ICRH induced particle losses in Wendelstein 7-X

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 Plasma Phys. Control. Fusion 58 074004
(http://iopscience.iop.org/0741-3335/58/7/074004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.178.125.58
This content was downloaded on 26/09/2016 at 10:39

Please note that terms and conditions apply.

You may also be interested in:

Fast particle loss channels in Wendelstein 7-X
J.M. Faustin, W.A. Cooper, J.P. Graves et al.

Modeling of ion-cyclotron resonant heating in Wendelstein 7-X equilibrium
J M Faustin, W A Cooper, J P Graves et al.

Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO
D. Pfefferlé, W.A. Cooper, A. Fasoli et al.

Energetic particle physics in fusion research in preparation for burning plasma experiments
N.N. Gorelenkov, S.D. Pinches and K. Toi

Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments
M. Schneider, T. Johnson, R. Dumont et al.

Ripple induced losses in Tore Supra discharges
S Assas, L-G Eriksson, F Nguyen et al.

On the modelling of fast particle ripple losses in tokamaks
S.V. Putvinskij, B.J.D. Tubbing, L.-G. Eriksson et al.
ICRH induced particle losses in Wendelstein 7-X

J M Faustin1, W A Cooper1, J P Graves1, D Pfefferlé1 and J Geiger2

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
2 Max-Planck Institut für Plasmaphysik, D-17491 Greifswald, Germany

E-mail: jonathan.faustin@epfl.ch

Received 31 January 2016, revised 1 April 2016
Accepted for publication 18 April 2016
Published 31 May 2016

Abstract

Fast ions in W7-X will be produced either by neutral beam injection (NBI) or by ion-cyclotron resonant heating (ICRH). The latter presents the advantage of depositing power locally and does not suffer from core accessibility issues (Drevlak et al 2014 Nucl. Fusion 54 073002). This work assesses the possibility of using ICRH as a fast ion source in W7-X relevant conditions. The SCENIC package is used to resolve the full wave propagation and absorption in a three-dimensional plasma equilibrium. The source of the ion-cyclotron range of frequency (ICRF) wave is modelled in this work by an antenna formulation allowing its localisation in both the poloidal and toroidal directions. The actual antenna dimension and localization is therefore approximated with good agreement. The local wave deposition breaks the five-fold periodicity of W7-X. It appears that generation of fast ions is hindered by high collisionality and significant particle losses. The particle trapping mechanism induced by ICRH is found to enhance drift induced losses caused by the finite orbit width of trapped particles. The inclusion of a neoclassically resolved radial electric field is also investigated and shows a significant reduction of particle losses.

Keywords: ICRH, Wendelstein 7-X, fast particles

(Some figures may appear in colour only in the online journal)

1. Introduction

The large superconductor stellarator Wendelstein 7-X (W7-X) has recently obtained its first plasma at IPP-Greifswald, Germany. This first quasi-isodynamic stellarator ever built is expected, amongst other achievements, to demonstrate satisfactory confinement of fast ions. The confinement of fusion-born alpha particles is of primary concern for fusion reactors because they represent a substantial source of plasma heating. The optimisation procedure which resulted in the design of W7-X has provided the possibility of obtaining not only good fast particles confinement but also equilibrium and stability properties compatible with safe operation at high $\langle \beta \rangle$ value, i.e. up to 5%. The experimental success of W7-X relies in part on the generation of fast ions (typically hydrogen) within 50 keV to 100 keV, which are comparable to alpha particles in a reactor in terms of Larmor radius to machine minor radius ratio. Generation of such fast ions is hindered by many effects which must be understood in the context of 3D fields.

As exposed in [1], the quasi-isodynamic design would be best suited for a stellarator fusion reactor because it should be in principle capable of confining alpha particles over their slowing-down time. Studies into fast particle losses have broadened the understanding of the complicated dynamics of these particles in stellarators. The class of orbits that particles can take in a particular stellarator field [2, 3] has been found to have a strong impact on their confinement properties. It was found in [4] that the confinement of trapped particles relies mainly on the magnetic field structure and particularly on the geodesic curvature of the magnetic field lines. A process of collisionless stochastic radial diffusion acting on transitioning (or blocked) fast ions was first introduced in [1] and exposed with more details in [5]. Fast particle losses due to more exotic orbits, e.g. stochastic trapped orbits, were thoroughly studied in [6, 7]. The confinement of fast ions in various W7-X
configurations were published in [8]. The behaviour of a fast ion population generated by neutral beam injection (NBI) was investigated at \(\langle \beta \rangle = 2\% \) and showed issues regarding the beam penetration and also rapid loss of injected particles. It was also suggested in this work that using ion-cyclotron resonant heating (ICRH) would constitute a suitable alternative to NBI for fast ion generation mainly because ICRH does not suffer from the same core accessibility issues. ICRH is expected to be able to deposit power and therefore generate fast ions directly in the plasma centre where equilibrium confinement properties have to be tested experimentally. In the present paper, the possibility of producing fast ions using a minority ICRH scheme in W7-X is addressed. The SCENIC code package [9, 10] is used in order to solve for the W7-X plasma equilibrium, the fast wave propagating in the ion-cyclotron range of frequency (ICRF) and the interaction of minority ions with the ICRF wave along their guiding-centre trajectories. The analysis of the resulting ICRH particle distribution function provides an understanding particle losses mechanisms and fast ion confinement that leads to the generation of tails associated with ICRF heating. It is shown that the fraction of fast particles is significantly lower than the one produced in a similar tokamak scenario. The lost particle fraction is also found to be significantly high.

This paper is organised as follows. SCENIC simulations resolving consistent particle distribution functions in W7-X plasmas, where a minority ICRH scheme is applied, are presented in section 2. The main loss channels acting on fast ions in W7-X configurations exposed in [11] are briefly described in section 3. The lost particle distribution is then discussed in section 4. In section 5, the effect of a radial electric field provided by neoclassical transport calculations on the ICRH distribution function is investigated.

2. SCENIC simulations

2.1. Equilibria

The set of modular and planar coils which forms the W7-X magnetic system possesses the capacity to explore various magnetic configurations defined by the mirror ratio parameter [8, 12]:

\[
\text{mr} = \frac{B_{\rho=0} - B_{\rho=\pi/5}}{B_{\rho=0} + B_{\rho=\pi/5}},
\]

where \(B_{\rho=0} \) is defined at the bean shaped cross section.

The VMEC/ANIMEC code [13, 14] was used in order to reconstruct a high-mirror (mr = 8.7%) and a standard (mr = 4%) equilibrium. These configurations were chosen in order to emphasize the issues related to ICRF wave propagation and absorption under particular equilibrium magnetic field toroidal variation. In particular, the amplitude of the toroidal gradient in the magnetic field amplitude can be such that the lowest \(|B| \) value in the bean shaped cross section is higher than the highest \(|B| \) value in the triangular cross section. Therefore, as seen in figure 1 for the high-mirror configuration, there is no particular \(|B| \) value present at all toroidal positions. The consequence of this is that no ICRF frequency can be chosen such that a resonance will be found inside the plasma at all toroidal angles.

![Figure 1. Poloidal cross sections of W7-X equilibria used (left: standard configuration, right: high-mirror configuration). Colors indicate the amplitude of the equilibrium magnetic field. Dashed white lines show the location of the fundamental H resonance corresponding to 39.6 MHz (left) and 38.1 MHz (right).](image)

2.2. Wave field calculation

The 3D full wave code LEMan [15, 16] computes the ICRF wave propagation based on a prescribed ICRF antenna excitation. The calculation of the dielectric tensor \(\hat{\varepsilon} \) is based on the warm plasma model and resolves only electron Landau damping and fundamental ion cyclotron resonance. In the presence of a hot particle population which can be approximated by a bi-Maxwellian model, the dielectric tensor is corrected accordingly. Therefore only wave–particle interaction at the fundamental frequency on the minority species is possible. The LEMan code solves Maxwell’s equations in terms of vector and scalar potentials (resp. \(A \) and \(\phi \)) under the Coulomb gauge choice (\(\nabla \cdot A = 0 \)):

\[
\nabla^2 A + k_0^2 \hat{\varepsilon} \cdot A = -\frac{4\pi}{c} j_{\text{ant}} \tag{2}
\]

\[
\nabla \cdot (\hat{\varepsilon} \cdot \nabla \phi) - ik_0 \nabla \cdot (\hat{\varepsilon} \cdot A) = -4\pi \rho_{\text{ant}} \tag{3}
\]

The source for the fast magneto-sonic wave modeled in LEMan, is given by the current density \(j_{\text{ant}} \) flowing in the ICRF antenna straps [17]. In tokamak plasmas the poloidal modes of the fast wave are strongly coupled because of the inherent poloidal asymmetry of the equilibrium. This coupling is taken into account by the introduction of a poloidally localised simulated antenna. These plasmas can be approximated to be axisymmetric allowing an only weak coupling between the toroidal modes of the fast wave. It is therefore valid to consider each toroidal mode of the excitation spectrum independently
from one another. Each of these modes can be computed by letting the antenna surround the plasma in the toroidal direction. The wave localisation is retrieved by a superposition of a chosen set of modes which dominate the antenna spectrum. However this procedure is no longer valid in a 3D equilibrium because the asymmetry found also in the toroidal direction imposes a coupling of the fast wave toroidal modes. The modeled antenna in LEMan can take into account this additional coupling by localising the antenna in both the poloidal and toroidal direction. This is performed in the LEMan code by a particular implementation of the current density j_{ant} in the RHS of equation (2). The general expression for j_{ant} is written by considering no charge accumulation in the antenna and takes the following divergence-free form in the straight field line Boozer coordinate system (s, θ, φ) [15]:

$$j_{\text{ant}} = \nabla s \times \nabla \sigma(s, \theta, \varphi).$$

(4)

In equation (4), $\sigma(s, \theta, \varphi)$ is a function describing the localisation and the extension of the antenna excitation and reads:

$$\sigma(s, \theta, \varphi) = \sigma_0(s)\sigma_{\theta}(\theta)\sigma_\varphi(\varphi)$$

(5)

$$= \prod_{x=1,\theta,\varphi} (1 - X^2)^2 B \left(\frac{X - X_1}{X_1 - X_2} \right)$$

(6)

In equation (6), $s, \theta, \varphi, X_1, X_2$ define the antenna spatial boundaries and B is the box function which equals 1 in the interval $[-1,1]$ and 0 elsewhere. The flux coordinate frame in which the whole SCENIC suite of codes is written limits the simulated plasma domain to span from the magnetic axis to the last closed flux surface (LCFS). Therefore the antenna excitation cannot be radially positioned in the vacuum region but it is instead cast into a radial domain within the last closed surface. The complicated physics describing the plasma-wave coupling that occurs between the LCFS and the antenna can therefore not be modeled and a perfect coupling is assumed.

The W7-X ICRF antenna system to be installed for operation phase (OP) 1.2 is described in [18] and is used to set the modeled current density to a realistic configuration. This excitation model is applied to solve for the fast wave deposition in a W7-X deuterium rich plasma with 0.5% hydrogen minority.

The central density and temperature were respectively set to $n_0 = 1.55 \times 10^{20} \text{ m}^{-3}$ and $T_0 = 4.5 \text{ keV}$ for the standard equilibrium and $n_0 = 1.5 \times 10^{20} \text{ m}^{-3}$ and $T_0 = 4 \text{ keV}$ for the high-mirror configuration. These values of density and temperature were chosen in order to ensure a converged equilibrium with the minority concentration used is important to state that the wave energy is considered to be absorbed continuously as it propagates toroidally and its amplitude is maintained.

2.3. Guiding centre orbit calculations

The VENUS-LEVIS code [20] is used to resolve the guiding centre orbits of the H minority ions. Monte Carlo operators [21] are implemented in order to compute the Coulomb collisions with the thermal ions and electrons and the ICRF wave–particle interaction [22]. The electric field and wave numbers computed by the LEMan code with the localised antenna modeled is used for the latter. The simulated ICRF power is set to 1.5 MW which corresponds to a realistic power under the assumption of perfect antenna–plasma coupling. The energy transfer to and from the minority ions is in particular investigated. It is important to state that the wave energy is considered to be absorbed uniquely by the minority species. However, given the minority concentration used (0.5%) and the choice of the plasma ion species, a non negligible fraction of the power is expected to be absorbed by the Deuterium ions by second harmonic wave–particle interaction. As mentioned earlier, it is not our intention to provide fully realistic ICRH scenario simulations but instead the principle of generating and confining a fast particle population with ICRH in a high density stellarator.
plasma is investigated. A thermal population of 2097152 H markers is initialised in both equilibria. The minimum energy for the marker initialisation was set to 1 keV because only the behaviour of supra-thermal particles are of interest in this work. These markers are evolved for a time equivalent to a fourth of a slowing down time. The resulting energy distribution functions are displayed in figure 3. A case that has been obtained from a SCENIC simulation of a JET plasma run for a fourth of a slowing down time with 1.5 MW power is also shown for comparison. As described in [22] and as illustrated in figure 4, a splitting of the tail and the components of the final distribution can be performed in minority ICRH scenarios. In typical SCENIC simulations, the hot component of the particle distribution is fitted to the bi-Maxwellian model described in [23] and the corresponding moments are then used to update the plasma equilibrium and the ICRF wave deposition consistently with the hot particles’ contribution [22]. Several iterations between the three components of the SCENIC package allows the computation of a self-consistent distribution function. However, the fast component of the distributions for the W7-X cases of figure 3 are nearly vanishing. This can mainly be explained by the high density considered in these simulations. It is known from [24] and [25] that the minority energy range scales like $1/n_e^2$. The SCENIC iteration scheme cannot straightforwardly be applied using the usual procedure applied for tokamaks, but the particle distribution can still be analysed. Moreover, it is seen in figure 3 that the distribution of lost particles, i.e. particles which cross the LCFS, represents a significant fraction of the initial distribution: ~12% of the markers are lost during those simulations. The markers have the same numerical weight, therefore the fraction of lost markers represents the same number of lost particles. The amount of losses in a similar scenario applied to an axisymmetric JET tokamak plasma is nearly vanishing mainly because of the symmetry of trapped particle orbits in such a configuration. Note that changing the equilibrium from a standard to a high-mirror configuration seems only to affect the wave deposition pattern as seen in figure 2. Indeed, the change in the fast ion tail and the lost particle distribution appears to be negligible. Therefore this mechanism is not expected to play a significant role in the formation of the lost particles distribution.

3. Loss channels

Loss channels acting on a fast particle population generated by NBI were presented in [11]. In summary the losses are associated with the class of orbit which the particles are following.

3.1. Stochastic radial diffusion

This mechanism affects the transitioning particles, which are locally trapped in a toroidal period but can de-trap collisionlessly. This diffusion was suggested in [1] and further developed in [5]. This process acts on fast particles and is rather slow in the sense that a particle needs to experience several collisionless transitions between the locally trapped and passing state before it diffuses radially. In these simulations however, the initial distribution contains predominantly thermalised, i.e. collisional particles from which a fast tail would be generated.

3.2. Drift induced losses

Particles bouncing in the main magnetic mirrors or local magnetic wells can experience a net radial drift depending on the local properties of the equilibrium. The bounce averaged radial drift can be written in terms of the geodesic component of the magnetic field line curvature, assuming MHD force balance and nested flux surfaces:

$$f_b v_d \frac{\nabla s}{|\nabla s|} \, dt = f_b \left(\frac{\mu}{q} + \nu \rho \right) \frac{B}{B_0} \kappa_s \, dr,$$ \hspace{1cm} (7)

$$\kappa_s = \frac{1}{\sqrt{\sqrt{\mu^2 + \epsilon}}} \left(\frac{\partial B}{\partial \theta} B_\varphi - \frac{\partial B}{\partial \varphi} B_\theta \right)^{-1},$$ \hspace{1cm} (8)

where a particle of charge q, mass m and magnetic moment μ is considered, and $\rho = m v_d q B_0, B_0 = \nabla \times (B + \rho \nabla \times B)$. The magnetic flux coordinate system is defined ($s = \Phi_{\text{tor}} / \Phi_{\text{tor,edge}}, \theta, \varphi$) and the corresponding Jacobian is $\sqrt{s} = (\nabla s \times \nabla \theta \cdot \nabla \varphi)^{-1}$. It follows from equation (7) that heated particles must avoid being localised in regions where the geodesic curvature is negative in order to reduce the particle losses.

3.3. Effects of collisions

In addition to collisional transport, pitch-angle scattering may cause particles to wander in and out the trapped-passing boundary. It was shown in [11] that this process can populate regions of phase space where particles are deeply trapped in local wells with predominant unfavourable geodesic curvature.

3.4. Effects of ICRH

The ICRF acceleration results in a net increase of the resonant particles energy and magnetic moment after crossing multiple times the resonant layer. It is recalled that for trapped particles,
4. Lost particle distribution analysis

The most significant loss channels introduced in section 3 act predominantly on trapped particles. Figure 5 correlates the amount of lost markers for a given pitch angle variable $1/B_{ref} = \mu/E$. In this figure, the vertical dotted lines locate the particular value $1/\max B_{\parallel=0}$ and $1/\min B_{\parallel=0}$. These lines give an estimation of the fraction of deeply passing and deeply trapped particles. As suggested in section 3, pitch angle scattering produced by Coulomb collisions can generate deeply trapped particles which escape the confined volume via the drift induced loss mechanism. This mechanism explains the loss pattern observed when no ICRH is applied (dashed line in figure 5). It is seen that the losses practically do not affect passing particles. On the other hand, deeply trapped particles localised around the triangular cross section significantly experience this loss mechanism as seen by the peak in the region $1/B_{ref} > 1/\min B_{\parallel=0}$. In addition to this effect, the ICRF wave absorption brings resonating particles into a locally trapped state, therefore increasing the fraction of particles experiencing drift induced losses. In figure 5, this is illustrated by the first (small) peak in the dash-dotted line. The corresponding B_{ref} value for this peak matches the chosen value of B_\parallel for this simulation. This is caused by the alignment mechanism of the particles’ bounce tip with the resonant layers described in section 3. Moreover, the choice of B_\parallel, and therefore of the ICRF frequency, has then a direct impact on the fraction of lost particles. Figure 6 compares the number of lost markers for different values of B_\parallel, showing significant increases as B_\parallel decreases from 2.5 T to 2.4 T and to 2.22 T. As expected from the trapping mechanism described earlier, the largest peak in the number of lost markers is observed at $1/B_{ref} = 1/B_\parallel$.

The change in the ICRH frequency also changes the toroidal region covered by the resonant layer which in turn influences the number of particles in the trapped region of phase-space. Indeed, for lower values of B_\parallel, e.g. 2.22 T, the resonant layers are mostly located around the triangle cross section. In this case, the resonant particles’ motion converts into a toroidally trapped state which causes these particles to bounce between two poloidally closed isosurfaces (i.e. that entirely cover the $\theta = [0,2\pi]$ domain) at $B = B_\parallel = B_{ref}$. These particles can strongly experience the drift induced loss channel described earlier. Locally passing particles are usually well magnetically confined as has been previously described. On the other hand confining deeply trapped and energetic particles using only the magnetic equilibrium structure is one of the main challenges of the quasi-isodynamic stellarator configuration because their bounce averaged...
poloidal drift motion, especially at high energies, may not compensate their outward radial drift. As mentioned in section 3 where equation (7) was defined, these deeply trapped particles are lost because their trajectory is mostly located in regions of negative geodesic curvature. On the other hand, higher values of B_c, e.g. 2.5 T, correspond to resonant layers mostly located around the bean-shaped cross section. As seen in figure 7, the isosurfaces $|B| = B_{\text{ref}}$ are poloidally open (isosurfaces that do not span the entire poloidal domain $\theta = [0, 2\pi]$) for $B_c = 2.5$ T at $s = 0.25$. Therefore particles interacting with the ICRF wave are moved towards a helically trapped state, i.e. they can become locally passing by collisionless de-trapping. The drift induced loss mechanism is consequently less efficient for this fraction of trapped particles, this explaining the reduced number of lost markers with increasing value of B_c as observed in figure 6.

The loss patterns are also marked by the wave localisation. It is seen in figure 8 that the losses are enhanced in the toroidal period containing the antenna (and to a lesser extent the adjacent one) compared to the losses in the other periods. As expected from the drift induced loss mechanism, particle losses are toroidally localised around local magnetic wells as seen from the black curve in figure 8. It is expected that pitch-angle scattering provided by Coulomb collisions re-distributes particles in phase-space until they eventually trap in a local magnetic well and possibly drift out of the plasma. In addition to this redistribution, ICRH traps particles in particular magnetic wells which corresponds to the chosen frequency, or B_c value. Finally, there is a remarkable asymmetry in the loss patterns observed in each single period (e.g. a peak at the entrance of each period not found at the other end of the period) which was explained in [11] by the stellarator anti-symmetric feature of the geodesic curvature.

5. Guiding centre simulations including a radial electric field

Neoclassical particle transport of background electrons and ions occurs under the ambipolarity condition. The so-called ion-root transport regime [26] gives rise to a radial electric field (E_r) which affects the free motion of charged particles around the magnetic field lines by adding a $E \times B$ drift. The profile used in this work, displayed in figure 9, resulted from a neoclassical transport simulation performed with the 1D transport code NTSS [27]. This calculation was based on a NBI-heated plasma scenario where 5.5 MW of NBI-power was absorbed by a rather low density plasma ($n_e \times 10^{19}$ m$^{-3}$). The radial electric field profile given by this type of calculation depends on the plasma scenario parameters, e.g. type of heating, plasma density, level of anomalous transport considered. Therefore the E_r profile displayed in figure 9 is not consistent with the ICRH scenario presented in this work. However it can still be used to investigate in principle the effect of the resulting $E \times B$ drift on the ICRH distribution function.

This additional drift component points essentially in the poloidal direction and is expected to improve the confinement of trapped particles in non-axisymmetric magnetic configurations. The effects of such an electric field on fast particles were already investigated for an NBI-like population in [11]. As expected, it was observed that the confining effect of E_r is more efficient at low energies. In this section, the effects of E_r on the distribution function of lost particles and the fast tail generation are investigated. The guiding centre simulation presented in section 4 with $B_c = 2.5$ T is re-run with the inclusion of E_r. The high equilibrium background density and the relatively low ICRH power dictate that the minority species ions remain mostly thermal and therefore undergo a strong effect of the $E \times B$ drift. In this case undertaken for an ICRH power of 1.5 MW, the number of lost markers is strongly reduced as seen in figure 10 and represents a negligible fraction of the initial marker population.

![Figure 7](image1.png)

Figure 7. Contours of constant $|B|$ in the $\theta - \varphi$ plane at $s = 0.25$. The large peaks seen in figures 5 and 6 correspond to particle trapped between poloidally closed isosurfaces of B (e.g. 2.22 T).

![Figure 8](image2.png)

Figure 8. Number of lost markers with respect to their toroidal position. If the antenna was not localised, the total number of lost markers is expected to be higher than in the work presented here.

![Figure 9](image3.png)

Figure 9. Radial electric profile E_r resolved by neoclassical calculation.
The fraction of fast ions in the total minority species distribution function remains relatively low for 1.5 MW. As well known from [24], the energy range reached by the minority species scales with the coupled ICRF power P_{RF}. It is seen from figure 10 that the particle losses follow roughly the same scaling because higher kicks to the particles’ perpendicular velocity increase inevitably the radial drift, see equation (7). Distribution functions of confined particles resulting from the scan in P_{RF} is shown in figure 11. The possibility of generating fast ions at higher heating power is observed for these cases where the radial electric field assists confinement. As P_{RF} increases, the fast ion tail of the distribution grows and becomes similar to the JET-like simulation introduced in section 2.3 for $P_{\text{RF}} = 6$ MW. However, this amount of coupled power, under the assumption of perfect wave-plasma coupling, is well above the expected maximum available power during OP1.2 [18]. Therefore the minority ICRH scheme does not appear to be suitable for fast ion generation in W7-X.

6. Summary and conclusions

The work presented here describes the ICRF wave deposition for a minority heating scheme in W7-X and the associated particle losses. Simulations obtained with the 3D full-wave code LEMan show that the localisation of the antenna system induces a five-fold periodicity breaking in terms of wave deposition. This wave field has been used with the guiding centre orbit VENUS-LEVIS in order to resolve the wave–particle interaction. The particle loss patterns characterising the investigated ICRH heated W7-X plasma scenario have been assessed. Particle losses are mostly due to a drift induced loss mechanism. Pitch angle scattering produced by Coulomb collisions is a source of particle trapping and de-trapping and consequently enhances the drift induced losses. ICRH is also found to enhance this loss channel because the wave–particle interaction in the perpendicular direction is a source of particle trapping. Consequently, the toroidal positions of lost particles are influenced by the wave localisation. The effects of a radial electric computed by neoclassical transport simulations have been considered. The inclusion of the $v_{E \times B}$ leads to a more complete description of the particle dynamics and shows a strong reduction of the losses. However, this does not appear to be sufficient for producing a fast ion tail distribution for experimental fast particle confinement studies with 1.5 MW of coupled ICRH power. Other ICRH schemes such as the so-called three-ion species heating scenario [25] should be further investigated for the generation of fast ions in W7-X. Regardless of the heating scheme, it seems reasonable that fast ions will be mostly located in the toroidal period containing the antenna and the one adjacent to it because of the RF trapping effect. In addition to the consequences of this on plasma heating in general, the improvements to the ICRH model taking into account such toroidal variation, e.g. in the dielectric tensor, should be considered in the future.

Acknowledgments

The authors would like to thank C D Beidler, M Drevlak, P Helander, J Dominski and S Lanthaler for insightful discussions. The authors are also grateful to D Moseev and Yu Turkin for providing the radial electric field profile.

This work has been carried out within the framework of the EURoFusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The project was also supported in part by the Swiss National Science Foundation. The authors thank Dr S P Hirshman for providing us with the VMEC code. Much of the numerical work was performed at the CSCS, Lugano, Switzerland, and at the IFERC, Rokkasho, Japan. This work was supported by EPFL through the use of the facilities of its Scientific IT and Application Support Center.

References

[17] Dumont R J and Zarzoso D 2013 Heating and current drive by ion cyclotron waves in the activated phase of ITER Nucl. Fusion 53 013002

[18] Ongena J et al 2014 Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X Phys. Plasmas 21 061514

