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Abstract—Mobile users not only use on-demand location-based
services increasingly (e.g., checking in on online social networks),
but also other mobile applications that provide a service based on
location traces of users (e.g., fitness tracking, health monitoring,
etc.). This type of continuous tracking of user location introduces
specific challenges to protection of location-privacy of mobile
users. One of the challenges is ensuring the preservation of
privacy levels of user location over time. Also, it is essential to
build a location obfuscation area that results in high confusion
for an adversary. In this paper, we address these challenges
by proposing and evaluating a heuristic obfuscation algorithm
that is mobility aware. Specifically, our heuristic algorithm
reasons about a user’s next location by taking into account user
mobility history and direction of movement. Our experiments
show that our approach outperforms a mobility-agnostic random
obfuscation mechanism.

I. INTRODUCTION

Users of mobile devices increasingly use services that are
dominantly location-based. They not only share their location
with their friends (i.e.,, check-in on social networks), but
also receive services based on continuous location tracking
(e.g., fitness and/or health monitoring). The downside of these
services is that location information of users is contextually
rich, and therefore can be used to infer private information
such as political orientation, religious belief, etc., and in the
worst case can be used for physical assault. The research
community investigated the privacy risks of disclosing location
information to untrusted parties extensively. For instance,
Krumm [7], [8] showed how location traces of users can be
inferred, even if they are obfuscated, and Golle et al. [5]
demonstrated how home and work places of users can be
pinpointed from them. Shokri et al. [13] also showed how
an adversary can attack obfuscated user traces based on user
mobility history.

Various approaches have been proposed to protect location
privacy in location-based mobile systems by researchers [14].
A commonly adopted approach is to apply obfuscation on
locations of users (i.e., to deliberately degrade the quality
of location information). However, even though location ob-
fuscation introduces confusion for an adversary, studies also
revealed some weaknesses of the approach in mobile appli-
cations where location data was continuously disclosed [1].
Against a reasoning adversary that has access to the geo-
graphical context and the mobility patterns of a user, simple
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obfuscation might prove to be an inadequate privacy-protection
mechanism (PPM) and may result in reduced levels of location
privacy in successive time steps, as the user moves.

In this paper, we tackle the challenge of protection location
privacy in a continuous disclosure scenario. We propose a
heuristic location-privacy protection mechanism that is aware
of the user mobility when constructing the obfuscation area for
user location in order to minimize the deterioration of location
privacy over time. We call this heuristic approach mobility-
aware location-privacy protection due to its awareness of user
mobility history, direction of movement and speed of the user.
We experimentally evaluate our heuristic mechanism and show
that this approach provides a high level of location-privacy
as compared to a random obfuscation mechanism against
attackers both with and without knowledge on user history.

II. FRAMEWORK

We consider mobile users equipped with smartphones mov-
ing in a geographical area that is discretized to M non-
overlapping regions, i.e., R = {ry,72,...,ras} in discrete time
space 7 = {t1,%a,...,tn}. They send their location at every
time instant ¢; € 7 to a server for, e.g., receiving a location-
based service or contributing to a sensing application. When
sending her data, a user obfuscates her location. An obfuscated
location £; at time ¢ is a set of locations from R, ie £; C R.

While performing location obfuscation, a user is revealing
a set of ¢ locations, i.e., c regions, at each time instant ¢;. We
will be referring to the parameter c as the location obfuscation
parameter. Clearly, the value of this parameter is determined
by the level of privacy the user wishes for and there exists a
trade-off between the utility of the application (location-based
service or sensing application) and the user’s level of privacy.
Deciding on the location obfuscation parameter is out of the
scope of this paper and we will be using a constant value for
this parameter.

The following example summarizes the above. The area in
Figure 1 is discretized into 16 regions and a user is moving in
this area. At each time instant, she has to report ¢ locations,
out of which, one is her actual location and c-1 are fake.
For example, on time instant t; the user declares the set
{5,6,7,9,10,11} (Fig. 1b) instead of only 6 (Fig. la) which
is her real position. In this example, the fake locations were



TABLE I: Table of Notations

c>2
T={0,1,2,...,t}
R ={r1,r2,...,7N}
Li CR

a(t) € Ly

l; € Lt

neigh: R — P(R)
Pr,,: R xR — [0, 1]

set of time instants

location obfuscation parameter

set of IV distinct regions in the area of interest

set of locations reported by the user at time ¢

the actual location of the user at time ¢

the 745, fake location at time ¢, where 1 < <c—1

function that gives the neighboring locations of a location

the probability to go to region r from region p given by Equation 3

selected randomly. In Section IV, we will explain how to
choose the fake locations so as to minimize the deterioration
of privacy level at time instant ¢;;.

We use the notation in Table I in the rest of the paper.
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(a) Actual location of a user (b) Obfuscated location

Fig. 1: Location obfuscation example

A. Adversary Model

We assume an honest but curious adversary (potentially
a service provider), i.e., he will be able to observe the
(obfuscated) locations of a user collected by a server and
try to infer her actual trace from his observations, but never
attempt to break protocols or hack otherwise to obtain more
information. Furthermore, he may know a user’s past traces
(called background knowledge) and use them in his inference
attacks to reduce his confusion. The intuition behind this is
that people tend to have routines, hence regular mobility. The
background knowledge the adversary has may or may not be
complete. Additionally, he knows the maximum possible speed
in terms of regions per time instant, at which a user can move.
The adversary’s goal is to infer the actual location of a user
at each time instant by using his background information and
the user’s obfuscated trace by reasoning about her mobility.

B. User Mobility Model

In our setup, we are considering location obfuscation in
successive time steps. Given the knowledge of the maximum
speed, the past behavior and the direction of the user, the
transitions between successive cells are characterized by prob-
abilities. An adversary who has knowledge of these proba-
bilities could reduce his uncertainty regarding the user’s real
location after observing her obfuscated location. The adversary
can also benefit from road networks and maps of inaccessible
locations when constructing such probabilities. For the sake
of simplicity, we do not consider this type of knowledge, but

our model is independent of it (i.e., this type of knowledge
can be easily integrated into the model). In this subsection
we explain the user-mobility prediction models that we use in
the design of the heuristic algorithm. We use three mobility
models: a history-based, a direction-based and a combination
of the two.

1) History-based Mobility Model: We adapt the human
mobility model proposed by Calabrese et al. [2], which aims
to predict a person’s future location based on the individual’s
past behavior.

We denote the location of a user at time ¢ as a(t) = p. The
model predicts the user’s next location a(t + 1) using past
data. This is done by following a probabilistic approach: A
probability is defined for each region r € R to be the next
location of the user as a function of the user’s past behavior.
We assume that the behavior of user is periodic over time with
period T as modeled in [2]. More precisely, this probability is
given by the formula:

Pry(a(t +1) =rla(t) = p) =
St fula(t = Tm+ 1) = rla(t — Tm) = p)
|t/T ’

where the frequency f}, on the right hand side is defined as:

fatatt+1) =rlatt) = ) = { §

otherwise

)

This model says that the probability of a region r to be
the next destination of the user is equal to the frequency of
visiting that region starting from region r; during all previous
periods t — T + 1,t — 27T 4+ 1,... . In [2], experimental
results demonstrate a rather promising accuracy of this human-
mobility model as compared to original traces used.

2) Direction-based Mobility Model: Direction-based mo-
bility models are often used to model mobility in ad-hoc net-
works [3], since they are considered more realistic compared
to fluid-flow or random-walk mobility models. The Gauss-
Markov mobility model [9] falls into this category of models.
Using this model, the mobile-user’s next location is predicted
based on the information gathered from the user’s last location
report, velocity and direction. We adopt a simple version of
the model: The idea is that it is more probable for a user to
continue straight ahead rather than abruptly turning back while

1 ifa(t+1) =7 and a(t) =p



(a) User direction vector d with its angle © w.ur.t.
previous direction.
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(b) The probability distribution over direction change angle © showing
that retaining the direction has the highest probability. Please note that
turning back has the lowest, yet a non-zero probability.

Fig. 2: The direction-based model that considers the angle of
direction change in user movement.

moving. The following example aims to give an intuition of
this model.

Consider a user at time ¢ and let d be the vector of her
velocity, i.e., his direction, at time ¢ as shown in Figure 2.
The probability Pr(©) that the user will change her direction
by © € [-180°,180°] degrees at time ¢ + 1 takes values
with respect to a normal distribution. Finally Pry(a(t + 1) =
rla(t) = p,a(t—1) = p') = Pr(©), where the coordinates of
regions p € R and p’ € R are used to identify the direction d
at time ¢, i.e., we need the last two visited regions to determine
the movement direction of the user.

3) The Combined Model: In this Section, we define a model
to predict a user’s behavior as a combination of the history-
based model and the direction-based model:

Pr.,(a(t+1)=rla(t) =p)=a -Prp+(1—ca) -Pry 3

where « € [0, 1] is the combination parameter and can change
over time to model occasions when the user’s behavior is more
likely to be accurately predicted by her history data, if these
are enough and available, and occasions where the direction-
based model is better suited to predict future movement of the
user.

III. PROBLEM STATEMENT

Before presenting the heuristic algorithm, we state the algo-
rithm design problem through an example. For demonstration

reasons we use a directed linkability graph as shown in Figure
3, where the vertices are labeled after the reported locations
at each time instant and a link between two vertices exists if a
transition is possible between them in successive time instants.
Each vertex is assigned a presence probability Pr(a(t) =),
where 7 is also the label of the vertex representing region
r. Each link is assigned a transition probability Pr(a(t)
rla(t —1) = p) - Pr(a(t — 1) = p) # 0, where p is the origin
vertex and r the destination (zero if the link does not exist).
Using Bayesian inference we can calculate that a location r
is the real one as follows:

Pr(a(t)=r) =
S Pr(a(t) = rla(t — 1) = p) - Pr(a(t — 1) = p)
pELL 1

“4)

For the sake of simplicity, we assume in this section

that transitions between vertices are equiprobable, therefore

Pr(a(t) = rla(t — 1) = p) follows the uniform distribution,

where > Pr(a(t) = rla(t —1) = p) = 1, Vp € L4_;.
rcly

Also, the maximum speed of a user is one region per time

instant. We will demonstrate that under these assumptions, a
user, who obfuscates her location, can get decreased privacy
levels in consecutive time instants. Consider the discretized
area seen before and illustrated in Figure 1. We set the
obfuscation parameter c to 2, the user moves within an area
of 16 regions, her maximum speed is one cell per time unit
and her trace is {2,6,7}. Ideally, for privacy protection, the
linkability graph should not become disjoint and there should
always an outgoing edge from every vertex in the previous
time instants.

Let’s assume that the user reports her actual location
a(tg) = 2 along with a fake one I; = 1 to the server at time
to, thus Pr(a(ty) = 2) = Pr(a(ty) = 1) = 3. At time ¢, the
user reports a(t1) = 6 and I; = 5 and we can compute the
probability for each one of those being the real position using
Equation 4, namely Pr(a(t1) = 6) = Pr(a(t1) = 5) = 3. An
adversary still has the highest uncertainty regarding the real
position (Figure 3a). At ¢y the user chooses to report a(te) = 7
and /; = 8. Apparently, there are some links missing now,
since region 7 is impossible to reach from region 5 and region
8 from both 5 and 6 in one time instant. An adversary has now
information that would reduce his uncertainty: by exploiting
the information at time ¢2 and using Bayesian inference, he
can recompute the probabilities at time instants ¢, and t;.
Applying Equation 4 to the new values she concludes that
Pr(a(tz) =7) =1 and Pr(a(tz) = 8) = 0, meaning that he
inferred the actual location of the user (see Figure 3b).

One can easily observe that the decrease of privacy level at
time to occurred due to the fact that the selection of region
8 as fake was done randomly. If the selection criterion was
to select as fake a region that is a direct neighbor of both
regions 5 and 6, then the linkability graph would not have
become disjoint and no vertex would be removed, thus the
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Fig. 3: Example showing deterioration in privacy level

uncertainty would have remained high at time step t,. This is
a design specification that we take into account in the proposed
heuristic algorithm of the next section.

Moreover, from the analysis above one can notice that
deterioration of privacy level might occur due to transition
probabilities assigned to links. A sophisticated adversary, that
has knowledge of the geographical area and the mobility
model of the user, can compute more accurate values of the
conditional probability Pr(a(t) = r|a(t — 1) = p) instead of
simply assuming that they are equiprobable. For example, if
a location r is not accessible by the user (even if p and r are
direct neighbors), the probability Pr(a(t) = r|a(t—1) = p) =
0, Vp € L;_1, resulting in a different value of Pr(a(t) = r).
This is the second design specification taken into account in
our heuristic algorithm.

IV. MOBILITY-AWARE OBFUSCATION ALGORITHM

In this section, we describe our heuristic obfuscation al-
gorithm that is mobility-aware. The algorithm takes as input
the user actual location a(t), her current velocity v; and the
obfuscation parameter c, and returns the set £; of ¢ locations,
representing the obfuscated location of the user. The algorithm

checks the reachable locations from the last time instant w.r.t.
v; and by using the transition probabilities from the user
mobility model, determines the ¢ — 1 fake locations to be
included in £; along with the actual location. The principle
idea is that the algorithm chooses locations to populate £, such
that they will be the most probable locations along with a(t)
to go to from the locations in £;_;. Hence, the adversary’s
confusion will potentially be the maximum possible.

There are two base cases for our algorithm, namely for
t = 0 and t = 1. For the sake of presentation and ease
of understanding, we first explain the body of the algorithm
for ¢ > 1 and explain the base cases later. In summary, the
algorithm consists of 3 steps. First, it determines the reachable
locations at time ¢ from the locations at time ¢ — 1 w.r.t. the
velocity v;. We call these locations the candidate locations S
under consideration for £;. Secondly, the algorithm chooses
¢ — 1 locations from S such that they will have the highest
transition probabilities w.r.t. £;_1. Finally the set £; is formed
by a(t) and the determined ¢ — 1 locations and returned.
The algorithm’s pseudo-code is presented in Algorithm 1 with
conditions ¢ = 0 and ¢ = 1 not included for readability
purposes. Note that the algorithm has access to all past
reported locations, i.e., Ly for k < ¢, and user history.

Algorithm 1: Mobility-aware Obfuscation Algorithm
Input: a(t), ¢, v
Output: £; — the set of ¢ locations acting as the
obfuscation area
1 Ly ={a(t)};
2 for each p € L,_1 do
3 Find locations that can be reached from p,
L i.e., neigh(p,v;);
4 T =), neigh(p,v;) ;
5§ =(Z\alt)) N neigh(a(t),v) ;
6 for each r € S and each p € L;_1 do
7 Compute the probability
| Pryp(a(t) = rla(t — 1) = p);
8 1=0;
9 while i < c—1 do
10 [, = argmax, (Zpeﬁhl Pr,.p) ;
1 Li=L U {L};
12 1=1+1;

[

3 return L

At the beginning of the algorithm, £, is initialized to {a(¢)}
as it has to include the actual location of the users. Afterwards,
in the first step (lines 2-5), the set S of candidate locations
is determined by finding the set of neighbors of each location
7 in L£;_1 with the limited range vy, the velocity of the user.
Then it finds the intersection of these sets to increase number
of combinations of paths in the linkability graph to ensure
maximum confusion for the adversary. The set S of candidate
locations is finalized by first removing the actual location a(t)



from it and then intersecting it with the neighboring locations
of a(t). This last part filters the candidate locations to those
within the proximity of the actual user location and also are
accessible by all the locations in £;_1.

After determining the set S, the transition probabilities from
the locations reported previously, i.e., in £;_1, to the ones in
S are computed in the second step (lines 6-7). In the last step,
¢ — 1 locations are chosen from & that provide the highest
transition, hence presence, probabilities for time ¢ and inserted
to L;. Note that, in our experiments, we actually implement
this step in a way that £; consists of locations that form a joint
polygon, in other words to avoid disjoint areas in £;. However,
L, may form areas of not regular shape (i.e., square, rectangle,
etc.).

We now explain the details for the base cases of our
algorithm, i.e., for ¢t = 0 and ¢ = 1. For ¢ = 0, we do not
have any transition to compute due to nonexistence of £;_;.
Instead, the algorithm computes the presence probabilities of
each location that is a neighbor of a(0), replacing the lines 2-
7. These probabilities can easily be computed from the history
of user. Step 3 (lines 8-13) remains same except that instead
of Pr,, on line 10, the presence probabilities Pr(a(0) = k)
are used. Secondly, for ¢ = 1, we do have transitions, however,
we cannot check a direction change because we need at least 3
points in space to be able to determine an angle of movement.
Hence, we compute the transition probabilities Pr,, based
only on the history mobility model explained in Section II-B1
on line 7 of Algorithm 1.

Example: We now go briefly through the example
presented in Section III again (where the trace of the user is
{2, 6, 7} w.r.t. the area in Figure 1) in order to demonstrate the
difference between the random selection of locations to report
and our heuristic algorithm. We assume a maximum speed of
1 location per time instant with ¢ = 2. At ¢ = 0 with a(0) = 2,
the set S is populated with all the one-hop distance neighbors
of a(0), ie., S = {1,2,3,5,6,7}. Here we have no access to
past traces, so we just pick one location from the set S to
report. Assume that we randomly choose to report location 1
as the fake location. Therefore £y = {1,2}. For t = 1, we
determine the candidate set S = {1,2,3,5,6,7} based on the
previous locations reported. Again, we pick one out of these
locations with uniform probability and report £1 = {5,6}. The
algorithm’s role becomes apparent now at ¢ = 2. For every
previously reported location, i.e., in £y = {5,6}, we find their
neighbors, and intersect the two sets of neighbors to get the set
Z. We have 7 = {1,2,5,6,9,10}({1,2,3,5,6,7,9,10, 11}
= {1,2,5,6,9,10}. We then prepare S as described previously
(i.e., according to line 5 of the algorithm): S = {2,6,10}. Now
that we have too many candidate locations to report, we have
to compute the probability for all the elements of S. But in
this example we cannot compute the probability distribution so
we just select a cell that could be reached from the previously
reported locations, say cell 6. We finally report Lo = {6,7}.
We can easily see that if we draw the linkability graph for
this example we will get a fully connected graph (unlike with

the random selection of locations), i.e., we have no transition
probability that is zero. Obviously, this is only a small example
and not all the parameters are taken into account but it gives a
good intuition of how the algorithm works and how it differs
from a random obfuscation model.

V. EVALUATION

We evaluate our heuristic algorithm by comparing it to
a random obfuscation mechanism and using a dataset of
real traces. We evaluate location privacy of users for both
mechanisms using the Location-Privacy Meter developed by
Shokri et al. [13], [12]. In the remainder of this section, we
describe our dataset and methodology, explain the privacy
metric we use and present our experimental results.

A. Dataset and Methodology

We use the real-world traces from the data collection
campaign carried out by Nokia in Lausanne region [10] from
2009 to 2011. The area-of-interest we consider in Lausanne
region is of size 1.25x 1.0 km, which is discretized to 25 x 20
regions for computational limitations. We filter the dataset
w.r.t. to this area and choose the users that have at least 15
chunks of 40-event long traces in this area. This results in a
final set of 33 users. We train the adversary with the additional
traces of each user while obfuscating and attacking one of
them. We run our experiments for varying « and c values
with heuristic and random obfuscation mechanisms separately.
Finally, we attack all the generated obfuscated traces with two
attackers (i.e., using the Location-Privacy Meter), one with and
one without the background knowledge on users’ history.

B. Measuring Location Privacy

In our scenario, the adversary has access to the obfuscated
trace of a user. His objective is to reconstruct the user’s
real trace based on this observation. The more accurately he
succeeds in the reconstruction, the lower the level of location
privacy that we obtain in our system. An effective metric for
measuring location privacy is the distortion-based metric by
Shokri et al. in [11]. This metric evaluates the expected error
of the adversary in terms of expected distance between the
inferred user location by the adversary and the actual user
location.

In order to evaluate the effectiveness of our heuristic
obfuscation algorithm, we used the Location-Privacy Meter
(LPM) developed by Shokri et al. [13], [12]. This software
is built based on a framework that formalizes the attack of
the adversary, takes into account his background information
on users’ mobility patterns and calculates users’ location-
privacy protection levels based on the adversary’s accuracy,
correctness and certainty about users’ actual trajectories. The
LPM consists of several attack strategies based on Hidden
Markov models. The observed traces serve as input to the tool
as well as a distance function, and a transition matrix, that
describes which transitions between regions are possible over
consecutive time steps, given the geographical area and the
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Fig. 4: Location privacy level in meters over time for one user, ¢ = 5, a = 0.5, against the weak adversary.

maximum speed of the user (in regions per time unit). The
output is the level of location privacy in terms of expected
distortion in meters at each time instant.

C. Experimental Results
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Fig. 5: Location privacy over the obfuscation parameter c
averaged over all users and time instants, against the weak
attacker.

In this section, we show various results obtained from our
experiments. We ran our experiments with varying values of
the obfuscation parameter c¢ and the combination parameter
« for our heuristic algorithm. We ran tests on the obfuscated
traces with two different attackers (with and without back-
ground knowledge on the users’ mobility). All location privacy
levels are presented as the expected error of the adversary in
meters a posteriori his inference. We refer to the attacker with
background knowledge as the “strong attacker”, and the one
without background knowledge as the “weak attacker”.

In Figure 4, we show the average location-privacy level
of a user over time in meters for ¢ = 5 and @ = 0.5
and against the weak attacker. We observe that the location

privacy is relatively steady over time, except the first two
time instants. This is due to the fact that we used uniform
probabilities when choosing the fake locations for obfuscation
in these time instants (i.e., the base cases of the algorithm).
But as of the third time instant, our actual heuristic algorithm
shows its effect on the location privacy and we observe a jump
around 100%. Also, as the algorithm can retain linkability
among successive time instants, we see consistent privacy
level protection over time. As discussed before, this is crucial
for continuous location disclosure scenarios where users may
accept a certain amount of loss in utility in order to meet a
desired level of privacy.

We now show the impact of the parameters ¢ and « on
obfuscation. On Figure 5, we plot the average privacy levels
over all users and all time instants over c obtained against
the weak attacker. The results include privacy levels obtained
with our heuristic algorithm for « = 0, with « = 1 and
a random obfuscation algorithm that generates a randomly
placed obfuscation area of size c. We observe that the value
of o does not significantly change the results against the weak
attacker. The results demonstrate the same trend for the strong
attacker. However, we believe that the variance in results for
different o values will increase for a richer dataset where user
traces are longer and there are more diverse user mobility
profiles. Additionally, we should be able to observe the impact
of a clearer when users divert from their routines.

Finally, we compare the random obfuscation and our heuris-
tic algorithm against the two attackers. Figure 6 shows the
results of the algorithms for different values of obfuscation
parameter ¢, and a comparison w.r.t. two adversary models
(i.e., the weak and the strong attackers). For the heuristic
algorithm, we averaged the privacy levels with different values
for «, (ie, for a = 0, 0.25, 0.5, 0.75 and 1) because the
differences were negligible. The first observation on this plot
is that the heuristic algorithm clearly outperforms the random
one for ¢ > 4. Even when the heuristic algorithm is attacked
by the strong attacker, it still provides a better location-privacy
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Fig. 6: Location privacy over the obfuscation parameter c
averaged over all users and time instants for heuristic and
random mechanisms against both attackers.

level than the random obfuscation mechanism against the
weak attacker. This result demonstrates the importance of
considering the mobility of the user when applying protecting
location privacy. Obviously, the strong attacker obtains more
information than the weak one for both heuristic and random
mechanisms. However, the relative loss in the case of heuristic
algorithm is considerably less than the loss in the case of
random obfuscation. As expected, the location privacy is
higher for larger values of c in all cases.

VI. DISCUSSION

Note that our evaluation is under specific assumptions
regarding adversary and even though we considered a strong
adversary that knows rich user history, he is still computa-
tionally limited in our experiments. In this regard, the privacy
levels we obtained in our results may be lower in reality if a
more powerful adversary attacks the user traces. Nevertheless,
we expect the privacy level difference observed between
our heuristic algorithm and a random and static obfuscation
algorithm to be still significant.

As a limitation, although trying to be realistic in the mobile
setup has proved to provide good experimental results, this
is not a formal proof that they constitute necessary and
sufficient conditions. We believe working towards identifying
these conditions and providing a formal proof is an interesting
research direction. Furthermore, our heuristic algorithm can be
extended to consider variable location-obfuscation size dynam-
ically over time. This would provide an adaptive protection
(hence privacy level), which might be desirable due to varying
sensitivities of individuals.

Lastly, the obfuscation areas constructed by our algorithm
may have irregular shapes and sometimes even consist of
disjoint areas. This is not necessarily a shortcoming of our
algorithm since it will always try to choose the regions that
have the highest probabilities to confuse the adversary. On the

other hand, there is room for improvement in terms of not
visited locations that may have impact on the location privacy
once visited in the future. We leave this dimension for future
work.

VII. RELATED WORK

The research community is aware of the privacy risks arising
from mobility of users in continuous disclosure scenarios.
There have been some attempts [15], [4] to address this
issue by proposing velocity or mobility aware protection
mechanisms. However, they fail to meet certain requirements
which we addressed in this paper. Xu et al. [15] proposes to
analytically consider a user’s transition probability distribu-
tions among locations in order to derive certain obfuscation
areas. They achieve this by constructing a linear program and
solve it for the optimal solution for building a obfuscation
area. Their idea is similar to our heuristic approach, yet
they do not consider direction-based mobility in their system.
Furthermore, they do not evaluate their protection mechanism
against a powerful adversary with real traces. Instead, they
attack either isolated user events or a short sequence of user
events (i.e., 2-3 events) and evaluate the privacy levels with
the entropy metric.

Ghinita et al. [4] proposes a protection mechanism to
protect location privacy in a velocity-aware way. Their model
lacks user mobility history in protection mechanism. They
also do not evaluate their mechanism’s effectiveness against
a localization attack with strong adversary assumptions.
They do, however, consider sensitive semantic places on the
map in order to determine the size and placement of a
obfuscation area.

Gotz et al. [6] propose a mobility-aware protection mecha-
nism based on Hidden Markov models that take into account
the knowledge of the adversary. Their proposed mechanism
provide optimal solutions for keeping the confusion of the
adversary high; however, the system requires an expensive
initialization phase, thus requiring offloading some work to
a remote server.

Finally, Agir et al. [1] proposed an adaptive protection
mechanism for location privacy that considers an adversary’s
capabilities from user’s side. They locally infer user location
using Bayesian inference through whole user history in order
to adapt the size of the obfuscation area used for protection.
Our work differs from theirs in the obfuscation area construc-
tion: once they determine the size of an obfuscation area,
they build a randomly generated rectangular area, whereas
we build the obfuscation area using the mobility of user and
the resulting obfuscation area is not necessarily a regular
shape. In this sense, our work can be combined with theirs
in order to enhance their adaptive protection approach and
avoid increasing the obfuscation size too much, because our
algorithm will be able to find a suitable obfuscation area for
a given ¢ much better.



VIII. CONCLUSION

In this paper, we explored how we can provide a powerful
obfus-cation-based protection mechanism that is mobility-
aware. We formulated the choice of locations used for building
an obfuscation area at time instant ¢, such that the deterioration
in the privacy level at time ¢ + 1 will be minimized while
the privacy levels in the past are retained. We proposed a
heuristic algorithm that takes into account the mobility of
the user (i.e., past behavior and the direction of movement)
when applying obfuscation. The effectiveness of the heuristic
algorithm was evaluated experimentally and the results are
remarkable. Our motivation for a heuristic approach was
to provide users with an efficient mechanism that can be
adopted for resource-constrainted mobile devices. Moreover,
our approach can run in near real-time and hence run in the
background to protect users’ location privacy unseemingly.
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