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Movie
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Introduction Model Two-point model Fueling Conclusions

The tokamak scrape-off layer (SOL)

I Heat exhaust

I Confinement

I Impurities

I Fusion ash removal

I Fueling the plasma (recycling)
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Introduction Model Two-point model Fueling Conclusions

1. Modeling the periphery
2. A refined two-point model with neutrals
3. Gas puff fueling simulations
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Modeling the periphery

I High plasma collisionality, local
Maxwellian

I d/dt � ωci ,k2
⊥� k2

‖

I Drift-reduced Braginskii equations
n,Ω,v‖e,v‖,i ,Te,Ti

I Flux-driven, no separation between
equilibrium and fluctuations

I Kinetic neutral equation

I Interplay between plasma outflow from
the core, turbulent transport, sheath
losses, and recycling
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Introduction Model Two-point model Fueling Conclusions

Fluid plasma model and interaction with neutrals

∂n
∂ t

=−ρ
−1
? [φ ,n]+

2
B

[C(pe)−nC(φ)]−∇‖(nv‖e)+Dn(n)+Sn+nnνiz −nνrec (1)

∂ω̃

∂ t
=−ρ

−1
? [φ , ω̃]−v‖i ∇‖ω̃ +

B2

n
∇‖ j‖+

2B
n

C(p)+Dω̃ (ω̃)− nn
n

νcx ω̃ (2)

∂v‖e
∂ t

=−ρ
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1
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n

(νen +2νiz )(v‖n −v‖e)
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∂Ti
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∇
2
⊥φ =ω, ρ? = ρs/R, ∇‖f = b0 ·∇f , ω̃ = ω + τ∇

2
⊥Ti , p = n(Te + τTi )

+ boundary conditions

+ kinetic neutral equation
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The density equation

∂n
∂ t

=−ρ
−1
? [φ ,n] +

2
B

[C(pe)−nC(φ)] −∇‖(nv‖e) (7)

+ Sn + nnνiz −nνrec +D⊥n(n)

I ExB drift
I Curvature terms
I Parallel advection
I Plasma source from core
I Interaction with neutrals
I Perpendicular diffusion
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Introduction Model Two-point model Fueling Conclusions

The kinetic model of the neutrals

I One mono-atomic neutral species
I Krook operators for ionization, charge-exchange, and

recombination
I C. Wersal and P. Ricci 2015 Nucl. Fusion 55 123014
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Introduction Model Two-point model Fueling Conclusions

The neutral model

∂ fn
∂ t

+~v · ∂ fn
∂~x

= −νiz fn−νcx (fn−nnΦi) + νrecniΦi (8)

νiz = ne〈veσiz(ve)〉, νcx = ni〈vrelσcx (vrel)〉
νrec = ne〈veσrec(ve)〉, Φi = fi/ni

Boundary conditions
(v⊥ in respect to the surface; θ between ~v and normal vector to the surface)∫

~dv v⊥fn(~xw ,~v) + ui⊥ni = 0 (9)

fn(~xw ,~v) ∝ cos(θ)emv2/2Tw for v⊥ > 0 (10)
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Introduction Model Two-point model Fueling Conclusions

Boundary conditions for the neutrals

I Partial reflection at the limiters
I Window averaged particle flux conservation at the outer

boundary
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I Gas puffs and neutral background
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Introduction Model Two-point model Fueling Conclusions

Further simplifications

I Separation of time scales
I The neutrals’ time of life is typically shorter than the

turbulent time scale

I Te = 20eV, n0 = 5 ·1013cm−3

→ τneutral losses ≈ ν
−1
eff ≈ 5 ·10−7s

→ τturbulence ≈
√

R0Lp/cs0 ≈ 2 ·10−6s

I Assume ∂ fn/∂ t ≈ 0

I Plasma anitrosopy
I The plasma elongation along the field lines is much longer

than the typical neutral mean free path

I Assume ∇‖fn ≈ 0
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Introduction Model Two-point model Fueling Conclusions

Solution of neutral eq. with method of characteristics
Example in 1D, no recombination, v > 0 and a wall at x = 0

v
∂ fn
∂x

= νcxnnΦi−(νiz + νcx )fn (11)

0 x

v

fn(x ,v) =
∫ x

0
dx ′

νcx (x ′)nn(x ′)Φi(x ′,v)

v
e−

1
v
∫ x

x ′ dx ′′ (νcx (x ′′)+νiz(x ′′))

+ fw (v)e−
1
v
∫ x

0 dx ′′ (νcx (x ′′)+νiz(x ′′))

(12)
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An equation for the density distribution

By imposing

∫
fn dv = nn (13)

we get a linear integral equation for nn(x)

nn(x) =
∫ x

0
dx ′ nn(x ′)

∫
∞

0
dv

νcx (x ′)Φi(x ′,v)

v
e−

deff νeff (x−x ′)
v (14)

+ contribution by v < 0
+ nw (x)
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Introduction Model Two-point model Fueling Conclusions

The GBS code, a tool to simulate SOL turbulence

I Evolves scalar fields in 3D geometry
n,Ω,v‖e,v‖,i ,Te,Ti

I Kinetic neutral physics

I Limiter geometry

I Open and closed field-line region

I Sources Sn and ST mimic plasma
outflow from the core

I (Divertor geometry)
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Introduction Model Two-point model Fueling Conclusions

Questions that we can address

I How is the temperature at the limiter related to main
plasma parameters?

I How is the plasma fueled?
I How do neutrals affect plasma turbulence?

SOL width? Heat flux?
I How do diagnostic gas puffs affect the SOL?
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Introduction Model Two-point model Fueling Conclusions

1. Modeling the periphery
2. A refined two-point model with neutrals
3. Gas puff fueling simulations
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Introduction Model Two-point model Fueling Conclusions

The two-point model

Core

Edge

SOL

Limiter
Target Upstream

I Relation between
upstream and target
plasma properties

I Widely used experimentally
for a quick estimate

I Derived from 1D model
along field lines
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Introduction Model Two-point model Fueling Conclusions

The SOL unrolled

Main Plasma

SOL

Limiter

Wall

LCFS

SOL

Main Plasma

Limiter Limiter

I Parallel plasma dynamics projected along poloidal
coordinate

I Plasma and energy outflowing from the core are modeled
with prescribed Sn and SQ

Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37



Introduction Model Two-point model Fueling Conclusions

The SOL unrolled

Main Plasma

SOL

Limiter

Wall

LCFS

SOL

Main Plasma

Limiter Limiter

UpstreamTarget Target

I Parallel plasma dynamics projected along poloidal
coordinate

I Plasma and energy outflowing from the core are modeled
with prescribed Sn and SQ

Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37



Introduction Model Two-point model Fueling Conclusions

The SOL unrolled

Main Plasma

SOL

Limiter

Wall

LCFS

SOL

Main Plasma

Limiter Limiter

UpstreamTarget Target

s

I Parallel plasma dynamics projected along poloidal
coordinate

I Plasma and energy outflowing from the core are modeled
with prescribed Sn and SQ

Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 19 / 37



Introduction Model Two-point model Fueling Conclusions

The SOL unrolled

Main Plasma

SOL

Limiter

Wall

LCFS

SOL

Main Plasma

Limiter Limiters

I Parallel plasma dynamics projected along poloidal
coordinate

I Plasma and energy outflowing from the core are modeled
with prescribed Sn and SQ
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Introduction Model Two-point model Fueling Conclusions

The basic two-point model

Q =
∫

SQds = Qcond + Qconv (15)

Qcond =−χe0T 5/2
e

dTe

dz
(16)

Qconv = ce0ΓTe (17)

Γ = nv‖ =
∫

Snds (18)

Boundary conditions
I Upstream: dTe/ds = 0
I At the limiter: QL = γeΓLTeL,

γe ≈ 5

SQ,Sn

⇓
Te,u

Te,t
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Introduction Model Two-point model Fueling Conclusions

Simulations with different densities
n0 = 5 ·1012cm−3

n0 = 5 ·1013cm−3
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Introduction Model Two-point model Fueling Conclusions

Poloidal profiles of electron temperature

-L 0 L

s

0

0.2

0.4

0.6

0.8
T
e

n0=5· 1012cm 3

n0=5· 1013cm 3
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Introduction Model Two-point model Fueling Conclusions

Temperature ratio upstream to target

1 1.5 2

Te,u/Te,t (GBS)

1

1.2

1.4

1.6

1.8

2

T
e,
u
/
T
e,
t
(t
p
m
)

basic model

5 · 1013, no nn

5 · 1013

5 · 1012, no nn

5 · 1012

5 · 1013 20x480
5 · 1013, Eiz = 30
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Introduction Model Two-point model Fueling Conclusions

A more refined two-point model

I Obtain an electron heat equation in quasi-steady state

3
2

Te
∂n
∂ t

+
3
2

n
∂Te

∂ t
≈ 0 (19)

I Assume ve,‖ ≈ vi ,‖ and neglect small terms (e.g., D⊥Te )
I Combine perpendicular transport terms into SQ

∇‖

(
5
2

nv‖Te

)
−χe0∇‖

(
T 5/2

e ∇‖Te

)
−v‖∇‖(nTe) (20)

= 〈SQ〉+ Sneutrals

with Sneutrals =−nnνiz(Te)Eiz and χe0 = 3/2n̄κe‖
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Introduction Model Two-point model Fueling Conclusions

Further assumptions and relations

I v‖ is linear from −cs to cs

I cs =
√

Te,t + Ti ,t ≈
√

2Te,t

I nv‖ =
∫

[Sn + nnνiz(Te)]ds
I nn is decaying exponentially from limiter with λmfp
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Introduction Model Two-point model Fueling Conclusions

Three external input quantities

I Perpendicular heat source, SQ

I Perpendicular particle source, Sn

I Ionization particle source, Siz

-L 0 L

s

-0.05

0

0.05

0.1

0.15

S
Q

GBS

cos fit

SQ,Sn,Siz

⇓
Te,u

Te,t
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Temperature ratio upstream to target
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Introduction Model Two-point model Fueling Conclusions

Questions that we can address

I How is the temperature at the limiter related to main
plasma parameters?

I How is the plasma fueled?
I How do neutrals affect plasma turbulence?

SOL width? Heat flux?
I How do diagnostic gas puffs affect the SOL?

Christoph Wersal - SPC Neutrals in the turbulent tokamak edge 29 / 37



Introduction Model Two-point model Fueling Conclusions

1. Modeling the periphery
2. A refined two-point model with neutrals
3. Gas puff fueling simulations
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Introduction Model Two-point model Fueling Conclusions

Gas puff/fueling simulations

I Open and closed field lines
I Various gas puff locations

(hfs, bot, lfs, top)
I Small constant main wall

recycling
I n0 = 1013cm−3, T0 = 20eV,

q = 3.87, ρ−1
? = 500,

a0 = 200ρs
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Neutral density
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Ionization
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Introduction Model Two-point model Fueling Conclusions

Radial ExB flow

I outward/inward
flow

I Ballooning
outward transport
at the low field
side

I Inward fueling at
the high field side

I Robust feature
independent of
gas puff location
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Introduction Model Two-point model Fueling Conclusions

Poloidal ExB flow

I Poloidal rotation
due to radial
electric field

I Shearing of the
turbulent eddies
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Introduction Model Two-point model Fueling Conclusions

Conclusions

I Plasma turbulence at the periphery and interaction with
neutrals are crucial issues on the way to fusion electricity

I GBS is now able to simulate this complex interplay
self-consistently

I Development of a more refined two-point model, in
agreement with GBS

I Initial study of plasma fueling due to ionization and radial
flows, and of plasma poloidal rotation.
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Reaction rates - Stangeby
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Reaction rates - openADAS
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Timescales

T0(eV) n0(m−3) τturbulence(s) τnnloss(s) λmfp(m)

1 1e+17 1.0e-05 1.4e-03 2.5e+00
1 1e+18 1.0e-05 1.4e-04 2.5e-01
1 1e+19 1.0e-05 1.4e-05 2.5e-02
1 1e+20 1.0e-05 1.4e-06 2.5e-03
1 1e+21 1.0e-05 1.4e-07 2.5e-04

20 1e+17 2.3e-06 2.6e-04 4.4e-01
20 1e+18 2.3e-06 2.5e-05 4.3e-02
20 1e+19 2.3e-06 2.4e-06 4.1e-03
20 1e+20 2.3e-06 2.2e-07 3.7e-04
20 1e+21 2.3e-06 1.8e-08 3.1e-05
50 1e+17 1.4e-06 1.6e-04 2.8e-01
50 1e+18 1.4e-06 1.6e-05 2.7e-02
50 1e+19 1.4e-06 1.5e-06 2.6e-03
50 1e+20 1.4e-06 1.4e-07 2.4e-04
50 1e+21 1.4e-06 1.2e-08 2.0e-05
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The model in steady state

Steady state, ∂ fn
∂ t = 0, first approach

I Valid if τneutral losses < τturbulence

I e.g. Te = 20eV, n0 = 5 ·1019m−3

τneutral losses ≈ ν
−1
eff ≈ 5 ·10−7s

τturbulence ≈
√

R0Lp/cs0 ≈ 2 ·10−6s

I Otherwise: time dependent model
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