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Abstract—Compressed Sensing (CS) and Total Variation (TV)-
based iterative image reconstruction algorithms have received
increased attention recently. This is due to the ability of such
methods to reconstruct from limited and noisy data. Local TV
methods fail to preserve texture details and fine structures,
which are tedious for the method to distinguish from noise. In
many cases local methods also create additional artifacts due
to over smoothing. Non-Local Total Variation (NLTV) has been
increasingly used for medical imaging applications. However, it
is not updated in every iteration of the algorithm, has a high
computational complexity and depends on the scale of pairwise
parameters. In this work we propose using Adaptive Graph-
based TV in combination with CS (ACSGT). Similar to NLTV
our proposed method goes beyond spatial similarity between
different regions of an image being reconstructed by establishing
a connection between similar regions in the image regardless
of spatial distance. However, it is computationally much more
efficient and scalable when compared to NLTV due to the use
of approximate nearest neighbor search algorithm. Moreover,
our method is adaptive, i.e, it involves updating the graph prior
every iteration making the connection between similar regions
stronger. Since TV is a special case of graph TV the proposed
method can be seen as a generalization of CS and TV methods.
We test our proposed algorithm by reconstructing a variety of
different phantoms from limited and corrupted data and observe
that we achieve a better result with ACSGT in every case.

Index Terms—Tomography, Total Variation, Graphs, Iterative
Image Reconstruction, Non-local Total Variation, Non-local im-
age processing, Compressive Sensing, Non-local denoising, Non-
local Regularization

I. INTRODUCTION

OMOGRAPHIC modalities such as electron tomogra-

phy (ET) and computed tomography (CT) suffer from
low-dose and missing data constraints which lead to noisy
and erroneous reconstructions. In the case of ET, biological
samples are rotated in a transmission electron microscope
(TEM) and can not be exposed to high levels of electron
dose because it leads to the degradation of the sample [1, 2].
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Where as, in the case of CT low-dose has been a clinical
objective to prevent the patient from over exposure to ionizing
radiation [3-5]. One way to reduce the dose is by reducing the
number of projections or views collected during tomographic
imaging. However, this leads to missing data, which results in
reconstructions effected by noise.

A variety of image reconstruction algorithms have been
employed over the years which can be divided into two
categories 1) Analytical [6-8] 2) Iterative [9-14]. Analytical
algorithms, which are based on the Fourier slice theorem such
as filtered back-projection (FBP) are computationally more
efficient and have been extensively used in a clinical setting
[10][15]. Iterative image reconstruction (IIR) methods on the
other hand handle noise and missing data relatively better than
analytical methods and also have the ability to incorporate a
priori information. However, such methods are computation-
ally inefficient and often require training parameters, which
are impractical in a clinical setting. Initial IIR methods were
algebraic in nature such as ART [16], SIRT [17] and their
variants [18-21]. Statistical approaches to IIRs are often based
on the Ordered Subset (OS) technique [9, 22-24].

Another era of algorithms for tomographic reconstructions
uses Compressed sensing (CS). However, CS alone is not
sufficient to cater for the sparsity of the Gradient Magnitude
Image (GMI), therefore, it is used along with Total Variation
(TV) in CT and ET [25-30]. We refer to the joint CS and TV
setup as CSTV in the sequel. The authors of [31] use CSTV for
ET and show that the reconstruction error is better than other
iterative algorithms when reconstructing from limited data. A
comparison of statistical iterative reconstruction methods with
CSTV has been provided in [29]. An analysis of the CSTV
method for reconstructing needle shaped biological specimens
is presented in [32]. CSTV has also been used in photo-
acoustic tomography as presented by the authors of [33].
A concise review of the iterative reconstruction algorithms,
including TV regularization methods is presented in [15].

A more advanced type of TV regularizer, known as the
non-local TV (NLTV) [34] has been shown to be much more
efficient for inverse problems, such as denoising, inpainting
and super-resolution [35, 36]. In contrast to the simple TV
which takes into account the similarity of a region with only
its neighboring regions, NLTV is designed to overcome this
limitation by associating a similarity measure of every region
of an image / sample with all the regions. This will be
explained in more detail in the upcoming sections of this paper.
As an application of NLTV, the authors of [37] presented
a reconstruction method for Magnetic Resonance Imaging
(MRI) via CS. NLTV has been further explored in a spectral



CT setting in [38, 39].

A primary short-coming of NLTV based methods used
in CT, ET and MRI settings is that the similarity matrix
constructed in the beginning from the initial estimate of the
sample is not updated throughout the algorithm, for example
[37]. The authors of [38] construct a similarity matrix from the
solution of a TV based minimization method and then keep it
fixed throughout the algorithm. A primary reason for keeping
it fixed is that the NLTV based method suffers from a high
cost of associating a similarity measure between every pair of
regions in an image / sample. For an image of the size n X n,
NLTV costs n* and is computationally cumbersome for high
resolution applications. Furthermore, it does not make sense
for every region to be connected to all other regions. Therefore,
NLTV requires a threshold parameter which, based on the
euclidean distance can decide if the similarity is strong enough
to be non-zero. However, there is no appropriate method to
fix this parameter and it depends on the scale of pairwise
distances. Although, the results obtained by the above methods
are state-of-the-art, we believe that the final reconstruction
would be more faithful to the original one if one updates
the similarity matrix from the simultaneously reconstructed
sample regularly throughout the algorithm.

Contributions: In this paper we propose Compressed Sens-
ing and Adaptive Graph Total Variation (ACSGT) as a method
for simultaneous reconstruction and denoising of tomographic
data. Our method is a more sophisticated, faster and scalable
form of NLTV and enjoys a computational complexity which
is much less as compared to NLTV. We promote the use of
IC-nearest neighbor graphs in Graph Total Variation (GTV),
where K is fixed and unlike NLTV, does not depend on
the scale of the pairwise distances. The graph is constructed
by using an approximate nearest neighbor search algorithm
(FLANN) [40]. Furthermore, our method requires updating
the GTV prior in every iteration by constructing a new graph
from simultaneously reconstructed sample. Due to a signifi-
cant computational cost reduction in ACSGT as compared to
NLTV, we can afford to update the graph in every iteration.
To the best of our knowledge this is the first work which uses
adaptive GTV and CS based joint method for the application
of CT.

II. INTRODUCTION TO GRAPHS

A graph is represented as a tupple G = {V, £, W} where V
is a set of vertices, £ a set of edges, and W :V xV — R,
a weight function. We assume that the vertices are indexed
from 1,...,|V|. The weight matrix W is assumed to be non-
negative, symmetric, and with a zero diagonal. Each entry of
the weight matrix W € RLV'XIV' corresponds to the weight
of the edge connecting the corresponding vertices: W; ; =
W(v;,v;) and if there is no edge between two vertices, the
weight is set to 0. A node v; connected to v; is denoted by
i <> j. For a vertex v; € V, the degree d(i) is defined as the
sum of the weights of incident edges: d(i) = >_,,,; Wi ;. We
define a graph signal as a function s : YV — R which assigns a
value to each vertex in the graph. It is convenient to consider
a signal s as a vector of size V| with the i*" component
representing the signal value at the i*! vertex.

We define two types of signals on graphs, the one which
resides on the vertices and the other one on edges. For a signal
s residing on the vertices of graph G, the gradient Vg : RV —
RI€! is defined as

sG) _ _s() )
Vd(G)  /d(@)
where we consider only the pair {¢,j} when ¢ < j. For a

signal f residing on the graph edges, the adjoint of the gradient
\E RI€I — RVI, called divergence can be written as
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Vef(i) = Wi, j7) | —==f(,1) — 0“7 |-
5/ (@) g VWi, j) (mf( Nk ﬁ)
The Laplacian corresponds to the second order derivative and
its definition arises from Ls := V;Vgs. Let D be the diagonal
degree matrix with diagonal entries D;; = d(¢), then another
interpretation of the Laplacian is the difference of the weight
matrix W from the degree matrix D, thus L = D — W, which
is referred to as combinatorial Laplacian.

A graph G can be constructed from a dataset in several
ways. For example, for a signal Y € RP*", the vertices v; of
the graph G can correspond to the data samples y; € RP. For
the purpose of this work we are interested in a standard X-
nearest neighbors strategy for the graph construction. The first
step of this strategy consists of searching the closest neighbors
for all the samples using Euclidean distances. Thus, each y; is
connected to its /C nearest neighbors y;, resulting in |€| ~ Kn
number of connections. The second step consists of computing
the graph weight matrix W using one of the several commonly
used strategies. The most commonly used scheme is based on
the Gaussian kernel:

Vgs(i,j) = VW (i, J) <

H(yi—yj)llg) : :
ex : if y; is connected to y;
Wi; { ’ ( " " Y (D

0 otherwise.

How can the notion of graphs be used in signal processing?
A primary example is the denoising operation, where one can
solve an inverse problem by regularizing with a graph tikhonov
operator. For a noisy signal y € R™ and a graph Laplacian
L constructed between the entries of y, the graph tikhonov

regularization on the optimization variable x (the clean signal)
is defined as [41]:

ITLJJ = %ZZWU(I‘Z — 3?j)2.
g

Clearly, the strongly connected samples in y;,%; have a
higher W;;, therefore, the resulting x;, x; resemble each other
more. This smoothness prior can be used to denoise a signal y
with an irregular structure by solving the optimization problem
of the following form:

min [y — a|}3 + 727 La
xT

GTV is another graph based regularizer which has been fre-
quently used in many applications. We discuss this regularizer
in detail in the next section.



III. PROPOSED METHOD: COMPRESSED SENSING &
ADAPTIVE GRAPH TOTAL VARIATION

Our proposed method involves simultaneous denoising and
reconstruction of tomographic projections and constitutes the
following important components:

1) Compressed sensing based sparse reconstruction.

2) Adaptive Graph total variation regularizer for improved

denoised reconstruction.

A. Optimization Problem

We first present the optimization problem under considera-
tion and then study each of the terms of the objective function
in detail. Let S € :P*? be the sinogram corresponding to the
projections of the sample X € R"*"™ being imaged, where
p is the number of rays passing through X and ¢ is the
number of angular variations at which X has been imaged.
Let b € RP? be the vectorized measurements or projections
(b = wec(S)), where vec(-) denotes the vectorization op-
eration and A € RP9*" be the sparse projection operator.
Then, the goal in a typical CT or ET based reconstruction
method is to recover the vectorized sample 2 = vec(X) from
the projections b. A highly under-determined inverse problem
needs to be solved for this type of reconstruction, which is
even more tedious if the projections b are corrupted with noise
and measurement errors. To circumvent the problem of noisy
projections, we propose

min [|Az — ] + @ (@)l + Y]2llgeo, 2

where ® is the wavelet operator and ®*(x), where * represents
the adjoint operation, denotes the wavelet transform of = and
Z4tv denotes the total variation of x w.r.t graph G. The first two
terms of the objective function above comprise the compressed
sensing based sparse reconstruction part of our method and the
second term, to which we refer as the graph total variation
(GTV) regularizer acts as an additional prior for denoising and
smoothing the reconstructed sample. Now, we explain these
two components in detail.

1) Compressed Sensing: Compressed Sensing (CS), intro-
duced in the seminal papers of Donoho [42] and Candes et. al
[43] guarantees the recovery of a data sample from highly
undersampled measurements if the sample to be recovered
can be sparsely represented in a basis. Let z € R™ be the
vectorized CT sample under consideration and ® € R7xn’
be the fourier basis, whose columns contain the fourier atoms.
Our proposed model, as described earlier, uses wavelets,
however for the ease of description we choose to explain
compressed sensing with a Fourier matrix instead. For the
case of Fourier matrix, ®*(z) = ® "2 and one can sparsely
represent the sample x in ¢ as:

Tr = Z‘I)?CL = ‘I)C,

where ||c|lo < n?, i.,e the number of non-zeros in ¢ is much
less than n. The sparse coefficients c are also referred to as the
transform codes. Given this assumption, it is possible to re-
cover the unknown x from highly undersampled measurements

or projections b € RP4, where pg < n?. The projections or the
measurements b can be obtained by applying a projection or
sampling operator A € RPIX"” o the sample z. Thus, the
projections b can be given as:

b= Ax = Adc

Given b, it is possible to recover = by solving the following
sparse recovery problem

min ||®Tz||; s.t: Az =b,
x

where ®7 denotes the forward transform (Fourier transform if
® is a Fourier matrix). In case the projections or measurements
b are contaminated with noise, one can solve the following
recovery problem:

min [|Az — blI3 + X||@T x|,

where ) is the regularization parameter which provides a trade-
off between the sparsity and noise tolerance.

For tomographic applications, the projection matrix A is
a line integral computed by rotating the sample = at different
angles and the projections b are typically corrupted by Poisson
noise. Therefore, CS is not only used as a reconstruction
algorithm but also provides robustness to noise. However, in
case of high fraction of noise, CS fails to recover the sample
efficiently, therefore, we propose to add another regularization
term to our setup as explained below.

2) Graph Total Variation Regularization: The graph total
variation (GTV), denoted as |z|/4w, in eq. (2), like the
standard TV has two types 1) anisotropic and 2) isotropic. The
former involves the sum of the gradients of nodes (entries in
) w.r.t G and the later involves the sum of the /5 norms of the
gradients at each node of G. Throughout this paper we use the
former formulation as it has an intuitive interpretation, thus

lzllgee =IVg (@)l = D IVoail

(2
=Y D> VWil =, (3)
i JEN;

where the second sum runs over all the neighbors of i, denoted
by N;. The above expression clearly states that GTV involves
the minimization of the sum of the gradients of the signals
on the nodes of the graphs. In our case, we assume that the
elements of the vector x lie on the nodes of the graph G which
are connected with the edges whose weights are W;;. Thus, the
minimization of the GTV would ensure that z; and x; possess
similar values if W;; is high and dissimilar values if W;; is
small or zero. As compared to the standard TV, the structure
of the sample z is taken into account for the reconstruction
purpose. It is a well known fact that [; norm promotes sparsity,
so the GTV can also be viewed as a regularization which
promotes sparse graph gradients. This directly corresponds to
enforcing a smoothness of the signal x w.r.t graph G.

The proposed method with GTV can be seen as a gener-
alization of the compressed sensing and total variation based
method studied in [29]. While, the standard TV minimizes the
gradients of the signal x w.r.t its spatial neighbors only, the



GTYV does so in a region which is not restricted only to the
neighbors of the elements in z. Thus, the standard TV can be
viewed as a specific case of the GTV, where the graph G4
is a grid graph. In a grid graph G4 of a sample z, the pixels
are only connected to its spatial neighbors (upper, lower, left
and right) via unity weights.

Using eq. (3) in eq. (2), our proposed model can be written
as:

min | Az — b5 + A2 (@)1 + 71 Vgz]s )

Now using x = ®(c) we get

min | A®(c) — bl[3 + Ac]l1 + 71| Va(®c) |1 5)

From the above equation it is obvious that our proposed
model promotes simultaneous sparsity of the transform co-
efficients ¢ in the Wavelet domain ® and the sparsity of
the gradients in the graph domain. Hence, the model can be
viewed as promoting a doubly sparse structure in wavelet and
graph domains respectively.

B. Graph Construction for Total Variation

An important step for our method is to construct a graph G
for TV regularization. In contrast to standard TV, which can
be directly used as a prior for regularization, GTV needs a
graph G to start with. Ideally, G should be representative of the
reconstructed sample x, however, this is unknown before the
reconstruction. To cater this problem, we propose to construct
G from an initial naive estimate of the sample x gy, using
filtered back projection (FBP) method.

We propose to construct a graph between the patches of
Z fpp instead of pixels. As the sample to be reconstructed is an
image, and the graph is being constructed from the noisy x ¢y,
to obtain robustness to noise, it makes more sense to construct
the graph from the patches rather than the pixels of x f;,,. In the
first step z fpp € R™*™ is divided into n? overlapping patches.
Let s; be the patch of size [ x [ centered at the i'" pixel of z sy,
and assume that all patches are vectorized, i.e, s; € 3?12 (Figure
1). In the second step the search for the closest neighbors
for all vectorized patches is performed using the Euclidean
distance metric. Each s; is connected to its K = 10 nearest
neighbors s;, resulting in |£] number of connections. In the
third step the graph weight matrix W is computed using the
Gaussian kernel weighting scheme (eq. (1)), for which the
parameter o is set experimentally as the average distance of
the connected samples. Finally, the combinatorial Laplacian is
computed.

Note that the computation of the weight matrix W for graph
G costs O(n*). For small n%, we can use the above strategy
directly. Although, the computation of W is expensive, it
should be noted that with sufficiently small n?, the graph
can still be computed in the order of a few seconds. For
big or high dimensional samples, i.e, large n?, we can use
a similar strategy but the computations can be made efficient
(O(n?*logn?)) using the FLANN library (Fast Library for
Approximate Nearest Neighbors searches in high dimensional
spaces) [40]. However, the quality of the graphs constructed
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Fig. 1: For the construction of patch graph, z s, € R™*"™ is divide
into n? overlapping patches of size [ x [ each.

using this strategy is slightly lower due to the approximate
nearest neighbor search method. We describe the pros and
cons of FLANN later in this manuscript.

C. Adaptive Graph Total Variation Regularization

The above description refers only to the non-adaptive part,
where the graph § is fixed. It is important to point out that the
initial estimate of the graph G, obtained via the filtered back
projection x fp,, is not very faithful to the final solution . As
x is being refined in every iteration, it is natural to update the
graph G as well in every iteration. This simultaneous update of
the graph G corresponds to the adaptive part of the proposed
algorithm and its significance will be explained in detail in
Section V of the paper.

IV. OPTIMIZATION SOLUTION

We make use of proximal splitting methods to solve problem
(4). The specialty of such methods is that they can resolve
a tedious complex problem into smaller and relatively trivial
subproblems which are solved using proximal operators. The
proximal operator of a function Ah is defined as follows:

.1
proxyy (y) = argmin ol|z — |3 + ().

More detailed information about such methods can be found
in [44, 45].

A. Forward-backward based primal dual

We cast our problem in the form and use the Forward-
backward based primal dual method to solve it.

arg;nin f(z) + g(Az) + h(B(x)). (6)

The first term of (2), f : R™ — R is a convex differentiable
function defined as f(z) = ||Az — b||3. This function has a
[-Lipschitz continuous gradient

Vi(z) =2AT (Az —b).

Note that 8 = 2||A|l2 where ||A]|2 is the spectral norm (or
maximum eigenvalue) of A. The constant /3 has important im-
plications in deciding the time step in the iterative optimization
methods.

The second term of (6), g : RI€I" s R, where |€| denotes
the cardinality of £ the set of edges in G, is a convex function
defined as g(D) = ~1||D||1. The proximal operator of function
g is

prox,, (D) = sgn(D) o max(|D| — Ay1,0), (7)



FBP 2, € R"<"

Sinogram b € RP*?

Patch graph construction

Final reconstruction z € ™"

repeat until convergence

Fig. 2: The complete methodology for ACSGT. The input sinogram / projections b € R?*9 is first used to obtained a filtered back projection
(FBP) x5, € R™™™. It is then used to construct the initial patch graph G to be used by the CSGT method. The output of CSGT is used to
refine / reconstruct the graph and this process is repeated until convergence.

where o denotes the Hadamard product. For our case the linear
operator A in (6), is V.

The proximal operator of the function A is the ¢; soft-
thresholding given by the elementwise operations.

prox.,(B(x)) = sgn(B(x)) o max(|B(z)| = \,0), ()

where B = ®* denotes the adjoint wavelet operator and B(x)
denotes the wavelet transform of z.

B. Algorithm

Using these tools, we can use the forward backward based
primal dual approach presented in [44] to define Algorithm
1 where 71, T2, T3 are convergence parameters € the stopping
tolerance and I, J the maximum number of iterations. J is a
very small number to avoid a possible division by 0. Since
we use Unlocbox [46] for solving the optimization algorithm,
the convergence parameters 71,7o2,73 are set automatically
according to the specified 5. U; corresponds to the primal
and V; to the dual variable in Algorithm 1.

More specifically, Algorithm 1 is based on a forward-
backward approach [47]. It combines a gradient descent step
(forward step) with a computation step involving a proximity
operator (step la in Algorithm 1). Note that the gradient in
this step is w.r.t. the differentiable function f, to which the
result of the application of adjoint operator of g, i.e, V7 is
added. Then, the proximity step corresponds to the application
of the proximal operator of h, which is an element wise soft-
thresholding, on this result. This computation corresponds to
a kind of subgradient step performed in an implicit (or back-
ward) manner [45]. A deeper justification of this terminology
is provided by the theory of monotone operators [48].

C. Computational Complexity

Complexity of Graph Construction: As mentioned earlier
we use the Fast Approximate Neartest Neighbors search al-
gorithm (FLANN) [40]. The computational complexity of the
FLANN algorithm for n? patches of size [? each and fixed
K is O(n?log(n?)). Note that [? and K do not appear in the
complexity because they are constants. Furthermore, n? is the
size of the sample under consideration so the computational
complexity is much lower as compared to the NLTV [35]
based methods.

Algorithm Complexity: Let J denote the number of it-
erations for the algorithm (the for loop in Algorithm 1) to

Algorithm 1 Forward-backward primal dual for ACSGT
To = xfbp
1. INPUT: UO = X, VO = ngﬂo, e>0
for j=0,...J—1 do
a. Pj = prox,,, (fb*(Uj) — 13P* (Vf(Uj) + VEVJ))
b. Tj = VJ +Tng(2Pj — Uj)
c.Q;=1T; — T2 Proxi, %T]
d. (Uj+1>‘/j+1) = (Uja ‘/J) + 71 ((ZPJ"Qj) - (Uja ‘/J))

o U1 —Us % IVit1—=V;ll%
if ”ﬁﬂ?&f{& < € and AEES: < € then

end if
end for
2.x=U;+1
3. Construct patch graph G from =
Repeat steps 1 to 3 for I iterations
OUTPUT: z =U; +1

converge, ad I the number of outer iterations (step 4 of
Algorithm 1), then the computational cost of our algorithm is
O((J|E|T), where |£| denotes the number of non-zeros edges
in the graph G. For a K-nearest neighbors graph |£| ~ Kn?
so the computational complexity of our algorithm is linear in
the size of the data sample n?, i.e O((JKn?I).

Overall Complexity: The complexity of our algorithm is
O((JKn2I) and the graph G is O(n?log(n?)). The graph
G needs to be updated once in every outer iteration of the
algorithm I, thus the overall complexity of the proposed
ACSGT method is O(I(JKn? + n?log(n?))).

V. WORKING EXPLANATION OF ACSGT

We present a simple example to motivate the use of ACSGT
rather than simple CSGD and CSTV. Clearly, the compressed
sensing part of all these methods is responsible for retrieving
the sample z from the projections b. Thus, our comparison
study is focused on the two regularizers, i.e, Adaptive Graph
Total Variation (AGTV) and Total Variation (TV). Our two
step exposition is described below:

1) CSGD is better than CSTV.

2) Adaptive Graph Total Variation (ACGST) is better than

CSGD.
Consider the example of a Shepp-Logan Phantom as shown
in top leftmost plot of Fig. 4. The goal is to recover this
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Fig. 3: A comparison of the Total Variation (TV) and Adaptive Graph Total Variation (AGTV) priors for the methods CSGT and ACSGT.
The TV prior does not connect patches ‘a’ and ‘b’ which possess structural similarity, whereas the GTV prior connects them because the
K-nearest neighbor graph is not restricted to spatial neighbors only. Furthermore, this connection keeps getting stronger due to iterative

removal of noise and graph updates in every iteration.

phantom from its noisy projections so that the recovered
sample is faithful to its original clean version. The CSTV
method requires a total variation prior to recover the sample
while the CSGD method requires a graph total variation
prior for the recovery. Both methods need an initial estimate
for the construction of this prior, therefore, for the ease of
demonstration we use the filtered back projection (FBP) as an
initial estimate of the sample. Recall that our proposed method
decomposes the FBP into n x n patches of size | x [ each. Let
(i,4) denote the (horizontal, vertical) position of the center of
each patch then:

o For the total variation, each patch s; ; is connected to its
spatial neighbors only, i.e, 8;41,5, Si—1,5, Si,j+1, Si,j—1> aS
shown in Fig. 3. These connections are fixed throughout
the algorithm.

o For the graph total variation, each patch s;; is only
connected to the patches which are among the K nearest
neighbors. Note that unlike TV the connected patches can
be spatially far from each other.

Now let us take the example of two patches ‘a’ and ‘b’
as labeled in the FBP of Fig. 3. Comparing with the clean
phantom in Fig. 4 it is obvious that these patches should
possess the same texture at the end of the reconstruction
algorithm. Therefore, an intelligent regularizer should take
into account the inherent similarity between these patches.
To explain the difference between the TV and GTV priors
we use a point model as shown in Fig. 3, where each point
corresponds to a patch in the FBP. Since ‘a’ and ‘b’ are
not spatially co-located, the total variation prior does not
establish any connection between these patches. Thus, TV fails
to exploit the similarity between these patches throughout the
algorithm. This leads to slightly different textures for the two
patches, as shown in the 3rd row of Fig. 4.

Now consider the case of GTV. Even though the intial
estimate of graph G is obtained from the noisy estimate of
sample, i.e, the FBP, patches ‘a’ and ‘b’ still possess enough
structural resemblance to be connected together by an edge
(even if it is weak) in the graph. Now, if the graph is kept fixed
which is the case of CSGD, one still obtains a better result as
compared to CSTV, as shown in the 4th row of Fig. 4. This is
due to the fact that the important connections are established
by the graph G and similarity of patches is not restricted to
spatially co-located patches only. This is also obvious from
the intensity profile analysis in the 4th row of Fig. 4. Finally,
we discuss the case of ACSGT, where the graph G is updated

in every iteration of the algorithm. Obviously, every iteration
of the algorithm leads to a cleaner sample and updating the
graph G is only going to make the connection between the
patches ‘a’ and ‘b’ stronger. This leads to significantly better
result than CSTV and CSGD as shown in Fig. 4. Note that
the patches ‘a’ and ‘b’ possess almost the same structure at
the end of ACSGT.

VI. EXPERIMENTAL RESULTS

Experiments were performed using two open source tool-
boxes, GSPBox [49] for the graph construction and UN-
LocBox for the convex optimization part [46]. These toolboxes
provide fast and efficient general purpose algorithms, with an
automatic tuning of many implicit non-model parameters, such
as step size for iterative optimization algorithms. They are
suitable for solving a broad range of problems and can be
used as a black-box for computations.

To test the performance of our ACSGT method, we perform
reconstructions for many different types of phantoms from
different number of projections with varying levels of Poisson
noise. Throughout this section, we report the reconstruction re-
sults of various phantoms in terms of the ¢s reconstruction er-
ror. We compare the performance of ACSGT with many state-
of-the-art iterative and convex optimization based algorithms,
which include FBP, ART (Kaczmarz), SIRT (Cimmino), CS,
CSTV and CSGT.

Each of these methods has its own model parameters,
which need to be set or tuned in an appropriate manner.
ART (Kaczmarz) and SIRT (Cimmino) were performed using
FBP as a priori. The stopping criteria for ART and SIRT
was set to 100 iterations and the relaxation parameter ()
was tuned to achieve the best result. For the CS method, the
reconstruction was performed for uniformly spaced values of
A in the range (0, 10) and the best A was selected based on the
minimum {5 reconstruction for the phantoms. For CSTV, the
reconstruction was performed for sparsity parameter A € (0, 1)
and TV parameter v € (0,10) and the parameters for the
best result were selected. For the graph based reconstruction
(CSGT, ACSGT) a graph prior G was generated by dividing
the result from FBP into patches as explained in Section III-B.
For example, for a Shepp-Logan phantom of size 64 x 64, the
graph was constructed by dividing it into 64 x 64 = 4096
overlapping patches of size 3 x 3. A graph G was constructed
between the 4096 patches with 15 nearest neighbors (I = 15)
and o for the weight matrix (Section II) was set to the average
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Fig. 4: Comparative analysis of reconstructing Shepp-Logan using various reconstruction methods. The sinogram of a 64 x 64 Shepp-
Logan phantom corrupted with 10% Poission noise was reconstructed using FBP (Linearly interpolated, Cropped Ram-Lak filter); ART
(Kaczmarz/Randomized Kaczmarz, Relaxation Parameter (1) = 0.25, Prior: FBP, Stopping Criteria = 100 iterations); SIRT (Cimmino/SART,
(n) = 0.25, Prior: FBP, Stopping Criteria = 100 iterations); CS (500 Iterations, Prior: FBP); CSTV (A = 0.5, v = 0.1, Prior: FBP, Stopping
Criteria = 100 iterations); CSGD (A = 0.5, v = 0.2, Prior: Patch Graph from FBP, Stopping Criteria = 100 iterations); ACSGT (A = 0.5,
~v = 1, Prior: Patch Graph from FBP updated every iteration, I and J in Algorithm 1 set to 30). ACSGT clearly gives a better internsity
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Fig. 5: Comparative analysis of reconstructing a Torso phantom using various reconstruction methods. The sinogram of a 128 x 128 Torso
phantom corrupted with 5% Gaussian Random noise was reconstructed using FBP (Linearly interpolated, Cropped Ram-Lak filter); CSTV
(A = 0.5, v = 0.1, Prior: FBP, Stopping Criteria = 100 iterations); CSGD (A = 0.5, v = 0.2, Prior: Patch Graph from FBP, Stopping
Criteria = 100 iterations); ACSGT (A = 0.5, v = 0.1, Prior: Patch Graph from FBP updated every iteration, I and J in Algorithm 1 set to
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Fig. 6: Comparative analysis of reconstructing a Shepp-Logan phantom using various reconstruction methods at 5% and 10% Poisson noise.
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from FBP, Stopping Criteria = 100 iterations); ACSGT (A = 0.5, v = 1, Prior: Patch Graph from FBP updated every iteration, I and J in

Algorithm 1 set to 30).
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Fig. 7: A small experiment corresponding to the reconstruction of a

32 x 32 Shepp-Logan phantom from 36 projections b € R®® using

the pre-tuned parameters A = 0.1,y = 5 for different values of IC

ranging from 5 to 50. The results clearly show that the reconstruction

is quite robust to the choice of K, with a small error variation.

distance of the 15-nearest neighbors. For Algorithm 1, we set
I = J = 50 and the convergence parameters 7, T2, T3 Were
set automatically by UNLocBox. It is worth mentioning here
that our GTV based adaptive graph regularization is a faster
method of implementing NLTV by using C-nearest neighbors
graph. Thus the GTV and NLTV based regularization are
equivalent in performance. Therefore, we did not include
comparisons with the NLTV based method.

To explain the performance of our model in detail we
reconstructed a 64 x 64 Shepp-Logan [50] phantom from 36
erroneous projections. A sinogram S was built by projecting
the phantom using Radon transform and 36 equally spaced
projections were collected from 0 to 180 degrees. The sino-
gram was then corrupted with 10% Poission noise. Figure 6
provides a detailed comparison of the reconstruction of Shepp-
Logan phantom via various algorithms along with the intensity
profiles plotted underneath each of the reconstructions. It can
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Fig. 8: A small experiment corresponding to the reconstruction of a
32 x 32 Shepp-Logan phantom from 36 projections b € R3¢ using
the full parameter gird A = (0.1,1),y = (0.1, 10) for a fixed value
of K = 15. The minimum clustering error occurs at A = 0.2,y =
0.1. The results clearly show that the reconstruction error increases
smoothly with the parameters.

be clearly seen that ACSGT performs better than CSGT and
CSTV. It is possible to appreciate this visually as the phantom
obtained via ACSGT is very similar to the original phantom.
Furthermore, a comparison of the intensity profiles of the two
phantoms also reveals the same fact. The next best result
is obtained by CSGT. Algorithmically, the only difference
between CSGT and ACSGT is the regular graph update step
in the latter, which tends to make the final reconstruction
more faithful to the original phantom. CSTV also obtains
a reasonable reconstruction, though worse than ACSGT. CS
alone however, has a poor performance. This is not surprising,
as for the tomography applications, CS has been mostly used
in combination with TV, as it alone does not preserve the GMI.
A similar experimental setup was repeated by reconstructing
a 128 x 128 Torso phantom from 36 erroneous projections



corrupted with 5% Gaussian normalized noise (Figure 5).

A graphical comparison for the reconstruction of Shepp-
Logan using various reconstruction methods at varying number
of projections and noise levels has been given in Figure 6.
From this figure it is clear that ACSGT method generally
performs better as compared to many other state-of-the-art
methods in the reconstruction task and follows a similar trend
with respect to the number of projections. It is also interesting
to note that the performance of ACSGT saturates after 90
projections for each of the three cases, i.e, the reconstruction
error does not improve if the number of projections are
increased. Furthermore, for each of the three noise cases one
can observe that the drop in the reconstruction error from
50 to 90 projections is not significant. Although, the same
observation can be made about CSGT, the error is a always
higher than ACSGT. All the other methods, perform far worse
than ACSGT. These tables clearly, lead to the conclusion that
ACSGT is a step towards getting very fine reconstructions
from a very small number of projections, via a scalable
method.

Our model has two hyper-parameters, A for tuning the
sparsity of CS based reconstruction and  to tune the amount
of smoothing and denoising in the reconstruction. While, these
are model hyper-parameters and need tuning, the graph param-
eter /IC, i.e, the number of nearest neighbors is quite easy to set
for our application. This is shown in Fig. 7 where we perform
a small experiment corresponding to the reconstruction of a
32 x 32 Shepp-Logan phantom from 36 projections b € R36
using the pre-tuned parameters A = 0.1, = 5 for different
values of K ranging from 5 to 50. The results clearly show that
the reconstruction is quite robust to the choice of K, with a
small error variation. Thus, /C is easy to set for our application.
As the complexity of our proposed algorithm scales with the
number of edges |£| in the graph G and |&| ~ Kn?, it is
recommended to set /C as small as possible. However, a very
small JC might lead to many disconnected components in the
graph G. On the other hand, a very large X might increase
the time required for the algorithm to converge and reduce
the computational advantage we have over the NLTV method.
Therefore, we choose to set I = 15 for our experiments.

In order to show the variation of reconstruction error with
(X, ) grid, we perform another experiment for the reconstruc-
tion of the Shepp-Logan phantom of size 32 x 32 from 36
projections. For this experiment we keep K = 15 and perform
the reconstruction for every pair of parameter values in the
tuple (\,v), where A € (0.1,1) and v € (0.1,10). The
reconstruction error grid is shown in Fig. 8. The minimum
error 0.11 occurs at A = 0.2,y = 0.1. It is also interesting to
note that the error increases gradually with an increase in the
parameter values.

VII. SHORTCOMINGS & FUTURE DIRECTIONS

The proposed ACSGT method has proven to produce
much better reconstructions as compared to the state-of-the-
art CSTV method. Although, the proposed method is com-
putationally far less cumbersome than NLTV, it still suffers
from a few problems which we discuss in this section.

The computational complexity of the proposed method is
O(I(JKn?+n%log(n?))). As already presented in Algorithm
1, the method requires a double loop, the outer with [
iterations and the inner with J iterations. For our experiments
we set I = J = 50. The main computational burden is
offered by the graph construction, which needs to be per-
formed every J iterations. Thus, the method still suffers from
a high complexity because of the double loop and regular
graph updates. The complexity of graph construction can be
reduced by using a parallel implementation of FLANN which
is provided by the authors [40]. The degree of parallelism can
be increased at the cost of increasing approximation in the
estimation of nearest neighbors. As a result of this the graph
G will be different every time the FLANN algorithm is run.
However, this does not effect the quality of the graph and for
tomographic applications, negligible loss in the performance
was observed. It is obviously of interest to reduce the number
of inner iterations J and the complexity of the operations in the
for loop. Our future work will therefore focus on introducing
some approximations in the proposed algorithm to make it
faster.

Tuning the hyperparameters is another short-coming of the
proposed method. It is reasonable to set the number of K-
nearest neighbors to 10 or 15, however, the sparsity parameter
A and the GTV parameter v need to be tuned properly
and are not known beforehand. The results of the validation
experiment from Fig.8 show that the error increases gradually
with the parameter values. Our future work will thus also focus
on finding smart methods to set these parameters automatically
for specific tomographic applications.

VIII. CONCLUSIONS

Similar to NLTV our proposed method (ACSGT) goes
beyond spatial similarity between different regions of an image
being reconstructed by establishing a connection between
similar regions in the image regardless of spatial distance.
However, our approach is much more scalable and compu-
tationally efficient because it uses the approximate nearest
neighbor search algorithm for graph construction, making it
much more likely to be adapted in a clinical setting. Beyond
NLTV, our proposed approach is adaptive. The non-local
graph prior is updated every iteration making the connection
between similar regions stronger. Thus improving the overall
reconstruction quality as demonstrated by experiments. Since
TV is a special case of graph TV the proposed method can
be seen as a generalization of CS and TV methods and can
promote future application specific studies for using CS for
tomographic reconstruction from limited data.
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