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Abstract 

 
Semi-arid savannas are endangered by changes in the fragile equilibrium between 

rainfalls, fires and grazing pressure exerted by wildlife or cattle. To avoid bush encroachment 
and the decline of perennial grass, land managers must pay attention to keep the amount of 
cattle and wildlife in balance with the grass availability. In large farms and conservation 
parks, to estimate the animal populations is therefore an important management aspect. 

Traditional methods of animal census – such as transect counts from a helicopter, or 
mark / recapture – are too expensive and laborious to be conducted on a regular basis. In 
this context unmanned aerial vehicles (UAVs) appear as an interesting tool for animals 
detection. They can be easily deployed, for lower cost and an increased safety. The 
drawback is that it is difficult to visually interpret the large number of very high resolution 
(VHR) images that they acquire. The recent advances in machine learning techniques could 
allow to automate the detection of animals in these aerial images. 

This project aims to implementing such algorithms in order to investigate the feasibility 
and potential benefits of combining machine learning and UAVs for animals detection. This 
study uses an image dataset acquired in the Kuzikus Wildlife Reserve in Namibia and a 
ground truth acquired through crowd-sourcing. The machine learning techniques involved 
include Bags of visual Words, exemplar SVMs and active learning. The promising results 
show that recall rates in the range of 60 to 80% are possible, if a low precision (5 to 20%) is 
accepted. The study also discusses parameters related to the data acquisition, such as the 
image resolution and the time of the day when the images are acquired. 

 

Résumé 

 
Les savanes semi-arides sont menacées par des changements dans le fragile équilibre 

entre les pluies, les feux de brousse et la pression pastorale exercée par le bétail et les 
herbivores sauvages. Afin d’éviter l’avancement des broussailles ligneuses et le déclin des 
herbes pérennes, les éleveurs et gardiens de parcs doivent être attentifs à maintenir un 
nombre d’animaux en adéquation avec le fourrage disponible. Ainsi, estimer les populations 
d’herbivores des grandes fermes et parcs naturels est une étape importante dans la gestion 
des savanes semi-arides. 

Les méthodes traditionnelles pour le comptage des animaux – telles que les comptages 
par transectes ou par marquage et recapture – sont trop chères et trop laborieuses pour être 
utilisées de façon régulière. Dans ce contexte, les véhicules aériens sans pilotes (UAV) 
semblent être un outil intéressant pour la détection et le comptage des animaux. Ils sont 
faciles à déployer, moins onéreux et assurent une meilleure sécurité. L’inconvénient est qu’il 
est difficile d’interpréter manuellement le grand nombre d’images à très haute  résolution 
(VHR) produites par les UAVs. Les avancées récentes en apprentissage machine pourraient 
permettre d’automatiser la reconnaissance d’animaux dans les images aériennes. 

Ce projet a pour but d’implémenter un tel système  afin d’étudier la faisabilité et les 
bénéfices de l’utilisation conjointe d’imagerie par UAVs et d’apprentissage machine pour la 
détection d’animaux. Elle se base sur des images aériennes acquises dans la Kuzikus 
Wildlife Reserve et sur une réalité-terrain obtenue par crowd-sourcing. Les méthodes 
d’apprentissage machine employées dans cette étude sont notamment les suivantes : bag of 
visual words (BoVW), exemplar SVMs, apprentissage actif. Les résultats encourageants 
montrent que les méthodes implémentées permettent d’obtenir un taux de rappel entre 60 et 
80%, pour autant qu’une précision relativement faible soit acceptée (de l’ordre de 5 à 20%). 
Cette étude discute également des paramètres liés à l’acquisition des images, comme la 
résolution des images et l’heure à laquelle elles sont acquises. 
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1. Introduction 

 
Semi-arid savannas are specific ecosystems that develop under hot semi-arid climates. 

They experience very hot summers and mild to warm winters. They have a short wet season, 
but do not receive sufficient rainfalls to develop into tropical savanna. Semi-arid savannas 
can be found in the Sahel, southern and eastern Africa, south-western U.S.A. and parts of 
India and Australia. 

 
(Trodd & Dougill, 1998) recognizes three driving forces that shape semi-arid savannas: 

rainfall, fire and grazing. Periodic rainfalls are followed by a rapid increase in grass cover and 
production of biomass, while fires episodically eliminate the entire vegetation. 

 
In contrast to these short-term effects, grazing - the third driving force – can lead to long-

term ecological changes. Where wildlife is supplanted by cattle and sheep, the fragile 
equilibrium between vegetation and grazing pressure is often modified. As a result, the grass 
species composition changes and woody vegetation becomes predominant over large areas 
(Walker, Ludwig, Holling, & Peterman, 1981), (Dugill, 1995). Known as bush encroachment, 
this degradation of the ecosystem is recognized as a major problem in numerous semi-arid 
savannas with pastoral activities. 

 
African wildlife reserves and conservation parks suffer from yet another issue. As the 

market of ivory developed in western countries and recently in Asian countries, large 
fractions of the elephant and rhinoceros populations were killed by poachers. Until now, 
governments have not been able to eradicate poaching and the conflicts between park 
rangers and poachers have led to several human deaths, in addition to threatening the 
survival of the concerned species. 

 
In order to achieve a sustainable management, land owners, farmers and conservation 

parks need to take these issues into acount and adapt their method. As new technologies 
have emerged in the field of remote sensing, the use of space- and airborne images for the 
purpose of conservation has shown promising results. For example, land cover changes 
(Trodd & Dougill, 1998), (Ringrose, Vanderpost, & Matheson, 1996) and animal monitoring 
[5] is made possible over larger scale with less effort. In the recent years, unmanned aerial 
vehicles (UAVs) and software for image analysis have become easier to use and 
commercially available at lower prices. Conservation parks and land owners have started to 
show interest in integrating them in their toolkit.  

 
This report is structured as follows: section 1 gives further explanations about the 

conservation challenges formulated above; section 2 indicates how space and aerial imagery 
is or could be used, and formulates the research questions and objectives of the study; 
section 3 provides a literature review of techniques for animals census; section 4 describes 
the methodology used in this study for automated animal detection; section 5 describes the 
dataset and the conservation reserve from where it originates; section 6 explains the 
machine learning methods involved in this study; section 7, 8 and 9 give the setup of the 
experiments, the results and the discussion respectively; and section 10 concludes and 
indicates the perspectives for further works. 

 

1.1 Carrying capacity 

The amount of wildlife that a parcel or a park can sustain (referred to as “carrying 
capacity”) heavily depends on the grass production, which serves as food for wildlife, cattle 
and sheep. A distinction is made between annual grass and perennial grass. The former are 
more affected by meteorological conditions, while the latter show better resilience to drought 
and offer a more stable source of grass. They form the backbone of the food system and are 
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favored by the land managers (Reinhard, 2016). The third type of vegetation encountered in 
the semi-arid savanna is woody vegetation, which includes bushes and shrubs. They do not 
serve as food for the large herbivores and are therefore undesirable. 

 
In natural conditions, the wildlife population is regulated not only by the food availability, 

but also by their predators. However when wildlife was progressively replaced by cattle and 
sheep in the late 1800s, the fragile equilibrium of many semi-arid savannas was modified 
(Walker et al., 1981). Protected from predators, cattle and sheep populations grew until 
exceeding the carrying capacity, and then decreased to a lower number. During this process, 
the vegetal species composition was affected: perennial grasses declined at the benefit of 
annual grasses and woody vegetation. The carrying capacity was hence reduced and the 
grass growth is now more prone to drought. 

 
We now understand that balancing the number of browsing animals and the grass 

availability is a crucial management step. If the number of animals is above the carrying 
capacity, land managers take actions to control the herbivore populations. They can sell or 
relocate animals, or allow hunting to decrease the population in a controlled manner 
(Reinhard, 2016). 

 
In order to evaluate the current grass availability and estimate its future evolution, land 

managers must monitor the grass biomass and its growing stage. According to the land 
managers of Kuzikus Wildlife Reserve there is space for improvement on this point: 

 
“Ideally, grass biomass and composition is estimated at the end of the growing (rain) 

season (January - May) and feeding regimes are adapted accordingly for the rest of the non-
growing (dry) season (May - December). Such vegetation analysis, although the basis of a 
data-driven farming strategy, is still conducted by only a very small minority of farmers. Most 
rely on "experience" and hope.” (Reinhard, 2016) 

 
Once the carrying capacity has been estimated, the next step is to determine the number 

of animals on the site and verify that this number can be sustained. Several methods have 
been used to estimate animals’ populations.  

 

1.2 Bush encroachment 

The Desert Research Foundation of Namibia uses following definition of bush 
encroachment: 

 
“the invasion and/or thickening of aggressive, undesired woody species resulting in an 

imbalance of the grass:bush ratio, a decrease of biodiversity and a decrease in carrying 
capacity”(Seely & Montgomery, 2009). 

 
Bush encroachment has become a major issue in Namibia. According to the same 

foundation, “over 26 million hectares of woodland savannas have suffered loss of productivity 
and carrying capacity by at least 100%”. In Kuzikus, bush encroachment affects around 10% 
of the park and the land managers pay great attention to this issue (Reinhard, 2016). 

 
Bush encroachment is related to all driving-forces described above. Fires periodically 

burn the entire vegetation and grasses recover more rapidly than bushes and shrubs 
(Roques, O’Connor, & Watkinson, 2001). 

 
The hydrology of the ecosystem is also of great importance regarding bush 

encroachment. Grasses only take their water from the top soil layers, and their presence 
reduces run-off and erosion, and increases infiltration in the same top layers. In contrast, the 
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roots of bushes extend deeper and have access to the subsoil water reserves. (Walker et al., 
1981) explains that woody plants and trees influence the subsoil water content by 
intercepting rainfall and leading it more quickly to the deep soil layer through preferential flow 
channels along their stems and root systems. In the end, this favors the development of 
shrubs: “If the reduction in infiltration is not too drastic, then, as the amount of grass declines, 
less water will be taken up from the top soil by plants, an so more will penetrate to the 
subsoil”. 

 
Browsing influences bush encroachment through its effect on fire and the hydrology: A 

low browsing and trampling pressure increases the frequency of fire (Roques et al., 2001), 
hence preventing bush encroachment. In overgrazed areas, water tends to percolate more 
quickly to the deep soil layers since it is less used by grasses in the top layers. This favors 
the bush encroachment (Reinhard, 2016). 

 

1.3 Poaching 

While several species suffer from illegal hunting, the rhinoceros are particularly 
vulnerable. Africa is home of two rhinoceros species: the white rhinoceros and the black 
rhinoceros. From 500'000 black rhinoceros in the 1900s, their population went down to 
65'000 in 1970, due to the destruction of their natural habitats and excessive hunting. It 
reached its lowest number in 1993, with only 2'300 rhinoceros surviving on the continent. 
Efforts brought by governments and wildlife protection association helped reverse the 
tendency and save the species (“Poaching Statistics,” n.d.). 

Today, the population of black rhinos is back to 5'000 – 5'500 individuals, and there are 
around 20'000 white rhinos on the continent. But both species are still endangered and the 
increase in poaching since 2008 is alarming. One reason is that the price of ivory has 
increased a lot as ivory products found a market in Asia (“Rhino Poaching Statistics,” 2015). 

"With a kilo of rhino horn selling for around $60,000 (£35,000), a big specimen can fetch 
$250,000," Mr Breare (Ol Pejeta's chief commercial officer) explained in an interview to the 
BBC (Wall, n.d.). 

The number of rhinoceros killed by poachers is rising accordingly. Figure 1 shows 
statistics of recent years for all rhinos (black and white) in South Africa. According to (“Rhino 
Poaching Statistics,” 2015) Namibia does not regularly report the number of kills. The 
different news outlets they cite report 103 deaths between 2005 and 2014, 25 for 2014, and 
80 for 2015. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 1 : Recorded number of rhinos poached in South Africa [15] 
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2. Using space- and airborne imagery for conservation in semi-arid savanna 

 
Aerial or space born imagery can provide useful information regarding the issues 

described above. In the following, their use for carrying capacity estimation is briefly 
presented. Then the focus is set on animal monitoring, and the objectives of this study are 
formulated. 

2.1 Estimation of the carrying capacity 

By studying the land cover, one can estimate the carrying capacity of an area and assess 
bush encroachment. Depending on the platform used for image acquisition (satellite, airplane 
or unmaned aerial vehicle (UAV)), the problem can be studied at different spatial and 
temporal scales. 

 
An estimate of the carrying capacity can be obtained by mapping the area to land cover 

classes, and assigning a specific carrying capacity to each class. 
 
Typically, aerial images are classified in such classes as “bare soil”, “grassland” or 

“forest” and the surface area covered by each class is then computed. Acquisition in specific 
wavelengths, such as the near infra-red (NIR), allows assessing not only the presence of 
vegetation, but also its chlorophyll  content, which gives precious indication about the plants 
health. 

 
These methods are nowadays well established. However the cost of image acquisition 

depends on the desired spatial resolution: freely available satellite images typically have a 
resolution of 30m, while commercial satellites images have a resolution up to 20 cm. The 
legislation of many countries does not allow for a higher resolution, so that the limitation is 
more legal than technical. 

 

  
 

Figure 2 : Annual and perennial grasses viewed from a UAV. Example provided by Kuzikuz Wildlife 
Conservation Park. 

 
On freely available, 30 m resolution images, a single pixel usually contains several 

landcover types: in the Namibian savanna for example, it can cover a patch of grass, some 
shrubs and several acacias as well. Here airborne imagery would be useful to refine our 
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understanding of the satellite images: individual trees and precise amount of grass and 
shrubs can be identified in the very high resolution (VHR) images, as shown in   

 
Figure 2. A correlation between the classified VHR images and the satellite images could 

be used to acquire a precise ground truth for the satellite images, where new landcover 
classes corresponding to precise information about the food availability for grazing animals 
could be defined. Using VHR images, few calibration flights could then allow to estimate the 
carrying capacity based on freely available space born images with an improved precision. 

 

2.2 Animals monitoring 

Balancing the carrying capacity with herbivores populations also needs an estimate of 
their number. As described in the following, the different methods that are traditionally used 
are time-consuming and do not scale very well to large areas. As the acquisition of very-high 
resolution images becomes easier and less expensive, conservation parks and farmers are 
showing a growing interest in these technologies and envisage including them in their toolkit. 

 
While the resolution of space borne sensors does not allow to recognize individual 

animals, airplanes and UAVs can produce images with very high resolution (typically less 
than 20cm) where animals are recognizable and can be counted. UAVs are also seen as a 
promising tool against poaching. Patrolling UAVs would make it possible to locate injured 
animals and rescue them before they die. Used as a surveillance system, UAVs could help to 
understand poachers’ modus operandi, allow quick interventions and discourage poachers 
from committing illegal acts. 
 

2.3 Methods for animal counting 

There are numerous methods for wildlife estimation. First the most common techniques 
are presented according to a classification based on the statistical methods involved. Then, 
the advantages and drawbacks are discussed from a practical point of view. 

 
From a statistical point of view, wildlife estimation can be subdivided into the following 

groups: 
 
Complete counts are attempts to count the entire population. This can be achieved by a 

drive approach in enclosed areas, where people form a line and cross the whole area, 
counting all animals passing through the line. Capturing the entire population is also a form 
of complete count, which is possible for small populations of certain species only. These 
methods require large manpower and are expensive and laborious. In general they are more 
suitable for cattle and are seldom used in the context of wildlife conservation. 

 
Incomplete counts are methods where only part of the population is counted, and the 

total population is extrapolated by the use of statistical methods. For example, a total count 
can be achieved over a small area, and with the assumption that the density of animals does 
not vary much in space, the total population can be estimated. 

 
Transect count is another example of incomplete count: a fixed route (transect) is 

selected and a person walks along the transect and notes the distance to and the direction of 
all animals that he observes. This method is very popular and extensive work has been done 
on the statistical methods to retrieve the total population, as presented in (Burnham, 
Anderson, & Laake, 1982). 
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Finally, aerial counts can most often be regarded as incomplete counts similar to transect 
counts or drive count. They allow covering a larger area but should rely on the same 
statistical approach, as a complete count is usually not achievable, even from the sky. 

 
Indirect counts use any signs of the presence of the animals to estimate their 

population. It can be easier to count nests than birds, or scats than deers. These methods 
can only be effective if there exists a strong relation between the number of signs and the 
population size, and if this relation can be easily derived. 

 
Mark-recapture analysis is based on a different idea and has been extensively used for 

game animals. A subset of the population is captured and marked, and then released. In a 
second time, a group of animals is again captured and the fraction of marked animals in this 
group is used to determine the population size P, with following formula: 

𝑃 = 
𝐶 𝑀1

𝑀2
 

Where M1 is the number of animals marked and released the first time, M2 is the number 
of marked animals in the second catch, and C is the total number of captured animals in the 
second catch 

 
An assumption of this method is that every individual is captured with the same 

probability, meaning that animals do not learn to avoid traps after their first capture. 
 
Camera traps can be used in the same framework. Instead of capturing and marking the 

animals, this technique involves a motion detector that triggers a camera whenever an 
animal passes by. A similar statistical approach can be employed if each individual can be 
identified. More recently, (Rowcliffe, Field, Turvey, & Carbone, 2008) proposed to use a 
model of the rate of contact between animals and cameras, so that recognizing each 
individual is not necessary. In this manner, camera traps can be used outside the framework 
of mark-recapture techniques. 

 
From a statistical point of view, two sources of errors are generally recognized for all 

these methods (except for a theoretical complete count) (Caughley, 1974): first, due to the 
randomness in the spatial distribution of animals, the count has a variance – two consecutive 
counts do not yield the same result. Second, not all animals can be counted or capture with 
similar probability. A fraction of them is hidden by the vegetation, cannot be distinguished 
from the background environment, or simply escape to the attention of the crew. In the case 
of mark-recapture techniques, the assumption that animals are captured with a same, 
constant probability does not hold in all cases. This results in biased counts where the mean 
over repeated counts usually underestimates the actual population. 
 

Let’s now consider the different methods from a practical point of view and compare their 
advantages and drawbacks. 

 
Drive counts require a lot of man power and are labor intensive. In addition, they scare 

the wildlife and may damage the habitats, with heavy consequences for the population. 
 
Transect count is also time-consuming and its success depends on the choice of the 

transect. It has to be representative for the whole area in terms of habitat. Depending on the 
terrain and vegetation cover, it may be difficult to follow a predefined path and find the same 
path during a later survey. The result of a transect count also depends on the skills of the 
person involved, leading to biased comparisons if different people are involved. On the other 
hand, transect count is probably the least expensive technique and the most simple in terms 
of logistic. 
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Both techniques can be used from a helicopter. This allows covering larger areas and 

operating in areas that are not accessible from the ground, such as swamps or mountainous 
regions. But this is achieved at the expense of a higher price, a more complex logistic and 
higher safety risks. A competent pilot and a copilot trained to count are needed. In general 
the helicopter increases the disturbance to the wildlife. 

 
Camera traps techniques are influenced by the location and calibration of the cameras. 

Usually they produce a very large number of pictures that must be collected and analyzed in 
a time-consuming phase. Depending on the environment, humidity may cause malfunction of 
the camera, which is also limited by battery life-time. However, this technique has the 
advantage of being less intrusive, and gives the best chances to observe animals without 
disturbing them. 
 

2.4 Using aerial imagery for animal counts 

In this respect, aerial imagery with UAVs provides a new way of estimating wildlife 
populations. In short, a UAV can automatically fly in transects over a predefined area, and its 
embedded camera takes pictures perpendicular to the ground. The frame rate is such that 
there is an overlap between each image, ensuring that the whole area along the transect is 
captured. Then, animals can be counted on the pictures. 

 
Even though the statistical approach is similar to the well-studied transect counts, the use 

of UAVs can change many practical aspects of the task. Compared to helicopters, UAVs 
require a much shorter training to pilot them and represent a lower financial investment. Their 
use is safer, since the pilot stays on the ground and away from potential conflicts with 
poachers. It is also more flexible than helicopters, because the logistic is easier. Finally, the 
disturbances to the wildlife and the environment are drastically reduced. 

 
One major drawback is the short autonomy of the batteries that limits the area covered by 

a single flight. This issue will probably become less important in the coming years, as 
technological improvements in this regard are very likely. Another drawback is that UAVs are 
prone to accidents, due to technical failures or improper use.  
 

2.5 Automated detection 

The previous section highlighted the advantages of using UAVs for animal monitoring. 
This section introduces the challenging task that comes after data acquisition: extracting 
useful information from the huge amount of images produced by surveying UAVs. 
 

Traditionally, images are visually interpreted one by one by a human observer who 
identifies animals and other objects of interest. This is an exhausting and time-consuming 
task that must be repeated for every new data acquisition. During their experimental study on 
detection of animals and poachers, (Mulero-Pázmány, Stolper, van Essen, Negro, & Sassen, 
2014) reported that “On average, an observer with a computer needed around 45 minutes to 
process a 500 pictures flight, which is the usual number of pictures taken per flight.” Another 
drawback of this method is that the accuracy of detection depends on the human observer’s 
skills and the time spent at the task, making it difficult to compare results from different 
studies. 
 

The field of computer vision provides many machine learning techniques for objects 
detection. Applied to aerial animal surveys, these techniques can be used to automatically 
localize and count animals in the images. If the same precision is achieved compared to 
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human observers, automatic detection drastically reduces the time spent to make sense of 
the aerial images, thus greatly improving the overall benefits of using UAVs. 

 
While the computer vision community was primarily focused on the detection of hand-

written digits, pedestrians, human faces or vehicles in natural images, recent datasets 
include up to several hundreds of classes of objects found in indoors and outdoors scenes. 
In remote sensing, machine learning has been extensively used for aerial and satellite image 
classification, typically to produce landcover and landuse maps. The task of object detection 
remains less common. 

 
A successful animal detection usually requires a very high resolution, which excludes free 

satellite images. Regarding the spectral properties of the cameras, RGB cameras have been 
predominant because other wavelengths are less suited for visual interpretation. However, 
studies based on thermal images have been done, as mentioned in the literature review 
(section 3). 

 

2.6 Research questions and objectives 

In this context, building a system for automatic detection of animals in the Namibian 
savanna appears as a challenging and promising task, at the intersection of data-driven 
wildlife monitoring and anti-poaching efforts. 

 
The advantages of aerial images and their applications in Namibian wildlife reserves 

have been discussed. It appears that the use of UAV imagery could provide precious 
information to estimate wildlife population and mitigate poaching. However the benefits of 
UAV imagery will only be substantial if a system for automatic detection of animals can be 
developed. 

 
In light of this, the present study will attempt to answer the following questions: 
 
- Is it possible to build a performant system for animal detection with current computer 

vision techniques? 
 
- What precision and recall rates can be expected? 
 
- Regarding the data acquisition, are simple RGB cameras suited for this task? 
 
- What recommendations can be made about the flight parameters, such as the height 

of flight above ground and the time of the day? 
 
The objective of this study is to answer these questions by developing and using an 

automatic system for detection of animals in the Namibian savanna, and based on the results 
of this system. 

 
As mentioned, UAVs could be employed for other tasks than animal detection as well. 

However, to limit the extent of this project, it has been decided to focus on animal detection. 
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3. Literature review 

 
This literature review provides examples where the methods described in section 2 for 

animal census have been used in practice. 
 
In 1997 an important gorilla census in Bwindi Impenetrable National Park was conducted. 

The method used and reported by (McNeilage, Plumptre, Brock-Doyle, & Vedder, 2001) is a 
good example of both total and indirect count. Six teams of at least 3 to 4 people crossed the 
331 square kilometers park in a methodic manner, so that no more than 500 to 700m 
separated adjacent paths. They reported all signs of gorillas, such as nests and dungs, and 
with these indices the experienced team members were able to determine the number of 
individuals in each group, and to distinguish groups based on their sex and age composition. 
The park was searched in such dense manner that the authors believe that very few groups, 
if any, were missed or counted twice. Their results indicated that the population amounted to 
292 gorillas. The study also provided much side information such as the number and 
composition of the groups and the disturbances by human activities. 

 
(Silver et al., 2004) used camera traps to conduct a large survey of jaguars over five sites 

in Belize and Bolivia in 2003. They deployed a total of 160 cameras for about 60 days. They 
identified each individual jaguar thanks to the pattern of its fur and there were between 7 and 
11 individuals per site. This allowed them computing population densities through capture / 
recapture analysis. According to the author this was the first successful measurement of 
jaguar densities. But they deplored that this method was very expensive due to the high cost 
of the cameras and the high requirement in trained field assistance. In several cases 
accessing the sites required to open new trails, with the risk of facilitating illegal hunting and 
logging. 

 
Regarding aerial counts from airplanes, using line transects, many studies discuss the 

statistical approaches to account for visibility bias and to model the detection probability as a 
function of the distance to the animal ((Caughley, 1974), (Quang & Becker, 1997)). (Pollock 
& Kendall, 1987) provides an interesting comparison of several methods to deal with this 
issue. 

 
(Marsh & Sinclair, 1989) explain in details their survey procedure for the census of 

dugongs in northern Australia. The airplane flew at around 140m above sea at a speed of 
185 km/h. Two observers sat on each side of the aircraft and surveyed a 200m wide strip. 
The results of both team members sitting on a same side could be confronted in order to 
apply a form of mark / recapture analysis to model the visibility. 

 
(Linchant, Lisein, Semeki, Lejeune, & Vermeulen, 2015) provide a recent literature review 

on wildlife monitoring using UAVs. They distinguish three types of animals for which UAVs 
have been used: birds such as gulls (Grenzdörffer, 2013) and geese (Chabot & Bird, 2012), 
marine mammals such as dugongs ((Hodgson, Kelly, & Peel, 2013), (Maire, Mejias, & 
Hodgson, 2014)), and large terrestrial mammals such as elephants and orangutans (Koh & 
Wich, 2012) , rhinoceroses (Mulero-Pázmány et al., 2014), and deers (Israel, 2011). 

 
These attempts were based on various sensor types, including RGB and thermal 

cameras. Most often, small fixed-wings UAVs were used. The success of these studies 
largely depends on the environment (open terrain or dense forest, fields, beaches) and the 
contrast between animals and the background. The behavior of the animals (living in flocks 
or herds, staying in open terrain or below shelters) also is of great importance (Linchant et 
al., 2015). 
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Regarding poaching, UAVs have already been used in some conservation parks. In the 
Province of KwaZulu-Natal in South Africa, Air Shepherd has deployed in several parks a 
system combining UAVs with long flight autonomy and thermal cameras. According to this 
organization, the number of rhinoceros and elephant kills was reduced by 60% over a two-
year period after implementation of their system. Their effort are now directed toward Kruger 
National Park, which is home to around 65% of the worldwide rhinoceros population (“Where 
We Fly,” n.d.). The press has reported similar efforts in other national parks, such as in Ol 
Pejeta Conservancy, Kenya (Wall, n.d.). 

 
(Mulero-Pázmány et al., 2014) have conducted experiments to assess the use of 

remotely piloted UAVs to monitor poaching activities.  Using three different sensors (RGB 
pictures, RGB videos and thermal videos) they surveyed rhinoceroses, fences and people 
mimicking poachers. The acquired images were reviewed by human observers and provided 
encouraging detection rates. Three different approaches to integrate UAVs in anti-poaching 
work are then proposed and technical aspects are discussed. Unfortunately, the number of 
such studies is still very limited in the literature. 

 
Even though many studies exist on the use of UAVs for wildlife monitoring, only few have 

implemented an automatic detection. In their review, (Linchant et al., 2015) explain that most 
attempts concerned birds detection ((Grenzdörffer, 2013), (Chabot & Bird, 2012)). 

 
Interesting results were obtained by (Maire et al., 2014) for the automatic detection of 

dugongs. Thanks to data augmentation and hard negative mining, they could train a 
convolutional neural network that gave promising results. 

 
Finally, it can be mentioned that WIPSEA, a company based in France, offers 

commercial solutions for automatic detection of animals (“Wipsea,” n.d.). According to the 
description on their website, in many cases they still need to adapt existing software (both 
the algorithms and the user interface) to the special requirements of a new task. Their 
solutions also integrate the detections to a geographical information system to make spatial 
analysis and produce maps. 
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4. Methodology 

 
The detection system will be developed and tested on a dataset from Kuzikuz Wildife 

Reserve in Namibia. Instead of modeling the visual appearance of animals, the chosen 
approach relies on machine learning methods that integrate a large amount of data and learn 
the visual traits of the animals from the data. 

 

4.1 Detection: the pipeline 

In general, a system for automated detection based on machine learning can be 
subdivided into the following steps: 

 

 Data acquisition 

 Ground truth acquisition 

 Objects proposals (segmentation): 

 Features extraction 

 Classification 
 
The present study focuses on the last three steps, as the data and ground truth were 

provided by the SAVMAP consortium and MicroMappers. Post-processing of the ground truth 
was however necessary and is briefly described. Figure 3 presents the general pipeline. 
 
 

 
 

Figure 3 : General pipeline for objects detection 
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Data acquisition refers to the use of a certain platform and sensors to acquire the 
photographs. In this case, a fixed-wing UAV and an RGB camera were used. 

 
Ground truth acquisition is the process of defining objects of interest in the images 

used to train and test the model. In other words, the regions of the images containing objects 
of interest must be annotated, usually by drawing a polygon on the regions and labeling them 
with the name of the object. The set of these annotations is called ground truth. Because it is 
a time-consuming task, in the present case crowd sourcing was used. 

 
Objects proposals, also referred to as segmentation, is the process of recognizing 

interesting parts of the images that may correspond to the real-world objects to be detected. 
The output of this block is a set of objects that ideally has the following characteristics: 

-  The objects boundaries are precisely defined 
- For each instance of the real-world objects of interest in the images, there is a 

corresponding segmented object, so that no real-world object is missed at this stage. 
In this study, a simple method based on color and gradient intensity is used. 
 
Feature extraction defines a set of features (also called attributes or descriptors) that 

are used to recognize objects of the same class and distinguish them from objects of 
different classes. The features can be any type of categorical or numerical variable; however 
most of the classification methods preferably work with real values. Once a set of features is 
defined, the features are computed for each object and the concatenation of these values 
forms a vector that describes the object. 

In this study, color histograms and bags of visual words are used as features. 
 
Classification is the process of assigning a class label to each of the objects, based on 

the value taken by the features. The idea is that in the n-dimensional feature space, where n 
is the number of features, objects form clusters according to their class. In supervised 
classification, a set of objects with known class label (ground truth) is used to train a 
classifier. The classifier learns the boundaries between classes in the feature space, and is 
then able to predict the class of any new, unlabeled objects. 

 
The classifier chosen in the present work is a support vector machine (SVM). The use of 

exemplar SVMs and Hard negatives mining is also explored. 
 
For each of these blocks there exist a great number of different methods and in many 

cases it is unclear which method performs best. Here, not only the expected performance but 
also the interest of the author has guided the choice of the methods. 

 
The methods used in this study are implemented in Matlab (Matlab, 2015). The Matlab 

Image processing toolbox (Matlab Image Processing Toolbox, 2015) has been extensively 
used. Besides, the LIBSVM library (Chang & Lin, 2011) is used for the SVM classification. 
The implementation of Exemplar SVMs and Hard negatives mining are inspired by the code 
provided by (Malisiewicz, Gupta, & Efros, 2011). 
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5. Study site and data set 

 
The animal detection system proposed in this study is based on a dataset of aerial 

images from Kuzikus Wildlife Reserve. The images were acquired during two campaigns 
conducted by the SAVMAP consortium in May 2014 and May 2015. In order to build a 
ground truth, MicroMappers made a crowd-sourcing campaign to let volunteers identify and 
tag animals in the RGB images of 2014.  

 

5.1 Kuzikus Wildlife Reserve 

Kuzikus is located on the edge of the Kalahari in Namibia. The Kalahari is a semi-arid 
sandy savanna that extends over Botswana, South Africa and Namibia and is home of a 
large variety of animals, including many large mammal species. 

 
From the beginning of 20th century and until 1980 Kuzikus was a cattle and sheep farm. 

While the region is still largely dominated by this activity, Kuzikus has been progressively 
restored into a wildlife reserve since 1964. Todays it is a private, state- acknowledged nature 
reserve that combines habitats conservation and wildlife protection, and demonstrates that 
tourism, education and research can provide and alternative and sustainable income for 
several families. The reserve now offers lodges for tourists and several scientific studies are 
being led. 

 
The reserve extends over 103 km2 (10'300 ha) and is the home of rich and abundant 

wildlife:  
 

“The vast diversity of free-living wildlife (most is conservation - dependent in IUCN red 
list) is the major attraction of Kuzikus: there are over 3000 individuals from more than 20 
larger animal species such as the Common Eland (Taurotragus oryx), the Greater Kudu 
(Tragelaphus strepsiceros), the Gemsbok (Oryx gazella), the Hartebeest (Alcelaphus 
buselaphus), Gnu (Connochaetes gnou and C. taurinus), the Blesbok (Damaliscus albifrons), 
the Springbok (Antidorcas marsupialis), the Steenbok (Raphicerus campestris), the Common 
Duicker ( Sylvicapra grimmia), the Impala (Aepyceros melampus), the Burchell’s Zebra 
(Equus quagga burchellii ), the Ostrich (Struthio camelus australis and the Giraffe (Giraffa 
camelopardalis giraffa).”(“Kuzikus - Wildlife Reserve Namibia,” n.d.) 

 

Around 200 bird species, 44 mammals, 50 reptiles and 100 insects species have been 
observed. Scorpions and spiders also add up to this great diversity (Kuzikus Wildlife 
Reserve, n.d.). 

 
As part of a breeding program, the iconic and most endangered Black Rhinoceros 

(Diceros bicornis) was reintroduced in Kuzikus. From a global population of around 400'000 
rhinos in the beginning of 19th century, extending over all savannas of Africa, only 2'000 
individuals were left in 1994. Poaching is still a predominant threat, as described in the 
following section. 

 
While the region is most famous for its fauna, the flora is also unique and gets a 

considerable attention from the land managers, since it is at the basis of the food chains. 
 
Only 6 tree species are found in Kuzikus, with the Camelthorn (Acacia aerioloba) being 

the most represented. The vegetation mainly consists of grass, herbs and shrubs. 
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5.2 Dataset 

5.2.1 Images 

The images used in this study were acquired with a UAV and an RGB camera. The main 
features of the image acquisition system are presented in Table 1. 
 

Table 1 

Source SAVMAP Consortium (“SAVMAP,” n.d.)  

Product type RGB images with dimensions 3’000 x 4’000 pixels 

Platform 
eBee – light UAV commercialized by Sensefly 
(“eBee: senseFly SA,” n.d.) 

Sensor RGB camera: Canon PowerShot S110 

Spatial resolution 4-8 cm 

Spectral resolution 3 large bands in the red, green and blue domains 

Radiometric resolution 24 bits 

 
Other cameras have also been used, mounted on the same eBee. 
 
Table 2 indicates the number of flights made with each type of sensors and the total 

number of images acquired during these flights, for 2014 and 2015: 
 
 

Table 2 

 May 2014 May 2015 

# images # flights # images # flights 

RGB 9’734 55 4’838 25 

NIR 4’006 24 1’993 16 

RE 539 3 0 0 

MS 427 40 1’363 7 

TIR 0 0 31’368 9 

 
The present study only uses the RGB images. The practical reason is that there exists no 

ground truth for the other types of images. Indeed, identifying animals in false-color images 
would be a very challenging and tedious task for the crowd. 

 
Since RGB cameras are less expensive and more commonly used, demonstrating that 

automated detection is possible without relying on more sophisticated captors would be an 
interesting result. 

 
Figure 4 presents a map of the areas where RGB acquisition was made in May 2014. 
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Figure 4 : Map of Kuzikus Wildlife Conservation Park and areas covered by the 2014 RGB dataset 

 

5.2.2 Crowd-sourced Ground Truth 

MicroMappers has delivered a crowd-sourced ground truth for the 2014 dataset, in which 
animals have been tagged by volunteers. A total of 6’500 RGB images (of size 3’000 x 4’000 
pixels) have been analyzed by the crowd and each image was shown to at least 3 
volunteers. The task was to draw a polygon around each animal found in the images, without 
distinction between species. Signs of animal presence such as Aardwolves’ holes or termite 
mounds should not be reported. 

 
7’474 polygons were drawn by the crowd in a total of 654 images from 5 different flights. 

After a specific merging of overlapping polygons and removal of the unconfirmed ones (i.e. 
objects tagged by one single volunteer, see section 6.1 Ground Truth post-processing for 
details), the number of tagged animals is 976. It should be mentioned that the number of 
unique individuals is less, since the same animal could be observed in several consecutive, 
overlapping images. In this case the animal is viewed under a different angle and often a 
different pose. 

 
  



24 
 

6. Methods 

6.1 Ground Truth post-processing 

The ground truth delivered by MicroMappers, obtained through a crowdsourcing 
campaign, is the set of all polygons drawn by the crowd. This means that several polygons 
are usually overlapping on an animal, since the same image was shown to several 
volunteers. Each user drew a different polygon with more or less precision. 

On the other side, there are many locations tagged by a single volunteer, resulting in 
lonely polygons. These are likely to be erroneous annotations on objects that are difficult to 
identify, or the result of volunteers who misunderstood the task or worked with little care. 

 
In order to obtain a final ground truth, erroneous polygons must be deleted and 

overlapping ones must be merged in a way that produces a precise delineation of the 
animals. For this purpose, the following procedure has been implemented, that looks at each 
pile of overlapping polygons separately: 

 
Only the pixels covered by at least n tags are considered. In this case, n was set to 2. 

This allows discarding erroneous polygons. Then, for each pixel, a confidence c is computed 
as the ratio between the number of different tags covering that pixel, and the total number of 
tags in the pile the pixel belongs to. Note that two polygons that do not overlap belong to the 
same pile if there are connected through other overlapping polygons. All pixels with a 
confidence c below a given threshold are discarded. In this case, c was set to 0.5. 

 
Finally, the remaining pixels are converted to polygons, and the length of the major axis 

of the polygons is used to discard small polygons. Here, the threshold was set to 20 pixels. 
Figure 5 illustrates this procedure. 

 

 
 
Figure 5 : Post-processing of the tags to build a ground truth. Top left: collection of polygons drawn 

by the volunteers. Top right: confidence map. Note that the erroneous polygon at the bottom right corner 
obtains a high confidence. Bottom right: number of overlapping polygons. The erroneous polygon is 

discarded. Bottom left: final polygons used as ground truth 
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6.2 Objects proposals 

6.2.1 Support 

In a detection task, a first step is to define the spatial support of the detection. The spatial 
support defines how objects of the real world will be represented by pixels or groups of 
pixels. The detection can be based on: 
 

- Entire objects: for example full trees including the trunk and the canopy 
 
- Regions: parts of objects, for example canopies without the trunks. A region is 

generally defined by a homogeneous visual aspect (color, texture). An object of 
the real world is made out of a variable number of adjacent regions. 

 
- Patches: groups of adjacent pixels belonging to the objects. Here the boundary of 

a region is not defined. Instead, all pixels around a center of interest are 
considered. The size and the shape of the patches is fixed. 

 
- Pixels: individual pixels are considered without taking into account their 

surroundings. 
 

The advantage of using small spatial units such as pixels or patches is that it avoids the 
challenge of computing regions boundaries. But the drawback is that making sense of the 
detections is more difficult: the same real-world object can produce several detections that 
must be understood as a single object. Also, the number of pixels or patches that can be 
considered in the image is by orders of magnitude larger than the number of regions or 
objects. 

 
In this work, patches will be used as spatial support. This choice is driven by the fact that 

animals of interest all have a relatively similar size, which allows defining a single patch size. 
Also, it allows considering the texture of the objects while avoiding boundaries segmentation. 

 

6.2.2 Threshold-based objects proposals 

Because the images are large (around 3'000 x 4'000 pixels) compared to the size of 
animals (around 100 x 100 pixels), it would not be efficient to consider all possible patches in 
the image. Instead, a few hundreds of pixels that are likely to be close to animals are 
extracted, and the patch surrounding each of these proposed pixels is considered. In 
contradiction with the definitions above, these patches are called objects proposals in the 
remainder of this text, or proposals for short, even though the spatial support is a patch. 
 

Two approaches can be used separately or combined in order to extract the objects 
proposals: 

 
Because most of the (real-world) objects, including standing animals, cast a shadow on 

the ground, the first method aims to find shadows. The image is represented in the HSV 
color space and binarized based on the value band and a heuristic threshold. The centroid of 
each connected region is retrieved, except for the regions smaller than a minimal area. 

 
Making objects proposals based on the shadows is not sufficient because laying animals 

or animals located in the shade of a tree do not cast a distinctive shadow. Therefore, another 
approach is used: a sobel filter is applied to the image in order to locate edges. In the same 
manner, the image is thresholded based on its sobel value and the centroid of connected 
regions larger than a minimal area are retrieved. This method proved to be very efficient 
because many animals have a white fur that produces a significant contrast and sharp 
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edges. It appears that computing the sobel on the blue band gives the best results: in this 
band the contrast is high around white and black animals, but low on bare ground and 
vegetation, which are dominated by red and green colors. 

 
If used in combination, those two methods may produce proposals that fall very close to 

each other. To remove redundant proposals, a buffer is computed around each proposed 
pixel, and the centroids of the so formed regions are extracted, where closely located 
proposals are now merged into a single region. 

 
The choice of the threshold is a trade-off between number of retrieved animals and total 

number of proposals. An optimal threshold would give a proposal inside each of the tagged 
regions, while keeping the total number of proposals as low as possible. Indeed, tagged 
animals that are not retrieved 1 in this step cannot be detected in the following and will 
reduce the recall rate. Therefore it is important not to miss too many tags at this stage. On 
the other hand, the number of false positives is expect to increase with the total number of 
proposals, as the absolute number of misclassification is likely to become greater. 

 

6.3 Features extraction 

6.3.1 Histogram of colors 

 
The first type of features used in this study is the histogram of colors. These features are 

simple to define and compute, yet surprisingly efficient in some applications. 
 
These features are computed over a region centered on the object. The histogram of 

each band (red, green and blue) is computed over this region and the bin counts are used as 
features. The bin counts of the three histograms are simply concatenated to form the feature 
vector. 

 
In this study, histograms were computed over a region of about 25 x 25 pixels for a 

ground sampling distance (GSD) of 8 cm, and the size of the region was adapted when 
another GSD was used. Note that it is a good practice to divide the bin counts by the size of 
the region, so that histograms are comparable even if the size of the region is not constant 
for all objects. 

 
The histograms were defined with 10 bins, yielding 30 features. 
 

6.3.2 Bag of visual words 

 
The Bag of Word (BOW) is a model used in natural language processing and information 

retrieval. It describes a text document by the frequency of words without considering their 
position in the text, thus disregarding any grammatical structure. 

This model has been extended to computer vision, where the method is called “Bag of 
Visual Words” (BoVW) by analogy. This is the second type of features used in this study. 

 
A collection of patches, called visual words, is used to describe the image. The features 

at a given location of interest are then defined by the frequency of occurrences of the 
different visual words in the surrounding region. 

 

                                                
1
 Here a tag is said to be retrieved if at least one proposal falls into the tag. 
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The Bag of Visual Words is an efficient model to extract features over images without 
hand-crafting them, and achieved state-of-the-art performance in many situations. In the very 
recent years however, convolutional neural networks have become very competitive and 
outperformed the BoVW in several occasions. 

 

The method 

To define the visual words, a few thousands of patches are randomly chosen in the data 
set. These patches may be square or circular, with a width or diameter of around 20 pixels. 
They include the three bands red, green and blue. An unsupervised clustering is performed 
on these patches according to visual similarity, and the center of each cluster is called a 
“visual word”. The collection of these words forms the vocabulary. 

 
To extract features over a given image, each pixel is first assigned to its closest visual 

word. Here is how this assignment is done: a patch centered on the pixel and of the same 
size and shape as the words is considered. The visual similarity between this patch and each 
of the words is computed and the most similar word is retained. 

 
Finally to obtain the value of the features at a given location (i.e. of a given object), the 

region surrounding that location is considered and the number of occurrences of each visual 
word is counted to build a histogram. Each bin of the histogram corresponds to a visual word, 
and the bin counts indicate how many of the surrounding pixels were assigned to each of the 
visual words. 

 
Each bin of the histogram is used as a feature to describe the object or location of 

interest. Hence the number of features equals the number of visual words. 
 

Algorithm 

1.  Extract a few thousands patches at random in the data set 
2.  Perform k-means clustering of these patches. Each cluster center is a visual word 
3.  For each pixel in the image: 
4.   Consider the patch centered on this pixel 
5.   Find the closest visual word and assign its ID to the pixel 
7.  For each object in the image: 
8.   Consider a region around the object center 
9.   Count the occurrences of each visual word in this region and build a histogram 

 

Visual similarity 

A visual similarity between patches needs to be computed in order to define the visual 
words (by clustering) and assign patches to the closest word. A very simple, yet efficient way 
to define this similarity is simply to take the absolute value of the difference between the two 
patches, pixel by pixel, and sum these differences over the whole patch: 
 

𝑆(𝑝1, 𝑝2) =  ∑ |𝑝1,𝑖 − 𝑝2,𝑖|
𝑛

𝑖=0
 

 
Where n is the number of pixels in a patch. 
 
However, this similarity measure is not rotation-invariant. Indeed, two patches that differ 

only by a rotation will not necessarily obtain a high similarity. This is not a desired property in 
this case, because in aerial images the orientation of the image does not hold valuable 
information. In contrast to natural images where the sky is generally at the top of the image 
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and the wheels of a car are below that car, in nadir aerial images the orientation is solely due 
to the direction of flight, which should not affect the interpretation of the scene. 
 

Thus, to define a rotation-invariant similarity SRI, we decided to compute the similarity S 
with several relative angles between the patches and retain the similarity that is highest: 
 

𝑆𝑅𝐼(𝑝1, 𝑝2) = 𝑆(𝑝1, 𝑝2,𝛼)  
 
 
 

Where 𝑝2,𝛼 is the patch 𝑝2 after rotation by an angle α, and α is the angle that maximizes 

S. Note that all patches are circular, in order to allow rotations without changing their shape. 
This method increases the computation time significantly. In practice, a fixed number of 
rotations must be chosen, and the computation time increases linearly with the number of 
rotations. 

Parameters 

There are four parameters that considerably affect the features extraction using a bag of 
visual words. Finding the optimal values for these parameters is not straightforward. 

Number of visual words 

This parameter must be adapted to the heterogeneity of the data set. In natural images, 
the number of possible objects, colors and shape is almost unlimited, so that using a very 
large number of visual  words may be necessary. Experiments have been done with as many 
as several thousands of visual words. However in a dataset of aerial images originating from 
the same location, the images are more homogeneous and a few hundred words is usually 
sufficient to describe the dataset. 

Note that increasing the number of visual words does not necessarily lead to improved 
results. If this number is too large, the feature vector will contain many zeros, which may be a 
problem depending on the classification algorithm that is used. Moreover if the similarity 
between visual words is high, two patches that are very similar may be assigned to different 
words. As a result, some of the features could be very correlated. 
 

 

In the following displays of maps of words, each color corresponds to a distinct word. The 
colors used to depict each word are chosen at random, so that similarity between colors 
does not imply similarity between words. Words cannot be directly compared between 
experiments, but the frequency and disposition of words can be analyzed. 
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Figure 6 : Map of words obtained with different number of visual words. From top to bottom and left 
to right: original image, 60 words, 100 words and 300 words. 

 

 

Patch diameter 

The diameter of the circular patches defines the level of details that are retained. A small 
patch diameter results in more heterogeneity and a salt-and-pepper effect. The optimal 
diameter depends on the size of the objects of interest, and on the spatial resolution of the 
image. 

 
Diameters between 17 and 30 pixels have been found to produce good results. 

Interestingly, doubling the spatial resolution does not mean that the patch diameter should be 
doubled. 

Number of rotations 

Allowing more rotations improves the results, but at the cost of computation time. Using 8 
angles (with 45° difference between each) is a reasonable choice. Figure 7 shows the 
clusters without rotations, with 8 and with 16 rotation angles: 
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Figure 7 : Map of words obtained with different number of rotations. From top to bottom and left to 
right: original image, no rotation, 8 rotations, 16 rotations. 

 
 

When no rotation is made, different sides of objects that are circular in appearance, such 
as the tree in this example, are assigned to different clusters. With 8 rotations, the situation is 
improved but the 8 directions can be recognized on the cluster image, meaning that the 
model is not completely rotation invariant. With 16 angles, the cluster image shows regular, 
circular shapes. 

 
Note that the effect of rotations is more pronounced when using a large patch diameter, 

such as in this example. 

Spatial resolution 

In general, a higher spatial resolution allows to recognize more details and shapes and is 
therefore an advantage. However, to decrease the computation time the resolution should be 
decreased if a lower level of details is sufficient. 

 
The spatial resolution also affects the other parameters: 
 

- Because the image will be more heterogeneous with a higher resolution, the 
number of visual words should increase with the resolution. 
 

- To some extent the diameter of the patches should be adapted to the resolution, 
so that one patch covers a meaningful part of the objects of interest in the image. 
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6.3.3 Normalization of the features 

 
In order to treat all the features equally and to be able to compare them, the classifier 

needs that the features have the same distribution of values. Therefore, the feature vectors 
were replaced by their z-score, obtained by subtracting their mean and dividing them by their 
standard deviation. 

 
When exemplar SVMs were used, one further normalization was done. The feature 

vectors were divided by their L2-norm, so that they have a unit length. The reasons for this 
additional step are explained in section 6.4.4. 

 

6.4 Classification 

6.4.1 Definitions of terms 

 
Classification is the process of assigning an object (or sample) to a class (or category) 

based on known properties of the object, called features (or descriptors). In binary 
classification there exist only two classes, while multi-class classification refers to the case 
where there are more than two possible classes. In this study, the aim is to detect animals 
without making further distinction between them, so that it will be a binary classification with 
the classes “background” and “animals”. The former contains all non-animal objects, and will 
also be referred to as the negative class. The latter is the class of interest, also called 
positive class. 

 
Let’s now define the possible cases of correct classifications and errors. Considering that 

both the ground truth and the prediction can take the value 0 (class background) or 1 (class 
animals), there are four possible combinations, as defined in Figure 8: 
 

 

  
Ground Truth 

  
Positive Negative 

P
re

d
ic

ti
o

n
 

Positive 
True positive (TP) 
Correct detection 

False positive (FP) 
False detection 

Negative 
False negative (FN) 

Missed 
True negative (TN) 
Correct rejection 

 
Figure 8 : Nomenclature based on the ground truth and predicted values. Green cells correspond to 

correct classifications. The colors for false negative and false positive should remind the reader that in 
this task, missing animals is worse than making false detections. 

 
From this, a number of indices can be derived that better express the quality of the 

classification. 
 
The False positive rate (FPR) is defined as the ratio of false positives over the total 

number of negatives: 
 

𝐹𝑃𝑅 = 
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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The Recall rate, or the fraction of retrieved positives, is given by: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
 
Finally the Precision is concerned only with positive predictions: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Two types of graphs will be drawn with these indices: ROC curves that plot the recall as a 

function of the false positive rate, and precision-recall curves that plot the recall as a function 
of the precision. Note that once a classifier is trained, it is still possible to choose the minimal 
score for an object to be classified as animal. With a lower threshold value, more objects are 
classified as animals and the recall increases at the cost of false detections or precision, and 
vice versa for higher thresholds. Each value of threshold corresponds to one point on the 
ROC curve or on the precision-recall curve. 

 
The difference between both types of curves is that the precision-recall curve does not 

depend on the true negatives (TN), while the ROC curve depends on all four cells of Figure 
8. In the case of a dataset that contains many more negatives than positives, the number of 
true negatives can be very high and the false positive rate is not meaningful any longer. 
Instead, precision keeps all its meaning with imbalanced datasets. Therefore, precision-recall 
curves will be used in the case of imbalanced dataset. ROC curves will be used in order to 
make some results comparable to those of (Ofli et al., 2016). 

 
Note that a classification should have a low false positive rate and a high recall, so that 

its ROC curve should reach as close as possible to the top left corner of the plot. In contrast, 
a classification should have a high precision. In the case of precision-recall curves, it is 
hence desired that the curves extend as much as possible towards the top right corner. 

 

6.4.2 Characteristics of the classification task in this study 

The classification problem addressed in this study is purely binary, meaning that there 
are only two classes involved.  Even if some techniques easily extend to multi-class 
classification, binary classification is usually simpler. The animal class will also be referred to 
as the positive class, and the background class as the negative class. 

 
It is common to find a high visual heterogeneity in the background class. A more specific 

feature of this dataset is that the positive class is also very heterogeneous, as shown in 
Figure 9. Most of the animals have a light fur but there are also darker, brown individuals, 
and the ostriches are grey or black. The variations in shape are also important. The presence 
of a shadow next to the animal is frequent but not necessary. 

 

       
 

Figure 9: Visual heterogeneity among animals 

 
Another particular aspect is that animals are very rare in the dataset and occupy only a 

tiny fraction of the images: we are looking for needles in a haystack. The ratio of positive to 
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negative samples affects the behavior of the classifier, and this ratio is especially low in this 
case. 

 
Finally, in this task, the recall rate is thought to be more important than the precision. 

Indeed, if the precision is low, the user can visually check the detection and delete the false 
positives. Even if the precision is as low as 10%, the system would not be useless: reviewing 
the detections would still be much quickly done than visually interpreting the entire images of 
the whole dataset. In contrast, a good recall is essential for the system, as animals that are 
missed cannot be easily detected by another mean. 

 

6.4.3 Support vector machine 

Support vector machines classifiers find a linear boundary in the feature space that 
separates the two classes. Once this boundary is defined, any new data can be classified by 
looking at which side of the boundary it falls on. The following presents the framework and 
the mathematics behind SVMs. 

 
Given a dataset of n objects belonging to either the positive or the negative class, and 

described by D features, the SVM classifier finds a boundary in the D-dimensional feature 
space that best separates the two classes. As shown on the 2D example of Figure 10, 
several lines that do not make any classification errors on the training set could be drawn 
and serve as boundary. But the green line, for instance, seems to be a risky choice because 
a negative object is located very close to it. In contrast, the black line keeps all objects as far 
away as possible, and is therefore more likely to predict correct classes for new objects from 
a test set. Therefore the SVM will try to find the line that maximizes the distance between the 
boundary and the closest objects, also called the margin. 
 

 

    
 
Figure 10 : Illustration of a 2D feature space, with objects of the positive class and negative class, 

depicted as red + and blue – respectively. Several lines can separate the two classes (left) but the best 
solution is the line that results in the maximal margin (right). 

 
 
Let’s consider a vector w perpendicular to the boundary. An object is located on the 

positive side of the boundary if the following holds: 
 

 𝑤⃗⃗  𝑥 + 𝑏 ≥ 0 
 

where 𝑥  is the feature vector of the object and b is a constant term called bias. The dot 
product takes the projection of the feature vector on 𝑤⃗⃗ , and if the latter is a unit vector, the 

bias indicates where along 𝑤⃗⃗  the boundary is located. 
 

The function  𝑠 =  𝑤⃗⃗  𝑥 + 𝑏  is called the score function and takes positive values for 
objects situated on the positive side, and negative values for objects situated on the negative 
side.  
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A desired property for the score function is that objects located exactly one the “gutters” 
take the value -1 or +1 and other objects further away from the boundary take values below -
1 or above +1, as shown on Figure 11. 
 
 

 
 

Figure 11 : The score is a measure of the distance to the margin. On the gutters, it takes the value +1 or    
-1. In this example, one positive object is misclassified and another one falls very close to the margin, so 
that its score is below 1.  

 
With y equals to -1 for negative objects and +1 for positive objects, these conditions 

become: 
 

𝑦 (𝑤⃗⃗  𝑥 + 𝑏) = 1  for objects on the gutters  
 

𝑦 (𝑤⃗⃗  𝑥 + 𝑏) > 1  for objects further away 
 
An expression for the margin (or the distance between the gutters) is derived as follows. 

Consider a point x+ located on the positive gutter, and a point x- located on the negative 
gutter. The width of the margin M is the projection of the vector (𝑥+⃗⃗ ⃗⃗ − 𝑥−⃗⃗ ⃗⃗ ) on a unit vector 
perpendicular to the boundary: 

 

𝑀 = (𝑥+⃗⃗ ⃗⃗ − 𝑥−⃗⃗ ⃗⃗ ) ∙
𝑤⃗⃗ 

‖𝑤⃗⃗ ‖
 

 

By substitution of 𝑥+⃗⃗ ⃗⃗  and 𝑥−⃗⃗ ⃗⃗  using the previous equation, we find: 

𝑀 = ((1 − 𝑏) − (1 + 𝑏)) ∙
1

‖𝑤⃗⃗ ‖
 

𝑀 =
2

‖𝑤⃗⃗ ‖
 

 
Hence maximizing M is equivalent to minimizing ‖𝑤⃗⃗ ‖  or, as often presented for 

mathematical convenience, 
1

2
‖𝑤⃗⃗ ‖2. 

 

Finding the best boundary is hence formulated as optimizing 
1

2
‖𝑤⃗⃗ ‖2 under the constraint 

𝑦 (𝑤⃗⃗  𝑥 + 𝑏) ≥ 1 
 
This can be solved with the Lagrangian approach for constrained optimization: 
 

𝐿 =  
1

2
‖𝑤⃗⃗ ‖2 − ∑𝛼𝑖  [𝑦 (𝑤⃗⃗  𝑥 + 𝑏) − 1]

𝑛

𝑖=1

 

 
where n is the number of training objects and the 𝛼𝑖 are lagrangian multipliers. 
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In this expression, the first term is a regularization loss that tends to keep the vector w 
small. Minimizing its L2-norm encourages the solution to assign small values to all the wi, 
thus making use of all the input features xi. This is a desired characteristic, because ignoring 
some features could lead to overfitting the training dataset. 

 
The second term is a data loss. The terms of the sum are positive for objects that are 

correctly classified and outside the margin. 
 

6.4.4 Exemplar SVMs 

 
Exemplar SVM (ESVM) is a specific use of SVM classifiers introduced in 2011 by 

(Malisiewicz et al., 2011).  The idea is to train a different SVM for each positive object (called 
exemplars) of the training set. Hence each of these exemplar SVMs learns to perform a 
much simpler task: to distinguish objects highly similar to its exemplar only. To classify a new 
object, each ESVM produces one prediction, and the final class for the unknown object is 
decided by combining these individual predictions. 

The problem to be optimized becomes (Malisiewicz et al., 2011): 
 

𝐿 =  ‖𝑤‖2 + 𝐶𝑝 h(1 − (𝑤𝑇𝑥𝑝 + 𝑏)) + 𝐶𝑛  ∑ h (1 + 𝑤𝑇𝑥 + 𝑏) 

𝑥 ∈𝑁𝐸

 

 
where NE denotes the set of negative objects, x is the feature vector of a negative object 

xp the feature vector of the positive object and ℎ(𝑥) = max (0, 𝑥) is a hinge loss function. Cp 
and Cn are two parameters that allow weighting each of the three terms: the regularization, 
the cost induced by a misclassification of the positive exemplar, and the cost induced by 
misclassification of the negative objects. 

 
In their very recent contribution, (Kobayashi, 2015) demonstrate that ESVM can be 

formulated as one-class SVM by centering the data on the exemplar. This allows to eliminate 
one parameter: 

 

𝐿 =  ‖𝑤‖2 −  𝜌 +  𝐶 ∑ h (𝜌 − 𝑤𝑇(𝑥 − 𝑥𝑝)) 

𝑥 ∈𝑁𝐸

 

where the margin is now 
𝜌

‖𝑤‖2 

 

(Kobayashi, 2015) also explains that this unique parameter C is bounded between 
1

𝑁
 and 

1. It controls the number of support vectors and, since all the support vectors are from the 
negative class, it can be set to 1. 

 
In order to avoid the exhaustive search of the best parameters Cp and Cn, it was decided 

to follow this appealing method. Because the code of (Kobayashi, 2015) was not available, 
we started from the freely available library of (Malisiewicz et al., 2011) and made the 
following adjustments to implement the method of (Kobayashi, 2015): 

 
- Normalize the all the feature vectors to a unit L2-norm 2 
- Center the data by subtracting xp to the negative samples 
- Train a one-class SVM with linear kernel 
- Set the cost parameters to 1 

 

                                                
2
 The features were already centered to have a zero mean and a unit variance, as explained in 

section 6.3.3. 
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This implementation was successfully tested on a toy example before being applied to 
the real dataset. 
 

The last step is to combine the scores given by the ensemble of exemplar SVMs. Each 
exemplar assigns a different score to each object and the higher the score, the higher the 
visual similarity between the object and the exemplar. 

 
A first issue is that in general, the scores cannot be directly compared because they do 

not have the same distribution. In other words, if two exemplars give the same score to an 
object, these scores may not translate to the same class probabilities, because one object 
may tend to assign scores close to zero and with little variance, while the variance in the 
scores given by the other exemplar may be higher. 

 
There are several methods to deal with this issue. A common solution is the following: for 

each exemplar, a separate set of objects is predicted (i.e. the score of these objects is 
computed). A sigmoid is fit to the distribution of these scores. At test time, the scores given 
by the exemplars are passed through the sigmoids of the exemplars. After that the scores 
are comparable between exemplars. 

 
A relevant question is which set of objects can be used to fit the sigmoids. This set must 

contain positive and negative objects. Conveniently, to fit the sigmoid of any exemplar xp,i the 
other exemplars of the training set can be used, because they were not involved in the 
training of xp,i . Since the training set contains many negatives, a fraction of them can be kept 
aside (i.e. not used for training) and used to fit the sigmoid. 

 
(Kobayashi, 2015) pretend that the scores given by their exemplars can be directly 

compared, because they normalized the feature vectors of all objects to a unit L2-norm. In 
this way, the feature space is bounded (all objects live on sphere of unit radius) and this 
should ensure that scores are comparable. 

 
In this study, after few trials and based on geometrical considerations, it was decided to 

normalize the scores by dividing them by the width of the margin. 
 

 

6.4.5 Hard negative mining 

Due to the strong imbalance between positive and negative objects in the dataset, a huge 
number of negatives are available for training. But using all of these negatives is not 
possible, due to computational limitations (both in time and memory). The simplest solution is 
then to select a subset of negatives at random. 

 
However all negative objects are not equally useful. The Support Vector Machine only 

uses a fraction of the provided data to draw its separating hyperplane: the so-called support 
vectors, which are located close to the boundary between the two classes. Negative 
examples that have been misclassified as positive are also useful examples because they 
induce a misclassification cost and tend to attract the hyperplane toward them. 

 
The aim of “Hard negative mining” is to train the model using the most useful negative 

examples: the “hard” negatives that are located close to the positive examples. In this way, 
the boundary drawn by the SVM will move closer to the positive examples, and the number 
of false positives is expected to decrease. 

 
Hard negative mining is done in an iterative manner: the classifier is first trained with a 

random subset of negatives, and this classifier is used to identify a first set of hard examples. 
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The score of all negatives of the training set is computed by the classifier and they are 
assigned to a class. All negatives that are misclassified are regarded as hard negatives. 

 

 
 

Figure 12 : Toy example of hard negative mining. Dark blue minus signs represent negative samples 
in the training set, while the light blue ones are not used for training. a) The first iteration is based on a 
random subset of negatives. b) It allows finding two hard negatives (red minus signs) that are added to 
the training set. c) After the second iteration, the boundary has moved closer to the positive sample (red 
plus sign) 

 
Then, at each iteration, the subset of negatives that is used for training is updated by 

adding the hard negatives found at the previous iteration. The model is retrained with this 
updated set, the score of all negatives is recomputed with the updated classifier and a new 
set of hard negatives is identified. 

 
In order to implement negative mining, one has to choose the initial size of the negative 

set (the number of negatives taken at random) and the number of hard negatives added at 
each iteration. Starting with a large subset allows reaching good results in less iteration, but 
the computation time for each iteration is longer, since the number of examples is larger. On 
the other hand, a small initial subset may require more iterations to converge. 
 

6.4.6 Active learning 

One issue related to ESVM is the enhanced influence of errors in the ground truth. There 
are two types of errors: 

 
- False positives: objects labeled (in the ground truth) as animal while their correct 

class would be background 
- False negatives: objects labeled (in the ground truth) as background while their 

correct class would be animal 
 
A straightforward way of solving the problem of false positives is to ask an expert to 

visually inspect each positives and confirm or infirm them. For the data set used in the 
present study, it means that 976 objects must be inspected. This approach was used and it 
took approximately 30 minutes to review all positive examples, among which there were 23 
false positives. 

 
The problem of false negatives is more complex. For this dataset using the same 

approach would require to visually inspect 403’859 negative samples – a task that cannot be 
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decently asked to anyone. To tackle the issue, a specific form of active learning has been 
implemented. 

 
First, let’s consider active learning in its most common acceptance: similarly to hard 

negative mining, active learning deals with the problem of building an efficient training set. 
While hard negative mining makes an intelligent selection among the existing training 
samples, active learning search for new training samples (outside the training set) that would 
be particularly helpful to the model. In order to include them in the training set, the model 
asks the user to give them a label. 

 
This approach is particularly efficient in situations where a limited amount of labeled 

samples exist, and the acquisition of a larger ground truth is expensive. This is the case in 
some remote sensing applications where the ground truth can only be acquired through 
terrain campaigns. It is also the case for the present study: since the positive class is very 
rare, finding new positive samples requires inspecting a huge amount of images. 

 
Active learning is usually used to extend the training set by including new areas that were 

not covered by the ground truth. In this study, the ground truth already (supposedly) covers 
the whole data set, but it contains false negatives. The aim of active learning is hence to 
correct these errors of the ground truth. 

 
The idea is that false negatives will be located close to some of the positive exemplars in 

the feature space and therefore these positive exemplars will give them a high score. Most of 
the false negatives should therefore be found in the subset of negatives that obtained high 
scores. 

 
At each training iteration of each exemplar, the 9 negative objects that obtain the highest 

score are displayed and the user can inspect them, and decide if they are real negative 
samples. The user has the following options: 

 
Animal: the object is removed from the negatives and is used as a new positive 

exemplar that will be trained. 
 
I cannot say: the sample is removed from the negatives, but will not be used as an 

additional positive exemplar. The user chooses this option if he does not want the model to 
avoid retrieving similar samples, but neither wants to encourage the model to look for them. 

 
Background:  the object is kept as a negative sample. 
 
The system keeps a list of all objects that have been assessed by the user, so that it 

avoids showing the same object again. Most of the “difficult” objects are shown to the user 
during the training of the first exemplars. If the user keeps on working, the additional time 
spent will become less productive, since most of the ground truth errors (i.e animals 
considered as negatives) are rapidly displayed and discarded by the user.  
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7. Experiments 

 
This section describes the goals and experimental setups of the different experiments 

that were conducted. 

7.1 Objects proposals 

 
The aim of this experiment is to compare the two methods (based on edge detection and 

shadow detection respectively) and see if using them together brings any benefit. 
 
The algorithms described in section 6.2 are run on the full image dataset for the three 

cases: shadow detection, edge detection, and both combined. The resolution of the images 
was reduced by a factor of two, yielding a GSD of around 8 cm. 
 

The number of retrieved tags and the mean number of proposals per image are reported 
as functions of the threshold. 

 

7.2 Features 

 
The aim of this series of experiments is to compare the performance of the histogram of 

words and the histogram of colors, and to analyze how the different parameters of the HOW 
affect the discriminative power of the features. 

 
To this end a classification using a linear SVM and a balanced dataset is performed. The 

hypothesis is made that features performing well with SVM will also perform well with ESVM, 
so that it should be possible to rely on the results obtained with this simple setup, even when 
moving to ESVM.  

 
All available animal objects are used, and the same number of negative objects is used 

to ensure a 1:1 class ratio. The training sets comprise 1324 objects, and the test sets have 
568 objects. For each experiment five replicates are done to mitigate the effect of random 
selection of the negatives. The cost parameter for the linear SVM is optimized with a 5-fold 
cross validation. 

 
The results are reported as ROC curves averaged over the 5 replicates. 
 
The first experiment compares the discriminative power of the HOW, the HOC and the 

concatenation of both. The following experiments compare the classification results obtained 
with three different image resolutions, with and without rotation-invariant words, and with 100 
and 300 words. Table 2 gives the parameter values for each experiment. 

 
Table 2 : Experimental setup 

 

 GSD Features # words Rotation-invariance 
of words 

Type of features 8 cm HOC, HOW, 
HOC+HOW 

100 Yes 

Resolution 8, 12, 16 cm HOC + HOW 100 NO 

Rotation-
invariance 

8 cm HOW, 
HOC+HOW 

100 Yes / NO 

Number of words 8 cm HOC+HOW 100, 300 No 
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7.3 Classification in an imbalanced dataset 

 
The aim of these experiments is to assess to quality of classification using a simple 

implementation of exemplar SVMs in the case of a very imbalanced dataset, and to analyze 
how hard negative mining and active learning can improve the performance. 

 
For these experiments all the negatives are included to the training and test set. The 

training set comprises 662 exemplars (positive objects) and 403’859 negatives, giving a ratio 
of 1:610. The test set has 284 exemplars (positive objects) and 160’384 negatives, yielding a 
ratio of 1:564. The sets were determined by ranking the images by number of animals they 
contain, and then assigning images to the train and test set in turn. In this manner, all objects 
of a same image are always assigned to the same set, and both sets are believed to contain 
a similar number of large herds, medium herds, isolated animals, etc. 

 
The first experiment compares the classification results obtained without hard negative 

mining, with one single iteration of negative mining, and with as many iterations as needed 
for the cache to become stable. Three different values were used for the initial number of 
negatives in the cache. 

 
The next experiment deals with active learning. To assess the benefit of using this 

method to correct errors in the ground truth, exemplars have been trained using the form of 
active learning described in section 6.4.6. After one hour of work, active learning was 
switched off. The detected false negatives were added to the remaining exemplars, and all of 
them were trained with the improved negative set. Results obtained with these actively 
trained exemplars were confronted with those obtained without active learning. 

 

7.4 Influence of the time of the day 

 
This experiment aims to find the time period where detection is easiest. It compares the 

classification results of subsets of images taken at different times of the day. Based on the 
available images, three periods of time where defined: the first from 09:13 until 09:28 
(“morning” subset), the second from 13:08 to 13:00 (“midday” subset) and the last from 15:00 
to 15:10 (“afternoon” subset). 

  
After examination it appeared that the afternoon subset contains only few animals, and 

half of them are ostriches. Because ostriches are visually very different to other animals, 
comparing subsets with such inequalities seems a poor idea. For this reason, the afternoon 
subset was not used. For a fair comparison of the other subsets, and because the morning 
subset contained no ostriches at all, the few ostriches of the midday subset were removed. 
Table 3 details the number of images and animals (quadrupeds only) in each subset, after 
the division into a training and a test set for each time period. 

 
Table 3 : Composition of the subsets of different time periods 

 

 Training Test 

 # images # quadrupeds # images # quadrupeds 

Morning 89 261 36 119 

Midday 120 176 48 82 
 

To ensure a fair comparison, only 176 exemplars of the morning training set were used. 
In this manner both training sets had the same number of exemplars. 
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8. Results 

8.1 Objects proposals 

Each of the two methods presented in section 6.2 has been tested separately with a 
range of different threshold values. Then both methods were simultaneously applied with a 
grid search to find suitable parameters. This was made to determine the benefit of using both 
methods combined. 

Figure 13 shows how the ratio of retrieved tags and the total number of proposals evolve 
with the threshold value, for each method. When combining both methods, the maximal 
percentage of tags retrieved is 88%, with a mean number of proposals per image of 490. 
 

 
 

 
Figure 13 : Performance of the Shadow and Edge methods for objects proposal: Number of tags 

retrieved and mean number of objects per image, as a function of the selected threshold. 
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In this experiment the spatial resolution of the images was reduced by a factor of two, 

yielding a GSD of around 8 cm. 
 
The other parameters have been chosen heuristically: 
- Minimal area:  2  pixels 
- Buffer size:  5  pixels 
- Size of sobel filter 5x5 pixels 
 
Note that these parameters must be adapted to the resolution of the image. 

8.2 Features 

The results regarding the types of features and the parameters for the histogram of visual 
words are presented as ROC curves. The training and the test were performed on balanced 
data sets, i.e. containing the same number of animals and background objects. 

 

8.2.1 Feature type 

The ROC curves of Figure 14 present the classifications obtained with two types of 
features (histogram of colors and histogram of visual words) as well as the concatenation of 
both feature types. 

 

 
 

Figure 14 : ROC curves of the classification based on histogram of colors (red line), histogram of 
visual words (blue line), and both feature types combined (green line)  

 

8.2.2 Effect of the resolution 

Figure 15 presents the classification results for different rescaling of the images. Note 
that the resolution of the images was always reduced by at least a factor of two. The reason 
is that the computational cost for histograms of visual words increases very rapidly with the 
resolution and using a GSD lower than 8 cm would only make sense with a better 
implementation than the Matlab code written for this study. 
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Figure 15 : ROC curves of the classification at a half (blue line), a third (red line) and a forth (red line) 
of the original image resolution. The ground sampling distance is approximatively 8, 12 and 16 cm 

respectively 

 

8.2.3 Effect of the rotation invariance 

Figure 16 confronts the traditional bag of visual words with its rotation-invariant version. 
For the latter, 16 rotations of the visual words are used. The choice of 16 rotations is 
supported by Figure 7. 

 
 

Figure 16 : ROC curves of the classification with (red lines) and without (blue lines) rotation of the 
visual words, when using histogram of visual words alone (dashed lines) and together with histograms of 

color (solid lines). 
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8.2.4 Effect of the number of words 

 
Figure 17 shows the influence of the number of visual words on the classification results. 

 
 

Figure 17 : ROC curves of the classification with 100 words (blue) and 300 words (red) 

 

8.3 Exemplar SVM 

8.3.1 Simple ESVM and hard negatives mining 

Figure 18 shows the precision-recall curve obtained with and without hard negative 
mining. For all curves, training started with 5’000 negatives. The red curve is obtained by 
making one single update of the cache. The orange curve is obtained when HNM is iterated 
until all hard negatives are included in the cache. 

 
 It should be mentioned that because the animals class is strongly underrepresented, a 

random classifier would obtain such a small precision (in the range of 10-3) that it cannot be 
represented on the graph. 
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Figure 18 : Influence of hard negative mining (HNM) on the precision-recall curve, when starting with 
5’000 negative objects. 

 
The next figure better displays the effect of HNM on the precision and on the recall, by 

plotting them separately against the threshold on the objects’ score. Objects having a score 
higher than the threshold are classified as animals, and those with a lower score as 
background. 

 

 
 
 

Figure 19 : Influence of hard negative mining on the precision (left) and the recall (right). 

 
Figure 20 shows the precision-recall curves obtained when starting with a higher number 

of negative examples in the cache (60’000 and 120’000) and can be compared with Figure 
18, where this number was much lower (5’000). 
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Figure 20 : Precision-recall curves obtained when starting with a high number of negative objects: 

60’000 (left) and 120’000 (right). 

 
The next figure displays a few detections along with the exemplars that gave them the 

highest score (i.e. the most similar exemplars). 
 

    

   

    
 
Figure 21 : Detected animals (left columns) and most similar exemplars (right columns) 
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8.3.2 Active learning 

 
Learning started with 574 exemplars and 403’859 negatives in the training set. After one 

hour of interactive learning, 55 animals had been found among the negatives and added as 
new positive exemplars. Another 52 negatives had been assessed as “I am not sure” and 
removed from the negatives pool. A total of 1678 small tiles (presenting one object) were 
visually assessed, or 0.42% of all tiles. The frequency of animals found among the negatives 
decreased rapidly over time. During this hour of active learning, 120 exemplars were trained. 
The remaining 509 exemplars (454 + 55 additional ones) were trained without active 
learning. 

 
Figure 22 : Precision-recall curve of classification after one hour of active learning (red) 

and without active learning (blue).Figure 22 compares the precision-recall curves obtained 
with and without active learning. 

 
Figure 22 : Precision-recall curve of classification after one hour of active learning (red) and without 

active learning (blue). 

 
 

8.4 Influence of the time of the day 

The histogram of the three bands red, green and blue at the three periods are shown in 
Figure 23. Figure 24 presents the precision-recall curves. To ease the interpretation, the 
precision and the recall are also displayed separately, as function of the threshold. There are 
three sets of exemplars (those from the morning images, those from the midday images, and 
both combined) that can be used to predict two test sets (morning and midday), yielding 6 
possible combinations – each line of the graphs correspond to one combination. 
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Figure 23 : Histogram of the red, green and blue bands at three moment of the day: in the morning 

from 09:13 to 09:28 (blue curve), from 13:08 to 13:30 (red line), and in the afternoon from 15:00 to 15:10 
(black). The histograms are a mean over all the images taken during the respective time periods. 

 

 

 
 

Figure 24 : Classification results for two 
different time periods. Dashed lines refer to 
training with exemplars from the morning 
images, dotted lines from the midday images, 
and solid lines from both combined. Blue 
lines refer to testing on morning images and 
red lines on midday images. Top: precision 
(left) and recall (right) as function of the 
threshold. Bottom left: precision-recall curve. 
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9. Discussion 

 

9.1 Objects proposals 

The method based on edge detection is able to retrieve more tagged animals than the 
method based on shadows, and at the same time it gives a smaller total number of objects.  
Figure 25 shows a situation where the edge detection was successful, while the shadow 
detection failed because the animal is in the shade of a tree. Such situations are not rare and 
can explain why the shadow detection does not reach the retrieval rate of the edge detection. 
Furthermore the edge detection proposes a lower total number of objects because most 
many trees and bushes have diffused borders and shadows that do not respond much to the 
sobel filters. 

 

 
Figure 25 : Situation where the edge detection successfully defined an object on the tagged animals, 

while the shadow detection failed. Left : original image. Center: mask of shadow detection. The tree and 
the animals are merged in a single blob and the object is defined at its center, away from the animals. 
Right: mask of edge detections. The diffuse border of the tree have not fired above the threshold. Two 
blobs correspond to the animals, one on their white bodies, another one on the sharp edge of their 
shadow. 

 
When both methods are combined, the maximal number of retrieved animals increases 

by 2% with respect to the edge detection alone, at the cost of 140 additional objects per 
image on average. The benefit is therefore questionable. Nevertheless, it was decided to use 
both methods together because the additional objects should not be especially difficult to 
classify as background, if they have this characteristic that they lack sharp borders. In 
addition, the shadow detection might be necessary to retrieve ostriches, because of their 
overall dark color. Missing the few members of this species would be sad. 

 
Retrieving 88% of the tagged animals is a satisfactory result, when considering that the 

ground truth contains a certain number of false positives (i.e. background objects tagged as 
animals). To analyze the quality of the proposed objects, it would be interesting to quantify 
the cases where several proposals were made on the same animal, and the cases where a 
single proposal is made for two adjacent animals. 

 
The complete set of objects, obtained by combining both the edge and shadow detection, 

comprises 976 objects of the class animal, and 403’859 objects of the class background. 
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9.2 Features 

 
Before describing the figures, it should be reminded that in this experiment the dataset 

includes the same number of animal and background objects, which strongly differ from the 
natural case where animals are very rare compared to background objects. Thus, keeping in 
sight the final goal of detection in a very imbalanced dataset, the attention should be 
primarily focused on the left side of the ROC curves, corresponding to low false positive 
rates. Indeed in the naturally imbalanced dataset, a false positive rate of 0.1 would already 
correspond to several thousands of false detections 

 
At first sight the histogram of color performs surprisingly well in comparison to the much 

more elaborated and time-consuming histogram of visual words (Figure 14). This indicates 
that colors hold the major part of the information, while the shapes and structures that could 
be captured by visual words are less important in this task. 

However, on the very left side of the graph the advantage of the HOC is smaller. There, 
combining both methods brings a huge improvement. For a false positive rate of 0.03 for 
instance, the recall is 0.75 for combined histograms while it is only 0.50 for HOC alone and 
0.45 for HOW alone. 

 
A GSD of around 16 cm is not able to compete with higher resolutions. But, interestingly, 

the benefit of using a GSD of 8 cm over a GSD of 12 cm only appears at a recall of 0.65. 
This indicate that two thirds of the animals do not need such high resolution to be 
distinguished from background objects, but the last third of the animals becomes more 
distinguishable when the resolution is increased to 8 cm. Finally, it is noteworthy that 
increasing the resolution is very expensive in terms of computational time, because the 
relation between the resolution and the size of the patches to be compared is quadratic. 

 
As for the rotation-invariant HOW, it brings a real improvement when the HOW is used 

alone. However this advantage becomes much less obvious when the histogram of colors is 
added to the feature vector, and completely vanishes for very low false positive rates. The 
conclusion is that the rotation-invariant HOW may be appealing in theory, but does not bring 
a clear improvement and induces unnecessary computational burdens.  

 
As expected, using more words improves the classification. The benefit is highest for 

recalls between 35 and 60. In this range, using 300 words instead of 100 can improve the 
recall by up to 15%. 

 
These experiments show that fine-tuning the parameters for the histogram of visual 

words is not easy. With the Matlab code implemented during this study, computing the HOW 
for the whole dataset of 654 images takes from 12 to 72 hours, making a fine search of the 
parameter space very tedious. 

 
Nevertheless this first analysis indicates that it is better to use the histogram of color and 

the histogram of visual words in combination. Then, using a higher number of words should 
be preferred over rotation-invariance. Finally, using a higher image resolution is also 
beneficial but at the expense of high computational cost  

 
But before trying to optimize the HOW, it would probably be better to try adding other 

features such as a histogram of gradients and features that describe the texture of the image 
(such as the variance or the entropy). 
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9.3 Exemplar SVM 

9.3.1 Simple ESVM and Hard negative mining 

 
Let’s first consider the blue curve of Figure 18, which corresponds to the simplest use of 

exemplar SVMs. This precision-recall curve indicates that, for instance, there exists a 
threshold value that yields a recall of 70% for a precision of 16%. This precision may seem 
quite low in comparison to the results generally reported for classification tasks. However, 
considering that animals are very rare in the dataset, this is already satisfactory. In practice, 
a human observer could visually review the detections and eliminate the false positives. 
Displaying 18 tiles at a time on a screen (each tile representing one detection), on average 
he would find 3 animals per screen – many more than the volunteers can ever hope during a 
crowd-sourcing campaign! 

 
Regarding hard negative mining (HNM), Figure 18 shows disappointing results. In this 

case HNM has decreased the performance of the system. 
 
Figure 19 reveals that HNM led to a decrease in recall and an increase in precision. This 

has the following explanation: as hard negatives are found, the boundary between the 
classes moves closer to the exemplar, thus requiring a higher similarity with the exemplar for 
other objects to be classified as animals. This naturally decreases the recall and increases 
the precision. Unfortunately, the reduction in recall was in general stronger than the increase 
in precision. 

 
When training starts with a higher number of negatives in the cache (Figure 20), the 

effect of HNM becomes negligible. The performance is marginally increased. The reason 
could be that the initial 60’000 or 120’000 negatives already contained sufficiently hard 
negatives. This idea is supported by the way that objects were defined: the edge detection 
and the shadow detection produced many objects that are visually close to the animals. In 
this sense, the set of negative objects may include a sufficient proportion of hard objects, so 
that it is not necessarily needed to go and look for them. 

 
Considering this, the use of HNM is not recommended for this dataset. 
 
Figure 21 displays a few detections and their closest exemplar. Very often, the exemplar 

shares many characteristic with the detection: similar species, similar background (note that 
in one instance even the presence of a trail is shared by the detection and its exemplar), and 
sometimes a similar posture (as in the top right example). Here, the advantage of exemplar 
SVMs over standard SVM becomes clear: if the exemplars were annotated with such 
attributes, these could be transferred to the detections, apparently with a good accuracy. In 
particular, the species is an attribute that would be very relevant. 

 
In other words, this indicates that a species-specific detection can be envisioned. If it may 

not be possible to distinguish every species, at least it would be feasible to classify animals 
into groups of similar species. To further investigate this, a ground truth with information 
about the species would be required. 

9.3.2 Active learning 

The precision-recall curves indicate that for this dataset, active learning does not 
enhance the predictive ability of the ensemble of SVMs if recall rates above 55% are wanted. 
It is only beneficial if a high precision is desired. Thus at first sight it seems not very 
interesting in the context of this study. 
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However if we consider that 55 additional animals were found in the training set, it 
appears that this form of active learning is a neat way to improve a ground truth. It can be 
recommended in the case where additional detections in the training set is precious 
information, i.e. the training set is not only used to train a classifier, but further analyses are 
made on this training set as well. 

 

9.4 Influence of the time of the day 

 
Looking first at the histogram of colors, the afternoon subset is characterized by a peak in 

the low intensities. This clearly indicates that the images taken at this time of the day contain 
a larger fraction of shadow. The morning subset does not show a clear peak, but still has a 
little higher number of low intensities than the midday subset. Because shadows only occupy 
a small fraction of the image, these small differences are already interesting. 

 
For the rest, the morning and afternoon histograms are quite similar. The midday 

histogram is spikier and, surprisingly, its maximum corresponds to a slightly smaller intensity. 
It also falls more quickly on the right side. This is probably due to internal calibration of the 
camera or to the JPEG compression. To further investigate these histograms, they should be 
recomputed with images in RAW format instead of JPEG. 
 

Considering now the precision-recall curve (bottom left graph of Figure 24), it appears 
that it was much easier to classify the morning test set than the midday one, regardless of 
the exemplars involved. 

The top right graph indicates that the morning subset of exemplars gives a better recall, 
even when classifying the midday test set. However combining both training set provides 
even better results. 

Regarding precision, another behavior is observed. There, the best results are obtained 
when the training and the test subsets are from the same time period. Then, training with 
additional exemplars from the other time period does not affect the precision. 

 
These comments lead to the following statements: 
1) Exemplars from the morning subset are more efficient at retrieving animals than 

those of the midday subset. 
2) In general exemplars produce more false positives when used to classify images 

taken at another time of the day. 
3) Animals of the morning test set are easier to retrieve than animals of the midday test 

set. 
 

However, it is difficult to know if these results reflect a true effect of the hour of the day. 
They could also be due to differences in the background environment, since the images 
of the two subsets were not taken at the same location. If these statements need to be 
confirmed, a new data acquisition campaign should be purposely designed so that a 
stronger conclusion could be obtained. 
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10. Conclusions and perspectives 

 
This study depicted the main issues for the conservation of semi-arid savannas, and 

showed that estimating the population of herbivores is an important concern for farmers and 
managers of conservation reserves. The traditional methods for animal census are too 
expensive and laborious to be used regularly and to serve as a basis for data driven 
management. In this context, introducing UAVs as a new tool for land managers, especially 
for animal census and the mitigation of poaching, appears as a promising solution. 

 
The literature review showed that UAVs have already been used for animal detection, but 

only few attempts were made to automate the detection in the pictures. Usually a visual 
interpretation is made by a human. If this is possible for punctual estimations of populations, 
and when the dataset is small, it strongly discourages the use of UAVs for frequent census. 

 
The detection system implemented in this study was based on two simple methods for 

objects proposals and showed that an edge detector provides better proposals than a 
shadow detector. 

 
The Bag of Visual Words was used as a feature extractor. Tuning the parameters was 

not an easy task, because classifying the images into visual words is time consuming, and 
assessing the quality of a particular set of parameters requires to use the obtained features 
in a classification task. In the end, it turned out that the much simpler histogram of colors 
performs better than the histogram of words. However, using both types of features together 
gave the best results, meaning that the HOW still adds discriminative information. 

 
The influence of the image resolution was also analyzed at this stage. A ground sampling 

distance (GSD) of 16 cm proved to be too high, but the advantage of using a GSD of 8 cm 
over 12 cm becomes less clear. The computational burden linked with very high resolutions 
inhibited the use of the original, 4 cm resolution. This means that the UAVs could fly at higher 
altitude than they did (around 130 m). 

 
In order to address the particular characteristic of this dataset (high intra-class 

heterogeneity and strong underrepresentation of the class animals), exemplar SVMs have 
been used for classification. Following the recent work of (Kobayashi, 2015), the exemplars 
were trained as one-class SVMs and fitting the cost parameter was avoided. After rescaling 
the scores produced by the ensemble of exemplar SVMs, it appeared that the simple rule of 
retaining the maximal score gave satisfactory results. 

 
The advantage of exemplar SVM became clear as it was observed that the detected 

animals match very closely with the exemplars that give them the highest score. In particular, 
this means that the species of the detected animals could be retrieved, if the ground truth 
contained information about the species. 

 
Hard negative mining did not allow to improve the results, but active learning was 

successfully used to increase the precision and retrieve a significant number of animals from 
the training set, that were wrongly labeled as background. 

 
The dataset was split into two subsets according to the time of the day when the pictures 

were acquired. The analysis indicated that the classification of the images acquired in the 
morning was much easier. Furthermore, the exemplars from the morning subset gave better 
results than those of the midday subset, whatever subset was used for testing. A strong 
limitation of this analysis lays on the fact that the flights done in the morning and at midday 
were done in different locations, so that it may be biased by different types of land covers. 
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This study demonstrated that automated detection of large herbivores in semi-arid 
savanna is possible, even with simple RGB cameras. But at this stage the intervention of a 
human observer to verify the detections and discard the false positives is still needed. It is 
likely that better results can be obtained by using better, or simply more features, and fine-
tuning some of the parameters of the model. 

 
Before envisioning UAVs for regular and fully automated counts of animals, it is needed 

to consider each of the steps presented in Figure 26. This study delt only with information 
extraction, while a considerable amount of work is also needed before and after that. For 
data collection, UAVs with a longer autonomy of flight would be required. Longer and more 
frequent flights mean even more pictures, which should be properly organized and stored 
thanks to a database management system. Once animals are detected in the images, the 
following step is to estimate the population density, with the help of appropriate statistical 
methods. Here the issue of double-counting animals in consecutive images will need to be 
addressed, and more generally the statistical framework that allows computing population 
densities from incomplete counts should be integrated. The maps that are produced at this 
step must be meaningful to the land managers, so that they can easily use them to improve 
their management practices. A training course to help them changing their working method 
and operating the whole system may be required. 

 

 
Figure 26 : Steps to be considered, from data acquisition to improved management practices 

 
 
In conclusion, if the rapid advances of machine learning keep the same pace in the 

coming years, detecting animals in the images will not be a bottleneck. The challenges will 
be on the side of data acquisition and management, and about integrating the information 
extracted from the images into the management practices. 
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