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ABSTRACT

When large volumes of fluids are removed from or injected
into underground formations for, e.g., hydrocarbon and water
production, CO, storage, gas storage, and geothermal energy
exploitation, monitoring of surface deformations coupled to
numerical modeling improves our understanding of reservoir
behavior. The ability to accurately simulate surface displace-
ments, however, is often impaired by limited information on res-
ervoir geometry, waterdrive strength, and fluid-geomechanical
parameters characterizing the geologic formations of interest.
We have investigated the ability of efficient global optimization
(EGO) to reduce the parameter uncertainties usually affecting
geomechanical modeling. EGO is used to identify the parameter
set that minimizes the difference in land displacements obtained
from synthetic aperture radar (SAR)-derived measurements and
3D geomechanical modeling. We have tested the approach on

the Tengiz giant oil field, Kazakhstan, where large uncertain-
ties affect our knowledge of geomechanical parameters
and pore pressure evolution. SqueeSAR on ENVISAT and
RADARSAT-1 images acquired between 2004 and 2007 pro-
vided a set of high-precision, high-areal-density subsidence
measurements of the test site. Based on the available informa-
tion, a 3D geomechanical model of the reservoir has been de-
veloped using the elastoplastic finite-element code GEPS3D.
Our results indicated that EGO efficiently identifies the global
optimum in the parameter space, yielding a significant reduc-
tion in the difference between modeled and measured land
subsidence. The match between simulated and SAR-measured
horizontal displacements was developed as validation of the
EGO calibration, which thus proved an effective and rather
inexpensive method for the simultaneous management of sev-
eral uncertainties and the reliable quantification of the rock
properties.

INTRODUCTION

It is widely recognized that anthropogenic activities involving the
extraction or the injection of fluids from or into the subsurface cause
a change in the original pore pressure. The consequent adjustment
of the stress field and the volumetric deformation of the geologic
formations can reactivate faults located in the surroundings of the
reservoir (Trugman et al., 2014), induce seismic events (Lei et al.,
2013), produce localized ground ruptures (Li et al., 2000), land sub-
sidence (Fielding et al., 1998; Motagh et al., 2008; Chang et al.,

2014), or uplift (Vasco et al., 2010; Teatini et al., 2011). Thus, res-
ervoir management raises serious concerns in terms of human health,
safety of structures and infrastructures, economic risks, and environ-
mental and hydrologic impact (Morton et al., 2006). The probability
of these processes is largely influenced by the geomechanical proper-
ties of the reservoir and the surrounding geologic horizons.

The state of the art in monitoring the stress/strain field at the res-
ervoir depth has advanced, owing to new instrumentation and sen-
sors such as the radioactive marker technique (Ferronato et al.,
2003), time-lapse seismic methods (Alassi et al., 2010), and micro-
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seismic monitoring (Maxwell et al., 2010). Despite these techno-
logical advances, measurements of ground surface displacements,
caused by stress rearrangements at depth, still represent the largest
and most comprehensive data set available to characterize the geo-
mechanical behavior of the system. The measure of land motions
above producing reservoirs has advanced immensely over the past
two decades owing to the development of synthetic aperture radar
(SAR)-based methodologies (Fielding et al., 1998; Xu et al., 2001).
The most recent multi-image multitrack technologies (Hooper,
2008; Ferretti et al., 2011) provide high-precision (millimetric) time
series of vertical and horizontal west—east displacements on high-
density (up to a few thousands per km?) coherent radar reflectors
spread on the study area.

Numerical modeling represents a unique approach for a simulta-
neous and coherent interpretation of deep data and surface informa-
tion. Advanced 3D viscoelastoplastic models have been used to
reproduce the geomechanical behavior of complex, multipool,
faulted reservoirs worldwide (Ferronato et al., 2003; Vasco et al.,
2010; Teatini et al., 2011; Castelletto et al., 2013; Rinaldi and
Rutqvist, 2013). Despite significative developments, model reliabil-
ity in predicting localized (e.g., along fault systems) and/or distrib-
uted (e.g., land subsidence) deformations of subsurface systems due
to change in pore pressure is hampered by large uncertainties in
model parameters. On one side, data coverage is often too limited
to allow spatially distributed parameter estimations. On the other
side, the temporal sampling of time-lapse geophysics surveys
can be too sparse to capture important transient phenomena. More-
over, laboratory tests used to characterize small-scale geomechan-
ical properties of deep samples are not usually representative at the
reservoir scale, where geologic features such as fractures and faults
control flow and deformation.

The identification of model parameters based on observed data is
known as the inverse problem, and the related solution procedure is
often referred to as model calibration. The inverse approaches com-
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Figure 1. (a) Location of the pre-Caspian basin. (b) Trace of the Tengiz giant oil res-
ervoir on the coastland of the northern Caspian Sea, Kazakhstan. The black box rep-
resents the areal extent of the geomechanical model, the dashed red and blue squares
represent the RADARSAT-1 and ENVISAT track, respectively, used to measure the

movement of the ground surface.

monly used in geomechanics present several shortcomings. For in-
stance, gradient-based methods (Oreste, 2005) may converge to
local minima if the objective function is not convex, whereas ge-
netic or other evolutionary algorithms (Levasseur et al., 2008) do
not hinge on exact convergence properties and are usually computa-
tionally expensive. Only recently have appropriate inversion meth-
odologies such as inversion algorithms (Iglesias and McLaughlin,
2012; Hesse and Stadler, 2014) and data assimilation techniques
(Chang et al., 2010; Bau et al., 2015; Zoccarato et al., 2016) been
implemented to resolve, or at least reduce, uncertainty problems in
geomechanics. However, the simultaneous management of several
uncertain parameters is still a challenge for most inverse approaches
(Chang et al., 2010) and often leads to nonphysical solutions and
underdetermined or otherwise ill-posed problems (Oliver and
Chen, 2011).

For problems of relatively large dimension (up to 10 uncertain
parameters), the forward efficient global optimization (EGO) ap-
proach (Jones et al., 1998) has proven a very efficient procedure,
becoming largely used for mechanical engineering applications in
recent years (Jones, 2001; Wang and Shan, 2007; Lovison and Rig-
oni, 2010). Owing to exact convergence properties and small com-
putational burden, EGO has the potential to be an effective
optimization method also for geomechanical applications. There-
fore, our objective is to investigate the ability of EGO to explore
the geomechanical system response to uncertain parameters and
provide the optimal solution. Here, we test EGO in a geomechanical
context for the first time, with an application to the case study of the
Tengiz giant oil field, Kazakhstan (Figure 1).

METHODOLOGY

This section provides a detailed description of all the methods
applied during the simulation-optimization procedure, i.e., the geo-
mechanical model, SqueeSAR technology, and EGO. For an ex-
planation of how these techniques are combined
to perform the model calibration, the reader is re-
ferred to the “Simulation-optimization procedure”
section.

Geomechanical model

Injection or extraction of fluids from under-
ground produces a pore-pressure change that is
responsible for deformations at depth, which may
propagate up to the ground surface. The mecha-
nism of this process is described by the Biot prin-
ciple (Biot, 1941) that separates the total stress
acting on a porous volume into the sum of the ef-
fective stress, i.e., the stress acting between rock
grains, and the fluid pressure. In vectorial form,
this relationship is expressed as

6 =06 — api, (1

where 67 = [6,.,6,.6., Ty, Ty, 7. is the total stress
in the x (west—east), y (south-north), and z (vertical)
reference frame, 67 = [0y, 0y, 0,, Ty, Ty, T IS
the effective stress, p is the fluid pressure,
i=11,1,1,0,0,0] is the Kronecker &, and «a is
the Biot coefficient.
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The porous volume deformation can be found by applying the
virtual work theorem

/ €7 (6 — api)dQ =0, )
Q

where inertial forces are neglected, null external forces are assumed,
and €” denotes virtual deformations. The effective stress ¢ in equation 2
depends on real deformation € through a constitutive relationship

o =o(€), ?3)

which strongly depends on the mechanical properties and stress history
of the formation of interest. The deformed configuration of the porous
medium is found by applying to equation 2 a classical finite-element
(FE) discretization of the unknown displacements (Zienkiewicz and
Taylor, 2000) and imposing appropriate boundary conditions.

In this analysis, the stress-strain relationship plays a central role
as most of the uncertainties stem from the mechanical properties of
the deep rocks. In geomechanics, the stress-strain relationship is
usually expressed in incremental form

do = Dde, 4)

where D is the tangent constitutive matrix. Assuming a mechani-
cally isotropic medium, the strain-stress relation reads

do,,
do,,
do, |  E(1-v)
dz,, (1+v)(1-2v)
dzy,
dr,,
B 0 0 7 (4.
w o 0 0 dey,
T 1 1 0 0 de.,
Xlo 0 o0 3 00 o
000 0 0 F 0 ||,
L0 0 0 0 0 55 dra
5

where E and v are the Young modulus and Poisson’s ratio, respec-
tively. The coefficient E(1 —v)/(1 +v)(1 —2v) in equation 5,
which represents the ratio between an external vertical load and
the relative compaction (A4 /h) of a rock sample loaded in oedo-
metric conditions, is the inverse of the vertical compressibility c;,

(1+v)(1-20)

The geomechanical response of a reservoir is investigated by a
one-way coupling approach in which the pore-pressure changes are
imposed as external loads in the geomechanical simulator. Equa-
tion 2 is solved numerically by FEs using the code GEPS3D (Geo-
mechanical Elasto-Plastic 3D Simulator developed at the University

of Padova), which follows the infinite pore pressure gradient formu-
lation (Gambolati et al., 2001). GEPS3D has been successfully used
in several geomechanical applications over the past few years
(Teatini et al., 2000, 2011; Ferronato et al., 2003; Janna et al., 2012;
Castelletto et al., 2013). An advanced block factored sparse
approximate inverse with incomplete LU factorization precondi-
tioner (Janna et al., 2010) is implemented in GEPS3D to effectively
solve on parallel supercomputers the typically large linear systems
arising from FE implementation.

SqueeSAR

SqueeSAR technology (Ferretti et al., 2011) provides a significant
number of ground displacement measurements by exploiting radar
sensors mounted on specific satellites. Radar signals are reflected
by selected measurement points (MPs), which can be either perma-
nent scatterers (PSs) or distributed scatterers (DSs), on the earth sur-
face. Provided enough (at least 15-20) SAR images are available
over the area of interest, the following information can be retrieved:
geographic coordinates (latitude, longitude, and elevation), average
annual velocity, and the time series of ground displacement of the
MP. All the displacement measurements are projections of the dis-
placement vector along the satellite line of sight (LOS). SqueeSAR
results obtained from the processing of ascending and descending
satellite orbits can be combined to give separate estimates of vertical
and west—east movements. When two estimates of the same MP
velocity are available along ascending and descending directions, V,,
and V,, respectively, the velocity of an MP can be expressed in the
Cartesian reference system x-y-z as

V=Vs,+Vs +Vs, @)

where V., V,,, and V_ represent the component of the velocity V along
the west-east, north-south, and vertical directions, and s, s,, and s,
are the standard basis vectors of the coordinate system. Because the
satellite orbit is known, the LOS with respect to the x-y-z coordinate
system and the corresponding direction cosines of the velocity vector
V, and V, can be determined. The following system can be written:

Ve=VSxa+Visya+ V.54, ®)

Va= szx,d + Vysy,d + stz,(h ©

where s, o, 8y 4, 5, 4 and 5, 4, 8y 4, 5, 4 TEpresent the direction cosines
of the velocity vectors V, and V,;, measured along the satellite LOS,
and the west—east, north—south, and vertical directions, respectively.
The previous system represents an ill-posed problem because it has
three unknowns (V, vy, and V) and only two equations. However,
because the satellite orbit is substantially parallel to the meridian, the
LOS sensitivity to possible motion in the north-south direction is
small (s, , ~ 0 and s, ; =~ 0). Rewriting equations 8 and 9 with this
approximation and solving for V, and V, yields

Vx _ Vasz,d - Vdsz,a (10)

’
Sx.aSz.d — Sz.aSxd

\%4 -V
VZ _ dSx,a aSx,d (1 1)

Sx.aSz.d — SzaSx.d
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Given that the MP of the ascending and descending data sets does
not generally correspond to the same physical objects, common tar-
gets must be selected following geographical considerations.
Namely, the area of interest is divided into 50 X 50 m square cells
and, in each of them, the velocities and time series of all scatterers
are averaged under the hypothesis that they exhibit a similar dis-
placement. This operation is applied to the ascending and descend-
ing data sets, resulting in a regularization of the spatial distribution
of the two data sets on a common grid. At this stage, cells that con-
tain a target in the ascending and descending data sets are used to
estimate the vertical and west—east motions. A trivial integration in
time of V, and V provides the average displacement of each MP
over the period of interest. Moreover, SqueeSAR provides as a sec-
ondary result the (possibly nonlinear) movement time series of each
MP with respect to the first processed SAR image.

Efficient global optimization

The EGO strategy (Jones et al., 1998) consists of an iterative pro-
cedure for detecting the global optimum of a loss function defined
in a bounded multidimensional domain. In this geomechanical ap-
plication, the loss function measures the difference between the
ground displacements computed by the geomechanical model
and those provided by the SAR technology. Accordingly, the global
optimum is the set of M uncertain model parameters that minimizes
the loss function in an M-dimensional domain, whose bounds are
defined a priori by assigning proper ranges of variation to the opti-
mization parameters. Let us denote with 7, the SAR-derived dis-
placement rates and with 7. the computed displacement rates
obtained with an M-dimensional set ¢ of parameters. The loss func-
tion L(c) is therefore defined as

L(c) = — ! . (12)

> i(fmi = ’7c,i)2

The summation in equation 12 is extended over the total number
of MPs, in which the numerical solution is interpolated based on the
nodal values of the FE grid. The only necessary assumption for
EGO is the Lipschitz regularity of the loss function, i.e., the slope
of the line connecting each couple of points on the function’s graph
must be finite. Even though the features of the loss function are not
known a priori, Lipschitz regularity is a rather mild condition very
frequently met in optimization problems.

Here, L(c) is initially computed in a starting sample ¢, formed of a
number N of parameter sets, identified with a Latin hypercube design
(LHD) (see, e.g., Lovison and Rigoni, 2010), to grossly yet uniformly
explore the function domain. The LHD adopts a uniform distribution
and does not account for correlations among parameters.

The EGO iteration consists of identifying the parameter set ¢* pro-
viding the maximum value of an auxiliary Gaussian covariance-based
function £ called expected improvement (Jones, 2001), which mea-
sures the probability that L(c), for an untried parameter set c, is
smaller than the minimum value of the loss function in the starting
sample, i.e., L, = miny L(cy). For any given untried set ¢, a Gaus-
sian process model is used to produce a predictive distribution

L(e) = N (u(c). o(c)), (13)

where the prediction of the loss function at a generic site ¢ is a normal
probability distribution with mean p(c) and variance 62 (c). Estima-

tions for mean and variance are provided by a kriging metamodel
¢ Ky(c;ey), i.e., a statistical interpolation performed on the basis
of the starting sample cy.

The improvement I(c) is also a random variable given as

I(c) = max (L, — L(c),0), (14)

thus the expected improvement is

E[I(c)] = E[max (L, — L(c),0)]. (15)

If we denote with ¢ the probability density function of the stan-
dard normal distribution, and with ® its cumulative distribution
function, the expected improvement can be expressed in closed
form as (Jones et al., 1998)

ElI(e)] = (Linin — p(c)) @ (Lm%cgt(%
Lunin = #(¢)
a(c) > '

The existence of a closed form allows us to exploit the structure
of &[I(c)] to find its maximum. The computation of the maximum
expected improvement is greatly facilitated by the fact that £[I(c)] is
monotonically decreasing with y(c) and monotonically increasing
with o(c). In fact, a straightforward computation of the derivatives
in equation 16 gives (Jones et al., 1998)

+ G(C)d)( (16)

o€ _ Lmin —/,t(C)
a =-0 (—g(c) ) <0, 17
o€ _ Lmin —/4((!)
00'_¢< o(c) ) >0, (18)

where the above-mentioned equations suggest that £ is large not
only in regions of the M-dimensional domain where u(c) is low,
i.e., where the loss value is likely to be small, but also where
o(c) is large, i.e., where the sampling density is low and the uncer-
tainty on the loss value is large.

Before a new EGO iteration is carried out, L(c*) is evaluated by
rerunning the numerical model and the tested set ¢* is added to the
starting sample ¢y, . Iteratively, the size of the starting sample
increases and EGO is provided with more and more spatially dis-
tributed information on the loss function to update the kriging meta-
model and seek new candidates c*.

By pursuing a maximization of the expected improvement, EGO
iteratively scouts neighborhoods of current optima and, occasion-
ally, poorly sampled regions. This explains how EGO balances the
merits of local and global optimization algorithms by performing an
efficient search and avoiding the risk of being stuck in local minima.
Under nondegeneracy conditions (for more technical details, see,
e.g., Bull, 2011), it is possible to prove that unexplored regions,
which have large o(c), will be sooner or later sampled by maximiz-
ing the expected improvement. Therefore, the domain is densely
sampled everywhere in infinite time and global convergence is guar-
anteed (Jones, 2001; Kleijnen et al., 2012). Global convergence
cannot be achieved in a finite number of evaluations unless addi-
tional information on the regularity of the problem is available, e.g.,
a global Lipschtiz constant for the loss function. Even though such
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information is generally not available, it is still reasonable to assume
that the loss function has some level of regularity. Therefore, unex-
plored regions are not likely to hide the global optimum when the
number of evaluation grows, because this would imply higher and
higher Lipschitz constants and a decreasing level of regularity.
Hence, from a practical point of view, the experimenter should com-
bine his/her own knowledge on the problem regularity, coming from
his/her experience and physical considerations, to decide if the al-
gorithm has explored densely enough or with the required accuracy
the ranges of the parameters. Theoretical considerations and plenty
of benchmarks documented in the literature suggest that if the loss
function is smooth enough the method provides a good approxima-
tion of the global optimum in a relatively small number of iterations.

CASE STUDY

The Tengiz reservoir is made by a large build-up of limestone,
essentially a large atoll built on the margin of the deep pre-Caspian

3000 m

por s b by by Lo by b bovan bova o boaa s bar e b pa sl gilanng
7 = = S e o T

basin, northern Caspian Sea, Kazakhstan (Figure 1). The atoll was
built by marine organisms mostly during Carboniferous time and is
sealed by thick, impermeable Kungurian salt of Permian age. The
Tengiz oil field is 19 km wide and 21 km long and spans the depth
range z between 4300 and 5500 m below the mean sea level.
The reservoir geometry presents a central platform, where the
majority of the wells are placed, an outer platform, and a slope
as shown in Figure 2. Discovered in 1979, this reservoir had recov-
erable reserves estimated between six and nine billion barrels of oil
and is still one of the largest discoveries in recent history.
Although the reservoir geometry and fluid-dynamic properties
are sufficiently known from a few papers (Weber et al., 2003; Col-
lins et al., 2006), little information is available on the time and space
evolution of the pore pressure. The oil was highly overpressured at
830 bar (83 MPa) when the field was first tapped and, in 2007, the
pressure decreased to approximately 550 bar (55 MPa) in the central
platform and to 620-750 bar (62-75 MPa) in the remaining por-
tions. The pressure decreased almost uniformly and linearly with

e - - T : 4 Figure 2. Geologic section of the reservoir geom-
Louss siopa b voversiope gl o == oot sopelbid—{Lowersopol = etry along the southwest—northeast alignment
- - e A, g = - TR T shown in Figure 1b. The dark blue line indicates
o ; the interface between the reservoir and the overbur-
”‘é_gg‘“‘m-" RS i den. The maximum reservoir depth is estimated at
— = ek ! 5500 m depth (modified after Collins et al., 2006).
'
- [Tournaisian EVis |
6000 mj e robimate—z;‘km Vertical Exaggeration: 5:1
southwest
a) b)
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Figure 3. Average land displacements (mm/year) measured by SqueeSAR above the coastland of the northern Caspian Sea, Kazakhstan, from
2004 to 2007. (a) LOS displacement rates from ENVISAT images and (b) west—east displacement rates obtained by combining ascending
ENVISAT and descending RADARSAT-1 images. Negative values mean a moving away from the satellite in panel (a), that is substantially land
subsidence, and westward displacements in panel (b). The black dot and solid line represent the reference of the SAR solution and the trace of
the Tengiz giant oil reservoir, respectively. The RADARSAT-1 and ENVISAT track used to measure the movement of the ground surface are

shown in panel (b) by a white and yellow box, respectively.
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time in the platform region. Conversely, pressure change is largely
uneven in the slopes, which are significantly fractured (Dagistanova
et al., 2011). The geomechanical properties of the reservoir and the
surrounding basin are also uncertain. Available information collected
from unpublished reports and reference books on the physical proper-
ties of rocks (Carmichael, 1989) provides the following ranges for
the uniaxial vertical compressibility c¢), and Poisson’s ratio
16X 1070 < ¢, < 6 x 107 bar~! and 0.30 < v < 0.35 in the allu-
vial/salt overburden/sideburden (0 < z < 5500 m), 2 X 107% < ¢, <
6x 107 bar™! and 0.20 <z <0.27 in the carbonate reservoir
(4300 < 7 <5500 m), and ¢y ~2x 107 bar~' and v ~0.32 in
the clastic underburden (z > 5500 m).

The information on the geometry of the Tengiz oil field is used to
generate a tetrahedral FE mesh for geomechanical modeling. The
model domain covers an areal extent of 80 x 80 km centered on
the reservoir and is confined above by the ground surface and below
by a fixed basement at a 10 km depth. Standard conditions with zero
displacement on the outer and bottom boundaries are prescribed,
whereas the land surface is a no-stress boundary. The ground sur-
face does not present any relevant topographical features and is as-
sumed horizontal in the model. The domain is discretized into
548540 tetrahedra with 95,508 nodes.

Several 19 ENVISAT descending scenes and 32 RADARSAT-1
ascending scenes acquired between 2004 and 2007 over the Tengiz
reservoir are processed by SqueeSAR. The PS/DS selection is
carried out by setting to 0.8 the minimum temporal coherence,

First model application with geomechanical parameters assigned
based on literature data

|

Selection of the uncertain parameters to calibrate and definition
of their ranges of variation

|

Application of the LHD algorithm to draw N=501 parameters sets
forming the initial sample

|

Computation of the objective function for each of the N
parameter sets forming the initial sample

l—l

EGO application }‘—

Evaluation of the objective The candidate optimum set
function in the candidate is added to the initial sample

optimum

l

Is the global optimum
confidently reached?

B vy

Yes

End

Figure 4. Flowchart illustrating the implemented simulation-
optimization procedure.

which is a parameter measuring the similarity between the various
radar images. An average density of 33 and 50 MPs per km? is ob-
tained, respectively, for PS and DS, resulting in approximately
150,000 MPs, depending on the acquisition geometry. The reference
points correspond to PSs characterized by a very stable radar re-
sponse (temporal coherence ~1) located outside the area directly af-
fected by the reservoir development. The SqueeSAR outcome from
ENVISAT images is shown in Figure 3a. Notice that, due to the small
incident angle (approximately 21°), the ENVISAT results are sensi-
tive almost exclusively to the vertical component (land subsidence or
uplift) of the movement. Because ascending and descending satellite
images are available, the easting components of ground movement are
computed on the intersection of the two satellite tracks (Figure 3b).
The error introduced by neglecting the nonmeasurable north—south
component of the displacements is estimated below 10% and therefore
considered acceptable. The measurements highlight a significant sub-
sidence bowl above the Tengiz reservoir with displacement rates up to
—20 mm/year. As expected, the horizontal movements converge to-
ward the center of the subsidence bowl with west—east displacement
rates up to 8-10 mm/year.

SIMULATION-OPTIMIZATION PROCEDURE

This section describes how geomechanical modeling, SAR-
derived measurements of land displacement, and EGO calibration
are combined to manage and solve the uncertainties affecting our
case study. A flowchart of the implemented simulation-optimization
procedure is shown in Figure 4.

A first application of the geomechanical model is carried out con-
sistently with the data collected in the literature and discussed in the
“Case study” section. In particular, c,, is assumed to decrease lin-
early with depth between the reported bounds, whereas average val-
ues of the reported Poisson’s ratio are used in the overburden and
reservoir. Moreover, the geomechanical response is assumed linear
elastic, i.e., not dependent on the stress history. Based on the quan-
tification provided by Dagistanova et al. (2011), the prescribed
pore-pressure evolution decreases at a yearly constant rate Ap
over the period between 1994 and 2007, with Ap = 23 bar/year
(2.3 MPa/year) in the central platform and Ap = 13 bar/year
(1.3 MPa/year) in the outer platform and upper/lower slope.

Afterward, the EGO approach is applied to improve the numerical
results of the geomechanical simulation. Following some considera-
tions on the uncertainty of the collected information, we select the set
c of M =5 calibration parameters ¢ = {cy, ¢,, ¢3, ¢4, c5} that are
applied as correction factors to reservoir compressibility (c;), overbur-
den compressibility (c,), Poisson’s ratio (c3), pressure change in the
outer platform and upper slope (c,4), and pressure change in the lower
slope (cs). The ranges of variation of these parameters are discussed in
the “Results” section and are summarized in Table 1.

The LHD algorithm is applied to draw the starting sample ¢y
within the bounded parameter space and N geomechanical simula-
tions are carried out for each parameter set. The numerical results
are then combined with the SAR-derived measurements to compute
the loss function L(cy) for the starting sample. Finally, EGO iter-
ations are performed until the algorithm repeatedly investigates only
a small neighborhood of the parameter space, confidently contain-
ing the global optimum, and no further L(c) reduction is observed.

Clearly, the size N of the starting sample significantly influences
the number of iterations that EGO needs to reach a reasonable
approximation of the global optimum. In terms of total number



Downloaded 09/29/16 to 128.178.107.101. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

EGO in geomechanics M29

of model applications, the trade-off suggested by Jones et al. (1998)
is N = 10 x M (50 parameter sets in our case). However, the geo-
mechanical simulations for the starting sample can be carried out in
parallel and are less time-expensive compared with the sequential
EGO applications. Therefore, we assigned a size the relatively large
size N = 501 to the starting sample, to reduce the total number of
EGO iterations and the time needed by the whole simulation-opti-
mization procedure.

RESULTS

Figure 5a shows the yearly displacement rates 7, provided by the
noncalibrated numerical model. The shape of the computed sub-
sidence bowl is similar to that provided by SqueeSAR (Figure 3a),
confirming that the reservoir geometry is sufficiently well reproduced
in the model. However, the maximum subsidence rate is largely over-
estimated, i.e., by a factor almost equal to two. In addition, the com-
puted areal extent of the coastland portion affected by the oil field
development is much larger than the monitored evidence. The over-

estimate is clearly quantified in Figure 6a, where the error e,, = 7, —
Nm above the trace of the reservoir is provided.

We account for the initial overestimation of the computed land
subsidence and the information provided by other geomechanical
studies in similar geologic settings (Carmichael, 1989) to prescribe
proper ranges of variation for the calibration parameters (see Ta-
ble 1). In particular, the rock compressibility can be reduced up
to one order of magnitude, the Poisson’s ratio can span the 0.1—
0.5 range common to geomaterials (Zoback, 2007), the pressure
change in the outer portions of the reservoir can possibly vanish.
Once the ranges of variation are assigned, the starting sample ¢y
of N =501 parameter sets is drawn and the loss function L(cy)
evaluated through parallel model applications.

Afterward, 67 EGO iterations are performed until the method
confidently provides the coordinates of the global optimum. Fig-
ure 7a shows the frequency distribution of the L(cy) values, com-
puted for the starting parameter set ¢, whereas Figure 7b shows the
progressive reduction of the loss function during the EGO itera-
tions. It can be observed that the last 21 EGO iterations correspond

Table 1. Summary of the selected calibration parameters, along with the assigned ranges of variation, EGO outcome, and
sequential calibration outcome. The reader is referred to the “Case study” section for a more detailed characterization of the

reservoir geometry.

Calibration parameter Correction factor for

Range of variation EGO optimum Sequential optimum

cq Reservoir compressibility 0.10-1.00 0.43 0.80
c) Overburden compressibility 0.10-1.00 0.10 0.90
c3 Poisson’s ratio 0.50-1.40 0.50 1.00
Cy4 Pressure variation in lateral platform and upper slope 0.00-1.00 0.54 0.00
Cs Pressure variation in lower slope 0.00-1.00 0.00 0.00

Figure 5. Displacement rates (mm/year) as computed by the FE model (a) using the hydrogeomechanical data set published in the literature,
(b) after calibration by EGO, and (c) after sequential optimization of single parameters. Negative values mean land subsidence. The traces of
the Tengiz reservoir and the coastline of the Caspian Sea are shown by the orange and the blue lines, respectively.
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to approximately the same loss value, as EGO repeatedly investi-
gates only a small neighborhood around the current optimum. The
only two exceptions are runs #53 and #58, where EGO tries to sam-
ple in poorly explored regions, receiving a negative feedback (see
also Figure 8a and 8b). Although we cannot guarantee that the
global optimum is reached, due to the unknown nature of the loss
function, we can still argue that the practical convergence condi-

tions discussed in the “Efficient global optimization™ section are
confidently met.

Figure 8a and 8b shows the c¢; versus c, points corresponding to
the starting sample (smaller dots) and to the 67 iterations performed
by EGO (larger dots). The dots are colored by iteration in Figure 8a
and by loss value in Figure 8b. No configuration far from the lo-
cation of the optimum configuration is characterized by a loss value

mm/year
-20-15-10 -5 0 5 10 15 20

[

Figure 6. Map of e,, between the SqueeSAR measurements on ENVISAT images and the simulated subsidence above the trace of the Tengiz
reservoir with (a) no calibration, (b) calibration via EGO, and (c) calibration via sequential optimization of single parameters. Negative values
indicate an overestimate of the anthropogenic land subsidence, whereas positive values indicate an underestimate. The trace of the Tengiz
reservoir is shown by the orange line.
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sponding to the 501 simulations of the starting ’
sample c¢y. (b) Nonmonotonic loss reduction dur-
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similar to the global minimum, which suggests that the setof M = 5
selected parameters led to a well-posed problem. The positions of
candidate sets #53 and #58, highlighted in Figure 8a and 8b, suggest
how EGO samples away from the current optimum when the ex-
pected value of the loss function is locally balanced by the standard
deviation, as discussed in the “Efficient global optimization” sec-
tion. In a similar way, further EGO iterations would eventually sam-
ple all the other unexplored regions of the parameter space.

As expected, an increase of the model performance requires a
reduction of the soil compressibility (c¢; = 0.43 and ¢, = 0.10).
As far as the Poisson’s ratio is concerned, a significant reduction
is required as well (c3 = 0.50), yielding values that are more con-
sistent with those typical of rock (0.15 — 0.25) usually characterized
by a significant plasticity (see, e.g., Carmichael, 1989). The yearly
pressure decreases in the outer platform and the upper slope is al-
most halved to 7 bar/year (¢4 = 0.54), whereas a null pressure
variation is required in the lower slope (c5 = 0.0). These numbers
are likely reasonable on account of the high variability of the pres-
sure change due to the fractured nature of the carbonate rocks in the
outer reservoir (Dagistanova et al., 2011).

The results obtained by the geomechanical model calibrated via
EGO are shown in Figure 5b. The subsidence map is much more
adherent to the available measurements with respect to the initial
simulation. The function e,, generally decreases to 1-2 mm/
year and peaks at 3—-5 mm/year only in the westernmost portion
of the reservoir (Figure 6b), in which the measurements show an
uplift unlikely connected to the reservoir production (Figure 3a)
and therefore hardly reproducible through simulations.

Sequential calibrations of single parameters were also carried to
test whether simple optimization methods can provide solutions

southeast—northwest alignment

southwest northeast

Displacement rate (mm/year) &,

0 10000 20000 30000 40000
northeast—southeast alignment

I : I : I
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T

northwest

Displacement rate (mm/year) &
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L —no calibration| |
30 —EGO . |
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Figure 9. Comparison between the measured (black line) and com-
puted (red line for no calibration, green line for EGO optimization
and blue line for sequential optimization) land displacement rates,
along (a) the southwest—northeast alignment (shown in Figure 1b)
and (b) the perpendicular northwest—southeast alignment.

comparable to EGO. Each parameter is calibrated by testing 10
equally spaced values in the corresponding range of variation
and selecting the one that yields the smallest loss. A complete se-
quential calibration requires a total number of 10 X M = 50 loss
function evaluations. The results obtained for different sequences
of parameters highlight that the identified optima lie far from the
global one and the corresponding loss function values are signifi-
cantly larger than the global minimum. For illustrative purposes,
Figures 5c and 6c show the displacement rate and the error
maps corresponding to the best of all sequential optimizations
(loss = —2.76), obtained by calibrating, in the order, ¢, = 0.00,
¢s = 0.00, ¢; =0.80, ¢, =0.90, and c3 = 1.00. The location of
this optimum is relatively far from the EGO optimum, as high-
lighted in Figure 8b. Moreover, Figure 7b shows how EGO over
performs the sequential optimization in terms of loss reduction al-
ready after iteration #23. These results suggest that simple optimi-
zation methods, which can prove effective for problems with few
degrees of freedom, become inefficient compared with global opti-
mization ones when the number of calibration parameters increases.

Figure 9 shows a comparison between measured and computed
land displacement rates for the various simulations addressed by this
study, along the southwest—northeast alignment (see also Figure 1b)
and along the perpendicular alignment northwest—southeast. The
EGO and the sequential optimization method provide significant im-
provements with respect to the initial simulation but, as highlighted in
Figure 9b, the sequential optimization clearly underestimates the sub-
sidence rate along the northeast—southwest alignment.

\

o

z

0 5 10

Figure 10. Comparison between the west—east land displace-
ments measured by SqueeSAR (colored map) and those computed
by the FE model (black isolines) calibrated via EGO. Positive val-
ues mean eastward movement. The trace of the Tengiz reservoir is
shown by the orange line.
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Finally, the EGO-calibrated geomechanical model was validated
using the measured easting movements. In Figure 10, the west—east
displacement rates computed by the EGO-calibrated model are
compared with the measurements obtained by combining the
SqueeSAR technique on the ENVISAT descending and RADAR-
SAT-1 ascending acquisitions. The figure highlights an excellent
agreement between the measurements and model outcome, con-
firming that the EGO calibration provided a set of physically mean-
ingful parameters.

CONCLUSIONS

With very few exceptions such as the In Salah field in the Algerian
Sahara desert where BP reinjects the CO, separated from the produced
CH, and the Lombardia reservoir in northern Italy managed by Stogit
for UGS activities, one common problem in the geomechanical char-
acterization of deep reservoirs is the lack of a comprehensive data set.
In all these cases, scientific investigations have to cope with large un-
certainties. When more than two uncertain parameters are present, ar-
guing the correct values with only physical intuition, experience, or
simple optimization procedures is however problematic.

This paper presented the capability of EGO to couple SAR-based
measurements and 3D numerical modeling to infer the geomechan-
ical characteristics of the Tengiz reservoir, Kazakhstan. Being a for-
ward method, the choice of the uncertain parameters and the related
variability ranges is an important step that must be based on physi-
cal considerations. As is usually done when little information is
available, the geomechanical parameters were either assumed to
vary linearly with depth (compressibility c,,;) or to be spatially
homogeneous within certain reservoir regions (Poisson’s ratio v
and pressure drop Ap). Although the geomechanical model was
not provided with high-resolution data, the EGO optimized param-
eters remain valid in an average sense. The primary advantage of
EGO is the small computational burden. In fact, after running
the model for a sparse starting sample of parameter sets, which
was required to grossly investigate the model response within
the parameter space, EGO detected the optimal calibration with
few additional simulations. Such efficiency stems from the capabil-
ity of the stochastic metamodeling to predict the maximum ex-
pected improvement in poorly explored regions of the parameter
space, even if far from the current optimum. Accordingly, a large
number of uncertain parameters can be managed simultaneously
even with a sparse initial sampling. Overall, EGO can prove a valid
alternative to inversion and data assimilation methods to account for
uncertainties in geomechanical modeling and to provide reliable
quantification of reservoir characteristics.

If new and more accurate information on the Tengiz reservoir will
become available, EGO can also be applied to resolve the reservoir
geometry and the pressure variation with finer spatial detail. Moreover,
EGO can be used to optimize more complex geomechanical relation-
ships linking the elastic properties to the stress history or by differen-
tiating more precisely the behavior of the various rock types forming
the pre-Caspian basin in the surroundings of the Tengiz reservoir.
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