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Abstract
Similarly to mechanical structures, stable flows can exhibit resonance when perturbed by

an impulsive or harmonic forcing. Swirling wakes and sloshing waves belong to this kind

of flows and manifest large energy response when excited close to their natural frequencies.

Although these frequencies can be predicted by linear modal analysis, the full flow dynamics

differs from the modal one because entailed by the mutual cooperation of the natural modes

(non-normal effects) and dependent on the oscillation amplitude (nonlinear effects).

In this thesis, the response of swirling wakes subjected to a harmonic forcing is studied

numerically and theoretically. Direct numerical simulations show that a large variety of

helical modes can be excited and amplified in trailing vortices when a harmonic inlet or

volume forcing is imposed, with the appearance of higher wavenumber modes at higher

frequency. The mode-selection mechanism is shown to be directly connected to the local

stability properties of the flow, and is simultaneously investigated by a WKB approximation,

in the framework of weakly non-parallel flows, and by the global resolvent approach. This

analysis is then extended to the case of turbulent swirling flows to investigate the physical

origin of the meandering oscillations of the hub vortex, that is observed in wind turbine wakes

experiments. We show as this low frequency spectral component is the result of a convectively

unstable single-helix structure that oscillates at a frequency equal to one third the rotational

frequency of the wind turbine rotor. Consequently, an adjoint-based technique for the passive

control of these helical instabilities is proposed.

We then turn our attention towards the transient decay of sloshing waves affected by a

viscous friction at the container’s wall, that exhibits a sublinear dependence in the interface

velocity, i.e. a power law with an exponent smaller than one. This capillary effect is exacerbated

in our experiment by placing a thin layer of foam on the liquid phase that act as a collection of

air-liquid interfaces. In contrast to classical theory, we uncover the existence of a finite-time

singularity in our system yielding the arrest of the sloshing oscillations in a finite time and we

propose a minimal theoretical framework to capture this effect. Using first principles, we then

study the effect of contact angle hysteresis on sloshing waves. We show asymptotically that, in

contrast to viscous damping where the wave motion decays exponentially, the contact angle

hysteresis acts as Coulomb solid friction yielding the damping rate induced by the motion

of the liquid meniscus to increase at small amplitude, consistently with the experimental

observation.

Key words: hydrodynamic instability, vortex dynamics, vortex breakdown, turbulent flows,

wind energy, adjoint methods, nonlinear dynamics, free-surface flows, contact lines, foams.
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Riassunto
Come le strutture meccaniche, anche flussi stabili possono manifestare il fenomeno della

risonanza se forzati impulsivamente o armonicamente. Scie vorticose e onde di superficie

appartengono a questa categoria di flussi e sono caratterizzati da una elevata risposta energe-

tica quando eccitati vicino alle frequenze di risonanza. Sebbene queste frequenze possono

essere determinate tramite l’analisi modale lineare, la dinamica reale del flusso differisce da

quella modale poichè dipende dalla cooperazione dei modi naturali (effetto non-normale) e

dall’ampiezza dell’oscillazione (effetto nonlineare).

In questa tesi, la risposta di scie vorticose forzate armonicamente è studiata utilizzando un

approccio sia numerico che teorico. Nel caso di vortici d’estremità aeronautici, le simulazioni

numeriche mostrano che in presenza di una forzante armonica all’ingresso o nel volume del

dominio, vari modi elicoidali sono eccitati e amplificati nel flusso; modi ad alto numero d’onda

compaiono all’aumentare della frequenza. Il meccanismo di selezione dei modi è connesso

con le proprietà di stabilità locale del flusso ed è studiato utilizzando simultaneamente un

approccio WKB, nell’ipotesi di flussi che evolvono lentamente nella direzione assiale, e uno

globale. L’analisi è quindi estesa al caso di scie vorticose turbolente al fine di determinare

l’origine delle oscillazioni trasversali del vortice posto al centro della scia delle giranti eoliche

(hub-vortex). La componente di bassa frequenza, riscontrata sperimentalmente, risulta legata

ad una instabilità convettiva del vortice di scia, caratterizzata da un modo a singola elica

controrotante che oscilla ad una frequenza pari a circa un terzo della frequenza di rotazione

del rotore della turbina. Inoltre, una tecnica per il controllo passivo delle instabilità elcoidali

basata sul metodo dell’aggiunto è sviluppata in questa tesi.

Successivamente, si studia l’ammortizzamento nonlineare di onde di superficie soggette

ad attrito viscoso alle pareti del recipiente. La forza di attrito ha una dipendenza sublineare

con la velocità dell’interfaccia, cioè ha una dipendenza algebrica con un esponente minore

di uno. Questo effetto nonlineare è enfatizzato nel nostro esperimento ponendo un sottile

strato di schiuma sulla fase liquida, che agisce come una collezione di interfacce aria-liquido.

A differenza del classico oscillatore smorzato, nel sistema è presente una singolarità che si

manifesta ad un tempo finito, provocando l’arresto delle oscillazioni al pelo libero. Al fine di

descrivere questo effetto nonlineare, viene proposto un semplice modello teorico che corregge

il paradigmatico modello di oscillatore smorzato lineare. Utilizzando le equazioni secolari

dei fluidi, si passa poi allo studio dell’effetto dell’isteresi dell’angolo di contatto sulle onde

di superficie. Si dimostra con una procedura asintotica che, al contrario dello smorzamento

viscoso che causa uno smorzamento esponenziale dell’ampiezza di oscillazione, l’isteresi
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dell’angolo di contatto agisce come l’attrito solido di Coulomb, inducendo un fattore di smor-

zamento legato allo scivolamento del menisco dinamico. Tale smorzamento aumenta quando

l’ampiezza di oscillazione diminuisce, in accordo con quanto osservato sperimentalmente.

Parole chiave: instabilità idrodinamica, dinamica dei vortici, vortex breakdown, flussi

turbolenti, energia eolica, metodo dell’aggiunto, dinamica nonlineare, flussi a superficie

libera, linee di contatto, schiume.
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1 Introduction

1.1 Fluid mechanics and hydrodynamic stability

One of the most interesting and fascinating phenomena in fluid dynamics is the transition

from one state to another with the eventual appearance of patterns or unsteadiness. A couple

of representative examples are shown in Figure 1.1, namely (a) the Von Karman vortex street,

that manifests in the lee of bluff bodies when the flow advection is high enough, (d) the single

helical vortex breakdown state, observed when the flow rotational frequency is large enough

and (g) the double helical mode at larger swirl.

As a branch of classical mechanics, fluid dynamics is governed by physical laws that explain

empirical experience and, more importantly, predict future experiments. Thus, mass conser-

vation and Newton’s second law applied to an incompressible volume of fluid yield a set of

governing equations for the velocity and pressure fields, u, p

∂u

∂t
+u ·∇u =−∇p +Re−1Δu, ∇·u = 0, (1.1)

where t is time and Re is the Reynolds number, a nondimensional number defined as the

ratio between the advection and viscous forces at play in the flow. This system of equations is

commonly referred to as the Navier-Stokes equations for incompressible flows, and it has been

seen to govern fluids motion phenomena in a large variety of experiments and applications

such as airplane, ship and car industries, biology and medicine, meteorology, oceanography

and geology. See for instance in Figure 1.1 the (b) Von Karman wake and the (e) single and (h)

double helical breakdown modes obtained by the direct numerical solution of equations 1.1.

However, due to their generality and the variety of their applications, the Navier-Stokes

equations are complex and contain multiple physical mechanisms which can interplay at the

same time such as advection, dissipation, body forces, turbulence, capillary effects, multi-

phase fluids, complex geometries and others. For this reason, it is often arduous to isolate and

understand the physical mechanism behind these state transitions.

The hydrodynamic stability theory is the most classical approach to understand and de-

scribe bifurcations, instability and eventual transition to turbulence in fluid dynamics (Huerre
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Figure 1.1: Archetipal examples of emerging unsteadiness and pattern formation in fluid me-
chanics. Experimental visualization of (a) vortex shedding in the cylinder wake (by Sadatoshy
Taneda in Van Dyke (1982)), (d) single and (g) double helical vortex breakdown modes from
Sarpkaya (1971) and Escudier & Zehnder (1982) respectively. The same flow configurations
obtained by numerical solution of the Navier-Stokes equations (1.1) are shown in the central
column, while the corresponding linear eigenmodes are reported in the right one. In (b,e)
visualization from V. Mantič-Lugo (personal communications) while the ones in (e,f,h,i) are
reproduced from Meliga et al. (2012a).

& Rossi, 1998; Drazin & Reid, 2004; Schmid & Henningson, 2001; Charru, 2011). Indeed, the

transition affecting a flow when a control parameter is increased, can be investigated by com-

puting the stability of the steady base flow, U to infinitesimal perturbations. Let us suppose

that at some threshold value of the Reynolds number, Recr , the system becomes unstable to

infinitesimal velocity-pressure perturbations with growth rate, σ, and frequency, ω,

(u, p) = (û, p̂)e(σ−iω)t . (1.2)

For Re > Recr we expect the unstable eigenmode û centered around U to grow exponentially

in time, until it saturates to a macroscopic amplitude due to nonlinear effects. The dynamics

of the perturbation is governed at leading order by the linearized Navier-Stokes equations

around the base-state U

(σ− iω)û = û ·∇U+U ·∇û+∇p̂ −Re−1Δû, ∇· û = 0, (1.3)
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Figure 1.2: Schematics of non-normal and nonlinear effects in a linearly unstable flow. The
stability spectrum in a) contains at least one eigenvalue with positive growth rate, σ, and b)
the corresponding linear modal evolution prescribes the disturbance’s amplitude, A, to grow
exponentially in time (dashed line). However, the complete dynamics of the disturbance with
initial amplitude A0 (solid line) significantly differs from the modal solution at short time scale
(non-normal effect) and at large amplitudes (nonlinear effect).

where the base-state is often chosen as a steady solution of the Navier-Stokes equations

U ·∇U =−∇P +Re−1ΔU, ∇·U = 0. (1.4)

The stability problem (1.3), together with the boundary conditions compelling the specific

problem, can be rephrased as an eigenvalue problem of the type

(σ− iω)û = Lû, (1.5)

where the eigenvector û belongs to the divergence-free vector space. The long term behaviour

of the perturbation is then inferred by the eigenvalues and eigenmodes of the linear operator

L. If an eigenvalue with positive growth rate, σ, exists, as in Figure 1.2(a), the associated

eigenmode û grows exponentially in time over the base-flow and dominates the linear dynam-

ics. By naming, A, the perturbation’s amplitude, the dashed line in Figure 1.2(b) depicts a

typical exponential growth in time resulting from the linear modal analysis. Furthermore if

the frequency, ω, differs from zero, the flow becomes unsteady and oscillates spontaneously:

for this reason unstable flows are referred to as oscillators (Huerre & Rossi, 1998). As example,

the right column in Figure (1.1) shows the unstable eigenmodes computed with linear stability

analysis superimposed on the base flow in the case of (c) wake behind a cylinder and (g,i)

helical instabilities in the lee of a vortex breakdown bubble. The spatial structure of the linear

global eigenmode matches qualitatively the flow topology of the full nonlinear state. The

natural frequency is also qualitatively well captured. In addition, the hydrodynamic stability

predicts well the critical value of the control parameter (the Reynolds number or the swirl

parameter), at which the bifurcation happens.

Nevertheless, the linear modal behaviour does not always fully capture the entire dynamics

of the perturbation. Figure 1.2(b) shows by solid line the typical behaviour of the perturbation

3
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0

0

Figure 1.3: Schematics of non-normal effects on a linearly stable flow. a) All the eigenvalues
in the spectrum have negative growth rate. b) If the system is normal, the perturbation’s
amplitude, A, decays exponentially in time at a constant rate (dashed line). In contrast, if
the system is non-normal the perturbation dynamics is described by the full modal basis
and its amplitude, A, gets transiently larger than the initial amplitude, A0, before decaying
(solid line). c) Moreover, in the case a harmonic forcing of amplitude A f and frequency ω,
the non-normality yields the system to a higher energy gain, A/A f , even further from the
resonance frequency.

amplitude in time for an unstable base-flow. Two main effects that are omitted by the linear

stability can be distinguished: (i) Non-normal effects at short time scale and (ii) nonlinear

effects at high amplitude. Their physical origin and their influence on fluid dynamics are

discussed in the next two sections, along with the specific problems of interest studied in this

thesis, which are progressively introduced.

1.2 Non-normal effects

1.2.1 Transient growth

The key-mechanism of the short-term amplification present in Figure 1.2(b), is in the non-

normality of the linearized Navier-Stokes equations (Trefethen et al., 1993; Chomaz, 2005;

Schmid, 2007). This means that the eigenvectors of the linear operator L in equation (1.5)

do not form an orthogonal set with respect to the energy scalar product. Hence, the linear

evolution of a perturbation with initial amplitude, A0, which is given by the superposition of

the eigenvectors, can produce a large transient of energy before decaying.

This phenomenon, which is known in literature as transient growth, non-modal, algebraic or

short-term instability, has been widely studied over the last two decades especially to explain

pattern formation and coherent fluctuation occurring in linearly stable flows. Indeed, even

if the spectrum is stable and perturbations are damped as in Figure 1.3(a), some specific

initial perturbations can be transiently amplified due to non-normality (Fig. 1.3(b)). If the

amplification is large enough, the flow enters in the nonlinear regime and it can escape from

the otherwise linearly stable solution (Schmid, 2007). This mechanism is particularly relevant

in the case of parallel Couette and the plane Poiseuille flows, as well as Reynolds’ famous

pipe flow experiment where the transition to turbulence is strongly dependent on the level of
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external noise. Indeed, although stable, these flows are seen to exhibit a strong response to

external disturbances and for this reason are named amplifiers, in opposition to previously

described oscillator flows which display intrinsic dynamics that do not originate from external

perturbations.

Calculations on transient growth have been first carried out by Butler & Farrell (1992) using

a variational approach and by Corbett & Bottaro (2000) with direct-adjoint scheme. Two main

mechanisms for the transient energy growth have been observed in parallel flows. In the (i)

Orr mechanism, the initial disturbance has flow patterns oriented against the base flow shear.

As time evolves the disturbance will tilt into the mean shear direction yielding transient energy

amplification. Once the disturbance flow patterns is aligned to the base flow shear its energy

decreases. The (ii) lift-up effect is induced by streamwise vortices superposed on a positive

shear, that push down high velocity and lift up fluid at low velocity generating streaks. As time

evolves, the vortices decay and the energy of the perturbation decays.

These studies have been extended to the case of open-flows where an additional source of

non-normality is the spatial separation between direct and adjoint mode (Cossu & Chomaz,

1997; Chomaz, 2005) resulting from the convection of the perturbation by the mean flow. The

global optimal perturbation have been computed by Ehrenstein & Gallaire (2005), Åkervik

et al. (2008) and Monokrousos et al. (2010) for a Blasius boundary layer and by Ehrenstein &

Gallaire (2008) and Alizard et al. (2009) for a separated boundary layer flow.

1.2.2 Response to forcing

The non-orthogonality of the linear eigenmodes not only affects the transient dynamics, but it

also influences the response to a harmonic forcing. Similarly to stable mechanical systems,

when a stable flow is perturbed it comes back to its rest-state after a transient time as in

Figure 1.3 (b). However, when a sustained forcing is applied, the flow displays a sustained

response. The ratio between the amplitude of the response, A, and the forcing amplitude, A f ,

defines the resonance curve, see Fig. 1.3 (c). In particular, the frequency associated with the

higher response defines resonance and it is also called the preferred frequency of the system.

As reviewed by Schmid & Henningson (2001) and Chomaz (2005), the non-normality of

the linearized Navier-Stokes operator, L, also implies a high-sensitivity to external forcing.

Figure. 1.3(c) shows schematically the resonance curve, A/A f , in the case of a stable normal

system (dashed-line) where the flow response is localized in frequency close to the eigenfre-

quency (resonance). In the case of non-normal system (solid line), the system exhibits larger

amplitude response due to the cooperation between the non-normal eigenmodes, a property

called convective non-normality (Cossu & Chomaz, 1997; Chomaz, 2005). In particular, strong

response for excitation frequencies far from the eigenvalues is possible (pseudoresonance).

Therefore, due to the high sensitivity of non-normal systems to forcing, the appearance of

large coherent structures in linearly stable system has been often explained in the literature as

the result of external forcing acting on the flow. This is the case of isothermal jet flows, which

are seen to support large-scale coherent structures developing in the outer shear layers as

in Figure 1.4 (a,b). Crow & Champagne (1971) carried out forced and unforced experiments
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Figure 1.4: Experimental visualization of coherent structures in a jet by a) Billant et al. (1998)
and b) Zaouali et al. (2011). In c) the resonance curve of an incompressible jet found by
Garnaud et al. (2013) through global resolvent analysis: a preferred frequency it is observed
for ω≈ 0.45.

on a jet measuring the spatial structure of the coherent structure and their amplitude and

frequency. The amplitude of the response was found to be significantly affected by the forcing

frequency, which was imposed by using a loudspeaker at the jet exit.

In order to investigate theoretically the appearance of these large-scale eddies in jet flows,

Crighton & Gaster (1976) carried out a quasi-parallel stability analysis using a mean flow which

fits the measurements Crow & Champagne (1971) and Moore (1977). They observed that these

structures were not self-sustained since a region of absolute stability is not present in the flow.

On the contrary, the flow is convectively unstable downstream the nozzle. The downstream

growth of the axisymmetric wave modes with prescribed real frequency was calculated nu-

merically, on the basis on a WKB approach with multiple scale method which approximates

the slowly varying mean-flow as a sequence of parallel flows. They found a good agreement

on the wavelength measurements of Crow & Champagne (1971). More recently Garnaud et al.

(2013) investigated the linear response of a jet to forcing in a global framework. They found

the spectrum of the linearized Navier-Stokes equations to be stable and that no isolated or

least stable eigenmode was present in order to justify a classical resonance mechanism. The

resolvent analysis reported in Figure 1.4(c), enlightens the presence of a pseudo-resonant

frequency that is in good agreement with experimental observation at low forcing intensity

(Crow & Champagne, 1971; Moore, 1977)

1.2.3 Sensitivity and passive control

Modal and non-modal stability properties of the linearized Navier-Stokes operator L depend

on multiple factors, such as the advection rate, the presence of localized forces, turbulence

level, fluid properties, domain geometry, initial conditions and boundary conditions. Thus, a

modification of one of these factor yields a variation of the linearized operator L. This turn in
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a modification of the stability treshold for oscillators flows and of the transient or sustained

energy amplification in amplifier flows. The dependance of these quantities on a modification

of the operator L is called sensitivity.

Chomaz (2005) explained that the sensitivity may become large when the linearized operator

L is non-normal, which is usually the case in hydrodynamics. For instance, Bottaro et al. (2003)

showed how small variations of the parallel Couette flow may lead to a destabilization of the

spectrum yielding large variations in the linear dynamics. In particular, they identified the flow

regions where a base flow modification has the most significative effect on temporal stability.

This analysis was extended to the local spatio-temporal analysis by Hwang & Choi (2006)

who investigated the absolute instability of a two-dimensional wake. In a global framework

Marquet et al. (2008) determined the sensitivity of the vortex shedding mode in the wake of

a circular cylinder to a base-flow modification. Using a variational technique, these authors

derived a general expression of the base-flow sensitivity valid for oscillator flows. Giannetti

& Luchini (2007) defined the so-called structural sensitivity, which is the the sensitivity to a

spatially localized feedback and showed that the projection of the global mode associated with

the Von-Karman instability in the cylinder flow on its adjoint mode identifies the wavemaker

of the stability, i.e. the core region where the self-excited instability mechanism takes place.

This analysis has been employed by other authors for different flows such as Qadri et al. (2013)

in thee case of spiral vortex breakdown and Giannetti et al. (2010) for a time periodic base-flow.

In the case of amplifiers, the flow response to an external forcing is given by the resolvent

analysis as discussed above. Brandt et al. (2011) determined the sensitivity of the optimal

forcing-response to a base-flow modification, extending the work Marquet et al. (2008) to

amplifier flows. In particular, they focused on the variation of the resolvent norm in the case of

the Blasius boundary layer subjected to a harmonic body force where both component-wise

and convective non-normalities are active. This analysis was applied by Boujo & Gallaire (2015)

to the backward-facing step flow and extended to the case of inlet forcing and time-stochastic

perturbation.

These sensitivity analyses are then employed to design control strategy to reduce some

quantities of interest such as the drag of a body, the flow separation or unsteadiness. We refer

the interested reader to Sipp et al. (2010) and the recent review of Camarri (2015).

1.2.4 In this thesis: The amplifier dynamics of swirling wakes

Chapter 2: Mode selection in trailing vortices

In the literature, the stability of swirling flows behaving as oscillators, e.g. spiraling vortex

breakdown, has been largely investigated, while the case of swirling flows acting as amplifiers

is still poorly understood. A significant example of these kind of flows are the trailing vortices

generated at the tips of a lifting wing, that manifest helical coherent structures even if globally

stable as in Figure 1.5(a,b). These swirling flows are of fundamental importance in aeronautics

because they persist for several minutes in the wake of aircrafts, thus creating a potential

safety issue for following airplanes. For this reason, the minimum separation between aircrafts
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Amplification of helical disturbances

Figure 1.5: Spatial amplification of helical disturbances in trailing vortices in a) military or b)
civil aircraft, and in c) the 3D numerical simulations of a Batchelor vortex harmonically forced
(isocontour of axial vorticity, see text and chapter 2).

is prescribed by the International Civil Aviation Organization (ICAO). In take-off conditions,

the imposed separation distance limits the airport capacity. The commercial manufacturer

Boeing is developing an active system to break up trailing vortices to safely reduce the required

separation distances and reduce air-traffic delay. The idea is to trigger the vortex instabilities

(Figure 1.5(a,b)) by periodically moving the control surfaces of a small fraction (Crouch &

Spalart, 2000; Crouch et al., 2001). Therefore, it is of primary importance to investigate the

instability mechanisms occurring in trailing vortices and their characteristic frequencies as

well.

In the literature a substantial body of work has been devoted to the understanding of the

instability of columnar vortices, as carefully reviewed in section 2.1. However, real trailing

vortices are non-parallel and the velocity profiles evolve in the streamwise direction due to

viscous effects that slow down the tangential velocity inducing a positive axial pressure that

favors the wake deficit to recover (Batchelor, 1964). Furthermore, wind tunnel experiments

reveal that the wake defect in trailing vortices is typically less than 80% (Devenport et al., 1996;

Del Pino et al., 2011), yielding the flow to be locally convectively unstable (Delbende et al.,

1998) and thus behaving as a noise amplifier.

In chapter 2 the response to harmonic forcing of a trailing vortex is investigated by combin-

ing local and global linear analyses along with fully nonlinear numerical simulations (DNS).

Firstly, the response of a non-parallel Batchelor vortex to inlet harmonic forcing is carried

out through DNS. A large variety of helical responses is seen to resonate by spanning the

forcing frequency, see the single helical mode in Figure 1.5(c). Secondly, the mode-selection

mechanism is investigated in a local framework, through spatial stability analysis and WKB

(Wentzel, Kramers, Brillouin) approximation, and globally with a resolvent approach. Careful

comparisons between local and global stability analyses are discussed, and the usual WKB

formalism (Huerre & Rossi, 1998) is extended to a suitably chosen type of harmonic body

forcing.

The effect of nonlinear saturation on the response is then investigated by comparing the

linear and nonlinear energy gains as a function of the forcing frequency and amplitude. Fi-

nally, the mode selection observed in the DNS is compared with the one of the linear optimal

response.
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Figure 1.6: In a) isosurface of instantaneous vorticity of a wind turbine wake computed
numerically (large-eddy simulations) by Lu & Porté-Agel (2011). Two main vorticity structures
are present: the helicoidal tip vortices that shed from the blades’ tip and the central hub vortex.
The latter is found experimentally to oscillate at a a frequency equal to 1/3 of the rotational
frequency of the turbine as shown by the Fourier power spectral density of the velocity signals
acquired experimentally by b) Chamorro & Porté-Agel (2010) and c) Zhang et al. (2012). The
black vertical line refers to the rotational frequency of the turbine, whereas the red dashed
one corresponds to the hub vortex instability frequency.

Chapter 3: The hub-vortex instability

Another example of swirling amplifier flow is present in wind energy, where wind turbines

are used to convert the kinetic power of the wind into electricity. From the aerodynamic

perspective, when the wind blows past a turbine the rotation of its blades produce a wake,

which is the result of complex dynamics and interactions between different vorticity structures.

Tip vortices are shed from the tip of each blade, which are then advected downstream forming

a complex system of helicoidal vortices. At the wake center, the interaction between the

root vortices shed from the blades and the boundary layer evolving over the turbine nacelle

leads to the generation of the hub vortex, which is a vorticity structure mainly oriented in the

streamwise direction.

Wind tunnel measurements in the wake of a down-scaled wind turbine immersed in a uni-

form flow have showed that these vorticity structures undergo to instabilities in the near-wake

and are diffused downstream. As shown in Zhang et al. (2012), the near-wake dynamics is

related with the far-wake dynamics. Thus, the physical understanding of the near-wake plays

an important role on wind farm layout optimization. In particular, the tip-vortices instability

is mainly driven by the mutual inductance between adjacent spirals, in cooperation with

short-wave and long- wave instabilities which favorite the tip-vortices diffusion within one

diameter past the turbine. Conversely, the hub vortex is characterized by oscillations of a

frequency equal to roughly 0.34 times the rotational frequency of the wind turbine rotor which
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Figure 1.7: Illustrative plan of the possible linear stability analyses of the hub vortex. In the case
the turbine is placed outside the boundary layer, the time averaged wake is 3D axisymmetric
and its stability properties is studied as a a) set of 1D local problems (section 3.1 and 3.2) or a b)
global 2D analysis (section 3.4). In contrast, the boundary layer breaks the axisymmetry of the
wake and the computations gains one dimension: in a c) local approach a set of 2D stability
analyses are solved (section 3.3), whereas in the d) global case a 3D analysis is necessary.

are detected up to two diameters downstream, see Figure 1.6.

In order to understand the origin of the low frequency oscillation of the hub vortex, in

chapter 3 we carry out a stability analysis of the time averaged flow, measured in the wake of a

down-scaled wind turbine model. In this work, the mean flow is used not only because the

base-flow can not be measured experimentally, but also because it is expected to provide a

better estimation of the dominant frequency and the associated unsteady mode, as discussed

in section 1.3. Linear stability analysis on a time averaged flow obtained experimentally was

applied by Oberleithner et al. (2011) to investigate the formation of large coherent structure

in a turbulent swirling jet and by Camarri et al. (2013) to study the Von Karman wake behind

a porous cylinder. Meliga et al. (2012b) analyzed the sensitivity of the turbulent mean wake

of a D-shaped cylinder obtained through the numerical solution of the Reynolds-averaged

Navier-Stokes equations (RANS).

We anticipate here that within the flow region where the experimental data are available,

the wind turbine wake behaves as a noise amplifier because locally convectively unstable

and globally stable. This motivates the investigation of the preferred frequency, defined as

the frequency of the most amplified flow disturbance. The problem has been tackled with an
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increasing level of complexity, as schematically reported in Figure 1.7.

In section 3.1 local temporal and spatial stability analyses are carried out on the mean

wake flow measured in the wind tunnel, see Figure 1.7 (a). In the experiment the turbine

model is mounted on a vertical support and placed outside the boundary layer. In this way,

the oncoming flow was uniform yielding an axisymmetric mean wake with a frequency of

oscillation of the hub vortex equal to the case of wind turbine immersed in the boundary layer.

The nonparallel spatial mode that resonates at the hub vortex instability frequency measured

in the wind tunnel is determined and its wavenumber is compared with the unsteady structure

detected in the wind tunnel experiments.

In section 3.2 the stability analysis is reformulated by taking into account the turbulence na-

ture of the flow. The Reynolds stresses in the perturbation dynamics are accounted by means

of eddy-viscosity models, which are calibrated on the wind tunnel data. For the present inves-

tigation three eddy-viscosity models are considered: one model is based on the assumption of

a uniform eddy viscosity for each streamwise location, whereas for the other two models a

mixing length is estimated. It is shown that with the proposed improved formulation, stability

analysis allows not only the identification of the hub vortex helical mode, but also the accurate

prediction of its preferred frequency.

In section 3.3 the linear stability analysis has been extended to the case of wind turbines

immersed in the atmospheric boundary layer, where the mean flow is not axisymmetric

(Fig. 1.7 (c)). Specifically, a 2D local spatial stability analysis is developed in order to take

into account typical flow features of real operating wind turbines, such as the presence of the

atmospheric boundary layer and the turbulence heterogeneity in the oncoming wind. This

stability analysis can be generally applied on either experimental measurements or numerical

data.

In section 3.4 the hub vortex instability is investigated in a global framework as in Fig-

ure 1.7 (b). The global stability analysis of the time averaged hub vortex flow is carried out,

showing that the global spectrum is stable. Consequently, the optimal response to a harmonic

body forcing is studied by means of a resolvent analysis. The resulting preferred hub vor-

tex frequency is determined and compared with the hub vortex frequency measured in the

experiments, confirming the results obtained by weakly non-parallel stabiility analysis.

Chapter 4: Passive control of weakly non-parallel flows

The investigation on the mode selection in trailing vortices and in the hub vortex motivates

the work presented in chapter 4 where a general formulation for a passive control design of

weakly non-parallel amplifiers flow is proposed. Our method generalizes the adjoint-based

strategies usually employed to control oscillator flows (see Camarri (2015) for a review) to the

case of weakly non-parallel amplifier flows. First, the sensitivity of the local spatial stability

spectrum to a base-flow modification is determined, extending the results of Bottaro et al.

(2006). Then, the Lagrangian multipliers theory is used to evaluate the sensitivity of the

integrated amplification of disturbances in the streamwise direction to a modification of the

inflow conditions. The resulting sensitivity map, depends on the local sensitivities of the
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Figure 1.8: Visualizations of axisymmetric vortex breakdown obtained experimentally by a)
Sarpkaya (1971) and b) Billant et al. (1998), and numerically by c) Ruith et al. (2003).

spatial stability, and indicates the optimal modification of the inlet flow condition to reduce

the amplification of spatially growing perturbations. This method is applied to the case of

a weakly non-parallel Batchelor vortex showing that the control, formulated using a single

linearization of the flow dynamics carried out on the uncontrolled configuration successfully

reduces the amplification of the helical modes.

Chapter 5: The axisymmetric vortex breakdown phenomenon

The spiral vortex breakdown phenomenon has been presented in section 1.1 as a prototype

of oscillator flow (see see Figure 1.1(d,g)), i.e. resulting from a global instability of the flow.

However, results obtained during the last decade suggest that breakdown itself does not re-

sult from the ultimate development of helical disturbances, but constitutes an independent

phenomenon over which secondary helical disturbances may grow. This scenario, conjec-

tured initially by Escudier & Zehnder (1982), has been confirmed by Ruith et al. (2003), who

performed three-dimensional direct numerical simulations of a Grabovski and Berger vortex

(Grabowski & Berger, 1976). Both studies clearly stress that the early stage of breakdown is

axisymmetric, and that a finite time is needed at large swirl before this flow pattern is altered

by the subsequent development of large-scale spiral waves, wrapped around and behind

the axisymmetric bubble. Although numerous authors have carefully investigated this phe-

nomenon, a clear and satisfactory explanation of the axisymmetric vortex breakdown state,

that is shown in Figure 1.8, is still missing.

In chapter 5 the onset of the axisymmetric vortex breakdown state is carefully investigated

by carrying out state-of-the-art numerical simulations, varying both the swirl, S, and Reynolds

number, Re. Based on the DNS results, some classical explanations of the breakdown state are
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discussed and revisited under a new light, and we propose a criterion for identification of the

vortex breakdown as a transition state between two self-similar flow solutions.

We show that the breakdown state can not be explained as a standard supercritical bifur-

cation since the flow is seen to be globally stable. However, at a certain pre-breakdown swirl

number (that depends on Re) we observe the presence of a weakly damped steady axisymmet-

ric mode in the spectrum. This mode has a topology similar to the breakdown state and could

be triggered by nonlinear effects even if linearly stable. Thus, we propose two possible weakly

nonlinear mechanisms susceptible to trigger the weakly damped mode, which are based on a

global resolvent and a global stability analysis.

Finally, inspired by the work of Lagrée et al. (2005), we carry out ad-hoc numerical simula-

tions in order to derive a set of reduced Navier-Stokes equations enabling to correctly account

for the vortex breakdown state with a cheaper computational cost with respect to the full

equations.

Many of the concepts and techniques developed in this thesis (such as oscillator and am-

plifier flows, non-normality and nonlinearity, global stability and global resolvent, temporal

and spatial local analysis, DNS and weakly nonlinear analysis) are here applied in a renewed

attempt to grasp new understanding on the fascinating vortex breakdown phenomenon.

1.3 Nonlinear effects

1.3.1 Superlinear nonlinearities

In Figure 1.2(c) a significant deviation of the full solution (solid line) from the linear modal

solution (dashed line) is observed at large amplitude. Indeed, when the amplitude exceeds

some level, the intrinsic nonlinearity of the Navier-Stokes equations (which is neglected in

the linear analysis) kick in to play saturating the large amplifications of perturbations. The

convective term, u ·∇u in eq. 1.1, is a quadratic nonlinearity that becomes dominant at high

amplitudes. This nonlinearity is defined as superlinear since it depends on the velocity with a

power law with an exponent greater than one.

One example of superlinear nonlinearity is the supercritical Hopf bifurcation (Charru,

2011), where the amplitude of the unstable mode, A, initially grows exponentially in time

accordingly to linear stability analysis, and then, when A is of order one, the exponential

growth is perturbed by the convective nonlinear term leading to a periodic limit cycle with a

finite amplitude. In the case of the first instability in the cylinder wake, Provansal et al. (1987)

and Dušek et al. (1994) observed that the amplitude of the perturbation close to the bifurcation

is governed by the Stuart-Landau equation

Ȧ =λA−μA|A|2, (1.6)

where the dot denotes derivation with respect to time and the Landau coefficients λ and μ

were determined experimentally or numerically employing single-point measurements. More

recently, these coefficients have been computed rigorously by Sipp & Lebedev (2007) using
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Figure 1.9: Linear growth and nonlinear saturation in (a,b) oscillator (c,d) and amplifier flows.
In a) the transition from stable to unstable flow is given by the growth rate, σ, of the dominant
eigenvalue that becomes positive for Re > Recr . The corresponding amplitude, A, of the
nonlinearly saturated mode is shown in b) as a function of Re. c) The linear and nonlinear
gain, A/A f , as a function of frequency is shown in the case of amplifier flow over a backward-
facing step (Mantič-Lugo & Gallaire, 2016). Each red line corresponds to a different forcing
amplitude, A f , ranging from 0 to 10−3 in equal intervals. d) The gain saturation as a function
of the forcing amplitude, A f , is well predicted by the linear resolvent over the mean flow (green
symbols) and by the nonlinear self-consistent model proposed by Mantič-Lugo et al. (2015)
(blue symbols).

adjoint methods and a weakly nonlinear analysis for the Navier-Stokes equations in the neigh-

borhood of the critical Reynolds number, Recr , following the approach of Stuart (1958). They

showed that the Stuart-Landau equation (1.6) naturally appears as a compatibility condition

in their asymptotic scheme based on global stability. Together with Chomaz (2005), let us note

here that the Landau constant μ actually links nonlinearity and non-normality, the two main

points of focus of this thesis. Indeed, in the calculation procedure by Stuart (1958), μ depends

on the scalar product of the direct and adjoint fields and it increases with increasing non-

normality which requires nonlinear front theories for very non-normal globally unstable flows.
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0 0

Figure 1.10: Schematics of superlinear effects on a linearly stable flow. a) All the eigenvalues in
the spectrum have negative growth rate, σ. b) If the initial perturbation amplitude, A0, is small,
the flow comes back to equilibrium following an exponential decay (dashed line). In contrast,
if A0 is large, the free decay of the system is nonlinear before entering in the linear regime
when the amplitude, A, gets small enough (solid line). c) In the case of response to forcing
the nonlinear response (solid line) differs significantly from the linear response (dashed line)
when the gain A/A f is large, due to nonlinear saturation. Far enough from resonance the
amplification is less and the flow response is in the linear regime (plane and dashed lines
overlap).

As discussed in the previous section, globally stable amplifier flows may also undergo

large linear amplification when a sustained forcing is applied. More precisely, when the

forcing frequency is close to resonance or pseudo-resonance the amplitude of the response

becomes large and nonlinear saturation occurs, as schematically shown in Figure 1.10(c). The

saturation dynamics in the response to harmonic forcing has been studied by Mantič-Lugo &

Gallaire (2016) for the stable laminar flow over a backward-facing step. They observed that

when a sustained forcing with increasing amplitude is imposed, the response experiences

a strong nonlinear saturation when compared to the linear estimation and that the energy

gain of the response significantly reduces when the amplitude of the forcing is increased, see

Figure 1.9 (c,d). Furthermore, they showed as in the backward-facing step flow, the linear

response around the mean flow computed by DNS provides a very good estimation of the

saturated energy gain as shown in Figure 1.9(d). This means that the linear response analysis

over the saturated mean flow already includes a significant part of the nonlinearity effects.

This result is in line with the work of Barkley (2006) and Sipp & Lebedev (2007) who obtained

good estimation on the vortex-shedding frequency in the cylinder flow by performing linear

stability analysis on the mean flow.

On the other hand, also the short term dynamics of stable systems is affected by nonlinear

effects when the initial amplitude of the perturbation is large. Figure 1.10(b) shows by a dashed

line the logarithmic decrement of small perturbations: the mode is damped with a uniform

damping rate. In the case of large initial amplitude A0 (solid line), the dynamics is initially

nonlinear with the damping rate depending on the oscillation amplitude. At later stage, A gets

small enough to turn off the nonlinear term and the perturbation follows the linear dynamics

decaying exponentially.
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00

Figure 1.11: Schematics of sublinear effects on a linearly stable flow. a) All the eigenvalues in
the spectrum have negative growth rate, σ. b) At large amplitude, the free decay of the nonlin-
ear problem (solid line) follows the exponential decay of the linearized problem (dashed line).
When the amplitude is small, the relative importance of sublinear friction terms increases and
the logarithmic decay is concave down since the damping rate increases as the amplitude of
oscillations decreases. c) Similarly, in the case of response to forcing the nonlinear response
(solid line) follows the linear response (dashed line) when the gain A/A f is large and sublinear
effects are expected to become important far from resonance when the amplitude is small.

1.3.2 Sublinear nonlinearities

The convective term in the Navier-Stokes equations is an intrinsic nonlinearity of fluid dy-

namics that appears in the governing equations. However, in presence of a free surface or in

the case of fluid-structure interaction, other nonlinearities may appear. For the Euler’s disk,

Moffatt (2000) for instance identified a viscous Stokes layer friction scaling like the inverse of

the absolute angular velocity of the disk. In this case, when the nonlinearity follows a power

law with an exponent smaller than one, we define it as sublinear.

In stark contrast to the case of superlinear nonlinearity, a stable system subjected to a sub-

linearity exhibits nonlinear behaviour at small amplitudes since the sublinear term dominates

the linear and superlinear terms when the amplitude A approaches zero. This behaviour

is schematically depicted in Figure 1.11(b), where the logarithmic decay of a linear system

(dashed line) is seen to be modified at small amplitudes when a sublinear term is added (solid

line). Similarly, in the response to harmonic forcing the resonance curve is modified far from

the resonance frequency where the amplitude A is small, while close to the natural frequency,

the sublinear term is small compared to the other terms and the system response linearly

(dashed and solid lines overlap in Fig. 1.11(c)).

As often the case for oscillating systems, an easy and meaningful representation can be

obtained through a simple mass-spring oscillator. It is evident that the dynamics of

Ä+ A =−Ȧα. (1.7)

is non linear when the ratio Aα/A is large. As shown in Figure 1.12, two scenarios are possible

depending on the magnitude of the amplitude A and on the value of the coefficient α. If α> 1

the nonlinear term dominates the dynamics at high amplitude (as for the convective term
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Figure 1.12: Ratio between a generic algebraic nonlinearity Aα and the oscillation amplitude
A. Depending on the exponent of the power law, α, and the oscillation amplitude, A, the
system is governed by linear or nonlinear dynamics. Specifically if A � 1 and α> 1 the system
experiences a superlinear nonlinearity, whereas if A � 1 and α< 1 sublinear effects dominate.
The linear regime takes place when the ration Aα/A is small: A � 1, α> 1 and A � 1, α< 1,
while in the case α= 1 the term Aα is trivially linear.

in Navier-Stokes equations). Vice versa the nonlinear effects are more significant when the

amplitude is small in the case α< 1.

In the following we consider the case of a liquid meniscus sliding over a solid substrate,

where sublinear terms are seen to appear.

Dynamic meniscus: Total wetting

Let us consider a liquid wedge with surface tension, γ, and fluid viscosity, μ, which advances

over a precursor wetting film as in Figure 1.13(a). The dynamical contact angle, θ is different

from the one at equilibrium θs and it depends on the wedge’s advancing velocity, U . The

relation between θ and U results from the balance of the traction force pulling the liquid

toward the wetting film and the viscous force γ(1−cos(θ)) ∼μU /θ. In the limit of small angles

we get

θ3 ∼C a = μU

γ
. (1.8)

where the capillary number C a =μU /γ is the nondimensional number of the problem that

measures the relative importance of viscosity to surface tension forces. The relation (1.8) is

known as Tanner’s law and has been experimentally validated as shown in Figure 1.13(b).

More than that, this motion induces a specific friction force, F f , that has a visco-capillary

origin and exhibits a nonlinear dependency in the meniscus velocity. Indeed, by injecting

Tanner’s law (1.8) in the expression of the viscous force, μU /θ, it is found that

F f ∼ γC a2/3 = γ1/3μ2/3U 2/3. (1.9)
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Figure 1.13: a) A liquid wedge advancing over a wet substrate. The apparent dynamic contact
angle, θ, depends on the sliding velocity, U , according to Tanner’s law (1.8) that has been
verified experimentally as reported in b) for the case of a moving of silicone oil meniscus
inside a capillary tube (Petit et al., 2012). Next, three famous total wetting problems where the
friction force, F f , scales as F f ∼U 2/3 are sketched: c) a droplet spreading (Tanner’s problem),
d) a bubble moving in a tube (Bretherton’s problem) and e) a plate pulled out of a liquid bath
(Landau-Levich-Derjaguin problem).

As reviewed in Stone (2010), this sublinear relation of friction force on the capillary number

is typical of total wetting diphasic flows such as droplet spreading on a wet plate (Tanner’s

problem, Fig. 1.13(c)), a bubble moving in a tube (Bretherton’s problem, (d)) or a solid plate

pulled out of a liquid bath (Landau-Levich-Derjaguin problem, (e)).

It should be noted that the relation differs from the force scalings encountered in classical

hydrodynamic such as the linear force-velocity dependence F ∼ U in the Stokes flow and

Stokes oscillating boundary layer. Or the nonlinear scalings F ∼U 3/2 in the laminar boundary

layer and F ∼U 2 typical of the separated flows. Hence, in the case of an oscillating flow over a

steady base-state the friction force (1.9) is expected to dominate the linear and superlinear

terms at small enough values of U .

Dynamic meniscus: Partial wetting

When a liquid meniscus is moving on a dry surface, an air-liquid-solid interface is present and

other kinds of nonlinearities enter in the system. Let us consider a drop sliding on an inclined

dry plate. It has been observed experimentally (Dussan, 1979; Rio et al., 2005; Le Grand et al.,

2005) that the dynamic advancing, θ1, and receding, θ2, contact angles change from their

static values depending on the velocity of displacement of the advancing/receding meniscus,

see Figure 1.14(b). Furthermore, it exists a range [θR , θA] such that if θ lies within this interval

then the contact line does not appear to move (contact-angle hysteresis).

Various models have been proposed in literature to relate the nonlinear dependance of the

dynamic contact angles (θ) on the capillary number based on the drop velocity, U . A simple
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Figure 1.14: a) Advancing, θ1, and receding, θ2, contact angles in a droplet which slides with
velocity U over a dry substrate. The dynamic contact angle is seen experimentally to depend
on the capillary number C a =μU /γ as reported in b), where a hysteresis range for C a = 0 is
present (figure adapted from Snoeijer & Andreotti (2013)). The dependance of the dynamic
contact angle, θ, on the capillary number, C a, is modeled in the literature by the c) linear
Dussan d) de Gennes and e) Cox-Voinov models with hysteresis.

phenomenological model inspired by experiments on a unidirectional flow over a flat plate,

was proposed by Dussan (1979) imposing a linear relation between the dynamic contact angle

and the capillary number

θ−θs ∼C a (1.10)

where θs is the static contact angle.

An analytic law linking θ, θs and C a was derived by De Gennes (1985) extending the Tanner’s

law 1.8 to the case of partial wetting. The traction force to pull the liquid is now γ(cos(θs)−
cos(θ)) and the viscous force scales as μU

θ ln(xM /xm). Here, xM is a macroscopic characteristic

length and xm is a microscopic cut-off length which is needed to avoid stress singularity

(Snoeijer & Andreotti, 2013). In the limit of small static and dynamic contact angle we have

θ(θ2 −θ2
s ) =±6C a ln(xM /xm) (1.11)

where the ± distinguishes the advancing from the receding contact line motion.

Cox (1986) and Voinov (1976) determined a similar but different relation by solving lubrica-

tion equations for weakly curved air-liquid interfaces. Similar to the approach of de Gennes,
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the solution is truncated at molecular and macroscopic dimensions, giving the following law

θ3 −θ3
s =±9C a ln(xM /xm). (1.12)

As pointed out by Le Grand et al. (2005), although these models match well the contact line

dynamics observed in the experiments, they all neglect the wetting hysteresis. For this reason

when comparing the models with the experiments, the static contact angle in the equations

(1.10), (1.11) and (1.12) is replaced by the limit static angle θa for the advancing branch and by

θr for the receding one. Figure 1.14 shows the resulting θ(C a) dependence for the c) linear

Dussan d) de Gennes and e) Cox-Voinov models with hysteresis.

Mathematically the hysteresis of the contact angle is sublinear because it only depends

on the sign of the contact line rather than on its amplitude. This means that the hysteresis

contribution to the dynamics is not amplitude-dependent and it will become dominant when

the other linear and superlinear terms get smaller at small amplitude. For example, in the case

of an oscillating flow about a rest state, the liquid meniscus will always experience the same

hysteresis range [θR ,θA] over one period, no matter what the amplitude of oscillation is.

1.3.3 In this thesis: Nonlinear friction in fluid-solid resonators

Chapter 6: The viscous torsional pendulum

The transition from the high-amplitude nonlinear regime to the low-amplitude linear regime

is here instigated by considering a fluid-solid oscillator: a torsional pendulum immersed in a

fluid. The system is made by a thin disk connected to a perfect torsional spring (the spring

always obeys Hooke’s law). The disk can only rotate about its axis and when it is twisted

from its equilibrium position the restoring force of the spring results in an oscillatory motion.

However, the system relaxes to equilibrium due to the viscous dissipation exerted by the

surrounding fluid which damps the oscillations.

In this work, we have carried out direct numerical simulations of the coupled fluid-disk

system in order to investigate the damping rate of decay. We have observed that if the twisting

angle is large the damping rate is not uniform in time but depends on the oscillation amplitude

due to the superlinear effect of the convective term in the Navier-Stokes equations, which

is the only nonlinearity in the system. However, when the amplitude of oscillation is small

the nonlinear contribution becomes negligible and the disk’s oscillation amplitude decays

exponentially with a constant damping rate. Some insight about the nonlinear and the

linear regimes is gained by writing the boundary layer equations in the limit of high and low

amplitude regimes. Finally, an analytical and predictive model for the free oscillation decay of

the viscous torsional pendulum is proposed.
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Figure 1.15: a) Sloshing wave with a thin layer of foam placed on top of the water column.
The b) damping rate measured experimentally increases with the foam thickness. However, c)
the corresponding exponential decay is seen to underestimate the surface elevation at high
oscillation amplitude and to overestimate it in the low amplitude regime. Figures from Sauret
et al. (2015).

Chapter 7: Sloshing with foam

The transition between the linear to the sublinear regime is here studied considering the slosh-

ing phenomenon. This phenomenon is well known from everyday’s life. Whenever one moves

or agitates a glass of liquid, capillary-gravity waves at the liquid-air interface are excited and

and the deformations of the free-surface are progressively relaxed: the excess of gravitational

potential energy is periodically turned into kinetic energy and dissipated by viscosity. Due its

regular motion, small amplitude sloshing constitutes an archetypal damped oscillator in fluid

mechanics, with frequency derived in the potential flow limit (Lamb, 1932). The damping

rate results from the viscous dissipation at the wall, in the bulk and at the free surface and

was determined analytically by Case & Parkinson (1957) for a cylindrical container. However,

this classic theoretical prediction significantly underestimates the damping rate measured in

experiments (Cocciaro et al., 1991). In particular, (Keulegan, 1959) found that the damping

depends on the material of the container pointing to the key-role of capillary effects at the

interface on the waves attenuation, which was neglected in the theory of Case & Parkinson

(1957).

In order to enhance the capillary effect in the sloshing dynamics, we propose in chapter 7

an experiment that introduces a small modification to the classical sloshing problem placing a

thin layer of foam on a volume of water, and we explored the dramatic change in its mechanis-

tic properties. It has recently been shown independently that a thin layer of foam placed on

top of a liquid strongly damps its sloshing motion (Sauret et al., 2015), see Figure 1.15. Here,

we focus our attention on the nonlinear nature of the dissipation in the collection of moving

lines present in the foam structure. In fact, these surface Plateau borders induce a viscous

friction that sublinearly depends on their sliding velocity (Denkov et al., 2005; Cantat, 2013).

We show experimentally and theoretically that, due to this nonlinear friction, the sloshing of

the liquid phase does not relax exponentially. The damping rate increases catastrophically at

small amplitude and yields a finite-time arrest of the fluid’s motion. This result is in strong

contrast with the classical linear exponential relaxation ending at infinite time. We rationalize
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Figure 1.16: Images of the fundamental sloshing mode in a circular cylinder with partial
wetting conditions at the wall. The eight images represent slightly more than one wave period
which is equal to 290 ms.

our observations deriving a minimal theoretical model accounting for the sublinear interfacial

effects in the total wetting regime.

Chapter 8: Conctact line hysteresis in sloshing dynamics

In chapter 8 the dynamics of sloshing water waves in the partial wetting regime is studied.

In this case the oscillating interface is effectively in contact with the container without any

precursor film along the container’s wall, see Figure 1.16. To this end, we carry out a weakly

nonlinear analysis and investigate the dynamics of inviscid waves subjected to a contact

line law presenting an hysteresis (Dussan, 1979; Rio et al., 2005). We show theoretically that

capillary effects have a dramatic influence on the damping rate. Specifically, the damping

rate induced by the motion of the liquid meniscus depends on the wave amplitude, consis-

tently with the experimental observation (Keulegan, 1959; Cocciaro et al., 1991). This rate

is practically uniform when the wave amplitude is large and increases significantly at small

amplitudes due to the presence of the sublinear hysteretic behavior of the contact line motion.

Similarly to the foam case, we unravel the existence of a finite time singularity in this problem.
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Figure 1.17: Original contributions of this work inserted in the graph of hydrodynamic stability.

Note that the thesis is organized as in Figure 1.17 and contains published or submitted ma-

terial carried out in collaboration with other experienced researchers as well as my supervisor.

I fundamentally contributed to all parts of the papers, including the writing phase, as detailed

below.

PART I: Non-modal effects in swirling flows

In chapter 2 the harmonic response to inlet and body forcing of a non-parallel Batchelor

vortex is investigated through DNS and linear WKB and global resolvent analyses. I have built

up the numerical models for local and global stability analysis of non-parallel swirling flows

from scratch and performed the nonlinear numerical simulations within the frame provided

by Nek5000. I have written the paper with input from the coauthors.

In chapter 3 the hub vortex instability in wind turbine wakes is studied by carrying out local

and global stability analyses on the time-averaged flow acquired in wind-tunnel experiments.

In the papers contained in this chapter, I have carried out the local and global stability analysis

and fundamentally contributed to the formulation accounting for turbulence effects in the

stability analysis. I contributed in writing the first paper, especially in sections two to five

devoted to stability analysis, and wrote the other two papers with input from the coauthors.

The experimental data reported in section 3.1 and 3.2 was acquired by G. V. Iungo at the Wind

Engineering and Renewable Energy Laboratory (WIRE) at EPFL directed by Prof. F. Porté-Agel

whereas those in section 3.3 have been kindly provided by W. Zhang, C. D. Markfort and F.

Porté-Agel.

In chapter 4 a strategy for the design of passive control of weakly non-parallel amplifiers

flow is proposed. In the paper contained in this chapter, I developed the sensitivity of the
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spatial stability analysis to a base flow modification. I have also developed the DNS code

for steady axisymmetric solutions from scratch and built up the numerical models for local

stability analysis and inlet sensitivity together with Erica Pezzica (master student from the

University of Pisa). I wrote the manuscript with input from the coauthors.

In chapter 5 the axisymmetric vortex breakdown phenomenon is revisited with new per-

spectives. This chapter has greatly benefited from a collaboration with Prof. Pierre-Yves

Lagrée, initiated during his visit at EPFL.

PART II: Nonlinear effects in solid-fluidic oscillators

In chapter 6 the linear and superlinear friction regimes of a viscous torsional pendulum are

studied.

In chapter 7 the nonlinear friction induced by moving contact lines is investigated experimen-

tally by means of a liquid-foam sloshing system. We then propose an equivalent mechanical

system mimicking the nonlinear dynamics. In the paper contained in this chapter I have

carried out the sloshing experiments with fast camera and analyzed the data acquired. I funda-

mentally contributed to the formulation of the equivalent mechanical model and developed

the asymptotic solution. I wrote the second and third section of the paper (with input of the

coauthors) and contributed in writing the first and the fourth sections.

In chapter 8 the effect of contact angle hysteresis in sloshing dynamics is studied in a global

framework by means of a weakly nonlinear analysis. In the paper contained in this chapter I

fundamentally developed the weakly nonlinear analysis and built up the numerical models for

the computation of the global sloshing modes. I wrote the paper with input from the coauthors.

In chapter 9 conclusions are drawn and possible future works are described.
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In the present study, the response of model trailing vortices subjected to a harmonic forcing

is studied. To this purpose, a globally stable non-parallel Batchelor vortex is considered

as the base-flow. Direct numerical simulations (DNS) show that a large variety of helical

responses can be excited and amplified through the domain when an harmonic inlet forcing is

imposed. The spatial shape of the responses strongly depends on the forcing frequency, with

the appearance of modes with progressively higher azimuthal wavenumber m as the frequency

increases. The mode selection mechanism is shown to be directly connected to the local

stability properties of the flow, and is simultaneously investigated by a WKB approximation in

the framework of weakly-non-parallel flows and by the global resolvent approach. In addition

to the excellent agreement between the two (local and global) approaches for the computation

of the linear response to harmonic forcing at the inlet, the usual WKB analysis is extended

to a suitably chosen type of harmonic body forcing, showing also good agreement with the

corresponding global results. As expected, the gain of the nonlinear response is significantly

lower than that of the linear response, but the mode selection observed in the DNS as a

function of the forcing frequency can be predicted fairly accurately by the linear analysis.

Finally, by comparing the linear and nonlinear results in terms of energy content for different

m, we suggest that the origin of the meandering observed in trailing vortex experiments could

be due to a nonlinear excitation stemming consistently at m = 1 from the competition between

the leading linear modes.



Chapter 2. Mode selection in trailing vortices

2.1 Introduction

In aeronautics, trailing vortices occur behind the wing of an aircraft due to the variation of

the lift along the wing span. These vortices are characterized by strong axial velocity and

relatively small-wake deficit, which is recovered downstream due to the positive axial pressure

gradient induced by the slowing-down of the tangential motion caused by viscous effects.

The analysis of their stability with respect to infinitesimal disturbances is important to better

understand their lifetime as well as contrail formation. The tip-vortices are accountable for

the proper evaluation of aerodynamic loads and for the induced drag, which represents about

one third of the total drag of a civil aircraft. Its reduction, even by a small percentage, would

correspond to a significant decrease in fuel consumption. Furthermore the persistence of

the trailing wake shed by an aircraft represents a source of risk for aircrafts that follow in its

wake, especially in takeoff and landing operations. For this reason, the minimum separation

between aircrafts in the different operating conditions is prescribed by the International Civil

Aviation Organization (ICAO).

Batchelor (1964) derived an asymptotic solution for trailing vortices by adopting boundary

layer assumptions in incompressible axisymmetric Navier-Stokes equations, which rely on the

slow variation of the flow in the streamwise direction. This solution is commonly referred to

as a Batchelor vortex, which in dimensional variables (r∗, x∗) reads:

U∗
x (r∗, x∗) ∼U∞+ (Uc (x∗)−U∞)e−(r ∗/R(x∗))2

,

U∗
θ (r∗, x∗) ∼C0

1−e−(r ∗/R(x∗))2

r∗ ,
(2.1)

where U∗
x and U∗

θ
are the axial and azimuthal velocity components, and U∞ is the freestream

velocity. Uc (x∗) and C0 are respectively the axial velocity at the centerline and the circulation

divided by 2π, and R(x∗) is the vortex radius at the streamwise position x∗. For large Reynolds

number, Re = U∞R(0)
ν , the radial velocity, U∗

r (r∗, x∗) ∼U∞/Re, which is negligible at leading

order and results in a slow evolution of the flow in the streamwise direction. This allows

Batchelor (1964) to determine analytically the asymptotic streamwise evolution of R(x∗) and

Uc (x∗).

At a given downstream location, equations (2.1) can be made non dimensional by choos-

ing as length scale the radius core of the vortex, R(x∗), and as velocity scale the velocity

defect, ΔUx (x∗) =Uc (x∗)−U∞, see Delbende et al. (1998). Consequently, the so called a-q

formulation is obtained:

Ux (r, x) ∼ a(x)+e−r 2
, Uθ(r, x) ∼ q(x)

1−e−r 2

r
, (2.2)

where a ≡U∞/ΔU is the external flow parameter, q ≡ C0/(RΔU ) the swirl number and the

local Reynolds number is defined as ReD (x) = |ΔU (x)|R(x)/ν. In contrast, if the freestream

velocity, U∞, and the initial vortex radius, R(0), are chosen as reference velocity and reference

length, the following expressions are obtained, as in Heaton et al. (2009), which we will refer to
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as α-δ formulation:

Ux (r, x) ∼ 1−α(x)e−r 2/δ2(x), Uθ(r, x) ∼ k
1−e−r 2/δ2(x)

r
, (2.3)

where α is the non-dimensional wake defect −ΔU /U∞, k is the non-dimensional circulation

k ≡ C0/(R(0)U∞), and δ(x) is the non dimensional vortex radius δ(x) ≡ R(x)/R(0). Conse-

quently the local Reynolds number is defined as ReH =U∞R(0)/ν. The relations among the

quantities introduced in the two non-dimensionalizations are:

q =− k

αδ
, a =− 1

α
, ReD =αReH . (2.4)

The parameters a-q and α-δ vary along the streamwise direction and mimic the vortex core

spreading and the recovery of the wake deficit in the trailing vortex evolution. By keeping these

parameters constant the parallel Batchelor-vortex is obtained, which is a family of columnar

vortices identified by swirl number, wake deficit and Reynolds number.

The linear stability of the parallel Batchelor vortex has been widely studied in the literature.

Taken in isolation, the tangential velocity profile is stable, since it does not satisfy Rayleigh’s cri-

terion, while the axial velocity profile is only unstable to mode m = 1 (Batchelor & Gill (1962))

as a consequence of a shear instability. However, the addition of both velocity components

leads to a massive destabilization for virtually any azimuthal mode when the swirl number

is less than q ≈ 1.5 (Mayer & Powell (1992); Leibovich & Stewartson (1983); Delbende et al.

(1998)), the only cut-off mechanism being viscous damping. The mechanism underlying this

destabilization is a generalized centrifugal instability unravelled by Ludwieg (1962); Leibovich

& Stewartson (1983); Eckhoff (1984). This general picture does not hold close to the stability

bound q = 

2/2 where weakly amplified modes have been detected. In addition, viscous

core modes could also be identified numerically and asymptotically (Khorrami (1991); Heaton

(2007); Fabre & Jacquin (2004); Fabre et al. (2006)).

Besides these temporal stability analyses, Delbende et al. (1998); Olendraru et al. (1999);

Olendraru & Sellier (2002) carried out a spatio-temporal analysis as a function of swirl and

wake parameters, showing that for relatively large wake deficits the flow can be absolutely un-

stable, as seen in figure 2.2 of the present work. For coflowing wakes, the wake defect needed

to trigger an absolute instability depends on the swirl number and the lower bound is approx-

imately a = −1.25 corresponding of a wake deficit of 80% of the external flow. Conversely,

in the case of strong advection and moderate wake deficit, the flow is convectively unstable,

with perturbations growing in space as they are simultaneously amplified and advected away.

While Delbende et al. (1998) used the linear impulse response method, Olendraru et al. (1999);

Olendraru & Sellier (2002) used the pinch-point diagnostic for the transition from convective

to absolute instability and carried out a spatial stability analysis computing the spatial growth

rate as a function of the forcing frequency and the azimuthal wavenumber. In convectively

unstable situations, they found that the helical symmetry of the most amplified mode changed

drastically, when spanning the forcing frequency, ω f . This suggests that the mode-selection

in convectively unstable swirling flows strongly depends on the frequency spectrum of the
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incoming perturbations.

Delbende & Rossi (2005) more recently also investigated the nonlinear response to the

harmonic forcing of modes on an artificially maintained parallel swirling jet flow. They found

that for low swirl (q ≤ 0.6), the flow saturates as an array of dipoles which cause an increase

of the vortex core size. At intermediate values, q ∼ 0.8, the vortex breaks in an array of equal

sign vortices and for high swirl q ≥ 1 the increase of the instantaneous swirl induced by the

accelerated diffusion of the axial core velocity favors the flow relaminarization.

Although these results strictly apply for the parallel Batchelor vortex, they are of fundamental

importance for real non-parallel flows, because it is known that the global stability features are

related to the local stability properties, see Huerre & Monkewitz (1990) and Chomaz (2005) for

a comprehensive discussion. In the non-parallel framework, Heaton et al. (2009) carried out a

global analysis, considering the base flow resulting from the imposition of a 90% wake deficit

at inlet, i.e. α(0) = 0.9. As the wake deficit is progressively recovered downstream, the flow

turns convectively unstable, but for the chosen inlet parameters and Reynolds number, the

flow exhibits a sufficiently extended absolutely unstable region to become globally unstable.

The frequency of the most unstable global mode is indeed observed to match the absolute

frequency prevailing at inlet, as long as the domain is short enough for an accurate resolution

of the resulting eigenvalue problem. However, typical trailing vortices have a rather strong

axial velocity component, as experimentally measured by Devenport et al. (1996) and more

recently by Del Pino et al. (2011), with wake deficits typically less than 80%. These flows are

locally convectively unstable everywhere and behave as noise amplifiers. In this work the

mode selection in an harmonically forced non-parallel Batchelor vortex is considered, and

the capability to predict the amplitude and spatial shape of the response by linear analyses is

investigated.

The objective of this work is to analyse the mode selection in a non-parallel spatially evolv-

ing Batchelor vortex subjected to harmonic in time but random in space perturbations. After

the introduction of the prototype trailing-vortex used throughout the work in section 2.2,

the observation of the non-linear response to an harmonic inlet forcing computed by three-

dimensional (3D) direct numerical simulation (DNS) is briefly reported in section 2.3. In sec-

tion 2.4, the linear flow response to boundary forcing is investigated using the WKB (Wentzel,

Krammers, Brillouin) asymptotic analysis in the framework of weakly-non parallel flow. The

asymptotic results are then compared to the results of a global analysis, which relaxes the

weakly non-parallel assumption. The optimal inlet forcing, which maximize the linear energy

amplification of the response, is thus determined through global resolvent. In section 2.5,

the flow response to a volume forcing is computed using both the global resolvent approach

and a generalized WKB analysis. The effect of nonlinearity on the response is investigated in

section 2.6 in the case of inlet forcing. The nonlinear gains are computed through DNS as a

function of the forcing frequency and for increasing forcing amplitudes. The mode selection

observed in the DNS is compared to the one of the linear optimal response. Finally, conclu-

sions are outlined.

Several sets of equations, all derived from Navier-Stokes equations, are used in this study

to conduct the different steps of the analysis, which all require adequate numerical methods.
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Figure 2.1: (a) Streamwise, (b) azimuthal and (c) radial velocity components of the axisymmet-
ric Navier-Stokes steady solution obtained by setting at the inlet a parallel Batchelor profile
with α(0) = 0.667, κ(0) = 0.333, which is depicted in the left column.

We have chosen to describe briefly these methods when the corresponding equations are

progressively introduced.

2.2 Trailing-vortex prototype

In the present work a typical trailing vortex is considered and used as test-case. This prototype

flow satisfies the steady axisymmetric Navier-Stokes equations

Ub ·∇Ub =−∇Pb +
1

Re
ΔUb ,

∇·Ub = 0,

Ub = U0 on Γi .

(2.5)

A parallel Batchelor profile, U0, in the α,δ formulation is imposed at the inlet, Γi , as a Dirichlet

boundary condition with α= 0.667, κ= 0.333. A free-stress boundary condition is imposed

at the outlet, Γo and lateral boundary, Γl , while symmetry conditions are imposed on the

axis. The Reynolds number is defined using as reference length the size of the vortex core

at the inlet and is equal to ReH = 1000 (ReD = 667). Taking advantage of the local stability

of Batchelor vortices with respect to m = 0 axisymmetric perturbations, this steady solution

is obtained by time-marching an axisymmetric simulation with the spectral element code

Nek5000 (Fischer et al. (2008)). The flow is considered steady when the L2-norm of the

difference between two consecutive solutions is less than 10−12. The computational domain
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Figure 2.2: Figure adapted from Delbende et al. (1998). The regions of absolute (AI) and
convective (CI) instability are reported in the (a, q) parameter space for the Reynolds number
ReD = 667. The path in solid-line depicts the local properties of non-parallel trailing vortex
studied in this work. The dashed line identifies the globally unstable non-parallel Batchelor
vortex investigated in Heaton et al. (2009).

is 0 ≤ x ≤ 40 and 0 ≤ r ≤ 10 (see appendix 2.9 for discussion of the influence of the radial

extension of the domain). The resulting steady-flow, Ub , is reported in figure 4.2 as (a) axial

(b) azimuthal and (c) radial velocity components, showing the gradual recover of the wake

deficit, as one proceeds downstream, and the diffusion of the vortical core. The radial velocity

is significantly smaller than the other two velocity components thus validating the boundary

layer assumptions adopted by Batchelor. This is due to the fact that the streamwise evolution

of a trailing vortex is governed by viscous effects, which operate at a slower time scale with

respect to advection. The present flow can be qualified as weakly non-parallel, meaning that

at first order the flow field U(x,r ) can be seen as a sequence of parallel Batchelor vortices.

Hence, the streamwise evolution of the trailing vortex can be represented as a path in the (a, q)

plane, starting at a =−1.5 and q =−0.5, see figure 2.2.

The present choice of prototype trailing vortex has been motivated by the fact that for higher

or lower swirl numbers the flow is close to neutral stability conditions and perturbations

are less amplified. With this choice of negative but large amplitude advection parameter at

the inlet, the locus of the local base-flow characteristic parameters in the (a, q) plane does

not penetrate into the absolutely unstable region. This flow is therefore globally stable and

behaves as a noise amplifier. The stability of the base-flow has been checked numerically using

the discretization method discussed in section 2.4, and the least stable eigenvalue is found to

be ω= 0.5609−0.202i corresponding to the azimuthal wavenumber m = 1. As a comparison,

the dotted path intersecting the region of absolute instability in figure 2.2 corresponds to the

globally unstable non-parallel swirling flow considered by Heaton et al. (2009).
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2.3. Observation of the non-linear response to harmonic inlet forcing

2.3 Observation of the non-linear response to harmonic inlet forc-

ing

In this section the non-linear response of a trailing vortex to an harmonic forcing is investigated

by full 3D DNS. Specifically, an harmonic inlet forcing acting on the three velocity components

has been considered. The forcing adopted is chosen random in space in order to better

enlighten the role of the forcing frequency on the change of the structure of the response.

The unsteady Navier-Stokes equations

∂U

∂t
+U ·∇U =−∇P + 1

Re
ΔU,

∇·U = 0,
(2.6)

are solved in a cylindrical domain of radius rmax = 10 and length xmax = 40, complemented

with free stress boundary conditions on all domain boundaries except at the inlet Γi , where

an unsteady Dirichlet boundary condition fluctuating around the base flow inlet profile is

imposed

U = U0 +aζζcos(ω f t ) on Γi . (2.7)

A random inlet field concentrated in the region r ≤ 5 is generated off-line before the first

time step and saved in memory invoking the MATLAB function rand which returns pseu-

dorandom numbers uniformly distributed between 0 and 1. These fields are then loaded

in Nek5000 and projected in the space of continuous functions, obtaining the fields ζ =
(ζx (y, z),ζy (y, z),ζz (y, z)). Three forcing amplitude have been considered, aζ = 0.01, 0.05 and 0.1.

The Navier-Stokes equations are solved in Cartesian coordinates using Nek5000 spectral ele-

ments solver, while the time-discretization is ensured using a Crank-Nicolson scheme. Con-

vergence is attained with 2.2 million degrees of freedom and the code is parallelized. The

integration time was equal is 400 time units, sufficiently large to capture the flow dynamics of

the permanent regime. The time evolution of the energy of the flow was used to assess that a

periodic permanent regime was indeed reached.

The forcing frequency ω f ranges from 0.1 to 5 and the spatial structure of the response is

monitored by observing its azimuthal symmetries. Figure (2.3) reports isosurfaces of axial

vorticity at the streamwise section x = 30 for different values of the forcing frequency. At low

frequency, low azimuthal wavenumbers are the most amplified, while at higher frequency,

higher wavenumbers are excited by the forcing. For instance, at frequency ω f = 0.50, a single

spiral mode is excited, while for ω f = 1.00 the response is dominated by a double helical struc-

ture. When increasing further the forcing frequency, triple (ω f = 1.80), quadruple (ω f = 2.40)

or higher helical structures appear. In this swirling flow, the spatial shape of the response is

found to be very sensitive to the forcing frequency, calling for a detailed understanding of the

mode selection mechanism.

33



Chapter 2. Mode selection in trailing vortices
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Figure 2.3: Isocontours of the axial vorticity at the streamwise section x = 30 for different
forcing frequencies. The amplitude of the forcing was set equal to aζ = 0.01.

2.4 Linear response to harmonic inlet forcing

In a parallel convectively unstable flow, the spatial stability branches fully describe the re-

sponse to an harmonic forcing at any point of the domain, see Huerre & Rossi (1998). The

spatial analysis provides the amplification in space, −ki , and the axial wavenumber, kr , of a

downstream propagating perturbation with frequency ω f . In this framework, k is the com-

plex eigenvalue of the polynomial eigenvalue problem obtained from the linearized stability

equations after the introduction of a normal mode expansion exp(i (kx +mθ−ω f t )). Follow-

ing Iungo et al. (2013), the corresponding stability equations in primitive variables around a

parallel base flow Uθ(r ),Ux (r ) are:

− iω f ur +Γm,k ur −2Ωuθ =−∂p

∂r
+ 1

Re

[(
Δm,k −

1

r 2

)
ur − 2i muθ

r 2

]
,

− iω f uθ+Γm,k uθ+ur
∂Uθ

∂r
+Ωur =− i mp

r
+ 1

Re

[(
Δm,k −

1

r 2

)
uθ+

2i mur

r 2

]
,

− iω f ux +Γm,k ux +ur
∂Ux

∂r
=−i kp + 1

Re
Δm,k ux ,

1

r

∂(r ur )

∂r
+ i muθ

r
+ i kux = 0,

(2.8)

where Ω=Uθ/r , Γm,k = i mΩ+i kUx and Δm,k = 1
r

∂
∂r

(
r ∂
∂r

)
− m2

r 2 −k2. Homogeneous Neumann

conditions are imposed at rmax , as well as regularity conditions on the axis, see Batchelor &
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2.4. Linear response to harmonic inlet forcing

Gill (1962):

ur = uθ =
∂ux

∂r
= 0 for m=0

∂ur

∂r
= ∂uθ

∂r
= ux = 0 for |m| = 1

ur = uθ = ux = 0 for |m| > 1,

(2.9)

where m = 1 is the only positive azimuthal mode to admit a displacement from the centerline,

and is called the displacement mode. The discretization is ensured through a Chebyshev

spectral collocation technique including an algebraic mapping of the domain, as detailed

in Viola et al. (2014), where the influence of rmax is discussed in appendix 2.9. To capture the

amplified k+ spatial branches, the Gaster transformation of the temporal stability analysis is

used to obtain a target for the complex wavenumber k, as explained in detail in Iungo et al.

(2013).

Figure 2.4 reports the spatial growth rates as a function of the frequency ω f , and each branch

corresponds to a different azimuthal wavenumber, m. Figure 2.4(a) pertains to the flow prevail-

ing at the inlet section, while (b) considers the flow at the section x = 30. Observe that, in both

cases, a large number of helical modes have positive spatial growth-rates, as a consequence of

the generalized centrifugal instability (Ludwieg (1962); Leibovich & Stewartson (1983)) which

selects only the angular pitch of the unstable modes m/k. However, a detailed inspection

shows that the local stability properties differ at both streamwise locations. While at the inlet

section the most amplified mode is the single helical mode, m = 1, further downstream in the

wake the double helix m = 2 becomes the most amplified mode. In addition, the frequency

corresponding to the maximum amplification for a given mode is seen to be slightly shifted as

one proceeds downstream.

2.4.1 WKB analysis

In order to take into account the weak non-parallelism of the baseflow the WKB formalism

introduced by Gaster et al. (1985) and Huerre & Rossi (1998) for a spatial mixing layer has been

here extended to the case of swirling flows with axial velocity. A fast, x, and a slow, X = εx,

streamwise scale are introduced, where the baseflow depends only on X , and ε is a measure of

the weak non-parallelism. The global response to a boundary forcing then takes the following

modulated wave form:

q(r,θ, X ; t ) ∼ A(X )q̂(r, X )exp

[
i

(
1

ε

∫X

0
k(X ′,ω f )d X ′ +mθ−ω f t

)]
, (2.10)

where q̂ = (û, p̂) is a column vector. k(X ′,ω f ) is the local complex wavenumber at sec-

tion X ′ and frequency ω f , and A(X ) is the envelope function which smoothly connects the

slices of parallel spatial analyses. The local eigenfunction q̂(r, X ) is normalized by imposing∫∞
0 q̂H · q̂r dr = 1, where (·)H is the tranconjugate, and the phase angle is set to zero at a given

radial position. A systematic asymptotic expansion, including a compatibility condition, de-
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Figure 2.4: Spatial growth rate, −ki versus frequency ω f , of the locally unstable helical pertur-
bations. In (a) the results of the local spatial analysis at the inlet, while in (b) at the streamwise
section x = 30.

tailed in appendix 2.8, shows that the local spatial analysis (2.8) is recovered at zero order in ε

while an amplitude equation (8.43) is obtained at order ε:

M(X )
dA(X )

dX
+N (X )A(X ) = 0, (2.11)

where the operators M(X ) and N (X ) are defined in the Appendix 2.8.

The solution is A(X ) = A0 exp
(
−∫X

0
N (X ′)
M(X ′) d X ′

)
. Setting the amplitude at the inlet to one A(0) =

1, this yields the response associated to forcing at the inlet with the local normalized direct

mode, i.e.:

f(r,0) = û(r,0)exp
(
i
(
mθ−ω f t

))
. (2.12)

The spatial branches, k(X ,ω f ), and the corresponding eigenfunctions, q̂, are obtained by

solving the local spatial analysis problem.

The kinetic energy gain of the response respect to the forcing is defined as:

G2
bnd (m,ω) = ||q̂||2E

||f̂||2f
=

∫x
0 AH (x ′)A(x ′)

(∫∞
0 ûH (r, x ′)û(r, x ′)r dr

)(
e
∫x′

0 −2ki (x ′′)dx ′′)
dx ′∫∞

0 ûH (r,0)û(r,0)r dr
. (2.13)

The global gains of the response excited by forcing at the inlet at each frequency and azimuthal

wavenumber with the local eigenmode, are reported in figure 2.5. Full lines correspond to

the gains obtained at first order (eq. (2.13)), i.e. by solving both the weakly non parallel linear

spatial stability analysis and the amplitude equation. In contrast, the dashed line report the

results obtained by setting the amplitude A(X ) = 1. These zero-order solutions are seen to
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Figure 2.5: Global gains of the responses excited by forcing at the inlet with the local direct
mode. The solid black lines depict the result of WKB analysis, conversely dashed lines corre-
spond to the gains obtained by a zero order analysis, i.e. imposing the amplitude unitary. The
results obtained through global resolvent are reported with circle marks.

differ significantly with respect to the first-order results at low frequency.

In order to verify the accuracy of the WKB analysis and the ability of the amplitude equation

to properly take into account the non-parallelism of the flow, the same problem can be

tackled in a global framework using the resolvent operator, i.e. dealing with the flow as fully

non-parallel.

2.4.2 Global resolvent

Let us consider the linearized Navier-Stokes equations on the axisymmetric steady base-

flow, Ub subjected to an harmonic forcing with frequency ω f imposed at the inlet through a

non-homogenous Dirichlet boundary condition. The linear response, u is thus governed by:

∂u

∂t
+Ub ·∇u+u ·∇Ub =−∇p + 1

Re
∇2u,

∇·u = 0,

u = f on Γi ,

∂u

∂x
= i kou on Γo .

(2.14)

Free-stress boundary conditions are imposed on the lateral boundary Γl . In order to mimic

an infinite vortex flow, a non-homogenous Neumann condition is imposed at the outlet as

in equation (2.14), where ko is the local axial wavenumber according to local spatial analysis.

This boundary condition is similar to the one adopted by Ehrenstein & Gallaire (2005) in the

global analysis of a boundary layer flow. In situations like the present one where the flow is still

convectively unstable at the outlet section, the imposition of a free-stress boundary condition

at the outlet is not appropriate.

As usual in the case of steady and axisymmetric base-flows, an expansion of the perturbation
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in azimuthal modes is considered:

f(x,r,θ, t ) = f̂(0,r )ei (mθ−ωt ),

(u, p)(x,r,θ, t ) = (û, p̂)(x,r )ei (mθ−ωt ),
(2.15)

where m ∈Z is the azimuthal wavenumber and ω ∈R is the frequency.

Equations (2.14) together with modal expansion (3.36) are discretized using a staggered

pseudospectral Chebyshev-Chebyshev collocation method. The three velocity components

are defined at the Gauss-Lobatto-Chebyshev (GLC) nodes, whereas the pressure is staggered

on a different grid, which is generated with Gauss-Chebyshev nodes (GC). Specifically, the

momentum equation is collocated at the GLC nodes, and the pressure is interpolated from

GC points to GLC points. Conversely the continuity equation is enforced on the GC grid and

the velocity components are interpolated from the GLC grid. Consequently the two grids are

mapped in the physical domain 0 ≤ r ≤ rmax = 10 and 0 ≤ x ≤ xmax = 30, where the equality

holds only for the velocity grid, since the GC grid is not defined on the boundaries. In the

radial direction the algebraic mapping with domain truncation is used r = L(1+ s)/(smax − s)

where s are GLC and GC nodes, L is a mapping parameter to cluster the points close to the

origin and set equal to 3, and smax is defined as (2L+Rmax )/Rmax , (see Canuto et al. (2007)).

In the axial direction the physical space is mapped with a linear mapping x = (1+ s)xmax /2.

Pn −Pn−2 formulation has been used in order to avoid spurious pressure modes by simply

setting NGC = NGLC −2, see Canuto et al. (2007) for a comprehensive discussion. The code

used is a two-dimensional generalization of the one-dimensional code documented in Malik

et al. (1985) and Khorrami (1991) used for local stability analysis in cylindrical coordinates.

In the present work Nx = 80 and Nr = 40 points are used in the axial and radial direction

respectively, having shown to provide the desired convergence of the amplification factors.

Introducing the state vector q̂ = (û, p̂), the linearized system of equations with embedded

boundary conditions reads:

−iω f Bq̂ = Lq̂+B f f̂, (2.16)

where B is the mass matrix, L is the linearized Navier-Stokes operator and B f is a so-called

prolongation operator (Garnaud et al. (2013); Boujo & Gallaire (2014)) that maps the boundary

forcing onto the interior degrees of freedom. The response to a given forcing f̂(x = 0,r ) pushing

at the inlet harmonically with frequency ω f is directly obtained by solving the linear system in

equation (2.16). Note that in principle the matrix (−iω f B−L) can be inverted as long as ω f is

not an eigenvalue of the non-forced system.

As for the WKB, we define the energy gain, Gbnd (m,ω f ), as the measure of the amplification

of the perturbation due to an externally applied boundary forcing:

G2
bnd (m,ω f ) =

∫
Ω |û|2r dr d x∫
Γi
|f̂|2r dr

= ||(L+ iω f B)−1B f f̂||2E
||f̂||2f

, (2.17)
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Figure 2.6: Three components of the direct mode forcing at the inlet (a) and associated
response computed with WKB analysis (b) and global resolvent (c) at forcing frequencies
ω f = 0.65. In (d-e-f) and (g-h-i) the same quantities are reported for the frequencies ω f = 1.15
and ω f = 1.6 respectively.

where (L+iω f B)−1 is known as the resolvent. The calculation of the energy gains requires one-

dimensional and two-dimensional numerical integrals, here computed with Clenshaw-Curtis

quadrature formula. In order to achieve a better accuracy the quadrature weights are com-

puted for the particular integration weight which depends on the mappings used, following

the method presented in Sommariva (2013). For a comprehensive discussion on the accuracy

of Clenshaw-Curtis quadrature compared to Gaussian quadrature we refer to Trefethen (2008).

The global energy gains, as computed from the global resolvent analysis, to harmonic

forcing at the inlet with the local direct modes, are superimposed on the results of the WKB

analysis with circle markers in figure 2.5. The agreement is stunning, confirming the excellent

accuracy of WKB analysis to study weakly non-parallel flows. In contrast, the zero-order
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Figure 2.7: Optimal gains for boundary forcing as a function of the forcing frequency ω f . Each
branch corresponds to a different azimuthal wavenumber.

approximation overestimates the global gains, since the amplitude A(x) is in general less than

unity, as a consequence of the streamwise evolution of the local eigenmode. This agreement

also represents a convincing validation of the local and global numerical tools. Also the axial

wavelength of the response is very well captured by WKB analysis, as shown in figure 2.6 where

isosurfaces of the axial vorticity of the responses calculated with WKB and global analysis are

reported in the right column, while the corresponding inlet forcings are depicted in the left

column. In figure 2.6 (a-b-c) the forcing frequency ω f = 0.65 strongly excites a single-helical

mode. The double-helical mode reported in (d-e-f) emerges at frequency ω f = 1.15. In the

case of higher forcing frequency higher wavenumber modes arise, as the three-helical struc-

ture resulting for ω f = 1.6. In a very similar way to the first DNS observations of section 2.3,

different azimuthal wavenumbers, m, yield large responses when spanning ω f . Figure 2.6

also clearly shows that the helical structures are counterwinding. Considering their time

dependence, one can deduce their co-rotation. These results perfectly match the literature of

parallel swirling wakes (Delbende et al. (1998); Gallaire & Chomaz (2003)).

It is interesting to observe that, due to the azimuthal symmetry, the displacement mode

m = 1 is the only one to have a non-zero forcing at the centerline, see figure 2.6(a). This

indicates that the displacement mode is the most sensitive one to perturbations forcing the

flow at the vortex center.

2.4.3 Optimal forcing

In principle, by forcing randomly in space in the numerical experiment presented in section 2.3,

all the competing modes are excited. Thus, the dominant helical mode which resonates at a

given frequency, see figure 2.3, is expected to correspond to the most amplified one. When the

amplitude of the perturbation is small, the mode having the highest energy amplification can

be determined via the analysis of the linear optimal response to an harmonic forcing.
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Given the forcing frequency, ω f , and the azimuthal wavenumber, m, the optimal forcing

corresponding to the maximum energy amplification is defined in discrete form as:

G2
opt (ω f ,m) = max

f̂

||q̂||2E
||f̂||2f

= max
f̂

||(L+ iω f B)−1B f f̂||2E
||f̂||2f

, (2.18)

As explained in detail in Marquet & Sipp (2010) and Garnaud et al. (2013) the optimization

defined in equation (3.50) is equivalent to the following eigenvalue problem, where G2
opt (ω f )

corresponds to the eigenvalue λ:

Q−1
f BH

f (L+ iω f B)−H QH (L+ iω f B)−1B f f̂ =λf̂, (2.19)

Q and Q f are the weight matrices of the discretized energy norm and the norm of the forcing,

respectively. The previous eigenvalue problem is solved using the UMFPACK library available

in MATLAB.

In figure 2.7 the optimal gains, Gopt (ω f ,m), are shown as a function of the forcing frequency,

where each branch corresponds to a different azimuthal wavenumber. The results are pre-

sented optimizing the amplification of the perturbation in the domain 0 ≤ x ≤ 30. The high

energy response observed is related to the strong non-normality of the damped operator L.

In fact, when the global modes are not self-adjoint the flow is usually extremely sensitive to

forcing, and the energy gain is inversely proportional to the the smallest value for which the

pseudospectrum crosses the neutral axis, (Trefethen et al. (1993); Chomaz (2005)). Here, the

optimal inlet forcing is seen to yield less than 20% more amplification for some frequency

than using the eigenfunction at the inlet. This relatively weak net increase shows that in

these instabilities, there is little potential for intense local non-normality effects (as lift-up

or Orr mechanisms). The dominant non-normality of the global operator L is the convective

non-normality, which is the global counterpart of the local convective instability (Cossu &

Chomaz (1997); Chomaz (2005); Marquet et al. (2009)). In fact, the spatial mode used as inlet

forcing in figure 2.5 excites the most convectively unstable spatial branch which is the main

contribution to the optimal response, since the other spatial branches are either damped or

less unstable.

Spanning the forcing frequency, the spatial shape of the most amplified mode drastically

changes. The largest energy gain occurs at a forcing frequency ω f ≈ 1.15 and the associated

mode is a double helix. However, when varying ω f , the most amplified azimuthal mode

increases from m = 1 to m = 9. Specifically, at lower ω f , lower m are more amplified (see

figure 2.13 left column for isocontours of the optimal responses at x = 30). Since the helical

perturbations are convectively unstable in all the flow domain, they are continuously ampli-

fied while propagating. For this reason the maximum amplification of the perturbation is

encountered at the outlet, after a continuous amplification throughout the domain.
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Figure 2.8: Optimal gains for volume forcing versus forcing frequency ω f . Each branch
corresponds to a different azimuthal wavenumber.

2.5 Linear response to harmonic body forcing

Rather than the response to a forcing acting at the inlet, the effect of a body forcing is now

considered. As in the previous section the problem is assessed both in the global and the local

framework.

2.5.1 Global resolvent

The linear response, u, due to an harmonic body forcing, f, acting on the axisymmetric base-

flow Ub is given by:

∂u

∂t
+Ub ·∇u+u ·∇Ub =−∇p + 1

Re
∇2u+ f,

∇·u = 0,

u = 0 on Γi ,

∂u

∂x
= i k0u on Γo ,

(2.20)

as in the case of inlet forcing, the local spatial growth rate is imposed as inhomogeneous

Neumann conditions in order to better mimic the amplification of the perturbation at the

outlet. A normal mode expansion is used similar to equation (3.36). However, the energy

gain is now defined as the ratio among the kinetic energy of the response and of the forcing

integrated in the domain:

G2
vol (m,ω f ) =

∫
Ω |û|2r dr d x∫

Ω |f̂|2r dr
. (2.21)
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2.5. Linear response to harmonic body forcing

Figure 2.9: Isosurfaces of the axial vorticity of the optimal volume forcings (green) and the
associated responses (blue and red) for different values of ω f : 0.65 (a), 1.25 (b) and 2.20 (c).

In a similar fashion to inlet forcing, the optimization of the body forcing yields to the eigenvalue

problem (3.51), where now Q f is the weight matrix of the energy norm of the forcing in the

volume, and the prolongation operator is non-null in correspondence of all the internal nodes.

And the eigenmode f̂ associated with the largest eigenvalue corresponds to the optimal volume

forcing.

Figure 2.8 shows the energy gain when forcing at each ω f with the optimal body forcing.

The domain length is equal to xmax = 30, and each branch refers to a different azimuthal

wavenumber. As in the case of inlet forcing, the variation of the forcing frequency results in a

different azimuthal wavenumber mode selection. Due to the non-normality of the system,

the response is strongly amplified, where the maximum gain corresponds to the double-

helical mode at ω f = 1.20. However, it should be reminded that these very high values of

the amplification factors pertain to a linear stability analysis where nonlinear saturation

mechanisms are not at play.

Isosurfaces of the axial vorticity of typical optimal forcings are reported in figure 2.9, together

with the corresponding responses. In (a) at a forcing frequency ω f = 0.65, the most amplified

mode is m = 1, while at (b) ω f = 1.25 and (c) ω f = 2.20 the most amplified modes are m = 2

and m = 4 respectively. The forcing is located close to the inlet, in order to excite the mode,
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Figure 2.10: Global gains of the reponses excited by a given volume forcing versus forcing
frequency. The solid black lines depict the result of WKB analysis, conversely circle marks
corresponds to the gains obtained by global resolvent.

which propagates and amplifies inside the domain, reaching the maximum amplification at

the outlet. In the single-helix mode the optimal forcing is located at the vortex center. For

this reason, similarly to the case of inlet forcing, the displacement mode is more sensitive to

disturbances forcing at the centerline.

2.5.2 WKB analysis for volume forcing

The global resolvent with a generic body forcing, f, can be approximated by a generalized WKB

analysis, through the technique presented in Arratia & Gallaire (2013) and here outlined in

appendix 2.8.1. The response to a body forcing of this type is considered:

f(r, x) ∼ εF (x)û(r, x)exp

[
i

(∫x

0
k(x ′)d x ′ +mθ−ω f t

)]
, (2.22)

where F (x) is the slowly-varying amplitude of the forcing. In this formulation the forcing term

enters only at order ε, thus at order ε0 the local spatial problem persists. As before the response

is asymptotic to:

u(r, x) ∼ A(x)û(r, x)exp

[
i

(∫x

0
k(x ′)d x ′ +mθ−ω f t

)]
. (2.23)

Consequently, at first order a modified amplitude equation is retrieved:

M(X )
dA(X )

dX
+N (X )A(X ) = H(X )F (X ), (2.24)

where M(X ) and N (X ) are the same operators as in the case of inlet forcing and H(X ) is a

diagonal matrix with the scalar products among direct and adjoint modes, see appendix 2.8.

Equation (2.24) is discretized in the streamwise direction using spectral methods and A(X )
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2.6. Nonlinear response

is obtained by solving the subsequent linear system. For each given forcing frequency and

azimuthal wavenumber, (ω f ,m), the volume forcing is fixed once F (x) is set. Note as the

response to a generic forcing term F (X ) can be computed online, if the outcomes of the local

spatial analysis were computed previously offline, since only linear systems with the size of the

number of streamwise sections considered have to be solved. In other words the response can

be calculated with a cheap and fast computation if the spatial growth rates, the direct modes

together with the operators M(X ) and N (X ) are available.

As test case, figure 2.10 reports the gains corresponding to forcing in the volume with the

global mode weighted with an arbitrary weight function F (x) =
[
−( x

5 −1
)2 +1

]∏( x−5
10

)
, where∏

(x) is the rectangular function. The results are compared with the ones of global resolvent,

where the expression (2.22) has been set as volume forcing: the WKB analysis correctly predicts

the linear kinetic energy amplification in all the frequency band. The agreement is good also

in terms of axial wavenumber of the responses, which are not reported for the sake of brevity.

2.6 Nonlinear response

The linear investigation carried out in the previous sections describes the flow response in

the hypothesis of small amplitude forcing and response. However, the helical perturbations

propagating in the trailing vortex grow exponentially in space according to their spatial growth

rate, −ki (x). Hence, after a finite distance from the inlet, which depends on the frequency,

the response is no longer small and nonlinearity starts to play. Thus, after having described

the effect of nonparallelism in the response to forcing of a trailing vortex, we explore here the

effect of nonlinearity, focusing on the case of inlet forcing.

2.6.1 Nonlinear gains

The 3D DNS presented in section 2.3 yields the nonlinear response, ũ, which is here defined as

the difference between the velocity and the base-flow ũ(t ) = U(t )−Ub . Similarly to the previous

section we define the energy gain, GDN S(ω f ; aζ), as the ratio between the time-averaged energy

of the perturbation and the one of the boundary forcing:

G2
DN S(ω f ; aζ) =

∫
Ω ũ2r dr d x

a2
ζ

∫
Γi
ζ2r dr

(2.25)

where the overline denotes time-averaging. In this case, the energy gain does not depend

explicitly on the azimuthal wavenumber since no modal expansion is carried out in the DNS.

In figure 2.11, the GDN S , connected by a spline interpolation, are reported as a function of

ω f for the three forcing amplitudes aζ = 0.01, 0.05 and 0.1. In order to explore the nonlinear

gain sensitivity to the inlet spatial random forcing, two additional DNSs have been carried out

at aζ = 0.1 using two other independently drawn random inlet forcing fields. The effects on

GDN S are seen in the inset of figure 2.11, where the mean value of GDN S is reported, together
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Chapter 2. Mode selection in trailing vortices

Figure 2.11: Non-linear energy gains of the responses excited by the random inlet forcing
computed with DNS. Three values of the forcing amplitude have been considered: aζ =
0.01,0.05 and 0.1. In the inset is reported in detail the GDN S at aζ = 0.1 averaged for three
different realizations of inlet random forcing. The errorbars represent the standard deviation.

with the errorbars representing the standard deviations. The deviations remain very small

among the three realizations, except in the medium frequency range, ω f ≈ 1.2, where we will

see in section 2.6.2 that a strong competition between the helical modes sets in.

When compared to figure 2.7, the GDN S are two order of magnitude smaller than the linear

gains. This might result from two possible effects: first, part of the forcing energy is lost as the

random noise is projected on the optimal forcing. Second, nonlinearities become important

and lead to saturation, in contrast to the linear prediction where the base flow distortion

and mode interactions are neglected. The low-frequency peak is robustly observed in the

forcing amplitude range considered: the energy of the response is seen to saturate and the

gain therefore strongly depends on the forcing amplitude, decreasing when increasing aζ. In

the low amplitude forcing case, aζ = 0.01, the nonlinear gain exhibits two additional peaks in

the energy gain (ω f ≈ 1.1 and 1.8), which are associated to higher azimuthal wavenumbers

(namely m = 2 and 3) in a similar fashion to the linear case, where higher wavenumbers are

excited at higher frequencies. These peaks are no longer present when the forcing amplitude

and, consequently, nonlinear effects, are increased. In the high frequency region, GDN S does

finally not depend significantly on the forcing amplitude, because the amplification is not

strong enough to trigger significant nonlinear saturation processes. In summary, when aζ

increases, the nonlinear saturation is more pronounced in the frequency band which is the

most amplified according to linear analysis. The same phenomenon has been observed in

Mantič-Lugo et al. (2015). Observe that the most non-linearly amplified frequency is ω f ≈ 0.50

which correspond to a single helix perturbation, as will be discussed in figure 2.13.
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E(ωf ,m)

E(ωf ,m)

E(ωf ,m)
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Figure 2.12: Linear (a) and nonlinear (b-c-d) mode selection. The horizontal bars depict in
grey scale the normalized energies, E(ω f ,m), of the azimuthal Fourier components of the
response. In (a) the E (ω f ,m) of the linear optimal response are shown. In the same fashion (b),
(c) and (d) represent the normalized energies of the nonlinear responses computed through
DNS for aζ = 0.01 in (b), 0.05 in (c) and 0.1 in (d).
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2.6.2 Nonlinear mode selection

Mode selection in swirling flows denotes the dominant helical symmetry of the response

which resonates at a given forcing frequency. By forcing randomly in space in our numerical

experiment, a competition is set-up between the modes which are convected and amplified

in the wake until nonlinear saturation occurs. In order to assess whether the linear mode

selection holds in the nonlinear case, the dominant azimuthal mode appearing in the full

non-linear response has been computed as a function of the forcing frequency. Specifically, the

axial vorticity at a certain downstream section, Ωx (r,θ, x = 30, t ;ω f ), has been decomposed

into Fourier series. The obtained Fourier components have been integrated in the radial

direction and time averaged, according to eq. (2.26):

C (ω f ,m) = 1

2π

∫Rc

0

∫π

−π
Ωx (r,θ, t ;ω f )ei mθdθdr , (2.26)

where Rc is an arbitrary radial distance set here equal to 2, and the overline denotes time

averaging. The modulus of C (ω f ,m) is a measure of the energy of the corresponding Fourier

mode and E(ω f ,m) = |C (ω f ,m)|/∑m |C (ω f ,m)| are the normalized energies. Figure 2.12(a)

depicts E(ω f ,m) in the case of linear optimal response, where the horizontal bars show the

intensity of the various azimuthal components as a function of ω f . The stair-like graph reflects

that a change in forcing frequency induces a change in the most energetic mode, as already

shown in figure 2.7.

In order to investigate the role of non-linearity on the mode selection, the normalized

energies, E(ω f ,m) are reported in figure 2.12 for three forcing amplitudes: aζ = 0.01 in (b),

0.05 in (c) and 0.1 in (d). It results that the dominant azimuthal Fourier mode resonating at

frequency ω f is maintained when the amplitude forcing increases and generally corresponds

to the one of linear stability mode selection. As typical in non-linear systems, higher harmonics

are excited, for instance at ω f ≈ 1.15, where m = 2 is the most energetic component, m = 4 is

also present. In the same way for ω f ≈ 2 the second harmonic m = 6 is superimposed to the

fundamental m = 3. However when increasing the amplitude forcing the mode selection is

less sharp and the energy more distributed among the different harmonics.

In particular, the strong competition between neighboring helical modes, m and m +
1, generally leads to a forcing on the component m = 1 through the quadratic nonlinear

term. Thus, the staircase structure of the optimal gains shown in figure 2.12(a), through the

competition of consecutive modes, yields an intense m = 1 response at various frequencies,

as is particularly visible in figure 2.12(b) and (c). As a consequence, due to the symmetry

properties of the displacement mode, m = 1, the response meanders around the centerline in

a frequency band which is much broader than the one of linear amplification of m = 1.

In figure 2.13 isocontours of the axial vorticity of the response are reported as a function

of the forcing frequency, ω f , and amplitude, aζ. Each row corresponds to a different forcing

frequency: ω f = 0.50, 1.20, 2.20, 3.60, 4.60 and 5.00. In the first column the axial vorticity of

the linear optimal response is shown. While in the following columns, the nonlinear responses

with respect to the mean flow U(t)−U are considered, namely aζ = 0.01 in the second, 0.05

48



2.7. Conclusions

in the third and 0.1 in the last column. Although the nonlinear response is given by the

cooperation of several Fourier components, as depicted in figure 2.12, the dominant helical

shape corresponds to the one predicted by linear analysis. Interestingly, in the case of very

intense amplitude of the forcing strong nonlinear interactions are seen in the frequency region

ω f ≈ 1.20 with competition among double-and triple helical responses, as shown in figures

2.12(d) and 2.13.

2.7 Conclusions

In this work the response to forcing of a trailing vortex has been investigated by non-linear

and linear analyses. At first the non-linear three-dimensional response of a prototype spatially

developing Batchelor vortex has been determined by directly simulating the effect of an in-

let forcing harmonic in time and random in space. We observed that several helical modes

respond to the forcing, with the most resonating azimuthal wavenumber increasing with

frequency. Three forcing amplitude in the DNS were considered equal to 1%, 5%,and 10%

of the freestream velocity, which corresponds roughly to 5%, 25%,and 50% the maximum

azimuthal velocity at the inlet section. The corresponding flow perturbations, starting from

the inlet, grow in amplitude proceeding downstream until they undergo nonlinear saturation,

manifesting an helical symmetry.

It has been shown that the appearance of these helical shapes is related to the local stability

properties of the base-flow, which is everywhere locally convectively unstable. Moreover, since

the local stability properties of the flow vary along the streamwise direction, a WKB analysis

has been used for the first time to the case of swirling flows. Specifically an amplitude equation

is obtained in order to take into account the non-parallelism of the flow. The response to

forcing has also been computed by global resolvent, finding excellent agreement with the WKB

results.

Consequently, to further investigate whether the linear analysis is able to predict the mode

selection observed in the DNS, the optimal response to forcing has been performed, which

is more suitable to detect the most amplified mode by a random forcing. It results that the

helical symmetry of the most amplified mode, excited by the associated optimal forcing, in

general fits well with the geometrical structure of the response computed with DNS. This

shows that the linear resolvent analysis is applicable in this flow, and allows to explain the

mode-selection experienced in the non-linear flow.

On the other hand, the energy gains provided by the linear analysis significantly overesti-

mate the ones computed by DNS in all the frequency range. It results that the nonlinear gains

strongly depend on the forcing amplitudes in the frequency band which is the most amplified

according to linear analysis. In contrast, at higher frequency, where the linear amplification is

smaller, the nonlinear gains do not depend significantly on the forcing amplitude.

The preferred nonlinear frequency is ω f ≈ 0.50, which is significantly lower than the one

predicted through a of global resolvent analysis, ω f ≈ 1.20. Accordingly, the associated most

nonlinearly amplified perturbation to a spatially random inlet forcing is the single-helix. Due
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to its peculiar azimuthal symmetry, the single-helix mode is the most sensitive to disturbances

forcing the flow at the centerline and resonates in a broader frequency range due to nonlin-

ear interaction mechanism between neighboring modes, as discussed in the sections 2.4.2

and 2.6.2. These conclusions could give a possible interpretation of the vortex meandering

phenomenon which consists in random-like precession of the vortex core observed in trailing

vortex experiments, see Devenport et al. (1996); Jacquin et al. (2001). In particular, Roy &

Leweke (2008) carried out PIV measurements of a trailing vortex generated by a half-wing in

a water channel in nine configurations involving different free-stream velocities and angles

of attack. By carrying out a Proper Orthogonal Decomposition (POD) of the vorticity at a

given downstream section, they observed as the most energetic helical perturbation was the

single-helix displacement mode. These authors related their observations to the theoretical

result of transient growth in a parallel Gaussian vortex without axial flow, which was triggered

by the background noise in the flow or by turbulence in the wake of the wing. Here we may

only speculate that the precession of the vortex core could be the result of the convectively

amplification of the perturbations present in the incoming turbulent flow. In a first approxima-

tion, the turbulent fluctuations can be viewed as broad band perturbations that are amplified

by the flow in accordance with the mechanisms explained in the present work, where the

single-helix mode is the nonlinear preferred mode.
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Figure 2.13: In the first column isocontours of the axial vorticity of the linear optimal
response at the streamwise position x = 30, are shown as a function of the forcing fre-
quency, ω f . Similarly, isocontours of the nonlinear responses obtained through DNS with
aζ = 0.01, 0.05 and 0.1, are reported in the succesive columns.
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2.8 Appendix: WKB formulation for swirling flows

The linearized Navier-Stokes equations on a 3D axisymmetric base-flow, (Ur ,Uθ,Ux ), in cylin-

drical coordinates read:

∂ur

∂t
+Γur +ur

∂Ur

∂r
+ux

∂Ur

∂x
−2Ωuθ =−∂p

∂r
+ 1

Re

[(
Δ− 1

r 2

)
ur − 2

r 2

∂uθ

∂θ

]
,

∂uθ

∂t
+Γuθ+ur

∂Uθ

∂r
+ux

∂Uθ

∂x
+Ωur +Ur

uθ

r
=−1

r

∂p

∂θ
+ 1

Re

[(
Δ− 1

r 2

)
uθ+

2

r 2

∂ur

∂θ

]
,

∂ux

∂t
+Γux +ur

∂Ux

∂r
+ux

∂Ux

∂x
=−∂p

∂x
+ 1

Re
Δux ,

1

r

∂r ur

∂r
+ 1

r

∂uθ

∂θ
+ ∂ux

∂x
= 0,

(2.27)

where (ur ,uθ,ux ) are the velocity components of the perturbation, Ω is the angular velocity of

the base-flow and the convective and laplacian operators are defined as:

Γ=Ur
∂

∂r
+Ω

∂

∂θ
+Ux

∂

∂x
,

Δ= 1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r 2

∂2

∂θ2 + ∂2

∂x2 .
(2.28)

As usual in multiple scales, two spatial scales are introduced, a fast one, x, and a slow one,

X = εx. The base-flow depends only on X , and from the continuity equation:

1

r

∂rUr

∂r
+ ∂Ux

∂x
= 0 ⇒ 1

r

∂rUr

∂r
+ε

∂Ux

∂X
= 0 ⇒Ur = εU ′

r ⇒
1

r

∂rU ′
r

∂r
+ ∂Ux

∂X
= 0. (2.29)

Let consider the following normal modes expansion for the perturbation:

u(r,θ, X ; t ) = û(r, X )exp

[
i

(
1

ε

∫X

0
k(X ′,ω f )d X ′ +mθ−ω f t

)]
. (2.30)

By injecting the transformations (2.31) in equations (2.27), the linearized Navier-Stokes on

a 3D axisymmetric weakly non-parallel base-flow equations (2.32) are obtained:

∂

∂t
→−iω f

∂

∂θ
→ i m

∂

∂x
→ i k +ε

∂

∂X

∂2

∂x2 →−k2 +εi

(
k

∂

∂X
+ ∂k

∂X

)
+ε2 ∂2

∂X 2 . (2.31)

52



2.8. Appendix: WKB formulation for swirling flows

− iω f ur +Γm,k ur −2Ωuθ+ε

(
Ux

∂

∂X
+U ′

r
∂

∂r

)
ur +ε

∂U ′
r

∂r
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− ∂p

∂r
+ 1
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1

r 2

)
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r 2 uθ+εi

(
k

∂

∂X
+ ∂k
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)
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2ur
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]
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2Ω+ ∂Ω
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r
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Ux

∂
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1
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(
k

∂
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+ ∂k
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]
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∂Ux

∂X
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,

1

r
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∂r
+ i m

r
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∂ux
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(2.32)

Where Γm,k and Δm,k are the convective and laplacian operators for a parallel flow:

Γm,k = i mΩ+ i kUx ,

Δm,k = 1

r

∂

∂r

(
r
∂

∂r

)
− m2

r 2 −k2.
(2.33)

Considering now the asymptotic expansion:

û(r, X ) ∼ A(X )û(1)(r, X )+εû(2)(r, X )+ . . . (2.34)

At zero order in ε the local stability problem is retrieved:

ε0 L[û(1)] = 0, (2.35)

where the operator L contains the linearized Navier-Stokes equation on a parallel base flow

Uθ(r ), Ux (r ):

− iω f ur +Γm,k ur −2Ωuθ =−∂p

∂r
+ 1

Re

[(
Δm,k −

1

r 2

)
ur − 2i muθ

r 2

]
,

− iω f uθ+Γm,k uθ+ur
∂Uθ

∂r
+Ωur =− i mp

r
+ 1

Re

[(
Δm,k −

1

r 2

)
uθ+

2i mur

r 2

]
,

− iω f ux +Γm,k ux +ur
∂Ux

∂r
=−i kp + 1

Re
Δm,k ux ,

1

r

∂r ur

∂r
+ i muθ

r
+ i kux = 0.

(2.36)

At a given ω f the spatial branches q(k, X ′) are the solutions of equation (2.36).
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At first order in ε we get:

ε1 L[û(2)] =Q[Aû(1)]. (2.37)

Hence, the operator Q can be split in two parts:

Q[Aû(1)] = R[û(1)]
dA

dX
+S[û(1)]A, (2.38)

where R and S are defined as:

R[û(1)] =

⎡⎢⎢⎢⎢⎣
−Ux + i k

Re 0 0 0

0 −Ux + i k
Re 0 0
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0 0 −I 0
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⎛⎜⎜⎜⎜⎝

û(1)
r

û(1)
θ

û(1)
x
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r
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with:

C (Ux ,U ′
r ,k) =−Ux

∂

∂X
−U ′

r
∂

∂r
+ 1

Re

(
i k

∂

∂X
+ i

∂k

∂X

)
. (2.40)

In order to have solutions of the inhomogeneus equation L[û(2)] = Q[Aû(1)], the forcing

term Q should be in the image of the operator L. This means that Q should be orthogonal

to the corresponding adjoint eigenfunction ũ of the adjoint operator L̃w with respect to the

defined inner product, see Huerre & Rossi (1998):∫∞

0
R[û(1)]ũw(r )dr︸ ︷︷ ︸

M(X)

dA

dX
+
∫∞

0
S[û(1)]ũw(r )dr︸ ︷︷ ︸

N(X)

A

=
∫∞

0
L[û(2)]ũw(r )dr =

∫∞

0
û(2)L̃w [ũ]w(r )dr = 0,

(2.41)

where w(r ) is the weight of the scalar product, yielding to the amplitude equation:

M(X )
dA

dX
+N (X )A = 0. (2.42)

Thus at first order the response is given by:

u(r, x) ∼ A(x)û(r, x)exp

(∫x

0
−ki (x ′)d x ′

)
exp

[
i

(∫x

0
kr (x ′)d x ′ +mθ−ωt

)]
, (2.43)

where A(x) is the solution of equation (2.42).
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Figure 2.14: (a) Streamwise and (b) azimuthal velocity components of the base flow at x = 30
computed with rmax = 10 (black line) and rmax = 20 (red line). The corresponding spatial
growth rate, within the same streamwise position, are showed in (c).

2.8.1 WKB formulation for volume forcing

In the case of volume forcing the following first order term is included in the linearized

Navier-Stokes equation (2.27):

f(r, x) ∼ εF (x)û(r, x)exp

(∫x

0
−ki (x ′)d x ′

)
exp

[
i

(∫x

0
kr (x ′)d x ′ +mθ−ωt

)]
. (2.44)

As for the signaling problem the response is expressed as in equation (2.43). Consequently at

zero order the local spatial problem of equation (2.35) is retrieved. The forcing term appears

only at first order in equation (2.45):

L[û(2)]+F (X )û(1) = R[û(1)]
dA(X )

dX
+S[û(1)]A(X ). (2.45)

By projecting on the adjoint mode a non-homogeneus amplitude equation is now obtained:∫∞

0
R[û(1)]ũw(r )dr︸ ︷︷ ︸

M(X)

dA

dX
+
∫∞

0
S[û(1)]ũw(r )dr︸ ︷︷ ︸

N(X)

A =
∫∞

0
û(1)ũw(r )dr︸ ︷︷ ︸

H(X)

F. (2.46)

where H(X ) is a diagonal matrix defined as Hi i =< ũ(xi ), û(1)(xi ) >. If the adjoint modes are

normalized by ũ/(< ũ, û(1) >W )H , H(X ) corresponds to the identity matrix. Of course the

results are not affected by the choice of the normalization of the adjoint field.

2.9 Appendix: Sensitivity to radial extension of the domain

The very good agreement between WKB and global resolvent analysis discussed in section 2.4.2

represents a significant convergence test since both the theoretical approach, the numerical

method and the grids are different.

We show here the independence of the results from the radial extension of the domain.
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Chapter 2. Mode selection in trailing vortices

Figure 2.15: In (a) the global gains of the first five helical responses excited by forcing at the
inlet with the local direct mode computed by WKB analysis are shown. Similarly, the optimal
gains for inlet forcing computed through global resolvent are reported in (b).

The results for rmax = 10 and rmax = 20 are depicted in this section by black and red line,

respectively. In figure 2.14 the (a) axial and (b) azimuthal velocity profiles of the base flow at

x = 30 reveal the null influence of the radial extension of the domain and of the free-stress

constraint at the boundary. The corresponding spatial gains, −ki (x = 30), are reported in (c)

for the two domain size. Similar results are found for the other streamwise positions. As a

consequence, also the global gains carried out with WKB approach result insensitive to the

radial domain extension, see figure 2.15(a). In addition, the optimal gains to inlet forcing

are reported in figure 2.15(b). Similar independence on the radial extension of the domain

is found for the case of volume forcing. Since in both WKB and global resolvent analyses the

baseflow is used, figure 2.15 represents a further validation test for the baseflow.

56



3 Hub vortex instability

3.1 Linear stability analysis of wind turbine wakes performed on wind

tunnel measurements
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Wind tunnel measurements were performed for the wake produced by a three-bladed wind

turbine immersed in uniform flow. These tests show the presence of a vorticity structure in

the near wake region mainly oriented along the streamwise direction, which is denoted as hub

vortex. The hub vortex is characterized by oscillations with frequencies lower than the one

connected to the rotational velocity of the rotor, which have been ascribed to wake meandering

by previous works. This phenomenon consists in transversal oscillations of the wind turbine

wake, which might be excited by the vortex shedding from the rotor disc acting as a bluff body.

In this work temporal and spatial linear stability analyses of a wind turbine wake are performed

on a base flow obtained through time-averaged wind tunnel velocity measurements. This

study shows that the low-frequency spectral component detected experimentally matches the

most amplified frequency of the counter-winding single-helix mode downstream of the wind

turbine. Then, simultaneous hot-wire measurements confirm the presence of a helicoidal

unstable mode of the hub vortex with a streamwise wavenumber roughly equal to the one

predicted from the linear stability analysis.



Chapter 3. Hub vortex instability

3.1.1 Introduction

Wind turbine blade rotation produces a wake, which is the result of complex dynamics and

interactions between different vorticity structures. The near wake is dominated by vortex

roll-up, which is strongly dependent on blade characteristics; its characterization is funda-

mental for optimization of rotor aerodynamics, to analyse vortex induced vibrations on blade

structure and to reduce noise production typically connected to the shedding of the tip vor-

tices. Conversely, in the far-wake concentrated vorticity structures are no longer observed

and investigations are mainly focused on wake recovery and small-scale turbulent structures.

Characterization of the far wake is fundamental for wind farm design and for evaluation

of fatigue loads on downstream turbines. The connection between the vorticity structure

formation in the near wake and the turbulence decay in the far wake is still an open question,

as highlighted in Sørensen (2011).

The near wake of a wind turbine is characterized by the presence of counter-rotating he-

licoidal vorticity pairs shed from the tip and root of each blade. Furthermore, a system of

trailing vortices is produced as a consequence of the varying circulation distribution along

the blade span, see Sherry et al. (2010). Helicoidal tip-vortices shed from a rotor have been

characterized through different experimental works, e.g. PIV measurements in Whale et al.

(1996), Massouh & Dobrev (2007), or through hot-wire anemometry in Chamorro & Porté-Agel

(2009, 2010) and Zhang et al. (2012). However, the only experimental work dealing with a

detailed characterization of wind turbine near-wake vortex system, i.e. helicoidal tip and root

vortices and trailing vortices, is carried out in Sherry et al. (2010), where PIV measurements

in a water tunnel are performed. Tip and root vortices are simultaneously shed from each

blade, whereas at a very early stage trailing vortices are also detected. Tip vortices are rapidly

convected downstream because located in a wake region with higher streamwise velocity with

respect to the hub region, which is characterized by a strong velocity deficit. The helicoidal

root-vortices practically surround the wind turbine nacelle with a relatively small radius of

curvature. This geometric feature and a reduced streamwise distance between adjacent vortex

helices promote a faster diffusion of the root vortices with respect to the tip vortices. In Sherry

et al. (2010) root vortices are completely diffused at a downstream distance smaller than 0.5

rotor diameters (d). Furthermore, interaction of root vortices with the nacelle boundary layer

and wind turbine stem can further anticipate their diffusion. Diffusion of both root and tip

vortices is found to be enhanced by increasing wind turbine tip speed ratio, which is due to

the decreased helical pitch of the vortices, thus to the increased mutual induction between

adjacent vortices (Widnall, 1972).

Root and tip vortices have been also investigated in the near-wake through Direct Numer-

ical Simulations (DNS) of the Navier-Stokes equations in Ivanell et al. (2009). However, the

main shortcoming of the numerical simulations of wind turbines consists in not resolving the

boundary layer flow over the blades and their induced loads are simulated through the actua-

tor disc or actuator line models; thus, near wake vorticity structures cannot be characterized

with a very high accuracy (Porté-Agel et al., 2011).

By moving downstream root vortices are rapidly diffused, whereas a system of helicoidal
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3.1. Linear stability analysis of wind turbine wakes

tip-vortices is still present; indeed, their signature in the velocity signals has been clearly de-

tected through both numerical simulations, see e.g. Lu & Porté-Agel (2011), and experimental

investigations, like in Medici & Alfredsson (2006), Chamorro & Porté-Agel (2009, 2010) and

Zhang et al. (2012).

Regarding the central part of the wake, root vortices are found to rapidly diffuse in proximity

of the wind turbine hub; however, a vorticity structure mainly oriented along the streamwise

direction, which is denoted as hub vortex, is still present several diameters downstream. The

hub vortex is clearly visualized in the wake of a marine propeller by Felli et al. (2011); regarding

wind turbine wakes, the hub vortex is detected in Schito (2012) through smoke visualizations.

With the PIV measurements carried out in Zhang et al. (2012) the hub vortex is observed up to

a downstream distance of 1.5 d .

Further downstream several instabilities of wind turbine wakes are observed, see e.g. Medici

& Alfredsson (2008) and Felli et al. (2011), which can affect the wake recovery and increase

fatigue loads for downstream wind turbines within a wind farm. In the so-called transitional

region, the helicoidal tip-vortices show an instability that is mainly driven by the mutual

inductance between adjacent spirals. With the theoretical instability model of a helical vor-

tex filament proposed by Widnall (1972), three instability modes are predicted, which are a

short-wave instability, a long-wave instability and a mutual-inductance instability. In Felli

et al. (2011), through water tunnel visualizations of a marine propeller wake, all these three

instability modes are found to be superimposed.

In Joukowski (1912) a wake produced from a blade with a constant circulation along the

blade span is considered, which is composed of helicoidal tip-vortices and root vortices. This

vortex system is found to be unconditionally unstable, but it becomes stable if the trailing

vortex sheet is also considered. In Okulov & Sørensen (2007) a linear stability analysis of

helicoidal tip-vortices is performed also including a vorticity field mimicking the presence of

the hub vortex. These authors found that the stability of the tip vortices is strongly affected

by the radial extent of the hub vortex and by its vorticity distribution. Furthermore, it is

shown that the interaction between the hub vortex and the helicoidal tip-vortices stabilizes

the latter, otherwise they are always unstable and not affected by the number of blades and

by the characteristics of the vorticity structures (see e.g. Levy & Forsdyke (1928), Widnall

(1972), Gupta & Loewy (1974), Okulov (2004), Okulov & Sørensen (2007)). In Ivanell et al. (2010)

stability analysis of helicoidal tip-vortices is carried out with Large Eddy simulations (LES) of

the Navier-Stokes equations using the actuator line model, and introducing small harmonic

perturbations close to the blade tips. They found dispersive instabilities at several specific

frequencies and vortex pairing was also detected. Typically helicoidal tip-vortices diffuse

faster if immersed in a boundary layer flow, see e.g. Porté-Agel et al. (2011) and Lu & Porté-Agel

(2011). In Zhang et al. (2012) the helicoidal tip-vortices are detected up to a distance of 2 d .

Downstream with respect to the destabilization of the helicoidal tip-vortices, the hub vortex

is also found to become unstable by Felli et al. (2011). By proceeding further downstream,

the hub vortex starts oscillating sinusoidally, according to a spiral geometry, until breakdown

occurs. This oscillation occurs with a frequency equal to the one of the rotor and is found to be

independent on the number of blades. These authors hypothesize that the hub vortex instabil-
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ity can be excited by the perturbations produced by the instability of the helicoidal tip-vortices.

A low-frequency instability is also detected from wind tunnel tests of wind turbine models, see

e.g. Medici & Alfredsson (2006, 2008), Chamorro & Porté-Agel (2010) and Zhang et al. (2012).

In Medici & Alfredsson (2008) this low-frequency instability, denoted as wake meandering or

wandering, is equal to 0.29 times the hub rotational frequency and is ascribed to transversal

oscillations of the wind turbine wake, which may be excited by the vortex shedding from the

rotor disc in a similar way as for bluff bodies. This low frequency is found to decrease with

increasing tip speed ratio of the turbine and with increasing thrust coefficient. In Chamorro

& Porté-Agel (2010) and Zhang et al. (2012) the low-spectral component connected to wake

meandering is equal to 0.34 times the hub rotational frequency and it can be detected up to a

downstream distance of 1.5 d .

Further downstream, the hub vortex breakdown occurs, as documented in Klein et al. (1995)

and Ortega et al. (2003). In Sarpkaya (1971) and Felli et al. (2011) the hub vortex breakdown is

found to occur as a double helix with the same rotation sense of the rotor.

In the far wake the helicoidal tip-vortices and the hub vortex are completely diffused and

the streamwise velocity field shows a smooth quasi gaussian-like shape, with the peak of the

streamwise velocity deficit located in correspondence of the hub height. Due to this wake

feature several analytical wake models are proposed for the far wake, see e.g. Burton et al.

(2001), which are mainly used for wind farm design. For cases of a wind turbine immersed

in the boundary layer, the mean streamwise velocity component is skewed due to the on-

coming boundary layer flow, but it recovers to an axisymmetric shape if the oncoming wind

is subtracted, as shown in Chamorro & Porté-Agel (2009). By moving downstream the wake

gradually recovers with increasing wake width and decreasing velocity deficit.

In the present work linear stability analysis of wind turbine wakes is performed by using

velocity measurements averaged in time as a base flow, which were carried out in a wind

tunnel for a down-scaled wind turbine model. The main goal of this work is the physical

characterization of the hub vortex low-frequency instability observed experimentally in the

near wake. Both temporal and spatial linear stability analyses were performed; moreover,

the Gaster transformation was also considered in order to produce a first approximation of

the results then obtained through the spatial stability analysis. The stability properties of

the experimental mean flow have been investigated in details, and the results are used to

reconstruct the mode associated with the instability of the hub vortex. The reconstructed

mode has been successively assessed through further dedicated wind tunnel tests.

The work is organized as follows. Wind tunnel velocity measurements of wakes produced by

a down-scaled wind turbine model invested by a uniform flow are described in §3.1.2. The

numerical formulation of the linear stability analysis is presented in §3.1.3, while results of the

temporal stability analysis are reported in §3.1.4. The spatial linear stability analysis is then

described in §3.1.5. Concluding, final remarks are presented in §3.1.6.
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3.1. Linear stability analysis of wind turbine wakes

Figure 3.1: Sketch of the experimental setup.

3.1.2 Wind tunnel measurements of wind turbine wakes

Set-up

Velocity measurements of wind turbine wakes were performed in the boundary layer wind

tunnel of the Wind Engineering and Renewable Energy Laboratory (WIRE) of the École Poly-

technique Fédérale de Lausanne (EPFL), Switzerland. The facility is an open loop wind tunnel

with an inlet providing a contraction with 4:1 area ratio. Several turbulence devices consisting

of coarse meshes and honeycomb flow straighteners are used to increase flow quality. The

wind tunnel consists of three different test sections; the one used for this work is the first

one downstream to the inlet, which has a length of 28 m, width of 2.5 m and height of 2 m.

This testing chamber provides an adjusting ceiling in order to eventually change pressure

gradient along the streamwise direction; for this work the pressure gradient was negligible

(dCp /dx ≈−0.1% m−1). The flow is produced by a single fan with a power of 90 kW producing

a maximum velocity of about 7 m/s with a minimum turbulence level of 2%. A three degree of

freedom traversing system allows probes to be positioned with an accuracy higher than 0.1

mm.

The used wind turbine down-scaled model is a 3-bladed GWS/EP-6030x3 counter-clockwise.

The rotor, with a diameter, d , of 152 mm, is connected to a DC motor with a diameter of 10

mm. The wind turbine model is mounted with a stem of 127 mm height, which is in turn

placed on a vertical support with a NACA 0018 cross-section and height of 500 mm. This

set-up enables placing the turbine outside of the boundary layer, thus allowing the turbine

to be invested by a uniform flow. A sketch of the experimental setup is reported in figure 3.1.

Typically for the tests considered here the tip speed ratio of the turbine (TSR), which is the

ratio between the speed of the blade tip and the oncoming velocity at hub height, Uhub , is 4.7.

The turbine rotational velocity was monitored through a laser tachometer manufactured by

Monarch with an accuracy of about 10 RPM. For these tests the mean rotational frequency

was 57 Hz, with average fluctuations of 2.7% of the mean value. The velocity at hub height is

5.8 m/s and the turbulence level is equal to 7%, which was obtained by removing one of the
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three turbulence screens located in the wind tunnel relaxation chamber. A Reynolds number

of 60800 is obtained by considering Uhub as reference velocity, and the rotor diameter, d , as

reference length.

Wind tunnel flow velocity was measured through two Pitot static tubes located in proximity

of the entrance and end of the testing chamber; the Pitot tubes were in turn connected to two

transducers SETRA 239. Atmospheric pressure into the testing chamber was measured with

a transducer SETRA 276, while the static temperature with a Pt100 Eliwell SN206000. All the

analog signals were acquired with three NI PXI-6143 data acquisition systems.

Measurements of three components of the velocity were performed through a customized

Cobra probe produced by Turbulent Flow Instrumentation, which is a four-hole pressure-

probe. This probe, with an external diameter of 1.5 mm, can measure velocity fluctuations

characterized by frequencies lower than 300 Hz. The maximum admissible angle between the

probe stem and the wind direction is about 45◦. This miniaturized version of the Cobra probe

allows obtaining an accuracy higher than 2% in the velocity module and about 1◦ for pitch

and yaw. Cobra measurements were typically carried out with a sampling frequency of 5 kHz

and a number of samples equal to 219.

Wake measurements were also performed through hot-wire anemometers, both single-

component (DANTEC 55P11) or cross-wire probes (DANTEC 55P61). For the simultaneous

hot-wire measurements presented in §3.1.5, hot-wire probes with right-angled prongs and

with the sensor perpendicular to the probe axis were used (DANTEC 55P14). These probes

were introduced from the wake side in order to reduce intrusiveness of the measuring system.

The hot-wire anemometers were connected to an A.A. Lab Systems AN-1003. Their calibration

was performed by setting the probes on a StreamLine Pro Automatic Calibrator manufactured

by Dantec, which guarantees an accuracy of the flow higher than 1%. Hot-wire measurements

were typically carried out with a sampling frequency of 20 kHz and a number of samples

equal to 221. Statistics of the hot-wire measurements were generally in good agreement with

the ones performed with the Cobra probe (see figure 3.2); however, their higher frequency

resolution allowed the performance of more accurate spectral analyses.

The used reference frame has its origin placed just behind the hub of the wind turbine,

x-axis corresponds to the streamwise direction, positive by pointing downstream. The z-axis

is along the vertical direction, positive from the bottom towards the top, while y-axis is along

the spanwise direction oriented in a way to produce a right-handed Cartesian coordinate

system.

Velocity measurements were performed from a downstream distance of 0.125 d up to 20 d .

For each considered downstream location, 2D maps were measured with an area of 1.5 d x 1.5

d with a spatial spacing between adjacent points of about 0.025 d . Moreover, measurements

over the horizontal and vertical planes passing through the hub location were performed with

a higher resolution along the streamwise direction.
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Velocity measurements

As already proved from previous experimental and numerical works (Alfredsson & Dahlberg,

1979; Vermeer et al., 2003; Medici & Alfredsson, 2006) and confirmed from the present ex-

perimental campaign, the wake velocity field produced from a wind turbine immersed in a

uniform flow can be considered to be axisymmetric with respect to the axis passing through

the hub location and directed along the oncoming wind direction, i.e. the x-axis. 2D mea-

surements performed over transversal planes located at different downstream locations, not

reported here for the sake of brevity, confirmed that velocity profiles are invariant for different

azimuthal orientations of the traverses. A small wake produced by the wind turbine stem is de-

tected in the very near-wake; however, it is completely recovered at the downstream locations

considered for this investigation. Moreover, the radial velocity is also found to be practically

negligible , as shown in figure 3.2(a). Therefore, the wake flow can be completely characterized

through the axial and azimuthal velocities as a function of the radial and streamwise positions.

In figure 3.2 the radial velocity, Ur , the mean azimuthal velocity, Uθ, the non-dimensional

axial vorticity, ωx , and the axial velocity, Ux , are shown as a function of the radial position

and for several downstream locations considered for the linear stability analysis. For the

sake of brevity, only the mean velocity obtained through the Cobra probe measurements

is presented; however, the one obtained from the two component hot-wire anemometry is

practically equal, i.e with differences lower than 1% for each location, as shown in figure 3.2

for the measurements carried out at the downstream location x/d = 0.5.

In figure 3.2(b) significant peaks of the azimuthal velocity are detected for radial positions

r /d ≈ 0.15, which are connected to the rotational velocity induced by the hub vortex, which

is a vorticity structure mainly oriented along the streamwise direction. Indeed, a dominant

peak of the axial vorticity is typically detected in figure 3.2(c) in correspondence of the wake

centre, and it is shielded by a ring-like negative vorticity structure, which is the result of the

time-averaging of the helicoidal tip-vortices. The hub vortex produced from a rotor has been

already detected in the near wake by several experimental works, e.g. Felli et al. (2011) and

Zhang et al. (2012). The azimuthal velocity connected to the hub vortex and its related axial

vorticity are rapidly reduced by moving downstream and the hub vortex can be considered

as completely diffused for downstream distances larger than 4 d . Secondary peaks of the

azimuthal velocity are also observed for radial positions approximately equal to r /d ≈ 0.5,

which are related to the presence of the helicoidal tip-vortices. Also the azimuthal velocity

connected to the tip vortices is decreased by moving downstream and at x/d = 4 it is practically

diffused.

In figure 3.2(d) the axial velocity field shows a significant deficit in correspondence of the

wake centre, which gradually recovers by moving downstream, while wake width increases. A

velocity deficit connected to the presence of the helicoidal tip-vortices is also observed in the

near wake at r /d ≈ 0.5, but it disappears as the helicoidal tip-vortices diffuse.

Spectral analysis of the velocity signals acquired in the wind turbine wake clearly shows

the presence of two main spectral components, as presented in figure 3.3: a low frequency,

which is typically detected in correspondence of the wake core within a radial distance of
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Figure 3.2: Mean velocity field of the wind turbine wake: (a) radial velocity, Ur ; (b) azimuthal
velocity, Uθ; (c) non-dimensional axial vorticity, ωx ; (d) axial velocity, Ux . These data are
obtained with the Cobra probe, but the ones x/d = 0.5 HW A with hot-wire anemometry.

about r /d ≈ 0.2, and a high frequency related to the shedding of the tip vortices. In the present

investigation the high frequency connected to the tip vortices shedding is 171 Hz, which is

equal to three times the rotational frequency of the turbine (a three-bladed model was tested).

On the other hand, the spectral energy detected in the central part of the wake has a frequency

about 20 Hz. This frequency, which could be connected to the hub vortex oscillations, is

equal to 0.34 times the hub rotational frequency, which is in strong agreement with results of

previous works, like e.g. Medici & Alfredsson (2008), Chamorro & Porté-Agel (2010) and Zhang

et al. (2012). This low-frequency spectral contribution corresponds to a non-dimensional

frequency of ω= 2π f d/Uhub = 3.18. In figure 3.4 the average power spectral density obtained

from 2D measurements performed in the wake core within a radial distance of r /d = 0.2 is

reported for several downstream locations. It is shown that the spectral energy connected to

this low-frequency component increases by moving downstream up to x/d = 1, then further

downstream its energy starts decreasing.

Tests were also performed by setting different values of the tip speed ratio (TSR). Spectral

analysis of the velocity signals, briefly summarized in table 3.1, shows that both the frequency

connected to the helicoidal tip-vortices and the one related to the hub vortex vary roughly

linearly with the rotational frequency of the rotor, fhub . This result indicates that dynamics

of these vorticity structures are dependent on the wake swirl, and confirms an outcome pre-

sented in Felli et al. (2011) where an invariant hub vortex frequency was detected by changing

the tip-vortex frequency by mean of a different number of rotor blades.
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Figure 3.3: Fourier power spectral density of the velocity signals acquired at x/d = 0.5, z/d = 0,
and different radial locations.
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Figure 3.4: Average power spectral density obtained from 2D velocity measurements per-
formed within the wake core with a radius of r /d = 0.2, and evaluated for different downstream
locations.

C ase Uhub[m/s] T SR fhub[H z] ft i p vor ti ces[H z] fhub vor tex [H z]
1 5.8 7.6 92 276 31.5
2 5.8 5.3 65 195 21.5
3 5.8 4.7 57 171 20
4 5.8 3.2 39 118 17

Table 3.1: Spectral analysis for the tests performed with different TSR values.

3.1.3 Linear stability analysis: formulation of the numerical problem

In this section the classical local linear stability theory of shear flows is presented, which is

related to the development in space and time of infinitesimal perturbations on a given base

flow. The base flow is assumed to be quasi-parallel and slowly evolving along the streamwise

direction. Flow fluctuations are typically decomposed into elementary instability waves of
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axial and azimuthal wavenumbers k and m, respectively, and frequency ω. The perturbations

satisfy an ordinary differential equation of Orr-Sommerfeld type. Enforcement of appropriate

boundary conditions then leads to an eigenvalue problem, whereby eigenfunction solutions

for the perturbations exist only if k, m and ω satisfy a dispersion relation of the form:

D[k,m,ω] = 0. (3.1)

Temporal modes refer to cases where the complex frequency ω is determined as a function

of real wavenumbers k and m. Conversely, spatial branches are obtained by solving the

dispersion relation with complex wavenumbers k, whereas m and ω are real numbers.

The base flow used for the linear stability analysis was obtained by averaging in time the

above-mentioned wind tunnel velocity measurements, as done in Oberleithner et al. (2011)

for the study of breakdown of swirling jets. Although the mean flow does not represent an

equilibrium point for the system, accurate results can be obtained through a stability analysis,

as proved e.g. in Barkley (2006), Leontini et al. (2010) and Camarri et al. (2013). The relevance

of considering the stability of the time-averaged flow was assessed by Sipp & Lebedev (2007)

theoretically close to onset of instability. In presence of background turbulence, despite

the lack of a solid theoretical framework, stability analyses of mean flows were observed to

accurately compare with experimental observations by Monkewitz (1988) or Meliga et al.

(2009) for instance.

The wind turbine wake flow is practically axisymmetric and with a negligible radial velocity,

see §3.1.2. Moreover, according to the local nature of the present stability analysis, for each

section the flow is considered as invariant for translations along the x-axis. Let us consider

the base flow expressed in cylindrical coordinates:

U =

⎛⎜⎜⎜⎜⎝
Ur

Uθ

Ux

P

⎞⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
0

rΩ(r )

W (r )

P (r )

⎞⎟⎟⎟⎟⎠ (3.2)

where Ux is the streamwise velocity, Uθ is the azimuthal velocity, Ur the radial velocity and P

is the pressure field. The radial velocity, Ur , is identically null, while the azimuthal velocity,

Uθ, is proportional to the the angular velocity, Ω.

Accordingly to the linear stability analysis, the evolution of small perturbations can be

described by the Navier-Stokes equations linearized on the base flow. Let us consider the

normal modes expansion of the perturbation:

u(r,θ, x, t ) = û(r, t )ei (mθ+kx) (3.3)

where k is the axial wavenumber, m is the azimuthal wavenumber and i is the imaginary

unit. The expansion in normal modes imposes a helicoidal symmetry on the perturbation

allowing to investigate separately each Fourier component by solving the corresponding

monodimensional problem for each pair (k, m). The continuity equation and the momentum
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equations in cylindrical coordinates are the following ones:

1

r

∂(r ur )

∂r
+ i m

r
uθ+ i kux = 0(

∂

∂t
+Γm,k

)
ur −2Ωuθ =−∂p

∂r
+ 1

Re

(
Δm,k ur − ur

r 2 − 2i m

r 2 uθ

)
(
∂

∂t
+Γm,k

)
uθ+

(
r
∂Ω

∂r
+2Ω

)
ur =− i m

r
p + 1

Re

(
Δm,k uθ−

uθ

r 2 + 2i m

r 2 ur

)
(
∂

∂t
+Γm,k

)
ux + ∂W

∂r
ur =−i kp + 1

Re

(
Δm,k ux

)
(3.4)

where Γm,k and Δm,k are expressed as follows:

Γm,k (r ) = i mΩ(r )+ i kW (r )

Δm,k = 1

r

∂

∂r

(
r
∂

∂r

)
− m2

r 2 −k2
(3.5)

In order to solve numerically the equation system (3.4), a reduced formulation is obtained

by using the variable v = (ur ,uθ)T :

F (v) = L
∂v

∂t
+C v− 1

Re
Dv = 0 (3.6)

Where the operators are defined as follows:

L =
(

1 0

0 1

)
+b1bT

2

C =
(

Γm,k −2Ω

r ∂Ω
∂r +2Ω Γm,k

)
+b1Γm,k bT

2 −b1

(
∂W

∂r
,0

)

D =
(
Δm,k − 1

r 2 −2i m
r 2

2i m
r 2 Δm,k − 1

r 2

)
+b1Δm,k bT

2

bT
1 = 1

i k

(
∂

∂r
,

i m

r

)
bT

2 = 1

i k

(
∂

∂r
+ 1

r
,

i m

r

)

(3.7)

For the stability analysis, a code based on a Chebyshev spectral collocation method is used,

see Antkowiak (2005) for more details. The Gauss-Lobatto-Chebyshev collocation grid is

mapped into the infinite physical space through algebraic map r = Lζ/
√

1−ζ2 (Canuto et al.,

2007), where the parameter L is set in order to fix the second to last and the second point to

rmax and −rmax , respectively. Moreover, taking into account the parity of the functions in the

expression of the derivatives (Kerswell & Davey, 1996), and imposing the boundary conditions

at infinity, the equations are discretized in the finite domain ]0,rmax ]. The computational

sensitivity related to the number of collocation points, N , and the size of the physical domain
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was investigated, but these results are not reported here for the sake of brevity. The selected

settings with N = 120 and rmax = 50 are seen to provide the convergence of the most unstable

eigenvalue with a five-digit accuracy, which is deemed to be sufficient for the present purposes.

For the stability analysis the same Reynolds number of the experimental measurements was

used, i.e. 60800; indeed the used equations were made non-dimensional by using Uhub and d

as reference dimensions.

The experimental data were fitted with spline functions in order to produce an adequate

spatially resolved base flow for the stability analysis. Different fitting methods were tested,

which do not affect the results of the stability analysis.

3.1.4 Temporal stability analysis

Temporal stability analysis allows the investigation of the temporal evolution of disturbances

on a base-flow within a volume large enough to include the complete disturbance, see Schmid

& Henningson (2001). After a transient period the evolution of the perturbations is dominated

by the less damped mode, which is in the form e−iωt with ω ∈C. In particular if ωi = Im(ω) > 0

the corresponding mode is unstable with a growth rate equal to ωi , while ωr = Re(ω) is the

frequency related to the propagating harmonic mode (Lighthill, 1978). Considering harmonic

perturbations in time equation (3.6) becomes:

Fω(v) =−ωi Lv+C v− 1

Re
Dv = 0 (3.8)

In order to carry out the temporal stability analysis, equation (3.8) is integrated with k ∈ R,

m ∈ R and ω ∈ C. By considering normal mode expansion, as in (3.3), positive values of m

correspond to modes winding in the opposite direction with respect to the rotation inferred

by the hub vortex; see Gallaire & Chomaz (2003) for a more detailed discussion. For each

couple (k,m) solving equation (3.8) is equivalent to solve the following generalized eigenvalue

problem:

A(k)v =ωB(k)v (3.9)

where, referring to equation (3.8):

A(k) =C − 1

Re
D B(k) = i L (3.10)

The growth rates ωm,i (k) of the unstable modes calculated as a function of the axial wavenum-

ber, k, and different m are reported in figure 3.5. For the considered downstream location

x/d = 1, the modes are unstable for k ≤ 82 and for values of m up to 42. The maximum growth

rate connected to the most unstable mode is in good agreement with the value predicted

through the Leibovich-Stewartson instability criterion. The latter is a generalization of the

Rayleigh criterion and provides a necessary instability condition for a rotating inviscid vortex

with the presence of axial flow (Leibovich & Stewartson, 1983). As for the above-mentioned
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Figure 3.5: Growth rates (ωm,i ) of the unstable modes as a function of the axial wavenumber k
for the downstream location x/d = 1.
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Figure 3.6: Growth rate predicted through the Leibovich-Stewartson instability criterion for
the measurements carried out at x/d = 1.

criterion the vortex is unstable when the following sufficient condition is satisfied:

ω2
i =

2Uθ(r DUθ−Uθ)(U 2
θ

/r 2 − (DUθ)2 − (DUx )2)

(r DUθ−Uθ)2 + r 2(DUx )2 > 0 (3.11)

where D is the spatial first derivative along the radial direction. Moreover, when the inequal-

ity (3.11) is satisfied for a certain value of r , that relation provides the square of the growth rate

of the most unstable mode corresponding to an eigenfunction with a certain characteristic size,

r (see Gallaire & Chomaz (2003) for details). Figure 3.6 shows that the Leibovich-Stewartson

instability criterion, evaluated for the measurements carried out at x/d = 1, predicts instability

for every radial position with the highest values in proximity of the azimuthal velocity peak

connected to the hub vortex (see figure 3.2(a)). The growth rate of the most unstable mode

predicted through the Leibovich-Stewartson criterion is about 0.8, which confirms the result

obtained with the temporal stability analysis shown in figure 3.5. The main goal of the present

work is the characterization of the low-frequency spectral component detected through the

wind tunnel velocity measurements carried out into the core of the wind turbine wake, which
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is reasonable to interpret as the effect of an instability of the hub vortex. To this aim the growth

rate, ωi , is plotted as a function of the non-dimensional frequency, ωr in figures 3.7 and 3.8 for

the different analysed downstream locations. In these figures the non-dimensional frequency

related to the above-mentioned low-frequency instability is highlighted through a vertical

dashed line in correspondence of the value 3.18, which has been obtained from the spectral

analysis of the velocity signals (see figures 3.3 and 3.4).

Starting from the location x/d = 0.5, the selected unstable mode corresponding to the non-

dimensional frequency related to the hub vortex instability is m = 1, i.e. a counter-winding

single-helix mode. However, the unstable mode m = 1 is not the one with the highest growth

rate overall. Concerning the unstable high-frequency modes, diffusive contribution of the

turbulent fluctuations, which is neglected in the present stability analysis, is expected to signif-

icantly damp them, in particular as m increases, so as to change the picture given in figure 3.5.

Indeed, one among the simplest ways to take into account this effect in the stability analysis

might be the inclusion of an eddy viscosity turbulence model in equations (3.4). Assuming, in

the simplest form, to use a constant eddy viscosity, the adoption of such a model would be

equivalent to reduce the effective Reynolds number of the stability analysis and, in turn, this

would decrease the growth rate of the unstable modes depending on m; indeed, the viscous

terms scale as m2. This aspect, which is delicate and mentioned here only very briefly, is the

object of on-going investigations of the authors, and at present the provided interpretation is

confirmed by preliminary results. By moving downstream, the scenario remains practically

unchanged with a general reduction of the growth rate for all unstable modes. However, at

the downstream position of x/d = 2.5, the non-dimensional frequency corresponding to the

hub vortex instability starts selecting the mode m = 2, i.e. the counter-winding double-helix

mode. For the location x/d = 4 the mode m = 4 is selected. In order to provide a physical

interpretation of this stability analysis several factors should be considered: first, the growth

rates generally reduce by moving downstream, as shown in figure 3.9 for the mode m = 1.

Moreover, the hub vortex diffuses rapidly by moving downstream, as reported with the experi-

mental measurements in figure 3.2. Therefore, the unstable mode with m = 1 should dominate

because it is the mode selected through the hub vortex instability frequency (ωr = 3.18) in the

very near-wake, which is a wake region where the hub vortex has a significant vorticity.

The temporal analysis suggests that in the near wake the hub vortex is characterized by

a single-helix counter-winding instability, i.e. m = 1. Furthermore, by considering that ωr

is positive, the helicoidal unstable mode is rotating in the same direction of the hub vortex.

By moving downstream the hub vortex diffuses and unstable modes with higher values of m

could be selected, even with decreasing growth rates. This mode competition will be better

investigated in the following section through the spatial stability analysis.

3.1.5 Spatial stability analysis and characterization of the hub vortex instability

This section is devoted to the spatial stability analysis of disturbances generated at a fixed

position within a wind turbine wake and evolving downstream. In the temporal setting of

§3.1.4, the mode m = 1 could not be singled out, although it was seen to “resonate” well at
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Figure 3.7: Growth rate as a function of the non-dimensional frequency for downstream
locations from x/d = 0.5 up to x/d = 1.75. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

the frequency observed in the experiments. In order to better elucidate this mode selection,

a spatial stability analysis is more suitable, since it is adapted to convectively unstable flows

submitted to incoming noise. These flows are known to act as selective amplifiers. The weakly

non-parallel spatial stability theory is the preferred analysis tool to better understand this

selection.

Note however that a spatial stability analysis is only justified if the flow is convectively

unstable. We have therefore checked that the flow is not absolutely unstable for x/d > 0.5

where the present analysis applies. The presented measurements do not allow us to determine

the nature of the instability closer to the hub, where a backflow region could be expected.

We can therefore only speculate on a sufficiently extended pocket of absolutely unstable

flow in the very near wake region as the origin of the sharp frequency selection observed at
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Figure 3.8: Growth rate as a function of the non-dimensional frequency for downstream
locations from x/d = 2 up to x/d = 4. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

x/d = 0.5 and beyond, through the development of a self-sustained steep nonlinear global

mode (Chomaz (2005), Pier & Huerre (2001)). While it cannot elucidate the detailed origin of

the spectral signature, the spatial stability analysis of the convective region is perfectly valid: it

will be seen to be very useful to characterize the spatial structure of the mode.

The numerical formulation of the spatial stability analysis is analogous to the one of the

temporal analysis, see Eq. 3.8, with the exception that a complex streamwise wavenumber, k,

and a real frequency, ω, are now considered. Therefore, the spatial stability analysis consists

in a non-linear polynomial eigenvalue problem, as follows:

A0(ω)v+k A1(ω)v+k2 A2(ω)v+k3 A3(ω)v+k4 A4(ω)v = 0 (3.12)
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Figure 3.9: Growth rate as a function of the non-dimensional frequency for the mode m = 1 and
different downstream locations. The vertical dashed line corresponds to the non-dimensional
frequency measured experimentally and related to the hub vortex instability.

The opposite of imaginary part of k, −ki , is the spatial amplification rate, whereas its real part,

kr corresponds to the streamwise wavenumber of the travelling wave, whose frequency is

given by ω.

The solution of the equation (3.12) leads to a blow-up of spurious eigenvalues due to

numerical discretization, which makes difficult the detection of the right eigenvalue with a

physical significance. However, unstable waves propagating downstream are characterized

by a positive axial phase velocity, cφ =ω/kr , and a negative growth rate, ki . Thus, for positive

ω the eigenvalues of interest are located in the fourth quadrant, i.e. with kr > 0 and ki < 0.

To overcome issues related to the detection of the right eigenvalue between many spurious

ones, the solution of equation (3.12) is evaluated by searching the closest eigenvalue to the

one predicted through the Gaster transformation. The Gaster relation allows relating the

temporal growth rate to the spatial growth rate in the vicinity of marginal stability, see Gaster

(1962). In fact, the same dispersion relation is considered for the temporal analysis and spatial

analysis, but it is solved for different variables. On the neutral curves temporal and spatial

results are coincident, since ki = ωi = 0 and (k,ω) ∈ R. For small imaginary parts a Taylor

series expansion in the neighborhood of the neutral curves is used. The Gaster relation is the

following:

ω(T )
i =−cg k(S)

i (3.13)

stating that in the limit of small imaginary parts the temporal growth rate, ω(T )
i , and the spatial

growth rate, −k(S)
i , are related by the group velocity, cg . Therefore, an approximation of the

spatial instability results can be obtained from the the temporal analysis through the Gaster

transformation.

For the spatial stability analysis, growth rates −ki (ωr ,m) of the unstable spatial modes are

represented as a function of the non-dimensional frequency, ωr , for different m and down-
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stream locations. In figures 3.10 and 3.11 the dashed lines represent the results of the Gaster

approximation, whereas the solid lines correspond to the values −ki obtained from the spatial

stability analysis. For downstream locations x/d ≥ 1.75 the dashed and solid lines in figures

3.10 and 3.11 are practically coincident; in fact, the Gaster transformation and the spatial

stability analysis produce roughly the same results, despite the large values of the spatial

growth rate, −ki . For the downstream location x/d = 0.5 the Gaster relation underestimates

significantly the growth rate obtained with the spatial analysis. This discrepancy is mainly

due to the large values of ki and to the strong wake velocity deficit observed at this down-

stream location. Indeed, the Gaster transformation produces more accurate results for high

convective flows, see e.g. Olendraru et al. (1999), Schmid & Henningson (2001) and Olendraru

& Sellier (2002). Furthermore, as mentioned above, it has been verified that the strong peak

of the spatial growth rate for m = 1 at x/d = 0.5, obtained from the spatial stability analysis,

is not related to an absolute instability; indeed, no intersection in the complex plane kr −ki

between the positive and negative branches, k+ and k−, was detected (see Huerre & Rossi

(1998), Olendraru et al. (1999), Schmid & Henningson (2001) and Olendraru & Sellier (2002)

for details).

The results obtained with the spatial stability analysis are qualitatively similar to the ones

obtained through the temporal stability analysis presented in §3.1.4. By considering the low-

frequency instability connected the hub vortex, highlighted in figures 3.10 and 3.11 through a

vertical dashed line in correspondence of ωr = 3.18, it is evident that for downstream locations

from x/d = 0.5 up to x/d = 2.75 the selected unstable mode is the one with m = 1. Further

downstream, i.e. at x/d ≈ 3, the most unstable mode switches to m = 2 but with a much

smaller spatial growth rate. At x/d = 4 the selected mode is the one with m = 4.

In order to determine the dominant unstable mode related to the low frequency instability

of the hub vortex, the growth rates corresponding to ωr = 3.18 for the modes with m = 1 and

m = 2 are plotted in figure 3.12 as a function of the streamwise location. Then, the integral am-

plification factor is evaluated for the two modes m = 1 and m = 2, as proposed by Oberleithner

et al. (2011) and Juniper et al. (2011), according to:

G(ω,m) = exp

(∫XS

X0

−ki (ω,m, X ′)d X ′
)

(3.14)

XS is the streamwise position where the flow reenters in a stable domain. G(ω,m) represents

the overall amplification of the mode m at the frequency ω within the wake, after it has gone

through its entire amplification process. This integral amplification factor, computed from

the position x/d = 0.5 up to x/d = 4, for the unstable mode with m = 1 is equal to 6.6, whereas

for the one with m = 2 is 2.47, thereby suggesting the predominance of the m = 1 mode, i.e. a

counter-winding single-helix structure. Using this simple procedure, the integral amplification

factor can be systematically determined as a function of the frequency for the single helical

mode, as shown in figure 3.13. It is striking to observe that the counter-winding single-helix

mode is not only the most amplified in this frequency range, but it reaches its maximum

amplification at a frequency very close to the one observed experimentally. While the present

analysis does not reveal the origin of the sharp frequency selection mechanism observed in
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Figure 3.10: Growth rate evaluated through the Gaster approximation (dashed line) and spatial
stability analysis (solid line) as a function of the non-dimensional frequency for downstream
locations from x/d = 0.5 up to x/d = 1.75. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

the experiments, this shows that the most amplified frequency downstream from x/d = 0.5

matches the one measured in our experiments.

With the spatial stability analysis the real part of k, kr , represents the axial wavenumber of

the respective unstable mode. In figure 3.14 kr is plotted as a function of the non-dimensional

frequency, ωr , for several downstream locations, considering different values of m. For the

selected mode with m = 1 representing the hub vortex instability, the axial growth rate is about

4.5 and it is slightly reduced by moving downstream, except for the position x/d = 0.5 where

kr = 6.31 is obtained. Therefore, the single-helix instability of the hub vortex is characterized

by an axial wavelength, λ/d = 2π/kr , of about 1 at x/d = 0.5, then it is increased by moving

downstream with a value of 1.65 at the location x/d = 4.
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Figure 3.11: Growth rate evaluated through the Gaster approximation (dashed line) and spatial
stability analysis (solid line) as a function of the non-dimensional frequency for downstream
locations from x/d = 2 up to x/d = 4. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

It is now possible to perform the reconstruction of the single helix global mode representing

the hub vortex instability by integrating the unstable eigenmode m = 1 in the x-direction, in

agreement with equation (3.15) (see Oberleithner et al. (2011) and Juniper et al. (2011)):

u(x,r,θ, t )≈Re

{
A0(X )û(r, X )exp

[
i

(∫X

X0

k(X ′,ω)d X ′ +mθ−ωt

)]}
(3.15)

where k is the complex wavenumber, ω is the instability frequency and û are the eigenmodes at

the X -position normalized using the Euclidean norm, and phase-aligned at the characteristic

vortex radius. The slowly varying amplitude A0(X ) could be considered as uniform at the first

order, in agreement with the WKBJ formulation. The axial vorticity of the local unstable mode
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Figure 3.12: Spatial growth rates of the unstable modes with m = 1 and m = 2 as a function of
the downstream location, x, corresponding to the non-dimensional frequency ωr = 3.18.
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Figure 3.13: Integral amplification factor of the unstable mode with m = 1 as a function of the
pulsation ωr .

with m = 1 is plotted in figure 3.15. These vorticity structures clearly represent a coherent

evolution of a single-helix unstable mode, although these eigenfuctions were obtained from

experimental data acquired at different downstream locations. Finally, the global unstable

mode with m = 1 is reconstructed along the x-direction, as for the axial vorticity reported in

figure 3.16.

Further wind tunnel measurements were performed in order to provide an experimen-

tal evidence of this outlined helicoidal mode structure and in particular to assess the axial

wavenumber predicted by the local stability analysis. To this goal, simultaneous measure-

ments with two single-component hot-wire anemometers were carried out. For these tests one

probe was placed at the fixed location x/d = 0.13, y/d = 0.1, z/d = 0 and another probe was

set on the traversing system, which allows displacements of the probe along the x-direction,

and at the transversal position y/d =−0.1 and z/d = 0. In other words the two probes were
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Figure 3.14: Axial wavenumber, kr , evaluated through the spatial stability analysis as a func-
tion of the non-dimensional frequency. The vertical dashed line corresponds to the non-
dimensional frequency measured experimentally and related to the hub vortex instability.

symmetrically located with respect to the wake centre and at a transversal distance where the

spectral component related to the hub vortex instability was typically detected with maximum

energy. For each acquired velocity signal, the spectral component of interest was extracted by

using a filtering technique based on Proper Orthogonal Decomposition proposed in Iungo

& Lombardi (2011), by using a frequency resolution of 5 Hz. This technique presents the

advantage to automatically detect and extract the dominant spectral component, thus to

emphasize the correlation between simultaneous signals by removing experimental noise and

other spectral contributions.

The cross-correlation coefficient between the extracted components from the velocity sig-

nals acquired simultaneously on the two sides of the wake was then calculated for different

downstream locations. These tests were driven by the idea that in case the hub vortex is
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Figure 3.15: Axial vorticity of the selected unstable eigenmode with m = 1 reconstructed
through the spatial stability analysis.

characterized by helicoidal instability, the cross-correlation coefficient between the time

series acquired on the two sides of the wake should follow a harmonic function when one

probe is placed at a fixed position and the other one is moved downstream. Furthermore,

the wavelength of the harmonic function detected through the cross-correlation coefficient

should reproduce the same axial wavenumber of the helicoidal structure. Indeed, the cross-

correlation coefficient evaluated for different downstream locations clearly reproduces a
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Figure 3.16: Reconstruction of the hub vortex instability corresponding to the mode with
m = 1. Iso-surface of the axial vorticity.

harmonic trend, as shown in figure 3.17, with a slightly reducing amplitude and frequency by

moving downstream, which can be connected to the diffusion of the hub vortex. Therefore,

the simultaneous hot-wire measurements confirm the presence of a helicoidal instability of

the hub vortex predicted through the linear stability analysis.

Moreover, the instantaneous wavelength of the cross-correlation coefficient as a function
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Figure 3.17: Cross-correlation coefficient between hot-wire time-series acquired simultane-
ously at y/d =±0.1 and z/d = 0 as a function of the streamwise location.

of the downstream location is then computed through the Hilbert transform, see Iungo & Lom-

bardi (2011) for details. This parameter is plotted in figure 3.18 and compared to the results

obtained through the spatial stability analysis, i.e. with 2π/kr corresponding to the unstable

mode with m = 1 and at the non-dimensional frequency corresponding to the hub vortex

instability, ωr = 3.18. The experimental results generally confirm the data obtained through

the linear stability analysis, i.e. the hub vortex is characterized by a helicoidal instability with

a wavelength λ/d = 1 at the downstream location x/d = 0.5. Then, it is gradually increased
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by moving downstream up to a value λ/d ≈ 1.6 at x/d = 4. Slightly different results are found

for the locations 0.5 < x/d < 1.5, where the wavelength varies more rapidly. However, both

experimental data and linear instability results show a good agreement and a gradual increase

of the streamwise wavelength with increasing streamwise distance from the turbine location.

By moving downstream an increase of the wavelength of the unstable mode related to the hub

vortex is connected to the diffusion of the hub vortex and the imminent breakdown of this

vorticity structure, which compares well with previous works like e.g. Sarpkaya (1971) and Felli

et al. (2011). Furthermore, from figure 3.17, and also from the Fourier spectra reported in figure

3.4, the energy content connected to the hub vortex instability decays in the downstream

direction, whereas the linear stability analysis predicts a growth. This feature can be ascribed

to the linearity of the stability analysis, which does not take the non-linear saturation of the

mode into account. Indeed, diffusive effects caused by Reynolds stresses are neglected, which

affects the estimated growth rates.
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Figure 3.18: Comparison of the axial wavelength of the global unstable mode evaluated
through the linear stability analysis and the simultaneous hot-wire measurements, HW A.

3.1.6 Discussion and final remarks

Wind tunnel measurements of a wake produced by a wind turbine immersed in uniform flow

showed the presence of an axial vorticity structure in the very near wake, which is denoted as

hub vortex. The hub vortex is characterized by oscillations with a frequency equal to 0.34 times

the rotational frequency of the wind turbine rotor. In previous works these flow fluctuations

were ascribed to wake wandering or meandering, which consists in transversal oscillations of

the wind turbine wake. Wake meandering was investigated in details in Medici & Alfredsson

(2008); in fact, these authors stated that this phenomenon is mainly excited by the shedding of

vorticity structures from the rotor disc acting as a bluff body.

To further investigate the above-mentioned low-frequency wake instability detected experi-

mentally, linear stability analysis has been performed. The evolution of perturbations acting

on a mean flow obtained through wind tunnel velocity measurements has been investigated.

The temporal stability analysis has shown that the most unstable mode corresponding to the

low-frequency instability of the hub vortex is characterized by a single-helix counter-winding
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mode and rotating in the same direction of the hub vortex. This result is obtained in the

near wake up to a downstream distance of 2.5 rotor diameters. Further downstream unstable

modes with a higher azimuthal wavenumber, m, start to be dominant. However, by moving

downstream a reduction of the growth rates of the unstable modes has been generally ob-

served. Therefore, a possible competition between different unstable modes can take place

by moving downstream, while the hub vortex is rapidly diffusing. It should be pointed out

that the single-helix counter-winding unstable mode (m = 1) is not always the one with the

highest growth rate, but it is generally the one corresponding to the experimentally measured

frequency of the spectral component connected to the hub vortex instability. This suggests

that for the wind turbine wake flow produced in the wind tunnel, unstable modes with a higher

azimuthal wavenumber are damped, thus the dominating mode results to be the one with

m = 1. This reduction of the growth rates related to unstable modes with a higher azimuthal

wavenumber could be due to diffusive effects connected to turbulent fluctuations, which are

not taken into account for the linear stability analysis.

In order to deeper investigate on a possible competition between unstable modes with a

different azimuthal wavenumber, m, a spatial stability analysis has been performed, which

is more suitable for convectively unstable flows. The spatial stability analysis has confirmed

the results obtained from the temporal analysis, and in addition it has allowed determining

through the evaluation of the integral growth rate that the dominant unstable mode has an

azimuthal wavenumber equal to one (m = 1). The global unstable mode characterized by a

single-helix counter-winding structure has been reconstructed, in particular characterizing

the evolution of the axial wavelength by moving downstream. Further hot-wire measurements

were then performed to assess experimentally the presence of a helicoidal instability of the

hub vortex. To this goal simultaneous hot-wire measurements were performed by placing two

probes at hub height, on the two side of the wake and with the same spanwise distance from

the hub, i.e. where the frequency connected to the hub vortex instability has the maximum

energy. During the tests one probe was placed at a fixed location, while the other one was

moved downstream. The spectral component connected to the hub vortex instability was

then extracted from the velocity signals. The cross-correlation coefficient between the signals

acquired simultaneously, evaluated as a function of the streamwise location, has shown a

harmonic trend confirming the presence of a helicoidal instability of the hub vortex. Further-

more, the local axial wavelength of this harmonic function obtained from the cross-correlation

coefficient accurately confirms the evolution of the axial wavenumber of the most unstable

mode predicted through the linear stability analysis.

The single-helix counter-winding unstable mode of the hub vortex obtained through this

linear stability analysis is in strong agreement with the instability of the hub vortex produced

by a marine propeller visualized in Felli et al. (2011). The main difference with the present

work is that for the case of the marine propeller the frequency related to hub vortex instability

is equal to the rotational frequency of the rotor, whereas for the present experimental case

this frequency is 0.34 times the rotational frequency of the rotor, which is in good agreement

with previous wind tunnel investigations of wind turbine models, like e.g. Medici & Alfredsson

(2008), Chamorro & Porté-Agel (2010) and Zhang et al. (2012).
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While it is very tempting to attribute the sharp frequency selection typical of an oscillator

behaviour to an absolutely unstable region in the near wake region, this could not be con-

firmed experimentally with the presently used measurement techniques. Still, our study has

revealed:

(i) that the most amplified frequency downstream of x/d = 0.5 matches the one measured in

our experiments. This might be a pure coincidence or point to a selective noise amplification

mechanism to be further identified.

(ii) that, in contrast to most commonly accepted nonlinear global mode shapes predicted from

nonlinear front theories (see Chomaz (2005) for a review and Couairon & Chomaz (1999) for a

detailed analysis), the coherent structure observed in this study does not display a sharp front

located at the convective to absolute transition location. The spectral energy associated to the

hub vortex is seen to increase up to x/d = 1 before it starts to decay, as readily seen in figure

3.4. This observation is consistent with the study of Felli et al. (2011) who have also observed

that the hub vortex instability starts only at a downstream distance of few rotor diameters.

Unravelling the detailed origin of the sharp frequency selection through precise measurements

in the very near wake region constitutes therefore both a natural continuation of this study as

well as a formidable experimental challenge.

Currently further wind tunnel tests and respective linear instability analyses are under-way

in order to bring this study to more practical applications, as the case of a wind turbine im-

mersed in a boundary layer flow or the case of interaction of wind turbine wakes within a wind

farm.
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The instability of the hub vortex observed in wind turbine wakes has been recently studied

by Iungo et al. (2013) via local stability analysis of the mean velocity field measured through

wind tunnel experiments. This analysis was carried out by neglecting the effect of turbulent

fluctuations on the development of the coherent perturbations. In the present paper, we per-

form a stability analysis taking into account the Reynolds stresses modeled by eddy-viscosity

models, which are calibrated on the wind tunnel data. This new formulation for the stability

analysis leads to the identification of one clear dominant mode associated with the hub vortex

instability, which is the one with the largest overall downstream amplification. Moreover,

this analysis also predicts accurately the frequency of the hub vortex instability observed

experimentally. The proposed formulation is of general interest for the stability analysis of

swirling turbulent flows.

3.2.1 Introduction

The flow past a wind turbine is characterized by two main large-scale vorticity structures: the

helicoidal tip vortices, which detach from the tip of each turbine blade, and the hub vortex,

which is a streamwise-oriented vorticity structure approximately located at the wake centre.

Several wind tunnel experiments of down-scaled wind turbine models showed that, besides

the frequency connected with the shedding of tip vortices, wake velocity signals can present

a different spectral contribution with a frequency lower than the one of the rotor rotation.

In Medici & Alfredsson (2006, 2008); Chamorro & Porté-Agel (2009); Zhang et al. (2012), this

low-frequency instability was typically ascribed to a global meandering of the wind turbine

wake. In LES simulations using actuator disc and actuator line turbine models the far-wake

is simulated with sufficient accuracy to reproduce wake meandering (see for instance Wu

& Porté-Agel (2011) and España et al. (2011)). More recently Iungo et al. (2013) showed, via

local stability analysis performed on the time-averaged wind tunnel velocity measurements,

that the low-frequency clearly detected in the near-wake, is related to a single-helix counter-
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winding instability of the hub vortex, which can also affect the meandering phenomenon in

the far-wake. Kang et al. (2014) confirmed the results in Iungo et al. (2013) by carrying out

LES simulations which include all geometrical details of the wind turbine by a curvilinear

immersed boundary method.

The main limitation of the analysis presented in Iungo et al. (2013), which is focused on

the hub vortex instability, is that the instability observed experimentally was not predicted

through the local stability analysis as the unstable mode with the largest growth rate. Indeed,

it was necessary to use the instability frequency of the hub vortex, which was determined via

wind tunnel measurements, as an additional input for the stability analysis in order to detect

the mode associated with the hub vortex instability. The main reason for difficulties in the

identification of the dominant unstable mode by the sole stability analysis was attributed to

the neglecting of the Reynolds stresses in the Orr-Sommerfeld equations.

In this paper, a stability analysis is performed by taking into account the effects of the

Reynolds stresses by means of eddy-viscosity models, which are calibrated on the wind tunnel

data. Other studies in the literature considered eddy-viscosity models to close the linearized

equations for the coherent velocity field in a turbulent flow (see, e.g., Reynolds & Hussain,

1972; Bottaro et al., 2006; Crouch et al., 2007; Cossu et al., 2009; Meliga et al., 2012a). A similar

but more sophisticated closure is proposed in Kitsios et al. (2010, 2011). For the present

investigation three eddy-viscosity models are considered: one model based on the assumption

of a uniform eddy-viscosity for each streamwise location, whereas for the other two models

a mixing-length is estimated. In this paper it is shown that with the proposed improved

formulation, stability analysis allows not only the unambiguous identification of the hub

vortex instability, but also the accurate prediction of its instability frequency.

The paper is organized as follows: the formulation of the stability analysis by taking into

account the Reynolds stresses is presented in §2. The wind tunnel data are then described in

§3, while the three eddy-viscosity models and their calibration against the wind tunnel data

are reported in §4. The characterization of the hub vortex instability is presented in §5. Finally,

conclusions are drawn in §6.

3.2.2 Problem formulation

Triple decomposition and linearized equations for the coherent perturbation

Following the approach proposed in Reynolds & Hussain (1972), the unsteady flow, U(x, t ), is

decomposed in the time-averaged base-flow, U(x), the coherent fluctuation, ũ(x, t ), and the

turbulent motion, u′(x, t ):

U = U+ ũ+u′

where the sum of the time-averaged flow and the coherent fluctuation coincides with the

ensemble averaged flow < U >= U+ ũ (see also Reau & Tumin (2002)).

The stability of the flow is given by the tendency of ũ to grow (unstable) or decay (stable) in

time and space. Thus, stability can be verified by a modal analysis of the linearized dynamics of

ũ. To this purpose the non-linear evolution of the coherent perturbation for an incompressible
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flow can be written as (see, e.g., Reynolds & Hussain, 1972):

∇· ũ = 0

∂ũ

∂t
+∇ũ ·U+∇U · ũ =−∇p̃+ 1

Re
Δũ−∇· [ũũ− ũũ]−∇· [< u′u′ > −u′u′]

(3.16)

In the framework of a linear analysis with respect to the coherent fluctuations ũ, the third term

of the rhs is neglected. However, the system of equations is not closed and the last term of the

rhs, related to the turbulent diffusion, has to be modeled. As in Reynolds & Hussain (1972) and

Cossu et al. (2009), the linear relationship between the strain rate and the Reynolds stresses is

considered here. In the following two equations, the Boussinesq hypothesis is written using

time and ensemble averaging, respectively:{
−u′u′ + 2

3 q I � νm
t [∇+∇T ]U

−< u′u′ > +2
3 < q > I � νe

t [∇+∇T ] < U > (3.17)

where q is the turbulent kinetic energy (TKE) and I is the 3x3 identity matrix. The eddy-

viscosity depends on U (i.e. νm
t (U)) in the case of time averaging and on < U > (i.e νe

t (< U >) =
νe

t (U+ ũ)) in the case of ensemble averaging. By linearizing νe
t at first order with respect to ũ,

it is possible to rewrite it as the sum of one function of the mean flow and one linear function

of the coherent fluctuation, νe
t (U+ ũ) � νe

t (U)+∇Uν
e
t (U) · ũ, (see Appendix 3.2.7). In order to

determine the relation between νm
t (U) and νe

t (U), the second equation in (3.17) is averaged in

time. Since time average of ensemble average corresponds to time average itself (< · >= ·), we

obtain the following set of identities:

−u′u′ + 2

3
q I =−< u′u′ > +2

3
< q > I � νe

t (< U >)[∇+∇T ] < U >�

νe
t (U)[∇+∇T ]U+ (∇Uν

e
t (U) · ũ)[∇+∇T ]U+νe

t (U)[∇+∇T ]ũ

+ (∇Uν
e
t (U) · ũ)[∇+∇T ]ũ � νe

t (U)[∇+∇T ]U

(3.18)

where second and third terms of rhs in the last identity are rigorously null because the averaged

quantities depend linearly on ũ. The forth term is neglected since it is of higher order in ũ.

Consequently, the last (quasi-)identity follows and, together with the first equation in (3.17), it

leads to the result: νe
t (U) = νm

t (U).

According to the previous results, the term < u′u′ > −u′u′ can be modeled as:

< u′u′ > −u′u′ � −νe
t (U+ ũ)[∇+∇T ] < U >+νm

t (U)[∇+∇T ]U+ 2

3
< q > I − 2

3
q I �

−νe
t (U)[∇+∇T ]U− (∇Uν

e
t (U) · ũ)[∇+∇T ]U−νe

t (U)[∇+∇T ]ũ

− (∇Uν
e
t (U) · ũ)[∇+∇T ]ũ+νm

t (U)[∇+∇T ]U+ 2

3
< q > I − 2

3
q I

(3.19)
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The first and fifth terms in the last identity cancel out since νe
t (U) = νm

t (U). The forth term is

neglected because it is of higher order in ũ, yielding:

< u′u′ > −u′u′ � −(∇Uν
e
t (U) · ũ)[∇+∇T ]U−νe

t (U)[∇+∇T ]ũ+ 2

3
< q > I − 2

3
q I (3.20)

As in Reynolds & Hussain (1972) and Kitsios et al. (2010) we assume that the phase- averaging

process affects the turbulence structure but not the energy, i.e. < q >� q , obtaining:

< u′u′ > −u′u′ � −(∇Uν
e
t (U) · ũ)[∇+∇T ]U−νe

t (U)[∇+∇T ]ũ (3.21)

The term νe
t (U) = νm

t (U) in Eq. (3.21) can be evaluated from the statistics of the experimental

data, as in Kitsios et al. (2010), while the term ∇Uνt (U) ·ũ is obtained by the linearization of the

turbulence model used to close the equations, as detailed in Appendix 3.2.7. When Eq. (3.21)

is substituted in Eq. (3.32), the linear evolution of the coherent perturbation ũ with modeled

Reynolds stresses is retrieved:

∂ũ

∂t
+∇ũ·U+∇U·ũ =−∇p̃+ 1

Re
Δũ+∇·(νt (U)[∇+∇T ]ũ)+∇·((∇Uνt (U)·ũ)[∇+∇T ]U) (3.22)

Equation (3.52) is analogous to the one used in Reynolds & Hussain (1972); Cossu et al. (2009);

Del Àlamo & Jimenez (2006), but the last term in the rhs is included to take the linearization of

the turbulence model into account. This corresponds to a generalization of the formulation of

Crouch et al. (2007) and Meliga et al. (2012a) based on the Spalart-Allmaras model. From now

on the suffix for the eddy-viscosity, e and m, will not be specified any longer because they are

redundant.

Application to parallel flow

In the framework of weakly-non-parallel stability analysis, Eq. (3.52) is now applied to a parallel

flow U = (U x ,Uθ,0) extracted at a given streamwise location, since experiments showed a

negligible radial velocity component (Iungo et al. (2013)). This allows for a modal expansion

of the coherent fluctuation in the following form:

ũ(x,θ,r, t ) = û(r )exp(i kx + i mθ− iωt ) (3.23)

where k and m are the axial and azimuthal wavenumber respectively, and ω is the frequency.

When this modal form is substituted in Eq. (3.52), an eigenvalue problem is obtained. In the

temporal stability analysis k is real and assigned, while ω is the complex eigenvalue of the

problem. The opposite choice is done for the spatial stability analysis. In both cases, m is a

free integer parameter.

For the stability analysis, equation (3.52) together with continuity equation are discretized

using a code based on a Chebyshev spectral collocation method. In the present analysis the

number of collocation points is N = 120 and the size of the domain in the radial direction is
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Figure 3.19: Nondimensional mean velocity components and tangential Reynolds stresses
acquired in the wind tunnel. (a) Axial U x /Uhub and (b) azimuthal Uθ/Uhub velocities, (c)
u′

r u′
θ

/U 2
hub and (d) u′

r u′
x /U 2

hub . Vertical lines depict the streamwise positions where local
stability analysis has been carried out. In the white region measurements are not available.

rmax /d = 50. This choice provides the convergence of the most unstable eigenvalue with a

five-digit accuracy, which is sufficient for the present purposes.

3.2.3 Wind tunnel measurements

Velocity measurements of the wake produced by a down-scaled three-bladed wind turbine

were performed in the boundary layer wind tunnel of the Wind Engineering and Renewable

Energy Laboratory (WIRE) of the École Polytechnique Fédérale de Lausanne (EPFL). For details

on the experimental setup and measurement techniques we refer to Iungo et al. (2013). The tip

speed ratio of the turbine (TSR), which is the ratio between the speed of the blade tip and the

oncoming velocity at hub height (Uhub = 6.9 ms−1) is equal to 4.6 with a freestream turbulence

level equal to 6%. The stability equations and the subsequent results are normalized using

Uhub as the reference velocity and the rotor diameter, d = 0.152 m, as the reference length,

leading to a flow Reynolds number equal to 72000. For these tests the mean rotational fre-

quency was fhub ≈ 66 Hz and the frequency connected to the tip vortex shedding was equal to

three times fhub , i.e. ft i p vor ti ces ≈ 198 Hz. The frequency related to the hub vortex instability

was 21 Hz, i.e. approximately equal to 0.32 fhub . This instability frequency corresponds to a

non-dimensional pulsation of ωhub vor tex = 2πd fhub vor tex /Uhub = 2.9.

Since the turbine is placed outside the boundary layer and invested by a uniform oncoming

flow, the produced mean wake flow is axisymmetric. Experiments show also a negligible

radial component of the velocity, which is thus completely characterized by the axial, U x ,

and azimuthal, Uθ, velocity components. The experimental time-averaged velocity field and

the Reynolds stresses used for the stability analysis are plotted in figure 3.19. Velocity mea-
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surements cannot be performed at a downstream distance smaller than 0.5 d with hot-wire

anemometers and Cobra probes. Indeed, at those locations the strong axial velocity deficit and

the large tangential velocity produce an angle between the probe axis and the velocity vector

larger than 45°, which is the acceptance angle to perform velocity measurements with an

acceptable accuracy. Besides this technical limitation, in the very near-wake the roll-up of the

wake vorticity structures produces strong velocity gradients along the streamwise direction,

thus the weakly non-parallel assumption adopted for the stability analysis cannot be ensured.

The reported vertical lines correspond to the sections where local stability analysis was carried

out, i.e. x/d = 0.5,0.75,1,1.25,1.5,2. On the other hand, sections at x/d > 2 are not considered

here since in that region the growth rates are significantly smaller in comparison with the ones

evaluated for the upstream locations (see Iungo et al. (2013)).

3.2.4 Eddy-viscosity models

Description of the considered turbulence closure models

As already pointed out, the Boussinesq hypothesis yields:

R = u′u′ � −2νt S + 2

3
q I (3.24)

where R is the Reynolds stress tensor and S is the strain rate tensor. In the framework of a

local stability analysis of a wind turbine wake flow, we have U r = 0 and ∂U/∂θ = ∂U/∂x = 0,

which implies that the term Rxθ = u′
θ

u′
x is null, and the model leads to null normal stresses

(see Kitsios et al. (2010)). Consequently, the only non-null components of the modeled tensor

R are Rrθ, Rr x , and their symmetric counterparts.

Three different turbulence models are considered here, which are concisely described in

the following. The first is a uniform eddy-viscosity model, in which the eddy-viscosity, νt , in

equation (3.24) is assumed to be only a function of the streamwise location, and it is the only

unknown closure parameter of the resulting model. The other two turbulence models are

based on the concept of a mixing-length, lm , in order to define the eddy-viscosity. The mixing-

length, lm , is a function of the streamwise position and it is the only unknown parameter of

the turbulence closure model. The second considered model is the classical mixing-length

model, in which νt is related to lm as follows:

νt (r ) = l 2
m

∣∣∣∣∣∂U x

∂r

∣∣∣∣∣ (3.25)

The third model is a generalized mixing-length model for swirling-flows (see Appendix 3.2.7

and Pope (2000) for more details):

νt (r ) = l 2
m(2S : S)1/2 = l 2

m

[(
r
∂

∂r

(
Uθ

r

))2

+
(
∂U x

∂r

)2]1/2

(3.26)
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Figure 3.20: Calibration of the closure turbulence models against the wind tunnel data (plane
line) for the downstream position x/d = 0.75. The Reynolds stresses (a) Rrθ and (b) Rr x are
shown. The symbols refer to the three calibrated models, detailed in the legend. The resulting
eddy viscosities obtained for the different models are then reported in (c). The uniform EV
appears in a straight line.

Calibration of the turbulence closure models against wind tunnel data

The free parameters of the eddy-viscosity models are calibrated by using the statistics of the

experimental velocity data at each streamwise section. Specifically, a best fit strategy between

the measured Reynolds stresses and the modeled ones, minimizing the norm of the residuals

of equation (3.24), has been adopted. For the uniform eddy-viscosity model, the value of νt ,

which is independent of r , is estimated at each streamwise location minimizing the functional:

νt (x) : min
νt

∑
j

∥∥∥(R(r j , x)−2/3q(r j , x)I )−
(
−2νt (x)S(r j , x)

)∥∥∥2
(3.27)

where r j are the discrete radial position where experimental data are acquired.

In the case of mixing-length turbulence models, at a given x-location the function to mini-

mize is obtained substituting in equation (3.27) the mixing-length models expressions for νt

(eqs. (3.25) and (3.26)) and optimizing with respect to the scalar lm , which varies with x and is

independent of r . Note that using directly the statistics of the experimental velocity field needs

a further assumption, since measurements include the saturated coherent fluctuation ũi ũ j ,

which cannot be modelled using the Boussinesq approximation. Thus the used best-fit strat-

egy requires that the stresses ũi ũ j are small in comparison to u′
i u′

j (see for instance Kitsios

et al. (2010)). This assumption is very reasonable for high-Reynolds-number turbulent flows,

as for the considered case, and it is supported a-posteriori by the accuracy of the obtained

stability results (see § 3.2.5).

An example of the calibration fitting procedure performed for all the considered models

is shown in figure 3.20 for the measurements acquired at x/d = 0.75. In figures 3.20(a-b) the

Reynolds stresses modeled from the experimental strain rate tensor through the calibrated

turbulence closure models are compared with the ones directly measured through the wind
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Figure 3.21: Calibration of the closure turbulence models: (a) superposition of νt in the case of
uniform EV (left ordinate axis) and lm for standard and generalized ML (right ordinate axis), as
a function of the streamwise position x/d . (b) Radial profiles of νt evaluated via generalized
mixing-length model for different streamwise locations.

tunnel tests. It is evident that a fair accuracy is generally achieved through the fitting pro-

cedure. Specifically, the Reynolds stress peaks connected to the presence of the hub vortex,

observed at r /d � 0.15 for both Rrθ and Rr x , are well reproduced by the models. However,

some differences can be observed in correspondence of the tip vortex location at r /d � 0.5,

especially as concerns Rrθ. This feature suggests that the turbulence closure models and the

calibration fitting procedure could be improved. However, in §5 we will show that results of

the stability analysis are very robust with respect to the differences in the calibrated νt , which

arise from the use of different closure models and/or due to the accuracy of the calibration

procedure.

Figure 3.20(c) represents the tuned eddy-viscosity resulting from the models. Note that νt is

constant for the uniform eddy-viscosity model and its normalized value of the eddy-viscosity

evaluated at x/d = 0.75 is νt � 0.0029. In this case the stability analysis of the turbulent mean-

flow reduces to a laminar calculation carried out using a locally modified Reynolds number

Re∗, defined as: 1
Re∗ = 1

Re +νt . In the case of mixing-length models, νt is a function of the

radial position r /d and its value in the hub vortex region is comparable with the one obtained

with the uniform eddy-viscosity model.

The described best-fit procedure has been carried out for all the considered streamwise sec-

tions, leading to results analogous to the ones presented for the location x/d = 0.75. In order

to provide further information on the trend of the free model parameters as a function of the

streamwise location, x/d , we report in figure 3.21(a) the calibrated values of νt and lm . This

figure shows that νt and lm obtained through the calibration procedure grow almost linearly

with x/d , implying that the diffusive effects due to turbulence increase moving downstream.

This result is in qualitative agreement with the experiments where it was observed that the

hub vortex is almost completely diffused for x/d > 3 (Iungo et al., 2013). Moreover, for the

two mixing-length models, the obtained values for lm almost coincide since the expression

2S : S is dominated by the term ∂U x /∂r in the considered flow (compare equation (3.25) with

equation (3.26)). Lastly, figure 3.21(b) shows that the profiles of νt obtained by the general-
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Figure 3.22: Temporal analysis results at section x/d = 0.5 (a) without Reynolds stresses, (b)
with the uniform eddy-viscosity model, and (c) with the generalized and standard (dashed
line) mixing-length models. Growth rates are reported as a function of the axial wavenumber
k, and each branch corresponds to a different azimuthal wavenumber m.

ized mixing-length model as a function of the radial position remains similar at the different

streamwise sections. In particular, they are characterized by a higher peak located in proximity

of the hub vortex position, and a smaller one in correspondence of the tip vortex location.The

same conclusions apply for the standard mixing-length model. The eddy-viscosity profiles in

figure 3.21(b) are then introduced in the local linear stability analysis through the term νt (U)

of equation (3.52).

3.2.5 Stability analysis results

Temporal stability analysis and mode selection

Figure 3.22 depicts the results of temporal stability analysis carried out at the streamwise

location x/d = 0.5, (a) neglecting the contribution of the Reynolds stresses, (b) using the uni-

form eddy-viscosity model, and (c) using both the standard and the generalized mixing-length

models. For each case the growth rate, ωi , is reported as a function of the axial wavenumber,

k, while each branch corresponds to different azimuthal wavenumbers, m. As in Iungo et al.

(2013), when Reynolds stresses are neglected, the temporal stability analysis predicts many

unstable modes, and it is not possible to identify a single dominant mode as observed in the

experiments. Conversely, figure 3.22(b) and 3.22(c) show that, when a model for the turbulent

diffusion is introduced, the temporal stability analysis identifies a clearly dominant unstable

mode among only four unstable modes detected. Specifically, the higher wavenumber modes

are more damped since the diffusion term is proportional with k2 and m2, and the mode with

m = 1 results the one with the largest growth rate at every considered downstream position.

This mode, not shown here for the sakes of brevity is the single-helix counter-winding mode

characterized experimentally in Iungo et al. (2013). Thus, the present results demonstrate

the important role of the turbulent diffusion mechanism in the evolution of the perturbation

and that even a simple eddy-viscosity model is sufficient to improve the results of the local

temporal stability analysis, so as to identify a clearly dominant unstable mode. Moreover,
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Figure 3.23: Integral amplification factor in the wake (a) without Reynolds stresses, (b) with
the uniform eddy-viscosity model, and (c) with the generalized and the standard (dashed line)
mixing-length models. Growth rates are reported as a function of the frequency ω, and each
branch corresponds to a different azimuthal wavenumber m. The vertical dashdotted line
represents the frequency of the hub vortex instability measured experimentally, corresponding
to a nondimensional pulsation ωhub vor tex = 2.9.

figure 3.22(b) and 3.22(c) show that differences among the results obtained by the different

closure turbulence models are moderate as concerns the detection of a dominant unstable

mode, and that mixing-length models damp slightly less the modes associated to higher

frequencies. Similar results have been found for all the analysed streamwise locations.

Spatial stability analysis, integral growth rate and instability frequency prediction

In the framework of local stability analysis of weakly-non-parallel-flows, the integral amplifica-

tion factor of each unstable mode is determined by integrating in the streamwise direction its

spatial growth rate, −ki (m,ω, x), which is obtained from dedicated spatial stability analyses.

Thus, −ki (m,ω, x) is integrated from a given streamwise position, x0, up to the downstream

position where the mode becomes stable again, xs :

G(m,ω) = exp
∫xS

x0

−ki (m,ω, x ′)d x ′ (3.28)

G(ω,m) represents the overall amplification of the mode m at the frequency ω within the wake,

after it has undergone its entire amplification process. We remind that G(m,ω) is a synthesis

of the results obtained by local spatial stability analyses carried out at different streamwise

sections.

In figure 3.23 the integral amplification factors of the unstable modes are reported as a

function of the frequency ω. As shown in figure 3.23(a), when the Reynolds stresses are ne-

glected many unstable modes exist and, as for the temporal analysis, it is not possible to

select a dominant mode without considering as additional input the instability frequency

detected experimentally. On the other hand, the use of an eddy-viscosity model allows a

clear mode identification, as shown in figures 3.23(b) and 3.23(c), and the mode associated to
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m = 1 is the most spatially amplified one. Its amplification factor has a clear and definitely

dominant peak at a frequency ω f , which is almost coincident with the one measured experi-

mentally (ωhub vor tex = 2.9 is reported in figure 3.23 as a vertical dash-dotted line). For a more

quantitative comparison, the relative error between the experimental instability frequency

(ωhub vor tex ) and the predicted frequency ω f has been computed: a relative error of about

7.1% is obtained for the mixing-length models, and this error is further decreased to 5.3%

when the uniform eddy-viscosity model is used.

3.2.6 Conclusions

In this paper eddy-viscosity models are applied in order to take into account turbulence in the

stability analysis of the time-averaged flow field past a wind turbine. The work is motivated

by a previous investigation, Iungo et al. (2013), in which stability analysis was carried out by

neglecting the Reynolds stresses. In that study, the characterization of the hub vortex instability

was achieved by using as additional input to the stability analysis the instability frequency,

which was evaluated via wind tunnel experiments. Here three turbulence closure models

have been considered: a constant eddy-viscosity model and two mixing-length models (a

standard one and a generalized one for swirling flows). The free parameters of the models have

been tuned using the available wind tunnel data. Using the considered models, the number

of unstable modes detected via stability analysis is drastically reduced, and the spatially-

integrated growth factors clearly indicate one dominant unstable mode, i.e. the single-helix

counter-winding mode observed experimentally in Iungo et al. (2013). Its instability frequency

is also predicted with a very good agreement with the experimental evidence.

The present results show that the use of calibrated turbulence models in the stability analysis

of the time-averaged flow field allows not only the characterization of the hub vortex instability,

but also the accurate prediction of the associated instability frequency. This result is obtained

using simple algebraic closures, properly calibrated, even if the framework proposed here

can include more complex RANS models as well. The fact that the mode identification is

the result of the sole stability analysis, and that it does not require any additional external

information is of crucial importance for many further applications of the proposed method.

Specifically, this technique should allow for significant improvements in the prediction of the

downstream recovery of wind turbine wakes, and ultimately their control. For this reason, and

also for the accuracy observed in the present application, we believe that this strategy and the

results discussed in this paper are also of general interest for the stability analysis of turbulent

swirling flows.

3.2.7 A note on the mixing-length model

In order to include the effect of turbulent fluctuations in the equation of the coherent pertur-

bation (Eq. (3.52)), the gradient of the eddy-viscosity with respect to the velocity evaluated

in the mean flow configuration U, needs to be calculated. While it is undetermined and set

to zero in the uniform eddy-viscosity model, it is now evaluated for the two mixing-length
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models studied in this paper. In the case of standard mixing-length:

νe
t (< U >) = l 2

m

∣∣∣∣∂<Ux >
∂r

∣∣∣∣� l 2
m

∣∣∣∣∣∂U x

∂r

∣∣∣∣∣+ sign

(
∂U x

∂r

)
l 2

m
∂ũx

∂r
= νe

t (U)+∇Uν
e
t (U) · ũ (3.29)

Now considering the generalized expression for mixing-length model (see Pope (2000)), in the

case of an axisymmetric, locally parallel mean flow:

νe
t (< U >) = l 2

m(2 < S >:< S >)1/2 = l 2
m

[(
r
∂<Uθ > /r

∂r

)2

+
(
∂<Ux >

∂r

)2]1/2

(3.30)

Splitting as usual the ensemble averaged flow in the time-averaged flow plus the coherent

fluctuation, and recalling that



1+x = 1+ 1
2 x +O(x2) for x → 0:

νe
t (< U >) = l 2

m(2 < S >:< S >)1/2 � l 2
m(2S : S)1/2+

l 2
m

(2S : S)1/2

[
r
∂Uθ/r

∂r

(
∂ũθ

∂r
+ ũθ

r

)
+ ∂U x

∂r

∂ũx

∂r

]
= νe

t (U)+∇Uν
e
t (U) · ũ

(3.31)

Note that if Uθ = 0, νe
t (U) and ∇Uν

e
t (U) · ũ reduce to the ones of standard mixing-length.
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In this work a technique capable to investigate the near-wake stability properties of a wind

turbine immersed in the atmospheric boundary layer is presented. Specifically, a 2D local

spatial stability analysis is developed in order to take into account typical flow features of

real operating wind turbines, such as the presence of the atmospheric boundary layer and

the turbulence heterogeneity of the oncoming wind. This stability analysis can be generally

applied on either experimental measurements or numerical data. In this paper it was carried

out on wind tunnel experiments, for which a downscaled wind turbine is immersed in a

turbulent boundary layer. Through spatial stability analysis, the dominant mode in the near

wake, i.e. the most amplified one, is characterized and its frequency matches the hub vortex

instability frequency measured in the wind tunnel. As in the case of Viola et al. (2014), where

an axisymmetric wake condition was investigated, the hub vortex instability results in a

single-helical mode.

3.3.1 Introduction

In the wake of wind turbines two main vorticity structures are typically observed: the heli-

coidal tip vortices and the hub vortex. The tip vortices are shed from the tip of the blades

and are rapidly convected downstream because located at the wake periphery where high

streamwise velocity is present. The hub vortex is a streamwise-oriented vorticity structure

located approximately at the wake centre.

Wind tunnel measurements in the wake produced by a down-scaled wind turbine immersed

in a uniform flow showed that these vorticity structures undergo to instabilities in the near-

wake and are diffused proceeding downstream Iungo et al. (2013); Viola et al. (2014). The

tip-vortices instability is mainly driven by the mutual inductance between adjacent spirals, in

cooperation with short-wave and long-wave instabilities (Widnall (1972); Felli et al. (2011))

which favorite the tip-vortices diffusion within one diameter past the turbine (Sarmast et al.

(2014), Zhang et al. (2012)). Conversely, the hub vortex is characterized by oscillations of
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a frequency equal to roughly 0.34 times the rotational frequency of the wind turbine rotor

which are detected up to two diameters downstream, see Medici & Alfredsson (2008) and

Iungo et al. (2013). In previous works these flow fluctuations were ascribed to wake wandering

or meandering, which consists in transversal oscillations of the wind turbine wake. Wake

meandering was investigated in detail by Medici & Alfredsson (2008) where it is stated that

this phenomenon is mainly excited by the shedding of vorticity structures from the rotor disc

acting as a bluff body. In Iungo et al. (2013), in the case of uniform oncoming flow, this phe-

nomenon was explained as the appearance of a counter-winding and co-rotating single-helix

unstable mode amplified in the wake of the wind turbine. More specifically temporal and

spatial linear stability analyses were performed on the time-averaged wind tunnel velocity

measurements in order to identify the most amplified vortical structures originating at the hub

vortex instability. Furthermore, simultaneous hot-wire measurements confirmed the presence

of a helicoidal unstable mode of the hub vortex with a streamwise wavenumber roughly equal

to that predicted from the linear stability analysis. This results have been confirmed in the

experimental work of Okulov et al. (2014) where, through laser doppler anemometry (LDA) and

particle image velocimetry (PIV) visualization, these authors found that the wake dynamics is

associated with a precession (rotation) of the helical vortex core at a constant Strouhal number.

Moreover, Kang et al. (2014) carried out LES simulations which included all geometrical details

of the wind turbine by a curvilinear immersed-boundary method with evidence of large-scale

meandering motions.

In Viola et al. (2014) a stability analysis is performed by taking into account the effects of

the Reynolds stresses by means of eddy-viscosity models. Other studies in the literature have

considered eddy-viscosity models to close the linearized equations for the coherent velocity

field in a turbulent flow following the seminal work of Reynolds & Hussain (1972). In Viola et al.

(2014) three eddy-viscosity models are considered, where the model parameters are calibrated

on the wind tunnel data. One model is based on the assumption of a uniform eddy viscosity

for each streamwise location, whereas for the other two models a mixing length is estimated.

It was shown that with the proposed improved formulation, stability analysis allows not only

the unambiguous identification of the hub vortex instability, but also the accurate frequency

prediction.

In the present work the analysis is extended to the case of wind turbines immersed in a

turbulent atmospheric boundary layer (ABL). The presence of the ABL in the streamwise

direction breaks the axisymmetry of the mean flow, thus the harmonic modal expansion in the

azimuthal direction is not valid anymore and a 2D local stability analysis has to be carried out.

With this formulation the effect of the condition of the ABL such as shear veer or turbulence

heterogeneity on the near wake-dynamics can be included within the present analysis. This

formulation is here applied to wind tunnel data acquired in the wake of a downscaled wind

turbine subjected to a turbulent oncoming boundary layer flow.

This paper is organized as follows: the wind tunnel data are described in section 3.3.2, then the

formulation of the stability analysis, which takes the modeled Reynolds stresses into account,

and the numerical method are presented in section 3.3.3. The results of the spatial stability

analysis of the mean wake flow are then described in section 3.3.4. Finally, conclusions are
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drawn in section 3.3.5.

3.3.2 Experimental data

In this work a data-set acquired in the boundary layer wind tunnel of the Wind Engineering

and Renewable Energy Laboratory (WIRE) of the Ecole Polytechnique Federale de Lausanne

(EPFL) has been considered and investigated by 2D local stability analysis. The experimental

facility is a closed loop wind tunnel with an inlet providing a contraction with 5:1 area ratio.

Several turbulence devices consisting of coarse meshes and honeycomb flow straighteners

are used to increase flow quality. The wind turbine down-scaled model used is a three-bladed

GWS/EP-6030x3 anticlockwise. The rotor, with a diameter, d , of 152 mm, is connected to a DC

motor with a diameter of 10 mm. The wind turbine model is mounted with a stem of height

127 mm and is directly installed on the wind tunnel floor. By considering its frontal area, the

blockage ratio is less than 0.5%, which is very small to neglect possible effects due to the size

of the wind tunnel. More details about a similar experimental setup can be found in Iungo

et al. (2013). For the tests considered here, the tip speed ratio of the turbine (T SR), which is

the ratio between the speed of the blade tip and the oncoming velocity at hub height, Uhub , is

4.7. For these tests the mean rotational frequency, fhub , was 62 Hz.The velocity at hub height

is 6.3 m/s and the turbulence level is equal to 7%. A Reynolds number of 70000 is obtained by

considering Uhub as reference velocity, and the rotor diameter, d , as reference length.

Measurements of three components of the velocity were performed with a customized

Cobra probe produced by Turbulent Flow Instrumentation, which is a four-hole pressure

probe. This probe, with an external diameter of 1.5 mm, can measure velocity fluctuations

characterized by frequencies lower than 300Hz.

The reference frame used has its origin placed just behind the hub of the wind turbine,

with the x-axis corresponding to the streamwise direction, positive pointing downstream.

The z-axis is along the vertical direction, positive from the bottom towards the top, while the

y-axis is along the spanwise direction oriented so as to produce a right-handed Cartesian

coordinate system. Velocity measurements were performed from a downstream distance

of 0.375d up to 4d . In figure 4.2 the three velocity components of the time averaged mean

flow field at the streamwise position in the wake x/d = 0.375 are shown. In figure 4.2(a) the

streamwise component, Ux is characterized by a strong velocity deficit which is progressively

recovered further downstream. The streamwise velocity is higher at the top periphery of the

wake than in the lower due to the presence of the ABL and of the sting supporting the turbine.

The significant peaks of the spanwise velocity components Uy and Uz (fig. 4.2(b) and (c)

respectively) are detected for radial positions r /d ≈ 0.15, which are connected to the rotational

velocity induced by the hub vortex. In other words the spanwise components correspond

to the azimuthal velocity of the hub vortex projected in the cartesian reference frame. The

corresponding tangential components of the Reynolds stress tensor are shown in figure 3.25.
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(b)(a) (c)

Figure 3.24: Non-dimensional time averaged mean flow at the streamwise position x/d = 0.375.
(a) Ux /Uhub , (b) Uy /Uhub and (c) Uz /Uhub .

(b)(a) (c)

Figure 3.25: Non-dimensional tangential components of Reynolds stress tensor at the stream-
wise position x/d = 0.375. (a) u′

x u′
y /U 2

hub , (b) u′
x u′

z /U 2
hub and (c) u′

y u′
z /U 2

hub .

3.3.3 Stability analysis, turbulent model and numerical method

Following the approach proposed originally by Reynolds & Hussain (1972) the unsteady flow,

U(x, t), can be decomposed in three contributions: the time-averaged base-flow, U(x), the

coherent fluctuation, ũ(x, t ), and the turbulent motion, u′(x, t )

U = U+ ũ+u′

Specifically the sum of the time-averaged flow and the coherent fluctuation coincides with the

ensemble averaged flow < U >= U+ ũ. Recalling the formulation detailed in Viola et al. (2014)

the non-linear evolution of the coherent perturbation, ũ, on top of the time averaged mean

flow, U, is given by the equation (3.32):

∇· ũ = 0

∂ũ

∂t
+∇ũ ·U+∇U · ũ =−∇p̃+ 1

Re
Δũ−∇· [ũũ− ũũ]−∇· [< u′u′ > −u′u′]

(3.32)

where the third and last terms of the rhs are respectively the non-linear term and the difference

among the Reynolds stresses obtained by ensamble and time averages. From now on, the

equations are made non-dimensional with the turbine diameter d and the velocity at the hub
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Uhub . In the linear framework the coherent perturbation is assumed to be small and by using

the Boussinesq approximation for the Reynolds stresses, eq. (3.32) is rewritten as follows:

∂ũ

∂t
+∇ũ·U+∇U·ũ =−∇p̃+ 1

Re
Δũ+∇·(νt (U)[∇+∇T ]ũ)+∇·((∇Uνt (U)·ũ)[∇+∇T ]U) (3.33)

Equation(3.52) is the linear evolution of the coherent perturbation on a turbulent time-

averaged mean flow with enforced Boussinesq hypothesis, where the eddy-viscosity terms

need to be modeled. As in Viola et al. (2014) we adopt here the generalized mixing-length

model, hence νt is given by:

νt = l 2
m(2S : S)1/2 (3.34)

where S is the strain rate tensor. The mixing-length lm is tuned on the experimental data

through a best fit procedure on the Boussinesq equation, in a similar way to Viola et al. (2014).

This is done separately at each streamwise section considered for the local stability analysis,

so that the value of lm varies with x. The term ∇Uνt · ũ represents the eddy-viscosity variation

due to the coherent fluctuation and it is given by the linearization of the model around the

mean flow:

∇Uνt (U) · ũ = l 2
m

2S : s̃

(2S : S)1/2
. (3.35)

In the framework of weakly-non-parallel stability analysis, eq. (3.52) is now applied to a

parallel flow U = (U x (y, z),U y (y, z),U z (y, z)) extracted at a given streamwise location. Note

that, the three components of the time averaged mean flow vary in both spanwise directions y

and z, consequently the local analysis is bidimensional. In contrast, the x-dependence of the

flow is considered by carrying out different stability analysis at different sections in the wake,

as typical in local analysis assuming weak variations of the flow in that direction. This allows

for a modal expansion of the coherent fluctuation in the following form:

ũ(x, y, z, t ) = û(y, z)exp(i (kx −ωt )) (3.36)

where k is axial wavenumber and ω is the frequency. When this modal form is substituted in

Eq. (3.52), an eigenvalue problem is obtained and eigenfunction solutions exist only if k and

ω satisfy a dispersion relation of the form:

D[k,ω] = 0. (3.37)

The spatial branches, which describe the amplification of perturbation in space, are obtained

by solving the dispersion relation with complex wavenumbers k, and real frequency ω, have

been considered here (see Iungo et al. (2013)). Given k = kr + i ki , i being the imaginary

unit, the term −ki is the spatial amplification rate, while kr corresponds to the streamwise

wavenumber of the traveling pertubation with frequency ω. Due to the weakly non-parallelism

of the meanflow, U, the derivatives in the streamwise direction are of higher order and the
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(b)(a)
1

2

3
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2
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Figure 3.26: Spatial analysis results at the section x/d = 0.375. In (a) the growth rates, −ki , are
reported as a function of the frequency ω, while in (b) the corresponding axial wavenumbers,
kr , are shown. Each branch corresponds to a different amplified mode.

term 2S : S appearing in equation (3.34) at leading order reduces to:

(2S : S)1/2 ≈
[(

∂U x

∂y

)2

+
(
∂U x

∂z

)2

+
(
∂U y

∂z
+ ∂U z

∂y

)2

+2

(
∂U y

∂y

)2

+2

(
∂U z

∂z

)2]1/2

(3.38)

Similarly the term 2S : s̃ in the expression of the eddy-viscosity variation due to the coherent

fluctuation (3.35) is given by:

2S : s̃ ≈
(
∂U x

∂y

)(
∂ũx

∂y
+ ∂ũy

∂x

)
+
(
∂U x

∂z

)(
∂ũx

∂z
+ ∂ũz

∂x

)
+
(
∂U y

∂z
+ ∂U z

∂y

)(
∂ũy

∂z
+ ∂ũz

∂y

)

+2

(
∂U y

∂y

)(
∂ũy

∂y

)
+2

(
∂U z

∂z

)(
∂ũz

∂z

) (3.39)

Equations (3.52) together with modal expansion (3.36) are discretized using a staggered pseu-

dospectral Chebyshev-Chebyshev collocation method. The three velocity components are

defined at the Gauss-Lobatto-Chebyshev (GLC) nodes, whereas the pressure is staggered

on a different grid, which is generated with Gauss-Chebyshev nodes (GC). In both y and z

directions the algebraic mapping with domain truncation is used, in order to cluster the nodes

at the wake center. In the present work Ny = 40 and Nz = 40 points are used in the axial and

radial direction respectively, this resolution having shown to provide the desired convergence

of the amplification factors.

3.3.4 Hub vortex instability

The local spatial analysis has been carried out at several streamwise positions in the wake
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(b)(a) (c)

(d) (e) (f)

Figure 3.27: Spatial analysis results at the section x/d = 0.375. Real (a) and imaginary (d) part
of the axial flow of the eigenfunction associated to mode 1 at frequency ω= 2.7. In (b) and (e)
the same quantities are shown for mode 2 at frequency ω= 5 and in (c) and (f) for mode 3 at
frequency ω= 2.8.

of the wind turbine where the experimental data were acquired. In figure 3.26 the results of

the spatial analysis at the first available section, x/d = 0.375, are reported. In fig. 3.26(a) the

spatial growth rates −ki are depicted as a function of the frequency of the coherent fluctuation

ω, while in (b) the associated axial wavenumbers are shown. Three modes, labeled as modes 1,

2 and 3, result to be amplified in the frequency band 0 ≤ω≤ 7. In particular, in the frequency

range 2.5 ≤ ω ≤ 4 the three modes coexist and three unstable eigenvalues are found when

carrying out the stability analysis. Each mode is characterized by a preferred frequency, defined

as the frequency associated with the higher spatial growth-rate, which is equal approximately

to 2.7 for mode 1, to 5 for mode 2 and to 2.8 for mode 3. In figure 3.27 the axial velocity of the

eigenmodes 1, 2 and 3 at the respective preferred frequency, are reported, showing that: the

detected unstable modes and related branches present different spatial structures. Specifically,

in fig. 3.27(a-d) the complex eigenfunction clearly exhibit a dominant single-helical shape,

which is in agreement with the stability analysis results in the wake of a wind turbine invested

by a uniform oncoming flow (Iungo et al. (2013); Viola et al. (2014)) even though in this analysis

no modal expansion is imposed in the azimuthal direction and eigenfunctions can have a

generic shape in the y − z plane. The eigenfunction of mode 2 in fig. 3.27(b-e) represents a

double-helical mode. Lastly, the mode 3 in (c-f) is dominated by a single-helical symmetry,

but more diffused respect to mode 1.

By observing the spatial growth rates in fig. 3.26(a), the most amplified perturbation at

x/d = 0.375 is the single-helical mode 1 at the dominant frequency ω= 2.7. The same analysis
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Figure 3.28: Integral amplification factor of coherent perturbations in the wake as a function
of the frequency ω. Three modes, labeled as mode 1, mode 2 and mode 3 are amplified
through the domain.The vertical red line represents the frequency of the hub vortex instability
measured experimentally, corresponding to a non-dimensional pulsation ωhubvor tex = 3.

has been carried out in the other streamwise sections in the wind turbine wake and a similar

scenario is obtained, with the single helix mode 1 more amplified at the low frequency range.

However proceeding downstream the spatial growth rates reduce due to the recovery of the

wake deficit and the increase of the turbulence intensity which favorites the diffusion of the

vortex structures.

In order to determine the most amplified coherent fluctuation through the wake and its

frequency, the local spatial growth rates are integrated in the streamwise direction according

to:

G(ω) = exp
∫xs

xi

−ki (ω, x)dx. (3.40)

The global gain represents the integral measure of the amplification in the wake between

the first section available, xi = 0.375d , and xs which is the streamwise position where the

mode becomes stable. G(ω) is reported in figure 3.28 as a function of the frequency ω, where

the three modes amplified in the wake are labeled as before. Therefore mode 1 results to be

the most amplified mode overall and its dominant frequency is in good agreement with the

hub vortex instability frequency measured in the wind tunnel, whose non-dimensional value

is ω ≈ 3 and is depicted by the red line in fig. 3.28. The limited deviation in the frequency

prediction is believed to be related to a non-linear modulation which can not be captured

by this linear stability approach. The velocity field of the coherent perturbation at a given

frequency ω is given by equation (3.41)

ũ(x, y, z, t ) = Re
{

û(x; y, z)ei (
∫x

xi
k(x ′,ω)dx ′−ωt )

}
. (3.41)
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(b)(a) (c)

(d) (e) (f)( )

Figure 3.29: Axial velocity of the most amplified coherent perturbation (mode 1 with frequency
ω= 2.7) at different streamwise positions. (a) x/d = 0.375, (b) x/d = 0.50, (c) x/d = 0.75, (d)
x/d = 1.00, (e) x/d = 1.50 and (f) x/d = 2.00.

Hence, at a given time the term ei
∫x

xi
kr (x ′)dx ′

, where kr (x) is the local wavenumber, is setting

the phase of the local complex eigenfunction û(x; y, z). Since the kr (x) are positive quantities,

the phase increases proceeding downstream, providing different orientations to the local

velocity field yielding the typical helical shape of the hub vortex instability, see Iungo et al.

(2013). Consequently, the unsteady term e−iωt consists in a uniform change of phase in time,

resulting in a constant rate rotation of the perturbation around its axis. The axial velocity of

mode 1 at frequency ω= 2.7, which is the most amplified coherent perturbation according

to spatial analysis, is reported in figure 3.29 at different streamwise positions in the wind

turbine wake. In all the considered sections the single-helical symmetry is the dominant one.

Moreover, by moving downstream, the eigenfunction is less concentrated around the hub

vortex core due to turbulent diffusion, as known by experimental evidence. Hence, also in this

case of wind turbine immersed in the atmospheric boundary layer the hub vortex instability is

associated with an helical precession of the vortex-core. Moreover, it is interesting to notice

that while proceeding downstream, the helicoidal structure observed is slightly displaced

downwards. This feature can be related to the presence of the boundary layer. This general

lowering of the wake vorticity structures is also typically observed for wakes produced by bluff

bodies immersed in a boundary layer, as for the case for a triangular prism in Buresti & Iungo

(2010).
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3.3.5 Conclusions

A method suitable for local stability analysis in the near wake of wind turbine wakes has

been developed and here presented. The method is based on the triple decomposition of the

flow field, where an equation describing the dynamics of the coherent perturbations on the

time-averaged flow and taking into account the turbulent diffusion is provided. Due to the

weakly non parallelism of the flow in the case of wind turbine wakes, a local stability approach

has been adopted. More specifically, at a given streamwise position in the wake, x, both y and

z directions are discretized by using Chebyshev polynomials and the spatial amplification of

perturbations as a function of the frequency are computed. Thus, in this method no modal

expansion is imposed to the geometry of the perturbation in the azimuthal direction and

the modes investigated are allowed to have a generic shape in the y − z plane. Conversely, a

complex wavenumber k is given, where its real and imaginary part define respectively the

axial wavelength of the perturbation and its spatial amplification.

In this framework the effect on the near-wake dynamics of typical flow features of the

incoming wind, such as the atmospheric boundary layer, turbulence heterogeneity, veer and

shear, can be included in the stability analysis. Hence, real operating wind turbines conditions

can be investigated with the present tool.

The analysis has been here applied on wind tunnel data, where the mean wind direction is

aligned with the wind turbine axis. In particular, the mean wake flow acquired in the wind

tunnel is used directly in the stability analysis and the measured Reynolds stresses are used

to tune the mixing-length model, which is adopted to take into account turbulent diffusion

in the dynamics of the hub vortex instability. The local spatial growth rates are computed

at every streamwise position in the wake as a function of the frequency of the perturbation.

Three modes, which manifest a dominant helical shape, are found to be amplified in the wake.

Specifically, the single helical mode 1 is more unstable in the low frequency range 0 ≤ω≤ 4,

conversely the double helical mode 2 resonates in the higher frequency interval 4 ≤ω≤ 6.5.

Finally mode 3 results to be less amplified than modes 1 and 2 in all the frequency range.

The dominant mode in the wind turbine wake, and its frequency, are detected by means of

the integral amplification factor, which is obtained by integrating the spatial growth rates for

the different downstream locations. The spatial shape of this resonating vorticity structure

results mode 1, i.e. a single-helix in agreement with previous works which is a remarkable

result recalling that no azimuthal modal expansion has been applied to the perturbation field.

Moreover, the frequency predicted for the most unstable mode is in good agreement with the

one measured in the wind tunnel.

The applicability of this 2D spatial local stability analysis is very general since it is suitable

to be directly used to investigate the wake stability of wind turbine flows experimentally

measured in the wind tunnel, wind LiDARs, or simulated by RANS or LES approaches.
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3.4 Global stability and harmonic response to forcing of the hub

vortex: an axisymmetric point of view

3.4.1 Introduction

In the previous three sections, the hub vortex instability has been investigated in a local

framework, which relies on the weakly non-parallelism of the mean flow. However, a global

approach is also possible, where the direction of advection of the flow has to be discretized. For

this reason, the global analysis that is here applied is more suitable to describe flows rapidly

evolving in the streamwise direction. For weakly non-parallel flows the two approaches have

been compared for the canonical Batchelor wake in chapter 2 but we take here advantage of

three components PIV data in a plane to cross check our previous results.

The experimental data used in this section have been acquired in a facility different from

the one used in the previous sections and are shortly described in section 3.4.2. The global

stability analysis and the global resolvent are then presented in section 3.4.3. Final conclusions

and discussion are given in section 3.4.4.

3.4.2 Experiments

Experimental setup

The experimental data used here have been acquired in the boundary layer wind tunnel at

the Saint Anthony Falls Laboratory of the University of Minnesota and presented in Zhang

et al. (2012). We thank these authors for providing their three components PIV measurements

in the 2D vertical streamwise (x − z) plane, where x and z are the streamwise and vertical

direction respectively. In this experiment, a neutrally stratified turbulent boundary layer was

developed by using a tripping mechanism at the entrance of the wind-tunnel test section. The

free-stream turbulence intensity was approximately 2% at a flow velocity of 2.5 m/s outside

the boundary layer.

A three-blade downscaled turbine GWS/EP-5030 x 3 was placed in the lowest one-third

of the boundary layer. The turbine tower was 10.5 cm and the rotor diameter d was 13 cm,

with the bottom tip of the turbine was placed at the height about 0.6 times the turbine radius.

The rotor operates at 18.3 Hz with a tip speed ratio T SR = π f d/Uhub of approximately 3.7,

where Uhub = 2 m/s was the oncoming flow velocity at the hub height. The corresponding

Reynolds number based on Uhub and the rotor diameter is Re = 18000. The thrust and the

power coefficient were estimated to be of 0.42 and 0.37, respectively.

We refer the reader to Zhang et al. (2012) for more details about the experimental setup.

Time averaged flow and spectral analysis

Figure (3.30) shows time averaged three velocity component in the central wake plane (y =
0). In figure (3.30)(a) the streamwise component, Ux , is characterized by a strong velocity
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Figure 3.30: Non-dimensional time averaged mean flow in the 2D vertical streamwise (x − z)
plane. (a) Ux /Uhub , (b) Uy /Uhub and (c) Uz /Uhub .

deficit, with flow reversal in the region x/d < 0.4, which is progressively recovered further

downstream. The flow field is not symmetric with respect the plane z = 0 due to the presence

of the atmospheric boundary layer. In particular, the streamwise velocity is higher at the top

periphery of the wake than in the lower one. The elongated peaks of the spanwise velocity

Uy at z/d ≈±0.15 (Fig.(3.30)(b) ) are connected to the rotational velocity induced by the hub

vortex. In other words the spanwise velocity component Uy corresponds to the azimuthal

velocity of the hub vortex projected in the cartesian reference frame. On the other hand, the

vertical velocity Uz in (c) is smaller than the oder two velocity components and is associated to

the streamwise evolution of the flow. It corresponds to the radial velocity of the wake projected

on the x − z coordinate system, i.e. in the y = 0 plane.

As documented in Zhang et al. (2012), hot-wire anemometer (HWA) was used to measure

the instantaneous streamwise and wall-normal velocity components with a frequency of

acquisition of 1000 Hz. The spectral analysis on the HWA data acquired at the wake periphery

revealed an intense fluctuation at a frequency of 55 Hz that is equal to three times the rotational

frequency of the turbine. This frequency contribution results from the shedding of so-called

tip-vortices from the tip of the three turbine blades. In addition, the power spectra at the

wake centerline shows a strong low frequency peak at about 6 Hz, see Figure (3.31), and

it is consistent with previous work by Medici & Alfredsson (2006) who attributed it to the

meandering of the wake and to Iungo et al. (2013); Viola et al. (2014) who unraveled a helical
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instability of the hub vortex. This low frequency corresponds to a nondimensional pulsation

of 2π6 Hz∗d/Uhub = 2.5.

Figure 3.31: Figure adapted from Zhang et al. (2012). Power spectrum of the vertical velocity
fluctuation at the wake centerline; (a) x/d = 1 and (b) x/d = 2. The red dashed line indicates
the low frequency detected close the hub vortex, that is equal to approximately one third of
the wind turbine rotational frequency (black vertical line).

3.4.3 Global analyses

In order to investigate the origin of the hub vortex low-frequency observed in the experiments,

we carry out a global stability and a resolvent analysis on the time-averaged flow. Due to the

presence of the atmospheric boundary layer, the mean flow in Figure (3.30) is not axisymmetric.

However, since the three velocity components are available only in the central wake-plane, a

fully three-dimensional stability analysis is not possible. For this reason, we have carried out

two distinct axisymmetric stability analyses by considering both the upper

Ux =Ux (z > 0) Uθ =Uy (z > 0) Ur =Uz (z > 0) (3.42)

and the lower part of the flow

Ux =Ux (z < 0) Uθ =Uy (z < 0) Ur =Uz (z < 0). (3.43)

In other word, we have considered here two independent axisymmetric mean flows, as shown

in Figure 3.32. Here Ux , Uθ and Ur are the streamwise, azimuthal and radial velocity compo-

nents projected on the radial coordinate system x,r,θ, where r −θ are the polar coordinates

of the rotor plane.
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Figure 3.32: Streamwise, azimuthal and radial velocity components of the a) upper and b)
lower axisymmetric mean flows, as defined in equations (3.42) and (3.43).

Stability analysis

The dynamics of small perturbations in velocity u and pressure p about a steady mean flow U

is governed by the following nondimensional equation

∂u

∂t
+U ·∇u+u ·∇U =−∇p + 1

Re
∇2u, ∇·u = 0, (3.44)

where Re is the Reynolds number based on the oncoming velocity at the hub, Uhub and the

rotor diameter d . Since the mean flow flow U is axisymmetric and independent of time we

can decompose the perturbation q = (u, p) on normal modes

q = q̂ei (mθ−ωt ) (3.45)

where the integer m is the azimuthal wavenumber and ω is a complex quantity. In particular,

the frequency of the perturbation is given to the real part of ω, ωr , while the imaginary part,

ωi , is the growth rate. Thus, if ωi > 0 the perturbation grows exponentially in time, vice versa

when ωi < 0 it decays with damping factor ωi .

By injecting the modal expansion (3.45) in the equations (3.44) a generalized eigenvalue

problem of the form

−iωBq̂ = Lq̂, (3.46)

where B is the mass matrix, L is the linearized Navier-Stokes operator defined in section 2.

Equation (3.46) is discretized by using the staggered pseudospectral Chebyshev-Chebyshev

collocation method presented in section 2. Here the computational domain corresponds to

the flow region where the PIV data are available, i.e. 0.21 < x/d < 3.1 and −0.5 < r /d < 0.5, with

homogenous Dirichlet condition at the inlet, null stresses at the outlet and lateral boundary

and compatibility conditions on the axis (Batchelor & Gill, 1962). The number of points used
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Figure 3.33: Global stability spectrum for (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3. The
black and red markers correspond to the eigenvalues of the upper (z > 0) and lower (z < 0)
mean flow.

in the axial and radial direction is N x = 60 and N y = 40, respectively.

The eigenvalue problem (3.46) is solved for several values of m by using the Matlab function

eigs. Figure 3.33 shows the closest hundreds eigenvalues to the target ω= 0 for the azimuthal

wavenumbers (a) m = 0, (b) m = 1, (c) m = 2 and (d) m = 3. The black markers correspond

to the global stability spectrum when the upper portion (z > 0) of the experimental data is

used as mean flow in equation (3.44). On the other hand, when the axisymmetric stability

analysis is carried out on the lower part of the flow field (z < 0) the red-marked spectrum is

obtained. It results that both the upper and lower mean flows are stable for all azimuthal

wavenumbers and the least stable mode is an m = 1 with a frequency ωr = 0.41 which is

significantly different from the one detected in the experiment that is equal to 2.5. Hence, the

hub vortex low frequency observed in the experiment can not explained as a global instability

of the flow triggered by globally unstable eigenmode.
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Figure 3.34: Optimal gains versus forcing frequency ω f , for the (a) upper and (b) lower mean
flow. Each branch corresponds to a different azimuthal wavenumber.

Resolvent analysis

In this section, we carry out a pseudo-resonance analysis in order to determine the preferred

more in the flow, i.e. the mode corresponding to the largest energy amplification. Following

Garnaud et al. (2013); Viola et al. (2016a) the linear response to an harmonic body forcing f is

given by

∂u

∂t
+U ·∇u+u ·∇U =−∇p + 1

Re
∇2u+ f, ∇·u = 0, (3.47)

In the case the body forcing is harmonic with frequency ω f , f = f̂e−iω f t , and using the normal

mode expansion (3.45) setting ω = ω f , the linearized system of equations with embedded

boundary conditions reads:

−iω f Bq̂ = Lq̂+B f f̂, (3.48)

where B and L are the same operators used in the stability analysis (3.46) and B f is the so-

called prolongation operator that maps the boundary forcing onto the interior degrees of

freedom. The response to a given forcing f̂(x = 0,r ) pushing at the inlet harmonically with

frequency ω f is directly obtained by solving the linear system in equation (3.48). Note that

in principle the matrix (−iω f B−L) can be inverted as long as ω f is not an eigenvalue of the

non-forced system. The kinetic energy gain of the response respect to the forcing is defined as:

G2(m,ω f ) =
∫
Ω |û|2r dr d x∫
Ω |f̂|2r dr d x

= ||(L+ iω f B)−1B f f̂||2E
||f̂||2E

, (3.49)

where (L+ iω f B)−1 is known as the resolvent.

The preferred mode is defined as the mode corresponding to the largest energy gain. Given
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Chapter 3. Hub vortex instability

the forcing frequency, ω f , and the azimuthal wavenumber, m, the optimal forcing correspond-

ing to the maximum energy amplification is defined in discrete form as:

G2
opt (ω f ,m) = max

f̂

||q̂||2E
||f̂||2E

= max
f̂

||(L+ iω f B)−1B f f̂||2E
||f̂||2E

, (3.50)

As explained in detail in Marquet & Sipp (2010); Garnaud et al. (2013) the optimization de-

fined in equation (3.50) is equivalent to the following eigenvalue problem, where G2
opt (ω f )

corresponds to the eigenvalue λ:

Q−1
f BH

f (L+ iω f B)−H QH (L+ iω f B)−1B f f̂ =λf̂, (3.51)

Q and Q f are the weight matrices of the discretized energy norm and the norm of the forcing,

and defined as Viola et al. (2016a).

Figure 3.34 shows the optimal gains, Gopt (ω f ,m), as a function of the forcing frequency,

where each branch corresponds to a different azimuthal wavenumber. In both a) the upper

mean flow and b) the lower mean flow case the single helical mode is the most amplified mode

at the hub vortex frequency which is depicted by the vertical dashed line. However, the mode

that better resonates in the upper mean flow analysis is a m = 2 mode at a frequency ω f = 4.3

which differs from the hub vortex frequency measured in the experiments, that is equal to 2.5.

As in the case of the local spatial analysis carried out by Iungo et al. (2013) and reported in

section 3.1, it is not possible to select a dominant mode without considering as additional

input the instability frequency detected experimentally.

Resolvent analysis for turbulent flows

In analogy to the work of Viola et al. (2014), presented in section 3.2 we now carry out a resol-

vent analysis that includes the effect of the small scale turbulence which has been neglected in

the previous section. This analysis leverages on the so-called triple decomposition proposed

by Reynolds & Hussain (1972), where the unsteady flow is decomposed as the sum of the

time-averaged base-flow, U(x), the coherent fluctuation, ũ(x, t), and the turbulent motion,

u′(x, t ). Recalling the formulation detailed in section 3.2 the linear evolution of the coherent

perturbation, ũ, on top of the time averaged flow, U, is given by the equation (3.32):

∂ũ

∂t
+∇ũ ·U+∇U · ũ =−∇p̃ +∇· ((Re−1 +νt )[∇+∇T ]ũ), ∇· ũ, (3.52)

where the νt is the nondimensional eddy-viscosity which is the proportionality coefficient

between the mean strain rate tensor and the deviatoric part of the Reynolds stress tensor in

the Boussinesq equation.

−u′u′ + 2

3
q I � νt [∇+∇T ]U (3.53)
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Figure 3.35: Optimal gains versus forcing frequency ω f with the uniform eddy-viscosity model
and, for the (a) upper and (b) lower mean flow. Each branch corresponds to a different
azimuthal wavenumber.

where q is the turbulent kinetic energy (TKE) and I is the 3x3 identity matrix. In this prelimi-

nary analysis we adopt a simple uniform eddy-viscosity analysis which was found to correctly

predict the hub vortex frequency in the local spatial analysis carried out in Viola et al. (2014).

The value of the eddy viscosity νt is here calibrated by using the statistics of the experimental

velocity data gently provided by Zhang et al. (2012). Specifically, a best fit strategy minimizing

the norm of the difference between the lhs and rhs of the Boussinesq equation (3.53) is used,

in a similar fashion to what explained in section 3.2. We obtained an eddy viscosity equal to

νt = 1.4 ·10−4. Thus, in the case of uniform eddy viscosity model, the resolvent analysis (3.47)

simply reduces to lower the Reynolds number to an equivalent Reynolds number defined as

Re∗ = (Re−1 +νt )−1 = 700.

Figure 3.35 shows the optimal gains, Gopt (ω f ,m), as a function of the forcing frequency in

the case of uniform eddy viscosity model. Accounting for the small scale turbulent effect in

the resolvent analysis allows to a clear mode identification, as shown in (b) and (c) for the

upper and lower mean flow. The single helical mode m = 1 it is seen to be the preferred mode

in the wind turbine wake, i.e. the most amplified one. Its amplification factor has a clear and

definitely dominant peak at a frequency, which is almost coincident with the one measured

experimentally (equal to 2.5 and reported in figure 3.35(a) and (b) as a red vertical line).

3.4.4 Conclusions

In this section, we have tried to take benefit of three components 2D PIV data in a vertical

plane by Zhang et al. (2012) to use a direct global method to determine the stability and

response to harmonic forcing of the swirling wake behind a model turbine. While this avoids

to make any weakly non-parallel assumptions, it still requires an important and obviously

questionable hypothesis: the flow is assumed axisymmetric to avoid conducting a 3D stability
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Chapter 3. Hub vortex instability

analysis.

We here compared the global stability properties of the axisymmetric upper and lower flows

that were measured. In absence of turbulence models, there are considerable differences

between both analyses since the preferred mode is found to be m = 2, ω = 4.2 and m =
1, ω= 1.8 respectively. The addition of the simplest possible turbulence model, a constant

eddy viscosity however damps higher modes and frequencies, reconciling the amplification

properties deduced from the analysis of the upper and lower flow fields: the preferred mode is

m = 1 at a frequency that well matched the one of the hub vortex instability measured in the

experiments.
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A general formulation is proposed to control the integral amplification factor of harmonic

disturbances in weakly non-parallel amplifier flows. The sensitivity of the local spatial stability

spectrum to a base-flow modification is first determined, generalizing the results of Bottaro

et al. (2003). This result is then used to evaluate the sensitivity of the overall spatial growth

to a modification of the inlet flow condition. This formalism is applied to a non-parallel

Batchelor vortex which is a well-known model for trailing vortices generated by a lifting wing.

The resulting sensitivity map indicates the optimal modification of the inlet flow condition

enabling to stabilize the most amplified helical mode. It is shown that the control, formulated

using a single linearization of the flow dynamics carried out on the uncontrolled configuration,

successfully reduces the integral spatial gain of the instability.

4.1 Introduction

In the framework of linear stability analysis, open flows showing self-sustained oscillations,

such as spiral vortex-breakdown (Ruith et al., 2003; Qadri et al., 2013), are globally unstable
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and are called oscillators. In contrast, stable flows which exhibit a strong response to external

disturbances are named amplifiers. Trailing vortices generated by a lifting wing are a classical

example of amplifier flows in aeronautics (Spalart, 1998).

The stability properties of open flows depend in a complex way on multiple factors, such as

the advection rate, the presence of localized forces, turbulence level, fluid properties, domain

geometry, initial and boundary conditions. Thus, a modification of one of these factors yields

a variation of the linearized operators of the stability analysis which turns into a modification

of the eigenvalues in the stability spectrum. The dependance of the stability properties on

one or more of these factors is commonly called sensitivity. Chomaz (2005) explained that

the sensitivity may become large when the linear stability operator is non-normal, which is

usually the case in hydrodynamics. For this reason several studies have been devoted along

the years to sensitivity analyses.

Giannetti & Luchini (2007) defined the so-called structural sensitivity, which is the sensitivity

to a spatially localized feedback and showed that the combined analysis of the global mode

and its adjoint mode allows the identification of the wavemaker of the stability, i.e. the core

region where the self-excited instability mechanism takes place. Bottaro et al. (2003) were

the first to study the sensitivity to a base-flow modification and they identified the regions of

the parallel Couette flow where a base flow modification has the most significative effect on

temporal stability. Such base-flow variations can be the result of a passive control acting on

the flow. Using a variational technique, Marquet et al. (2008) derived a general expression of

the base-flow sensitivity valid for oscillator flows. In the case of amplifiers, the flow response

to an external forcing is given by the resolvent analysis (Chomaz, 2005) and its sensitivity

with respect to a base-flow modification was derived analytically by Brandt et al. (2011). They

focused on the variation of the resolvent norm in the case of the Blasius boundary layer sub-

jected to a harmonic body force where both component-wise and convective non-normalities

are present. This analysis was applied by Boujo & Gallaire (2015) to the backward-facing step

flow and extended to the case of inlet forcing and time-stochastic perturbation.

However, when the base flow evolves slowly in the advection direction these global ap-

proaches overlook the physical amplification mechanism, which is the convective growth of

perturbation which can be related to the local stability properties of the flow. Indeed, the

WKB asymptotic approach reveals that the linear spatial amplification of perturbations in

amplifier flows is well captured by the spatial stability branches which are solutions of the

local stability analysis, see Huerre & Rossi (1998). This raises the question if it is possible to

determine a systematic way to control the amplification gain of a given mode, i.e. its global

amplification, resulting from the integration of the local spatial growth along the streamwise

direction. The objective of this paper is to provide a general framework so as to solve the

mentioned control problem. The method proposed here generalizes to the case of weakly

non-parallel amplifier flows the adjoint-based strategies usually employed for controlling

oscillators (see Camarri (2015) for a review). Noise amplifiers comprise many fundamental

flows as for instance boundary layers, convectively unstable wakes, trailing vortices, thus

the proposed method is general and has many direct engineering applications. In this paper

we present only a particular prototypical application of academic interest, which consists in
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Figure 4.1: In (a) the circles are the eigenvalue spectrum of the parallel Batchelor vortex with
α= 0.667, S = 0.333, Re = 100, m = 1 and ω= 0.6. The red circle indicates the most unstable
physical eigenvalue. The blues asterisks mark the variation of the dominant eigenvalue (red
circle) due to a modification of the base-flow (see text) is shown by the blue asterisks. The red
line is the linear prediction based on the sensitivity map, whose components are reported in
(b).

controlling the spatial instability of the non-parallel Batchelor vortex, well characterized in

the literature, using a perturbation of the velocity profile generating the vortex. The particular

selected test case, which is aimed at showing an example of flow control, is loosely applicable

to disturbances suppression in trailing vortices (Spalart, 1998) and in wind turbine wakes

(Iungo et al., 2013). To this purpose we need first to address in section 4.2 the sensitivity of

the local spatial stability problem in the parallel flow framework. Successively, on the basis of

the previous result, the sensitivity of the integral gain to a generic modification of the velocity

profile generating the vortex is derived in section 4.3.

4.2 Sensitivity of the local spatial stability spectrum

Although the formalism used here applies to all kind of convectively unstable shear flows, we

consider now a Batchelor vortex profile with dimensionless velocity components

Ur = 0, Uθ = S(1−e−r 2
)/r, Ux = 1−αe−r 2

, (4.1)

where r , θ and x are the cylindrical coordinates. The wake and swirl parameters are set to

α = 0.667 and S = 0.333, respectively, and the Reynolds number based on the vortex core

radius and the free-stream axial velocity, is equal to Re = 100. The behaviour of infinitesimal

three-dimensional disturbances, q(x,r,θ; t ) = (u, p), superimposed on top of the base-flow is
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described by the linearized Navier-Stokes equations

∂u

∂t
+U ·∇u+u ·∇U =−∇p + 1

Re
Δu, ∇·u = 0, (4.2)

where u and p are the disturbance velocity and pressure. In the case of parallel axisymmetric

base-flow, these perturbations can be decomposed in the standard form:

q(x,r,θ; t ) = q̂(r )ei (kx+mθ−ωt ), (4.3)

where m is the azimuthal wavenumber and q̂(r ) = (û, p̂). Our test-case vortex was shown to

be convectively unstable by Viola et al. (2016a), calling for a spatial stability analysis, where

the frequency ω is real and wavenumber k complex. The real part of k, kr , corresponds to

the streamwise wavenumber of the traveling perturbation and the imaginary part of k, in

particular −ki , is the spatial amplification rate. The governing equations (4.1), together with

the normal mode expansion (4.3), can be recast in a quadratic eigenvalue problem of the

following type

k2C2(U,ω)q̂+kC1(U,ω)q̂+C0(U,ω)q̂ = 0, (4.4)

where the linear operators C0,C1,C2, together with boundary conditions are reported in the

appendix 4.5.

Figure 4.1 depicts the spatial spectrum for ω= 0.6, where unstable perturbations propagat-

ing downstream are characterized by a positive phase velocity, ω/kr , and a negative growth rate,

ki . Thus, the eigenvalues of interest are located in the fourth quadrant, i.e. kr > 0 and ki < 0.

The red circle depicts the non-spurious eigenvalue associated with the largest spatial growth

rate.

4.2.1 Generic sensitivity analysis of the local stability problem

The sensitivity of a given eigenvalue k to generic perturbations of the linear operators in

equation (4.4) is here derived by a standard expansion procedure. A small variation of the

linear operators C ′
0 =C0 +δC0,C ′

1 =C1 +δC1,C ′
2 =C2 +δC2 yields a small variation of the

eigenvector q̂′ ∼ q̂+δq̂ together with a small variation in the eigenvalue k ′ ∼ k +δk. At first

order we have:

δk =− (q†, [δC0 +kδC1 +k2δC2]q̂)

(q†, [C1 +2kC2]q̂)
, (4.5)

where the round brackets designate a suitable scalar product and q† = (u†, p†) is the adjoint

vector associated with the defined scalar product. From now on we will use the Hermitian

inner product defined as (qA ,qB ) = ∫∞
0 qH

A qB r dr , where the symbol H indicates the trans-

conjugate and qA and qB are two complex vector fields. In this case, the adjoint vector satisfies

118



4.2. Sensitivity of the local spatial stability spectrum

the following adjoint spatial problem:

k∗2
C †

2 q† +k∗C †
1 q† +C †

0 q† = 0, (4.6)

where the superscript ∗ designates the complex conjugate and the adjoint operators C †
0 , C †

1

and C †
2 are reported in the Appendix 4.5. The adjoint vector q† is defined up to a multiplicative

factor and from now the chosen normalization is such that the denominator of the expression

(4.5) is equal to 1. Equation (4.5) is the generalization of the sensitivity of a standard eigenvalue

problem explained in Chomaz (2005), which would correspond to the case C2 = 0.

4.2.2 Sensitivity of the local spatial stability properties to base flow modifications

We are now interested in determining the sensitivity of k to a generic base-flow modification

δU = (δUr = 0,δUθ,δUx ), where the restriction δUr = 0 is dictated by the local analysis setting.

A perturbation at the base-flow level in the linearized equation (4.2) yields to a perturbation of

the linear operators δC0,δC1,δC2 such that δC2 = 0 and

[δC0 +kδC1]q̂ =

⎛⎜⎜⎜⎜⎝
i mûrδUθ/r + i kûrδUx −2ûθδUθ/r

ûr∂δUθ/∂r + i mûθδUθ/r + i kûrδUx + ûrδUθ/r

ûr∂δUx /∂r + i mûxδUθ/r + i kûxδUx

0

⎞⎟⎟⎟⎟⎠ . (4.7)

Substituting equation (4.7) in equation (4.5) and integrating by parts we can transfer the

differential operators from the vector δU to the adjoint vector u†. If the base-flow modification

does not occur at the domain boundaries, the boundary terms coming from the integration by

parts are null and equation (4.5) reads:

δk = (∇Uk,δU), (4.8)

where the complex vector

∇Uk =

⎛⎜⎝ 0

i m(u†
x ûH

x +u†
r ûH

r +u†
θ

ûH
θ

)+∂u†
θ

/∂r ûH
r +u†

θ
∂ûH

r /∂r +2u†
r ûH

θ
/r

i k(u†
x ûH

x +u†
r ûH

r +u†
θ

ûH
θ

)+∂u†
x /∂r ûH

r +u†
x∂ûH

r /∂r +u†
x ûH

r /r

⎞⎟⎠ (4.9)

is the sensitivity of the considered spatial eigenvalue (k) to a base-flow modification. The

azimuthal and streamwise components of ∇Uk are the sensitivities of the complex eigenvalue

k to an azimuthal and streamwise base-flow modification. Since ∇Uk is a complex vector and

δU is a real quantity, the real part of ∇Uθ
k and ∇Ux k, which are reported with dashed lines in

figure 4.1 (b), are sensitivities of kr to a generic base-flow modification. On the other hand,

the sensitivity of the spatial growth rate is given by the imaginary part of expression (4.9),

whose components are shown in figure 4.1 (b) by plane lines for the most unstable spatial

eigenvalue of the parallel Batchelor vortex with α= 0.667, S = 0.333, m = 1 and ω= 0.6. The

radial component of the sensitivity to base-flow is null consistently within the parallel flow
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assumption of the local analysis.

From the sensitivity maps, it is seen that a base-flow modification with positive azimuthal

and streamwise components superimposed to the reference base-flow (4.1) leads kr to in-

crease. Moreover, a swirl increase and a decrease of the wake deficit yield to a lower spatial

growth-rate −ki . Hence, equation (4.8) allows us to determine the direction of displacement

of the spatial eigenvalues in the complex k−plane corresponding to a given base-flow mod-

ification. In order to verify the sensitivity maps we study the effect of a specific base-flow

modification δUx = ae−r 2
, on the most unstable spatial eigenvalue in Figure 4.1 (a). The

considered base-flow modification mimics a variation or uncertainty on the wake parameter

α in equation (4.1) and its effect on the spatial stability is determined by solving the spatial

stability analysis (4.4) with the modified base flow component Ux +ae−r 2
. Results are shown

in figure 4.1(b) for a ranging from 3% to 30% of α. The true path followed by the selected

eigenvalue in the complex plane as the parameter a is varied is indicated with blue asterisks.

The same path is approximated by the red straight line using the sensitivity analysis carried

out on the unperturbed flow. It is seen that the perturbed eigenvalue positions, which mi-

grates towards the stability region as a in increased, are well aligned with the linear prediction

provided by sensitivity analysis, especially when a is small, thus validating the method and its

implementation. For larger base-flow modifications, nonlinearities neglected in the linearized

relation (4.5), become more important and lead to a progressively increasing discrepancy

between the predicted and the true eigenvalue trajectory.

Equation (4.9) is an extension to the spatial analysis of a concept that was originally de-

veloped by Bottaro et al. (2003) for temporal analysis. It should be also noted that the two

non-null components of ∇U k are equal to the azimuthal and axial components of the vector

−u† · (∇û)H + û∗ ·∇u†, (4.10)

which is formally similar to the sensitivity to base flow modifications of a global mode found

by Marquet et al. (2008). The use of eq. (4.10) in a spatial framework requires û to be the

direct spatial mode while u† is the spatial adjoint vector which satisfies the spatial adjoint

problem (4.6). Moreover, the streamwise and azimuthal derivatives have to be replaced by

the Fourier derivatives, according to the modal expansion (4.3). Finally, the radial compo-

nent of (4.10), which would give the sensitivity to a radial velocity modification in a global

framework, does not bear any meaning in the local spatial analysis.

4.3 Sensitivity of the integral growth factor in weakly nonparallel

flows

Rather than parallel flows, we now consider weakly non-parallel amplifier flows which slowly

evolve in the streamwise direction, resulting in variations of the local stability properties. The

non-parallel Batchelor vortex with inlet condition (4.1) and free-stress condition at the outlet

and radial far-field boundaries represents a suitable prototype flow. Its velocity components

and pressure Q = (U,P ) are found by solving the discrete Navier-Stokes equations (4.11) in
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Figure 4.2: (a) Radial, (b) azimuthal and (c) streamwise velocity components of the non-parallel
Batchelor vortex at Re = 100 with inlet condition given by the velocity profile in equation (4.1).

cylindrical coordinates:

N(Q,U0) =
(

U ·∇U+∇P − 1
Re ΔU

∇·U

)
= 0, (4.11)

where the dependance from the inlet condition U0 is emphasized. We have used a staggered

pseudospectral Chebyshev-Chebyshev collocation method (Viola et al., 2016a) and the non-

linear solution of equation (4.11) at Re = 100 is obtained by a Newton-Raphson method. The

computational domain is 0 < x < 15 and 0 < r < 10 and it has been discretized by using 80 and

40 nodes in the streamwise and radial directions. The resulting velocity field U is reported in

Figure 4.2 (a,b,c). Note as in (a) the radial velocity is significantly smaller than the other two

velocity components, thus validating the assumption of weakly non-parallel flow. Proceeding

downstream the vortex core gets slightly diffused, as shown in (b), and the axial velocity deficit

in (c) gradually recovers.

Asymptotic theory for a weakly non-parallel base flow (Huerre & Rossi, 1998) prescribes that

the global mode at leading order takes the following modulated wave form:

q(r,θ, x; t ) ∼ q̂(r, x)exp

[
i

(∫x

x0

k(x ′,ω)d x ′ +mθ−ωt

)]
. (4.12)

By adopting the same notation of the previous section, ω is the frequency of the mode, m

is its azimuthal wavenumber, k(x,ω) is the local spatial eigenvalue at the flow location x

and q̂(r, x) = (û, p̂) is the corresponding spatial eigenvector. Figure 4.3 shows the streamwise

evolution of the unstable spatial eigenvalue k for the reference case ω= 0.6 and m = 1. Due to

the reduction of the wake deficit, both the axial wavenumber kr and the spatial growth rate,

−ki , decrease while moving downstream.

4.3.1 Lagrangian formulation

The integral spatial amplification of the perturbation (4.12) is given at leading order by

exp(−∫xout
x0

ki (x ′)dx ′), where xout is the position of the domain outlet boundary. In this section,
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Figure 4.3: Streamwise evolution of the (a) axial wavenumber kr and of the (b) spatial growth
rate −ki for the spatial branch at ω= 0.6

specifically for control purposes, we are interested in determining the sensitivity of the discrete

spatial gain,

G = exp

(
−

Nx∑
n=1

w j ki (xn)

)
, (4.13)

to a modification of the inflow conditions U0. In equation (4.13) the coefficients w j are the

integration weights of the standard trapezoidal formula and Nx is the number of locations used

to discretize the streamwise direction. This problem can be formulated as an optimization

problem where the objective function is the gain itself. Rather than a continuous approach

where the continuous optimization problem is defined and then discretized, we will directly

apply the Lagrangian technique to the discretized governing equations:

L (Q,U0) =G(Q)+λT N(Q,U0), (4.14)

where the superscript T stands for the transpose. The constraint is given by the discretized

steady Navier-Stokes equations, N(Q,U0), andλ is the vector of Lagrange multipliers or discrete

adjoint. Thus, the gradient of the spatial gain G with respect to a base-flow inlet modification

is derived by considering variations of the Lagrangian L . Imposing the stationarity of L with

respect to λ reduces to the discrete state equation (4.11), which is satisfied by the uncontrolled

base-flow Q. Then, the stationarity of the Lagrangian with respect to the state variable, Q,

yields to an equation which has to be satisfied by the adjoint variable λ:

−λT ∇QN =∇QG , (4.15)

where ∇QN is the Jacobian matrix. Recalling that the local growth rates −ki (xn) depend only

on the streamwise and azimuthal velocity at the location xn , the rhs of equation (4.15) can be

rewritten as follows

∇QG =−G
Nx∑

n=1
w j

[∇Ux ki (xn)∇QUx (xn)+∇Uθ
ki (xn)∇QUθ(xn)

]
, (4.16)
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Figure 4.4: In (a) the sensitivity maps to a radial (green), azimuthal (red) and axial (black) inlet
velocity modifications. In (b) the true spatial gain modification is reported with blue asterisks
as a function of the magnitude of the inlet control c . The red dashed line shows the linear gain
modification according to the inlet sensitivity map.

where the terms ∇Ux ki (xn) and ∇Uθ
ki (xn) are the local spatial sensitivities of ki to a local

base-flow modification derived in the previous section. Specifically, the local spatial sensi-

tivities at each section xn have to be evaluated by injecting the local direct û(xn) and adjoint

u†(xn) modes and the local spatial eigenvalue k(xn) in equation (4.9). The terms ∇QUx (xn)

and ∇QUθ(xn) are the interpolation matrices which extract from a vector Q the streamwise

and azimuthal velocity components at the streamwise position xn . Hence, given the local

spatial sensitivity analyses, the adjoint variable λ can be determined by solving the linear

system (4.15).

Finally, the derivative of the Lagrangian L with respect to the control variable gives the

spatial gain modification with respect a small-amplitude generic δU0:

δG = dG(Q)

dU0
δU0 =λT ∇U0 N δU0 (4.17)

where ∇U0 N is a restriction matrix, which extracts the velocity components at the inlet x0 from

a velocity-pressure vector Q. Equation (4.17) can be formally rewritten as

δG =<∇U0G ,δU0 > (4.18)

where < uA ,uB >= uT
A MuB is the inner product in the discrete setting, and M is the integration

matrix containing the integration weights on its diagonal. The real vector ∇U0G is the spatial

gain sensitivity with respect to an inlet modification, and is defined as:

∇U0G = M−1 (∇U0 N
)T

λ. (4.19)

For the reference case of ω= 0.6 and m = 1, the three components of ∇U0G , which correspond

to the sensitivity maps to a radial, azimuthal and axial inlet velocity modification, are reported
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Figure 4.5: (a) Plane lines indicate the velocity components of the uncontrolled inlet condition,
which correspond to the Batchelor vortex profile (4.1) with α = 0.667 and S = 0.333. The
velocity components perturbed by the application of the control δU0 = 7·10−4∇U0G are shown
with dashed line. (b) Isosurfaces of ±95% of the maximum axial vorticity of the global spatial
mode (4.12) in the (b) uncontrolled and (c) controlled case.

in Figure 4.4. The sensitivity with respect Uθ0 reveals that in order to increase the gain, the

azimuthal velocity, and therefore the swirl parameter, has to be decreased. Similarly, ∇Ux0
G

shows that an increase of the wake deficit and a higher streamwise velocity at the vortex

periphery lead to a more intense response to noise. Due to the non-parallelism of the base-

flow U, the spatial gain is also sensitive to a variation of the radial velocity which acts on the

local spatial stability properties of the flow through the coupling with the streamwise and

azimuthal velocity components in equations (4.11). In particular it is seen that a positive inlet

radial velocity, which increases the vortex core diameter and consequently favors the axial

deceleration, has a destabilizing effect.

4.3.2 Optimal inlet control

The sensitivity ∇U0G not only predicts the linear modification of the spatial gain due to an inlet

modification through (4.18), but it also corresponds to the most destabilizing infinitesimal

inlet modification (Camarri, 2015). For this reason, ∇U0G can be used to design an inlet

control which stabilizes the global spatial branch. Figure 4.4(b) shows the gain variation due

to an inlet modification of the type δU0 =−c∇U0G , with c the magnitude of the control. The

blue line represents the real gain variation with respect to the uncontrolled condition. More

precisely, at a given c, the real gain variation (blue asterisk) is computed by (i) solving the

non-linear base flow equations (4.11) with the inlet condition U0−c∇U0G , and (ii) carrying out

the WKB analysis on the obtained base-flow. Then, (iii) the associated gain G(c) is computed

according to the definition (4.13) and the gain variation ΔG = 1−G(c)/G(c = 0) is obtained,

where G(c = 0) is the gain of the uncontrolled condition. It is seen that the linear gain variation

predicted by equation (4.18), which is depicted by a red line in Fig. 4.4(b), correctly captures

the gain variation at small values of c. In contrast, due to the nonlinear dependance of the
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gain on the magnitude of the perturbation the error increases at large c . Still, the linearization

leading to the sensitivity analysis allows the prediction of even large variations of gain with

reasonable accuracy.

As an application, Figure 4.5(a) shows the uncontrolled and the controlled velocity profiles

at the inlet for c = 7·10−4 (see Fig. 4.4(b)). Although the inlet condition differs very slightly form

the uncontrolled case, the effect of this variation on the considered instability is substantial as

shown in Fig. 4.5(b) and (c) where the axial vorticity of the spatial branch (4.12) with ω= 0.6

and m = 1 is reported. In the first case the helical perturbation is convectively unstable in all

the flow domain and is continuously amplified while propagating. When the control is applied,

the spatial branch is damped for x > 7 and the global spatial gain experiences a significative

reduction of 35% with respect to the uncontrolled flow.

4.4 Conclusions

In this work a general formulation is proposed which allows the application of systematic

adjoint-based techniques for the control of the integral amplification factor of the selected

modes in weakly non-parallel amplifier flows. The method is based on the sensitivity analysis

of the local stability properties of the flow, which was here derived by adjoint methods. In

particular, firstly the sensitivity of the spatial stability spectrum to a generic local modification

of the stability operators is found. The results are successively used to study the case of a

generic control which implies the modification of the base-flow. Although the method can be

easily extended to cover very general cases, we presented here its application to a test case

of academic interest, i.e. the control of the spatial instability in an evolving Batchelor vortex

based on the perturbation of the velocity profile generating the vortex itself. The particular

type of control considered here implies the optimization of the inlet boundary conditions

in the simulation of the vortex evolution. We show that the local spatial sensitivities are the

building blocks of the sensitivity to generic modifications of the inlet velocity profile. The

resulting sensitivity map indicated the optimal modification of the inlet velocity profile so as

to stabilize the single helical spatial mode of a non-parallel Batchelor vortex, which is locally

convectively unstable. It is shown that the control, formulated using only one linearization

of the flow dynamics carried out on the uncontrolled configuration, successfully reduces the

global spatial gain of the instability.

The information provided by the control map is valid only for small control amplitudes

perturbing the uncontrolled configuration. However, the control design method proposed

here can be easily extended to include larger control amplitudes, by employing the sensitivity

map in a standard iterative gradient method, as done for instance by Bottaro et al. (2003) for

temporal analysis on parallel flow.

We conclude underlying that the systematic framework proposed here to control the integral

amplification factor in amplifier flows has potential impact in many cases of interest. To name

two examples which have inspired this work, the method proposed could be applied to control

the wake instability related to the hub vortex in wind turbines (Iungo et al., 2013) or, referring
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Chapter 4. Flow control of weakly non-parallel flows

to the work in Zuccher et al. (2006), for the identification of optimally stabilizing disturbances

in boundary layers.

4.5 Local spatial stability of swirling flows

We report here the linear operators of the direct (4.4) and adjoint (4.6) QEPs:

C0 =

⎡⎢⎢⎢⎢⎣
i mUθ/r − 1

Re Δm,rθ + iω −2Uθ/r + 1
Re

2i m
r 2 0 ∂

∂r
∂Uθ

∂r +Uθ/r − 1
Re

2i m
r 2 i mUθ/r − 1

Re Δm,rθ + iω 0 i m
r

∂Ux
∂r 0 i mUθ/r − 1

Re Δm + iω 0
1
r + ∂

∂r
i m
r 0 0

⎤⎥⎥⎥⎥⎦

C †
0 =

⎡⎢⎢⎢⎢⎣
−i mUθ/r − 1

Re Δm,rθ − iω ∂Uθ

∂r +Uθ/r + 1
Re

2i m
r 2

∂Ux
∂r

∂
∂r

−2Uθ/r − 1
Re

2i m
r 2 −i mUθ/r − 1

Re Δm,rθ − iω 0 i m
r

0 0 −i mUθ/r − 1
Re Δm − iω 0

1
r + ∂

∂r
i m
r 0 0

⎤⎥⎥⎥⎥⎦

C1 =

⎡⎢⎢⎢⎢⎣
iUx 0 0 0

0 iUx 0 0

0 0 iUx i

0 0 i 0

⎤⎥⎥⎥⎥⎦ , C †
1 =

⎡⎢⎢⎢⎢⎣
−iUx 0 0 0

0 −iUx 0 0

0 0 −iUx i

0 0 i 0

⎤⎥⎥⎥⎥⎦ , C2 =C †
2 =

⎡⎢⎢⎢⎢⎣
1

Re 0 0 0

0 1
Re 0 0

0 0 1
Re 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
with Δm =

(
1
r

∂
∂r + ∂2

∂r 2 − m2

r 2

)
and Δm,rθ =Δm − 1

r 2 . Homogeneous Neumann conditions on the

lateral boundary and regularity conditions on the axis (Batchelor & Gill, 1962) are imposed

in both problems. We refer to Viola et al. (2016a) for a detailed explanation of the numerical

codes and convergence analysis.
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5 Axisymmetric vortex breakdown:
linear and nonlinear mechanisms

5.1 Introduction

Vortex breakdown is a widespread phenomenon that affects vortices with axial flow such as

leading-edge vortices over delta wings, flame holders in combustion devices and atmospheric

tornadoes. It consists of an abrupt change in the flow topology where the flow decelerates

and diverges as if a solid obstacle was present in the flow. The onset of the vortex breakdown

happens when the swirl number S, that compares the magnitude of the azimuthal and axial

velocity components, exceeds a critical value. The structure of the vortex varies slowly in the

streamwise direction and then, suddenly, the structure changes drastically with the formation

of an axisymmetric recirculation region.

In addition to the axisymmetric breakdown form involving a steady bubble enclosing a finite

region of recirculating fluid, there exist spiral breakdown states characterized by well-defined

helical patterns and rotational frequencies. As observed experimentally by Lambourne &

Bryer (1961) Sarpkaya (1971), Faler & Leibovich (1977) and Escudier & Zehnder (1982) in tube

experiments, helical instabilities can develop in the lee of the vortex bubble due to strong

deceleration of the flow which favors centrifugal waves to become unstable.

This type of vortex breakdown is actually best interpreted as a secondary bifurcation of

the axisymmetric vortex breakdown structure and has been largely investigated in the last

years using the weakly non parallel assumptions, see Qadri et al. (2013) and Gallaire et al.

(2006) or in the fully non parallel regime, see Qadri et al. (2013) and Meliga et al. (2012a).

Furthermore Meliga et al. (2012a) have analyzed helical vortex breakdown in the framework of

weakly non-linear but fully non-parallel analysis carrying out a multi scale expansion yielding

an amplitude equation. Henceforth a deep understanding of the appearance of these helical

instabilities has been gained, and the stability analysis results of Gallaire et al. (2006) and

Meliga et al. (2012a) have been validated against the DNS provided by Ruith et al. (2003).

However, although many efforts have been devoted to the description of the initial axisym-

metric breakdown state, the transition between the columnar to the breakdown state is still not

fully understood. Several explanations have been proposed over the years (see Hall (1972)), but

so far none of them has been properly validated against experiments or DNS, and the present
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Chapter 5. Axisymmetric vortex breakdown

analysis is no different. In order to get some insight and new ideas about the fascinating

formation of the axisymmetric vortex breakdown, we have carried out axisymmetric DNS by

varying both the swirl number, S, and the Reynolds number Re. Motivated by the results of the

DNS, some explanations of the breakdown formation from the literature are revisited under a

new light and other possible mechanisms are proposed and discussed.

In contrast to Rusak’s approach (Wang & Rusak, 1996a,b), which is inviscid in nature, we

consider viscous flow from the beginning and do not aim to consider Re−1 as a small deviation

from inviscid flow. We also consider the swirling jet/wake as it evolves in free space and not in

a pipe.

5.2 Governing equations and numerical method
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Figure 5.1: (a) Azimuthal velocity and (b) axial vorticity of the Grabovsky and Berger vortex at
the inlet. Each line corresponds to a different value of the swirl parameter S as reported in the
legend.

In the following, we use standard cylindrical coordinates r , θ and x directions to investigate

the dynamics of a non-parallel Grabovski and Berger vortex with inlet condition

ur = 0, uθ(r ≤ 1) = Sr (2− r 2), uθ(r > 1) = S/r, ux = 1. (5.1)

Here ur , uθ and ux are the non-dimensional radial, azimuthal and axial velocity components

made nondimensional using the uniform oncoming velocity and the vortex characteristic core

radius as reference scales. The (a) azimuthal velocity and (b) axial vorticity of the vortex inlet

profile (5.1) are reported in Figure 5.1. As depicted in (b), the axial vorticity is concentrated in

the inner region and is null in the outer one. Thus, the vortex dynamics is governed by the
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Figure 5.2: Streamwise velocity of the axisymmetric Grabovsky and Berger vortex at Re = 1000
computed with Nek5000 for (a) S = 0.70, (b) S = 0.77, (c) S = 0.80 and (d) S = 0.90.
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(5.2)

where p is the nondimensional pressure. The steady solution of equations (5.2) is obtained by

time-marching the unsteady axisymmetric equations with the spectral element code Nek5000

(Fischer et al., 2008). The flow is considered steady when the L2-norm of the difference

between two consecutive solutions is less than 10−12. The computational domain is generally

0 ≤ x ≤ 100 and 0 ≤ r ≤ 10 (see section 5.7 for a discussion on the influence of the streamwise

extension of the domain). In addition to the inlet condition (5.1), a free-stress boundary

condition is imposed at the lateral boundary along with symmetry conditions at the axis.

In order to ensure convergence at high swirl number, the convective boundary condition
∂u
∂t +Uc

∂u
∂x = 0 has been implemented, where Uc is a nondimensional convective velocity which

was set to one.
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Chapter 5. Axisymmetric vortex breakdown

5.3 Numerical results

In Figure 5.2 the effect of the swirl number on the streamwise velocity field at Re = 1000

is shown. At (a) swirl S = 0.70, the flow field is very regular and only evolves slowly in the

x-direction due to viscous diffusion. When the swirl number is increased from S = 0.70 to

S = 0.77, the flow has a similar topology with the minimum of Ux that migrates upstream. In

contrast, at (c) S = 0.8 the velocity fields changes abruptly and the vortex flow is not colum-

nar anymore: the flow suddenly decelerates and accelerates several times before gradually

recovering a columnar evolution further downstream. A further slightly increase of the swirl

to (d) S = 0.90, leads to an even different flow configuration with one additional decelerat-

ing/accelerating pattern and the entire wave-field migrates towards the inlet section. Note

how the breakdown state in (c) happens without the appearance of counterflow. Thus, the

recirculation region with two stagnation points (like in (d)) that is invoked by some authors in

the literature to define the onset of vortex breakdown, appears only at a later stage.

In order to better understand the transition from the columnar to the breakdown state,

Figure 5.3: Streamwise velocity at the axis of the axisymmetric Grabovsky and Berger vortex as
a function of the swirl parameter. Each subplot refers to a different Reynolds number.
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5.4. Separation of the quasi-cylindrical equations

several simulations have been carried out varying the two nondimensional parameter of

the problem: the swirl parameter S and the Reynolds number Re. The results are reported

in Figure 5.3, where the streamwise velocity at the axis is shown and each line refers to a

different swirl number; each subplot corresponds to a different Reynolds number. For all the

Reynolds number considered, the flow appears very regular at low swirl number manifesting

a smooth deceleration and a sequent gradual acceleration. By increasing the swirl number,

the minimum of the streamwise velocity decreases and its x-position moves upstream. At a

certain swirl number, which depends on the Reynolds number, the transition from columnar

to breakdown state suddenly happens with the formation of a slow flow region close to the

inlet. By further increasing S, the flow periodically decelerates and accelerates and the velocity

eventually becomes negative generating recirculation regions. It is important to remark that

in these simulations the axisymmetry inhibits helical instabilities which are seen to occur

downstream the recirculation regions (Ruith et al., 2003).

Figure 5.4 reports the minimum of the streamwise velocity on the axis as a function of
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Figure 5.4: Evolution of the minimum axial velocity at the axis when increasing the swirl
parameter S and the Reynolds number Re.

S for various Reynolds number. The minimum velocity slightly decreases by increasing the

swirl parameter in the columnar regime. Then, an abrupt decrease is observed in correspon-

dence of the onset of the breakdown state. This variation becomes more intense at increasing

the Reynolds number and could suggest the possible presence of a saddle-node bifurcation

at higher Re, as observed by Meliga & Gallaire (2011) in the case of axisymmetric vortex

breakdown in a constricted pipe already at Re = 500.

5.4 Separation of the quasi-cylindrical equations

The DNS results reported in Figure 5.3 are now shown in Figure 5.5 by grouping them is

subplots according to the swirl number, S. Hence, in a given subplot, each line corresponds to

a different Reynolds number. It is seen that at high Reynolds number the transition happens
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between S = 0.77 and S = 0.78. Furthermore, at moderate swirl, see S = 0.75 or S = 0.77
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Figure 5.5: Streamwise velocity at the axis of the axisymmetric Grabovsky and Berger vortex as
a function of the Reynolds number. Each subplot refers to a different swirl number.

for instance, Ux (r = 0) is Reynolds dependent and seems to have a self-similar shape that is

only stretched when the Reynolds number is varied. In contrast, at higher swirl number (see

S = 0.85) the wavy vortex flow does not manifest a significant dependence on the Reynolds

number with a typical wavelength between consecutive deceleration regions that is observed

for Re > 500.

This scenario is reversed if the x-coordinate is rescaled with the Reynolds number, as in

Figure 5.6. In this case, the curves at moderate swirl number overlap, especially at higher

Reynolds number, whereas at high swirl number the curves do not collapse anymore. This

observation can be explained by recalling that the flow before the onset of the breakdown

state varies only gradually in the axial direction and the axial gradients are small compared

with the radial gradients. Thus, the pre-breakdown flow can be calculated by imposing the
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Figure 5.6: As in Figure 5.5 but the x-direction is rescaled by the Reynolds number.
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(5.3)

This system of equations is referred to as quasi-cylindrical equations since the streamsurfaces

of its solutions are approximately cylindrical (Batchelor, 1964; Hall, 1972). Note that the
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Figure 5.7: Pre-breakdown state (left picture), that follows the boundary layer scaling (x/Re),
and post-breakdown solution (right picture), with a typical wavenumber independent from
the Reynolds number. The central pictures refer to the transition state at intermediate swirl,
corresponding to the on-set of vortex breakdown.

Reynolds number dependence in equations 5.4 vanishes by rescaling

x → x/Re, ur → Reur . (5.4)

This means that the Reynolds dependence of the solution of equations can be factorized and

the solution at a certain Reynolds number is simply obtained by rescaling x and ur according

to the transformation (5.4), in this way explaining the curves collapse in Figure 5.6.

From the results of the DNS, we can conclude that vortex breakdown occurs when the

boundary layer scaling is violated. More precisely, the vortex breakdown can be probably ex-

plained as a transition between a columnar solution which is self-similar when the streamwise

direction is scaled with the Reynolds number (x/Re) and a flow state that supports axisym-

metric waves, whose wavenumber does not depend on the Reynolds number, see Figure 5.7.

This observation is in line with Hall (1972) who explained vortex breakdown as the fail-

ure of the quasi-cylindrical equations. Indeed, when the swirl number exceeds a certain

value (namely S = 0.77), not only the axial gradient become important invalidating the quasi-

cylindrical equations, but more importantly the solution ceases to exist. Henceforth Fig-

ure 5.8(a) shows how the minimum Ux (r = 0) computed through the quasi-cylindrical equa-

tions (blue line), is in good agreement with the real value of Navier-Stokes equations (black

line) until S = 0.77. Then, for larger swirl parameter, equations (5.4) breaks down and no

solution is found. This behavior has a strong analogy with the separation of a two-dimensional

boundary layer where the boundary layer equations are not solvable when the adverse pressure

gradient becomes too large (Falkner & Skan, 1930; Landau & Lifshitz, 1987).
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5.4. Separation of the quasi-cylindrical equations

Figure 5.8: In (a) the minimum of the axial velocity at the axis for Re = 200 from DNS (black
line) is compared with the results of the quasi-cylindrical equations (blue line). In (b) the DNS
data (black line) are shown against the modified quasi-cylindrical equations (see text).

5.4.1 What is the missing term in the quasi-cylindrical equations?

Interested in the failure of the quasi-cylindrical equation at high swirl, we decided in collabo-

ration with Pierre-Yves Lagrée to provide a better understanding of this phenomenon and to

propose a modification to the quasi-cylindrical equations in such a way to account for the

breakdown vortex state.

In the quasi-cylindrical equations (5.4), six terms have been neglected from the full Navier-

Stokes equations (5.2) on behalf of the boundary layer approximation. However, when the

quasi-cylindrical equations are seen to fail, Navier-Stokes equations still admit a flow solution

(breakdown state). We would like here to determine which of the six missing terms has to be

retained in the quasi-cylindrical equations in order to have a flow solution at high swirl.

To do so, we have developed a pseudospectral Chebyshev-Chebyshev solver with Newton-

Raphson algorithm to find steady solutions of the axisymmetric Navier-Stokes equations (5.2).

The code has been validated against Nek5000 results. By its structure, our in-house Navier-

Stokes solver allows to easily access and modify the governing equations. Hence, ad-hoc

numerical simulations have been carried out by dropping one after the other the six terms

from the Navier-Stokes equations and checking if a solution to the modified equations still

exists.

We have found that for a solution to exist at S > 0.77, it is necessary to include the convective

term in the radial momentum equations. On the other hand, the viscous terms are seen not to

be crucial for the existence of the solution. In other words, at high swirl the balance between

the radial pressure gradient ∂p/∂r and the centrifugal term u2
θ

/r is incorrect. In a similar

fashion to Lagrée et al. (2005) and Chouly & Lagrée (2012), we now propose reduced Navier

Stokes equations (or extended quasi-cylindrical equations) to correctly account for the vortex

breakdown state. The first set of reduced Navier-Stokes equations (RNS1) consists in adding
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to the quasi-cylindrical equations the nonlinear convective term in the radial momentum
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(5.5)

The solution to the reduced Navier Stokes equations (5.5) is seen to exist at swirl number

larger than S > 0.77 and well matches the solution of full Navier-Stokes equations (5.2). See for

instance Figure 5.8(b) where the minimum value of Ux (r = 0) at Re = 200 computed through

full Navier-Stokes equations (black line) is compared with the results from RNS1 (5.5) (red

line).

Moreover, we have found that only the term connected with the streamwise advection of the

radial velocity is important in the modified equations. Thus, a second set of reduced equation

(RNS2) is proposed
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which can be further simplified (RNS3) in the hypothesis of strong flow advection ux ≈ 1 as

follows
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(5.7)

The solution of the modified quasi-cylindrical equations RNS2 and RNS3 are seen to be in

good agreement with the results of the full equations for S > 0.77 (see magenta and blue lines

in Figure 5.8) pointing to the fundamental importance of the term ux
∂ur
∂x in the on-set of the

vortex breakdown state which is strongly non-parallel.
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5.5. Possible linear mechanisms

5.5 Possible linear mechanisms

5.5.1 Local analysis: standing waves and subcritical state

Figure 5.9: Frequencies ωr versus streamwise wavenumber k of the axisymmetric viscous
eigenmodes for (a) S = 0.78, Re = 1000, x = 35 and (b) S = 0.78, Re = 2500, x = 60. The
grayscale shows the damping rate ωi . In a) the flow is supercritical since the group velocity
∂ωr /∂k is always positive whereas in b) the flow supports upstream-propagating waves (see
inset) and is subcritical.

During the ′60s and ′70s several interpretations of vortex breakdown based on the local

stability properties have been proposed. Squire (1960) interpreted the vortex breakdown state

as originated by inviscid standing waves over a base-state. He found three swirl distributions

that support standing waves when the swirl velocity is larger than the axial flow. However, in

the experiment of Sarpkaya (1971) the breakdown state with swirl velocity less the axial one

was observed, thus invalidating Squire’s criterion. Moreover, Benjamin (1962) pointed out

that the group velocity of Squire’s standing waves was directed downstream and could not be

associated with the recirculation region observed in the experiment. Then Benjamin proposed

an explanation based on the existence of a transition between a supercritical flow region

which cannot support standing waves to a subcritical region which can. This criterion has an

evident analogy with the phenomenon of hydraulic jump which is associated with an abrupt

variation of the water-air freesurface (Rayleigh, 1914). Nevertheless, Benjamin’s proposal does

not offer a prediction of the occurrence or position of the breakdown and no validation against

experiments or DNS has been showed. It has to be remarked that Benjamin’s argument on

the existence of a region of subcritical flow implies that the flow supports wavepackets with

zero group velocity (Fig. 5.9(b)). This has strong analogy with the absolute stability criterion of

Huerre & Monkewitz (1990) although it can not be strictly applied here because the waves are

always weakly damped (ωi < 0).

Here, we have investigated the local stability properties of the swirling flow solutions ob-

tained in our DNS. In particular, we are interested in the axisymmetric viscous local modes

u(x,r, t ) = ûei (kx−ωt ), (5.8)
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with real wavenumber k and complex frequency ω. See chapter 2 and Fabre et al. (2006) for

more details on the notation and methods to compute numerically the dispersion relation.

Figure 5.9(a) displays the real frequency ωr computed for S = 0.78 and Re = 1000 at the stream-

wise position where the minimum of the streamwise velocity is observed (x = 35). The wave

phase velocity, ωr /k, and group velocity ∂ωr /∂k are always positive, meaning that no standing

waves are supported by the flow (Squire’s criterion) and that the vortex is locally supercritical

in the sense of Benjamin. Moreover, the damping rates ωi , which are shown by the grayscale,

are always negative, meaning that these supercritical waves decays in time. In Figure 5.9(b)

the same quantities are shown in the case of S = 0.78 and Re = 2500 at the streamwise position

x = 60. As also depicted by the inset, a set of waves with negative group velocity exists: the

flow is subcritical because it supports upstream-propagating waves. Furthermore, the phase

velocity is nill at k = 0.4 (standing wave) and a zero group-velocity is observed at k = 0.22.

However, as indicated by the grayscale all waves are stable since ωi < 0.

The local stability analysis presented above for two representative cases, has been carried

Figure 5.10: The subcritical flow regions are shaded by red rectangles. Two values of swirl are
considered, namely S = 0.77 (left column) and S = 0.78 (right column), for increasing values of
Reynolds number: Re = 1000, 1100, 1500, 2500.
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out for several streamwise positions and Reynolds numbers, see Figure 5.10. Since the tran-

sition to the breakdown state at high Reynolds number seems to happen for 0.77 < S < 0.78,

we have restricted ourselves to S = 0.77 (left column) and S = 0.78 (right column). The red

rectangles over the streamwise velocity profile distinguish subcritical flow regions from the

rest of the flow domain that is supercritical. In the range of Reynolds number investigated, the

flow field is seen to be everywhere supercritical at S = 0.77. On the other hand, a narrow region

of subcritical flow is present for S = 0.78 at Re = 1100 which increases its elongation when the

Reynolds number is increased. Specifically, a second subcritical region appears at Re = 2500

in correspondence of a second flow deceleration region. Hence, it is seen that Benjamin’s

argument of a super/subcritical transition is correctly correlated with the bumpy breakdown

solution. However, it does not seem to yield a prediction on the critical swirl parameter and

breakdown position and a quantitative comparison on the streamwise wavenumber has not

been possible. Moreover, it is not possible to conclude if the super/subcritical transition is the

mechanism or a consequence (or both) of the breakdown state.

5.5.2 Global analysis: instability

Rather than a local stability analysis, we investigate now the global stability properties of the

columnar and breakdown solutions. Let consider axisymmetric incompressible Navier-Stokes

equations and let make them nondimensional by using the freestream velocity U∞ and the

characteristic vortex radius. In vectorial form

∂u

∂t
+u ·∇u =−∇p + 1

Re
Δu, ∇·u = 0. (5.9)

with inlet condition

ur = 0, uθ(r ≤ 1) = Sr (2− r 2), uθ(r > 1) = S/r, ux = 1. (5.10)

By defining the state vector q = (u, p), the system of equations (5.25) together with boundary

conditions can be written as

N (q,S) = 0. (5.11)

In order to study the stability at a given swirl number S0 we expand the flow field q as

q ∼ q0 +εq1(t ) (5.12)

where q0 is the base state and εq1 is the axisymmetric unsteady perturbation of size ε. By

injecting the expansion (5.12) in the governing equations (5.10) at leading order we retrieve

the steady nonlinear Navier-Stokes equations at swirl S = S0

ε0 : N (q0,S0) = 0. (5.13)
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Figure 5.11: In the central plot the frequency, ωr , and the growth rate, ωi , of the least stable
eigenmode at Re = 1000 is shown as a function of S. The outer pictures show the streamwise
velocity of the base-flow ux0 and of the least stable mode ux1 for swirl numbers: S = 0.770
(bottom-left), S = 0.780 (top-left), S = 0.785 (top-right), S = 0.789 (bottom-right).

This equation is satisfied by the steady nonlinear Navier-Stokes q0 which is obtained by DNS

and showed in the previous section. At the next order we have the global stability problem

ε1 : L (q0,S0)q1 = 0 (5.14)

where L is the Jacobian, i.e. the linearized operator ∇qN . Since the base flow is axisymmetric,

q1 takes the form of normal modes

q1 = q̂1eiωt , (5.15)

where ω is complex and its real part, ωr , is the frequency of the perturbation whereas its

imaginary part, ωi , is the growth rate. Thus, the first order system (5.14) can be rewritten as an

eigenvalue problem

ε1 : (iωB−A (q0,S0))q̂1 = 0, (5.16)
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5.6. Possible nonlinear mechanisms

where ω is the eigenvalue and

A (q0,S0) =
[
∇() ·u0 +u0 ·∇()−Re−1Δ ∇

∇T 0

]
, B =

[
I 0

0 0

]
. (5.17)

Figure 5.11 reports the frequency and growth rate of the least stable mode as a function of

the swirl number for Reynolds number equal to Re = 1000. For all S the frequency is nill and

the damping rate is negative, this meaning that the mode is steady and stable. Hence, the

transition to a breakdown state, which occurs here for 0.77 < S < 0.79, can not be explained as

a supercritical bifurcation with the destabilization of steady mode.

However, it has to be remarked that the flow gets only weakly stable when the swirl is

increased and the least stable mode is very close to marginal stability (S = 0.785). Furthermore,

the eigenmode penetrates upstream into the domain for S close to a the critical swirl S0.

Indeed, in the range 0.775 < S < 0.785 the weakly stable mode is localized in the flow domain

at 20 < x < 40 which is the position of onset of the breakdown. Hence, the linear mode can not

explain the breakdown state but is probably closely connected to it.

5.6 Possible nonlinear mechanisms

5.6.1 Weakly nonlinear resolvent: a regular asymptotic expansion approach

Let now scale ur and ux in the axisymmetric Navier-Stokes equations by the freestream velocity

U∞ and uθ by the swirl velocity SU∞. In vectorial form we have

/u ·∇u−S2
u2
θ

r
er︸ ︷︷ ︸

u·∇u

=−∇p + 1

Re
Δu, ∇·u = 0. (5.18)

where the swirl parameter only appears in the centrifugal term which is written explicitly.

Thus, the swirl dependence disappears in the inlet condition which reads

ur = 0, uθ(r ≤ 1) = r (2− r 2), uθ(r > 1) = 1/r, ux = 1. (5.19)

By defining the state vector q = (u, p), the system of equations (5.18) along with boundary

conditions can be written as

N (q,S) = 0. (5.20)

We now consider a certain swirl number S0 corresponding to a pre-breakdown state and we

aim to investigate the appearance of the breakdown state due to a small increase of the swirl

parameter

S = S0 +εΔS. (5.21)
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Figure 5.12: (a) Zero, (b) first, (c) second, (d) third and (e) fourth order streamwise velocity
according to the expansion (5.22)

In the framework of weakly nonlinear analysis, the flow field q is expanded as follows

q = q0 +εq1 +ε2q2 +O(ε3). (5.22)

At leading order we retrieve the nonlinear Navier-Stokes equations at swirl S = S0

ε0 : N (q0,S0) = 0. (5.23)

which is satisfied by q0 that has been obtained by DNS (see previous section). At the next

orders we get a hierarchy of non-homogeneous linear problems

ε1 : L (q0,S0)q1 = 2S0ΔS
u2
θ0

r
er ,

ε2 : L (q0,S0)q2 =
(
ΔS2

u2
θ0

r
+4S0ΔS

uθ0 uθ1

r
+S2

0

u2
θ1

r

)
er −0u1 ·∇u1,

ε3 : L (q0,S0)q3 =
(

2ΔS2 uθ0 uθ1

r
+2S0ΔS

u2
θ1
+uθ0 uθ2

r
+S2

0

uθ1 uθ2

r

)
er −0u1 ·∇u2 −0u2 ·∇u1

. . .

(5.24)

where L is the Jacobian, i.e. the linearized operator ∇qN . The unknowns q1, q2, q3, . . . are

determined by solving the associated linear system since the L is non-degenerate as discussed

above. Hence, at every order we compute a global resolvent calculation, see chapter 2 for more

details. Then, the flow solution at S = S0 +εΔS is obtained by summing up the contribution at
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the various orders according to eq. (5.22).

This weakly nonlinear analysis is here applied to the case of Re = 1000 and S0 = 0.78.

Figure 5.12 shows the axial velocity at (a) leading order (solution of Navier-Stokes equations)

and (b-e) at the next four orders (obtained by global resolvent). Note that the first oder solution

in Fig. 5.12(a) manifest a ’slow’ flow region at 5 � x � 25, that corresponds to the decelerated

region observed in the breakdown state at higher swirl number (see the plot for swirl number

S = 0.79 in Figure 5.5). Furthermore, in Fig. 5.12(b) and (c) two region of deceleration are

observed, similarly to the case of breakdown state at higher swirl number (S = 0.80 in Fig. 5.5).

Figure 5.13 reports the streamwise velocity on the axis at the swirl number S = S0 +εΔS = 0.79

computed with DNS (orange line) and the one obtained by the asymptotic analysis at fourth

order (blue line). Although the agreement is not satisfactory, a decelerated flow region is

present in the asymptotic solution which is at the same position of the one observed in the

DNS.

Figure 5.13: Streamwise velocity on the axis at Re = 1000 and S = 0.79 according to DNS
(orange line) and asymptotic analysis (blue line).

5.6.2 Weakly nonlinear stability: a compatibility condition approach

As for the weakly nonlinear resolvent, we consider axisymmetric incompressible Navier-

Stokes equations and we make them nondimensional by using the freestream velocity U∞ as

characteristic velocity scale for ur and ux and SU∞ for uθ, thereby the governing equations

read

/u ·∇u−S2
u2
θ

r
er︸ ︷︷ ︸

u·∇u

=−∇p + 1

Re
Δu, ∇·u = 0.

ur = 0, uθ(r ≤ 1) = r (2− r 2), uθ(r > 1) = 1/r, ux = 1 at x = 0.

(5.25)

We now consider a certain swirl number S0 corresponding to a pre-breakdown state and we

aim to investigate the appearance of the breakdown state due to a small increase of the swirl
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parameter

S = S0 +ε2ΔS (5.26)

In the framework of weakly nonlinear analysis, the flow field q is expanded as follows

q = q0 +εq1 +ε2q2 +O(ε3), (5.27)

and in the spirit of multiple scales, we also introduce the slow time scale T = εt .

At leading order we have the nonlinear Navier-Stokes equations at swirl S = S0

ε0 : N (q0,S0) = 0. (5.28)

which is satisfied by q0 that has been obtained by DNS (see previous section).

At first order we retrieve the linear global stability problem:

ε1 : L u1 = 0. (5.29)

As discussed in section 5.5.2, this problem has an eigenvalue with zero frequency and a small,

but non-zero, damping rate σ. The solution of equation (5.29) has the normal form

u = A(T )e−σt û1, (5.30)

where the amplitude A(T ) only depends on the slow time scale T and it has to be determined

at next order.

The second order consists in a non-homogeneous linear problem

ε2 : L u2 =−e−σt û1
∂A

∂T
−e−2σt û1 ·∇û1 A2 +2S0ΔS

v2
θ0

r
er . (5.31)

This equation is almost singular because it has an eigenvalue σ which is small. Thus, its

particular solution, which is given by the global resolvent, can be large. In particular, if

σ= εσ̃ the particular solution could be of the same order of the first order solution, in this

way violating the hypothesis of the asymptotic scheme. Henceforth, we need to impose a

compatibility condition in order to have a particular solution to (5.31) of the kind

u2 = e−σt û2 (5.32)

which is similar to the first order problem solution and that decays at large time. By substituting

this ansatz in equation (5.31) we have

ε2 : L û2 =−û1
∂A

∂T
−e−σt û1 ·∇û1 A2 +2S0ΔS

v2
θ0

r
eσt er , (5.33)
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and by recalling that σt = σ̃ εt︸︷︷︸
T

and that the forcing term in the right hand side (rhs) of

equation (5.33) now only depends on the slow time scale we have

ε2 : L û2 =−û1
∂A

∂T
−e−σ̃T û1 ·∇û1 A2 +2S0ΔSeσ̃T

v2
θ0

r
er . (5.34)

In order to have a solution to this equation, its rhs has to live in the image of the operator

L : this implies that the rhs has to be orthogonal to the adjoint space (Fredholm alternative).

Since the operator L has rank N −1 the adjoint space has dimension 1. Hence, the rhs has to

be orthogonal to the adjoint vector, u†, which satisfies L †u† = 0. So projecting eq. (5.34) on

the adjoint vector we get:

(u†,L û2)︸ ︷︷ ︸
=0

=−(u†, û1)
∂A

∂T
−e−σ̃T (u†, û1 ·∇û1)A2 +2S0ΔSeσ̃T (u†,

v2
θ0

r
er ). (5.35)

Thus an equation for the amplitude A(T ) is obtained:

∂A

∂T
+αe−σ̃T A2 +βΔSeσ̃T = 0 (5.36)

where,

α= (u†, û1 ·∇û1)

(u†, û1)
, β=−2S0

(u†,
v2
θ0
r er )

(u†, û1)
. (5.37)

Equation (5.36) admits a solution of the type A = ceσ̃T :

αc2 + σ̃c +βΔS = 0 (5.38)

which has a real solution for c if σ̃2 > 4αβΔS.

Finally, according to the expansion (5.27) the flow at S = S0 +ε2ΔS is asymptotic to

u(S) = u(S0)+εcû1 +O(ε2) (5.39)

where û1 is the eigenvector which is stable at order ε!

In other words the stable linear mode at S0 appears with finite amplitude at S = S0 +ε2ΔS

through a weakly non-linear mechanism. The basic idea behind this asymptotic expansion is

that the weakly stable mode that lives in the spectrum of the columnar solution is triggered

by the nonlinear term when S is large enough and σ is small enough. Hence, before the

eigenvalue gets marginally stable the mode manifests itself: this mechanism could explain the

reason why the transition to the axisymmetric breakdown state appears without a classical

linear instability mechanism. Note that the argument of a finite amplitude transition applies

well here because an increasing of the control parameter S is at first order a forcing term

synchronized with the weakly stable mode (both are steady). It is not the case for a weakly
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stable system such as the cylinder wake, where at Re < Rec the mode has a frequency ω and is

not sensitive to the steady forcing operated by the nonlinear term.

It has to be remarked that the formalism of global weakly nonlinear analysis, including

the Fredholm alternative, has been here originally applied to the case of weakly stable first

order problem (rather than marginally stable one). The same result can be obtained by using

the approach of Meliga et al. (2009) where the marginal stability of the first order problem is

formally recovered by defining a shift operator which translates the weakly stable eigenvalue

to marginal stability condition (ωi = 0).

This analysis has not been yet finalized and compared against DNS. The computation of the

coefficients (5.37), which requires global direct and adjoint calculations is an ongoing work.

5.7 Appendix: Domain sensitivity
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Figure 5.14: Streamwise velocity at the axis for (a) Re = 1000 and (b) Re = 2000 computed with
Nek5000. The line refers to domain size 0 < x < 100 and the circular markers to 0 < x < 200.

The sensitivity of the DNS results with respect to the streamwise domain extension has

been tested by carrying out simulations with different domain size with Nek5000. Figure 5.14

shows the streamwise velocity at r = 0 obtained by using an axial domain size of 100 (solid

lines) and 200 (dot markers) units for (a) Re = 1000 and (b) Re = 2000. The results are seen

to be insensitive to the domain size, apart for the case Re = 2000 and S = 0.80 where a slight
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difference is observed. Indeed, when the Reynolds number is increased the domain size has

to be increased accordingly. Note that the scaling law (5.4) satisfied by the quasi-cylindrical

solutions, suggest that the computational domain has to be increased in the x-direction

linearly with the Reynolds number.

5.8 Appendix: Batchelor boundary layer equations

According to Batchelor (1964) when the wake defect in the streamwise flow is small |ux−1|� 1,

the quasi-cylindrical equations (5.4) can be further simplified
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(5.40)

It follows that the dependence on Re and S in equations 5.40 and inlet condition

ur = 0, uθ(r ≤ 1) = Sr (2− r 2), uθ(r > 1) = S/r, ux = 1. (5.41)

vanishes by rescaling

x → x/Re, ur → S2Reur , ux → S2ux , uθ → SReuθ. (5.42)

This means that the Reynolds and swirl parameter dependence of the solution in the equations

can be factorized and that the solution at a certain Reynolds and swirl numbers is simply

obtained by rescaling x and u according to the transformation (5.42). Hence, if the solution

to the Batchelor boundary layer equations (henceforth BBL) is known is known for a certain

(S,Re) is then known for all S and Re. However, although the quasi-cylindrical equations well

approximate the DNS solution in their domain of validity (Figure 5.15(a)), the BBL solutions

differ significantly form the DNS curves especially at large S, see Figure 5.15(b). Therefore, the

BBL equations provide a computationally cheap solution which is accurate only when the

flow is weakly non-parallel (low swirl number).
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Chapter 5. Axisymmetric vortex breakdown

Figure 5.15: Streamwise velocity at the axis computed by (a) DNS (solid lines) and quasi-
cylindircal equations (dashed lines) and (b) DNS (solid lines) and Batchelor boundary layer
equations (dashed lines)
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6 The viscous torsional pendulum

6.1 Introduction

A torsional pendulum consists of a disk-like mass suspended from a thin rod or wire. When

the mass is twisted around the axis of the wire, the wire exerts a torque on the mass, tending to

rotate it back to its original position. If twisted and released, the mass will oscillate back and

forth periodically, and the system’s natural frequency can be controlled by accurately tuning

the oscillating mass and the restoring force exerted by the wire.

Due to its simple and regular dynamics, the torsional pendulum has been used in numerous

precision experiments in electrical science, biophysics, petrology, metallurgy, and various

other fields of endeavor (Gillies & Ritter, 1993). In particular, it is a mainstay instrument in

gravitational physics because it enables one to isolate and measure weak forces with a magni-

tude comparable with the background gravitational field of the earth (Gundlach & Merkowitz,

2000; Tan et al., 2015). Indeed, if well balanced, it is possible to place the Earth’s gravitational

force in an orthogonal relationship to the plane in which the signal of interest occurs. The

basic idea in these experimental methods is to study gravitational effects by measuring the

influence of masses external to the pendulum on its regular periodic motion.

Torsional pendula are also used in the watch industry as fundamental timing elements. For

instance the balance wheel that is the timekeeping device used in mechanical watches, is a pe-

culiar torsional pendulum where the restoring force is provided by a coiled spring rather than

a long twisted wire. The balance wheel and hairspring together form a harmonic oscillator,

which due to resonance oscillates preferentially at a certain frequency. The watchmakers have

made constant progress to ensure linearity of the spring even at large amplitude to ensure

both a regular time-beating and a sufficient period of operation.

In each of these settings, the motion of the torsional pendulum needs to be as regular as

conceivable. The presence of any damping source in the system can indeed bias and corrupt

the measurements or alter the perfect beating of a sophisticated swiss watch. Therefore,

depending on the application, mechanical frictions are conveniently suppressed or reduced

by using linear torsional springs, lubrication or bearings. However, once the mechanical

dissipation sources are dropped, another dissipation mechanism becomes dominant: the
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viscous friction exerted by the surrounding fluid on the oscillating mass. This dissipative

mechanism originates in the relative motion of the solid and the fluid that sets up viscous

stresses, which tend to drag the fluid to move with the disk and, as a consequence, prevent

the disk’s motion. As a result, the resulting damped motion of the disk becomes not trivial

because it depends on the complex motion of the fluid surrounding the disk.

The flow induced by an oscillating disk has been studied extensively since Stokes (1851),

who derived an asymptotic solution of the flow field and the torque at the disk’s surface that is

valid in the limit of high frequency and small amplitude of oscillation, so that the nonlinear

effects are neglected. The nonlinear correction to the oscillatory problem was first tackled

by Rosenblat (1959) who defined an unsteady inner shear layer at the disk’s surface and an

outer steady flow region. He reduced the Navier-Stokes equations to a set of one-dimensional

ordinary differential equations which correspond to the unsteady version of the classical

rotating disk equations solved by Von Karman (1921). By expanding the velocity and pressure

in powers of the amplitude, Rosenblat (1959) found an asymptotic solution that approximates

the azimuthal velocity and, consequently, the viscous torque at leading order. The same

problem has been then studied by Benney (1964), using a multiple scales technique valid over

the entire flow domain, while Riley (1965) carried out both the low and the high frequency

case by means of a matched asymptotic expansion.

Interested in its fundamental implications, we investigate here the motion of a torsional pen-

dulum consisting of an oscillating disk subjected to viscous friction. The full fluid-structure

problem is solved through numerical simulations by coupling the disk’s motion to the velocity

and pressure field of the fluid, governed by the Navier-Stokes equations. In contrast to clas-

sical linear damping theory, we uncover the existence of two different limiting behaviors in

dynamics of the system yielding to different scalings for the damping rate. This observation is

rationalized theoretically in the framework of boundary layer theory. The gained understand-

ing motivates us to introduce a simple phenomenological model for the viscous relaxation of

the torsional pendulum. This predictive model gives an analytic expression for the free decay

of the system that is compared with the results of the full numerical simulations.

6.2 Problem description and governing equations

Let consider a plane disk of radius R , height H and density ρd , that is surrounded by a fluid of

viscosity μ and density ρ. The disk can only rotate about its axis and is connected to a torsional

spring exerting a restoring torque, τk , on the disk. The spring is assumed to be ideal, meaning

that the torque, τk , is proportional to the twisting angle, θ, through the elastic coefficient k,

τk =−kθ. (6.1)

Equation (6.1) is the angular version of the Hooke’s law. Thus, the disk’s position in time is

described by a single Lagrangian coordinate, θ(t), that is the angle of twist of the disk from

its equilibrium position. When the disk is twisted by an angle θm and then released, the

spring exerts a torque on the mass tending to rotate it back to its equilibrium position. As a
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6.2. Problem description and governing equations

Figure 6.1: Schematic of the torsional pendulum: a thin disk of radius R and thickness H is
connected to torsional spring with elastic constant k. The angular distance with respect to the
equilibrium position (dashed line) is denoted θ.

consequence, the disk oscillates back and forth in the plane perpendicular to its axis, and the

potential energy initially stored in the torsional spring is periodically converted into kinetic

energy until dissipation brings the system at rest in the equilibrium position, θ = 0. Thus, the

motion of the torsion pendulum is described by Euler’s second law

I θ̈+kθ = τ f , (6.2)

where the dot symbol designates double derivation with respect to time and τ f is the resultant

torque exerted by external forces on the disk. The moment of inertia I depends on the mass

geometry and in the case of a disk it is equal to

I = π

2

H

R
ρd R5. (6.3)

Equation (6.2) is conveniently made nondimensional by using the inverse of the natural

frequency of the system, ω=

k/I , and the disk’s radius, R, as characteristic time and length

scales

θ̈+θ = ετ f , (6.4)

where from now all symbols refers to nondimensional quantities. The number ε in equa-

tion (6.4) depends on the aspect ratio of the disk, H
R , and on the density ratio, ρ

ρd
, according to

ε= 2

π

R

H

ρ

ρd
. (6.5)

In the absence of mechanical dissipation, the forcing term τ f in equation (6.4) corresponds

to the viscous torque exerted by the fluid on the disk that prevents the pendulum’s oscillations.

This term is given by the the integral on the disk surface, Γd , of the torque per unit surface
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Chapter 6. The viscous torsional pendulum

exerted at a given position r = (r,θ, z) by the local normal stress σ ·n

τ f =
(∮

Γd

−r∧ (σ ·n)dΓ

)
·ez , (6.6)

where n is the unit normal pointing outward the domain and ez is the unit normal aligned

with the axis of the disk, see Figure 6.1 . In particular the nondimensional normal stress, σ ·n,

writes

σ ·n =−pn+Re−1(∇u+∇T u) ·n, (6.7)

where Re is the Reynolds number based on the characteristic length and time scales, and

(u, p) are the velocity and pressure fields governed by the incompressible axisymmetric

Navier-Stokes equations

∂u

∂t
+u ·∇u =−∇p + 1

Re
Δu, ∇·u = 0 (6.8)

The system of equation for the fluid phase are complemented by the no-slip boundary condi-

tion at the disk’s surface

u = θ̇r eθ, on Γd , (6.9)

Then, the initial conditions (6.10) correspond to a starting motion from rest with an initial

twisting angle equal to θ(0) = θm

θ(t = 0) = θm , θ̇(t = 0) = 0

u(t = 0) = 0.
(6.10)

Hence, the problem is completely characterized by the following non-dimensional parameter

Re = ρ



k/I R2

μ
,

H

R
,

ρd

ρ
, θm . (6.11)

Numerical method

The system of equations (6.4) and (6.2), together with the coupling conditions (6.6) and (6.9)

are solved numerically. In particular, the oscillator equation (6.4) is rewritten as a first order

system, by introducing an additional scalar variable y :

ẏ =−θ+ετ f

θ̇ = y
(6.12)

The first order differential equations (6.12) are integrated numerically in time by using a

fourth order Runge-Kutta scheme. The axisymmetric Navier-Stokes equations in cylindrical

coordinates are solved by means of the spectral element solver Nek5000 by Fischer et al. (2008).
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6.3. A fluid-solid oscillator

The computational domain of size −1 < z < 1, 0 < r < 2 is discretized using 1940 elements.

Equations (6.2) and the no-slip boundary condition (6.9) are completed with the free-stress

boundary condition at the radial and vertical outer boundaries of the domain. Since we use

8th order polynomials, the total number of grid points is equal to 124160 and the time step is

kept fixed and equal to 5 ·10−4.

At each time step, equation (6.12) is solved, then the noslip boundary condition (6.9) is

updated according to the new rotational velocity of the disk, and the Navier-Stokes equations

are marched one time step forward. Then, the instantaneous torque τ f is calculated using

equation (6.6) and the new angular position of the disk is computed.

6.3 A fluid-solid oscillator
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Figure 6.2: (a) Angular position θ, (b) angular velocity θ̇ and (c) viscous torque τ f as a function
of time obtained through full numerical simulation of the fluid-structure system. The red dots
depict the local maxima in each cycle, as also shown in the insets.

Here we focus the oscillatory motion of a thin disk of aspect ratio H/R = 10−3, which is

heavy with respect to the surrounding fluid. The density ratio between the two is set equal to

ρd /ρ = 7000, which is a realistic value for a metal made disk in air, and the corresponding value
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Chapter 6. The viscous torsional pendulum

of ε in equation (6.4) is ε = 0.09. The spring constant, k, is such that the Reynolds number

is equal to Re = 1000. The motion is initiated by twisting the disk of an angle θm = 2π, and

then releasing it without any initial spinning. The following motion oscillating motion is

determined through full numerical simulation of the governing equations introduced in the

previous section.

The resulting twisting angle, θ, and the corresponding angular velocity, θ̇, are reported in

Figure (6.2) (a) and (b) as a function of the non-dimensional time, t . The free decay of the

disk motion appears very regular, as also pointed out by the insets, and the disk periodically

oscillates in a sinusoidal fashion. The motion is slowly damped by the viscous torque, see

Fig. (6.2) (c), and after 1000 nondimensional time units (corresponding to 160 cycles) the

oscillation amplitude is roughly equal to 2% of the initial one, θm = 2π.

In order to extract quantitative measure on the time variation of the frequency, on the
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Figure 6.3: (a) Oscillation frequency, ωn , (b) phase lags, Δϕ(θ̇,θ), Δϕ(θ̇,τ f ), and (c) damping
rate, γn , as a function of the oscillation amplitude, θn .

phase shift and on the damping rate of the disk motion, we define θn , θ̇n and τ fn as the local

maximum of the nth period of the signals θ(t ), θ̇(t ) and τ f . Those quantities are depicted by

the red circles in Figure (6.2) (a-c). We refer to time values corresponding to θn , θ̇n and τ fn as

t [θn], t [θ̇n] and t [τ fn ], respectively. Therefore, the maxima θn are a measure of the instanta-

neous amplitude of the oscillation, and the inverse of the time distance of two consecutive

peaks (θn+1, θn) measures the frequency

ωn = 2π

t [θn+1]− t [θn]
. (6.13)

Figure 6.3(a) shows the nondimensional oscillation frequency ωn (linear scale), as a function
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6.4. Nonlinear and linear regimes

of the oscillation amplitude θn (logarithmic scale). The frequency is roughly 1, meaning that

the disk oscillates constantly at the natural frequency of the undamped system,



k/I , and

that no significant added mass effect is active. More precisely, a small negative frequency shift

of order 0.3% is observed at small amplitude with respect to the frequency at the beginning of

the motion.

We now turn the attention towards the phase shift between the twisting angle, θ, the twisting

velocity, θ̇, and the viscous torque, τ f . The phase lag, Δϕ, between two time signals f (t ) and

g (t ) is defined as

Δϕn( f , g ) = t [ fn]− t [gn]. (6.14)

Hence, the phase lag between the twisting angle and twisting velocity, Δϕ(θ̇,θ), and between

the twisting velocity and the viscous torque, Δϕ(θ̇,τ f ), are reported in Fig. 6.3(b) versus θn .

The quantity Δϕ(θ̇,θ) does not depend on the oscillation amplitude and is equal to π/2,

which is the phase shift between the angle and the angular velocity of a linear pendulum. In

contrast, Δϕ(θ̇,τ f ) is roughly equal to π at the beginning of the motion (large amplitudes)

and then progressively relaxes reaching a plateau at 3π/4 for small amplitude. Note as when

Δϕ(θ̇,τ f ) =π, the viscous torque is in phase opposition with the twisting angle, as typical in a

linearly damped oscillator.

In order to have a quantitative measures of the dissipative effect of the viscous torque

exerted on the disk by the surrounding fluid, we compute the averaged damping rate over one

cycle γn , that is defined as the ratio between two consecutive amplitude peaks (θn+1, θn)

γn =− log(θn+1/θn)

tn+1 − tn
. (6.15)

The damping rate reported in Figure. 6.3(c), is seen to depend on the oscillation amplitude:

it is higher at large amplitudes and decreases to a constant value when the amplitude gets

smaller. The logarithmic scale for abscissa and ordinata, reveals that γ is roughly proportional

to the square root of the amplitude when θn � 1.

From out numerical results, we can conclude that two limiting regimes are observed: a (i)

high amplitude regime where the damping rate γn ∝
√
θn and the phase lag Δϕ(θ̇,τ f ) ≈π and

a (ii) low amplitude regime with uniform damping rate and Δϕ(θ̇,τ f ) ≈ 3π/4. Between this two

regimes a transitional regime exists corresponding to intermediate amplitudes (approximately

0.8 < θn < 2).

6.4 Nonlinear and linear regimes

In order to get some insight on the high and low amplitude regimes, we start by writing the

dimensional Navier-Stokes equations

∂u

∂t
+u ·∇u =− 1

ρ
∇p +νΔu, ∇·u = 0. (6.16)
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Chapter 6. The viscous torsional pendulum

Let scale the equations as follows

uθ =Uθũθ, ur =Ur ũr , uz =Uz ũz , p = PP̃ , t =ω−1t r = Rr̃ , z = δz̃, (6.17)

where the symbol˜designates scaled variables and Uθ, Ur , Uz and P are the characteristic az-

imuthal, radial and vertical velocities and pressure. In particular, the characteristic azimuthal

velocity is set as

Uθ = θ∗ωR, (6.18)

where θ∗ is the typical oscillation amplitude. When the kinematic viscosity, ν=μ/ρ, is small,

the flow is potential everywhere except in a thin layer near the surface of thickness δ where

the flow is rotational and viscous effects dominate. In the boundary layer spirit, δ is much

smaller than the size of the body that scales with R , i.e. δ/R � 1. By inserting the gauges (6.17)

in equation (6.16), we can determine a scaling law for the unsteady, convective, pressure and

viscous terms

∂u

∂t
∼ θ∗ω2R2, u ·∇u ∼ θ∗

2
ω2R,

1

ρ
∇p ∼ θ∗

2 ω2R2

δ
, νΔu ∼ θ∗

νωR

δ2 . (6.19)

See the appendix for a detailed derivation of these scaling arguments. It follows that two

limiting cases are possible depending on the size of the oscillation amplitude θ∗.

6.4.1 Low amplitude model

In the low amplitude regime

θ∗ � 1 (6.20)

the nonlinear term is smaller than the unsteady term which has to be balanced by the viscous

term close to the wall. This dominant balance sets the penetration depth of viscous effects in

the flow

ω2θ∗R = νωRθ∗

δ2 → δ∼ δs =
√

ν

2ω
(6.21)

which is the so-called Stokes layer. The pressure adapts in order to have a contribution at

leading order and scales as

P∗

ρδ
=ω2θ∗R = → P∗ =ω2θ∗Rρδs . (6.22)

In contrast, the convective term is of higher order

ω2θ∗
2
R �ω2θ∗R → θ∗ � 1. (6.23)
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Figure 6.4: Instantaneous velocity profiles in the laboratory frame of a) Stokes flow (oscillating
disk) and b) Von Karman solution (rotating disk). In a) the fluid’s motion is circular near the
disk and the azimuthal velocity, uθ, decays at a distance δS (Stokes layer, eq. (6.21)) far from it.
In b) the fluid near the disk spirals outwards inducing a negative axial velocity flux toward the
disk that reaches a finite value at a typical distance equal to δE (Ekman layer, eq. (6.31)) .

In this regime the governing equations are linear, and in the limit of large radius disk and

large Reynolds number, an analytical solution of the governing equations and boundary

conditions is available. Indeed, this problem is formally equivalent to the Stokes flow over

a disk oscillating about its axis with twisting angle θ(t ) = θ∗ cos(ωt ) (Stokes, 1851; Landau &

Lifshitz, 1987). The flow streamline are circular near the disk and the penetration length of the

motion is given by the Stokes layer, δS ,

ur = 0, uθ/r =−ωθ∗e−z/δS sin(ωt − z/δS), uz = 0, (6.24)

see Figure 6.4(a) for a schematic representation. The corresponding nondimensional viscous

torque exerted by the fluid is equal to

τ f =
πθ∗


Re
cos(t −π/4). (6.25)

Note as according to this analytical solution, which corresponds to the leading order torque

in Rosenblat (1959), the phase lag between the viscous torque (6.25) and the twisting velocity,

θ̇, is equal to 3π/4, in line with what observed in the low amplitude regime in the numerical

simulation, see Figure 6.3(b). By using standard trigonometry, the term θ∗ cos(t −π/4) can be

rephrased as a function of the twisting angle and twisting velocity

θ∗ cos(t −π/4) = cos(π/4)θ(t )− sin(π/4)θ̇. (6.26)

Thus, equation (6.25) together with the relation (6.26) provides an analytical expression for

the instantaneous viscous torque valid in the low amplitude limit. By substituting eq. (6.25) in

the governing equation (6.4) we obtain

θ̈+θ = 2εσ(θ− θ̇) (6.27)
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where the coefficient σ is equal to σ=π/



8Re. By defining θl the initial twisting angle of the

linear regime we have the analytical solution

θ(t ) = θl e−εσt cos
(
t
√

1−2εσ−ε2σ2
)

. (6.28)

Note as the only term in eq. (6.27) connected to the damping is 2εσθ̇, which also provides

a second order frequency shift proportional to ε2σ2. In contrast, the term 2εσθ does not

contribute to the energy dissipation, but sets the dominant frequency shift since it scales as

εσ.

Figure 6.5 shows the comparison between the full numerical simulation and the low
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Figure 6.5: Comparison between full numerical simulation (solid line) and low amplitude
model (dot-dashed line) at Re = 1000. The (a) oscillation amplitude and the (b) viscous torque
are shown as a function of time.

amplitude model (6.28). Since the model is only valid for small amplitude the comparison is

carried out for large time (t > 1900) when the amplitude of oscillation is of order 10−3. More

precisely, the initial amplitude condition, θl , in equation (6.28) is set equal to the twisting angle

from DNS at t = 1900. According to eq. (6.28) the oscillation amplitude attenuates following

an exponential decay, in agreement with what observed in the numerical simulations in the

low amplitude regime (section 6.3). Furthermore, Figure 6.6 reports the damping rate versus

oscillation amplitude θn obtained through full numerical simulation (solid line) and the one

of the low amplitude model (point-dashed line)

γL AM = εσ. (6.29)

In the low amplitude regime (small θn) the deviation between the two is about 7.5% which

is attributed to the fact that the analytical expression for the torque (6.25) is deduced by

invoking large Reynolds number. In order to verify this hypothesis, we have carried out further
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Figure 6.6: Instantaneous damping rate as a function of the oscillation amplitude in logarith-
mic scale at Re = 1000. The solid line refers to the results from the numerical simulations,
whereas the dot-dashed and dashed lines refer to damping rate of the low and high amplitude
models.

numerical simulations in the low amplitude regime (θm = 2π/100) at higher Reynolds number.

Figure 6.7 shows the percentage deviation between the low amplitude model damping rate

γL AM = επ/



8Re, and the one obtained through numerical simulation, γDN S . The accuracy of

the low amplitude model on the damping rate increases at higher Reynolds number, reaching

a deviation of 2% at Reynolds Re = 20000.
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Figure 6.7: Relative error of the damping rate of the low amplitude model, γL AM , with respect
to the value from full numerical simulations, γDN S , as a function of the Reynolds number, Re.
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6.4.2 High amplitude model

In the high amplitude regime

θ∗ � 1, (6.30)

and the nonlinear term dominates because proportional θ∗
2
. Close to the surface the noslip

boundary condition imposes the balance between the convective term and the viscous term,

setting in this way the depth of penetration of the viscous effects

ω2θ∗
2
R = νωRθ∗

δ2 → δ∼ δE =
√

ν

θ∗ω
(6.31)

which corresponds this time to the Ekman layer. The pressure adapts to play in the game with

viscous and the convective terms

P∗

ρδE
=ω2θ∗

2
R = → P∗ =ω2θ∗

2
RρδE . (6.32)

In contrast, the unsteady term results negligible

ω2θ∗R2 �ω2θ∗
2
R → 1 � θ∗, (6.33)

meaning that the velocity varies only slowly with time. The solution therefore asymptotically

matches that of a quasi-steady flow the disk would generate by rotating uniformly at the

instantaneous rotational speed.

This result is in agreement with Rosenblat (1959) and Benney (1964) who suggested that the

low frequency regime is indeed well approximated by the quasi-steady Von Karman flow

ur /r =−1

2
Ω

dh

dζ
, uθ/r =Ωg (ζ), uz =



Ωνh(ζ). (6.34)

This self-similar solution was found by Von Karman (1921) who sought for a flow such that

ur /r , uθ/r and uz are all functions of z alone, see Figure 6.4(b). With this ansatz, the full fluid

problem reduces to a set of two coupled ODE, that is satisfied by g (ζ) and h(ζ) which are

function of the self-similar variable ζ= z/δE (δE is the Ekman layer, see eq. (6.31)). Note as in

the quasi-steady Von Karman solution, the constant disk’s angular velocity Ω is set equal to

the instantaneous rotational velocity θ̇.

Furthermore, Riley (1965) probed asymptotically that the quasi-steady Von Karman flow

corresponds to the leading order solution in the low frequency regime, except in the neighbor-

hood of a turning point when the angular velocity inverts its sign. At that instant, unsteady

terms become comparable to the viscous and inertial terms, and the equations have to be

properly expanded in time around θ̇ = 0 to account for the time-boundary layer. However, as

shown by Schippers (1979), this time nonuniformity weakly affects the shear stresses on the
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disk and the instantaneous torque well compares with the one of Von Karman,

τ f =−0.616π

Re

θ̇3/2. (6.35)

Therefore, the expression (6.35) is here used in our problem to model the viscous torque in

the high amplitude regime. Note as there is not phase lag between the viscous torque (6.35)

and the twisting velocity, θ̇, accordingly with what observed in the high amplitude regime in

the numerical simulation, see Figure 6.3(b). By substituting eq. (6.35) in the disk’s governing

equation (6.4) we obtain

θ̈+θ =−εαθ̇|θ̇|1/2, (6.36)

where the coefficient α is equal to 0.616π/



Re and the absolute value is introduced to conve-

niently treat the negative twisting velocity. Even if equation (6.36) does not have a closed-form

analytical solution, still an asymptotic solution can be obtained by using the method of multi-

ple scales (Nayfeh, 2008). Thus, in the limit of small ε (here equal to 0.091), we expand θ(t)

asymptotically as

θ = θ0(t ,T )+εθ1(t ,T )+O(ε2), (6.37)

where T is the slow time scale T = εt .

At leading order ε0, the linear oscillator equation is recovered:

θ̈0 +θ0 = 0, (6.38)

where the dot stands for a derivative with respect to the fast time t . This equation admits

oscillatory solutions of the form

θ0 = 1

2
a(T )ei [t+β(T )] +c.c., (6.39)

where the phase β and the nondimensional envelope a depend on the slow time scale T and

c.c. designates the complex conjugate.

At order ε, the nonlinear term, αθ̇0
∣∣θ̇0

∣∣1/2
, enters as a forcing term to the oscillator equation,

together with the slow time modulation θ̇′0:

θ̈1 +θ1 =−2θ̇′0 −αθ̇0
∣∣θ̇0

∣∣1/2
. (6.40)

The prime sign denotes derivation with respect to the slow time scale T . The first term on the

rhs is synchronized with the sloshing motion as it oscillates at the natural frequency

2θ̇′0 = i (a′ + i aβ′)ei (t+β) +c.c. (6.41)
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In contrast, the nonlinear term is not purely harmonic, but through a Fourier series the

components oscillating at the natural frequency may be isolated

θ̇0|θ̇0|1/2 = a3/2(−sin(t +β))|− sin(t +β)| = a3/2
∞∑

n=−∞
dneni (t+β) = a3/2i c1ei (t+β) +c.c.+N ST

(6.42)

where N ST gathers the other Fourier modes. Thus, the Fourier coefficient of the first harmonic

oscillating at the natural frequency reads

i c1 = d1 = 1

2π

∫2π

0
(−sin(t +β))|− sin(t +β)|e−i (t+β)dt = 0.4577i . (6.43)

In order to avoid secular terms at first order, the resonant terms in the rhs of equation (6.40)

have to cancel out, yielding to the amplitude equation:

i [a′ +αa3/2c1]+ [−aβ′] = 0. (6.44)

By splitting real and imaginary parts we get,

a′ +αa3/2c1 = 0, β′ = 0 (6.45)

with solution

a(t ) =
(
a−1/2

0 + αc1

2
εt
)−2

, β=β0, (6.46)

where the constants a0 and β0 are set by the initial condition. Thus, in the case of stating

motion from rest with a twisting angle θm , we have a0 = θm , β0 = 0 and the asymptotic solution

reads

θ(t ) =
(
θ−1/2

m + εαc1

2
t
)−2

cos(t ). (6.47)

Note as a small frequency shift is present between the high amplitude asymptotic solu-

tion (6.47) and the one obtained at small amplitudes, equation (6.28). This frequency shift is

equal to εσ= 0.3% at leading order, that is in agreement with the frequency shift observed in

the DNS and reported in Figure (6.3). The asymptotic solution (6.47) is now compared to the

full numerical simulation in the high amplitude regime. Figure 6.9 shows (a) the twisting angle

and (b) the torque exerted by the surrounding fluid on the disk as a function of the time. Both

quantities are well captured by the high amplitude model (6.47). In addition, the attenuation

rate of the oscillating motion is given by the slow time amplitude (6.46) that results form our

asymptotic analysis. More precisely, the instantaneous damping rate according to the high

amplitude model is equal to

γH AM (t ) =−d
(
log(a(t )/θm)

)
dt

= εαc1

√
a(t ). (6.48)
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Figure 6.8: Comparison between full numerical simulation (solid line) and high amplitude
model (dashed line) at Re = 1000. The (a) oscillation amplitude and the (b) viscous torque are
shown as a function of time.

and is reported by a dashed line in Figure 6.6. It results that the model (6.47) correctly cap-

tures the dependence of the damping rate on the oscillation amplitude a(t ) observed in the

numerical simulations and discussed in section (6.3).

6.4.3 A phenomenological model for the amplitude decay

The low and high amplitude models described above are seen to well describe the disk’s

motion in their domain of validity and are complementary. Therefore, a general predictive

model for the free decay of a torsional pendulum starting from rest is here proposed.

As shown in Figure (6.6), the instantaneous damping rate computed by full numerical

simulations (6.15) is well estimated by the upper envelope of the low and high amplitude

model damping rates

γM (t ) = max(γL AM ,γH AM ) = max
(
εσ, [(εαc1

√
θm)−1 + t/2]−1

)
. (6.49)

If follows that the twisting angle decay θn can be approximated by an exponential decay with

a non-uniform damping rate of the type

θn = θme−
∫
γM (t )dt . (6.50)

Figure 6.9 shows by circular symbols the oscillation amplitude θn computed with the phe-

nomenological model (6.50) that well compares with the twisting angle relaxation computed

by DNS (solid line). It has to be remarked that no tunable parameter is present in the model
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equation (6.48).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

Figure 6.9: Free amplitude decay in time of the torsional pendulum at Re = 1000. The predic-
tion of the analytical model (6.50) (circular symbols) is compared with the results of the full
numerical simulations (solid line).

6.5 Conclusions

In this work the free decay of a torsional pendulum submitted to viscous friction has been

investigated. The system is constituted by a thin disk that is connected to a torsional spring

and surrounded by a viscous light fluid.

The full fluid-structure problem is solved numerically by coupling the second Euler’s law,

that prescribes the disk’s rotation, to the Navier-Stokes equations, that governs the fluid’s

motion. Specifically, the disk rotational speed sets the fluid velocity at the disk’s surface

whereas the viscous stresses appear as a forcing term in the Euler’s equation for the disk. From

our numerics, we observe that even if the frequency of the damped system is almost uniform

in time and close to the natural frequency of the system, a small frequency shift exist between

high and low amplitudes. The phase lag between the twisting velocity and the viscous torque

varies with time: it is equal to π, when the motion starts, and reduces to 3π/4 at later time.

Furthermore, the instantaneous damping rate is seen to decrease proportionally to the square

root of the oscillation amplitude at the beginning of the motion, before reaching a constant

value.

This observations have been rationalized theoretically by writing boundary layer equations

in the vicinity of disk. Two limiting regimes have been distinguished, (i) a low amplitude linear

regime (corresponding to the final time motion decay) and (ii) a high amplitude quasisteady

nonlinear regime (early time dynamics). In both scenarios an analytical solution of the

viscous torque is available from literature that we have used to build a low and high amplitude

predictive models for the free decay of the motion. In the first case, the boundary layer

thickness corresponds to the Stokes layer and the resulting model equation can be solved

analytically: the system oscillates at a frequency close to the natural one with a phase lag

between viscous torque and rotational speed of 3π/4. It is seen to decay exponentially with a

166



6.5. Conclusions

uniform damping rate. In the second case, the boundary layer thickness corresponds to the

Ekman layer and the system is governed by a nonlinear equation that is solved asymptotically

by means of multiple scales method. In the high amplitude regime, the system oscillate at the

natural frequency of the system with a torque-velocity phase lag that is equal to π. Importantly,

the instantaneous damping rate is found to be proportional to the square root of the oscillation

amplitude.

Motivated by the satisfactory agreement between the full numerical solution and the low

and high amplitude models, we have then proposed a simple and general phenomenological

model for the free decay of a disk-torsional pendulum. The model is based on considering the

upper envelope of the instantaneous damping rates of the low and high amplitude models.

An analytical expression for the free decay of the disk torsional pendulum is given which well

predicts the results of the numerical simulations without any tunable parameter.

Appendix: Boundary layer on a rotating disk

In this section we derive the boundary layer equations in the case of a rotating disk and we

derive the scaling arguments (6.19). Let us consider the unsteady incompressible Navier-

Stokes equations in cylindrical coordinates for an axisymmetric flow

1
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(6.51)

and let scale them with the gauges defined in Equation (6.17). Form the continuity equation

we get a relation between the radial and axial characteristic velocities

Ur

R

1

r̃

∂r̃ ũr

∂r̃
+ Uz

δ

∂ũz

∂z̃
= 0 ⇒ Ur

Uz
= δ

R
. (6.52)

Let us write the azimuthal momentum equation

ωUθ
∂ũθ
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+ Ur Uθ

R
ũr
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+ UzUθ

δ
ũz
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(6.53)

The left hand side scales as UxUθ/δ and the dominant balance between the convective and

viscous term yields

UzUθ

δ
= νUθ

δ2 ⇒Uz = ν

δ
. (6.54)
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Then, by writing the momentum equation in the radial direction
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∂ũr

∂r̃
+ UzUr

δ
ũz
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(6.55)

we get a relation between Uθ and Uz

U 2
θ

R
= νUr

δ2 ⇒Uθ =Uz . (6.56)

By combining the results (6.54) and (6.56) we find that the Reynolds number, Re =UθR/ν, has

to be equal to the inverse of the small number ε= δ/R

Uθ =
ν

δ
⇒ 1 = ν

Uθδ
= 1

Re

R

δ
⇒ 1

Re
= ε. (6.57)

We turn now to determine the scaling law for the pressure. From the azimuthal momentum

equation (6.55) and the axial momentum equation
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∂2ũz

∂z̃2

]
(6.58)

it results that for the pressure to appear at leading order in the radial and axial momentum

equations it has to scale as P∗ = ρU 2
θ

.

As a result, the boundary layer equations for a rotating disk at leading order read
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(6.59)

from which it follows that

∂u

∂t
∼ωUθ, u ·∇u ∼ U 2

θ

R
,

1

ρ
∇p = U 2

θ

δ
, νΔu ∼ ν

Uθ

δ2 . (6.60)

By relating the characteristic azimuthal velocity to the rotational frequency of the disk (see

Eq. (6.18)), we finally get the scaling arguments (6.19).
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6.6 Appendix: Rosenblat’s torque

In the limit of small oscillation amplitude, Rosenblat (1959) found the second order correction

of the viscous torque exerted by the fluid on the oscillating disk

τ f = ρπR4



ω3ν


2
[θ∗(cos(ωt )+ sin(ωt ))+θ∗

3
(−0.262cos(ωt )+0.060sin(ωt ))]. (6.61)

Note that the leading order term corresponds to the torque of the linear Stokes solution (6.25),

whereas the cubic part is the second order nonlinear contribution. In the spirit of amplitude

equation, the nondimensional torque can be rewritten as a function of the oscillation ampli-

tude. Consequently, the disk’s equation in the low amplitude regime with the second order

torque reads

θ̈+θ = ε2σ(θ− θ̇)+2σa2(t )(−0.262θ−0.060θ̇). (6.62)

As done in section 6.4.2, we seek for an asymptotic solution of the type

θ = θ0(t ,T )+εθ1(t ,T )+O(ε2), (6.63)

where T is the slow time scale T = εt .

At leading order ε0, the linear oscillator equation is recovered

θ̈0 +θ0 = 0, (6.64)

with solution,

θ0 = 1

2
a(T )ei [t+β(T )] +c.c.. (6.65)

At order ε, the nonlinear torque (6.61), enters as a forcing term in the problem, along with

the slow time modulation θ̇′0

θ̈1 +θ1 =−2θ̇′0 +2σ(θ− θ̇)+2σa2(t )(−0.262θ−0.060θ̇), (6.66)

where the prime sign denotes derivation with respect to the slow time scale T . In order to

avoid secular terms at first order, the resonant terms in the rhs of equation (6.66) have to

cancel out, yielding to the amplitude equation:

i [a′ +σa +0.060σa3]+ [−aβ′ +σa −0.262σa3] = 0, (6.67)

which is satisfied by

a(t ) = e−εσt√
a2

0 +0.060(1−e−2εσt )
, β(t ) =β0 −εσt + 0.262

2 ·0.060
log

(
a2

0 +0.060(1−e−2εσt )
)

,

(6.68)
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Figure 6.10: Instantaneous damping rate as a function of time at Re = 1000. The solid line refers
to the results from the numerical simulations, whereas the dashed, dot-dashed, and purple
dashed lines refer to damping rate of the quasi-steady Von Karman, Stokes and Rosenblat
solution.

with a0 and β0 set by the initial condition.

It follows that the instantaneous damping rate is given by a linear contribution, equal to the

Stokes damping rate (6.29), and a nonlinear one, associated with the second order correction

of the torque

γ(t ) =− 1

a0

da(t )

dt
= εσ[1+0.060a2(t )]. (6.69)

Figure 6.10 reports the instantaneous damping rate from DNS, compared with the ones

corresponding to (i) quasi-steady Von Karman, (ii) Stokes and (iii) Rosenblat solution. The

latter matches well the full numerical solution in the intermediate region between high and low

amplitudes, and collapses on the Stokes solution when the quadratic term in equation (6.69)

becomes negligible. However, out of its domain of validity, Rosenblat’s asymptotic solution

significantly overestimates the damping rate since in the high amplitude regime the viscous

torque scales as θ̇3/2 rather than θ̇3, as correctly captured by the quasi-steady Von Karman

solution.
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Interfacial forces exceed gravitational forces on a scale small relative to the capillary length

- two millimeters in the case of an air-water interface - and therefore dominate the physics

of sub-millimetric systems. They are of paramount importance for various biological taxa

and engineering processes where the motion of a liquid meniscus induces a viscous frictional

force that exhibits a sublinear dependence in the meniscus velocity, i.e. a power law with an

exponent smaller than one. Interested in the fundamental implications of this dependence,

we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear

friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory,

we uncover the existence of a finite-time singularity in our system yielding the arrest of the

fluid’s oscillations. We propose a minimal theoretical framework to capture this effect, thereby

amending the paradigmatic damped harmonic oscillator model. Our results suggest that,

although often not considered at the macroscale, sublinear capillary forces govern the friction

at liquid-solid and liquid-liquid interfaces.
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7.1 Introduction

No one who has glimpsed at Hokusai’s iconic wave paintings can fail to notice the truthful yet

stylized rendering of the singular nature of such multi-scale flows. On a theoretical point of

view, overturning, breaking and atomization are supported by nonlinear terms in the equations

prescribing the waves’ dynamics at large amplitude, so that finding their exact solution is often

arduous. Nonlinearities, however, usually become of negligible relative importance for suffi-

ciently low amplitudes of motion, thereby enabling perturbative linearized approaches (Lamb,

1932). These theoretical linear problems are easier to solve than their nonlinear counterparts

and have been extremely successful at predicting the stability, characteristic frequencies and

growth rates of a wide range of physical systems arising in natural and industrial settings,

a classic example of which is the sloshing of fluid in a container (Ibrahim, 2005). In such a

case, the excess of gravitational potential energy associated to the deformation of the free

surface is progressively relaxed when periodically turned into kinetic energy and damped by

viscous forces (Case & Parkinson, 1957; Ibrahim, 2005). In the small amplitude regime, the

fundamental sloshing frequency for a cylindrical container is known to be ω0 =
√

1.84 g /R

where g is the acceleration of gravity and R the container radius (Ibrahim, 2005). The classical

contributions to the viscous damping rate, σ, have been identified as the dissipation in the

oscillating boundary layers near the container walls and the free surface, and the bulk dissipa-

tion (Case & Parkinson, 1957). Those dissipative forces have different scalings with respect to

the governing parameters (radius R, viscosity μ, density ρ, gravity g ), but all depend linearly

on the free surface velocity (Case & Parkinson, 1957; Ibrahim, 2005).

Here, we study the effect of a small modification to this classical problem, as we place a

thin layer of foam on a volume of water (see Fig. 7.1), and explore the dramatic change in

its mechanistic properties. It has been recently shown (Sauret et al., 2015) that sloshing in a

rectangular basin could be strongly damped by the addition of a shallow foam layer at the top.

While foam is a complex media with visco-elasto-plastic rheological properties (Cantat, 2013),

this significant attenuation was attributed to friction between the foam and the wall, which

dominates the dissipation in the foam bulk (Sauret et al., 2015). In this work, we focus our

attention on the nonlinear nature of the dissipation occurring in the foam layer. This source

of dissipation emanates from the relative displacement of the liquid channels separating

the foam bubbles, known as Plateau borders (Cantat, 2013). The motion of these multiple

air-liquid interfaces along the container results in a frictional force that scales nonlinearly with

their sliding velocity. Indeed, this force scales like C a2/3, where C a is the capillary number

based on the sliding velocity (Bretherton, 1961; Denkov et al., 2005; Cantat, 2013). Owing to

their sublinearity (the exponent on the velocity is smaller than one), these frictional terms

are found to dominate all linear contributions for small enough values of C a, which naturally

arise for small amplitudes of motion. Therefore, unlike nonlinearities with exponents greater

than one, they cannot be neglected, thereby ruining all linear theoretical approaches. Unlike

the picture of a linearly damped oscillator classically used in textbooks to model sloshing,

we show experimentally and theoretically that the sloshing of the liquid phase does not relax

exponentially. The damping rate in fact increases catastrophically at small amplitude and
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Figure 7.1: (A) Experimental setup: a cylindrical container is tilted by an angle ψ to initiate the
sloshing of a volume of water surmounted by foam. The foam layer of thickness h � H and
h � R comprises bubbles of typical radius d . (B) Shown is the spatio-temporal view of the
water-foam contact line X (t ) captured in a typical experiment.

yields a finite-time arrest of the fluid’s motion.

7.2 Experiments

The setup consists of a cylindrical Plexiglas container of internal radius R = 37.05mm that is

sealed to an aluminum plate connected itself to a hinge. The container is filled with a column

of water of height H which is surmounted by a foam layer of thickness h, see Figure 7.1A. The

foam is produced when injecting a commercial hand soap (Hypron SA) through a nozzle with

a grid with pore size 0.2 mm and has typical bubbles diameter d = 0.25mm. The foam’s liquid

fraction is measured to be 25% once poured on top of the water column (evaluated using the

weight of a volume of foam). This large value relative to dry foams, is due to capillary forces

yielding an intake of water effectively enlarging the foam Plateau borders (Cantat, 2013). In the

following, the liquid fraction across the foam layer, whose thickness ranges from h = 2.5mm

to 6.5mm, is assumed uniform. Using an oscillating drop tensiometer (Tracker, Teclis), we

measured the surface tension, γ= 31.5 mN/m, of the soap solution. Its viscoelastic surface

dilatational modulus, quantifying the relative variation of surface tension upon dilatation

and compression, is found below resolution (0.1 mN/m), showing that the interface can be

considered as mobile (Denkov et al., 2005) and that free shear boundary conditions apply.

Experiments are initiated by tilting the container of an angle ψ and then releasing it, see

Fig. 7.1A. The dynamics following the impact is recorded with a high-speed camera (Phantom

Micro M310) operating at 300 Hz. In order to investigate the waves dynamics at small scales,

we coupled a Nikon 50 mm lens with an optical bellows obtaining a resolution of 2 ·10−2 mm

per pixel on the water-foam interface displacement. After a short transient regime, the flow

response was found to exhibit a single mode of oscillation (see Fig. 7.1B). The frequency of

oscillations, 3.50Hz, matches the theoretical inviscid prediction ω0 =
√

1.84g /R within 1%.

This result was expected for h = 0 as the deep water condition H > 2R is satisfied and the

container size is well above the capillary length (Lamb, 1932), i.e. γ/ρg R2 � 1. This frequency

is found unchanged when adding foam (0 < h < 6.5mm), as already observed in previous

experiments (Sauret et al., 2015) and discussed in section 7.3.2.
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Figure 7.2: (A) Logarithmic decrement, D = ln(Xn/X0), of the sloshing amplitude for foam
thicknesses ranging across values h = 0,2.5,3.3,4,5,6.5 mm. Symbols indicate measurements,
while continuous lines represent the envelope solutions of the sublinear model (SLM), with a
single fitting parameter α (see a(t ) in eq. 7.20) . (B) Shown is the dependance of the friction
force exerted by the foam layer, F f , through the friction coefficient α as found in experiments.
F f increases linearly with the foam thickness h, i.e. with the number of layers of oscillating
bubbles.

The attenuation of the gravity waves is investigated by recording the motion X (t) of the

water-foam interface at the azimuth corresponding to the largest wave oscillation. Using

the function ’orthogonal view’ in ImageJ, we follow the evolution of a pixel line over time,

thereby reconstituting the oscillatory motion X (t) of the contact line at a given location,

see Fig. 7.1B . The natural logarithm D = ln(Xn/X0) of the ratio between the amplitude of

the nth peak, Xn , and the amplitude of the first peak, systematically chosen to X0 = 5 mm,

is used as an instantaneous measure of the growth rate. For the case h = 0 (no foam), we

recover the classical result of a constant damping rate. The logarithmic decrement is linear

in time for most of the dynamics, D ∝−σω0t , as indicated in Fig. 7.2A (see section 7.4 for

a rationalization of the shaded area). We found σ = 0.0098, which exceeds the theoretical

expression (Case & Parkinson, 1957) of the viscous damping rate by a factor 2. This result is

in line with other experimental measurements in the literature (Cocciaro et al., 1991) and is

commonly attributed to the advancing and receding of the dynamic contact line (Ibrahim,

2005). As soon as a thin foam layer is added in the system, D is no longer linear, as shown in

Fig. 7.2A for values of h ranging from 2.5 mm to 6.5 mm. We find D to be concave down and

negatively correlated to h. In other words, the damping rate is greater with foam as evidenced

by previous experiments (Sauret et al., 2015) but also evidently increases as the amplitude of

oscillations decreases. In particular this result translates into the fact that the interface does

not relax exponentially at a given rate, but instead its decay is progressively hastened. This

novel observation suggests the existence of a mechanism submitting smaller oscillations to a

stronger damping, that we aim to rationalize.
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7.3 A nonlinear fluid oscillator

7.3.1 Equivalent mechanical system

From this point onward, we restrict ourselves to thin layers of foam and we assume the entire

layer of height h is oscillating along with the liquid phase. We model the total oscillating mass

as πR2(ρλ+ρ f h), where λ∼ R is the penetration length of the wave (Lamb, 1932) and ρ and

ρ f denote the density of water and foam, respectively. Given the physical parameters of the

problem we place ourselves in the limit ρ f h � ρλ, i.e. we neglect foam’s inertia relative to the

one of water. Similarly, the restoring gravitational force acting on this volume of fluid may be

estimated considering solely the liquid phase: Fg ∼ ρgπR2X , where X is the amplitude of the

water-foam interface and g the acceleration of gravity. In absence of foam, according to the

seminal work of Case & Parkinson (Case & Parkinson, 1957), three main dissipation sources

exist, they acting: (i) at the free surface, (ii) in the fluid bulk and (iii) in the Stokes boundary

layer close to the wall. The last contribution has been shown to dominate the other ones (Case

& Parkinson, 1957). Denoting by μ and ν the water dynamic and kinematic viscosities, and by

Ẋ the oscillation speed, we model the viscous dissipation as a single force Fw ∼ 2πRλμẊ /δ,

where δ∼

ν/ω0 is the Stokes layer thickness (Case & Parkinson, 1957).

We now turn to model the force F f associated with capillary effects in the foam layer. Let us

consider a single wall Plateau border, i.e. the edge separating neighboring bubbles at the wall,

sliding along the container vertical wall with velocity Ẋ . Damping of its motion originates

from the transition region between the wetting film at the wall and the moving wall Plateau

border (Cantat, 2013). The matching between the outer meniscus and the transition zone,

involving a balance between viscous and capillary forces, defines the friction force per unit

length of a wall Plateau border scaling as γC a2/3, where Ca =μẊ /γ is the capillary number

and γ denotes the surface tension (Cantat, 2013). The total length of surface Plateau borders

is given by their typical length, d , times the number of Plateau borders in contact with the

container that scales as 2πRh/d 2. Thus, the friction force acting at the wall in the foam layer

reads

F f ∼
h

d
Rγ1/3μ2/3Ẋ |Ẋ |−1/3, (7.1)

where the absolute value is introduced to conveniently treat negative speeds. This result

is reminiscent to the force acting on a plate pulled out of a bath (Landau & Levich, 1942;

Bretherton, 1961) and is valid for a mobile interface, i.e. an interface where a free shear

boundary condition applies. This point has been verified for the foam used in our experiments

(see section 7.2).

Using the estimation for the volume of fluid effectively oscillating and the forces acting on

it, we write Newton’s 2nd law:

πR2(ρλ)Ẍ = Fg +Fw +F f . (7.2)
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Figure 7.3: A sketch of our reduced model for sloshing. The effects of foam are accounted by
the sublinear term F f ∝ Ẋ |Ẋ |−1/3. This term amends the classical damped oscillator model
where the inertial term is balanced by the restoring force, Fg ∝ X , and the viscous damping,
Fw ∝ Ẋ .

Equation (7.2) constitutes a nonlinear oscillator where inertia is resisted by the restoring force

of gravity and the two dissipative terms, Fw and F f (see the equivalent mechanical system

depicted in Figure 7.3). We note that Fw varies linearly with Ẋ , while F f has a sublinear

dependence on the interface velocity Ẋ . As a consequence, F f is expected to dominate the

dynamics when Ẋ is sufficiently small. After a renormalization by the inertial term, eq. (7.2)

yields

Ẍ +ω2
0X =−2σω0Ẋ −αω4/3

0 R1/3Ẋ |Ẋ |−1/3, (7.3)

where ω0 is the angular frequency scaling as ω0 ∼ √
g /R, and σ is the viscous damping

coefficient which is proportional to σ∼

ν/(R3/4g 1/4). These scaling arguments are in line

with the theoretical results obtained using first principles (Lamb, 1932; Case & Parkinson, 1957).

The last term on the right hand side is the nonlinear damping associated with the foam layer,

where the prefactor ω4/3
0 R1/3 results from the renormalization, and α is the dimensionless

coefficient of sublinear damping, which scales as α∼ hd−1γ1/3μ2/3ρ−1R−5/3g−2/3.

7.3.2 Asymptotic solution and comparison to experiments

In the limit of negligible capillary effects, α= 0, equation (7.3) reduces to a linearly damped

harmonic oscillator. This equation is traditionally used to model the free-surface oscillations

of a liquid in a tank (Ibrahim, 2005), with solution:

X (t ) = X0e−ω0σt cos(
√

1−σ2ω0t ), (7.4)

where X0 is the initial amplitude. This expression is consistent with the experimental data

reported in Fig. 7.2 for h = 0 (no foam).

With foam and thus α �= 0, eq. (7.3) does not have a closed-form analytical solution. However,

an asymptotic solution can be obtained by using the method of multiple scales as detailed

in Nayfeh (Nayfeh, 2008). In the limit of small damping, σ,α� 1, the solution of eq. (7.3) is
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asymptotic to X (t ) ∼ a(t )cos(ω0t ), where the sinusoidal term is the solution of the undamped

oscillator (σ = α = 0 as in the leading order problem in the asymptotic scheme). The slow

varying envelope a(t ) is determined at the next order by imposing a compatibility condition

that involves only the right hand side terms in eq. (7.3) oscillating at the natural frequency of

the system ω0. X (t ) reads:

X (t ) =
[

X 1/3
0 − α

σ
cR1/3(eω0σt/3 −1

)]3

e−σω0t︸ ︷︷ ︸
a(t )

cos(ω0t ). (7.5)

See the section 7.5 for a detailed derivation of the asymptotic solution and the definition of the

constant c that is the Fourier coefficient of the Fourier component of Ẋ |Ẋ |−1/3 synchronized

to the natural frequency of the system ω0. Note that the frequency shift



1−σ2 in eq. (7.4), is

not present in the asymptotic solution (7.20) as it belongs to a higher order.

The asymptotic solution (7.20) to the sublinear model (SLM), is now compared and fitted

to our experimental results. In Figure 7.2(b) the coefficients ω0 and σ are set to their refer-

ence values obtained experimentally in the h = 0 limit (ω0 = 22.00 rad/s, σ= 9.8 ·10−3). The

sublinear coefficient α is thus the only unknown parameter of the model. Here, α is deter-

mined independently for each of the h �= 0 cases by fitting the logarithmic decrement with

equation (7.20). We find that our model captures the concave aspect of the linear decrement

measured from experiments. Additionally, the larger the film thickness, the stronger the

nonlinear damping coefficient. More precisely, our data in Fig. 7.2B shows that the damping

coefficient α increases linearly with the foam thickness h, further validating the proposed

physical picture: in the range of thin foam layers investigated, the foam acts as collection of

Plateau borders, which all equally contribute to the effective dissipative force. The number of

contact lines, earlier estimated as the foam thickness to bubble diameter ratio h/d , is thus the

relevant scale to evaluate α.

7.3.3 Sublinear friction and its finite-time arrest

Assured that the reduced model (7.3) and its solution (7.20) are a quantitative representation

of the sloshing dynamics with foam, we turn to examine the mechanistic impact of the sub-

linear damping introduced in our model. In Fig. 7.4A we report the sublinear model (SLM)

envelope a(t ) in the particular, yet representative, case h = 4mm. Its concave down behavior

contrasts with the classical exponential relaxation adopted by previous works (Sauret et al.,

2015), indicated by the blue line. This effect is due to an increase of the relative importance

of sublinear friction forces compared to the inertial and restoring terms as the amplitude

of oscillation decreases. The dominance of interfacial effects is induced by their sublinear

dependance in the oscillating velocity. In fact, they diverge in the limit of vanishing oscil-

lations, yielding a finite-time singularity. For the sake of the validation of our asymptotic

solution (7.20), we report also in Fig. 7.4A the numerical solution of eq. (7.3) obtained using a

third order Runge-Kutta scheme.

Upon examination of the behavior of eq. (7.20) at very small amplitudes, we find the ampli-
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Figure 7.4: (A) Numerical nonlinear solution of eq. (7.3) for h = 4 mm (black line), together
with its envelope obtained by asymptotic analysis (orange line). The vertical red line indicates
the finite-time of arrest t∗. The blue line represents the envelope of the linear model solution
starting from the same initial condition. (B) Time of arrest as a function of the foam height h
for a single initial condition (from eq.(7.6) with α(h) reported in Fig. 7.2B). Symbols correspond
to the values deduced from the experiments.

tude of sloshing to be exactly nil for time t = t∗, where t∗ is the time of arrest. This behavior

contrasts the classical linear theory giving rise to an exponential decay for which t∗ =∞. In

our model, t∗ is finite and using eq. (7.20), we can derive its analytical expression:

t∗ = 3

σω0
ln

[
1+c−1 σ

α(h)

(
X0

R

)1/3
]

. (7.6)

In Fig. 7.4B we show the variation of t∗ with h and report the values corresponding to our

experiments (as deduced from the fit of our experimental data using the SLM). The time

of arrest t∗ diverges in the limit where h = 0, as expected since this case corresponds to

an exponential relaxation in our theoretical framework (see eq. (7.4)). A small foam layer

(h = 2.5mm) is sufficient to bring this time to a finite and relatively small value (t∗ � 12 s).

Other values of t∗ corresponding to larger values of h are of the same order (the smallest is 5 s)

and decrease if the foam thickness h increases.

7.4 Conclusions

In our experiments we found that adding foam to a liquid dramatically damps its oscillatory

motion but hardly affects its sloshing frequency. Without foam, sloshing is well approximated

by a linearly damped harmonic oscillator relaxing exponentially with characteristic time

tμ = 1/(σω0), thereby predicting an arrest of motion for t∗ =∞. In contrast, owing to its cellu-

lar structure, foam introduces sublinear capillary forces, which, in turn, lead to a finite-time
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arrest of the fluid’s motion. Equation (7.6) provides the expression for the time of arrest t∗,

highlighting the importance of the ratio between the viscous damping σ∼ ν1/2g−1/4R−3/4 and

the sublinear damping α∼ hd−1γ1/3μ2/3R−5/3g−2/3ρ−1 coefficients. The time of arrest t∗ is

negatively correlated to α/σ and diverges when this ratio is small (corresponding to a linearly

damped oscillator). Specifically, an increase in h, an increase in γ or a decrease in d , all yield a

decrease in t∗. The scaling argument for the sublinear coefficient α is in good agreement with

the experimental measurements for various foam height h, see section 7.3.2. On the other

hand, its dependence on the fluid density, ρ, its viscosity, μ, and surface tension, γ, along with

the dependence on the container size, R, and the foam bubble diameter, d , can in principle

be probed experimentally by using different fluids, container size and foams and it is a future

perspective of this work.

Note that this expression is only valid for small but finite foam layers. Sloshing with a large

amount of foam may lead to the situation where only a fraction of the total volume of foam is

effectively in motion. The upper part of the foam layer remains still, hence does not participate

to the sublinear damping examined in this work. We therefore anticipate that α(h) does not

remain linear for arbitrarily large values of h, but instead saturates, in turn giving rise to a

plateau for t∗ in the limit of large foam thicknesses.

Similarly, the case d = 0 and h = 0 is ill-defined in our model. For these values, correspond-

ing to a simple liquid-air interface, a liquid meniscus forms at the container walls. During

sloshing, this advancing and receding contact line will generate a small, yet nonlinear, friction

force (Cantat, 2013), which affects the damping rate measured in the experiments (Cocciaro

et al., 1991; Ibrahim, 2005). Evidence of these effects is apparent at very small amplitude

as highlighted by the shaded area in Fig. 7.2A for pure water. Although the accuracy of the

measurements does not allow for a systematic analysis at this stage, this observation suggests

that our work could generalize to a single moving contact line. Accounting for those effects –

without foam to exacerbate them – requires a realistic contact line model (Ibrahim, 2005), with

features such as contact angle hysteresis and the variations of contact angle with the contact

line velocity.

Finally, we note that finite-time arrests are commonly observed in mechanical systems

involving solid friction as a consequence of Coulomb’s law, but have not frequently been

reported in fluidic systems. Their importance in practical situations such as Euler’s disk has

been the subject of investigations in recent years (Moffatt, 2000). Here, we have demonstrated

that the effect of pure fluid dissipation in sub-millimetric menisci at a contact line is sufficient

to bring a body of fluid to rest in finite time albeit the fluid’s volume is significantly larger than

that of the meniscus.

Financial support by ERC grant SimCoMiCs 280117 is gratefully acknowledged.
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7.5 Appendix: Asymptotic analysis

Let us consider the nonlinear oscillator

Ẍ +ω2
0X =−2σω0Ẋ −αω4/3

0 R1/3Ẋ |Ẋ |−1/3, (7.7)

and let make it dimensionless using the frequency ω−1
0 and the container radius R as charac-

teristic time and length scales:

ẍ +2σẋ +x +αẋ|ẋ|−1/3 = 0, (7.8)

where X = Rx. A dot in the equation denotes a time derivative with respect to the dimen-

sionless time t̃ = tω0. This is an oscillator linearly and sublinearly damped, where the two

damping coefficients, σ and α, are assumed to be small and of the same order. A single small

parameter ε can therefore be defined such that the scaled quantities σ̃=σ/ε and α̃=α/ε are

of order one. Accordingly to multiple scale approach, an asymptotic expansion in ε is carried

out

x = x0(t̃ ,T )+εx1(t̃ ,T )+O(ε2), (7.9)

where T is the slow time scale defined as T = εt̃ . At zero order in ε, the linear oscillator

equation is recovered:

ẍ0 +x0 = 0, (7.10)

where the dot here stands for a derivative with respect to the fast time t . The solution to this

equation is

x0 = 1

2
A (T )ei [t̃+φ(T )] +c.c., (7.11)

where the phase φ and nondimensional envelope A depend on the slow time scale T and c.c.

designates the complex conjugate.

At order ε, the linear damping term, 2σ̃ẋ0, and its nonlinear counterpart, α̃ẋ0 |ẋ0|−1/3, enter

as forcing terms to the oscillator equation, together with a term resulting from the slow time

modulation:

ẍ1 +x1 =−2ẋ ′
0 −2σ̃ẋ0 − α̃ẋ0 |ẋ0|−1/3 . (7.12)

The prime signs denote a derivation with respect to the slow time scale T . The first two

terms on the r.h.s. are synchronized with the sloshing motion as they oscillate at the natural

frequency

2ẋ ′
0 = i (A ′ + iAφ′)ei (t̃+φ) +c.c.

2σ̃ẋ0 = i σ̃A ei (t̃+φ) +c.c..
(7.13)
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Conversely, the nonlinear term is not purely harmonic, but through a Fourier series the

components oscillating at the natural frequency may be isolated:

α̃ẋ0|ẋ0|−1/3 = i α̃cA 2/3ei (t̃+φ) +c.c.+NRT (7.14)

where NRT stands for the nonresonating terms and c is the Fourier coefficient of the resonating

harmonic which is given by:

c = 1

2π

∫2π

0
sin2(t̃ +φ)|− sin(t̃ +φ)|−1/3dt̃ = 2Γ(1/3)

5Γ(5/6)


π
≈ 0.5356. (7.15)

In order to avoid secular terms at first order, the resonant terms in the r.h.s. of eq. (7.12) have

to cancel out, yielding to the amplitude equation:

i (A ′ + iAφ′)+ i σ̃a + i α̃cA 2/3 = 0. (7.16)

By splitting real and imaginary parts, we obtain an equation for the slow phase modulation,

φ′ = 0 ⇒ φ=φ0 (7.17)

and another one for the amplitude

A ′ + σ̃A + α̃cA 2/3 = 0, (7.18)

with solution

A (t̃ ) = e−σt̃
[
A 1/3

0 − cα

σ
(eσt̃/3 −1)

]3
, (7.19)

where the constants a0 and φ0 are set by the initial position, X0/R , and initial velocity Ẋ0/(ω0R)

according to: φ0 =− tan−1[Ẋ0/(ω0X0)] and a0 = X0/(R cosφ0). In the case of starting motion

from rest the dimensional asymptotic solution to equation (7.7) is given by:

X (t ) =
[

X 1/3
0 − α

σ
cR1/3(eω0σt/3 −1

)]3

e−σω0t︸ ︷︷ ︸
a(t )

cos(ω0t ), (7.20)

where a(t ) is the dimensional envelope function a(t ) = RA (ω−1
0 t̃ ).
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In mechanics, sloshing constitutes an archetypal damped oscillator, with frequency derived

in the potential flow limit (Lamb, 1932). The damping rate results from the viscous dissipation

at the wall, in the bulk and at the free surface, respectively (Case & Parkinson, 1957). How-

ever, the classic theoretical prediction significantly underestimates the damping rate when

compared to careful laboratory experiments. In addition, theory provides a unique value of

the damping rate, while experiments revealed that the damping increases as the sloshing

amplitude decreases.

Here, we demonstrate theoretically that the enhanced damping and its dependence on the

sloshing amplitude is in fact due to capillary forces at the contact line between the liquid and

the container walls. To this end, we model inviscid waves using to a nonlinear contact line

empiric law, which presents hysteresis. The resulting system of equations is solved by means of

a global weakly nonlinear analysis using the method of multiple scales. Capillary effects have

a dramatic influence on the calculated damping rate, especially when the sloshing amplitude

gets smaller: this nonlinear interfacial term stops the fluid dynamics after a finite time. In

contrast to viscous damping, where the wave motion decays exponentially, the contact angle

hysteresis acts as Coulomb solid friction yielding a finite time arrest.
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8.1 Introduction

It is sufficient to casually shake a glass of water to raise a tempest in it. However, if the

initial amplitude of the fluid motion is small enough, its sloshing is very regular: the gravity

waves are quantized into modes owing to the action of the container walls. The confinement

exacerbates the viscous dissipation in the fluid, which damps the fluid’s oscillations and

eventually brings the interface back to rest. In this small amplitude regime, the non-linearities

in the governing equations are negligible and the sloshing modes are classically computed

in the limit of potential flow (Lamb, 1932). The angular eigenfrequency of the first non-

axisymmetric longitudinal mode, ω, depends on gravity, g , surface tension, σ, the fluid density

ρ, its height h and the radius R of the cylindrical container through the well-known dispersion

relation

ω2
n = gλn

(
1+ σ

ρg
λ2

n

)
tanh(λnh), (8.1)

where λn are the roots of the first derivative of the nth-order Bessel function J ′n(Rλn) = 0.

During the motion, those capillary-gravity waves are damped by viscous dissipation occurring

at the (i) oscillating Stokes layers at the walls, (ii) in the fluid bulk and (iii) at the free-surface.

The damping rates associated with these three source of dissipation can be computed with a

perturbative approach in the limit of small kinematic viscosity ν. Specifically, Case & Parkinson

(1957) showed that the dissipation is more intense at the Stokes layers that scale as


ν, when

compared to the dissipation in the bulk that scales linearly with ν. Last, the dissipation at the

free surface results in a smaller term scaling as ν3/2, see Ursell (1952). These three damping

rates have different scaling with the physical quantities but they all are independent from the

oscillation amplitude as their evaluation results from a linear problem.

However, experiments of Benjamin & Ursell (1954); Case & Parkinson (1957); Keulegan (1959)

and Cocciaro et al. (1991) reveal that the theoretical values of the damping rates significantly

underestimate the damping of gravity waves measured in laboratory-size containers. In

fact, n controlled conditions with carefully polished brass container are needed to recover

experimental values close to theoretical estimates of the damping rate (Case & Parkinson,

1957). Specifically, Keulegan (1959) carried out an extensive experimental campaign to

study the damping of surface standing waves with several liquids, container size and materials.

He found that the damping depends on the material of the container and is in general higher

than the one provided by the aforementioned linear theory, which neglects the key-role of

capillary effects on the waves attenuation. Moreover, his pioneer work revealed a dependence

of damping on the wave amplitude. The damping at small amplitude after several wave

cycles was indeed found higher than the one at larger amplitude. Similar results have, since

then, been reported by Cocciaro et al. (1991) and Cocciaro et al. (1993) who investigated the

influence of interfacial effects on the natural frequency and the damping rate of sloshing.

This work focuses both on wetting and partial wetting conditions unraveling dissipation

mechanisms other than the viscous dissipation in the boundary layers and in the bulk of the

fluid.
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Figure 8.1: Illustrative sketch of contact line models with contact angle, θ, versus the contact
line velocity, times the capillary number C a. In (a) the nonlinear model of Dussan (1979) with
the hysteresis range [θR ,θA] is shown. (b) reports the nonlinear contact line model used in
this work, which corresponds to the linear Hocking law (8.3) with slip coefficient α, plus a
symmetric hysteresis range of size Δ.

In fact, in the theoretical work of Case & Parkinson (1957) capillary effects are not accounted

for. In particular, the interface is assumed to intersect orthogonally the wall and to freely slip on

it (free-end edge boundary conditions). This assumption was proven incorrect as experiments

reveal that the contact angle θ between the fluid-air interface η(r,φ, t ) and the wall is varying

throughout the fluid’s motion. Additionally, this angle depends on the wetting properties of

the wall and the velocity of the contact line η(r = R,φ, t ). Miles (1967) modified such capillary

effects and their contribution to the damping rate. He assumed that θ is a function of the

contact line velocity ∂η/∂t |R , where R denotes the fact that derivative is taken at the wall. For

a velocity less than a critical value Miles assumed a relation of the kind

∂η

∂t

∣∣∣∣
R
∝ (cosθ−cosθs), (8.2)

where θs designates the static equilibrium contact angle. When equation (8.2) is linearized

around θs =π/2, the wetting boundary condition proposed by Hocking (1987) is retrieved

∂η

∂t

∣∣∣∣
R
=α

∂η

∂r
. (8.3)

The contact line velocity is proportional to the contact angle, θ ≈ π/2−∂η/∂r , through the

slip coefficient α. Hocking (1987) showed that imposing model (8.3) as a boundary condition

in the inviscid sloshing problem yields a finite damping rate, resulting solely from capillary

effects (recall that the model is potential). By setting arbitrarily α, he obtained damping values

qualitatively in line with the experimental measurements of Benjamin & Ursell (1954), Case

& Parkinson (1957) and Keulegan (1959). Note that the capillary contribution to damping

vanishes for the two limiting cases α =∞ and α = 0 which correspond to the free-end and

pinned-end edge conditions, respectively. The dependence of the damping rate on the slip

coefficient, α, and on the static contact angle, θs , was addressed for circular container by
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Kidambi (2009) solving iteratively an eigenvalue problem. Cocciaro et al. (1993) carried out

experiments in order to measure α for surface gravity-capillary waves in a cylindrical con-

tainer with static contact angle θs = 62°. They demonstrated that α is not constant during

the sloshing motion and it increases with the contact line velocity. These aspects were also

discussed by Keulegan (1959) and Jiang et al. (2004). As a consequence of these observations,

Cocciaro et al. (1993) proposed a slip coefficient that depends explicitly on the amplitude of

oscillations. This assumption violates the principles of linear problems and is incompatible

with the classic eigenvalues formulations.

In summary experiments indicate the need for a theoretical framework including a model

of the contact line richer than the semiempirical relations (8.2) and (8.3). Particular attention

should be given to the nonlinear dependence of contact angle with velocity or hysteresis:

in the framework of a unidirectional flow over a flat plate at low Reynolds number, Dussan

(1979) observed that the dynamic contact-angle at the contact line is a function of the contact

line velocity. Additionally, he evidenced the existence of a range [θR , θA] such that if θ lies

within this interval then the contact line does not SloshWaterAppeAr to move (contact-angle

hysteresis), see Figure 8.1a. Such a behaviour has been observed in the case of silicone oil

drops sliding down a glass plate at low velocities by Rio et al. (2005); Le Grand et al. (2005);

De Gennes et al. (2002).

Only a handful of contributions in the literature make use of this fact in the context of oscil-

lating flows. The case of an oscillating solid plate at the interface of a bath was investigated

theoretically by Young & Davis (1987); Hocking (2003) who demonstrated that the fixed contact

angle assumption may lead to physically unrealistic contact line speed responses. They noted

that the contact-angle hysteresis and the steepening of the contact angle occurring while in-

creasing the contact-line speed leads to dissipative effects. The same system has been studied

experimentally by Ting & Perlin (1995) in order to derive an empirical boundary-condition

model for the contact line in oscillatory flow.

The purpose of this work is to investigate theoretically the effect of contact line hysteresis

on the sloshing motion and provide a theoretical framework rationalizing the dependence of

damping on the amplitude of motion. To this end we consider inviscid waves subjected to a

realistic nonlinear contact line law, which we derive in the next section. The resulting system

of equations is solved by means of a global weakly nonlinear analysis using the method of

multiple scale Stuart (1958). We finally derive a general asymptotic formulation that accounts

for nonlinear interfacial effects at the contact line.

The paper is organized as follows. The governing equations, including the contact line

model with hysteresis, are presented in § 2. The weakly non linear stability analysis is for-

mulated in § 3, where we compute the fundamental sloshing global mode and derive the

governing amplitude equation. In § 4, results are discussed, focusing on the dissipative effect

of the contact angle hysteresis. Conclusions and perspectives are finally outlined in § 5.
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8.2. Governing equations

Figure 8.2: Geometry of the circular basin of internal radius R which is filled with a depth of
liquid H . The interface η intersects the vertical wall with the dynamic contact angle θ. The
amplitude A0 is the maximum initial interface displacement.

8.2 Governing equations

Let us consider a cylindrical container of radius R filled to a depth H with a liquid of density

ρ. A cylindrical coordinate system is defined, where z is the vertical direction corresponding

to the axis of the container, and the zero is set at the unperturbed interface position at the

centerline, r is the radial direction and φ is the azimuth (see Figure 8.2). The fluid motion

associated to a displacement of the interface, η, is irrotational outside the viscous boundary

layers at the walls and at the interface. In the inviscid limit, the fluid velocity is derived from a

velocity potential Φ, which satisfies the continuity equation

ΔΦ= 0, (8.4)

together with symmetry condition on the axis (Φ|r=0 = 0) and the no penetration condition at

the walls:

∂Φ

∂r

∣∣∣∣
r=1

= 0,
∂Φ

∂z

∣∣∣∣
z=−H/R

= 0. (8.5)

In the following, quantities are made nondimensional by the radius, R, and the characteristic

velocity
√

g R. At z = η, the kinematic boundary condition is such that no flow is allowed

through the interface:

∂η

∂t
=−∂Φ

∂r

∂η

∂r
− 1

r 2

∂Φ

∂φ

∂η

∂φ
+ ∂Φ

∂z
at z = η, (8.6)
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and Laplace law prescribes the relation between the pressure, p, and the local curvature, χ(η),

namely:

−p|η = χ(η)

Bo
at z = η, (8.7)

where the Bond number prescribes the relative magnitude of interfacial effects and gravity

Bo = ρg R2/σ, where σ is the surface tension.

We turn to define the boundary condition at the contact line η(r = 1,φ, t ), which plays a

central role in our problem. Rather than the classic free-end edge condition ∂η/∂r |r=1 = 0 or

the Hocking law in eq. (8.3), we adopt a realistic contact line model with hysteresis, which is

depicted in Figure 8.1b. Specifically, a range of hysteresis contact angle is added to the linear

relation between dynamic contact angle, θ and contact line velocity ∂η/∂t |r=1:

θ−θs =
⎧⎨⎩αAC a ∂η

∂t

∣∣∣
r=1

+Δ/2 if ∂η
∂t

∣∣∣
r=1

> 0

αRC a ∂η
∂t

∣∣∣
r=1

−Δ/2 if ∂η
∂t

∣∣∣
r=1

< 0
, (8.8)

where Δ is the size of the hysteresis and αA and αR are the slip coefficients of the advancing

and receding meniscus. The contact angle is related to the interface through the geometrical

relation:

∂η

∂r

∣∣∣∣
r=1

= cot(θ). (8.9)

This model proposed by Dussan (1979) accounts for the dependence of the dynamic contact

angle θ on the contact line velocity through the Capillary number C a =μ
√

Rg /γ as observed in

unidirectional flow experiments. Specifically, Rio et al. (2005); Le Grand et al. (2005) measured

the dynamic contact angle at the contact line of sliding drops for various velocities and

considering a wide range of silicone oil viscosity (10−1000cP). The experimental data for the

low viscosity silicone oil 10cP are in good agreement with eq. (8.8) using the following values

αA = 45 and αR = 104. Similar experiments on water drops were carried out by Puthenveettil

et al. (2013) this time reporting αA = 58 and αR = 108. With a different experimental setup,

Winkels et al. (2011) measured the receding contact angle in the dewetting phase of water in

the immersion lithography yielding in αR = 67.

The contact angle hysteresis depends in on the roughness and chemical contamination

of the solid surface, the presence of surfactants and polymers in the liquid, see De Gennes

(1985) and Leger & Joanny (1992). In fact, Δ varies from few degrees to more than hundred

depending on the application. We refer the reader to Samuel et al. (2011) and Law & Zhao

(2016) for a comprehensive review on contact angle hysteresis.

For the sake of spinelessness, we set α=αR =αA , meaning that the contact angle increases

when the contact line advances exactly as the opposite as the contact angle decreases when

the contact line recedes. We hope that this choice will help highlight the role of Δ in the

problem (by opposition of differences between αR and αA). In this limit, equation (8.8) can be
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written in the following compact form:

θ−θs =αC a
∂η

∂t

∣∣∣∣
r=1

+ Δ

2
sgn

(
C a

∂η

∂t

∣∣∣∣
r=1

)
, (8.10)

where sgn denotes the sign function that is negative one for negative argument and one for

positive argument. Equation (8.10) reduces to the Hocking law (8.3) when the contact angle

hysteresis Δ is set to zero. A similar model has also been proposed by Ting & Perlin (1995) and

Jiang et al. (2004) to model the contact line hysteresis observed in their sloshing experiments.

Note that even if the flow is considered inviscid in the domain, viscous forces balance capillary

forces at the contact line. As a consequence, eq. (8.10) depends on the capillary number,

C a = μ
√

Rg /σ. In the following, we use equation (8.10) to model the sloshing of capillary-

gravity waves in a cylindrical basin.

8.3 Weakly nonlinear analysis

The system of equations introduced in the previous section is nonlinear and can not be solved

analytically. We present here a weakly nonlinear analysis valid in the limit of small contact

angle hysteresis, Δ = ε2Δ̂ and small αC a = εα̂. Let us consider the following asymptotic

expansion:

Φ=Φ0 +εΦ1 +ε2Φ2 +O(ε3),

η= η0 +εη1 +ε2η2 +O(ε3),

p = p0 +εp1 +ε2p2 +O(ε3),

θ = θ0 +εθ1 +ε2θ2 +O(ε3).

(8.11)

Substituting the expansion (8.11) in (8.4), (8.6), (8.7) and (8.10), a series of system of equations

are obtained at the various orders in ε. At order ε0, the nonlinear problem associated with

the shape of the static meniscus will be obtained. At order ε we recover the classic linear

eigenvalue problem for the sloshing modes. Their frequencies correspond to the eigenvalues

of this first order system. At the higher order ε2, an amplitude equation is obtained: A(T ) is a

slow-time modulation that provides the weakly nonlinear correction to the first order solution

accounting for our the contact line model. Moreover, in the spirit of multiple scales technique,

a slow time scale is introduced which is related to the physical fast time scale according to:

T = εt .

8.3.1 Order ε0

At order ε0, the static base-state is retrieved. The potential Φ0 is null everywhere in the

domain and the pressure is hydrostatic, p =−z in our non-dimensional scheme. The dynamic

boundary condition (8.7) reduces to the equation for the static meniscus in radial coordinates,
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Figure 8.3: In (a) the static meniscus, η0, is shown as a function of the radial coordinate. In (b)
the static contact line region is detailed.

which prescribes the zero-order interface deformation due to capillary effects:

−η0 =− 1

Bo
χ(η0), (8.12)

where χ(η0) = (η0,r r +η0,r (1+η2
0,r

)/r )(1+η2
0,r

)−3/2 is the curvature of η0, which does not de-

pend on the azimuth. The second-order equation (8.12) is completed with two boundary

conditions. At the centerline, the static meniscus regularity condition

∂η0

∂r

∣∣∣∣
r=0

= 0 (8.13)

holds owing to axisymmetry. The contact line model (8.10), prescribes the boundary condition

at η0(r = 1):

θ0 = θs , (8.14)

which sets

∂η0

∂r

∣∣∣∣
r=1

= cot(θs). (8.15)

Equation (8.12) is nonlinear in η0 and is solved using an iterative Newton method, see Ap-

pendix 8.7.1 for details on the numerical method.

Figure 8.3(a) shows the static meniscus η0(r ) in the case of θs = π/4 and Bo = 500, which

typically corresponds to the value one would obtain for g = 9.81 m/s2 with a glass (here

R = 0.05 m) filled with water (ρ = 103 kg/m3, μ= 10−3 kg/(ms), σ= 70 mN/m). The interface

does not depend on H and is basically flat in the domain aside from a region close to the

wall spanning over at a distance of the order of the capillary length,
√

σ/ρg ≈ 0.05 R here.

In Fig. 8.3(b) equal axis are used to show that η0 intersect the wall with the prescribed static

contact angle θs =π/4. We now turn to the next order.
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8.3.2 Order ε

At order ε the potential, Φ1, satisfies the first order continuity equation:

ΔΦ1 = 0, (8.16)

with symmetry condition on the axis and no penetration condition at the vertical and bottom

walls. From the unsteady Bernoulli equation, the first order dynamic condition (8.7) flattened

at η0 is given by:

∂Φ1

∂t
+η1 − 1

Bo

∂χ(η)

∂η

∣∣∣∣
η0

η1 = 0 at z = η0, (8.17)

where the last term is the first-order variation of the curvature χ(η) associated with a small

perturbation εη1 :

dχ(η)

dη

∣∣∣∣
η0

η1 =
(1+η2

0,r )−3rη0,rη0,r r

(1+η2
0,r )5/2︸ ︷︷ ︸

a(r )

1

r

∂η1

∂r
+ 1

(1+η2
0,r )3/2︸ ︷︷ ︸

b(r )

∂2η1

∂r 2 + 1

(1+η2
0,r )1/2︸ ︷︷ ︸

c(r )

1

r 2

∂2η1

∂φ2 . (8.18)

Then, the first order kinematic boundary condition reads:

∂η1

∂t
=− ∂Φ1

∂r

∣∣∣∣
η0

∂η0

∂r
+ ∂Φ1

∂z

∣∣∣∣
η0

at z = η0, (8.19)

where the radial and the vertical derivative of the potential Φ1 correspond to the radial and

vertical velocity at z = η0. The term ∂η0/∂r is the radial derivative of the zero-order interface

obtained at previous order. The contact line condition at ε is θ1 = 0, which implies:

∂η1

∂r

∣∣∣∣
r=1

= 0, (8.20)

and corresponds to the free-edge boundary condition.

By defining the state variable q1 = (Φ1,η1), the system of equations can be written in com-

pact form using equations (8.16) and (8.17) as state equations:

(∂t B−A )q1 = 0, (8.21)

where the linear operators are defined by:

B =
(

0 0

Iη 0

)
, A =

⎛⎝Δ 0

0 I − 1
Bo

∂χ(η)
∂η

∣∣∣
η0

⎞⎠ . (8.22)

Equation (8.21) is subject to the boundary conditions at the interface (8.19) and at the contact

line (8.20). In addition, the axisymmetry condition Φ1 = 0|r=0 is imposed on the axis, along

with the no penetration condition at the solid walls, (∂Φ1
∂r |r=1 = 0 and ∂Φ1

∂z |z=−H = 0). The

191



Chapter 8. Nonlinear friction in sloshing dynamics: partial wetting

0 0.25 0.5 0.75 1
-2

-1.5

-1

-0.5

0

0 0.25 0.5 0.75 1
0

0.25

0.5

0 0.5 1

0

0.5

1

-1

-0.5

0

0.5

1

0 10 20 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 8.4: First order problem solution for the reference case. (a) shows hundred isolines
of the potential ΦA

1 are shown. In (b) the first order interface ηA
1 is shown along with its

radial derivative in the inset. The first order contact line motion is reported in (c), where the
amplitude has been set to one.

solution of eq. (8.21) then reads:

q1 = A(T )qA
1 eiωt ei nφ+c.c., (8.23)

where c.c. stands for the complex conjugate. The amplitude A(T ) is a slow modulation of

the flow which depends on the slow time scale T , and will be determined at the next order.

The integer n is the azimuthal wavenumber, and the eigenvalue iω is associated with the

eigenvector qA
1 such that:

(iωB−A )qA
1 = 0, (8.24)

with qA
1 = (ΦA

1 ,ηA
1 ). The linear operators B and A are discretized by mean of Chebyshev

collocation method, where a two-dimensional mapping is used to map the computational

space to the physical space that has a curved boundary due to the static meniscus η0. We refer

to Appendix 8.7.2 for details on the numerical method and the associated convergence study.

In figure 8.4(a) the potential ΦA
1 is shown for the reference case of Bo = 500, θs = π/4,

H = 3R and n = 1. We observe that the spatial gradients of ΦA
1 , which are connected with the

spatial variation of the velocity, are higher at the meniscus region where the domain curves.

In contrast, the potential becomes smooth far from the interface in agreement with classic

sloshing theory, which predicts an exponential decay of the wave velocity moving away from

the interface. Note that the values reported in the colorbar depends on the normalization

of the eigenvector qA
1 defined up to a multiplicative factor. Without loss of generality, the

eigenvector is normalized here by imposing that ηA
1 (1) = 0.5, hence ηA

1 a real vector and ΦA
1 is

a purely imaginary field. In Figure 8.4(b) the interface ηA
1 is shown. According to the boundary

conditions at the centerline and at the wall, ηA
1 is zero at the centerline and intersects the
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container walls orthogonally.

Figure 8.4(c) shows the contact line motion for the case where the slow evolving amplitude

A(T ) has been arbitrarily set to one (and will be determined in the next section). Since the

flow is inviscid, the contact line keeps oscillating without ever being damped as there is no

dissipation mechanism at play yet. The eigenvalue ω is thus a real number, which corresponds

to the frequency of sloshing. In our reference case we find ω= 1.35 and the imaginary part is

zero to machine precision. This frequency differs slightly from the one computed with the

analytical formula (8.1) for n = 1 (ωθs=π/2 = 1.36) as the static contact angle is different from

π/2, see Appendix 8.7.2 for further discussions.

8.3.3 Order ε2

At order ε2, the second-order continuity equation reads:

ΔΦ2 = 0, (8.25)

whereΦ2 is the second-order velocity potential, which is symmetric with respect to the axis and

satisfies the no-penetration condition at the container boundaries. This equation is similar to

the first order governing equation (8.16) due to the linearity of the continuity equation (8.4). In

contrast, the dynamic condition (8.7) applied to η2 differs from the one at the previous order:

∂Φ2

∂t
+η2 − 1

Bo

∂χ(η)

∂η

∣∣∣∣
η0

η2 =−∂Φ1

∂T
+N RT, (8.26)

where forcing terms SloshWaterAppeAr on the right hand side (rhs). According to the definition

of q1 = (Φ1,η1) in eq. (8.23), the term ∂Φ1/∂T is the slow time variation of the first order

solution which oscillates at system natural frequency determined at the previous order. The

terms coming from second-order corrections of both the curvature and the pressure do not

resonate. They are quadratic thus not relevant for the further analysis. Consequently, these non

resonant terms are not explicitly written in (8.26) but instead are denoted N RT . We anticipate

that, in order to determine the complex amplitude A(T ) at this order, a compatibility condition

involving only the resonating terms will be used. Similarly to what was done for the dynamic

condition (8.26), we derive the kinematic condition

∂η2

∂t
+ ∂Φ2

∂r

∣∣∣∣
η0

η0,r − ∂Φ2

∂z

∣∣∣∣
η0

=−∂η1

∂T
+N RT, (8.27)

where ∂η1/∂T is the slow time modulation of the interface motion and N RT gathers all the

non resonating terms. At this point, the nonlinear contact angle correction due to the contact

line model enters in the analysis:

θ2 = α̂
∂η1

∂t
+ Δ̂

2
sgn

(
∂η1

∂t

)∣∣∣∣
r=1

, (8.28)
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where Δ̂ is the rescaled size of the contact angle hysteresis, Δ= ε2Δ̂, and α̂ is the rescaled slip

coefficient, αC a = εα̂. The second-order angle correction θ2 in equation (8.28) is related to η2

and to the static contact angle, θs , through the geometrical relation:

∂η2

∂r

∣∣∣∣
r=1

= −θ2

sin2(θs)
. (8.29)

In order to impose a compatibility condition, that is needed to determine the amplitude A(T )

in equation (8.23), the terms oscillating at the natural frequency in the contact line model (8.28)

have to be considered, as done for the dynamic and kinematic conditions (8.26) (8.27). How-

ever the sign function is nonlinear and not purely harmonic, but through the Fourier series its

ω-harmonic may be isolated (see Nayfeh (2008)):

sgn

(
∂η1

∂t

)
= sgn

(
iωAηA

1 eiωt+nφ+c.c.
)
=

∞∑
k=−∞

dk (φ)ei kωt (8.30)

The complex amplitude and ηA
1 can be decomposed in module and phase, namely: A(T ) =

|A(T )|eiβ(T ) and ηA
1 = |ηA

1 |eiβη . By defining the quantity ξ = ωt + nφ+ π
2 +βη +β(T ), the

coefficient dk is given by:

dk (φ) = ω

2π

∫ 4π
ω

− 4π
ω

sgn(cos(ξ))e−i kωt dt = ei k(nφ+π/2+βη+β(T )) 1

2π

∫π

−π
sgn(cos(ξ))e−i kξdξ︸ ︷︷ ︸

ck

. (8.31)

Consequently, the nonlinear term reads:

sgn

(
∂η1

∂t

)
=

∞∑
k=−∞

ck ei kξ = c1ei (ωt+nφ+π/2+βη+β(T )) +c.c.+N RT, (8.32)

where we have isolated the harmonic oscillating at the sloshing natural frequency. The Fourier

coefficient c1 is equal to:

c1 = 1

2π

∫π

−π
sgn(cos(ξ))e−iξdξ= 2

π
. (8.33)

By substituting equation (8.32) in the ε-order contact line model (8.29) we have

∂η2

∂r

∣∣∣∣
r=1

= − α̂

sin2(θs)
iωηA

1 Aeiωt ei nφ− i Δ̂

πsin2(θs)

ηA
1

|ηA
1 |

A

|A|e
iωt ei nφ

∣∣∣∣∣
r=1

+c.c.+N RT, (8.34)

where the first term on the rhs is associated to the linear part of the contact line model (8.10)

and provides a correction to the dynamic contact angle that is found proportional to the

contact line velocity. The second term in the rhs is nonlinear with respect of the contact line

velocity. Its origin is attributed to the contact angle hysteresis. Specifically, this term only

depends on the phase of the velocity, a result consistent with the use of the sgn function that

only depends on the sign of its argument. As a result, this term provides a different correction

if the interface is advancing or receding.
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In compact form, the second order problem is written as:

(∂t B−A )q2 =F2, (8.35)

where A is here subjected to the non-homogeneus boundary conditions (8.27) and (8.34).

The forcing term on the rhs is:

F2 =−
(

0

∂Φ1/∂T |η0

)
=−∂A

∂T

(
0

ΦA
1

∣∣
η0

)
︸ ︷︷ ︸

F A
2

eiωt ei nφ+c.c.
(8.36)

This forcing term, along with the forcing terms in the boundary conditions (8.27) and (8.34),

can resonate and induce a flow response that diverges as time increases. Hence, a compatibility

condition has to be imposed in order to have a non-resonating particular solution to (8.36) of

the type q2 = q̂2eiωt ei nφ+c.c. and therefore preserve the asymptotic expansion scheme. By

substituting this expression in the second order problem (8.35) we get:

(iωB−A )q̂2 =F A
2 . (8.37)

This equation has a non-trivial solution if and only if F A
2 is orthogonal to the adjoint mode q†,

according to Fredholm alternative. The adjoint global mode q† is the solution of the adjoint

equations:(
∂t B

† −A †
)

q† = 0, (8.38)

where the linear operators A † and B† are derived by integrating by parts the system of

equations (8.21). We refer to Appendix 8.6 for the complete derivation of the adjoint equations

and the definition of the adjoint mode. The resulting compatibility condition reads:

< q†, (∂t B−A ) q̂2 >=< q†,F A
2 > . (8.39)

where the brackets <> define the Hermitian scalar product (8.52). By substituting the expres-

sion for F A
2 from (8.36), we obtain

< q†,F A
2 >=−∂A

∂T

∫
η0

η†ΦA
1 dη0, (8.40)

where the symbol
∫
η0

denotes a surface integral on the zero-order surface η0(r ) with dη0 =
r dz

√
1+η2

0,r , as detailed in Appendix 8.6. Furthermore, the lhs of equation (8.39) is non-zero

because the kinematic and the contact line conditions are not homogeneous at second order:

< q†, (∂t B−A ) q̂2 >=<
(
∂t B

† −A †
)

q†, q̂2 >︸ ︷︷ ︸
=0

+
∫
η0

Φ
† ∂AηA

1

∂T
dη0 − sin3θs

Bo
η† ∂η2

∂r

∣∣∣∣
r=1

,
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(8.41)

where the integral on the free surface η0 comes from the slow time derivative in the second-

order kinematic condition (8.27), and the last term is associated with the contact line model.

The detailed calculation yielding these boundary and corner terms are reported in Appendix 8.6.

8.3.4 Amplitude equation

Introducing finally the auxiliary constant κ and the two real damping coefficients ζ and χ,

defined as

κ= (η†ηA
1 )r=1

/∫
η0

η†ΦA
1 +Φ†ηA

1 dη0, ζ= ωsin(θs)α̂κ

Bo
, χ= sin(θs)Δ̂κ

πBo|ηA
1 |

, (8.42)

the substitution of expression (8.34) in equation (8.41) yields the compatibility condition (8.39)

∂A

∂T
+ζA+χA/|A| = 0, (8.43)

This nonlinear amplitude equation is the main result of this paper: it dictates the relaxation

dynamics caused by the contact line dissipation. The effective damping SloshWaterAppeArs

as the sum of a linear contribution, weighted by the linear damping coefficient ζ, resulting

from the linear part of the contact line model and a nonlinear contribution, scaled by the

nonlinear damping coefficient χ, originating in the contact line hysteresis.

By decomposing the complex amplitude in module and phase, A(T ) = |A(T )|eiβ(T ), equa-

tion (8.43) can be integrated analytically:

|A(T )| =
(

A0 + χ

ζ

)
e−ζT − χ

ζ
, β(T ) =β0, (8.44)

where A0 and β0 depend on the initial condition. Equation (8.44) represents the weakly non

linear correction to the first-order solution (8.23) associated with the contact line model (8.10),

yielding the contact line motion:

η1|r=1 = 2ε|A(t )||ηA
1|r=1

|cos(ωt +β0 +nφ+βη). (8.45)

Specifically, |A(t )| is the nonlinear correction on the amplitude, and βη is the phase of ηA
1|r=1

,

which is nil due to way the eigenmode qA
1 has been normalized. It should be noted that ηA

1 , βη

and A(t ) depend on the normalization of the direct mode, albeit the final result η1 does not.

We next consider, as a illustrative example, the dynamics of the fundamental sloshing

mode, n = 1, following an initial deflection of the interface of amplitude A0 = 0.1 from rest

(β0 = 0) for the set of representative parameters chosen throughout this section. The Bond

number and the static contact angle are equal to Bo = 500 and θs =π/4, and the contact line
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Figure 8.5: Contact line motion (blue line) modulated by the slow time amplitude (red line) is
shown in a). In b) the corresponding capillary damping versus the wave amplitude.

model parameters are set to C a = 0.01, α = 60 and Δ = 10°. Figure 8.5a shows the second

order contact line motion by a blue line, whereas the red line corresponds to the envelope

|A(t)|. One can first note that the sloshing frequency is not modified at leading order by

the nonlinear contact line dynamics. Regarding the amplitude, in contrast to the first order

solution (Figure 8.4c), the contact line motion is damped. Moreover, the wave attenuation is

not uniform during the sloshing time and the instantaneous damping rate

γ(t ) =−dlog(|A(t )|/A0)

dt
= εζ

1−eεζt /(1+ A0ζ/χ)
, (8.46)

that is reported in Figure 8.5b depends on the wave amplitude, as typical in nonlinear systems.

8.4 Discussion

The theoretical multiple scale analysis presented in the previous section has revealed the

nonlinear nature of the sloshing motion associated to the contact line hysteretic dynamics.

In this section, we take advantage of this theoretical framework and study the dynamics of

the fundamental sloshing mode, n = 1, following an initial perturbation A0 of the interface

(Fig. 8.2) as a function of several macroscopic parameters.

8.4.1 Effect of contact angle hysteresis

We focus here on the influence of the contact angle hysteresis Δ on both |A(t)| and γ(t). To

this end, the governing parameters of the system, namely the Bond number, Bo, the static

contact angle, θs , the slip coefficient, α, the initial contact line deflection, A0, and the capillary

number, C a, are set to the reference values used in section 8.3. Therefore, only the value of

the contact angle hysteresis Δ is varied.

197



Chapter 8. Nonlinear friction in sloshing dynamics: partial wetting

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

200 400 600 800

10
-2

10
-1

10
0

Figure 8.6: a) Amplitude modulation versus time. Each note correspond to a specific contact
angle hysteresis ranging from 1° to 30°. In the inset the same quantities are reported in loga-
rithmic scale to emphasize their singular behavior. b) Shown is the damping rate originating
from capillary effects, plotted as a function of the oscillation amplitude relative to the initial
perturbation.

Figure 8.6a shows the relative sloshing amplitude |A(t)|/A0 as a function of time for dif-

ferent values of the contact angle hysteresis Δ. As evident from the logarithmic decrement

log(|A(t)|/A0) (inset) two regimes may be identified. At first the amplitude decays roughly

exponentially, as evidenced by the linear aspect of the plot, with an initial damping rate

γ(t = 0) =−εζ− εχ

A0
. (8.47)

There are therefore two contributions to the damping rate prevailing at initial times: in

addition to the expected source of damping associated to the linear contact line friction, which

is proportional to α through ζ, the contact line hysteresis also contributes to damp the motion

already from the beginning of the motion through a contribution which is proportional to the

contact angle hysteresis Δ through χ and inversely proportional to the initial amplitude A0.

The limiting behavior close to A = 0 can also be analyzed: eq. (8.46) reveals that exists a finite

time t∗ such that the damping rate diverges

γ(t = t∗) →∞, (8.48)

with,

t∗ = 1

εζ
log

(
1+ ζ

χ
A0

)
. (8.49)

Moreover, it is seen from eq. (8.44) that the finite time singularity of the damping rate yields

the sloshing amplitude to vanishes and becomes exactly zero at t∗. By recalling that χ∝Δ

(see eq. (8.42)), we can conclude that the hysteresis is at the origin of the finite time arrest

of the motion. Indeed, if Δ is set to zero the system relaxes exponentially with damping rate
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Figure 8.7: Finite time of arrest t∗ is reported as a function of a) the Bond number, b) the
static contact angle, c) the slip coefficient and d) the initial contact line displacement. The
+ symbols displayed in (d) correspond to t∗ computed with a finer mesh (see Appendix 8.7),
showing convergence with respect to grid resolution.

εζ and t∗ diverges. On the other hand, even a small a value of the contact angle hysteresis

as small as 1° is enough to introduce a significant dissipative effect that largely impacts the

dynamics, in particular leading its arrest in finite time. The contact angle hysteresis therefore

both contributes to increase the initial damping rate and to hasten the finite time arrest.

8.4.2 Time of arrest: parametric study

We now turn to investigate the parametric dependence of the time of arrest, t∗ on the physical

parameters of the problem. To this end, we use the configuration introduced in section 8.3 as

a reference and subsequently vary the Bond number, Bo, the static contact angle, θs , as well as

the contact line model parameters, αC a and Δ, and the set of the initial condition, A0. Using

our previous results from section 8.3 we anticipate that the first order solution depends only

on the static contact angle θs and on the Bond number Bo. On the other hand, the contact line

model parameters αC a and Δ, and the initial condition A0 only affect the solution at second
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Figure 8.8: Comparison between the capillary damping rate versus time for different contact
angle hysteresis and the viscous damping (horizontal black line).

order.

Using the definition of ζ and χ in equation (8.49), we obtain a scaling law for t∗:

t∗ ∝ Bo

ωκsin(θs)

1

αC a
log

(
1+ε

αC aωA0

Δ
.

)
. (8.50)

In Fig. 8.7 we show the variation of t∗ as a function of the key parameters of the problem. The

time of arrest evidently increases with the initial interface deflection A0. In effect, A0 sets

the initial energy of the system, which has to be entirely dissipated in order to reach the rest

configuration. Therefore, a higher A0 requires a longer time before the interface comes back

to rest. However, due to the logarithmic dependence of t∗ with respect to A0 in eq. (8.50), the

time of arrest increases less than linearly with A0 as evident from the concave down curves

reported in Fig. 8.7a. Regarding the slip coefficient, α, an increase of its value α yields an

increase of the damping rate and in turn a decrease of t∗. This result remains true for all the

values of Δ considered (see Fig. 8.7b).

Since the frequency ω and the scalar quantity κ (see eq. (8.42)) arise from the first order

problem, they both depend in a complex way on the static angle, θs , and the Bond number,

Bo. For this reason, the scaling law for t∗ with respect to θs and Bo cannot be in principle

immediately deduced from equation (8.50). However, we have found that both ω and κ do not

vary significantly with respect to θs and Bo, as illustrated by figure 8.7c, which shows a linear

dependence of t∗ with the Bond number and corroborated by figure 8.7d, which suggests that

the time of arrest decreases when the static contact angle θs is decreased, according to the

ratio Bo/sin(θs) in equation (8.50).

Finally, from the respective position of all curves in Figure 8.7 relative to the value of hystere-

sis parameter Δ, we deduce that an increase of the contact angle hysteresis always anticipate

the arrest of sloshing, in consistence with expression (8.50).
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Figure 8.9: Schematic of the sloshing system with hysteresis.

8.4.3 Comparison with the theory of Case & Parkinson (1957)

Our approach to sloshing demonstrates that capillary effects at the contact line and, in partic-

ular, the hysteresis of the contact angle have a dissipative effect on the dynamics of sloshing in

a container. This result is in line with experimental evidence (Keulegan, 1959; Cocciaro et al.,

1991) where the measured damping rate significantly exceeds the viscous damping rate of

Case & Parkinson (1957). In Figure 8.8 the capillary damping for the reference case introduced

in section 8.3 is shown for different values of Δ spanning from 1° to 30°. We recall that here

the slip coefficient α= 60 has been set according to the available experimental data for unidi-

rectional steady flow. In the same figure, the horizontal black line depicts the corresponding

viscous damping rate, which in the case of deep-water tank is given by γμ = 0.56ω



C a/Bo,

see Ibrahim (2005). As observed in section 8.3.4, the capillary damping is roughly constant

at early time where the wave amplitude is large and its magnitude increases with contact

angle hysteresis. A contact line hysteresis of Δ as small as 5° is already sufficient to surpass

the pure viscous damping, dominated by the contribution of the wall Stokes layers Case &

Parkinson (1957). In addition, the capillary damping significantly increases at later time when

the amplitude of oscillation diminishes. Even for small values of Δ, there exists a time such

that the capillary damping becomes larger to the usual viscous damping leading to the arrest

of the motion.

8.5 Conclusions

In this work we have presented a novel weakly nonlinear formulation which takes into account

the effect of contact angle hysteresis on inviscid surface capillary-gravity waves in a circular

cylinder. To this aim, a contact line model which was derived experimentally in the framework

of unidirectional flows (Dussan (1979); Rio et al. (2005); Le Grand et al. (2005)) is adopted

as boundary condition at the contact line. In our asymptotic expansion the static meniscus

shape in a cylindrical geometry is given at zero order. At next order the linear problem satisfied

by the sloshing gravity-capillary waves is obtained. The resulting global modes are neutrally

stable because any dissipation source is present at zero and first order. Thus in the spirit of

multiple scale analysis, a slow amplitude and phase modulations are obtained at second order

which correspond to the weakly nonlinear correction accounting for the capillary effects at the

contact line. The phase modulation is not affected at first order, meaning that capillary effects

do not affect significantly the sloshing frequency. This result is in line with experimental
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observation of Keulegan (1959) and Cocciaro et al. (1991, 1993). Capillary effects however

have a dramatic influence on damping rate: the amplitude modulation results in a significant

attenuation of the first order waves. Indeed, according to the amplitude equation (8.43)

the capillary dissipation has two contributions: (i) a nonlinear one related with the contact

angle hysteresis and (ii) a linear part due to the linear dependance between the contact angle

and the contact line velocity. The capillary damping rate in our analysis depends on the

wave amplitude consistently with the experimental observation of Keulegan (1959); Cocciaro

et al. (1991) and is practically uniform when the wave amplitude is large: it results from the

combined action of the linear dynamical contact angle law and the hysteresis. The damping

rate eventually increases significantly at small amplitudes, as a consequence of the hysteresis

contribution.

In contrast to the viscous damping where the wave motion decays until infinite time, the

capillary damping yields a finite time arrest, i.e. the capillary damping stops the fluid sloshing

after a finite amount of time. A similar result has been found in the case of sloshing biphasic

system, where the fluid column is surmounted by a thin layer of foam Viola et al. (2016b). We

have determined an explicit approximated formula expressing the time of arrest as a function

of the Bond number, the Capillary number, the static contact angle and the contact line model

parameters is a result of the asymptotic analysis. Specifically the time of arrest is positively

correlated with the Bond number and with the initial deflection of the contact line. The

time of arrest decreases when the static contact angle increases (keeping constant the other

parameters of the contact line model, namely α and Δ). On the other hand, an increase of the

slip coefficient α and the contact angle hysteresis Δ are both associated with an augmented

damping rate which anticipates the time of arrest.

The origin of this time arrest can be explained by noticing that the system behaves as

an oscillator damped by viscous and solid friction, see Figure 8.9. Indeed, the amplitude

equation (8.43) describes the oscillation x ruled by the equation:

ẍ +x +αẋ +Δsgn ẋ = 0, (8.51)

with the friction coefficients α and Δ of the order of a small parameter ε. This means that the

hysteresis term acts as Coulomb solid friction. An equation similar to (8.51) has been used by

Noblin et al. (2004) to model the contact line dynamics of sessile drop subjected to vibrations.

Our current work aims at analyzing the role of the contact line dynamics on harmonically

forced sloshing dynamics by quantifying its effect on the nonlinear transfer function.

We finally note that the weakly nonlinear stability analysis carried out here provides a

general framework to account for capillary effects in the surface gravity-capillary waves in a

container. Indeed, contact line models other from the one used here can be introduced in the

formulation.
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8.6 Appendix: Adjoint equations

In this section we determine the adjoint equations to the first order problem (8.24), associated

with the Hermitian scalar product:

< qα,qβ >=
∫
Ω
ΦαΦβdΩ+

∫
η0

ηαηβdη0, (8.52)

where the overline symbol designates the complex conjugate. The first term is a weighted

volume integral with dΩ= r dr dz. The second one corresponds to a surface integral on the

zero-order surface η0(r ) with dη0 = r dz
√

1+η2
0,r . In this section we will demonstrate that the

first-order system of equations and boundary conditions are self-adjoint with respect to the

scalar product (8.52).

By definition, the adjoint operator of the direct operator iωB−A , satisfies:

< q†, (iωB−A )q >=< (iω†
0B

† −A †)q†,q > . (8.53)

where q† = (Φ†,η†) is a vector. Hence, the adjoint operator iω†
0B

†−A † is derived by integration

by parts, transferring the differential operators from the vector q to the vector q†. The boundary

conditions for the adjoint operator are chosen so as to nullify the boundary integrals coming

from the integration by parts. The rhs of equation (8.53) reads:∫
Ω
Φ

†
ΔΦdΩ+

∫
η0

η†
(
iωΦ+η− 1

Bo

[
a(r )

r

∂η

∂r
+b(r )

∂2η

∂r 2 + c(r )

r 2

∂2η

∂θ2

])
dη0√

1+η2
0,r

= 0, (8.54)

and integrating by parts we get:∫
Ω
ΔΦ

†
ΦdΩ+

∫
∂Ω

Φ
†∇Φ ·ndS −

∫
∂Ω

Φ∇Φ† ·ndS

+
∫
η0

−iωη†Φr dr +
∫
η0

(
η† − 1

Bo

[
a(r )

r

∂η†

∂r
+b(r )

∂2η†

∂r 2 − n2c(r )

r 2 η†

])
η r dr

− 1

Bo

[
r b(r )

(
η† ∂η

∂r
− ∂η†

∂r
η

)]r=1

r=0

= 0.

(8.55)

The first integral comes from the integration of continuity equation, and it is nullified by

imposing the adjoint potential ΔΦ† = 0 to be harmonic. The integrals on the domain boundary

∂Ω involving the normal velocity ∇Φ ·n are the boundary terms resulting in the integration

by parts of the continuity equation. These terms vanish at the solid wall because of the

no-penetration condition,

∂Φ

∂r

∣∣∣∣
r=1

= ∂Φ

∂z

∣∣∣∣
z=−h

= ∂Φ†

∂r

∣∣∣∣
r=1

= ∂Φ†

∂z

∣∣∣∣
z=−h

= 0, (8.56)
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and at the axis because of the symmetry condition:

Φ|r=0 =Φ†|r=0 = 0. (8.57)

At the free interface the domain is curved, and the normal vector is n = (− ∂η0
∂r ,1)√

(1+η2
0,r )

. By using the

kinematic boundary conditions (8.19) equation (8.55) reads:

∫
η0

(
−iωη† +η0,r

∂Φ
†

∂r
− ∂Φ

†

∂z

)
Φ

dη0√
1−η0,r 2

+

+
∫
η0

(
−iωΦ† +η† − 1

Bo

[
a(r )

r

∂η†

∂r
+b(r )

∂2η†

∂r 2 + c(r )

r 2

∂2η†

∂φ2

])
η

dη0√
1−η0,r 2

− 1

Bo

[
r b(r )

(
η† ∂η

∂r
− ∂η†

∂r
η

)]r=1

r=0

= 0.

(8.58)

From the first two terms in equation (8.58) the adjoint kinematic and dynamic interface

conditions are retrieved:

− iωη† +η0,r
∂Φ†

∂r
− ∂Φ†

∂z
= 0

− iωΦ† +η† − 1

Bo

[
a(r )

r

∂η†

∂r
+b(r )

∂2η†

∂r 2 + c(r )

r 2

∂2η†

∂φ2

]
= 0.

(8.59)

To complete the adjoint system of equations the last term in equation (8.58), which comes

form the integration by part of the capillary pressure in the direct dynamic condition, has to

be nullified. In r = 0 this term is null because of the integral argument is weighted by r . In

contrast, at the contact line b(r = 1) = sin3(θs) and the condition:

−cos3(θs)

Bo

(
η† ∂η

∂r
− ∂η†

∂r
η

)∣∣∣∣∣
r=1

= 0 (8.60)

defines the natural boundary condition at the contact line. In the case of free-end edge

interface:

∂η

∂r

∣∣∣∣
r=1

= ∂η†

∂r

∣∣∣∣
r=1

= 0. (8.61)

It should be noted that also the pinned boundary condition η = η† = 0 is also a natural

boundary condition of the problem. Hence the direct problem at order ε is self-adjoint with

the respect to the Hermitian scalar product (8.52):

iω†
0B

† −A † =−iωB−A . (8.62)

The vector q† which satisfies the adjoint equations [−iωB−A ]q† = 0 is the adjoint mode.
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8.7 Appendix: Numerical code

8.7.1 Static meniscus

At order ε0 the static meniscus shape in a cylindrical basin it has to be determined. The

governing equation (8.12) is discretized through Chebyshev collocation method and the

Gauss-Lobatto-Chebyshev (GLC) collocation grid s ∈ [−1, 1] is mapped into the physical space

r ∈ [0, R] through the linear mapping r = R(s +1)/2. Hence the solution to the nonlinear

equation is obtained by mean of an iterative Newton method which is made of the following

steps:

1. Find an approximate guess solution η0 which satisfies the boundary conditions (8.13)

and (8.15).

2. Solve for δη0 the linear system:

dχ(η)

dη

∣∣∣∣
η0

δη0 =−χ(η0) (8.63)

with homogeneous boundary conditions, where the Jacobian dχ(η)/dη is defined in

equation (8.18).

3. Set η0 = η0 +δη0

4. Compute the L2-norm of δη0. If ||η0||L2 > 10−12 go to step (b)

5. Set the static meniscus to η0

8.7.2 Global stability analysis

At order ε1 the linear eigenvalue problem (8.24) has to be solved and the equations together

with the boundary conditions are discretized through Chebyshev collocation in a similar

fashion to Viola et al. (2016a). The physical domain is in general not rectangular due to the

presence of the static meniscus η0. For this reason the physical domain with coordinates (r, z)

has to be mapped into the Chebyshev space (s, t ) through the transformation:

r = R

2
(s +1), z = (t +1)

(
H

2
+ η0(s)

2

)
−H , (8.64)

where η0 is the static meniscus. The partial derivatives in the physical space are related to the

derivative in the physical space according to the relations:

∂u

∂r
= 1

r,s
u,s −

z,s

r,s z,t
u,t

∂u

∂y
= 1

z,t
u,t

∂2u

∂r 2 = 1

r 2
,s

u,ss +
z2

,s

r 2
,s z2

,t

u,t t −
z,t z,ss −2z,s z,st

r 2
,s z2

,t

u,t −
2z,s

r 2
,s z,t

u,st
∂2u

∂y2 = 1

z2
,t

u,t t

(8.65)
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where the derivatives of the physical coordinates with respect depend on the mapping function,

see Heinrichs (2004). In our case:

r,s = R r,ss = 0 r,t = 0 r,st = 0 r,t t = 0

z,s = t +1

2
η,s z,ss = t +1

2
η,ss z,t = H

2
+ η(s)

2
z,st =

η,s

2
z,t t = 0

(8.66)

The integrals SloshWaterAppeAring in equations (8.42) are computed with Clenshaw-Curtis

quadrature formula, where the quadrature weights are adapted to the mappings used following

the method presented in Sommariva (2013). The number of nodes in the radial and vertical

direction is Nr = Nz = 60 which ensures convergence of the results. In Figure 8.7(d) the time

of arrest as a function of θs and Δ computed with the finer grid Nr = Nz = 80 is reported as

proof of convergence.
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In this thesis the resonant behavior of swirling wakes and sloshing waves has been studied.

First, we have considered the response to forcing of trailing and wind turbine hub vortices,

with special emphasis on convective non-normalities and mode selection. Then, the effect of

capillary sublinearities in the free decay of sloshing waves has been explored, both in the total

and partial wetting regimes.

In chapter 2 we have studied how trailing vortices respond to a harmonic forcing. Full 3D

numerical simulation of a non-parallel Batchelor vortex, reveal that a large variety of helical

responses are excited and amplified through the flow field when an inlet or body forcing is

applied. Single and double helical structures are excited at low frequency, whereas higher

azimuthal wavenumber modes resonate at higher frequencies, see Figure 9.1.

With the aim of understanding the mode selection mechanism as a function of the forcing

frequency, both a WKB analysis, in the framework of weakly-non-parallel flows, and a global

resolvent approach are carried out. It is found that the appearance of a preferred helical shape

at a given frequency is directly connected to the local stability properties of the flow which is

everywhere convectively unstable. Indeed, the mode selection predicted by the linear optimal

forcing analysis well matches the one observed in full nonlinear DNS computation. Regarding

the energy gain of the response, the single helix mode is found to have the largest nonlinear

amplification to a harmonic in time and random in space inlet forcing. Moreover, due to its

peculiar azimuthal symmetry, the single-helix mode is the most sensitive to disturbances

forcing the flow at the centerline and resonates in a broader frequency range due to possible

nonlinear interaction mechanisms between neighboring modes.

These techniques have been then translated in chapter 3 to investigate the physical origin

of the coherent fluctuation of the hub vortex in wind turbine wakes that has been observed

experimentally (Medici & Alfredsson, 2006; Chamorro & Porté-Agel, 2010; Iungo et al., 2013).

Local and global stability analysis on the time-averaged wind tunnel measurements revealed

that this oscillation is related the appearance of a counter-winding and co-rotating single-helix

mode. Thus, a novel formulation has been introduced to properly account for the turbulent

207



Chapter 9. Conclusions and perspectives
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Figure 9.1: Mode selection in a harmonically forced trailing vortex (isocontours of axial vortic-
ity). When the forcing frequency, ω f increases higher wavenumber modes resonate.

effects in the stability analysis by means of eddy-viscosity models tuned on the Reynolds

stresses available from experiments. With our stability analysis, we were able to predict the

frequency of instability of the hub vortex and the streamwise wavenumber of the helicoidal

mode which successfully match with experiments.

Furthermore, we extended the stability analysis to wind turbines immersed in a turbulent

atmospheric boundary layer. In this case, the mean wake can not be considered as axisym-

metric and 2D local stability analysis has been carried out, confirming that, for the considered

operational conditions of the turbine, the single-helix mode visualized in Figure 9.2 resonates.

Aiming at controlling the helical modes arising in trailing and hub vortices, we developed

in chapter 4 a general adjoint-based technique for the control of disturbances amplification

in weakly non-parallel amplifier flows. The method is based on the sensitivity of the spatial

stability spectrum to a generic local baseflow modification, that is by itself a novel contribution

to classical Hydrodynamic stability theory. These local sensitivities are concurrently used

in a Lagrangian formulation to determine the optimal control capable to reduce the energy

response of amplifier flow. The technique has been applied to the case of an evolving Batchelor

vortex: by using only one linearization of the flow dynamics carried out on the uncontrolled

configuration, we successfully determined the optimal linear control to reduce the global

amplification of helical modes in the flow domain.

Finally, in chapter 5 we revisited with a modern perspective the classical, but sill not com-

pletely understood, phenomenon of vortex breakdown. Based on our numerical simulations

carried out at different Reynolds and swirl number, we observed that the breakdown state cor-

responds to a transition state between two different flow solutions. While the pre-breakdown

state corresponds to a self-similar columnar solution which respects the classical boundary

layer scaling in agreement to Hall (1972), the self-similarity is lost for post-breakdown solu-

tions. However, this transition can not be explained as a supercritical bifurcation because the
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Figure 9.2: Reconstruction of the global mode resonating in the hub vortex instability (isosur-
face of axial vorticity). The arrows depict the atmospheric boundary layer in the oncoming
flow and the streamwise planes in the wind turbine wake report the mean flow axial velocity.

flow is seen to remain always globally stable to axisymmetric steady perturbations. Still, a

weakly damped steady mode with a topology similar to the breakdown state is present in the

spectrum. Thus, we have shown asymptotically that this mode could be triggered by nonlinear

effects even if linearly stable. Finally, a set of reduced Navier-Stokes equations that correctly

account for the vortex breakdown state with a cheaper computational cost has been derived.

As we have just summarized, new results on the amplification mechanisms and mode

selection in swirling wakes have been obtained. Nevertheless, interesting open questions

remain on this topic and, with the insights gained from our investigation, several extensions

of this work are possible.

In particular, the mode selection in the wind turbine hub vortex has not been yet fully

explained, since the physical mechanism leading to the single-helix instability is still not clear.

Since all the measured slices of fluid domain are convectively unstable our main point is

that the single-helix is the most unstable mode in both temporal and spatial analysis at the

instability frequency given from experiments (in a similar way to Oberleithner et al. (2011)).

We further claimed that, even if there was a region of absolute instability in the very near wake,

this region would be very small and most likely not elongated enough to act as wavemaker

and trigger a global mode. On the other hand, if the flow acts as an amplifier, then a forcing is

necessary to trigger a significant response, which raises the following fundamental question:

where is this forcing coming from? We argue probably from the wind turbine itself. In fact in

Felli et al. (2011) the instability of the hub vortex occurs at the same frequency of rotation of

the wind-turbine, like in a transfer function relation between the input and output of linear
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systems. In our experiments and in agreement with Chamorro & Porté-Agel (2010) and Zhang

et al. (2012) the low-spectral component connected to wake instability is equal to approx-

imately 0.34 times the hub rotational frequency. The flow response is at a frequency close

to 1/3 of the upstream forcing suggesting an explanation through nonlinear subharmonic

resonance: since the flow is quite insensitive at the frequency of the forcing (it is actually

locally stable!), the response is located in the resonance range where a certain subharmonic

resonates well. In the case of Felli et al. (2011) we can conjecture the existence of some modes

with large amplification close to the propeller rotation frequency such that the response of the

flow is synchronized with the forcing.

In this conception, stability features of the flow play the role of a filter. They only allow a

certain range of frequencies in the flow response, where locally unstable and globally suffi-

ciently amplified modes are found. This argument could be better investigated performing

experiments varying continuously the flow parameters (such as the tip speed ratio) in such a

way that the ratio among the frequency instability and the rotational frequency of the turbine

will vary from 0.34, as in our case, to 1, as in Felli et al. (2011). According to the theory of

amplifier flows a clear switch among the dominant frequency and its subharmonics can be

expected varying the operational condition of the turbines and, as a consequence, the flow

parameters.

In this respect, the phenomenon of the hub vortex instability seems to be quite robust in

the sense that it has been detected in several wind tunnel experiments and more recently in

numerical simulations. However, wind turbine wakes are greatly affected by the atmospheric

conditions and their operational regimes. Indeed, pitch and yaw angles of a turbine are contin-

uously adjusted as a function of the wind velocity and direction. Hence, a natural extension of

this work would be to study how the mode selection depends on incoming wind turbulence,

thrust coefficient, tip speed ratio and blade lift distribution of the wind turbine. The mean

flow, which varies from case to case, could be obtained in dedicated wind turbine experiments

or Reynolds Averaged Navier Stokes simulations.

Another interesting aspect is the enhancement of the turbulent mixing and flow entrain-

ment in the wake caused by the spiralling motion of the hub vortex due to the instability.

Therefore, its control with the objective of hasten the wake recovery, is of great interest for

maximizing wind farm energy harvesting. With this motivation, the control strategy for ampli-

fier flows developed in this thesis could be employed to to determine the region of the wind

turbine wakes more receptive to a mean flow modification and to design an optimal control

to act on the instability. The effectiveness of the designed control strategy could be tested

in wind-tunnel experiment to verify the increase (or decrease) of the hub vortex instability

amplification.

Another extension of the work would be the investigation of the vortex meandering phe-

nomenon observed in trailing-vortex experiments (Devenport et al., 1996; Jacquin et al., 2001;

Iungo et al., 2009), in the light of spatial stability analysis. The random-like precession of

the vortex core could be maybe explained as the result of the convectively unstable spatial

modes, eventually excited by turbulent fluctuations. Moreover, the particle image velocimetry

measurements of Roy & Leweke (2008) revealed that the most energetic helical perturbation
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Figure 9.3: Sloshing of (a) foam-water waves in a cylindrical basin where the (b) motion of the
surface Plateau borders originates a sublinear friction force, F f . The equivalent mechanical
system is sketched in (c), where the inertial term proportional to the interface acceleration, Ẍ ,
is balanced by the restoring force of gravity, Fg , the viscous friction in the liquid phase, Fw ,
and the sublinear force in the foam phase, F f .

present in their meandering experiments is the single-helix displacement mode that corre-

sponds to the most nonlinearly amplified mode in our numerical simulations on the harmonic

response of trailing vortices.

Lastly, regarding the axisymmetric vortex breakdown, the weakly nonlinear mechanisms

proposed in this work could give a new understanding of this intriguing phenomenon and are

currently one of my ongoing projects.

The second part of the thesis has been devoted to nonlinear friction effects on the dynamics

of fluid-solid resonators. Nonlinearities have been classified as superlinear or sublinear, ac-

cording to their power law dependence on the fluid velocity. Namely, nonlinear terms with

an exponent greater than one, such as the convective term in the Navier-Stokes equations,

dominate the dynamics at large amplitudes, thereby enabling linearized approaches at small

scales. In contrast, sublinear terms, i.e. with an exponent less than one, become of paramount

importance at small oscillation amplitudes.

In chapter 6 the motion of a torsional pendulum consisting of an oscillating disk subjected

to a superlinear and linear friction has been studied. The full fluid-structure problem has

been solved through numerical simulations by coupling the disk’s motion to the fluid’s velocity

and pressure fields. It was seen that even if the frequency of the damped system is almost

uniform in time and close to the natural frequency, a small frequency shift exists between high

and low amplitudes. We observed furthermore the existence of two different regimes in the

dynamics of the pendulum yielding to different scalings for the damping rate: it decreases

proportionally to the square root of the oscillation amplitude at the beginning of the motion

before reaching a constant value.

These observations have been explained in the framework of boundary layer theory where

two limiting regimes have been distinguished: (i) a low amplitude linear regime where an

oscillating Stokes layer takes place (Stokes, 1851) and (ii) a high amplitude nonlinear regime
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Figure 9.4: (a) Sloshing of water waves in a cylindrical basin, where the dynamic contact
angle θ depends on the capillary number C a = μU /γ based on the contact line velocity U
through the nonlinear model in (b). The hysteresis acts as a solid friction and the equivalent
mechanical system is sketched in (c).

that is well described by the quasi-steady Von Karman solution (Von Karman, 1921). These an-

alytical solutions motivated us to introduce a simple phenomenological model for the viscous

relaxation of the torsional pendulum. This predictive model gives an analytic expression for

the free decay of the system compares well with the results of the full numerical simulations.

In chapter 7 we uncovered previously unseen sublinear effects in a liquid-foam sloshing

system designed at desktop scale. We showed experimentally and theoretically that when a

layer of foam is placed on top of a liquid, the sloshing of the liquid phase does not relax expo-

nentially. Indeed, the motion of the several contact lines embedded in the cellular structure of

the liquid foam generates a sublinear friction at the container’s wall, see Figure 9.3. Thus, this

sublinear force yields the damping rate of the sloshing motion to increase catastrophically at

small amplitude, thereby stopping the fluid’s oscillations in a finite time. This result is in strong

contrast with the classical linear exponential relaxation ending at infinite time. We rationalized

our observations deriving a minimal theoretical model accounting for the sublinear interfacial

effects in the total wetting regime which evidences the predominance of interfacial effects in

macroscopic dynamical systems comprising contact lines.

Then, in chapter 8 a single phase liquid sloshing in partial wetting conditions is considered.

In this case no precursor film along the container’s wall is present, so that the oscillating

interface is effectively in contact with the container. The contact angle depends nonlinearly

on the contact line velocity and a contact angle hysteresis range exists when the interface

velocity is nill (Dussan, 1979). In order to account for this nonlinear effect on the dynamics of

inviscid sloshing waves, we carried out a weakly nonlinear analysis based on global stability.

We showed theoretically that capillary effects have a dramatic influence on the damping rate.

Specifically, the damping rate induced by the motion of the liquid meniscus depends on the

wave amplitude, consistently with the experimental observation (Keulegan, 1959; Cocciaro

et al., 1991): this rate is practically uniform when the wave amplitude is large and increases

significantly at small amplitudes due to the presence of hysteresis. Similarly to the foam case,

the damping rate diverges at small amplitudes yielding a finite time arrest of the motion. This
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phenomenon was explained by noticing that at leading order the sloshing mode behaves as

an oscillator damped by viscous and solid friction, meaning that the hysteresis term acts as

Coulomb solid friction as depicted in Figure 9.4.

These new contributions to the study of the nonlinear dynamics of sloshing waves motivate

various follow-up projects.

For instance, one of the main outcomes of the theoretical model we have introduced for the

water-foam sloshing is an analytical expression of the finite time of arrest, which has different

scalings with the different physical parameters. At this stage, only its dependence on the foam

thickness has been verified experimentally, whereas the dependence on the fluid density,

viscosity, surface tension, container size and foam bubble diameter should also be probed

with new experiments.

Furthermore, in our experiments only the free decay of sloshing waves has been studied by

monitoring their relaxation. It remains, however, to investigate the impact of the sublinear

term on the response to forcing. Thus, a complementary experiment to what done here, would

be to measure the amplitude of the free surface response when a small harmonic forcing

is applied to the container. By varying the forcing frequency and the foam layer thickness,

the resonance curve is expected to differ from the classical Lorentzian shape far from the

resonance condition, where the amplitude of the response is smaller and sublinear effects

more intense.

In our weakly nonlinear analysis in chapter 8 we accounted for contact angle hysteresis in

inviscid capillary-gravity waves. In particular, an empirical contact line model has been used

as boundary condition at the contact line. The next natural step is to perform a quantitative

comparison between the capillary damping rates obtained by the asymptotic analysis and

the ones measured experimentally. Note that since the model parameters strongly depend

on the wetting condition and on the roughness of the solid wall, they have to be measured in

the particular experimental condition and provided as input in the formulation.

On the fundamental level, the model sketched in Figure 9.4 has been validated experimen-

tally in the case of unidirectional flows but has not been extensively verified in the oscillatory

regime. Hence, precise measurements of the contact line law of a periodically advancing

and receding interface could reveal a different behaviour with respect to unidirectional flow,

especially at high frequency. This constitutes a natural continuation of this study, as well as a

formidable experimental challenge with a possible impact on the study of dissipative mecha-

nisms at play in the sloshing phenomenon. In this spirit, our weakly nonlinear formulation

can be in general extended to other contact line laws at the interface.

Another interesting continuation of this work would be to account for the viscous effects

at leading order, i.e. to determine the effect of the contact angle hysteresis on the viscous

sloshing mode rather than the inviscid one. Preliminary results reveal that this formulation is

ill-posed since at the contact line the noslip boundary condition imposes the velocity to be

nill whereas the contact line mode allows for the interface to slide. This paradox, that is not

present in the inviscid formulation where slip condition is prescribed at the wall, is usually
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overcome in unidirectional flows by introducing a slip length (Eggers, 2005). Hence, viscous

sloshing modes could be treated by replacing the noslip condition at the wall with a Navier

condition. However, this requires to introduce another parameter in the formulation, the slip

length, that depends on the specific wetting condition of the problem.

As a final note, the global weakly nonlinear analysis could be in principle extended to

total wetting condition (see section 1.3.2 in the introduction chapter). However, this case

appears as non-trivial since the static contact angle is zero yielding a diverging slope (a cusp)

of the static meniscus, that enters in the global analysis at first order. Not only that, the thin

wetting film present in the case of a fully wetting fluids has to be discretized and included in

the flow domain.
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