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Abstract—This paper reports results of subjective and objective
quality assessments of responses to a grand challenge on light
field image compression. The goal of the challenge was to
collect and evaluate new compression algorithms for light field
images. In total seven proposals were received, out of which five
were accepted for further evaluations. For objective evaluations,
conventional metrics were used, whereas the double stimulus
continuous quality scale method was selected to perform subjec-
tive assessments. Results show competitive performance among
submitted proposals. However, in low bitrates, one proposal
outperforms the others.

Index Terms—light field, subjective evaluation, objective eval-
uation, image coding, image compression.

I. INTRODUCTION

Light Field (LF) photography aims at expanding the pos-
sibilities of traditional photography by capturing information
about the direction and the intensity of light rays. This can
be achieved by positioning a micro-lens array in front of
the image sensor. This way, instead of capturing just the
sum of incident light, it is possible to capture the amount
of light travelling along the rays composing the scene. As it
captures more information about the scene, LF photography
creates more data when compared to traditional photography.
Therefore, to store and to transmit such images, an efficient
compression format is needed.

The ICME 2016 Grand Challenge was issued in January
2016 to collect new compression solutions for LF images,
and to evaluate them using both objective and subjective
quality assessment methodologies[1]. The grand challenge was
focused on compression schemes for raw LF images acquired
with a lenslet-based plenoptic camera. More specifically, a
Lytro Illum plenoptic camera was used for data acquisition.
The participants were requested to compress lenslet images in
YCbCr 420 format and 8 bit precision. Lenslet images were
created from raw sensor data by applying demosaicing, devi-
gnetting, clipping, and color space conversion. The challenge
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required submission of compression and decompression algo-
rithm capable of processing the given image data according
to the end-to-end chain depicted in Fig. 1. Specifically, the
proponents were asked to implement steps from A to A’.

The Matlab implementation of the Light Field Toolbox v0.4
[2][3] was exploited to create an LF data structure from the
lenslet based LF image. The LF data structure is created by
stacking sub-aperture images, each containing those samples
from each micro-lens element that are supporting a particular
viewpoint. The sub-aperture images obtained can then be ren-
dered on conventional displays. The resulting LF data structure
is a 5-D array with dimensions of 15×15×434×625×4, in
which 15×15 is the number of sub-aperture images, 434×625
is the resolution of each sub-aperture image, and 4 corresponds
to RGB plus a weighting component.

Overall, seven submissions were received as responses to
the call for proposals in the framework of this grand challenge.
Only five of them were accepted in the reviewing process
for further evaluation. Proponents were assigned a random
number (P1 to P5) to anonymize their identity. In general, two
main coding approaches were proposed. The first approach
uses a modified version of HEVC Intra encoder to compress
the lenslet image by exploiting existent redundancies. The
second approach creates the LF data structure prior to coding
and then rearranges the sub-aperture images in a pseudo-
temporal sequence to be coded with HEVC. In the following
paragraphs, we present the submitted algorithms in details. The
presentation order does not correspond to the label assigned
to each codec.

In [4] authors suggested to use HEVC Intra Profile to
code the lenslet structure, and to improve its performance by
integrating self-similarity compensated prediction and estima-
tion. The proposed solution exploits the correlation between
neighbooring micro-images in the lenslet image. The image
is partitioned in blocks using HEVC partition patterns. Then,
two blocks are selected for predicting the current block, one
given by best block matching in the search window and
the other selected by searching for best linear combination
between the first selected block and a second block in the
same window. The best among the two is selected for self-
similarity estimation.
The same approach is used in [5], which integrates self-



Fig. 1: End-to-end chain for compression and decompression
of LF lenslet image.

similarity compensated prediction in HEVC Intra coding, and
additionally implements locally linear embedding to further
improve the compression performance. Locally linear embed-
ding estimates the current block by solving a least-squares
optimization problem to find the best linear combination of k
nearest neighbors in a casual search window.
The authors in [6] use HEVC Intra profile to encode the lenslet
image; however, the conventional intra prediction from recon-
structed information is improved by allowing the predictor to
use only blocks from its reconstructed neighbors. In addition
to that, advanced motion vector prediction is used.
In [7] the chosen approach is to partition the lenslet image
into tiles of equal sizes, which are then ordered in a pseudo-
temporal sequence using a properly selected scan order. Then
the sequence is encoded using HEVC.
Authors in [8] use a different approach, and propose a
compression of LF images based on pseudo-sequences of
sub-aperture images. The lenslet image is first converted
from YUV420 to RGB444 color space. Then the lenslet is
processed to obtain the multiple views that compose the LF
data structure. The views are color and gamma corrected
and then converted back to YUV420. A subset of them is
then rearranged in a specific coding order that accounts for
similarities between adjacent views and coded using the JEM
encoder1.

This paper describes and analyses the results of the sub-
jective and objective quality evaluations for LF compression
schemes. The proponents were also compared to an anchor
generated using legacy JPEG, referred to as P0 in the rest of
the paper. The conventional objective metrics were used. The
subjective tests were performed using the Double Stimulus
Continuous Quality Scale (DSCQS) method [9] and a side-
by-side presentation.

II. OBJECTIVE EVALUATION

A. Dataset and coding conditions

Twelve LF images from a publicly available LF image
dataset [10] were selected for the grand challenge. The central
view of each content is depicted in Figure 2. The performance
of the proposed compression algorithms is evaluated at four
fixed compression ratios, namely R1 = 10 : 1 (1 bpp),
R2 = 20 : 1 (0.5 bpp), R3 = 40 : 1 (0.25 bpp), R4 = 100 : 1

1https://jvet.hhi.fraunhofer.de/svn/svn HMJEMSoftware/tags/HM-16.6-
JEM-2.0rc1/

(0.1 bpp). The full table of contents and coding conditions can
be found in [1]. The ratios are computed with respect to the
size of the raw data obtained from the camera. To obtain the
sub-aperture images suitable to compute the objective metrics,
the lenslet images were processed using the LF MATLAB
toolbox function LFDecodeLensletImageSimple [2][3].

B. Metrics

To measure distortions introduced by the compression al-
gorithms, the LF data structure, obtained after compressing
and decompressing the lenslet image, is compared to the
uncompressed reference, which is obtained by omitting the
steps from A to A′ depicted in Fig.1. The metrics chosen to
perform the evaluation are PSNR and SSIM, applied separately
to individual color channels. The PSNR is computed on the
Y channel as follows:

PSNRY (k, l) = 10 log10
2552

MSE(k, l)
, (1)

in which k and l are the indexes of the sub-aperture images.
The MSE(k, l) for each image is computed as follows:

MSE(k, l) =
1

mn

m∑
i=1

n∑
j=1

[I(i, j)−R(i, j)]2, (2)

where m and n are the dimensions of one sub-aperture image
(i.e., n = 625, m = 434). I(i, j) is the Y value for the
selected sub-aperture image in the evaluated LF data structure,
whereas R(i, j) is the corresponding value in the reference
data structure. In the same way, we can compute the PSNR
for the other two channels U and V , obtained after upsampling
the color space as depicted in Fig. 1. A weighted average [11]
is then computed as follows:

PSNRY UV (k, l) =

6PSNRY (k, l) + PSNRU (k, l) + PSNRV (k, l)

8

(3)

The mean of sub-aperture images is subsequentially computed
to have an average value for PSNR for Y channel and for
Y UV :

PSNRXmean
=

1

(K − 2)(L− 2)

K−1∑
k=2

L−1∑
l=2

PSNRX(k, l),

(4)
in which K = 15 and L = 15 represent the number of sub-
aperture images, and X = Y and X = Y UV for Y channel
and for Y UV channels, respectively.

In a similar fashion, the SSIM (Structural Similarity Index)
is computed on the Y channel of each sub-aperture image as
follows:

SSIMY (k, l) =
(2µIµR + c1)(2σIR + c2)

(µ2
I + µ2

R + c1)(σ2
I + σ2

R + c2)
, (5)

in which µI and µR are the average of the Y channel of the
two sup-aperture images at index k and l, σ2

I and σ2
R is the

variance, and σIR is the covariance of the two sub-aperture
images in channel Y . c1 = (p1D)2 and c2 = (p2D)2 are two
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Fig. 2: Central all-in-focus view from each content used in the experiments. Refocused points marked in green (slope 1) and
red (slope 2).

variables to stabilize the division; D is the dynamic range of
the pixel values, while p1 = 0.01 and p2 = 0.03 by default.

C. Analysis and Results

Figure 3 shows the values of mean PSNR for Y and YUV
channels and SSIM for Y channel for content I03 Flowers.
It can be noticed that for a bitrate of 1 bpp, the difference
between the proponents and the anchor is significantly smaller
(around 1 dB), whereas it increases for lower bitrates. In
general, all the proponents seem to have similar performances
for the highest bitrate. P1 performs slightly worse according to
PSNR, whereas with SSIM the difference between proposed
codecs is negligible. As the number of bit per pixel decreases,
P1 outperforms the other codecs, gaining around 3 dB for
the same bitrate with respect to P4 in PSNR for Y and
YUV channel. Curves for SSIM show similar results, with
P1 outperforming all other proponents for lower bitrates.

III. SUBJECTIVE EVALUATION

A. Data preparation

The dataset for the subjective evaluation consists of six LF
images, namely, I01, I03, I04, I07, I09 and I10. A thumbnail
of the contents is depicted in Figures 2a to 2f. The contents
were selected by experts among the twelve contents that were
used for objective evaluation.

For each content, three all-in-focus sub-aperture images
were directly extracted from the LF data structure. From the
15 × 15 stack of sub-aperture images, the ones at indexes
(8, i), where i = 5, 8, 11, were selected to represent differ-
ent perspectives of each scene. Additionally, the MATLAB
toolbox was used to perform a refocus of each scene, using a
modified version of the function LFFiltShiftSum. This function
shifts all the sub-aperture images according to a parameter,
referred to as a slope, which determines the focal plane. A
sum of the shifted images is performed in order to obtain a
single image that is refocused on a specific plane, depending
on the value of the slope. The number of images to be shifted
and consequently summed defines the Depth of Field (DOF).
Summing all 15 × 15 images creates the smallest DOF, in

Image ID Slope 1 Slope 2

I01 Bikes -0.65 0.22
I03 Flowers -0.3 0.3
I04 Stone Pillars Outside -0.5 0.2
I07 Desktop -0.5 0.5
I09 Fountain & Vincent 2 -0.5 0.35
I10 Friends 1 -0.15 0.2

TABLE I: Values of slope for refocusing.

which only one specific plane in the image is in focus. On the
other side, taking just the central sub-aperture image, which is
equivalent to summing just 1×1 images, brings all the objects
in focus (largest DOF). For the test, it has been chosen to sum
sub-aperture images from index 5 to index 11 (7× 7 images)
in order to have a larger DOF that still showed the effects
of refocusing. Two slopes were selected in order to focus the
image on two different planes in the scene. Figures 2a to 2f
illustrates the chosen points for refocusing (Slope 1 in green,
Slope 2 in red). The values of the slope parameter used in
the function are listed in Table I. The three all-in-focus sub-
aperture images (perspective views) plus the two refocused
images (focus views) form five views per content.

B. Methodology

The methodology selected to conduct the subjective tests
is based on DSCQS. Two images in native resolution (625×
434 pixels) were presented simultaneously in a side-by-side
fashion. One of the two images was always the uncompressed
reference, and its position on the screen was randomized. The
other image containing the same perspective or refocus as the
reference was compressed by one of the evaluated algorithms
at one of the evaluated bitrates. Subjects were asked to rate the
quality of both images on a discrete scale from 5 (Excellent)
to 1 (Bad). They were informed that one of the images was
the reference, but they did not receive any indication whether
the reference image was on the left or on the right. Before the
experiments, a training session was organized to help subjects
to adjust to the change of perspective in the LF structure and
the refocusing, and to help them to detect various distortions
and compression artifacts. Five training samples from content
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Fig. 3: Values of mean PSNR and SSIM for content I03.

I02 were manually selected by experts. To perform the tests,
the QualityCrowd 2 framework [12] was modified to suit the
DSCQS methodology.

The experiment was split into four sessions. In each session,
180 pairs of images were shown, corresponding to approxi-
mately 45 minutes per session. The display order of the stimuli
was randomized, and the same content was never displayed
twice in a row. Each subject took part in two sessions. A
break of ten minutes was enforced between the sessions to
avoid fatigue. At the beginning of first session, one dummy
example was shown to ease the subject into the task. The
resulting scores from dummy stimuli were not included in
the final results. Overall, 35 naı̈ve subjects (24 males and 11
females) participated in the subjective experiments, for a total
of 17 ratings per LF stimuli. Subjects were between 18 and
33 years old. The average and median age were 22.4 and 22
years old, respectively. All subjects were screened for correct
visual acuity with Snellen charts, and color vision using
Ishihara charts. Additionally, 18 expert viewers performed the
experiments, for a total of 9 additional scores.

C. Analysis and results
Outlier detection and removal was performed on raw scores

of naı̈ve subjects according to the ITU recommendations [9].
One subject was found to be an outlier and the corresponding
scores were discarded. This led to 17 scores per stimulus.
After outlier removal, the Mean Opinion Score (MOS) was
computed for each coding condition j (i.e. for each content,
view, proponent and bitrate) as follows:

MOSj =
1

N

N∑
i=1

mij , (6)

where N is the number of subjects and mij is the score for
stimulus j by subject i. Figure 4 shows the MOS against bitrate
for three of five views evaluated for I03, as well as the average
for all views. The proponents and the anchor are plotted
with a full line with respective confidence interval, whereas
the MOS for the uncompressed reference, with corresponding
confidence interval, is shown through a yellow stripe.

In order to determine whether the differences between
proponents were statistically significant, all the codecs were
compared by means of a two-sided Welch’s test at 5% signif-
icance level, with following hypotheses:

H0 :MOSPA
=MOSPB

H1 :MOSPA
6=MOSPB

,

in which PA and PB are the proponents that are being
compared. If the hypothesis H0 were to be accepted, it would
mean that the difference between means is zero, and that the
distribution of difference between mean values follows a t-
distribution. On the other hand, if the hypothesis were to
be rejected, the conclusion would be that the two values are
significantly different. In the test, if the null hypothesis was
rejected at 5% significance level, then the two MOS were com-
pared in order to identify which codec performed significantly
better. For each content and view, if the hypothesis were to be
rejected, the matrix M would be updated as such:

M(i, j) =M(i, j) + 1 if MOSi > MOSj

M(j, i) =M(j, i) + 1 if MOSi < MOSj

Figure 5 shows for how many contents and views the pro-
ponent on the y-axis performs significantly better than the
proponent on the x-axis. The minimum value is 0 and the
maximum value is 30, corresponding to all possible views and
contents.

Similarly to what has been observed in section II-C, all
proponents perform similarly for high bitrate and significantly
better for low bitrates, when compared to the anchor. For high
bitrates, there is no proponent that performs significantly better
than the others (Figures 5a and 5b). For lower bitrates, simi-
larly to what has been seen in section II-C, P1 performs better
than other proponents, outperforming them for compression
rate R4 in more than half of the contents (Figure 5d).

As can be seen in Figure 4c, there is a drop in MOS values
for refocused versions of contents, as opposed to all-in-focus
views (Figure 4a). The decrease of MOS scores is visible for
both, compressed images as well as for uncompressed refer-
ences. Moreover, the difference of scores between reference
and proponents remains constant. These observations suggest
that the viewers found that refocusing the content negatively
affects its visual image quality.

We performed multiway analysis of variance (ANOVA) on
the scores, for different bitrates. The analysis helps determin-
ing the difference between means with respect to groups of
factors (in this case, contents, proponents and views). We
also performed ANOVA on only subgroups of perspective
and focus views to better understand the interaction between
the groups. The groups “contents” and “proponents” have
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Fig. 4: MOS vs bitrate for content I03.
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Fig. 5: Pairwise comparison of codecs for different bitrates.

low p-values associated with them and with their interactions
for all bitrates, meaning that at least one of the means for
the groups is significantly different from the others. Group
“views”, however, has interesting results. Although the p-
values remain low for almost all bitrates in the group “views”,
splitting the views in subgroups “perspective” and “focus”
leads to remarkable similarities within the subgroups. While
different perspectives do not seem to affect the distribution of
the scores, a change in focus strongly affects it. This is in
agreement with what has been said before about MOS results
for refocused views as opposed to all-in-focus views.

Results from expert viewers show similar trends to what
has already been said for naı̈ve viewers, although the corre-
sponding confidence intervals are slightly larger, due to the
limited amount of scores. For high bitrates, all proponents
have equally good performance, and no codec significantly
outperforms the others. On the other hand, for low bitrates P1
can be identified as a clear winner, outperforming all the other
proponents.

IV. CONCLUSION

In this paper we described the results of objective and
subjective evaluation of new algorithms for light field image
compression, in the framework of ICME 2016 Grand Chal-
lenge. Results show that there is much to be gained in using
new compression schemes as opposed to legacy JPEG. While
for high bitrates all proponents were observed to perform
equally well, for low bitrates P1 performed significantly better
than all the others.
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