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ABSTRACT 

In this work, a method for taking into account seasonal 

storage in an energy optimisation problem is 

developed. A master-slave optimisation procedure is 

applied, in which the master optimisation is an 

evolutionary algorithm, while the slave optimisation is a 

Mixed Integer Linear Programming (MILP) problem. 

The results of this optimisation can provide insight on 

the choice of technologies during the study of potential 

new district heating networks, and especially evaluate if 

a seasonal storage is worthwhile. 

The method developed is applied to a case study. The 

goal is to optimise the design of a micro-district heating 

system consisting of 3 buildings and a neighbouring 

source of industrial waste heat. The technologies 

considered are heat pumps, solar thermal collectors, a 

hot water storage tank, geothermal borehole seasonal 

storage, a gas boiler and industrial waste heat. 

The results show that, with the given assumptions, the 

use of combined seasonal and daily thermal storage 

can significantly reduce operating costs (by 65 %), 

fossil fuel consumption and CO2 emissions, with a 

payback time of 4.5 years compared to a reference 

solution with no storage. 

INTRODUCTION 

The European building sector accounts for 40% of total 

energy use and 36% of CO2 emissions [1]. A major part 

of this energy is used to heat buildings. Renewable 

sources of heat, such as geothermal and solar, can be 

harnessed using district heating networks, thus 

allowing a decrease in CO2 emission. Moreover, district 

heating can take advantage of waste heat recovery of 

energy intensive industries which would otherwise 

throw it away into the environment. 

One of the drawbacks of many renewable or recovery 

energy sources is that they are intermittent, and are 

often not synchronised with demand. However, the use 

of thermal storage systems can greatly increase their 

share. As the fluctuations can be both daily and 

seasonal (example of solar), specific storage systems 

for each of these time scales can be combined. 

Nevertheless energy storage comes at a cost, typically 

decreasing with size. The appropriate choice in terms 

of size and combination of storage types should 

therefore be the results of a cost optimisation. 

Optimisation methods can be applied to support the 

choice of design and operating strategy of an energy 

system, including district heating systems. In this work, 

a master-slave optimisation method was applied to a 

micro district heating network case study, in order to 

identify a set of optimal design options for the system. 

A methodology was developed to integrate seasonal 

storage in the optimisation, and it was combined with 

an existing daily thermal storage model. 

After a brief literature review of previous work on 

integration of storage in energy optimisation, the article 

presents the methodology developed by the authors 

with a focus on the method to integrate seasonal 

storage. Then, the case study and main assumptions 

are presented. Finally, the results of the optimisation 

are shown and discussed. 

STATE OF THE ART 

A review of seasonal thermal storage technologies is 

given in [2]. One of these technologies consists in 

using the soil as a storage medium. In this concept, 

vertical boreholes are drilled in the ground to insert 

tubes in which a heat transport fluid circulates in a 

closed loop in order to inject (resp. extract) heat in 

(resp. from) the ground material. One of the 

advantages of such a system is its lower price 

compared to other seasonal storage systems, as was 

observed in [3]. However, these costs do not include 

the heat pumps which are required to bring the 

temperature to a useable level. 

A review of simulation models used to model seasonal 

storage is given in  [2] that, however, does not consider 

optimisation. There are numerous examples in the 

literature of energy supply optimisation models which 

consider thermal storage. However, they have often 

been designed for short term thermal storage (e.g. 

daily) rather than long term storage (seasonal), 

although some of the principles can be applied to both 

short and long term storage. An optimisation model 

including daily thermal storage was implemented in [4], 

which is also the model that was used for daily storage 

in this paper. The daily thermal storage is divided into a 

number of virtual storage tanks with ordered 
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temperature levels. At a given time, a mass of fluid can 

be transferred from one temperature level to another, 

exchanging heat with the rest of the system as it does. 

The formulation of the model can be used for both 

optimisation of design and operation. A thermal storage 

model was also developed in [5], but the 2
nd

 principle of 

thermodynamics was not considered (the system was 

divided into high and low temperature). As for long term 

storage, such a model was implemented for example in 

[6], but the model is non-linear due to the CHP 

operation being modelled using 3
rd

 degree polynomials. 

Combination of long term and short term storage is rare 

in the literature. Nevertheless, this was done by Rager 

in his thesis [7]. In his model, there is a daily storage in 

a multi-time problem, similar to the one developed by 

Fazlollahi et al. in [4]. The multi-time problem is 

embedded in a multi-period problem (i.e. each period is 

composed of several “times”), and a similar model is 

implemented at the level of the periods, corresponding 

to the seasonal storage. 

METHODOLOGY 

The methodology that was used in the present study 

consists in the following main steps: 

1. Typical days are generated from the available data 

2. A specific Mixed Integer Linear Programming 

(MILP) model is created for each typical day  

3. A two stage master/slave multi-objective 

optimisation is carried out  

Generation of typical days 

Typical days are used as a means to reduce the 

complexity of the MILP problem by limiting the number 

of periods, and hence the number of variables. The 

generation of typical days was done by applying the k-

means centroid clustering algorithm developed by 

Fazlollahi et al. in [8]. The k-means algorithm 

minimises the Euclidian distance between each 

observation (i.e. a real day) and the centre of the 

cluster (i.e. the typical day) to which it belongs, the 

distance being calculated over all measurements (i.e. 

24 hourly values in a day) of selected attributes (i.e. 

heating demand, solar irradiance). 

The number of clusters was chosen based on the 

assessment of 3 statistical measures. Additionally, for 

each attribute, five quality indicators detailed in [8] were 

calculated in order to compare the typical days 

obtained with the original data. Once the typical days 

have been generated, an extreme day is added in 

order to take into account the highest demand during 

the year for the sizing of the equipment. Moreover, all 

of the 365 days of the year are associated to a typical 

day, and the number of occurrences of each typical day 

is calculated. 

A nearby industry provides a source of waste heat 

during certain periods of the year. Due to the nature of 

the industry, the availability of the source is both 

intermittent and unpredictable (it can be activated at 

varying time intervals and for varying durations). To 

integrate the use of this industrial waste heat, the 

thermal power and temperature levels have to be 

defined for each period (i.e. each hour of each typical 

day). To achieve this, a procedure was developed 

taking into account the stochastic nature of the 

industrial waste heat source. The following steps were 

carried out:  

1. The industry’s daily activation profile was created 

using 3 years of operating data. A boolean variable 

was associated to each real day if the source was 

available (i.e. with a heat output >0). 

2. As each real day {1, ,365 3}i   over the 3 

years of operating data has a corresponding typical 

day {1, , }dd TD N   , the probability dp  of 

activation of the industry was calculated using: 

card( 1| )

card( )

i i
d

i

A d d
p d

d d

 
 


  (1) 

where iA  is the boolean variable corresponding to 

the activation of the industry during day i  and 

id TD  the typical day which is used to represent 

that day. 

3. Two typical days are derived from each original 

typical day. In one of the derived typical days, the 

industry is activated, and in the other it is not. All 

other data (heating demands, etc.) are identical to 

the original typical day. 

4. The number of occurrences of each derived typical 

day is calculated using the probability of activation 

obtained in the previous step and the number of 

occurrences of the original typical day. 

5. The average waste heat load available is calculated 

for each typical day that the industry is activated. 

This is done by calculating, for each hour, the 

average over the 3 years of data represented by the 

typical day.  

6. A similar procedure is applied to calculate the 

average temperatures of the industrial waste heat 

source for each typical day, except that the average 

is only calculated on non-zero values. 

It is to be noted that the typical days generated using 

this method are not sequential, meaning that a given 

typical day can represent real days scattered across 

the year. 

Mixed Integer Linear Programming model 

Each typical day was represented by a specific MILP 

model. The MILP problem consists in minimising the 
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operating cost of a set of energy conversion 

technologies which produce heat, either to fulfil the 

demand of given buildings, or to store it in daily or 

seasonal thermal storage units so that it can be used at 

a later period. The heat cascade constraint is applied to 

make sure the thermodynamic principles are 

respected. The problem is multi-period and consists of 

24 periods corresponding to the hours of the day. The 

objective function is expressed as: 

, ,
,

1 1

min ( 1 2 )
p u

N N

u u p u u p
y f

p u

OC y OC f p
 

 
    

 
   (2) 

where ,u pf  (resp. ,u py ) is the continuous (resp. 

binary) decision variable accounting for the usage level 

(resp. activation) of unit u U  during period 

{1, ,24}p . The set of units U  is composed of all 

the energy conversion technologies, building demands 

to satisfy, energy sources and storage technologies. 

1uOC  and 2uOC  are the fixed and variable operating 

costs, respectively, associated to unit u . No 

investment cost is considered in the MILP model. 

It is subject to the following constraints:  

 The usage of unit u  during period p  is governed 

by: 

min max

, , , ,u u p u p u u pF y f F y u p       (3) 

where 
min

uF  and 
max

uF  are the minimum and 

maximum capacity of unit u  respectively. Their 

values can be fixed by the master optimisation. The 

usage level of building demands is fixed and equal 

to 1. 

 For each temperature interval 

{1, , }kk K N  , the heat cascade constraint 

is defined as follows:  

, , , , ,
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, 1, 1,0 , , 0, 0k p p pR k p R R p       (5) 

where , ,hu k pQ  (resp. , ,cu k pQ ) represents the 

reference heat requirement of the hot stream hu  

(resp. cold stream cu ) associated to unit u , in 

temperature interval k  and period p . ,k pR  is a 

continuous variable for the residual heat from the 

temperature interval k , which cascades down to 

the lower temperature interval 1k  . 

There are two types of thermal storage units included 

in the model: daily storage and seasonal storage. For 

the daily storage, the model from Fazlollahi et al. in [4] 

was used. The storage is discretised into 3 temperature 

levels: 25, 50 and 75°C. The heat can be charged into 

the storage either at low temperature, corresponding to 

a cold stream going from 25 to 50 °C (discharge via a 

hot stream: 50 to 25°C), or high temperature, 

corresponding to a cold stream going from 50 to 75 °C 

(discharge via a hot stream: 75 to 50°C). The generic 

set of equations describing the daily storage can be 

found in [4]. The total daily storage volume (high 

temperature + low temperature) is fixed in the MILP 

problem, but can be a decision variable of the master 

optimisation. 

Multi-objective optimisation 

A master-slave optimisation procedure was applied and 

is illustrated in Figure 1. 

 

Figure 1. Master slave optimisation procedure 

The following steps are carried out at each iteration, for 

a given number of iterations: 

1. The multi-objective master optimisation generates a 

set of continuous and binary decision variables. 

These decision variables control both i) the 

existence, sizing and overall operation of the 

seasonal storage, and ii) the selection and sizing of 

the daily storage units and energy conversion 

technologies. The algorithm used here is the 

evolutionary algorithm developed by Leyland in his 

PhD thesis [9]. 

2. The decision variables of the master optimisation 

are passed on to the slave optimisation, which is in 

fact a set of independent MILP optimisation sub-

problems (one for each typical day). 
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3. The results of all the slave optimisations as well as 

the decision variables of the master optimisation are 

passed on to a post compute function which 

calculates the objective functions of the master 

optimisation, as well as any other indicator. 

4. The objectives are returned, evaluated and ranked 

by the master optimisation, which can then 

generate a new set of decision variables and re-

iterate the whole process.  

Seasonal storage model 

In the MILP sub-problem, the seasonal storage is 

represented as two units: one unit associated to a cold 

stream representing the charging (the cold stream is 

taking heat from the system), one unit associated to a 

hot stream representing the discharging of the storage 

(the hot stream is providing heat to the system).  

The temperatures of the hot and cold streams are 

rough assumptions based on the study carried out in 

[10] and are defined as follows: 

 In charging mode: the temperature of the fluid 

injected into the seasonal storage was set to 40°C. 

This means that any source of heat at a higher 

temperature can be charged into the seasonal 

storage. The output temperature (which also has to 

be fixed to define the cold stream) was set to 20 °C. 

This requires the soil to be at a lower temperature. 

 In discharging mode: the temperature of the fluid 

extracted from the storage was set to 25°C, which 

means that a heat pump would need to be installed 

to increase the temperature to a level compatible 

with the demand. Similarly, this requires the soil to 

be at a higher temperature. This is only valid under 

the assumption that enough heat has been stored in 

the soil. The input temperature was set to 5°C (i.e. 

evaporator of a heat pump). 

The total amount of heat 
in

ssQ  (resp. 
out

ssQ ) that can be 

charged (resp. discharged) into (resp. from) the 

seasonal storage over a day is fixed for a given typical 

day. This leads to the following equations:  

24

, ,

1

in in in

ss p ss p ss

p

f Q Q


     (6) 

24

, ,

1

out out out

ss p ss p ss

p

f Q Q


     (7) 

where ,

in

ss pQ  (resp. ,

out

ss pQ ) is the reference heat 

requirement of the seasonal storage charging (resp. 

discharging) unit at period p , and ,

in

ss pf  (resp. ,

out

ss pf ) 

is the usage level decision variable of the same unit. 

The decision variables of the master optimisation 

dealing with the seasonal storage are:  

 The existence of the seasonal storage ssY  (binary 

variable)  

 The total amount of heat ,ss dQ  (continuous 

variable) that can be charged or discharged each 

typical day d  except one which is left out in order 

to balance the storage over the year. ,ss dQ  takes a 

positive value if it is charged, and a negative value if 

it is discharged.  

Those decision variables are used to define the 

seasonal storage constraints of the MILP sub-problems 

through the following equations: 

, ,if 0

0 otherwise

ss ss d ss din

ss

Y Q Q
Q d

 
 


  (8) 

,

,

0 if 0

otherwise

ss dout

ss

ss ss d

Q
Q d

Y Q


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 
  (9) 

This means that for a given day, the seasonal storage 

can either be in charging or discharging mode (not both 

on the same day). 

In order to close the energy balance of the seasonal 

storage over the year, the energy charged into the 

storage for one of the typical days d TD  is 

calculated (instead of being a free decision variable) 

using: 

, ,

1
ss d ss d d

d TDd
d d

Q Q n
n






 
   
 
 
 

   (10) 

where dn  is the number of occurrences of typical day 

d  during the year. 

The choice of the “balancing” typical day corresponds 

to the one with the highest number of occurrences. A 

higher number of occurrences dn   makes ,ss dQ   less 

sensitive to variations in the decision variables ,ss dQ  

and therefore reduces the risk of having unrealistic 

values. 

The size of the borehole storage bl  (i.e. total length) is 

calculated in such a way that the maximum daily 

charge or discharge can be exactly fulfilled if it is 

operated at the maximum power throughout the whole 

day (linear thermal power of 40 W/m was taken from 

[10]): 

,max
[m]

W
40[ ] 24[h]

m

ss d
d TD

b

Q
l 



   (11) 
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The maximum charging/discharging rate is also fixed in 

the MILP sub-problem based on these values: 

/ /

, , 40in out in out

ss p ss p bf Q l p      (12) 

To choose the range of decision variables ,ss dQ , the 

assumption was made that if the daily demand of all 

the buildings was lower than the average daily demand 

during the year, then the seasonal storage should only 

be able to discharge heat ( , 0ss dQ  ). On the contrary, 

it should only be able to charge ( , 0ss dQ  ). Moreover, 

the maximum energy that can be charged into or 

discharged out of the seasonal storage on any given 

day corresponds roughly to the maximum daily solar 

heat produced. 

CASE STUDY 

The methodology described above was applied to a 

case study. The goal was to optimise the heat supply 

system of a micro-district consisting of 3 office 

buildings, where only space heating was considered. 

Out of the 3 buildings, 2 already exist (TB and EB) and 

they both have an existing independent heat supply 

infrastructure (the two buildings are currently not 

connected via a district heating network). Building TB is 

equipped with a gas boiler of 1000 kW, while EB has 

285 m² of solar thermal collectors and two ground 

source heat pumps of 52 kWel each. The third building 

(FB) is currently being planning and its heat supply 

system has yet to be decided.  

The idea is to connect the three buildings via a micro-

district heating network (µ-DHN) in order to share the 

infrastructure and maximise the use of fossil-free 

energy sources. The µ-DHN is also connected to a 

nearby industry providing an intermittent source of 

waste heat. The µ-DHN/building interface is bi-

directional, meaning that buildings can either provide or 

take heat. The other technologies that were considered 

as investment options in the optimisation were: 

geothermal borehole (seasonal storage), a hot water 

tank (daily storage) and a high temperature heat pump. 

RESULTS 

The attributes used for the generation of the typical 

days were the simulated hourly heating demand 

profiles of the two existing buildings TB and EB and the 

hourly solar irradiance profile for a reference year. For 

the heating demand of building FB, a scaling factor of 

256/190 was applied to the demand profile of EB. The 

extreme day was chosen based on the peak demand of 

TB. 

Applying the methodology described above, 9 typical 

days (including the extreme day), each consisting of 24 

hourly values, were generated to represent the yearly 

profiles. 

As described in the methodology, those typical days 

were then duplicated to take into account the 

availability of the industrial waste heat source. This 

then led to 17 typical days, for which the data on 

availability, heat load and temperatures of the waste 

heat were also known. The extreme day was not 

duplicated as there was only one (the waste heat 

source was activated during that day). 

The multi-objective optimisation procedure described 

above was applied to the case study, whereby the two 

objective functions were: 

 Investment cost: only the investment cost of new 

equipment was considered, including the 

investment cost of the µ-DHN which was chosen by 

default. 

 Operating cost: only fuel and electricity costs were 

considered (e.g. no maintenance). 

The decision variables of the master optimisation were 

the existence of the technologies considered as 

investment options, the size of the technologies and 

the daily usage of the seasonal storage for each typical 

day except one. The size of the latter (number and 

depth of boreholes) results from the decision variables 

chosen for the daily usage. The range of values that 

the decision variables could take is given in Table 1. 

Table 1. List and range of values of master decision 

variables 

Decision variable Range 

Seas. storage (on/off) {0;1} 

Seas. storage          (daily 

usage in kWh) 

[-1000;0] or [0;1000] 

(depending on typ. day) 

Daily storage (on/off) {0;1} 

Daily storage (size in m
3
) [10;353] 

HP (on/off) {0;1} 

HP (size in kWel) [30;300] 

 

In the slave optimisation, where the operation of the 

system is optimised for each typical day, heat can only 

be supplied from a higher temperature heat source (hot 

stream) to a lower temperature heat sink (cold stream). 

This constraint is respected thanks to the heat cascade 

described in equation (4). The temperature levels of all 

the hot and cold streams are given in Table 2. The 

input and output temperatures of the cold streams 

representing the buildings’ heating demand are a 

function of the outdoor temperature, as are the heating 

requirements. The heat pumps have a constant hot 

stream and cold stream temperature for the condenser 

and evaporator respectively. The condenser 

temperature can be optimised in order to adapt to the 

building requirements while maximising the coefficient 

of performance. This is achieved by representing the 
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heat pump as several units, each associated to a 

different condenser hot stream, and adding a constraint 

that prevents more than one of these units to be 

activated at a given period (in order to prevent 

duplication of the heat pump). Excess heat which is not 

stored in one of the storage units is dissipated in a 

“free” cooling tower. 

Table 2. Input/output temperatures of all hot and cold 

streams in the case study 

Name Tin / Tout (°C) 

TB demand 
Function of outdoor temp. 

(max: 60 / 80) 

EB/FB demand 
Function of outdoor temp. 

(max: 35 / 45) 

Gas boiler 210 / 190 

Solar thermal 85 / 50 

Low-temp. HP 
Evap: 6 

Cond: 30 - 55 

High temp. HP 
Evap: 10 - 20 

Cond: 40 - 80 

Industrial waste 

heat 

60 / 25 

Ground water 

source 

10 / 13 

Low-temp. daily 

storage 

25 / 50 (charging mode) 

High-temp. daily 

storage 

50 / 75 (charging mode) 

Seasonal 

storage 

Charging mode: 20 / 40 

Discharging mode : 25 / 5 

 

The results of the multi-objective optimisation are 

represented on Figure 2. On this graph, each point 

represents a solution of the multi-objective optimisation 

(corresponding to a given set of master decision 

variables). The value of one objective (operating cost) 

is plotted against the other (investment cost) for each 

solution. The results shown here took around 2 days to 

obtain using Matlab 2014b running on a computer with 

the following characteristics: Intel Core i7-4600U CPU 

@ 2.1 GHz, 8 Gb RAM, Windows 7 64 bits. 

The colours used in Figure 2 show the superstructure 

of each solution, that is to say the technology choices 

regardless of their size (i.e. the combination of binary 

decision variables). For a given superstructure, 

different solutions are obtained due to the variation of 

the continuous decision variables. As the reference 

solution corresponds to the case where no new 

equipment is chosen (all binary decision variables set 

to 0), the system configuration cannot vary, leading to a 

unique solution. The investment cost of the reference 

solution corresponds to the µ-DHN, which is always 

present. 

The first observation which can be made is that the 

demand of the future building FB can entirely be 

fulfilled with the existing heat supply systems providing 

that a heating network is installed to connect the 

buildings together and with the industry. This solution 

corresponds to the lowest investment, but also has the 

highest operating cost among Pareto solutions. 

On the other end of the spectrum, the solution giving 

the lowest operating cost uses all the investment 

options available. Compared to the reference, it 

requires an additional investment of 142 k€, but allows 

32 k€ of savings per year, leading to a theoretical 

payback time of 4 years and 6 months with the 

economic assumptions that were taken. 

The solutions of the Pareto front can be broken down 

into different “clusters”, which are mostly differentiated 

by their superstructure. Table 3 zooms on 6 Pareto 

optimal solutions which are shown on Figure 2, and 

which are each representative of a cluster of solutions. 

Table 3. Investment choices for selected Pareto solutions 

 Seas. stor.
1
 

(m) 

Daily stor. 

(m
3
) 

HP 

(kWel) 

1 943 43 84 

2 996 11 49 

3 798 0 78 

4 0 10 120 

5 0 0 67 

6 0 10 0 

 

DISCUSSION 

A closer analysis of the results show that the seasonal 

storage is only interesting when combined with a new 

high temperature heat pump (points in grey and purple 

in Figure 2). Indeed, the heat available from the 

seasonal storage is too low to be used anywhere, and 

the existing heat pumps are already used at full 

capacity to supply heat to the low temperature 

buildings. As a result, it would be a good idea to force 

the selection of the heat pump to be chosen if the 

seasonal storage is chosen. This would result in 

reduced search space and therefore faster 

convergence towards optimality. 

                                                 
1
 For sizing of the seasonal storage, the total borehole 

length in metres is considered here. This total length then 

needs to be divided into a number of boreholes which 

each have a limited depth. 
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Figure 2. Superstructure of the 5012 solutions of the multi-objective optimisation (SS: seasonal storage; DS: daily storage; 

HP: heat pump) 

 

Depending on the solution, 5 to 19 % of the heat 

demand transits in the seasonal storage, if it exists. 

This corresponds to between 62 and 226 % of the solar 

heat produced, meaning that most of the heat stored in 

the seasonal storage must come from the industrial 

waste heat. In fact, a lot of the heat stored in the 

seasonal storage is dissipated in the cooling tower. 

This happens because the daily amount of heat going 

into/out of the seasonal storage is fixed in the master, 

leading to constraints in the MILP problems which have 

to be fulfilled no matter what. To prevent this, restricted 

matches should be applied between the seasonal 

storage and the cooling tower. Also, the range of 

values for the decision variables of the seasonal 

storage should be chosen more wisely. Finally, a cost 

factor should be applied to the cooling tower to reduce 

its use. 

A very different behaviour is observed between 

solutions with and without seasonal storage. The latter 

tend to converge nicely towards a well-defined Pareto 

front for each superstructure, which clearly marks the 

boundary between feasible and non-feasible solutions. 

On the other hand, solutions with seasonal storage are 

very scattered and no clear Pareto front can be 

identified. This can be explained by the fact that the 

size and operating strategy of the seasonal storage is 

defined by the combination of 16 decision variables in 

the master optimisation, leading to a complex 

interaction between those decision variables and the 

objective functions, whereas it is only defined by one 

decision variable for the other equipment. As a 

consequence, the best solutions obtained with 

seasonal storage are most likely not the optimal ones, 

and perhaps better solutions could be obtained should 

more iterations be carried out. 

A major limitation in the current model should be 

pointed out here, and improved in the future. This 

concerns the temperature level of the storage. 

According to the temperature levels that were chosen 

for the hot and cold streams, the soil should be below 

20°C in charging mode, and above 25°C in discharging 

mode. In reality, this corresponds to a case where the 

soil has been heated up prior to the cycle, as the 

average temperature of the soil is usually lower than 

that. Moreover, the temperature of the soil depends on 

the charge state, and the hot/cold stream temperature 

should be adapted accordingly. For example, at the 

beginning of summer, the temperature of the soil will be 

lower than at the end of summer, and it is easier to 

charge the storage at that period. However, the 

optimisation cannot know the charge state because the 

typical days are not sequential (each typical day 

corresponds to as many charge states as its number of 

occurrences). Obtaining a reasonable number of 

sequential typical days is very tricky because of the 

stochastic nature of the activation of the waste heat 

source. Finally, heat losses should also be accounted 

for, but this would also require the typical days to be 

sequential. 
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CONCLUSION 

In this work, a methodology for integrating seasonal 

storage in a district energy system optimisation has 

been developed. A master-slave optimisation 

procedure was used, in which the master is a multi-

objective evolutionary algorithm and the slave a set of 

independent MILP problems. The master decision 

variables are the investment choices, but also the daily 

amount of heat charged or discharged into/out of the 

seasonal storage. 

The methodology was applied to a case study where 

the goal was to optimise the design of the heat supply 

system of a micro-district heating network consisting of 

3 buildings and a neighbouring source of industrial 

waste heat. The technologies considered were heat 

pumps, solar thermal collectors, a hot water storage 

tank, geothermal borehole seasonal storage, a gas 

boiler and industrial waste heat. 

The results showed that the use of combined seasonal 

and daily thermal storage can significantly reduce 

operating costs (by 65 %), with a payback time of 4.5 

years compared to a reference solution with no 

storage. However, these results are most likely sub-

optimal due to the large search space which was not 

fully explored and complex interaction between 

decision variables and objective values. 

Although the case study presented in this work is 

simple, the methodology developed for the seasonal 

storage can be used in case studies including more 

technologies. The results can provide insight on the 

choice of technologies during the study of a new DHN. 

OUTLOOK 

Several perspectives of improvement to the seasonal 

storage model have been identified and need to be 

addressed: 

 systematic coupling of seasonal storage and heat 

pump 

 improving the range of values for the seasonal 

storage decision variables 

 taking into account heat losses and variation of 

soil temperature 

The last point requires having sequential typical days, 

which is challenging when there is a stochastic heat 

source independent of the time of year. An option could 

be to consider longer typical operating periods (e.g. 

typical weeks). Another option would be to produce a 

dynamical simulation of a handful of optimisation 

results, with either actual waste heat production data or 

Monte Carlo time series based on the actual data, as a 

validation of their feasibility. 
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