Enzymatic and Nonenzymatic Electrochemical Interaction of Abiraterone (Antiprostate Cancer Drug) with Multiwalled Carbon Nanotube Bioelectrodes

Unexplored electrochemical behavior of abiraterone, a recent and widely used prostate cancer drug, in interaction with cytochrome P450 3A4 (CYP3A4) enzyme and multiwalled carbon nanotubes (MWCNTs) is investigated in this work. The results reported in this work are significant for personalized medicine and point-of-care chemical treatment, especially to improve the life expectancy and quality of life of patients with prostate-cancer. To this purpose, enzymatic and nonenzymatic electrochemical biosensors were developed and characterized with different concentrations of abiraterone. Nonenzymatic biosensors were functionalized with MWCNTs as a catalyst for signal enhancement, while enzymatic biosensors have been obtained with CYP3A4 protein immobilized on MWCNTs as recognition biomolecule. Enzymatic electrochemical experiments demonstrated an inhibition effect on the CYP3A4, clearly observed as a diminished electrocatalytic activity of the enzyme. Electrochemical responses of nonenzymatic biosensors clearly demonstrated the direct electroactivity of abiraterone when reacting with MWCNT as well as an electrode-fouling effect.

Published in:
Analytical Chemistry, 88, 19, 9347-9350
Washington, Amer Chemical Soc

Note: The status of this file is: EPFL only

 Record created 2016-09-30, last modified 2020-07-29

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)