Impact of neutral atoms on plasma turbulence in the tokamak edge region

C. Wersal

P. Ricci, F.D. Halpern, R. Jorge, J. Morales, P. Paruta, F. Riva

Theory of Fusion Plasmas Joint Varenna-Lausanne International Workshop

29.08. - 02.09. 2016

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□■ のへの

Toroidal limiter

코 에 제 코 에

三日 のへで

2/37

- Toroidal limiter
- Radial transport due to turbulence

э

- Toroidal limiter
- Radial transport due to turbulence
- Parallel flow in the SOL to the limiter

э

2/37

- Toroidal limiter
- Radial transport due to turbulence
- Parallel flow in the SOL to the limiter
- Recombination on the limiter

- Toroidal limiter
- Radial transport due to turbulence
- Parallel flow in the SOL to the limiter
- Recombination on the limiter
- Ionization of neutrals
 - Density source
 - Energy sink

< ∃⇒

- Toroidal limiter
- Radial transport due to turbulence
- Parallel flow in the SOL to the limiter
- Recombination on the limiter
- Ionization of neutrals
 - Density source
 - Energy sink

< ∃ →

2/37

- Toroidal limiter
- Radial transport due to turbulence
- Parallel flow in the SOL to the limiter
- Recombination on the limiter
- Ionization of neutrals
 - Density source
 - Energy sink
- Recycling

▶ ▲ 코 ▶ . 프

Movie

The tokamak scrape-off layer (SOL)

- Heat exhaust
- Confinement
- Impurities
- Fusion ash removal
- Fueling the plasma (recycling)

- ▲ 톤 ▶ ▲ 톤 ▶ - 톤 | ᆋ - ∽ Q Q ↔

< 🗇 🕨

- 1. Modeling the periphery
- 2. A refined two-point model with neutrals
- 3. Gas puff fueling simulations

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

Christoph Wersal - SPC Neutrals in the turbulent tokamak edge

・ロ> < 回> < 回> < 回> < 回> < 回

 High plasma collisionality, local Maxwellian

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- High plasma collisionality, local Maxwellian
- $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- High plasma collisionality, local Maxwellian
- $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$
- Drift-reduced Braginskii equations
 n, Ω, v_{||e}, v_{||,i}, T_e, T_i

<□> < □> < □> < □> 三目目 のQ()

6/37

- High plasma collisionality, local Maxwellian
- $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$
- Drift-reduced Braginskii equations
 n, Ω, v_{||e}, v_{||,i}, T_e, T_i
- Flux-driven, no separation between equilibrium and fluctuations

→ Ξ → < Ξ →</p>

- High plasma collisionality, local Maxwellian
- $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$
- Drift-reduced Braginskii equations
 n, Ω, v_{||e}, v_{||,i}, T_e, T_i
- Flux-driven, no separation between equilibrium and fluctuations
- Kinetic neutral equation

→ Ξ → < Ξ →</p>

- High plasma collisionality, local Maxwellian
- $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$
- Drift-reduced Braginskii equations
 n, Ω, v_{||e}, v_{||,i}, T_e, T_i
- Flux-driven, no separation between equilibrium and fluctuations
- Kinetic neutral equation
- Interplay between plasma outflow from the core, turbulent transport, sheath losses, and recycling

→ Ξ → < Ξ →</p>

Fluid plasma model and interaction with neutrals

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} \left[C(p_{e}) - nC(\phi) \right] - \nabla_{\parallel}(nv_{\parallel e}) + \mathscr{D}_{n}(n) + S_{n} + n_{n}v_{iz} - nv_{rec}$$
(1)

$$\frac{\partial \tilde{\omega}}{\partial t} = -\rho_{\star}^{-1} [\phi, \tilde{\omega}] - v_{\parallel i} \nabla_{\parallel} \tilde{\omega} + \frac{B^2}{n} \nabla_{\parallel} j_{\parallel} + \frac{2B}{n} C(\rho) + \mathscr{D}_{\tilde{\omega}}(\tilde{\omega}) - \frac{n_n}{n} v_{cx} \tilde{\omega}$$
(2)

$$\frac{\partial v_{\parallel e}}{\partial t} = -\rho_{\star}^{-1} [\phi, v_{\parallel e}] - v_{\parallel e} \nabla_{\parallel} v_{\parallel e} + \frac{m_i}{m_e} \left(v \frac{j_{\parallel}}{n} + \nabla_{\parallel} \phi - \frac{1}{n} \nabla_{\parallel} p_e - 0.71 \nabla_{\parallel} T_e \right) + \mathscr{D}_{v_{\parallel e}} (v_{\parallel e}) + \frac{n_n}{n} (v_{en} + 2v_{iz}) (v_{\parallel n} - v_{\parallel e})$$

$$(3)$$

$$\frac{\partial \mathbf{v}_{\parallel i}}{\partial t} = -\rho_{\star}^{-1} [\phi, \mathbf{v}_{\parallel i}] - \mathbf{v}_{\parallel i} \mathbf{v}_{\parallel i} - \frac{1}{n} \nabla_{\parallel} \mathbf{p} + \mathscr{D}_{\mathbf{v}_{\parallel i}} (\mathbf{v}_{\parallel i}) + \frac{n_n}{n} (\mathbf{v}_{iz} + \mathbf{v}_{cx}) (\mathbf{v}_{\parallel n} - \mathbf{v}_{\parallel i})$$
(4)

$$\frac{\partial T_{e}}{\partial t} = -\rho_{*}^{-1} [\phi, T_{e}] - v_{\parallel e} \nabla_{\parallel} T_{e} + \frac{4T_{e}}{3B} \left[\frac{1}{n} C(\rho_{e}) + \frac{5}{2} C(T_{e}) - C(\phi) \right] + \frac{2T_{e}}{3} \left[\frac{0.71}{n} \nabla_{\parallel} j_{\parallel} - \nabla_{\parallel} v_{\parallel e} \right]$$
(5)

$$+\mathscr{D}_{T_{e}}(T_{e})+\mathscr{D}_{T_{e}}^{\parallel}(T_{e})+S_{T_{e}}+\frac{n_{n}}{n}v_{iz}(-\frac{2}{3}E_{iz}-T_{e}+\frac{m_{e}}{m_{i}}v_{\parallel e}(v_{\parallel e}-\frac{4}{3}v_{\parallel n}))+\frac{n_{n}}{n}v_{en}\frac{m_{e}}{m_{i}}\frac{2}{3}v_{\parallel e}(v_{\parallel n}-v_{\parallel e}))$$

$$\frac{\partial T_i}{\partial t} = -\rho_\star^{-1}[\phi, T_i] - \mathbf{v}_{\parallel i} \nabla_{\parallel} T_i + \frac{4T_i}{3B} \left[\frac{1}{n} C(\rho_e) - \tau \frac{5}{2} C(T_i) - C(\phi) \right] + \frac{2T_i}{3} \left[(\mathbf{v}_{\parallel i} - \mathbf{v}_{\parallel e}) \frac{\nabla_{\parallel} n}{n} - \nabla_{\parallel} \mathbf{v}_{\parallel e} \right]$$
(6)

$$+ \mathcal{D}_{T_{i}}(T_{i}) + \mathcal{D}_{T_{i}}^{\parallel}(T_{i}) + S_{T_{i}} + \frac{n_{n}}{n} (\mathbf{v}_{iz} + \mathbf{v}_{cx})(T_{n} - T_{i} + \frac{1}{3} (\mathbf{v}_{\parallel n} - \mathbf{v}_{\parallel i})^{2})$$

$$\nabla_{\perp}^{2} \phi = \omega, \ \rho_{\star} = \rho_{S}/R, \ \nabla_{\parallel} f = \mathbf{b}_{0} \cdot \nabla f, \ \tilde{\omega} = \omega + \tau \nabla_{\perp}^{2} T_{i}, \ p = n(T_{e} + \tau T_{i})$$

+ boundary conditions

+ kinetic neutral equation

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ S_n + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

- ExB drift
- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B}[C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ S_n + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

ExB drift

- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(\rho_{e}) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ S_{n} + n_{n}v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

ExB drift

- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e})$$
(7)
+ $S_n + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$

- ExB drift
- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ \frac{S_n}{S_n} + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

- ExB drift
- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝒫 𝔅 𝔅

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ S_n + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

- ExB drift
- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

$$\frac{\partial n}{\partial t} = -\rho_{\star}^{-1}[\phi, n] + \frac{2}{B} [C(p_e) - nC(\phi)] - \nabla_{\parallel}(nv_{\parallel e}) \qquad (7)$$
$$+ S_n + n_n v_{iz} - nv_{rec} + \mathcal{D}_{\perp n}(n)$$

- ExB drift
- Curvature terms
- Parallel advection
- Plasma source from core
- Interaction with neutrals
- Perpendicular diffusion

The kinetic model of the neutrals

- One mono-atomic neutral species
- Krook operators for ionization, charge-exchange, and recombination
- C. Wersal and P. Ricci 2015 Nucl. Fusion 55 123014

★ ■ ▶ ★ ■ ▶ ■ ■ ■ の Q @

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{iz} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i$$
(8)

$$\begin{aligned} v_{iz} &= n_e \langle v_e \sigma_{iz}(v_e) \rangle, \quad v_{cx} = n_i \langle v_{rel} \sigma_{cx}(v_{rel}) \rangle \\ v_{rec} &= n_e \langle v_e \sigma_{rec}(v_e) \rangle, \quad \Phi_i = f_i / n_i \end{aligned}$$

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = - \frac{v_{iz} f_n}{v_{cx}} - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i$$
(8)

$$\begin{aligned} \mathbf{v}_{iz} &= n_e \langle \mathbf{v}_e \sigma_{iz}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} = n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i = f_i / n_i \end{aligned}$$

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{iz} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i$$
(8)

$$\begin{aligned} v_{iz} &= n_e \langle v_e \sigma_{iz}(v_e) \rangle, \quad v_{cx} = n_i \langle v_{rel} \sigma_{cx}(v_{rel}) \rangle \\ v_{rec} &= n_e \langle v_e \sigma_{rec}(v_e) \rangle, \quad \Phi_i = f_i / n_i \end{aligned}$$

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{iz} f_n - v_{cx} (f_n - n_n \Phi_i) + \frac{v_{rec} n_i \Phi_i}{v_{rec} n_i \Phi_i}$$
(8)

$$\begin{aligned} \mathbf{v}_{iz} &= n_e \langle \mathbf{v}_e \sigma_{iz}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} &= n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i &= f_i / n_i \end{aligned}$$

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{iz} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i$$
(8)

$$\begin{aligned} v_{iz} &= n_e \langle v_e \sigma_{iz}(v_e) \rangle, \quad v_{cx} = n_i \langle v_{rel} \sigma_{cx}(v_{rel}) \rangle \\ v_{rec} &= n_e \langle v_e \sigma_{rec}(v_e) \rangle, \quad \Phi_i = f_i / n_i \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \, v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0 \tag{9}$$

$$f_n(\vec{x}_w,\vec{v}) \propto cos(\theta) e^{mv^2/2T_w}$$
 for $v_\perp > 0$ (10)

▲□ → ▲ ■ → ▲ ■ = ● ● ●

Boundary conditions for the neutrals

- Partial reflection at the limiters
- Window averaged particle flux conservation at the outer boundary

Gas puffs and neutral background

ELE DQC

프 🖌 🛪 프 🕨

Further simplifications

- Separation of time scales
 - The neutrals' time of life is typically shorter than the turbulent time scale
 - ► $T_e = 20 \text{eV}, n_0 = 5 \cdot 10^{13} \text{cm}^{-3}$ $\rightarrow \tau_{neutral \, losses} \approx v_{eff}^{-1} \approx 5 \cdot 10^{-7} s$ $\rightarrow \tau_{turbulence} \approx \sqrt{R_0 L_p} / c_{s0} \approx 2 \cdot 10^{-6} s$

• Assume
$$\partial f_n / \partial t \approx 0$$

Further simplifications

- Separation of time scales
 - The neutrals' time of life is typically shorter than the turbulent time scale
 - ► $T_e = 20 \text{eV}, n_0 = 5 \cdot 10^{13} \text{cm}^{-3}$ $\rightarrow \tau_{neutral \, losses} \approx v_{eff}^{-1} \approx 5 \cdot 10^{-7} s$ $\rightarrow \tau_{turbulence} \approx \sqrt{R_0 L_p} / c_{s0} \approx 2 \cdot 10^{-6} s$
 - Assume $\partial f_n / \partial t \approx 0$
- Plasma anitrosopy
 - The plasma elongation along the field lines is much longer than the typical neutral mean free path
 - Assume $\nabla_{\parallel} f_n \approx 0$

▲□ → ▲ 三 → ▲ 三 → ▲□ → ● ● ●

Solution of neutral eq. with method of characteristics

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

▲ 臣 ▶ ▲ 臣 ▶ 王 臣 ■ の Q @
Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

 $f_n(x, v)$

(12)

ヨト イヨト ヨヨ わえの

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

$$f_n(x,v) = \int_0^x dx'$$

(12)

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

$$f_n(x,v) = \int_0^x dx' \ \frac{v_{cx}(x')n_n(x')\Phi_i(x',v)}{v}$$

(12)

토▶▲토▶ 토|비 ���@

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

$$f_{n}(x,v) = \int_{0}^{x} dx' \, \frac{v_{cx}(x')n_{n}(x')\Phi_{i}(x',v)}{v} e^{-\frac{1}{v}\int_{x'}^{x} dx'' \, (v_{cx}(x'')+v_{iz}(x''))}$$
(12)

ヨ▶ ▲ヨ▶ ヨヨ のへへ

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

$$f_{n}(x,v) = \int_{0}^{x} dx' \frac{v_{cx}(x')n_{n}(x')\Phi_{i}(x',v)}{v} e^{-\frac{1}{v}\int_{x'}^{x} dx'' (v_{cx}(x'')+v_{iz}(x''))} + f_{w}(v)e^{-\frac{1}{v}\int_{0}^{x} dx'' (v_{cx}(x'')+v_{iz}(x''))}$$
(12)

ミ ▶ ▲ ミ ▶ 三 目 = ∽ ۹ ()

Example in 1D, no recombination, v > 0 and a wall at x = 0

$$v\frac{\partial f_n}{\partial x} = v_{cx}n_n\Phi_i - (v_{iz} + v_{cx})f_n \tag{11}$$

$$f_{n}(x,v) = \int_{0}^{x} dx' \frac{v_{cx}(x')n_{n}(x')\Phi_{i}(x',v)}{v} e^{-\frac{1}{v}\int_{x'}^{x} dx'' (v_{cx}(x'')+v_{iz}(x''))} + f_{w}(v)e^{-\frac{1}{v}\int_{0}^{x} dx'' (v_{cx}(x'')+v_{iz}(x''))}$$
(12)

ミ ▶ ▲ ミ ▶ 三 目 = ∽ ۹ ()

An equation for the density distribution

By imposing

$$\int f_n \, d\mathbf{v} = n_n \tag{13}$$

we get a linear integral equation for $n_n(x)$

$$n_n(x) = \int_0^x dx' \ n_n(x') \int_0^\infty dv \ \frac{v_{cx}(x')\Phi_i(x',v)}{v} e^{-\frac{d_{off}v_{eff}(x-x')}{v}}$$
(14)
+ contribution by $v < 0$
+ $n_w(x)$

▲□ → ▲ 三 → ▲ 三 → 三 三 → の < (~

The GBS code, a tool to simulate SOL turbulence

- Evolves scalar fields in 3D geometry *n*, Ω, *v*_{||e}, *v*_{||,i}, *T_e*, *T_i*
- Kinetic neutral physics
- Limiter geometry
- Open and closed field-line region
- Sources S_n and S_T mimic plasma outflow from the core
- (Divertor geometry)

Questions that we can address

- How is the temperature at the limiter related to main plasma parameters?
- How is the plasma fueled?
- How do neutrals affect plasma turbulence? SOL width? Heat flux?
- How do diagnostic gas puffs affect the SOL?

ヨ▶ ▲ヨ▶ ヨヨ のへへ

Questions that we can address

- How is the temperature at the limiter related to main plasma parameters?
- How is the plasma fueled?
- How do neutrals affect plasma turbulence? SOL width? Heat flux?
- How do diagnostic gas puffs affect the SOL?

ヨ▶ ▲ヨ▶ ヨヨ のへへ

- 1. Modeling the periphery
- 2. A refined two-point model with neutrals
- 3. Gas puff fueling simulations

< 🗇 ▶

▲ Ξ ▶ ▲ Ξ ▶ Ξ ΙΞ · · · · Q @

The two-point model

- Relation between upstream and target plasma properties
- Widely used experimentally for a quick estimate
- Derived from 1D model along field lines

ъ

★ E ► ★ E ► E E ● 9 Q @

 Parallel plasma dynamics projected along poloidal coordinate

프 🖌 🛪 프 🕨

ELE DQC

- Parallel plasma dynamics projected along poloidal coordinate
- Plasma and energy outflowing from the core are modeled with prescribed S_n and S_Q

∃ ► < ∃ ►</p>

$$Q = \int S_Q ds = Q_{cond} + Q_{conv} \quad (15)$$

・ロ> < 回> < 回> < 回> < 回> < 回

$$Q = \int S_Q ds = Q_{cond} + Q_{conv} \quad (15)$$
$$Q_{cond} = -\chi_{e0} T_e^{5/2} \frac{dT_e}{dz} \quad (16)$$

・ロ> < 回> < 回> < 回> < 回> < 回

$$Q = \int S_Q ds = Q_{cond} + Q_{conv} \quad (15)$$
$$Q_{cond} = -\chi_{e0} T_e^{5/2} \frac{dT_e}{dz} \quad (16)$$
$$Q_{conv} = c_{e0} \Gamma T_e \quad (17)$$
$$\Gamma = nv_{\parallel} = \int S_n ds \quad (18)$$

・ロ> < 回> < 回> < 回> < 回> < 回

$$Q = \int S_Q ds = Q_{cond} + Q_{conv} \quad (15)$$
$$Q_{cond} = -\chi_{e0} T_e^{5/2} \frac{dT_e}{dz} \quad (16)$$
$$Q_{conv} = c_{e0} \Gamma T_e \quad (17)$$

$$\Gamma = n v_{\parallel} = \int S_n ds \tag{18}$$

Boundary conditions

- Upstream: $dT_e/ds = 0$
- At the limiter: $Q_L = \gamma_e \Gamma_L T_{eL}$, $\gamma_e \approx 5$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ 三目目 の Q @

$$Q = \int S_Q ds = Q_{cond} + Q_{conv} \quad (15)$$

$$Q_{cond} = -\chi_{e0} T_e^{5/2} \frac{dT_e}{dz}$$
(16)

$$Q_{conv} = c_{e0} \Gamma T_e \tag{17}$$

$$\Gamma = n v_{\parallel} = \int S_n ds \tag{18}$$

Boundary conditions

- Upstream: $dT_e/ds = 0$
- At the limiter: $Q_L = \gamma_e \Gamma_L T_{eL}$, $\gamma_e \approx 5$

)

▶ < 토▶ < 토▶ 토|비 이익⊙

Simulations with different densities

 $n_0 = 5 \cdot 10^{12} \text{cm}^{-3}$

Christoph Wersal - SPC

Neutrals in the turbulent tokamak edge

21/37

ъ

Simulations with different densities

 $n_0 = 5 \cdot 10^{12} \text{cm}^{-3}$

-200

-300 -200 -100 0 100 200 300

 $R - R_0$

 $R - R_0$

-200

-300 -200 -100 0 100 200 300

0.4

Neutrals in the turbulent tokamak edge

0.2

-200

-300 -200 -100 0 100 200

22/37

 $\tilde{R} - R_0$

3 → 3

300

0.2

Simulations with different densities

 $n_0 = 5 \cdot 10^{12} \text{cm}^{-3}$

-300 -200 -100 0 100 200 300

 $R - R_0$

 $R - R_0$

Christoph Wersal - SPC

-300 -200 -100 0 100 200 300

Neutrals in the turbulent tokamak edge

-300 -200 -100 0 100 200

22/37

 $\tilde{R} - R_0$

3 → 3

300

Poloidal profiles of electron temperature

Poloidal profiles of electron temperature

ELE DQC

Temperature ratio upstream to target

= 990

A more refined two-point model

Obtain an electron heat equation in quasi-steady state

$$\frac{3}{2}T_{e}\frac{\partial n}{\partial t} + \frac{3}{2}n\frac{\partial T_{e}}{\partial t} \approx 0$$
 (19)

► Assume $v_{e,\parallel} \approx v_{i,\parallel}$ and neglect small terms (e.g., $\mathscr{D}_{\perp T_e}$)

Combine perpendicular transport terms into S_Q

$$\nabla_{\parallel} \left(\frac{5}{2} n v_{\parallel} T_{e} \right) - \chi_{e0} \nabla_{\parallel} \left(T_{e}^{5/2} \nabla_{\parallel} T_{e} \right) - v_{\parallel} \nabla_{\parallel} (n T_{e})$$
(20)
= $\langle S_{Q} \rangle + S_{\text{neutrals}}$

with $S_{
m neutrals}=-n_n v_{iz}(T_e) E_{iz}$ and $\chi_{e0}=3/2\bar{n}\kappa_{e\parallel}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Further assumptions and relations

• v_{\parallel} is linear from $-c_s$ to c_s

•
$$c_s = \sqrt{T_{e,t} + T_{i,t}} \approx \sqrt{2T_{e,t}}$$

•
$$nv_{\parallel} = \int [S_n + n_n v_{iz}(T_e)] ds$$

• n_n is decaying exponentially from limiter with λ_{mfp}

▲□ > ▲ Ξ > ▲ Ξ > Ξ Ξ - 의۹ @

• Perpendicular heat source, S_Q

くヨン

三日 のへで

- Perpendicular heat source, S_Q
- Perpendicular particle source, S_n

∃▶ ∃|= ∽੧੦

- Perpendicular heat source, S_Q
- Perpendicular particle source, S_n
- ► Ionization particle source, S_{iz}

- Perpendicular heat source, S_Q
- Perpendicular particle source, S_n
- ► Ionization particle source, S_{iz}

э

Temperature ratio upstream to target

Questions that we can address

- How is the temperature at the limiter related to main plasma parameters?
- How is the plasma fueled?
- How do neutrals affect plasma turbulence? SOL width? Heat flux?
- How do diagnostic gas puffs affect the SOL?

ヨ▶ ▲ヨ▶ ヨヨ のへへ
- 1. Modeling the periphery
- 2. A refined two-point model with neutrals
- 3. Gas puff fueling simulations

< 🗇 ▶

★ E ▶ ★ E ▶ E E ♥ 9 Q @

30/37

Gas puff/fueling simulations

- Open and closed field lines
- Various gas puff locations (hfs, bot, lfs, top)
- Small constant main wall recycling

►
$$n_0 = 10^{13} \text{ cm}^{-3}, T_0 = 20 \text{ eV},$$

 $q = 3.87, \rho_{\star}^{-1} = 500,$
 $a_0 = 200 \rho_s$

= 990

→ < Ξ →</p>

Neutral density

Christoph Wersal - SPC

三日 のへの

Ionization

Christoph Wersal - SPC

= - 99

Radial ExB flow

- outward/inward
 flow
- Ballooning outward transport at the low field side
- Inward fueling at the high field side
- Robust feature independent of gas puff location

→ < 2 → 2</p>

12

э.

Questions that we can address

- How is the temperature at the limiter related to main plasma parameters?
- How is the plasma fueled?
- How do neutrals affect plasma turbulence? SOL width? Heat flux?
- How do diagnostic gas puffs affect the SOL?

ヨ▶ ▲ヨ▶ ヨヨ のへへ

Poloidal ExB flow

- Poloidal rotation due to radial electric field
- Shearing of the turbulent eddies

▲ 문 ▶ (문) 님

Conclusions

- Plasma turbulence at the periphery and interaction with neutrals are crucial issues on the way to fusion electricity
- GBS is now able to simulate this complex interplay self-consistently
- Development of a more refined two-point model, in agreement with GBS
- Initial study of plasma fueling due to ionization and radial flows, and of plasma poloidal rotation.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @

Reaction rates - Stangeby

Figure 1.25. The rate coefficients for atomic and molecular hydrogen [1.23]. The numbered reactions are (1): $e + H_2 \rightarrow H_2^+ + 2e$, (2): $e + H_2 \rightarrow 2H^0 + e$, (3): $e + H_2 \rightarrow H^0 + H^+ + 2e$, (4): $e + H_2^+ \rightarrow 2H^0$, (5): $e + H_2^+ \rightarrow H^0 + H^+ + e$, (6): $e + H^0 \rightarrow H^+ + 2e$, and charge exchange (7): $H^0 + H^+ \rightarrow H^+ + H^0$.

Reaction rates - openADAS

표 🕨 🚊

Timescales

<i>T</i> ₀ (eV)	<i>n</i> ₀ (m ⁻³)	$ au_{turbulence}(s)$	$\tau_{nnloss}(s)$	$\lambda_{mfp}(m)$
1	1e+17	1.0e-05	1.4e-03	2.5e+00
1	1e+18	1.0e-05	1.4e-04	2.5e-01
1	1e+19	1.0e-05	1.4e-05	2.5e-02
1	1e+20	1.0e-05	1.4e-06	2.5e-03
1	1e+21	1.0e-05	1.4e-07	2.5e-04
20	1e+17	2.3e-06	2.6e-04	4.4e-01
20	1e+18	2.3e-06	2.5e-05	4.3e-02
20	1e+19	2.3e-06	2.4e-06	4.1e-03
20	1e+20	2.3e-06	2.2e-07	3.7e-04
20	1e+21	2.3e-06	1.8e-08	3.1e-05
50	1e+17	1.4e-06	1.6e-04	2.8e-01
50	1e+18	1.4e-06	1.6e-05	2.7e-02
50	1e+19	1.4e-06	1.5e-06	2.6e-03
50	1e+20	1.4e-06	1.4e-07	2.4e-04
50	1e+21	1.4e-06	1.2e-08	2.0e-05

・ロト・(型ト・(ヨト・(型ト・(ロト)))

The model in steady state

Steady state, $\frac{\partial f_n}{\partial t} = 0$, first approach

• Valid if $\tau_{neutral \ losses} < \tau_{turbulence}$

$$au_{neutral \, losses} pprox v_{eff}^{-1} pprox 5 \cdot 10^{-7} s$$
 $au_{turbulence} pprox \sqrt{R_0 L_p} / c_{s0} pprox 2 \cdot 10^{-6} s$

Otherwise: time dependent model

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @