overlap

is surprisingly small ( 20%). As expected, we found that amplitudes are higher in WT than

in Bmal1−/− genotype, but the number of oscillating genes is slightly more important in

Bmal 1−/−. These observations were consistent between mRNA and Pol II loadings. Thereby

we observed that the molecular clock has a dual effect on gene regulation probably through

BMAL1 activation and PER1/2 repression [85] and that restricted feeding can restore circadian

expression of hundred of transcripts [333]. Using a penalized regression model, we further

uncovered an important role for the TFs FOXO1, Glucocorticoid Receptor (GR), CREB and

NFY in mediating robust cyclic transcription in mice lacking BMAL1. GR activity seemed to be

unaffected by the Bmal 1−/− genotype, whereas FOX and NFY showed increased activity, with

a similar phase in WT and in Bmal1−/−. Interestingly, NFY is a binding partner of SREB and

Sp1 in the regulation of lipid metabolism and cholesterol biosynthesis [268]. Therefore, our

data suggest that lipid metabolism and cholesterol metabolism do not require a functional

clock under night restricted feeding, as previously described [333]. Moreover, restricted feed-

ing has recently been shown to counteract the effect of a high-fat diet in WT mice [130, 55].

In the case of CREB, we found an important phase delay in Bmal1−/−, implying that the

circadian clock regulates hepatic gluconeogenesis [354]. Forkhead box factors like FOXO1

have been implicated in cell cycle regulation, oxidative stress, and are negatively regulated by

insulin signaling [187]. Analogously to the core clock, FOXO1 and FOXO6 also regulate the

expression of key enzymes implicated in gluconeogenesis [166, 68], collectively supporting

our identification of FOXO TFs as effectors of metabolic rhythms in liver cells. Similar to

FOXO TFs, Glucocorticoid hormones (GCs) also control glucose metabolism and stimulate

gluconeogenesis or fat breakdown. Interestingly, [190] showed that GCs could counter the

action of the circadian clock in resetting the phase of peripheral oscillators. Recently GR

and FOXO were shown to be common regulators of many genes involved in gluconeogenesis

and cell cycle progression, and a synergistic activity of these two TFs might exist [101]. In

Bmal1−/− mice, under a night-restricted feeding regimen, insulin release in blood is still

rhythmic [111]. In addition, [242] demonstrated that up to a hundred circadian transcripts

are under glucocorticoid control and that these are distinct from clock-controlled circadian

genes. GCs regulate the expression of the circadian TF PER2 [59], which is probably essential

in mediating this circadian transcription. Indeed, GCs have been shown in rat to synchro-
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nize circadian gene expression in cultured fibroblasts and to affect the phase of circadian

gene expression in the liver [24]. Our observations could therefore be compatible with a

model in which two separate circadian signals are received from the system, resulting in

the entrainment of the core clock by GCs through PER2. However, GCs can directly affect

transcription of other targets through GR. Lastly, we observed that many diurnally transcribed

genes in Bmal1−/− mice also exhibited a one-hour delay compared to the WT condition.

This implies that a large proportion of regulatory elements would be activated sooner in the

presence of the clock, consistent with the emerging notion that the circadian clock also acts to

anticipate daily occurrences of feeding/fasting rhythms by activating relevant genes ahead of

time [251, 185]. This is further consistent with observations that restricted feeding restores

the circadian transcription of many metabolic genes [333], that feeding cues dominate light

sensing as a Zeitgeber [70, 290], and that even in Bmal 1−/− mice, food anticipatory behavior

exists [51]. It is thereby interesting to note that the phase distribution in stringently selected

cyclic regions is equally polarized at the two most prominent phases of expression, ZT6-10 and

ZT18-22, in the Bmal 1−/− compared to the WT condition. These observations suggest that in

the Bmal 1−/− genotype the molecular clock is not able anymore to regulate the metabolism

in a proactive way whereby the production of some enzymes is initiated before the presence

of food in order to optimize the energy consumption of the cell [337]. This goes against the

idea of widespread disorganization of transcriptional control in the absence of a peripheral

clock and underlines the strong effect of nutritional synchronization.

3.5 Food entrainment and circadian regulation of lipid and sugar

metabolism in liver

The liver is a central player in adjusting metabolic processes to daily feeding–fasting cycles.

This role is demonstrated by the circadian expression of many liver genes implicated in the

metabolism of lipids, proteins, carbohydrates, and xenobiotics. The food entertainment of

the liver clock has been widely studied using restricted feeding or inverted feeding [55, 333].

The clock impaired mice depict severe metabolic disorders such as type 2 diabetes and a

reduced lifespan [102, 214]. In BMAL1 knockout mice, several studies showed that these

mice were exerting glucose intolerance, increased respiratory quotient, reduced fat storage,

increased circulating fatty acid, increased ectopic fat formation in liver and muscles, and

hypoinsulinemia [185, 300, 12, 214]. Inactivation of the known clock components Bmal1

and Clock suppress the diurnal variation in glucose and triglycerides [300, 1, 286]. However,

we observed that the feeding regimen could partially restore some of these rhythms and

counteract deleterious effect of the knockout. In the night restricted feeding Gilardi et al.

reported that the glucose and insulin levels were close to normal [111], but in our analysis,

we found that key enzymes of the glycolysis/gluconeogenesis had decreased amplitudes, and

their phases were quite impacted by the Bmal1 knockout. This almost normal glucose levels

might by explained by CREB and FOXO1 signaling as these regulators are still oscillating in

the impaired-clock genotype. Indeed, thanks to our linear model we observed that these two

89



Chapter 3. Discussion

regulators still depict an important activity in Bmal1−/− mice and we confirmed by western

blot that the phosphorylation of CREB at the serine 133 is still rhythmic with a non-significant

delay of two hours.

In addition we observed that circulating free fatty acids and β-hydroxybutyrate depict a

higher concentration in blood in Bmal 1−/− mice. Moreover β-hydroxybutyrate concentration

increase during the fasting phase suggesting increased FFA oxidation and ketoacidosis, leading

to reduced mitochondrial redox state [329]. The elevated circulating free fatty acids are

consistent with previous reports on Bmal1−/− mice [286, 300, 185]. The level of triglyceride

was slightly more elevated in Bmal1−/− and suggested a potential shift of 2h in de-novo

lipogenesis.

Despite these metabolic stress, upon night restricted feeding the Bmal1−/− mice did not

exhibit liver steatosis. In conclusion, the night restricted feeding regimen seems to counteract

deleterious effect induced by a defect of the molecular clock.

3.6 Limitations of our approach

3.6.1 Enhancer-TSS mapping

A large fraction of BMAL1 binding sites (60%) is located more than 10kb away from the nearest

TSS [273], raising questions of circadian enhancers effect on transcriptional regulation. Inter-

estingly, recent RNA-sequencing experiments revealed the presence of thousands of circadian

enhancer-RNAs (eRNAs) in mouse liver [95]. As is often done in similar studies, candidate en-

hancers are assigned to target promoters according to genomic proximity. However, physical

distance (measured in 3D) would be functionally more relevant.

An important issue in genomics is to find which enhancer regulates which promoter. In-

deed there is a "many-to-many" relationship between promoters and enhancers. Enhancers

can be associated with their target using several methods, such as nearest gene annotation

or co-variation of gene expression and enhancer-associated histone modifications dynam-

ics. However, these approaches are based on indirect evidence and are unable to detect

"long-range interactions" [92]. Chromosome conformation capture experiments, which

evaluate the frequency of cross-links between genomic regions, notably Hi-C which monitors

interactions between pairs of genomic sites genome-wide [197] could provide experimental

proofs of enhancer-promoter interaction or highlight co-regulated genes through hypothetical

"transcription factories".

Importantly, functional interactions between genomic loci, such as promoter-enhancer pairs,

mainly occur within a genomic scale typical of topologically associating domains TADs, i.e.,

dozens to hundreds of kilobases, and can be cell-type specific [142, 226, 295]. Consistently, our

analysis using the distance threshold with our penalized linear model showed that enhancers

are generally in a vicinity of 50 Kbp.
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3.6.2 Characterization of transcription factor binding sites

In mouse, about 4800 proteins are annotated with the gene ontology term "DNA binding".

On the other side, there are about 830 binding profiles (PWM) that have been characterized

using a high-throughput method called HT-SELEX in human [156]. In addition, the last

release of JASPAR database in 2016 contains 519 PWM for vertebrates [215]. Based on these

numbers about 15-20% of DNA-binding motifs have been characterized. Moreover, some DNA

binding proteins do not bind in a sequence specific manner [87], but they recognize open

chromatin regions (and/or histones modification, or methylated DNA ) or specific shape of

the 3D structure of the chromatin.

In addition, ChIP-seq data set availability is quite limited in mouse liver with few dozens

of transcription factors thanks to mouse ENCODE efforts [311], and recent studies on the

transcriptional regulation of the circadian clock and the feeding-fasting cycle [171, 222, 273,

96, 95, 43, 93]. Furthermore, the data quality and the downstream analysis varies a lot between

the different labs involved in this field. Moreover, a fraction ChIP-seq peaks frequently appear

due to indirect binding of the factor and thus doesn’t contain a DNA-binding motif [22]. Thus

ChIP-seq is an excellent high-throughput method, which allows studying the genome-wide

binding of a protein of interest, but the characterization of a DNA-binding motif using this

technique is not always straight forward.

Accordingly, our approach is limited by the knowledge of transcription factor binding sites

(PWMs). De novo motif finding cannot be applied to DNase I hypersensitivity because these

classical algorithms are not designed to find every PWM at once. Moreover, there is an

"underdetermination" of PWMs as several proteins can bind to the same binding site.

Overall, recent efforts in the study of transcription binding sites have drastically increase our

knowledge of how proteins can bind DNA in a sequence specific manner [156]. Interestingly, a

model that combines the PWM with a DNA shape feature-based regulatory potential score has

been recently developed and improved the accuracy in detecting binding sites [347]. Another

recent strategy to improve transcription factor binding site detection is based on hidden

Markov models and called transcription factor flexible models. TFFMs are flexible, and can

model both position interdependence within TFBSs and variable length motifs within a single

dedicated framework [216]. A last improvement of transcription factor binding site detection

implies deep learning techniques, which offer a scalable, flexible and unified computational

approach for ascertaining sequence specificities and pattern discovery from experimental

data [7].

3.7 Conclusions

At the molecular level, the relationship between the circadian cycle and nutrient response

cycle is unclear. Moreover, the role of distal regulatory elements remains elusive. Therefore, the

CycliX consortium aimed at characterizing the transcriptional programs that are implicated
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in both cycles. Thus, our study shed light on the interrelationships between the nutrient-

response cycle and the circadian clock as well as the contribution of the distal regulatory

elements to the circadian control. In addition, we investigated some aspects of the tissue-

specific regulation of the circadian cycle.

Our investigation of genome-wide DNase I hypersensitive sites (DHSs) in mouse liver led

to the discovery of 62000 accessible sites consistent with the previous reports on chromatin

accessibility [311]. In addition, 98000 footprints were detected in about 3/5 of these accessible

regions, which indicate that some of these accessible sites are potentially due to a high

transcription such as in the albumin gene. These DHSs that does not contain any footprints

and are probably not regulatory elements, despite the fact that some transcription factors

depict a weak footprint, which is difficult to detect [224]. Furthermore, we observed that DHS

around TSS tend to contain more footprints, which indicates that the promoters are critical

for the control of the transcriptional regulation.

Our Study of the temporal dynamic of Pol II loadings, H3K27ac and DNase I signal at DHSs

in WT and Bmal1−/− revealed that about 10 % of the accessible sites depicted a circadian

behavior. Interestingly, this proportion is similar to the percentage of oscillating transcripts

in mouse liver [17, 188], which suggest their implication in the circadian transcriptional

regulation.

Our analysis of transcription factor binding sites using digital genomic footprinting methods

in WT and at ZT6 in Bmal1−/− showed that the chromatin accessibility was dynamically

influenced by the binding of transcription factors, as previously reported [20, 237]. In addition,

we observed that DNase I cleavage pattern reflected DNA binding of protein complexes such

as a BMAL1:CLOCK heterotetramer on double E-boxes. This result increases the evidence of

the functional role of these double E-boxes [273, 234].

The investigation of putative BMAL1 cooperating transcription factor and tissue-specific

factors in liver and fibroblasts revealed several putative BMAL1 co-regulators such as NRF1

and ZEB1, and tissue-specific factors such as HNF4, CEBP, FOXA, and GATA1, consistently

with the promoter analysis performed by Bozek et al. [38, 39]. Our results contradict somehow

the pioneering-like function of BMAL1 proposed by Menet et al. [222]. Indeed, the circadian

clock probably requires tissue-specific pioneer factor to support tissue-specific functions.

Otherwise, the transcriptional regulation of downstream genes by the clock would be similar

in every tissues and BMAL1 would bind at the same locations.

Our study of putative circadian regulators and regulators implicated in nutrient response cycle

using a linear model approach in WT and Bmal1−/− revealed the importance of GR, FOX,

and CREB in clock impaired mice under night restricted feeding. These factors have been

already related with systemic cues that affect the liver synchronization [266, 82, 93]. Thus, we

observed a partial disorganization of transcriptional control in the absence of a peripheral

clock, which underlined the strong effect of nutritional synchronization. Besides, global Bmal1

knockouts in mice lead to important effects on metabolism and behavior that could be traced
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to dysregulation of BMAL1 target genes [273].

In this study, we accumulate some evidence of the contribution of distal regulatory element

involved in the circadian transcription regulation. Thus, we observed that about 47% of DHS

are located at more than 10 Kb from the closest active TSS. Moreover, distal DHSs up to 50

Kb improved the variance explained by our penalized linear model in WT and Bmal1−/−.

Such regulatory elements were investigated in the circadian context using maps of the activity

related chromatin mark H3K27ac [334], as well as enhancer RNAs (eRNAs) [95]. These studies

consistently identified thousands of putative enhancers with a broad range of peak activity

times, and were associated with distinct DNA regulatory motifs and TF binding patterns.

Finally, our inspection of diurnal biological processes such as lipid and sugar metabolism and

their regulation in WT and Bmal 1−/− confirmed the implication of SREBP, ChREB, CREB and

FOX in these processes, as previously suggested. [111, 93, 240].

3.8 Perspectives

3.8.1 Benefits of chrono-nutrition and chrono-therapy

A diurnal rhythm of eating-fasting promotes health [112]. In addition, it was recently demon-

strated that the restricted feeding regimen can compensate the effect of high-fat diet in mouse

[130]. In our results, we observed that in BMAL1 knockout upon night restricted feeding, a

large part of the transcriptome still depict diurnal variations, and we did not observe pre-

viously reported hepatic steatosis [300, 324]. Overall, Well-regulated eating habits actively

contribute to better lipid metabolism, even if animals ingest a high-fat diet. Recent findings

show that time-restricted feeding during the active phase amplifies circadian clocks and

decrease metabolic disorders induced by a high-fat diet without caloric reduction, whereas

irregular food intake causes various metabolic dysfunctions. Such evidence from nutritional

studies that consider circadian system (chrononutrition) has rapidly accumulated. Further-

more, in the near future, chrononutrition might eventually be used as a new tool in medical

protocols to treat metabolic syndrome or diabetes.

Epidemics of metabolic diseases (e.g., cardiovascular diseases, type 2 diabetes, obesity, metabolic

syndrome and certain cancers) have become major contributors to the cost of poor health,

and they are presently accelerating, in most developing countries. In addition, light at night

(or light pollution) disrupt circadian rhythms and is commonly referred to chronodisruption.

These chronodisruption might impact the hormonal signaling. Numerous hormones depict

circadian regulation that significantly impact physiology and pharmacology [69]. Melatonin,

a circadian hormone of the pineal gland, influences various aspects of retinal [322] and

cardiovascular [81] function and affects local clocks in diverse brain regions [126]. Mela-

tonin rhythmicity has important roles in a variety of metabolic functions as an anti-oxidant,

anti-inflammatory chronobiotic and possibly as an epigenetic regulator [174].
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Circadian regulation of the adrenal gland leads to diurnal secretion of glucocorticoid hormone,

which impact metabolism and directly affects 60% of the liver transcriptome [266]. Circadian

control of gastrin, ghrelin, and somatostatin, along with direct regulation by autonomous

clocks within the gastrointestinal tract, enable circadian influences on digestive function [173]

Current research highlights that circadian clocks in peripheral tissue can respond to different

cues and thereby show different phase relationships. Thus, full prediction of chronophar-

macology in pathological contexts will probably require a systems biology approach that

considers chronointeractions among the various clock-regulated systems [69].

In most cases, autonomous circadian clocks not only within the gastrointestinal tract but

also in various other tissues have significant impact on physiology and metabolism. For

instance, ablation of clocks in pancreatic islets leads to diabetes due to defects in the coupling

of β cell stimulus to insulin secretion [214], and tissue-specific targets of the clock includes

multiple ion channels and kinases in the heart that influence cardiac function and triglyceride

metabolism [169, 323] . Recent transcriptome studies have identified widespread tissue-

specific circadian regulation not only in heart but also in skeletal muscle and fat, indicating

that clocks in these tissues directly regulate physiology [40].

Considering the broad scope of circadian (patho)physiology, it is logical that the pharmacoki-

netics and pharmacodynamics of many drugs would be circadian and thus that drug efficacy

and safety profiles would also change with time of day. Nevertheless, this variation is poorly

considered by clinicians, drug developers, and regulators. In part, this lack of interest arises

from a lack of awareness of the molecular mechanisms underlying this control. However, two

decades of intensive research have revealed - not only basic mechanisms of circadian clocks

but also about how these mechanisms impact physiology and disease [69].

3.9 More circadian layers of regulation in cells

In addition to circadian transcription, recent research has revealed extensive evidence of

circadian post-transcriptional regulation in mammals, along with translational control [157],

control of transcription termination and/or elongation [247], and circadian control of splicing

[219]. Thus, the current number of transcripts exhibiting circadian abundance is significantly

greater than the number of genes transcribed in a circadian manner [171, 188, 223], and the

number of proteins that are expressed in a circadian manner is greater than the number of

transcripts [265]. Major signaling molecules such as cAMP show circadian variations that both

control clock output and play a role within the clock [243], and recent links between clocks

and sirtuins suggest a similar influence of redox potential [16]. Furthermore, a significant

fraction of histone posttranslational modifications varies in a circadian fashion at a large

number of loci [171, 188]. Overall, through a collection of different mechanisms, a significant

amount of cellular physiology is regulated by the circadian clock. However, additional reg-

ulations, such as the rhythmic degradation of intermediate products, can further modulate

gene expression, e.g., by adjusting the amplitude or shifting the phase of the driving rhythm
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[209]. For instance, MiR-122 is important for the hepatic circadian functions and targets genes

involved in cholesterol and lipid metabolism [106]. Using an inducible DICER knock out,

an recent study assessed the global contribution of miRNAs to circadian gene expression in

mouse liver [83]. Although a non-negligible fraction of circadian transcripts was affected

by miRNAs, this study emphasized the resilience of the circadian clock to perturbations in

miRNA biogenesis. Furthermore, in cultured mouse cells, the temperature entrainment of the

clock was shown to involve post-transcriptional mechanisms. Notably, the Cold-Inducible

RNA-binding protein (CIRBP), possibly by binding to transcripts encoding circadian oscillator

proteins, such as Clock [230]. Interestingly, CIRBP and RBM3, another RNA-binding protein,

guide the choice of polyadenylation sites of target transcripts in a circadian manner [201].

Nevertheless, underlying mechanisms are still poorly understood, and further efforts are

needed to appreciate better the various mechanisms controlling circadian gene expression at

multiple levels.

3.9.1 Emerging trends in functional -omics and in (chrono)biology

Fundamental research

In the post-genomic era, the circadian transcription has been systematically studied using

various experimental design, such as inverted feeding, night restricted feeding, in light-dark

(LD) or dark-dark (DD) conditions. Moreover, the availability of several mouse strain with

a defect of several core clock genes enabled the investigation of different component of

the core clock [210]. The technological improvement concerning sequencing technologies

[307] as well as mass spectrometry [9] have allowed the study of the circadian cycle with an

unprecedented throughput. Today it possible to study the whole transcriptome, as well as

a large fraction of the proteome [218] or the lipidome [1] and the metabolome in a single

experiment. In addition, transcription factor binding sites or regulatory elements , as well

as binding sites of RNA binding proteins on mRNA can be systematically investigated [53].

These experiments are a valuable source of information to understand the molecular changes

during the diurnal cycle. Cutting edge research are currently deciphering tissue or cell types

specificities [355], as well as the sub-cellular level with targeted researches on the nuclear

proteome and lipidome or in organelles such as the mitochondrial lipidome [19]. A general

trend in biology is the shift towards single cell analysis in order to study the heterogeneity of

the gene/proteins expression in a cell population or tissue. For instance, new methods allow

the investigation of mRNA [344] and chromatin accessibility [42] in single cells. Interestingly,

novel methods of microscopy allow the study of single molecules in a living cell [183]. These

techniques are critical to study biological processes such as transcription in a quantitative

manner even with "near endogenous" conditions.
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Translational research

Last but not least, the heterogeneity in a population of individuals in terms of genome se-

quences with, for instance, single nucleotide polymorphisms (SNP), might be another source

of useful information in order to associate a macroscopic phenotype to molecular mechanisms

[63]. Recent efforts of Biobanks in terms of human sample and research agreement collection

[229] will enable population-scale analysis such as the 1000 genome project [18]. However,

the genome sequence, it-self, is not sufficient and should be integrated with other data types

such as activity, medical records (diseases, response to medication) or behavior, as well as

other molecular data types (epigenetics, transcriptomics, metabolomics) in order to pave the

way for personalized medicine.
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4.1 Experimental design, protocols and data set quality control

The experimental design and the bench work was done by the Cyclix Consortium. More

precisely Nouria Hernandez Mauro Delorenzi, Bart Deplancke, Béatrice Desvergne, Nicolas

Guex, Winship Herr, Felix Naef, Jacques Rougemont and Ueli Schibler designed the experi-

ments and supervised the whole Cyclix project. The animal breeding, the conditioning and

the collections of biological material were performed by Teemu Andersin, Pascal Cousin,

Federica Gilardi, Pascal Gos, Gwendal Le Martelot and Fabienne Lammers.The chromatin

immunoprecipitations,the libraries preparation and the gene expression arrays were done by

Donatella Canella, Federica Gilardi and Sunil Raghav.

The bioinformatics analysis was mainly a collaboration between Irina Krier, and me. This

work was supervised by Felix Naef and Bart Deplancke, with the help of Jacques Rougemont.

Animals breeding and liver sample preparation

C57BL6 and Bmal 1−/− male mice 12–14 weeks old (at time of sacrifice) were housed in a 12 h

light/12 h dark (LD) regimen. They were then entrained to a 12 h/12 h LD regimen with water

ad libitum but food access only between ZT12 and ZT24 for Pol II ChIP-seq and H3K27ac

ChIP-seq and microarray for 7 d (ZT, Zeitgeber time; ZT0 is defined as the time when the

lights are turned on and ZT12 as the time when lights are turned off) for 7 days before the

sacrifice. Mice used for DNase I-seq were entrained to a 12 h/12 h LD regimen with water

and food ad libitum. At each ZT2, ZT06, ZT10, ZT14, ZT18, ZT22, and ZT26, 3-5 mice were

anesthetized with isoflurane and decapitated. The livers were perfused with 2 ml of PBS

through the spleen and immediately collected. A small piece of liver tissue (approx. 100 mg)

was snap-frozen in liquid nitrogen and kept at 80◦C for RNA extraction. The remaining liver

tissue was immediately homogenized in PBS containing 1% formaldehyde for chromatin

preparation. All animal care and handling was performed according to the State of Geneva’s

law for animal protection.
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Chromatin immuno-precipitation of RNA Polymerase II followed by sequencing

Perfused livers were processed for chromatin preparation as described in [277]. The chro-

matin samples from the five mice were then pooled, frozen in liquid nitrogen, and stored at

80◦C . For the ChIP experiments, the following antibodies were used: anti-RPB2 (Santa Cruz

Biotechnology, sc-673-18), anti-H3K4me3 (Abcam, ab8580), and anti-H3K36me3 (Abcam,

ab9050). To determine the optimal amounts of each antibody, we performed pilot ChIP assays

and determined the enrichment for a set of promoters by real-time qPCR according to [277].

A total of 1 ml of each chromatin suspension (containing about 60 μg of DNA) was incubated

with 10 μg of anti-RPB2, 1.5 μg of anti-H3K36me3, or 1.5 μg of anti-H3K4me3 in buffer A (20

mM Tris/HCl (pH 7.5), 150 mM NaCl, 2 mM EDTA) overnight at 4◦C on a rotating wheel. Ten

μl of protein A bead suspension (25% slurry in buffer A), pre-blocked with 10 μg/ml of salmon

sperm DNA and BSA at 4◦C overnight, was then added and the incubation was continued

for 1 h at room temperature on a rotating wheel. The beads were then washed with dialysis

buffer and ChIP wash buffer as described in [239]. Protein–DNA complexes were eluted from

the beads, de-cross-linked, and treated with RNase A and, subsequently, with proteinase K,

as described in [277]. The DNA concentration was determined by fluorometry on the Qubit

system (Invitrogen). A total of 10–12 ng DNA were used for the preparation of the library.

Libraries for ultra-high throughput sequencing were prepared with the ChIP-Seq DNA sample

kit (Illumina) as recommended by the manufacturer.

Chromatin immuno-precipitation of Histone 3 lysine 27 acetylated followed by sequenc-

ing

ChIPs were performed according to the method described by [267] with a few modifications.

The 100 μL chromatin aliquots was used for each IP and diluted with 900 μl of RIPA buffer

(1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS in PBS at pH 7.4) and added to dynal mag-

netic beads conjugated with (Sheep-antimouse IgG dynabeads, Invitrogen, Cat no: 110-31)

pre-treated with 3 μl of polyclonal antibody for H3K27ac (Active motif, Cat no: 39135) for

immunoprecipitation of specific complexes. The samples were incubated overnight at 4◦C on

rotator, then magnetic beads washed 7 times with lithiumchloride wash buffer (100mM Tris

at pH 7.5, 500mM LiCl, 1%NP-40 and 1%sodiumdeoxycholate) and finally once with 1X TE

buffer (10mM Tris-HCl at pH 7.5, 0.1mM Na2EDTA). The chromatin complex was eluted using

elution buffer (1% SDS, 0.1MNaHCO3) for 1 h at 65◦C using eppendorf thermo-mixer. The

chromatin was then de-crosslinked overnight at 65◦C and ChIP DNA purified using Qiagen

PCR purification kit and eluted in 50 μl of elution buffer. For qPCR reaction 1.5 μl of 1/10

diluted ChIP DNA is used. Libraries for ultra-high throughput sequencing were prepared with

the ChIP-Seq DNA sample kit (Illumina) as recommended by the manufacturer.

98



4.1. Experimental design, protocols and data set quality control

DNAse I-seq

Mouse liver nuclei were prepared as described in [321]. Freshly prepared nuclei were sus-

pended in ice-cold ψ-buffer (11 mM KPO4 pH 7.4, 108 mM KCl, 22 mM NaCl, 5mM MgCl,

1 mM CaCl2, 1 mM DTT) and pelleted. 5x106 nuclei were suspended in 200 μl of ψ-buffer

supplemented with 0.2% of NP40 and 1 μ/ml of DNase I (DPFF Worthington Biochemical

Corporation). DNase I digestion was performed for 6 minutes in room temperature and the

reaction was stopped by adding 200 μ l of lysis buffer (50mM Tris-HCl pH 8, 20 mM EDTA, 1%

SDS, 200 μg/ml proteinaseK). Protease digestion was performed overnight at 55◦C . RNaseA

(100 μg/ml) was then added and samples were incubated at 37◦C for an hour. DNA was then

extracted twice with phenol-chloroform and precipitated with isopropanol in the presence of

0.5 M NaCl. DNAs were dissolved in 5 mM Tris-HCl pH 8.DNAs from 4 animals were pooled

and 75 μg of DNA was loaded on 11 ml 10%-50% sucrose gradient in STE buffer (1M NaCl,

20 mM Tris-HCl pH 8, 5 mM EDTA) and centrifuged at 30000 rpm for 16 hours at 20◦C (SW

40 Ti rotor, Beckman Coulter Inc). The sucrose gradients were then fractionated and DNA

was precipitated by two volumes of ethanol in the presence of 5 μg of glycogen. Fractions

containing DNA sized around 300bp were pooled and used for Illumina library preparation.

Quality control (QC)

Sequenced reads alignments, from our illumina libraries to mouse genome (mm9 assembly),

were performed using HTSstation [72]. This web interface enables sequencing and mapping

quality control through automatic generation of reports. The alignment software used in the

HTSstation pipeline is Bowtie, with default parameters [186]. After mapping, the number of

reads that were obtained for each sample is indicated in table 4.1. Every sample used, had

more than 70% of mapped reads (see Table 4.1).

Most of the CycliX libraries were single-end sequencing. But in few cases paired-end sequenc-

ing was used, it was processed as paired-end reads, but later quantified as single-end reads,

i.e. only the beginning of a read was used.

The Fastqc quality control report (used in HTSstation pipeline) was decent for all libraries

produced in this project, although heterogeneity in proportions of duplicated reads was

observed, especially for the H3K27ac ChIP-seq in Bmal1−/− genotype.

For high depth libraries (with more than 100 million reads), it is expected that stacking of reads

will occur independently from PCR-amplification bias. This is in particular the case for DNase

I data, where the enzyme cleavage site determines the mapped read start and is expected to

occur preferentially at the edge of a transcription factor binding site. Cleavage efficiency by

the enzyme determines the read depth at these positions and constitutes the signal which we

would like to measure. Therefore, we did not apply methods to remove stacked reads. Multiply

mapping reads with more than 5 mapping positions were discarded. For quantification, reads

with N alignments were counted as 1/N reads mapping at each position. The sequencing
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libraries used in this project were large, containing each between 100 million and 200 million

reads (see Table 4.1).

We therefore used a binary format conversion to save time for follow up computations, de-

veloped by Nicolas Guex for the CycliX consortium along with a tool for quantifying signal at

genomic locations of interest. This tool enables fast computing, thanks to Vital-it Cluster in-

frastructure, by using efficiently the large memory capability of the cluster and by loading each

chromosome at once. Binary files were generated using only the 5’end of reads corresponding

to the DNase I digestion position or the break induced by sonication for ChIP-seq. BigWig files

were subsequently generated using the HTSstation [72] with centering parameters computed

from forward strand versus reverse strand cross-correlation maximization on ENSEMBL67

TSS for each ChIP-seq sample separately.

In order to control and compare the quality of the DNase I time points we used the percentage

of reads in the enriched regions (called Percentage of Tags in Hot-spots, PTIH) [155]. This

control is done after the peak calling. The PTIH is simply the number of reads in peaks divided

by the number of reads that were mapped to the genome.

These quantification are reported in table 4.2. Briefly, we observed that ZT02 was of lower

quality compared to the other DNase I samples.

Several other web-interface, have been recently developed to perform quality controls, quan-

tification and analysis of high-throughput data, as Galaxy [2], Chipster [161] or the ChIP-seq

server from the Computational Cancer Group at EPFL [10]. I was able to test as well some

open access command line tools, and R or python libraries to perform these quantifications

quite efficiently, notably with NGSplot [202].
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Table 4.1 – the number of reads in each sample and the number of mapped reads on the mm9
assembly are reported.

Library Number reads Numbers mapped %mapped

DNase I WT
ZT2 249350929 174147376 70
ZT6 317274205 252864063 80
ZT10 269194001 210684885 78
ZT14 204984161 159264085 78
ZT18 194932779 146829749 75
ZT22 191842671 167303697 87
ZT26 190983184 161216246 84
Pol2WT
ZT2 220172973 203597437 92
ZT6 189640820 168723064 89
ZT10 162253851 145450110 90
ZT14 196057079 176252350 90
ZT18 254879645 234013533 92
ZT22 142117355 122741922 86
ZT26 191096558 168972009 88
H3K27acWT
ZT2 552441072 476877194 86
ZT6 569270357 496184118 87
ZT10 586341426 515957037 88
ZT14 461236082 371945828 81
ZT18 568258389 492287638 87
ZT22 535729511 466984801 87
ZT26 407807224 344924054 85
Pol2 Baml1 KO
ZT2 509081190 442613199 87
ZT6 456861768 379886582 83
ZT10 615333770 560876871 91
ZT14 538202935 492830944 92
ZT18 567313327 518551916 91
ZT22 567987125 506596171 89
ZT26 605314961 424032099 70
H3K27ac Baml1KO
ZT2 208280807 158653084 76
ZT6 207101049 155183877 75
ZT10 208889844 166330282 80
ZT14 251404424 186223464 74
ZT18 206733328 166182481 80
ZT22 208941050 160127444 77
ZT26 173757120 134496020 77
DNase I Baml1-
ZT6 287086306 206398188 71

101



Chapter 4. Methods

Table 4.2 – the percentage of tags mapped in the mm9 genome that are enriched in peaks (see
peak calling section).

DNase Quality Control
Sample Percentage of tag in DHS

DNase I WT ZT2 29
DNase I WT ZT6 38
DNase I WT ZT10 57
DNase I WT ZT14 50
DNase I WT ZT18 54
DNase I WT ZT22 58
DNase I WT ZT26 46
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4.2 Peak calling optimization

State of the art

Peak calling is a critical step in the processing of ChIP-seq or DNase I-seq data. Its role is

to determine respectively the actual binding sites or accessible sites from sequenced DNA

fragments mapped onto a reference genome sequence [193, 21, 285, 315]. In ChIP-seq or

DNase I-seq experiments, only reads with a single matching locus on the genome are taken

into account. The positions of mapped reads are subsequently used as input for peak-calling

algorithms, which predict protein binding sites or accessible sites in DNase I-seq. The main

difficulty of peak calling is to determine the significance of peaks. Due to a high variability in

the background distribution of reads and the relatively small amount of enriched DNA, one

strategy consists of modeling the background distribution statistically and searching the data

set for local deviations from this distribution. Several models describing reads densities in

the background have been considered including the Poisson distribution [357], the Negative

Binomial distribution [152] and Hidden Markov Models [309].

A current approach used to determine background distributions of reads, is to work with mock

immuno-precipitation, notably using a non-specific antibody or without antibody as a control

[164]. In this input DNA or control data there is no enriched binding fragments. These controls

can be used to empirically estimate false discovery rates of the real ChIP data [345].

Another important point is to exclude ’non-mappable’ regions, i.e short subsequences oc-

curring multiple times in the genome or regions containing copy number variants (CNV).

These regions may be artificial source of read densities [328]. A last point for the peak-calling

is to consider the wideness of the considered protein. For instance the shape of peaks for a

transcription factor or DNase I accessible sites can be of few hundreds of base pairs, and in the

other side the shape of peaks of histones modification might be much larger [21]. Recent ap-

proaches imply deconvolution of overlapping peaks or modeling of peak shape and estimation

of peak parameters using an Expectation–Maximization algorithm [356, 221, 273]. A number

of recent reviews focus on ChIP-seq technology, applications and software, and several studies

worked on benchmarking the peak calling by producing gold standard ChIP-seq samples used

to compare different algorithms and software [287, 315, 125].

This study

In our study, we started with the mapping of DNAse I reads to the mm9 mouse assembly and

we merged all time points together before doing the peak calling. Then, we compared several

peak-calling tools as [357], HOMER [135], ChIP-Peak and ChIP-Part [10]. Each of these

tools was performing well with some adjustments of their parameters, but we decided to use

ChIP-Peak because we could separate efficiently single peaks of DNase I signal with a specified

peak width and an exclusion parameter called vicinity instead of calling large hypersensitive

regions. We found that the optimal parameter was to use a 600 bp peak width and a vicinity of
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400bp. Overall, we detected 62000 peaks in WT (C57BL6) mouse liver, which covers 1.2 % of

the mouse genome.
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Figure 4.1 – Peak calling strategy for DNase I data: A) ChIP-peak, ChIP-Part, HOMER and
MACS peak calling on DNase I-seq signal, B) parameter optimization of ChIP-Peak, C) Average
normalized DNase I signal on 62000 DHS
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4.3 Signal normalization

State of the art

The normalization is a critical step in DNase I-seq or ChIP-seq or any NGS data analysis.

Several methods have been used in recent studies, as scaling to total amounts of reads (i.e.,

normalizing for sequencing depth), quantile normalization or locally weighted regression

(LOcally WEighted Scatterplot Smoothing ,LOESS) normalization [188, 233, 195, 317, 171]. A

variation of the scaling to total amounts of reads where a scale factor is estimated in a region

( 10 Kb) using a linear regression was applied in several ChIP-seq studies and are improving

peak calling (see peak-calling section). Quantile and LOESS normalization are based on

the assumption that the effect of biological condition change does not cause global binding

alterations. This assumption might be not valid, when comparing samples with different

stages of disease progression, or on samples before and after a certain treatment.

Another scaling normalization method is widely used in RNA-seq data analysis. This method

is known as RPKM (Reads per Kilobase of sequence range per Million mapped reads). RPKM

adjusts for biases due to the higher probability of reads falling into longer regions. The

intended meaning of RPKM is a measure of relative molar RNA concentration (rmc) and [335]

showed that for each set of transcripts the average rmc is a constant, namely the inverse of the

number of transcripts mapped. A correction of the RPKM normalisation called transcripts

per million (TPM) respects the average invariance and eliminates statistical biases inherent in

the RPKM measure. Several other normalization methods have been proposed for RNA-seq

data analysis, as upper-quartile-normalized counts or Trimmed Mean of M values (TMM),

and these methods have been compared in a comprehensive study [78]. The main conclusion

of this study is that RPKM performed poorly compared to these other methods. Normalization

issues might have a substantial impact on the results and therefore should be addressed

carefully [78, 335].

More recently the CycliX consortium, and other groups tested a spike adjustment procedure

(SAP) designed to allow comparison of occupancy levels for a set of loci of interest [245, 34].

It consists of adding a constant, low amount of a single batch of foreign chromatin (e.g.,

human) as an internal control to each sample of the chromatin of interest (e.g., mouse) before

immunoprecipitation. This allows adjustment of the signals in each sample to the internal

control. The CycliX consortium showed that unlike only scaling to the total amount of aligned

sequence tags or quantile normalization, the SAP allowed the scoring of global and largely

uniform changes when they result from biological differences [34]. Nevertheless, the behavior

of spike-ins during library preparation is essential before applying any normalization method

that makes use of them [279].
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This study

In this project, we used a quantile normalization on DHSs (+/-300 bp around DHS center,

for DNase I and Pol II signal, and +/-1Kbp for H3K27ac). We applied the same procedure at

TSSs (+/- 1Kbp). Finally, in the case of the micro-array data, we used a standard micro-array

normalization procedure, namely the robust multi-array average (RMA) normalization [150].

4.4 Assessment of oscillatory signal

State of the art

Identification of rhythmic features such as genes or regulatory elements is a decisive stage

to identify clock-controlled pathways and processes. Such features are largely detected by

searching periodic patterns in any types of data. For example, a lot of studies have been

performed using microarrays, RNA-seq or ChIP-seq data [171, 333, 334, 143, 95, 355].

In our case we were interested to detect these oscillating features using DNase I-seq, histone 3

lysine 27 acetylated (H3K27ac) and polymerase II (Pol II) ChIP-seq. In order to detect these

features several methods have been recently developed, such as COSOPT [143], ARSER [348],

JTK-cycle [145], Fisher G-test [99], RAIN [318] and linear regression based methods. These

methods are able to perform quite well on large data-sets with low sampling frequency and few

or no replicates and high levels of noise. Several study compared these different methods and

enhanced them in order to detect asymmetric patterns,non-sinusoidal periodic waveforms,

or to cope with missing values [147, 318].

This study

In this project we had a sampling of 7 time points with a 4 hour resolution on a single cycle

(ZT02-ZT26) that did not provide a high statistical power. On the other hand, we had several

marks probed on the same animals and 3 mice pooled per time points. Therefore we applied a

harmonic regression on Log2 transformed signal at DHSs or at TSSs, and we did not consider

asymmetric or non sinusoidal waveforms.

Equation 4.1 was used to perform least squared fit of temporal profiles yt .

yt = A0 + A1 cos(ωt )+ A2 sin(ωt )+ε (4.1)

where A0, A1, A2 are regression coefficients and ε is white noise.

ω= 2π
τ is the frequency and we take a diurnal period τ= 24h.
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Once we compute the three coefficients using the standard linear regression (lm function in

R), we can compute the phase φ, amplitude A24 by writing:

A1 cos(ωt )+ A2 sin(ωt ) = A24 cos
(
ωt −φ

)
(4.2)

with

⎧⎨
⎩

A24 = 2
√

A2
1 + A2

2

φ= tan−1
(

A2
A1

) (4.3)

We then computed the p-value of the fit using a F-test. The p-value associated with 24h

rhythmic profiles was computed for each DHS and for each mark. The Fisher combined

probability of Pol II, H3K27ac and DNase I was computed to select rhythmic DHSs. Specifically,

we computed the p-values for each of those k = 3 marks and combined them using the statistics,

which assumes a Chi-squared distribution with 2k degrees of freedom [177].

−2
k∑

i=1
ln

(
pi

)∼χ2
2k (4.4)

The resulting combined p-value was used to estimate False Discovery Rates (FDR) via the

linear step-up method using the Benjamini-Hochberg method in R [31].
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4.5 Motif analysis in DNase I hypersensitive sites

State of the art

Motifs analyses are frequently done after ChIP-seq experiments [21]. In the usual pipeline

there is a first mapping of the reads to a reference genome followed by a peak calling (see peak

calling methods section 4.2). Then the sequences of these peak locations are retrieved and

used to find enriched motifs or position weight matrix (PWM) [77]. There are two general

philosophy of finding motifs. The first one uses de novo motif finding algorithms, such as

RSAT or MEME [319, 23], followed by motif comparisons (TOMTOM) [121] with PWMs from

databases, as Jaspar or Transfac, to identify known and unknown motifs [258, 217]. In the

second one, we can directly scan the sequences with PWM database. PWMs scanning tools,

such as FIMO, use a log-likelihood ratio score and a p-value threshold in order to find positive

matches of PWMs in the given sequences [114].

Another common way to scan a sequence for a given set of motifs is to use a HMM as with the

MCAST motif scanning tool from MEME Suite [115].

This study

In this project we tested the two options (de novo motif finding or motif scanning) but we

finally decided to use only known motifs from databases and a straightforward motifs scan of

our 65000 peak sequences of 600bp defined by our peak calling. We made this choice because

these de novo motifs finding tools can produce a lot of false positive especially in DNase I-seq

data, as accessible sites sequences are not only enriched for a single transcription factor but

for all DNA binding proteins that are expressed in the considered sample. Moreover, it is quite

difficult to use unknown motifs for any interpretation without experimental validation.

In order to determine the right threshold parameter for our motif scans we did a stratification

of the FIMO DNA motif match p-value on 3306 sequences of DHS that are oscillating for

DNase I signal in WT mice in figure 4.2. We tried several PWM related to the circadian rhythm

as E-box (CLOCKBMAL), and D-box (VBP). As expected in these oscillating accessible regions,

we had a high proportion of match for these motifs. We found that the number of match is

increasing exponentially with the p-value threshold, and we concluded from this optimization

that the threshold of FIMO p-value below 10−4 gave a reasonable amount of match with a

well-conserved motif and a visible raw footprint in DNase I signal in an average plot centered

around our motif matches. In summary we used a stringent threshold in order to favor

specificity over sensitivity and thus avoid false positives.
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Figure 4.2 – FIMO threshold stratification for CLOCK/BMAL and VBP motifs in 3306 circadian
DHSs

4.6 DNase I-seq footprint detection

Analysis of digital genomic footprinting data can be separated roughly into two categories,

namely TFBS motif-centric and footprint-centric approaches.The first category attempt to

quantify TF binding at defined genomic locations, whereas the second category focus on de

novo detection and annotation of DNase I footprints [331]. Moreover, a pending question of

the DNase I cleavage rate bias is still debated in the literature (see section 4.6.3). Following

sub-sections will explain the different methods, as well as the one that we used in this project.

Finally, I will highlight the current controversy about the DNAse I cutting bias and briefly

present the results of a comparative study of DNAse I footprint detection methods.

4.6.1 TFBS motif-centric approach

State of the art

Genomic match to position weight matrices for hundreds of TFs can be generated readily

with algorithms such as FIMO [114] in DNase I hypersensitives sites (see motif analysis sec-

tion 4.5). TF binding at these recognition sites can be quantified under the assumption that

occupied sequence specific TFBS have significant different cleavage pattern than expected.

This strategy is quite efficient because using PWM motif match as a prior provide the location

and the expected width of the of the TF-DNA interaction. Thanks to these information pro-

vided, a common strategy is to explicitly model the per-nucleotide cleavage pattern around

PWM match for a given TF and use machine-learning approaches for classification such as

in CENTIPEDE method. This method models bound and unbound cleavage pattern using

multinomial distributions containing parameters for each nucleotide in the window surround-
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ing the motif [257].The learning strategy used by CENTIPEDE is representative of a broad

class of unsupervised methods for DNase I footprint analysis that perform model parameter

optimization and classification simultaneously and directly using the observed data.On the

other side, supervised learning methods have been developed, such as FLR and BinDNase

[350, 184]. They require positive and negative labeled training data (based on, for example,

ChIP-seq peaks or other occupancy measures) to fit model parameters that are subsequently

used for the discrimination of TF recognition sequences of unknown binding status. ChIP-seq

can be used to determine the genomic binding of a defined TF, but it cannot discriminate

direct DNA binding from indirect binding. The combination of motif match and ChIP-sec

overlap might be the most performing strategy to highlight genomic footprinting data by

resolving the assignment of specific TFs to footprints in cases where distinct TFs utilize highly

similar binding sites. However, the high frequency of likely indirect binding observed with

most TFs, combined with a propensity for artifactual enrichment at highly active loci and poor

reflection of binding kinetics, precludes ChIP-seq from serving as a true gold standard for the

evaluation of footprinting data [331]. An other important limitation of this approach is the

the fact that current PWM databases are not complete and a lot of TF consensus recognition

sites have not been characterized.

This study

In our study we developed a mixture model that was able to optimize the footprint width

around the motif and subsequently predict bound or unbound sites (see Appendix A.1). For the

unbound model, we expressed the likelihood of the measured cuts as a product of independent

Poisson variables with a common mean. On the other side, for the bound model we made the

simplifying assumption that the shape of a footprint can be approximated by a rectangular

shape, showing on average less counts in the protected regions. Therefore, we assumed two

distinct means for unprotected, and for protected sites, representing the average number

of cuts outside, and inside the footprinted region. We formulated the mixture model by

introducing a global probability (that had to be estimated) to be in the bound state. We could

then marginalize over this global probability to obtain the likelihood of the whole data with

respect to the boundaries. Finally, once we found the optimal boundaries we could estimate

the optimal global probability and also assign posterior probabilities to each region for each

of the two models. We used DNase I hypersensitive sites and overlapped by ChIP-seq peaks

(of BMAL1 in this case) in figure 4.3 containing a well conserved TFBS (FIMO PWM match

p-value < 10−4) of interest.
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Figure 4.3 – Digital genomic footprinting methods: our method consists of analyzing DNase
I tags around a motif of interest (overlapped by some ChIP-seq signal if available), in this
case BMAL1/CLOCK E-box motif in DNase I hypersensitive regions. The basic idea is to find
regions where read counts are depleted in the center region compared to the flanking regions.
We developed a method that maximize the number of bound sites by adjusting the width of
the core footprint using a mixture model.

This method was successfully used on several example in the result section 2.1.5. Moreover,

we were able to detect a change in shape around double E-box motifs with a spacer of 6-

7 bp overlapped by BMAL1 ChIP-seq that suggested a hetero-tetramer binding mode of

BMAL1/CLOCK at these sites. This method can be used to study the kinetic of binding on

DNA of other protein complexes in the future.
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4.6.2 De novo detection of footprint from DNase I signal

State of the art

In the past four years, several algorithms for de novo detection of DNase I footprints have been

published. A main difficulty of de novo footprint detection is that the basic parameters defining

a TF-DNA interaction are unknown a priori and must be learned simultaneously with the

footprint detection process [331]. Several strategies make use of a sliding window approach

for comparing observed cleavage rates in a central region to those within the adjacent flanking

sequences and frequently work with parameters, such as footprint and flanking-sequence

widths, which are entirely specified during the detection process and parsimoniously selected.

In figure 4.4,the Wellington algorithm is based on a similar windowing strategy, enhanced by

incorporating information on DNA strands and scores the central window. Wellington perform

a binomial test using the cleavage rate within the flanking windows as the expected cleavage

rate [256]. Additional methods are now available that make use of probabilistic frameworks

such as hidden Markov models (HINT,Boyle) [36, 123] and dynamic Bayesian networks (DBFP)

[57] to model per-nucleotide cleavage data.

This study

In our DNase hypersensitive sites footprints detection we worked with the Wellington al-

gorithm (pyDNase library) [256] with parameters: -sh 20,36,5 -fdr 0.05 on all DNase

samples concatenated. The DHS containing at least one footprint were subsequently used for

our motif activity inference using a penalized linear model (see section 4.7).
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Figure 4.4 – Digital genomic footprinting signal centric method: the Wellington algorithm uses
a triple sliding widows to find bound regions, taking into account the forward and the reverse
strand reads asymmetry during the footprint detection [256]. The DNase I hypesensitive site
is upstream Nr1d1 gene and contains two E-box motifs overlapped with BMAL1 ChIP-seq. We
observed that the Wellington score is maximal at these E-Box motifs.
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4.6.3 DNase I cutting bias

Despite great potential of detecting the majority of TFBSs in one assay, DNA sequence specific

biases, together with transcription factor dependent binding kinetics, have been recently

recognized as major confounding factors in DNase-seq experiments [314, 132]. An example is

the DNase I sequence cleavage bias, which is due to the different binding affinities of DNase

I toward specific DNA sequences. These bias and artifacts are inherent to the experimental

protocols used [350]. Another experimental aspect affecting the computational analysis

of DNase-seq is the residence time of TF binding. Sung et al. showed that short-lived TFs

have a lower DNase I cleavage-protection pattern in a TF-specific manner. These influencing

factors were not considered by most of the previous methods for the analysis of chromatin

accessibility data [212]. He et al. suggested that sequence cleavage bias around TFBSs impacts

the performance of a computational footprinting method. There is room for improvement

in current methodologies by making use of the sequence specificity of each enzyme/assay,

including ATAC-seq, but there is no clear consensus in its importance for digital genomic

footprinting [212]. However, A contradictory studiy claims that this cleavage bias of the DNase

I dosn’t affect much the detection of footprints [184].

In our data (figure 4.5 and table 4.3), we observed a cleavage bias at the 5’end of the sequenced

reads with a maximal information content of 0.08 on a scale of 2 bits. the information content

of the base frequencies at that position of a motif is computed with the following formula:

Ii = 2+∑
b

fb,i l og2
(

fb,i
)

(4.5)

where fb,i indicates the frequency of base b at position i. Positions that are perfectly conserved

contain 2 bits of information, those where two of the four bases occur 50% of the time each

contain 1 bit, and positions where all four bases occur equally often contain no information

[77].

We saw that this bias is slightly different in each time points and that ZT2 and ZT26 cluster

together. We can conclude that this bias is protocol and enzyme specific, and that in the case

of a time series analysis this bias is partially time point dependent.

Finally a comparative analysis of Different digital genomic footprinting methods showed that

the methods that takes this bias into account with a 6-mers correction of the signal around

the cleavage position performed slightly better than the other methods (DNase2TF, HINT).

Interestingly, the wellington algorithm was the best performing method that didn’t applied a

bias correction [122], which confirm the validity of our analysis.
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Figure 4.5 – Information Content per base pairs at the 5’end of our DNase I-seq libraries. This
analysis was done using the FastQC report of our DNase I-seq libraries and SeqLogo

Table 4.3 – DNase I cutting bias in our DNase I libraries. The frequency of the nine fist positions
of our reads are displayed in %.

Dnase I library Base Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7 Position 8 Position 9

ZT02 A 16.85 30.30 27.14 27.38 28.36 27.90 25.93 25.74 24.95
ZT02 C 26.80 26.36 25.02 21.05 21.66 24.47 24.62 24.22 24.98
ZT02 G 28.26 28.93 19.66 27.77 25.82 25.54 22.95 24.88 24.72
ZT02 T 28.09 14.41 28.18 23.80 24.17 22.09 26.49 25.16 25.35

ZT06 A 16.73 31.15 29.01 28.72 28.84 28.99 27.52 27.43 26.69
ZT06 C 26.74 25.93 24.14 20.44 20.56 22.81 23.09 22.81 23.29
ZT06 G 26.05 28.02 19.21 25.33 24.77 23.84 22.23 23.26 23.41
ZT06 T 30.48 14.90 27.65 25.51 25.83 24.35 27.16 26.50 26.62

ZT10 A 16.12 29.09 25.84 26.93 27.34 26.77 24.59 24.27 23.42
ZT10 C 27.62 27.83 27.30 20.87 21.23 25.53 25.95 26.07 26.54
ZT10 G 32.41 30.74 20.55 28.94 28.86 27.40 24.37 26.11 26.24
ZT10 T 23.86 12.35 26.31 23.26 22.56 20.30 25.10 23.54 23.80

ZT14 A 15.98 29.68 26.80 27.62 28.07 27.54 25.32 25.13 24.31
ZT14 C 26.32 27.98 27.01 20.68 20.59 24.41 25.17 25.09 25.70
ZT14 G 29.62 30.73 19.30 28.01 27.97 26.95 23.66 25.60 25.38
ZT14 T 28.08 11.61 26.88 23.69 23.37 21.10 25.85 24.18 24.60

ZT18 A 14.94 28.34 26.49 26.41 26.76 26.49 24.66 24.44 23.82
ZT18 C 28.57 28.44 28.51 22.42 22.02 25.43 26.21 25.80 26.65
ZT18 G 28.69 31.62 20.01 28.97 28.55 27.76 24.80 26.73 26.23
ZT18 T 27.80 11.59 24.98 22.20 22.66 20.32 24.33 23.03 23.31

ZT22 A 14.88 28.44 25.98 26.72 26.57 26.30 24.30 24.11 23.45
ZT22 C 27.41 28.98 28.14 21.44 21.45 25.33 26.09 26.12 26.58
ZT22 G 30.01 31.30 20.11 28.29 28.94 27.44 24.56 26.16 26.02
ZT22 T 27.71 11.28 25.77 23.55 23.04 20.92 25.05 23.61 23.95

ZT26 A 15.72 30.40 26.40 26.52 27.09 26.98 24.93 24.92 24.10
ZT26 C 27.48 26.43 25.67 21.50 22.42 25.55 25.65 25.09 25.75
ZT26 G 30.65 29.34 20.35 28.36 26.52 25.71 23.36 25.44 25.33
ZT26 T 26.15 13.83 27.59 23.63 23.96 21.76 26.05 24.55 24.81
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4.7. Linear model to infer transcription factor binding motif temporal activity

4.7 Linear model to infer transcription factor binding motif tempo-

ral activity

The predominant theory for circadian transcription regulation is the phase vector model,

whereby a new phase results from the combinatorial synthesis of two or more transcriptional

regulators or two clock-controlled DNA element [326]. In our circadian context, we aimed at

inferring the phase of each TF binding on DHS using Pol II loadings at TSS of active genes and

the motif content of DHS nearby (figure 4.6).

Genei

Pol II

TFBS Motif
m1 m3 m2 m4 m1m2

DHSi DHSj DHSk

Figure 4.6 – The PolII signal at TSS is used with the motif content of nearby DHSs in order to
compute the phase specific motif activity.

We fitted the following linear model to infer motif activities Am :

Yg =∑
m

Ng m Am +ε (4.6)

Here Yg is a complex amplitude summarizing the oscillation with a period of 24 h, i.e. Yg =∑
t eiωt Yt , Am is the corresponding complex motif activity, Ng m is a regression matrix defined

below and ε is a noise term. In practice we can represent the complex numbers Yg and Am as

two-dimensional vectors.

For this regression a matrix Ng m , was built which contains motif m for every DHS d in a

given vicinity of active gene g. More precisely, we simply sum the motif content of DHSs in

a given proximity of a gene. To obtain this Ng m matrix, FIMO [114] was used to scan our

DHSs sequences and different sets of position weight matrices (PWM), such as JASPAR [258],

TRANSFAC [217], SELEX [156] and WANG [338] with a detection threshold p-value below

10−4. We used a set of approximately 1900 PWM.

The maximum likelihood estimates of unknown activities Âm can be computed as follow using

least squares method:

Âm =
(
N T

g m Ng m

)−1
N T

g mYg (4.7)

However,to avoid overfitting and control for the redundant motifs, we used a penalized linear
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regression model developed by T. Hastie [100]. This method is available as an R package

called GLMNET and uses the elastic-net penalized regression. This penalized linear regression

model is defined as follows:

β̂α,λ = ar g mi n
β

[∥∥y −Xβ
∥∥2

2 +λ
(
α

∥∥β∥∥2
2 + (1−α)

∥∥β∥∥
1

)]
(4.8)

where we have switch to the standard notation for linear regression, i.e. using X for the design

matrix, y for the data, and β for the regression variable.

The elastic net regression is a method that allows regularization and variable selection simul-

taneously. It includes the Lasso penalty l1 =
∥∥β∥∥

1 that ensure the sparsity of the solution. The

caveat of Lasso penalty implies that the solution is bounded by the number of ’samples’ and

that it tends to select one variable from a group and ignore the others. To overcome these limi-

tations the elastic-net includes a second part of the penalty. it’s the quadratic term l2 =
∥∥β∥∥2

2

called the Ridge penalty. α is for the elastic-net mixing parameter with range α ∈ (0,1), where

α= 1 is the lasso and α= 0 is the ridge. λ is a vector of values, which allows to progressively

decrease the penalty in the "Pathwise Coordinate Descent algorithm" [100].

We tested several other motifs databases as well, like HOCOMOCO [181], Swiss Regulon

[246] or Jaspar 2016 [215], and we observed that we had similar predictions for E-Box motifs,

RRE-motifs or D-box. A major conclusion of this database comparison is that motifs quality of

the database, and the redundancy affect slightly the analysis. A data cleaning effort improve

drastically subsequent interpretation of the biological significance of the outcome of the

model (figure 4.7). Briefly, we clustered the PWMs based on their matches on DHSs and we

selected for each representative cluster the PWM with the highest circadian activity using our

penalized linear model with 1900 PWMs (Table 4.4).
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4.7. Linear model to infer transcription factor binding motif temporal activity

Table 4.4 – Selected non-redundant PWMs from different sources

Original ID Clean ID Source

V_E4BP4_01 D_Box Transfac
V_RORA2_01 RRE Transfac
V_CREBATF_Q6 CREB Transfac
BHLHE40 E_Box Wang
V_AR_Q6_01 GR Transfac
V_FOXO1_Q5 FOX Transfac
SP1 SP1 Wang
V_ZF5_01 ZF5 Transfac
V_PPARG_01 PPAR Transfac
V_AP2_Q3 AP2 Transfac
V_ZIC2_04 ZIC2 Transfac
V_PU1_Q4 PU1 Transfac
V_RXRA_03 RXR Transfac
V_ERR1_Q2_01 ERE Transfac
V_MITF_Q6 MITF Transfac
HNF1A_M161 HNF1 Selex
V_NFY_01 NFY Transfac
V_SREBP1_02 SREB Transfac
V_GABPAGABPB_Q6 GABP Transfac
Jdp2_M131 JDP2 Selex
V_SMAD_Q6 SMAD Transfac
V_HNF4A_02 HNF4 Transfac
V_NKX62_Q2 NKX6 Transfac
V_EKLF_Q5 KLF Transfac
V_GATA3_05 GATA3 Transfac
V_OCT1_01 OCT1 Transfac
V_LXRDR4_Q3 LXR Transfac
V_MAF_Q6_01 MAF Transfac
HSF1_M61 HSF Selex
V_MEF2A_Q6 MEF2A Transfac
V_FXR_Q2 FXR Transfac
V_MTF1_02 MTF1 Transfac
EGR1_M3 EGR1 Selex
MA0080.2 ETS Jaspar
V_CEBP_C CEBP Transfac
V_GFI1B_01 GFI1 Transfac
NFIA_M238 NFIA Selex
V_E2F_02 E2F Transfac
V_MYB_Q6 MYB Transfac
V_YY1_01 YY1 Transfac
GLI2_M4 GLI2 Selex
NFAT5_M80 NFAT5 Selex
V_ACAAT_B SOX Transfac
V_TBP_01 TBP Transfac
TEAD1_M113 TEAD Selex
RFX5 RFX Wang
SRF SRF Wang
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Figure 4.7 – Penalized linear model with four different motif databases. Pol II loading at TSS
of active genes (in WT mice) was fitted with DHS motif content in a vicinity of 50 Kb. The
parameters used for these penalized linear model were λ = 0.1 and α = 0

We optimized our linear model to estimate the β̂ (in our notation the unknown activities

estimates Âm), by doing a parameter space exploration in figure 4.8, and we found that an α

of 0.1 was performing well. We tested our model with the motif occurrence in the Ng m matrix,

or a boolean representing the presence or the absence of the motif, and we observed that the

motif occurrence had a higher deviance ratio (equivalent to the variance explained by the

linear model). Moreover, the Glmnet package has a k-fold cross validation implemented. We

used a 10-fold cross-validation for our final set of motifs that explain a part of the circadian

oscillation in our data.
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Figure 4.8 – The elastic-net has been performed with various α and λ in order to determine
the optimal parameters that will select a minimal set of motif with a minimum mean-squared
error

In summary, our penalized linear model was accomplished using the 1900 PWM on a common

selection active genes detected using a SVM (see Section 4.8 of DHS to active transcripts) using

Pol II loading at TSS in the WT or Bmal1−/− context. Phase and amplitude of Pol II loadings at

TSS was fitted with the motif matrix to infer motif activity in WT and Bmal1−/−. DHS motif

content was included in Ng m matrix within a given proximity (distance threshold) with their

closest active genes with one or more footprints, detected using Wellington algorithm from

pyDNase Library [256].
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4.8 Annotation of DHS to active transcripts and enrichment analy-

sis

Using ChIP-seq data for Pol II, H3K4me3, H3K36me3 and H3K27ac from CycliX [188] in the WT

condition, a support vector machine classifier (SVM) was developed by Irina Krier to detect

active transcripts among all Ensembl annotated transcript (version NCBIM37). The goal was

to use a classifier that would recognize the shape of signals typical of active transcription [27]

based on histone modifications, Pol II and DNAse I. We selected regions of interests to be +/-

300 bp around the TSS for Pol II and H3k4me3, and also +/-300 bp around the TES for DNAse

I, and the last 600 bp of each transcript for H3K36me3. Read counts on the same strand as the

transcript annotation were counted per 10 bp and quantile-normalized across time. To correct

for relative difference in signal between marks, correction coefficients were applied based on

the sum of each signal. A set of active and inactive transcripts were extracted consisting in the

top 10% and bottom 10% respectively, as determined by Pol II RPKM along each transcript. Our

SVM was trained on these active versus inactive transcripts, and subsequently applied to all

transcripts at each time point. Cross-validation indicated that the SVM had satisfactory False

Positive and False Negative results for very high or very low Pol II signals (98% of test transcripts

were correctly classified either active or inactive at ZT10). Classifier predictions for all time

points were very similar, with more than 80% correlation. Transcripts shorter than 600bp

were set to “active” if they had higher Pol II RPKM than the lower quartile of active transcripts.

Transcripts were considered active when they were classified as active in at least one time

point. This classification resulted in 51’947 out of the 97’214 transcripts to be classified as

active (17’467 out of 37’583 genes). The active transcripts list (51’947 transcripts) was used to

associate DHS with the closest active transcription start site (TSS) using the Chippeakanno R

package [359] from Bioconductor. The annotation result provided 13’457 unique active genes

linked with at least one DHS. These active genes were subsequently used in our gene centric

analysis with our penalized linear regression. Basically a DHS could regulate all active genes

that are in a certain proximity defined by our so called distance threshold (see section 4.7).

Finally, we performed pathway enrichment analysis using gprofileR [269] on rhythmic mRNA

in WT and/or in Bmal1−/− genotype. We then used amplitudes of genes annotated in a given

significant pathway for downstream analysis that revealed important changes in the clock

impaired genotype.

4.9 3D structure of the heterotetramer BMAL1/CLOCK and molec-

ular dynamics

For the single BMAL1/CLOCK, the crystal structure of the heterodimeric BMAL1/CLOCK (pdb

id: 4F3L) was used as an initial model [141]. In this structure there are 5 flexible loops lacking

density. The residues in positions 129-134 (length 6 residues), 212-237 (26 residues), 257-275

(19 residues), 291-309 (19 residues) were missing from BMAL1, and the residues 224-247 (24

residues) were missing from CLOCK. These missing parts were computed by Rosetta’s loop
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modeling application (v3.5); an application that extensively remodels the backbone of the

loops [261]. The loops were remodeled and refined by the CCD (Cyclic Coordinate Descent)

algorithm [49]. The fragment files, used by CCD were made by Robetta Server [165]. The

BMAL1/CLOCK structure, as a unique chain, was used as Rosseta input and from the output

we selected the lowest energy loops for the single BMAL1/CLOCK model. In order to bind the

single BMAL1/CLOCK model to the E-box, the complex crystal structure of BMAL1/CLOCK

basic helix-loop-helix domains bonded on the E-box (CACGTG) (pdb id: 4H10) was used

[339] . This structure was superimposed to the single BMAL1/CLOCK model with the UCSF

Chimera visualization program (v1.5.3) [253]. In accordance to this super-position the single

BMAL1/CLOCK model the N-terminal helices of CLOCK and BMAL1 was replaced by the

helices in the 4H10 structure from the protein data bank. The base-pair geometry of the DNA

in the 4H10 structure was analyzed by the 3DNA software (v2.0) [205]. Two double-strand DNA

models, spacing 6 (sp6) and spacing 7 (sp7), with sequence 5’-CACGTGAAAAAA(A)CACGTG-3’,

were generated by 3DNA. The CACGTG parts were rebuilding based on the analysis of the DNA

in the 4H10 structure. The interval base pairs of sp6 were building with the standard B-DNA

backbone conformation for A-T pairs. For the final models two BMAL1/CLOCK models were

bound to the DNA models with a spacer of 6 bp (sp6) or 7bp (sp7), by superimposing them

with UCSF Chimera.

On the 2 heterotetramer models, molecular dynamics simulations were performed with the

NAMD program (v2.8) [255] in order to explore the various structural conformations. Each

of the models was placed in an explicit solvent box with 0.15 M NaCl concentration under

periodic boundary conditions. The models were parameterized using the AMBER force field

(ff99bsc0) and the TIP3P model was used for water molecules (LeaP program) [52]. Initially,

geometry optimization via energy minimization to refine DNA backbone and base pairing

geometry was performed for 12500 steps, followed by an NPT phase of 90ns and 130ns for the

sp6 and sp7 model respectively. In all phases a time step of 1 fs was used, the covalent bonds

involving hydrogen atoms were constrained by the RATTLE algorithm [11] and the Van der

Waals interaction cutoff distances was set at 12 Å.
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A Appendix

A.1 Mixture model for DNase I footprint detection

This mixture model for DNaseI data footprint detection around transcription factor binding

sites has been developed by Felix Naef. I was implicated in the development of the visual output

as well as the parameter optimization and the analysis of different TFBS,such as BMAL1, CREB,

SREB, FOXA2 HSF1, and REVERBα

For this model, we assume to have DNase1 cuts nr i ∈N for regions r ∈ {1, . . . ,R} at positions

i ∈ {1, . . . ,L}, where R is the number of regions and L the length of the regions (all assumed

to be of the same length). Indices iL and iR refer to boundary positions (the left and right

boundaries of a protected sequence motif) and we assume that the cuts are all aligned with

respect to some ankor, for example the position of a sequence motif reflecting the specificity

of a known protein-DNA interaction. We define J = {iL , . . . , iR } and I = {1, . . . ,L}\J .

The goal is to calibrate a mixture model from the data, such that we can learn which sites are

bound (showing footprints), and which are not. While similar approaches have been proposed

[257], we are interested in additionally learning the optimal boundary positions, such that

we can detect if a footprint changes shape (in our case its width) in different conditions (for

example at different time points). To make the model tractable, we make the simplifying

assumption that the shape of a footprint can be approximated by a rectangular shape, showing

on average less counts in the protected regions. While it was shown previously that the

signal within the protected region can be nonuniform for some factors [237, 320, 338], the

rectangular model is a simple generic model that captures the essential properties of DNase1

signals around bound sites in many cases. Specifically, we express the probability (likelihood)

of the measured cuts �n = (n1, . . . ,nL) (here for a single region or one row in the matrix nr i ) as a

product of independent Poisson variables with a common mean λ when the site is not bound

P1(�n|�λ) =
L∏

i=1
Poi s(ni |λ) =M (�n|�p,N )Poi s(N |Λ) ≡Q1(�n;Λ) , (A.1)
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where we used the property that products of independent Poisson variable can be factored

into a multinomial (M ) and one Poisson distribution, and defined N =∑
i ni , Λ=∑

i λi = Lλ,

pi = 1
L . The notation Q1 emphasises that this is now a function of Λ.

For the second (bound) model we assume two distinct means λI for unprotected, and λJ for

protected sites, representing the average number of cuts outside (i ∈ I ), and inside ( j ∈ J ) the

footprinted region, respectively. This leads to

P2(�n|λI ,λJ , iL , iR ) = ∏
i∈I

P (ni |λI )
∏
j∈J

P (n j |λJ ) (A.2)

= M (�n|�q,N )Poi s(N |Λ) ≡Q2(�n; iL , iR , qJ ,Λ) , (A.3)

where here Λ = ∑
i λi = L1λI +L2λJ with L1 = |I |, L2 = |J |, qi = λI /Λ ≡ qI for i ∈ I and qi =

λJ /Λ≡ qJ for i ∈ J . The notation Q2 shows the dependencies in the new variables.

We then marginalize the probabilities over the unknown Λ (using an improper flat prior, such

that
∫∞

0 Poi s(N |Λ)dΛ= P (N ) = 1, and thus equivalent to making no assumption on the total

number of cuts). After some straightforward algebra, this leads to

F1(�n) =
∫∞

0
dΛQ1(�n;Λ) = N !∏

i (ni !)
L−N (A.4)

where N =∑
i ni , and

F2(�n|iL , iR ) = L
∫1/L

0
d qJ

∫
dΛQ2(�n;iL , iR , qJ ,Λ) (A.5)

= 1

N +1

N1!∏
i∈I (ni !)

N2!∏
j∈J (n j !)

L−N1
1 L−N2

2

1

r
Ir (N2 +1, N1 +1) (A.6)

where N1 = ∑
i∈I ni , N2 = ∑

j∈J n j , r = L2
L , and Ir (α,β) is the regularized incomplete Beta

function (I1(α,β) = 1) that comes form the qJ integral. Note that since the same improper (not

normalized) prior on Λ is used for both models, this does not pose any difficulties. The upper

integration bound on the qJ integral uses the assumption that qJ ≤ qI ≤ 1/L, reflecting that

the probability of cuts is reduced inside J due to protection from the bound protein.

We can now formulate the mixture model by introducing a global probability q (to be esti-

124



A.1. Mixture model for DNase I footprint detection

mated) to be in the bound state, such that

P (�n|iL , iR , q) = (1−q)F1(�n)+q F2(�n|iL , iR ) , (A.7)

or since q is assumed to be common to all regions

P ({nr i }|iL , iR , q) =∏
r

P (nr•|iL , iR , q) . (A.8)

Finally we can marginalize over q to obtain the likelihood of the whole data with respect to

the indices I :

P ({nr i }|iL , iR ) =
∫1

0
d q P ({nr i }|iL , iR , q) , (A.9)

where we have assumed a uniform prior on q. The interesting aspect is that this likelihood

calculation requires only doing a one-dimensional numerical integral, and one can then

maximize with respect to the discrete indices iL and iR to find the optimal boundaries. Once

these have been found, it is straightforward to estimate the optimal q using Eq. 8, and also to

assign posterior probabilities to each region for each of the two models using Eqs. 4 and 6.
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A.2 Circadian life, a smartphone app

to monitor our circadian activity

A.2.1 Introduction

Since the dawn of time, the earth rotation on its axis and around the sun imposes to all

living creatures daily changes and seasonal variations. These changes imply light-dark cycles,

temperatures changes, and food availability or predators presence. In an evolutionary scale,

all living creatures needed to anticipate those changes in order to develop an efficient survival

strategy. In humans, our internal clock controls several behaviors, such as sleep-wake cycle,

food intake, hormonal cycle, and immunity. Despite this circadian control, humans often use

alarm clocks and medication to align their sleep and wake times with social obligations (e.g.,

work and school schedules or other social events) [281]. Activity varies between work and free

days due to a changing in sleep duration but also in sleep timing. In order to recover from sleep

deficiency accumulated over the working period, people commonly oversleep on free days

[281]. Current methods to monitor human activity are subjective (such as questionnaires),

providing only a general overview of daytime activity [282]. The availability of smartphones

represents an opportunity to monitor human activity objectively. Moreover, the wide-ranging

adoption of smartphones across age, gender, and socioeconomic segments is critical to study

the behaviors of free-living representative individuals at a population scale [336, 112]. Thus,

it is essential to understand our rhythm on a daily basis for increasing our ability to live in

a healthy state. Recent breakthroughs of chronobiology are significant in chronotherapy –

e.g., when should one take a particular drug to cure a disease more efficiently [178] – and in

chrononutrition, as when should one eat to stay in a healthy state [112].

A.2.2 Goal of the project

We aimed at gathering data on daily activity of users and had access to various information

such as their locations, ages, gender and more, thanks to our smartphone app, called Circadian

Life. Using these data, we will be able to study different chronobiology-related features

including jet-lag, chronotype, light entrainment (seasonal changes, effect of latitude) and

social entrainment at the population level.

In collaboration with Jonathan Baeriswyl (a "civiliste" in the Naef lab), we developed the first

version of Circadian Life, a smartphone app to record the activity of users at a population

scale. The goal of the app is to record user activity through phone sensors (e.g., accelerometer,

light and GPS) and possibly wearable gadgets, smart watch or wristband, in an automated

manner. Users will have access to their personal data via a web interface and through the app

interface (figure A.1). In addition, surveys will be designed in a progressive manner, starting

with a few simple questions, the app will ask further questions as users are better engaged.
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Figure A.1 – The app structure includes an SQL database and a server storing the results of
surveys and sensor from smartphones. Users can have access to their data thanks to their
phone or a website.

A.2.3 Preliminary results

The Circadian Life app is based on the recording of sampled activity using the accelerometer

of the phone. The measures are sampled each five minutes (one minute of recording), and

an average of those measures is calculated for each hour. Data Cleansing starts with the

subtraction of the gravity acceleration detected by the accelerometer, to all the measures

recorded. Thus, the cleaned data provide us the activity of the user per hour.

In a first experiment, 36 users were recruited in November 2015, mostly students from Felix

Naef class. Several participants were recorded for more than three months. This allowed us to

explore several visualizations and statistics to analyze users’ data.

A first visualization of the data using actograms revealed that users were well entrained to the

daylight cycle (figure A.2), with an expected period of 24h computed with a Fourier analysis.

Indeed, we did not observe a drift of the active period as reported in the FASPS subjects [260].

As it was reported, activity varies between work and free days due to a changing in sleep

duration but also in sleep timing [281]. Therefore, we wanted to quantify these differences

using the weekday and the weekends averaged data from a single user over the whole recording

(figure A.3). With these averaged activity profiles, we quantified the difference between work

days and free days. Interestingly, work day activity pattern reflected habits of the user. Thus,
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Figure A.2 – Double-plotted actograms of two users of "Circadian life" recorded for several
months.

we observed three peaks of activity during the workdays (arrival/departure from work and

lunch break).
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Figure A.3 – Average activity was computed for weeks and weekends separately for a single
user of our smartphone app. Using this type of visualization, we can observe a pattern in the
signal as the arrival and the departure from work as well as the lunch break. Moreover, the
analysis of work days and free days allows the quantification of the social jet-lag.
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A.2.4 Sleep-wake cycle analysis

Sleep-wake cycle is critical for a healthy state of life. Therefore, we developed in collaboration

with Etienne Dubois (a bachelor student who completed an internship in the Naef lab) a

Hidden Markov Model (HMM) to extract, from the activity data, sleep-wake measurements as

the sleep length, the activity length, the wake-up time and the bedtime (the time at which the

user goes to bed).

The data was analyzed using a two-state HMM, that allowed finding a pattern of activity/inac-

tivity (the hidden states) using the binarized recorded data (figure A.4 A). We performed the

Viterbi algorithm to find the most probable path through a two state model (active/inactive)

on the activity (figure A.4 B). We observed that our minimal model with two states could find

most of the active/inactive periods. Thanks to our HMM, we noted that the distribution of

wake-up time of the user had a single mode at 8 AM, and the distribution of bedtime was

bimodal with one peak at 10 PM and another at 1 AM (figure A.4 C). On the other side, the

distribution of sleep length had a mode of 10 hours of sleep. In addition, the distribution of

activity length had a mode at 14h. The distribution of activity revealed that some sleep periods

are missed by our HMM. Thus, we observed that 5% of actives periods are longer than 30

hours.

In summary, our app allowed a decent monitoring of the users that have participated in our

study. Further explorations of the data are needed in order to evaluate the discrepancies

between different users from a biological perspective as well as from a technical point of view.

Furthermore, we have to assess differences due to various phone sensors and phone brand

and we should compare our measurements to wearable in order to improve our data sampling

and calibration, in addition, minimizing battery consumption.
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Figure A.4 – HMM for Smartphone app data analysis. A The two state model with the transition
and the emission probabilities. B Viterbi path overlapped on activity data. C Distributions of
sleep length, activity length, wake-up time and bedtime estimated from the Viterbi path of a
single user.
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A.2.5 Perspectives

This project of smartphone app will continue with a new collaboration with the HES-SO

Valais. Alexis Murciano (a student supervised by Dr. Pierre-Andre Mudry) is already working

on the second version of the app. His goal is to produce a user-friendly and researcher-

friendly interface that allows more flexibility for the app content (figure A.5). We will include

some educational material about the circadian rhythm, such as information on mechanisms,

hormonal regulation, structure of the clock and more. We will have as well a better control on

survey inside of the app, and we will add new functionalities. A second round of experiments

on students will start in October 2016.

Figure A.5 – User-friendly app interface developed in collaboration with Alexis Murciano from
the HESSO Valais under the supervision of Dr Pierre-Andre Mudry.

This app might serve later on for chrono-therapeutical studies on drugs (side effects and

pharmaco-vigilance) or chrono-nutrition studies depending on the add-on that we will be

able to develop. We might be able in the future to use these activity data integrated with other

medical data. For instance, heartbeats and blood glucose level, or even biological data such

as genome sequences, epigenetic marks, chromatin accessibility, protein and mRNA levels

from users could be integrated in order to improve diagnosis and prognosis and anticipate

diseases or seizure. The app market is growing exponentially, and health-related applications

are necessary to improve the well-being of individuals.
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