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Abstract— This work explores the possible roles of active tails for
steady-state legged-locomotion. A series of simple models are proposed
which capture the dynamics of an idealized running system with an
active tail. The models suggest that the control objectives of injecting
energy into the system and stabilizing body-pitch can be effectively
decoupled via proper tail design: a long, light tail. Thus the overall
control problem can be simplified, using the tail exclusively to stabilize
body-pitch: this effectively relaxes the constraints on the leg-actuators,
allowing them to be recruited specifically for adding energy into the
system. We show in simulation that models with long-light tails are
better able to reject perturbations to body-pitch than short-heavy tails
with the same moment of inertia. Further, we present the results of
a one degree-of-freedom tail mounted on the open-loop controlled
quadruped robot Cheetah-Cub. Our results show that an active tail
can greatly improve both forward velocity and reduce body-pitch per
stride, while adding minimal complexity. Further, the results validate
the long-light tail design: shorter, heavier tails are much more sensitive
to configuration and control parameter changes than longer and lighter
tails with the same moment of inertia.

I. INTRODUCTION

Due to the very nature of the field, advances in legged
robotics are very frequently bio-inspired, both in mechanical
design (Altendorfer et al., 2001; Ananthanarayanan et al.,
2012; Hutter et al., 2012) as well as control strategies ( Ajal-
looeian et al., 2013; Geyer and Herr, 2010; Ijspeert, 2008).
Dynamic legged locomotion is a challenging task, with non-
linear hybrid dynamics. Although conventional engineering
approaches are proving themselves at solving these problems
(Boaventura et al., 2012; Mordatch et al., 2010), studying
and understanding how animals solve them often leads to
great simplifications (Holmes et al., 2006). In many cases
animals achieve locomotion over steady terrain through a
combination of periodic feed-forward control signals, gener-
ated via central pattern generators (CPGs) (Ijspeert, 2008),
simple decentralized feedback in the form of reflexes (Geyer
and Herr, 2010; Owaki et al., 2013), as well as mechanical
design with natural dynamics displaying good stability and
efficiency properties (Pfeifer and Iida, 2005; Rummel and
Seyfarth, 2008). This last concept is often referred to as mor-
phological computation or mechanical intelligence, and can
be crucial to designing a versatile, high-performance legged
robot (Bhounsule et al., 2012; Hauser et al., 2011; Spröwitz
et al., 2013). With this in mind, we turn our attention to
tails. In an aquatic environment, the importance of the tail
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Fig. 1: Experiments were conducted using a newly built version
of the Cheetah-Cub robot (Spröwitz et al., 2013), with an added
1 degree of freedom tail module. Shown are two different tails, a
short-heavy (above) and long-light (below) tail. Both tails have the
same moment of inertia around the tail axle. For the tail parameters
see TABLE I. Brightness in the photographs was digitally enhanced.

for propulsion has been explored both in biology as well as
in robotics (Bainbridge, 1958; Lauder and Drucker, 2004;
Triantafyllou et al., 1993; Weihs, 1989). Despite this, the
role of tails for locomotion in legged terrestrial vertebrates
is still unclear. Although most terrestrial vertebrates possess
a tail, having evolved from their aquatic predecessors, in
most cases it has been adapted for purposes other than
locomotion, especially among larger mammals (Hickman,
1979). Nonetheless there are some notable exceptions: kan-
garoo rats and pocket mice have been observed performing
precise aerial maneuvering using their tail (Bartholomew and
Caswell, 1951; Hickman, 1979). Geckos and other lizards
have also been shown to use their tails extensively for
aerial posture-control, particularly for controlling body-pitch



(Jusufi et al., 2008; Libby et al., 2012) and the concept
has been demonstrated to be useful in robotics as well
(Johnson et al., 2012; Libby et al., 2012; Liu et al., 2014).
Among larger terrestrial mammals, cheetahs appear to use
their rather large tails to aid in cornering at high speeds, a
concept that has been recently explored in robotics (Briggs
et al., 2012; Patel and Braae, 2013). Snow leopards also
appear to use their tails for stability while hunting on near
vertical cliffs, though no studies have as of yet demonstrated
this. Kangaroos, another large mammal with a relatively
large tail (Alexander and Vernon, 1975), also appear to use
their tails during hopping for controlling posture. In each
of these last three cases, there are no conclusive biological
experiments that prove the use of the tail to the best of our
knowledge. It is however interesting to note that each case
represents a highly specialized form of locomotion, ranging
from high acceleration and speed (cheetah) to rough terrain
(snow leopard) to efficiency (kangaroos). We believe that
further understanding of these extreme examples can greatly
aid in designing specialized robots, as well as understanding
biology. As in Libby et al., 2012 we limit our study to the
sagittal plane; we focus however on steady-state locomotion
(i.e. constant speed), taking into consideration the dynamics
of both flight and stance phases. We approach the problem
through model-analysis and simulation of a simplified, ide-
alized system by which we extract a basic design principle;
we then validate this principle by applying it to a more
complex system in hardware, using the Cheetah-Cub robot
(Spröwitz et al., 2013), shown in Fig. 1. We thus show that,
for the same moment of inertia (MoI), a longer and lighter
tail design allows body-pitch control to be decoupled from
other dynamics, simplifying control and adding robustness
to the system.

II. HYPOTHESIS

We define a tail as an appendage which alters the dynam-
ics of the system, without directly applying contact forces,
i.e. without touching the ground. In this manner, when a
kangaroo (or robot) uses its tail for support while standing
or shuffling (O’Connor et al., 2014) we consider it as an
additional leg instead of a tail. Conversely, any limb capable
of inertial manipulation could in theory occupy the same
role, as discussed also in (Johnson et al., 2012). In this
study we only discuss tails, though the concepts can be
directly transferred to other appendages. Other appendages
such as the head or legs in swing-phase are typically subject
to stricter constraints due to their various functional roles:
for example, it is generally desirable to keep the head steady,
both to protect the brain as well as to obtain better visual
sensory input. We hypothesize that a proper tail design allows
for a much simpler control strategy, by decoupling the control
problem. This is similar in concept to Raibert’s original
control scheme (M. H. Raibert, 1986) in which hopping-
height, forward-velocity and body-pitch were each controlled
independently by means of leg-thrust, landing angle-of-attack

and hip-torque during the stance phase, respectively. This
decoupled control scheme is not only simple but also very
effective. However, the control objective of stabilizing body-
pitch is partly simplified by designing the body to have a high
moment of inertia and having the hip-joint located near the
body center of gravity (CoG). More importantly, hip-torque
is made available exclusively for body-pitch stabilization
during the stance phase by having a prismatic leg, such that
leg-thrust is largely independent of hip-torque. Most legged-
robots however use rotary motors driving articulated legs
with rotary joints (Boaventura et al., 2012; Hutter et al.,
2012; M. Raibert et al., 2008; Seok et al., 2013), in which
case hip-torque becomes important to generating leg-thrust.
In biology also, several studies indicate that hip-torque plays
a key role in generating leg-thrust (Tan and Wilson, 2011).
Indeed, the coupling between energy-input and body-pitch
can be the overriding constraint to acceleration (Williams
et al., 2009). For the sake of simplicity, we group the two
control objectives of hopping-height and forward-velocity
into a single objective, that of energy-input. We hypothesize
that a properly designed active tail can allow for an alter-
native path to decoupling the body-pitch and energy-input
control objectives: if the tail actuator has negligible impact
on the energy-input, it can be used exclusively for controlling
body-pitch in a simple control loop. Similarly, if the leg
actuators have a negligible impact on body-pitch then they
can be freely optimized for the energy-input control objective
without having to consider body-pitch. This leads to two
separate, simpler control schemes. In order for these two
control objectives to be effectively separated, the dynamic
coupling between the tail actuator input and the energy-
input control objective should be minimized, or ideally,
fully decoupled. The same is true for the leg actuators and
the body-pitch control objective. This decoupling implies a
specific tail design. We examine the requirements for this
decoupling through a simple, idealized models.

III. MODEL

In order to understand the use of an active tail, we examine
a simple idealized model which still captures the salient
dynamics of the system, as in (Full and Koditschek, 1999).
We base our model on the Spring-Loaded Inverted Pendulum
(SLIP) model (Blickhan, 1989; Hutter et al., 2010). We
extend it as shown in Fig. 2, to include three rigid bodies
(body, leg and tail). We derive the full equations of motion
(EoM) for both stance and flight phase using Lagrange’s
second method and obtain

M(q)q̈ = H(q,q̇)+B(q)u(t)+ Jᵀc(q)λGRF (1)

where q is the vector of generalized coordinates, q̇ and q̈ are
the corresponding velocities and accelerations respectively,
M(q) is the mass matrix, H(q,q̇) contains differentiable forces,
B(q) is the control matrix, u(t) is the vector of control
inputs, λGRF is the ground-reaction force (GRF) in cartesian-
coordinates and Jc(q) is the contact Jacobian of the foot,



which we use to project λGRF into the generalized coor-
dinates. The vector of degrees of freedom (DoF) is q(t) =
(x,y,ϕ,yF ,ϕH ,ϕT )

ᵀ (see Fig. 2). Note that our system has
the full 6 DoF during flight-phase, however during stance-
phase we assume no slipping of the foot, and therefore the
vector of minimal coordinates is reduced to 4 DoF. Instead
of switching between two separate minimal vectors q, we
keep the same vector q for both flight- and stance-phases
but add two constraint equations during the stance-phase in
the form of the ground-reaction forces λGRF , which enforce
the no-slip assumption. This allows a more intuitive analysis
of the effect of each control input in u(t). For more details
on how this constraint is calculated, see Remy et al., 2011.

For the analysis, we then solve (1) explicitly, yielding

q̈ = M−1
(q)(H(q,q̇)+B(q)u(t)+ Jᵀc(q)λGRF) (2)

q̈ = H̄(q,q̇)+ B̄(q)u(t) (3)

where we have rewritten the solution and separated all terms
that multiply a control input into B̄(q) and the rest into H̄(q,q̇).
In the simplest case, we use a flywheel instead of a tail (see
b) in Fig. 2), i.e. a tail with moment of inertia (MoI) but
no length or mass, and with both tail and hip joints located
directly on the body center of gravity. The matrices H̄(q,q̇)
and B̄(q) as well as the control vector u(t) are shown in (4)
and (5).

H̄ =


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B̄(q)u(t) =
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 (5)

Here, m and J refer to mass and moment of inertia, g is
gravity and the sub-indices B,F and T indicate the body, foot
and tail respectively. If we examine the explicit EoM for this
case, we see that the flywheel DoF has no influence at all on
the rest of the system dynamics: it is fully decoupled. This
changes drastically if the joint is displaced from the body
center of gravity (CoG) or full tail with length and mass is
used instead of a flywheel. More importantly, in the control
matrix B̄(q) we see that the flywheel torque τT only affects the
tail-rotation ϕT and the body-pitch ϕ but not the other body
DoF x and y. Indeed the only coupling between body-pitch
ϕ and body-translation x or y DoF is through the hip-torque
τH . This lends itself well to a very simple control structure:

the x and y coordinates of the body carry most of the kinetic
and potential energy during locomotion, and in particular
the y DoF oscillates between high kinetic and high potential
energy. In other words, these are the two coordinates with
which energy-input to maintain locomotion is associated. The
body-pitch DoF ϕ on the other hand, should ideally contain
as little energy as possible: the angular momentum of the
body has to integrate to zero, otherwise the body will start
tumbling. Thus, any variations of energy-content, i.e. angular
momentum, in the body imply an equal amount of positive
and negative work, which could otherwise be put to better
use to displace the body. As long as the coupling between
body pitch and translation is not too strong, the coupling
can effectively be ignored and treated as a disturbance, and a
simpler single-input single-output control loop can be applied
to body-pitch, with the tail-torque τT as control input. In
order to do this, the tail design should approximate the
dynamics of a flywheel.

This is the key advantage of using a highly-idealized
model such as the one shown in b) in Fig. 2: because
the dynamics are much simpler, it is possible to calculate
the explicit EoM symbolically as shown in Eq. 2 and 3
and analyze them with relative ease. This allows for easy
abstraction of key principles. We do not go into the details
of design analysis here, though the reader may refer to
Heim, 2014; suffice it to say the tail should be able to carry
significant angular momentum while carrying minimal linear
momentum. In other words, while keeping the MoI of the
tail constant, a long and light tail is preferable to a short and
heavy tail.

IV. SIMULATION RESULTS

We use the MATLAB framework developed by C.
Remy (Remy et al., 2011), with minor modifications.
The entire framework is released open-source with sev-
eral examples, including the models presented here, and
can be found at https://bitbucket.org/ramlab/
optimal_gait_creation_framework.
The framework disposes of gradient-based optimization tools
to synthesize locally-optimal, open-loop control trajectories
for a periodic gait, which require a relatively good initial
guess. Since the models presented in section III are very
sensitive to even small changes in parameters, finding initial
guesses becomes a tedious manual operation. For this reason
we proceed in two steps: quasi-periodic initial guesses are
first generated using a particle-swarm optimization (Van
Den Kieboom et al., 2014) framework running on a cluster
of 80 nodes, and gradient-based optimization is then applied
to these results. To generate the initial-guesses we simply
maximize distance traveled before falling, while limiting
torques to avoid giant leaps. This simple method reliably
produces solutions which are close enough to being both
periodic as well as locally optimal that they can be used
as an initial guess. We then perform Floquet analysis on
the return map (Guckenheimer and Holmes, 1983) of these



Fig. 2: a) Different key instances of the general Spring-Loaded Inverted Pendulum (SLIP) model are shown, from left to right: touch-down,
maximum leg-compression, lift-off and flight-phase apex. Note that, differently from our models, the original SLIP model is not actuated
but at the same time energy-conservative i.e. there are no energy losses. Also, the body-pitch degree of freedom (DoF) is not modeled
and the hip-angle is simply reset for each new hop.
b) Our simplest model uses a flywheel, which represents an idealized tail with moment of inertia (MoI) but no mass. The dynamics and
physical parameters of all DoF are modeled; these DoF are shown in b).
c) Here the control inputs are depicted: a force τF acting on the leg-extension DoF yF , a torque τH acting on the hip-rotation DoF ϕH
and a torque τT acting on the tail-rotation DoF ϕT .
d) In the final model we use an actual tail with not only MoI but also length, therefore an off-center mass. The DoF and control inputs
remain the same as shown in b) and c).

solutions to limit-cycle stability, as well as generate a closed-
loop controller which stabilizes a first-order linearization of
the return-map as in Remy et al., 2011. We compare the
response of systems with different tail-designs to body-pitch
velocity perturbations, with both open-loop and closed-loop
controllers. We keep the MoI of the tail around the tail-joint
constant, while adjusting the length and mass accordingly.
The results are shown in Fig. 3. As we expect due to the
increased coupling and resultingly more complex control
problem, the simple closed-loop controller implemented has
progressively more trouble rejecting body-pitch perturbations
as the flywheel becomes a tail, and the tail becomes shorter
and heavier, despite maintaining the same MoI and thus
the same inertial effectiveness (Johnson et al., 2012). These
results match the predictions we make in section III.

V. HARDWARE RESULTS

A 1-DoF rigid tail was built and mounted on the Cheetah-
Cub robot (Spröwitz et al., 2013). Cheetah-Cub is a small
quadruped with two actuated DoF per leg, hip and knee-
flexion, slightly smaller and lighter than a house-cat. The
Cheetah-Cub features compliant pantographic legs which
make it robust to impacts, and more importantly allow for
stable and fast open-loop locomotion: feed-forward position-
control inputs are fed directly to the servo-motors, generated
from a simple CPG network. Stability is provided by the
mechanical morphology of the robot and indeed for the
trotting gait there is a very wide set of parameters of the
CPG which result in stable locomotion. This allows the CPG
to be tuned for performance, i.e. forward speed, without
worrying about stability issues. Though previous research
with the Cheetah-Cub has focused on a trotting gait, we
chose a bounding gait, i.e. with the fore pair and hind pair
of legs moving in unison as can be seen in Fig. 6. We chose

bounding since body-pitching (and therefore the effect of the
tail on body-pitch control) is more pronounced and relevant
in this gait. The CPG nodes of the hips are tuned to be in-
phase left-right, and anti-phase fore-hind. The tail CPG node
is connected directly to the hind-hip nodes in anti-phase.
For more details, see Heim, 2014. Other connection schemes
between the tail and leg CPG nodes were briefly explored,
but no differences of great interest arose. Our tails, shown in
Fig. 4, are made with a hollow carbon-fiber tube, weighted
at the end with aluminum and brass weights. This design
makes it not only easy to adjust the tail parameters but is
also easily modeled as a massless rod and a point-mass.

For the presented comparison, we use two tails with
almost the same moment of inertia (MoI): a short-heavy
tail with length of 12.8 cm (from tail-joint to CoG), mass
of 53 grams and MoI of 8.68 kg cm2, and a long-light
tail with length 16.8 cm, mass of 31 grams and MoI of
8.75 kg cm2. For reference, the entire robot without the tail
weighs 1.25 kg and measures 21 cm from hip to hip. The
key parameter is the MoI. For values which are too low,
tail performance is limited by the range of tail-sweep; if
it is too high, performance is limited by maximum motor
torque. Within a reasonable range of MoI around the one
used, changes in MoI can be compensated by tuning tail
amplitude, resulting in little overall impact on performance.
In our experiments, we hand-tune the CPG-parameters to find
a gait which represents a local optimum in terms of forward-
velocity for both the short-heavy tail as well as the long-light
tail. We then change the values of individual CPG-parameters
and observe the effect. In general, we observe two situations:
either the effect is the same using either tail, as is the case for
changing the phase-lag between the tail and hind-hip CPG
nodes (forward velocity drops in much the same way for both
tails), or the parameter change has a much greater effect on
the performance of the robot with short-heavy tail than it
does when equipped with a long-light tail. This is the case,
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Fig. 3: We compare the responses of several models to a small perturbation to the body-pitch velocity: plotted are the open-loop reference
with no perturbation (black, dashed), open-loop response to perturbation (red, dot-dashed) and closed-loop response (blue, solid). For
more details on the closed-loop controller, see Remy et al., 2011. Note that none of the limit-cycles are stable and therefore any small
perturbation, whether physical or numerical, will cause the system to diverge. In the three cases, the moment of inertia of the tails remains
the same: the first represents a flywheel and as such has a MoI but no off-center mass, i.e. the length of the tail is zero. In the second
two cases, the tail mass and length are scaled in such as way as to ensure the total MoI remains the same: the shorter tail is half the
length, but four times the weight. As we progress from a the flywheel model, with no ‘tail mass’, to tails which are progressively heavier,
the effectiveness of the closed-loop controller diminishes: in the short-heavy tail model, it has essentially no effect on stability, visualized
here as steps-to-falling.

Fig. 4: The tail was designed in a very simple manner which
allows weight to be easily adjusted, and many versions of the
tail with different lengths can be cheaply and quickly constructed.
The tails can be exchanged on the robot within seconds with the
simple screw-in base. Note, the steel base was necessary due to
the high moments sustained by the weighted tail. Brightness in the
photographs was digitally enhanced.

for example, when changing the tail-offset or tail amplitude.
We show in Fig. 5 and TABLE I the experimental results
for changing the tail-offset, which is the parameter with the
most pronounced difference between tail configurations. For
comparison, we also show the performance of the robot
with a rigid, passive tail, i.e. where the tail is kept at a
fixed angle of 30 degrees with respect to the body. We use
this as a comparison instead of comparing with no tail at

all in order to keep the total MoI of the robot as similar
as possible across all three configurations. Further, without
a tail, all the remaining CPG parameters need to be re-
tuned to achieve a meaningful gait. The best bounding gaits
found without a tail at all were similar in performance to
the presented case with a passive tail. In the trials shown,
all CPG node parameters are kept constant across each
configuration, except for those specified: in the tail CPG
node the tail-offset, i.e. the midpoint of the tail oscillations,
is changed between trials a) and c) compared to trials b) and
d). In trial e) ‘passive-tail’ the tail CPG-node is disconnected
from the rest and has an amplitude of 0, i.e. it keeps a fixed
position. We find that performance is very similar between
the two tails when perfectly tuned, as in cases a) and c).
However, when equipped with a short-heavy tail, changing
the tail-offset by just 30 degrees has a notably larger effect
on performance, with forward velocity decreasing 7.35%.
With the long-light tail, performance remains essentially the
same. Further, standard deviation of body-pitching is and
remains much lower when using the long-light tail regardless
of tail-offset, implying a steadier, smoother gait. Considering
that the entire robot weighs 1.25 kg and even the heavy
tail represent only 4.4% of the total body-mass, such a
large effect on performance is impressive. We find that these
results match our predictions: since both tails have almost
the same MoI they are about equally effective at stabilizing
body-pitch, however the longer lighter tail is less sensitive
to configuration changes, making the robot potentially more
versatile in a larger portion of state-space.



Tail Parameters Plot Tail Position [degrees] Forward Velocity [ m
s ] Body Pitching per Stride [degrees]

mean standard
deviation

runs mean standard
deviation

number of
strides

Short-heavy tail
length: 12.8 [cm]
mass: 53 [g]
MoI: 8.68 [kg cm2]

a) offset: 35 0.558 0.012 4 8.7 1.6 32

b) offset: 65 0.517 0.036 8 6.6 2.1 59

Long-light tail
length: 16.8 [cm]
mass: 31 [g]
MoI: 8.75 [kg cm2]

c) offset: 35 0.554 0.023 8 5.7 1.0 58

d) offset: 65 0.556 0.011 8 4.6 1.0 63

Passive Tail
length: 12.8 [cm]
mass: 53 [g]
MoI: 8.68 [kg cm2]

e) offset: 35 0.479 0.034 6 8.5 3.5 53

TABLE I: We tested the effect of the active, open-loop tail on the performance of Cheetah-Cub using a bounding gait. A sample of the
dataset is shown here, and visualized in Fig. 5. The performance metrics we use are forward velocity and body-pitching; the sample size
and standard deviation are also shown for each metric. In the ‘passive tail’ configuration the tail is kept at a fixed angle with respect
to the body; we chose to use this configuration for comparison instead of ‘no tail’ to keep the total MoI across each trial as similar as
possible. Without the active tail, we were not able to find control parameters which resulted in forward velocity of over 0.5 [ m

s ]. More
importantly, the robot is much less stable laterally and frequently falls on its side, and also frequently requires many steps with close to 0
velocity (it simply runs in place with its feet slipping on the ground) before settling into a proper gait. This settling phase was trimmed
when calculating the results, and trials which ended in a fall were discarded.
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Fig. 5: The results shown in TABLE I are visualized here. Of
greatest interest is the comparison of the two examples shown with
active-tails: they have almost the same moment of inertia, but the
shorter tail is 71.0% heavier. With the short-heavy tail the robot is
more sensitive to changes in many of the control parameters. We
show here one of the critical parameters: the tail-offset with respect
to the body. Performance barely changes with the long-light tail,
while with the short-heavy tail forward velocity drops 7.4%.

VI. CONCLUSIONS AND OUTLOOK

Using a simple, idealized mathematical model we have
extracted a design principle which shows that a long and
light tail-design, approximating the dynamics of a flywheel,
results in a much lower degree of coupling between the
energy-input and body-pitch control objectives. Thus using a
long and light tail or flywheel to control body-pitch relaxes
the constraints on the leg-actuators, potentially allowing
more effective actuation for energy-input. We verified this
principle in a simple single-leg simulation and demonstrated
it’s applicability to more complex systems through hardware
experiments with the Cheetah-Cub quadruped robot. From
our analysis, a flywheel is most effective in decoupling and

Fig. 6: Snapshots taken at 30 FPS over a stride-cycle of the Cheetah-
Cub bounding with an active, long-light tail. From the snapshots
the in-phase motion of left and right legs of the bounding gait
can be seen clearly. The two cables provide power as well as
communication via ethernet. All computation is handled on-board
the robot. The head is a light foam ball which was attached for
aesthetics, and does not affect the dynamics in a relevant way.



thus simplifying the control problem. A tail can however
be more suitable due to a number of design constraints as
discussed in Briggs et al., 2012 and Libby et al., 2012.
Most notably, a tail can have a higher MoI-to-mass ratio
and is generally easier to integrate into a design or existing
platform due to the dimensional requirements of a flywheel.
As a next step, we are working on a more in-depth stability
analysis in simulation to identify the effect of an active tail
on regions of attraction, in terms of both control and design
parameters. A comparison with a full closed-loop controller
in hardware would also be of great interest, especially on
different platforms, across different scales and in different
situations, as explored in Johnson et al., 2012. Though we
focused on the advantage of a simplified control problem by
decoupling body-pitch and energy-input control objectives,
actually exploiting the coupling is another approach which
should also be taken into consideration. De and Koditschek,
2015 show that the tail can be used specifically for energy-
input instead of body-pitch control. Indeed, we suspect
kangaroos may be able to get away with a relatively large and
heavy tail despite their size (Alexander and Vernon, 1975,
McGowan et al., 2008) due to an evolutionary pressure favor-
ing high efficiency due to large distances between foraging
spots, while not requiring high locomotor versatility in terms
of agility, acceleration or speed due to a relatively flat, easy
to cope with habitat as well as a general scarcity of natural
predators. In this situation, perhaps the potential energetic
benefits of the coupled-dynamics outweigh the necessity for
simpler control.
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