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Abstract

Symmetries are omnipresent and play a fundamental role in the description
of Nature. Thanks to them, we have at our disposal nontrivial selection
rules that dictate how a theory should be constructed. This thesis, which is
naturally divided into two parts, is devoted to the broad physical implications
that spacetime symmetries can have on the systems that posses them.

In the first part, we focus on local symmetries. We review in detail the
techniques of a self-consistent framework — the coset construction — that we
employed in order to discuss the dynamics of the theories of interest. The merit
of this approach lies in that we can make the (spacetime) symmetry group act
internally and thus, be effectively separated from coordinate transformations.
We investigate under which conditions it is not needed to introduce extra
compensating fields to make relativistic as well as nonrelativistic theories
invariant under local spacetime symmetries and more precisely under scale
(Weyl) transformations. In addition, we clarify the role that the field strength
associated with shifts (torsion) plays in this context. We also highlight
the difference between the frequently mixed concepts of Weyl and conformal
invariance and we demonstrate that not all conformal theories (in flat or curved
spacetime), can be coupled to gravity in a Weyl invariant way. Once this
“minimalistic” treatment for gauging symmetries is left aside, new possibilities
appear. Namely, if we consider the Poincaré group, the presence of the
compensating modes leads to nontrivial particle dynamics. We investigate in
detail their behavior and we derive constraints such that the theory is free
from pathologies.

In the second part of the thesis, we make clear that even when not gauged,
the presence of spontaneously broken (global) scale invariance can be quite
appealing. First of all, it makes possible for the various dimensionful param-
eters that appear in a theory to be generated dynamically and be sourced
by the vacuum expectation value of the Goldstone boson of the nonlinearly
realized symmetry — the dilaton. If the Standard Model of particle physics is
embedded into a scale-invariant framework, a number of interesting impli-

cations for cosmology arise. As it turns out, the early inflationary stage of



our Universe and its present-day acceleration become linked, a connection
that might give us some insight into the dark energy dynamics. Moreover, we
show that in the context of gravitational theories which are invariant under
restricted coordinate transformations, the dilaton instead of being introduced
ad hoc, can emerge from the gravitational part of a theory. Finally, we discuss
the consequences of the nontrivial way this field emerges in the action.

Keywords: Poincaré invariance, scale invariance, conformal invariance,

gauge theory, gravity, cosmology.
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Résumé

Les symétries sont omniprésentes et jouent un role fondamental dans la
description de la nature. Grace a elles, nous avons a notre disposition
des régles de sélection non triviales qui dictent la construction des théories
physiques.

Cette thése, qui est naturellement divisé en deux parties, est consacrée
aux vastes implications physiques que les symétries d’espace-temps peuvent
avoir sur les systémes qui les possédent. Dans la premiére partie, nous
nous concentrons sur les symétries locales. Nous examinons en détail les
techniques d’un cadre auto-cohérent — coset construction — que nous avons
employé pour examiner les théories qui nous intéressent. Le mérite de
cette approche réside dans le fait que nous pouvons faire agir le groupe de
symétrie en interne et donc, étre efficacement séparé des transformations
de coordonnées. Nous étudions les conditions dans lesquelles il n’est pas
nécessaire d’introduire des champs de compensation supplémentaires pour
rendre une théorie relativiste ou non-relativiste invariante par rappord aux
symétries d’espace-temps locales et plus précisément par les transformations
de changement d’échelle (transformation de Weyl). En outre, nous clarifions
le role que le tenseur du champ associé aux déplacements (torsion) joue
dans ce contexte. Nous soulignons également la différence entre les concepts
souvent mixtes de transformation de Weyl et d’invariance conforme et nous
démontrons que toutes les théories conformes (en espace-temps plat ou
courbé), ne peuvent pas étre couples a la gravité d’une maniére invariante
sous transformation de Weyl. Si ce traitement “ minimaliste ” pour jauger
les symétries est laissé de cote, de nouvelles possibilités apparaissent. Si nous
considérons le groupe de Poincaré, la présence des modes de compensation
conduit & une dynamique des particules non triviale. Nous étudions en détail
leur comportement et nous en déduisons des contraintes pour que la théorie
soit exempte de pathologies.

Dans la deuxiéme partie de la thése, nous montrons clairement que méme
lorsque l'invariance globale en changements d’échelle n’est pas jaugé, une
brisure spontanée de cette symétrie peut étre trés attrayante. Tout d’abord, il

il



est possible de générer dynamiquement les différents paramétres dimensionels
qui apparaissent dans la théorie. Ceux-ci proviennent ensuite de la valeur
moyenne dans le vide du boson de Goldstone de la symétrie brisée - le
dilaton. Si le modéle standard de la physique des particules est intégré
dans un cadre invariant par les changements d’échelle, un certain nombre
d’ implications intéressantes pour la cosmologie se posent. Il se trouve, que
la phase d’inflation de notre Univers et son accélération actuelle deviennent
liée, une connexion qui pourrait nous donner un apergu de la dynamique de
I’énergie sombre. Enfin, nous montrons que dans le cadre des théories de la
gravitation invariantes sous les transformations de coordonnées restreintes,
le dilaton peut sortir du secteur gravitationnel d’une théorie au lieu d’étre
introduit ad hoc. Nous discutons les conséquences intéressantes de la fagon
dont ce champ émerge dans ’action.

Mots clés: invariance de Poincaré , invariance en changements d’échelle,
invariance conforme, théorie de jauge, gravitation, cosmologie.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics that describes the electroweak
and strong interactions has enabled us to explain in a self-consistent manner
a plethora of phenomena. Especially after the discovery of the Higgs boson,
SM could be thought of as a predictive effective field theory valid up to
energies comparable to the gravitational scale Mp = 2.435 x 10'® GeV.

Despite its unprecedented success, we now understand that the SM is not
a complete theory for a number of reasons. From the experimental point
of view, it is not possible to address in its context several well established
observational facts, like for example the neutrino masses and oscillations,
the baryon asymmetry of the Universe and the origin of dark matter. From
the theoretical point of view, the SM suffers — among others — from two
severe fine-tuning problems, namely the hierarchy and cosmological constant
problems. For the former, according to the rules of the effective field theory,
the Higgs mass receives large radiative corrections, making it very sensitive
to whatever physics lie beyond the SM. Therefore, its smallness requires an
extreme fine-tuning in order to compensate for these contributions that are
related to the ultraviolet dynamics. For the latter, its predicted value is
approximately M3, which is by many orders of magnitude larger than the
one observed.

Although these problems do not pose a threat to the consistency of theory,
there is no (satisfactory) explanation on what could be the underlying principle
making the electroweak scale and the cosmological constant so small as

compared to Mp.



CHAPTER 1. INTRODUCTION

One of the directions towards a possible resolution of the aforementioned
theoretical puzzles is to allow certain parameters to be small provided that
the symmetry of the theory is enhanced when these are set to zero. If this
line of reasoning is applied to the SM, one observes that responsible for the
smallness of the Higgs mass and the cosmological constant term could be the

presence of exact scale and/or conformal invariance.

In general, theories exhibiting scale and conformal invariance (see, for exam-
ple, |1,2]) constitute a very interesting and rich subject for investigations.
They appear ubiquitously for describing physical systems, whenever a separa-
tion of scales exists. The presence of these symmetries restricts sufficiently
the dynamics, so that many properties of the system can be inferred and in
some cases, the theory can even be solved completely. Thus, they give an
important handle on quantum field theory (for recent progress see [3-7]).

In particular, if the SM is considered as part of a larger scale or conformally
invariant framework, the resulting theory should ultimately be confronted
with observations. For it to be phenomenologically viable — apart from
incorporating gravity in a consistent with all the symmetries manner — the
additional symmetry that it enjoys should be spontaneously broken; this
leads to the appearance of a Goldstone boson, the dilaton. As a result, all
the scales (at the classical level) can have a common origin: the vacuum
expectation value of the dilaton.

It is well known that all classical considerations concerning scale and conformal
theories might not survive at the quantum level. This is almost a trivial
statement, since a mass scale that explicitly breaks the classical symmetry
is introduced when a theory is regularized. However, if this mass scale is
related to the vacuum expectation value of the dilaton, then the symmetries
of the system remain anomaly-free when quantum corrections are taken into
account [8—11]. Notice though that if such a regularization prescription is
used, the loop expansion will generate an infinite number of divergences,
therefore an infinite number of counter-terms (not necessarily with the same
functional form as the terms in the tree-level theory) will be needed in order
to account for them.! As we already mentioned, gravity should be part of
any realistic model and so, the requirement of renormalizability has to be
abandoned in any case. Notice though, that this should not be considered as

'For scale-invariant theories, the scale invariance of the (regularized) quantum effective
action follows trivially from dimensional analysis. For theories with conformal symmetry
on the other hand, investigating what is the fate of the symmetry at the quantum level is
more subtle, see [10,11] for details.



a drawback, as long as we end up with a predictive effective field theory.

Our purpose in this thesis is to investigate several formal (part I) as well
as phenomenological (part II) aspects associated with theories that possess
spacetime symmetries. More specifically, in part I, we address Poincaré, scale
and conformal invariance from a gauge perspective and we discuss in great
detail the role of the compensating fields that have to be introduced. Part II,
deals with the cosmological ramifications of scale invariance and with various
properties of the dilaton field. For the convenience of the reader, each part

contains its own outline.






Part 1

Theoretical considerations






Chapter 2

Outline of Part 1

This part of the thesis is exclusively devoted to formal aspects of gauged
spacetime symmetries. In chapter 3, we show that a natural way to get a
handle on the dynamics and implications of the systems under consideration is
provided by the coset construction. This technique is extremely powerful and
very useful, for it allows to systematically build invariant (effective) actions
using only symmetry arguments. When dealing with spacetime symmetries,
this method makes it possible to completely disentangle the gauge (internal)
transformations from the coordinate ones, in complete analogy with the
situation in Yang-Mills theories [12].

One illustrative example for realizing the potential of the coset construction, is
to consider the gauging of the Poincaré group and consequently the emergence
of the gravitational interaction. Conventionally, gravity is treated in the
context of Einstein’s theory of General Relativity (GR). However, one can
follow the paradigm of the SM and take the gauge approach as a guiding
principle.

Even though this approach to gauging is certainly not unique, it is more
practical than the conventional one, see for example [13—16]; the gauge field
associated with translations (vielbein) is automatically guaranteed to have
an inverse, and more importantly, both field strengths — curvature w and
torsion T’ — transform covariantly under the group operations. Therefore, the
Lagrangian describing the dynamics of the theory can be straightforwardly
written down by considering all possible invariants constructed from curvature



CHAPTER 2. OUTLINE OF PART 1

and torsion at a given order in derivatives
L =2+ L (w,T)+ Lo(w,T)+ ... (2.1)

where %, %, . .., contain terms with zero derivatives (cosmological constant),
one derivative (scalar curvature, Holst term) etc.

The theory in which both curvature and torsion are present, is known in the
literature as Poincaré Gravitational Theory (PGT). One might wonder if
the presence of the degrees of freedom associated with the connection is a
desirable feature. We will be back to this point in a while. It should be noted
that if the goal is to eliminate the extra modes and recover the Einstein-
Hilbert action from the PGT, then the connection should be expressed in
terms of derivatives of the vielbein by imposing the covariant constraint of
vanishing torsion.! This fact should not come as a surprise, since it can well
be the case that the number of fields needed to gauge a spacetime symmetry
is smaller than what would be expected. The investigation of when this is
actually possible has to be carried out in a systematic way, especially when
conformal theories are considered. Let us explain why this is the case. A very
powerful tool for studying these systems is coupling them to a nondynamical
metric [3,5,11]. In an even more general setup, all the couplings are considered
as background sources [18]. It is usually assumed that a conformally invariant
theory can be embedded in a curved background in a Weyl invariant manner.
It is necessary that a theory be conformal in flat spacetime, in order to couple
it to gravity in a Weyl-invariant way. It has been shown that the condition
becomes sufficient, only if actions with at most one derivative of conformally
variant fields are considered [19] (see also [20]). However, to the best of our
knowledge, there is no proof for the condition to be sufficient in general.

The authors of the interesting work [19] proceed as follows. Given a scale-
invariant theory in flat spacetime, it can be made Weyl invariant by gauging
dilatations with the help of an additional field W, (Weyl gauging).? It so
happens that the Weyl variation of a certain combination of the gauge field ®

1
O = VulWy = W, Wy + 29,0 W W, (2.2)

!This is equivalent to integrating out the connection by using its equation of motion
(at the lowest order in derivatives) [17].

2Throughout this thesis, we use greek letters (i, v, ...) for spacetime indices.

3The metric-compatible covariant derivative V,, as well as the Christoffel symbols Ff;l,
are defined in Appendix A.



where V denotes the standard covariant derivative and g, the metric, does
not depend on W,,. It is proportional to the variation of the Schouten tensor

R

mgw , (2.3)

Suw =Ry —
with the following convention for the curvatures

R=Rj, R,=R,, and R, %, = 8/\FZV_8HFKV+FK;;FZV_FZpFlA)y . (2.4)
Therefore, if the gauge field enters the Lagrangian only in the combina-
tion (2.2), it is possible to trade it for the expression in (2.3), leaving all the
symmetries intact. As a result, the theory becomes Weyl invariant and no
additional degrees of freedom are introduced. The authors call this procedure
Ricci gauging. Lastly, they prove that for a theory without higher derivatives
of conformally variant fields, the described Weyl gauging leads necessarily
to the appearance of the tensor (2.2), provided the theory is conformal.
Consequently, these theories can be made Weyl invariant when coupled to
gravity.

The tensor composed of the Weyl gauge field and possessing the transfor-
mation properties of (2.2) can be found by trial and error, but a systematic
recipe can be easily provided by the coset construction, as we show in chap-
ter 4. When this formalism is applied to the Poincaré group plus dilatations,
the aforementioned relation between ©,, and S, follows immediately from
the requirement (or better say the covariant constraint) of vanishing torsion.
Meanwhile, if one does not insist on having a torsionless theory, then W, can
be shown to be related to one of the irreducible pieces of the torsion tensor,
something that was realized many years ago in [21].

There is a number of questions that arise at this point. To start with, it is
natural to wonder whether Ricci gauging can be applied to higher-derivative
conformal theories as well. It turns out that its range of applicability is
quite vast, even though there are certain subtleties that arise due to the
presence of more than one derivatives. Actually, if we consider for example
a quartic in derivatives theory of a scalar field in an arbitrary number
of spacetime dimensions n > 2, it is a straightforward (although a bit
algebraically involved) exercise to couple it to gravity in a Weyl invariant
manner using this procedure.

What is interesting is that certain terms in the Lagrangian of the resulting
theory, blow up at the limit n — 2. In chapter 5, we demonstrate that is
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an indication that the Weyl invariant generalization of a conformal higher-
derivative theory does not exist in two spacetime dimensions. Actually, this
“obstruction” does not appear only in n = 2, but is present in all (even)
dimensions, if the number of derivatives acting on a field exceeds n. This
implies that it is not always possible for a conformally invariant theory to be
made Weyl invariant. Even though the two notions of Weyl and conformal
symmetry are used interchangeably, it should be stressed that the former is
not just the curved-space generalization of the latter, but rather a different
concept. To put in other words, for a theory invariant under diffeomorphisms
x Weyl, its flat limit automatically produces a theory which is conformal;
the opposite is not always true.

Yet another point worth investigating is whether nonrelativistic theories can
also be coupled to a curved background in a Weyl invariant way using only
the geometrical data. Notice that there has been renewed interest in these
theories in the context of many body systems/condensed matter physics,
which has been partially sparked by [22,23]. As we illustrate in chapter 6, the
role of torsion here is indispensable, since for the concept of Weyl invariance
to even exist, these theories must necessarily be torsionful. Moreover, it is
always possible to express the spatial part of the Weyl gauge field in terms
of degrees of freedom already present in the theory. As for the temporal part,
whether or not it can be eliminated depends on the (nonrelativistic) symmetry
group under consideration. For the Lifshitz algebra plus dilatations, there is
no obstacle to its elimination, therefore the situation is similar to what occurs
with Lorentz-invariant theories. On the other hand, for a theory invariant
under the centrally extended Galilei algebra plus dilatations this is not the
case, because the presence of boosts complicates considerably the situation.
However, even in this case, as long as the temporal part of the gauge field is
absent, such a theory is going to be automatically Weyl-symmetric.

Up until this point, we have been exclusively interested on how to achieve
invariance of a theory under a symmetry group by keeping the minimal number
of compensating gauge fields. However, new and quite interesting possibilities
appear if the extra degrees of freedom are not eliminated. Coming back
to the PGT, certain torsionful theories [24-26|, have attracted considerable
attention, since they are free from pathologies and have very interesting
cosmological phenomenology. In general, not all theories in which torsion is
propagating are ghost and tachyon free. In chapter 7, we have carried out a
detailed analysis of the spectrum of the most general theory that results from
the gauging of the Poincaré group and contains terms at most quadratic in

10



the field strengths. We have allowed for parity-odd terms in the action and
we have derived the conditions for absence of ghosts and tachyons.

11






Chapter 3

(Gauging spacetime symmetries

The necessary ingredients for building an effective field theory are the
field /particle content and symmetries. The latter impose constraints on
a Lagrangian, for it (or better to say the action) should be a singlet under the
symmetry transformations. Once all the symmetries of a system are known,
the number of free parameters in the Lagrangian is reduced.

The reason why it may be needed to go from rigid symmetries to gauged ones
is twofold. On the one hand, the background gauge fields act like sources
for the corresponding conserved currents. Gauge invariance in this case puts
severe constraints (selection rules) on the partition function: integrating out
dynamical fields leads — in the absence of anomalies — to a gauge-invariant
partition function. On the other hand, the gauge field theories are an
appropriate language to talk about massless vector and tensor degrees of
freedom, e.g. photons and gravitons.

Any global symmetry group can be made local by introducing a sufficient
number of corresponding compensators (gauge fields) with appropriate trans-
formation properties.! A question that naturally arises is whether this number
can be smaller than the number of generators of the symmetry group consid-
ered. For internal symmetries (the ones that commute with the generators
of spacetime translations), this does not seem to be the case. However, for
spacetime symmetries the gauging may not require as many fields as there
are generators. For example, as we will demonstrate later, the Poincaré group
can be made local without introducing the spin connection as an independent

!Strictly speaking, this is true only when the symmetry is not anomalous.

13



CHAPTER 3. GAUGING SPACETIME SYMMETRIES

field, but rather as a function of the vielbein (at least for torsionless theories).
We will also show that some Weyl invariant theories do not require the
introduction of a gauge field to account for the local scale transformations,
since its role can be played by a certain combination of curvature tensors or
torsion.

The action of spacetime symmetries on the fields, obtained as an induced
representation, is related to the nonlinear realization of symmetries. There-
fore, when talking about certain physical systems we find that the coset
construction provides the appropriate language. It allows one to circumvent
certain difficulties related to the transformation properties of the fields under
the corresponding symmetry group, automatically providing the necessary
building blocks. In this introductory chapter, based mainly on [17,27,28],
we review in detail the basic ingredients of this approach and discuss its
relevance for gauging spacetime symmetries.

3.1 Internal symmetries

The nonlinear realization of internal symmetries (the ones that commute with
the generators of spacetime translations) in flat spacetime was introduced
in [29,30] and it is used to obtain the building blocks for a theory that exhibits
a specific symmetry breaking pattern S — Sy. In other words, it allows one
to construct the most general action of a group S such that when restricted
to its subgroup Sp, it becomes a linear representation.

The procedure can be described as follows. For the symmetry breaking
pattern, one realizes the action of the group S on the coset space S/Sy by
left multiplication. Choosing the coset representative as

Q=¢"Tecs, (3.1)

where T is the set of all broken generators and 7 (Goldstone fields) constitutes
a parametrization of the coset,? one gets the transformation

sQ = Q'35 , with 5= 30(7(’, s) €8y . (3.2)
Central role to this approach plays the Maurer-Cartan form

Q19,0 (3.3)

2For brevity we suppress all the indices corresponding to the Lie algebra.

14



3.2. SPACETIME SYMMETRIES

that is calculated using the commutation relations of the group under consid-
eration. If we denote by t all the unbroken generators, this expression can be
written as

Q19,0 =iV, r T +iw,t , (3.4)
and it is easy to check that under (3.2), it transforms as
(2719,0)" = 5 (2719,0) 551 + 50,5, . (3.5)

For compact groups, the above translates into the corresponding transforma-
tions of V7 and w,

Vu©'T =5)V,x'T 561 , (3.6)
iw)t = Soiwut 55" + 500,85, ", '
which can be used to write automatically S-invariant Lagrangians by con-
structing singlets of the subgroup Sy.?

The gauging of the group S within this framework goes along the standard
lines; it is achieved by promoting the partial derivative d,, in (3.3) to a covari-
ant derivative bu including gauge fields that correspond to each generator of
the symmetry group and under the action of S transform as

A, = sA,s7 450,570 (3.7)

3.2 Spacetime symmetries

The difference between internal and spacetime symmetries is that the latter
are usually (if not necessarily) realized on the infinite dimensional spaces of
fields. These infinite dimensional representations are induced representations
that are defined in the following way. For a group K, its subgroup Ko C K
that is realized on a linear space V, there is a natural action of the group K
on the coset K/Kq by left multiplications.* For example, let us take K to be
the n-dimensional Poincaré group and K to be the Lorentz group. It is clear

31t should be mentioned that with this procedure, the resulting Lagrangians will only
contain terms that are exactly invariant under the symmetry transformations.
4Usually the coset K /Ko is isomorphic to the spacetime manifold.

15



CHAPTER 3. GAUGING SPACETIME SYMMETRIES

that in this case K/Ky = R™. The action of K on the coset is as follows >

ke'ty = e PAv+a) o (k) | (3.8)

where k € K, ko(k) € Ko, P4 are momenta, AAB correspond to Lorentz
rotations, y4 are Cartesian coordinates on the coset R™ and a 4 are parameters
of the translations. Considering a representation of the Lorentz group

p:Ko— GL(V),

- (3.9)
T, ¥ = p(ko)¥ ,

we define the induced representation of the full Poincaré group according to

(Ti0) (y) = plko(k))T(y) , (3.10)
which corresponds to the standard transformation of a field

V(a0 (y) = DA)T(A ™y —a) . (3.11)

Even though the generators P4, which correspond to the coset K /K, are not
broken and are realized linearly on the space of fields, the very construction of
this representation makes it natural to include the momenta in the coset (3.1)
when discussing the breaking and/or gauging of spacetime symmetries. Con-
sequently, for the symmetry group G (with algebra g) that includes both
internal and spacetime symmetries and that is broken down to a subgroup H
(with algebra ), one gets the coset in the form

Q — eipxeiﬂ(x)T , (312)

where by T we denote all the broken generators (not only the internal ones).
The way to introduce a different set of coordinates on the spacetime manifold
is to have them appearing in the coset representative through the auxiliary
functions 34 (), which means that in general we may write

Q = PV@) in@)T (3.13)

Under the action of the spacetime symmetry group K, the coordinates

5Lorentz indices are denoted with capital latin letters (A, B,...). We use the Landau-
Lifshitz signature for the Minkowski metric, nap = diag(+, —, —,...).
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transform according to
keTv(@) = Py with ko = ko(w, k) . (3.14)

These transformations may be viewed in a different way, namely, keeping the
coordinates x unchanged while transforming the functions y4(z) — y'4(z) 6

ketPy(@) — Py (@), (3.15)

The reason for this choice becomes clear when the gauging of a spacetime
symmetry group is considered, for in this case one does not have to take into
account the transformation of the fields due to the change of coordinates x
and the gauging goes along the lines of that for internal symmetries. However,
by doing so, the additional functions yA(ac), with very specific transformation
properties, had to be introduced. Of course, they are not physical and should
be dispensed with. This is easily achieved by simply demanding that the
resulting theory is invariant under diffeomorphisms as well.

In a sense, introducing these additional spurious fields allows us to decouple
the diffeomorphisms from the (local) transformations under the spacetime
symmetry group. The gauge fields fl# transform in the standard way (3.7)
under the local spacetime transformations and separately under the diffeo-
morphisms x — a2/,

~ ~ ox”
roIN
AL (2') = Al,(x)—ax,# . (3.16)
The Maurer-Cartan form can now be written as
QDY = ie, Py + iV, T +iwyt (3.17)

where as before P4 are momenta, whereas ¢ and T are the rest of the unbroken
and broken generators respectively. For symmetry groups with the following

SFor example, in a two-dimensional Euclidean space, one may choose polar coordinates
corresponding to (y'(r, ), y*(r,¢)) = (rsing,rcosy). Then the transformation under
rotations

(', y*) = (reos(p + @), rsin(p + a)) ,

can be, equivalently viewed either like ¢ — ¢’ =¢+a,orasa change of the functional
form y ' (r, ) = rcos(¢ + a), and similar for y 2.
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schematic structure of commutation relations

[t7t] =t,
[t7 P] =P, (318)
[th] =T,

and upon using the definition of the transformation of the coset representative

9Q=2'h(y,9g) , (3.19)
we find that the transformations of V7, w, and ef, are given by

V,©'T=hV,mTh(n,s),
iw)t = hiw,t b~ 4+ ho,h™ (3.20)
e;JAPA = e;‘ h(m,g)Pah™ (7, g) ,

The coefficients e;‘ due to their specific transformation properties under the
diffeomorphisms (3.16) can be thought of as the vielbein.

As aresult, we have the necessary tools to analyze a system with spontaneously
broken symmetries. For example, any H-invariant function of V,m would
produce a Lagrangian which is “secretly” G invariant, if one also uses e, to
build an invariant measure. Similarly, the connection can be used to construct
higher derivative terms and/or coupling to matter fields.

It should be noted that the main feature of the nonlinear realization of
spacetime symmetries — as compared to internal ones — is the counting of
degrees of freedom. For the case of internal symmetries, the number of
Goldstone modes is always equal to the number of broken generators. For
spacetime symmetries, this is not always true, since it is not rare that a smaller
number of Goldstone bosons is enough to realize a symmetry breaking pattern.
This happens because the fluctuations produced by the action of all broken
generators on the vacuum are not independent. From the physical point
of view, this phenomenon manifests itself through the equations of motion,
when at low energies certain modes may become gapped and, therefore, can
be explicitly integrated out. From a more formal perspective, it can be
understood with the help of the inverse Higgs mechanism, which consists
of imposing covariant (consistent with all symmetries) constraints on the
system and solving them algebraically, thus, reducing the number of necessary
fields [31-34]. Notice, however, that the constraints that can be solved are
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those for which the commutator of a broken generator 7' with the momentum
contains another broken generator T”

[P,T]>T . (3.21)

In this case, the Goldstone corresponding to T is expressed in terms of the
derivatives of other fields, by solving V77 = 0.

3.2.1 Coset construction and the Poincaré group

The Poincaré group is the semi-direct product of translations P4 and Lorentz
transformations Jap and its algebra is defined by the following commutation
relations between the generators

[Pa, Pg] =0,
[JaB, Pc] =i(npcPa —nacPg) , (3.22)

[JaB, Jop] =i (Japnsc + Jecnap — Jepnac — Jacnsp) -

The role of this group in particle physics is fundamental and twofold. On
one hand, it dictates the symmetries of the underlying Minkowski spacetime
of Special Relativity. On the other hand, particle states in quantum field
theories are classified according to the unitary irreducible representations of
this particular group [35, 36].

The pursuit of a gravitational theory with better microscopic behaviour that
GR, as well as the fact that Yang-Mills theories enjoyed big success, initiated
investigations [13,14] that eventually lead to the formulation of a gravitational
theory that results from the gauging of the Poincaré group [15,16]. As we have
already mentioned, within the framework of the coset construction, gravity is
obtained by promoting the 10 (constant) parameters of the group to depend
arbitrarily on position, and at the same time to demand that the theory be
invariant under general coordinate transformations (diffeomorphisms) [17,37,
38]. Since we want Lorentz rotations to be unbroken, then according to the
discussion in the previous chapter, the coset representative contains only the
momenta [17]

Q= eiPav’ (3.23)
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Using the standard formulas for two operators X and Y

e VXY = X4+ [X, Y]+ [X,Y],Y]+..., (3.24)

1
2
e Yo, = 9.V + % 0,Y,Y] + é 0, Y], Y] +..., (3.25)

we find that the Maurer-Cartan form (3.17) becomes

_ . (. ) i
! (au + i€ Pa + 5@ " JAB> Q = i€y, Pa+ 5w " Jas - (3.26)
Here é;‘ , &)ﬁB are the 40 a priori independent gauge fields corresponding

to translations and Lorentz rotations respectively, while their counterparts
without the tilde are defined as
A_ =A A _ ~AB AB _ ~AB
e, =€, +0uy" —w, yp, w, =w, . (3.27)

It is straightforward to check that the transformation of ef under the action
of the local Lorentz group is

el — Ngel (3.28)

whereas under a diffeomorphism z — 2/,

A ('3:1:”

A
) g

e (x) —e

A (3.29)

Consequently, e;‘ can be interpreted as a vielbein that is used to mix spacetime
and Lorentz indices, to define the metric g, = eﬁeanB, and to construct
the diffeomorphism-invariant measure

d"z det eﬁ =d"x dete . (3.30)

Notice that if we do not require that the theory be invariant under the full
group of diffeomorphisms, then the construction of the invariant measure is
not necessary. For example one may be interested in theories invariant only
with respect to transverse diffeomorphisms (TDiff), see for example [39-41]
and references therein. In this case, the theory is invariant only under the
subgroup of coordinate transformations with Jacobian equal to unity, thus we
can allow for the presence of arbitrary powers of the vielbein (or equivalently
the metric) determinant. We will discuss in more detail these theories in the
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last chapter of the thesis.

The field wa, in turn, under a Lorentz transformation behaves as

_1\A
WP WIPAAA S + (A9, A1) (3.31)
thus it can be interpreted as the spin connection.
The covariant derivative, as in any gauge theory, is defined by
i AB
DA = EZ (8# + iwu JAB) y (332)
where we denoted with Ef; the inverse vielbein,” and at this stage, w;‘B are

considered as independent degrees of freedom. To express them in terms of
the vielbein, as it is usually done for torsionless gravity, we should impose
some constraints. We will be back to this point shortly.

As customary, the field strength tensors, torsion 7' and curvature w, are
readily obtained by considering the commutator of two covariant derivatives
acting for example on a vector field. They are respectively given by

A A A A B A B

T = Oue,, — Ope,, —wpe, +w,pe, (3.33)
AB AB AB AC, B AC, B

Wiy = 0wy, — Oyw,” —w T we +wy T we (3.34)

and it can be checked that they transform covariantly, as they should.

Even though vielbein and connection are independent degrees of freedom, it
should be made clear that this need not necessarily be the case. As we argued
before, localizing a spacetime symmetry may not require the introduction
of as many (gauge) fields as there are generators. For the case at hand,
the commutators of P4 and Jap (see (3.22)), suggest that the covariant
constraints

Th =0, (3.35)

"The inverse vielbein is defined as
Eleup = nas ,

and its existence is guaranteed as long as det (OuyA) #0.
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could be solved.® We end up with the well-known
1
w/’?B = wf}B =3 [E”A (8,&5 — 8Vef) — E¥B (8,@‘,,4 — (%ef})

(3.36)
—e#cE”AE)‘B (8,,e§ — akef)} ,

clearly exhibiting that for torsionless theories, the Poincaré group can be
made local without the connection being an independent field.

8This should be compared with the “standard” inverse Higgs mechanism (3.21).

22



Chapter 4

Weyl and Ricci gauging from the
coset construction

In this chapter, following closely [28], we show that Weyl and Ricci gauging can
be carried out in a more systematic way, by employing the coset construction.
We illustrate that the relation between the structure ©,, composed of the
Weyl vector and the Schouten tensor S, given in (2.2) and (2.3) respectively,
can be obtained by the analog of the inverse Higgs constraints (3.21). We use
the word analog, because as we have already mentioned what is usually called
inverse Higgs mechanism is a constraint that can be solved algebraically with
respect to a certain field (or fields). In our case (for a theory without torsion)
we find a constraint that leads to the relation

(n—=2)0u, >~ Su . (4.1)

The reason we use the symbol “~”

is because we want to stress that the
above expression is not an equality in the sense that the field W, can be
expressed in terms of the metric; it is clear that this equation cannot be
solved algebraically. Rather, what we imply is that the combination on the
left-hand side of (4.1) transforms identically to the one on the right-hand
side. Therefore, it can be substituted by the latter in a consistent with all
the symmetries way. We also show that once the requirement of having a
torsionless theory is relaxed, W, is found to be equal to one of the irreducible

components of the torsion tensor.

It should also be noted that contrary to the standard gauging of internal
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symmetries, the Weyl gauge field W, appears in the covariant derivative not
only with the operator of dilatations, but with the generators of Lorentz
transformations as well. This happens because scale invariance is a spacetime
symmetry (which does not commute with spacetime translations). In our
treatment, the form of the covariant derivative follows automatically.

This chapter is organized as follows. In Sec. 4.1, we gauge scale transfor-
mations and obtain the relation between ©,, and S,, . In Sec. 4.2, we
demonstrate how Ricci gauging works by considering two examples. The first
one is the purely gravitational Weyl square theory in four dimensions, and
the second one is the n-dimensional generalization of the Riegert theory. In
Sec. 4.3, we discuss how Weyl gauging can take place if torsion is present in
the theory. Sec. 4.4, contains the conclusions.

4.1 Local scale transformations

In the previous chapter we showed how the gravitational interaction emerges
in the context of the coset construction by gauging the Poincaré group. Our
goal here is to obtain a Weyl-invariant theory, consequently, we will gauge
scale transformations as well. In this case, the coset representative is identical
to the one in (3.23) and does not contain generators other than the momenta.

For the Maurer-Cartan form we obtain
Q! (au + 6 Pa+ 50 Tap + z’WHD> Q = iej} Pa+ 5w,/ P Jap+iW,D .
(4.2)

where, as before, we denoted with éﬁ and d}ﬁ‘B the gauge fields for translations
and Lorentz transformations, and in addition we introduced the fields W,
which are associated with dilatations. Notice that in the presence of the new
symmetry, the relation between the quantities without and with tilde are

eﬁ = éﬁ + GMyA — JJ;‘ByB + WMyA , WwAB — (I):?B , Wy=W,.

Using the analog of (3.19)

Q' = g0Oh Yy, g), with h=e W9 ¢ H=580(n—1,1) xR, (4.4)
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and the commutation relations presented in Appendix B, one finds the
transformation properties of the gauge fields

| e w'? W,
T eBAg WEPALNS + (A9, A0 W,
D efo‘el‘il w;?B W, + 0,

The transformations of el‘;‘, wl‘:‘B

spin connection and the Weyl gauge field. According to the rules of the coset

and W, are precisely the ones for the vielbein,

construction, the covariant derivative of a matter field ¢ is now given by

Day = EY (au + %w;‘BJAB + z‘WuD) P . (4.5)

It is clear that by analogy with the previous chapter, one can construct
generalized field strength tensors corresponding to shifts, Lorentz and also
scale transformations

efy = 8“6;4 — 8,,6,‘? - w,fBef + waef + W#e‘;1 — Wyef , (4.6)

AB AB AB A CB A  CB
Wy = Ouwy,” — Oyw;” — wiow, T +wiew,

W/_Ly - auWy - 81/W,u )

that transform covariantly

TA "AB /
‘ Cuv Yy W
B A CDA AN B
Jlen g wi AGAy Wy
—a, A AB
D |e 6“1, w/“’ W;U/

Inspection of the commutation relations given in Appendix B, reveals that
once we set

ed =0, (4.9)
we obtain

wl‘?B = w;‘B + (5wa , (4.10)

A

“B is the standard spin connection for a torsionless theory presented

where @
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n (3.36), and

5w;?B = 48w IfyB = efef = efeﬁ . (4.11)

Plugging the expression for w to the definition of the covariant derivative (4.5),
we find that it can rewritten as follows

i _

Dy = E,IZ (8 + BJAB — e QEWVJAB + iWHD> (. (4.12)

l\)

In particular, for a vector field V4 with scaling dimension Ay, we get
e DpVA = 0,VA—a/ VP +(e B —E" e, p)VEW, — Ay W, V4 . (4.13)

We can clearly see now the reason why the Weyl gauge field “couples” to spin
as well. Using the Christoffel symbols defined in Appendix A, one can show
that the expression for the covariant derivative (4.12) coincides with the one
used in [19].

Notice that the field strength tensor corresponding to shifts is not the only
covariant structure. Even though imposing another constraint is not in the
spirit of the standard inverse Higgs mechanism, it can be done consistently.!
The gauge field w;‘B depends on W,,; therefore, we may hope to relate certain
structure depending on this vector to a tensor that depends only on the
vielbein.

Plugging the expression (4.10) to the formula (4.7), we get

A - A A
winl = @7 + dw/i?, (4.14)

with w B given by (7.8) and repeated here for the convenience of the reader

—AB AB AB _ A ~CB , A -CB
Wy = Ouloy,” — 0y, " — Wy, ” + Wew, (4.15)

and
Swind = INPV, W — IABV, W + (enel — eBelt) W2 (416)
+ (W — BWAY W, — (eAWB — B W, '

where we used the vielbein to manipulate the indices of W, so that wW? =

!For pure Poincaré invariance that we studied in chapter 7, no additional constraint
could be imposed, since there are no candidates for elimination, provided one wants to
obtain dynamical gravity.
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WeWEB = w,wh.

AB
[

formation properties, can be solved algebraically with respect to W,,. Never-

None of the constraints imposed on w although consistent with its trans-

theless, imposing
. —  JAB o
Wy +wyp =0, with wy =w,, Egeya , (4.17)

and using (4.14) leads to (4.1), which coincides with the expression obtained
in [19], except that we use a different convention for the Riemann curvature
tensor, see (2.4).

The substitution S, for ©,, is similar in spirit to the standard inverse Higgs
phenomenon, according to which, certain degrees of freedom are not needed to
realize a symmetry breaking pattern and as a result, they can be eliminated.
Note, however, that the opposite substitution is not legitimate (at least not
for arbitrary field configurations), since the Schouten tensor is subject to the
Bianchi identity

VS, =V, 8 =0, (4.18)
which is not satisfied by ©,,.

In [19], it was shown that the substitution (4.1) can always be made for
conformal (in flat spacetime) theories with at most one derivative of confor-
mally variant fields. In this case, the invariance under Weyl rescalings does
not require the introduction of extra degrees of freedom, since the inhomo-
geneous pieces of the transformation that appear in the derivatives can be

compensated for by curvature terms.

It should also be noted that the constraint (4.17) taken as an equality, only
implies the equivalence between the Schouten tensor S, and the symmetric
part of ©,,. However, in a weaker sense (that is, equivalence of the transfor-
mation properties), it is possible to relate S, to the full ©,,. In fact, the
antisymmetric part is given by

2@?;/& = a,uWI/ - auW,u = W,uz/ s (4.19)

which is invariant under Weyl transformations and can be safely added to
O, resulting in (4.1).
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4.2 Examples

4.2.1 Weyl tensor

As a first example, we build the Weyl-invariant action for pure gravity in
a four dimensional spacetime, without coupling to matter. After imposing
the constraint eﬁy = 0, we are left with three objects: two Weyl-invariant
curvatures w;‘f and W,
account for the noninvariance of the measure d*z det e, it should be multiplied

and the Weyl covariant vielbein ef}. In order to
four times by the inverted vielbein
/ d*z dete B4 B, EMEY, . (4.20)

The lowest-order (in derivatives) diffeomorphism-invariant action, which also
respects the gauged scale and Poincaré symmetries can be obtained by all
possible contractions of (4.20) with

WuwWys and w;ffwff. (4.21)

The first term leads to the following obviously Weyl-invariant action (we do
not assume parity invariance)

S| = /d4x dete (01WWWW + cze“”’\UWWW)\J) , (4.22)

with ¢; and ¢y being constants and e = Eff1 E% Eé EEEABCD. The
contractions with w;j‘fwff can be simplified once the constraint (4.17) is
imposed. The antisymmetric part of w,, from (4.17) is proportional to
0,W,, — 0,W,,, which already has been taken into account in (4.22). We may
thus consider only configurations with wﬁ‘fE]_”; = 0. As a result, the only
possible contractions are the following

1JKL ol rpv P AB, CD
€ ErESEET€ABCD Wy Woy s (4.23)

and

IJKL ot v 1P 100 AB, CD IJKL ot ;v 10pP 100 AB, CD
€ EIEJEKELUACHBDWHV Wooe 5 € EIEJEAEBT}KCULDW#V Woo -

(4.24)
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Simplifying these expressions, leads to
Sy = /d4a: dete (036’#”,\00’“‘”)‘” + 046”'”)‘UCW,WCWM> , (4.25)
where c3, ¢4 are constants, and C, ), is the Weyl tensor

1
C,u,u)\o = R,uu)\o + m (gl/)\RMO' + gMO'Rl/)\ - gl/()'R/J,)\ - g,u)\RVa)
1

T aN . oY vo o Jv R
+ (n _ 1>(n _ 2) (gu)\g g,u g )\)

(4.26)

4.2.2 Higher derivative action

Here, we wish to get a better grasp on the range of applicability of Ricci
gauging. To be more precise, we want to understand whether or not the
presence of more than one derivative of a conformally variant field constitutes
an obstruction in the Ricci gauging. To achieve that, we consider a theory
with a higher number of derivatives of a scalar field, namely, a conformally
invariant theory in an n-dimensional flat spacetime given by the following

action
S = / d"z(0g)? . (4.27)

According to the coset construction described previously, we introduce the
covariant derivative (4.12) for the field ¢ in the following way

Dagp = Eﬁ (Vi — AgWyo) (4.28)
where Ay = § — 2 is the scaling (mass) dimension of ¢. Therefore,

e DpDa¢ = 9,Dad — @, £ Dpd + (epaE"P — E4el)) DpoW,

(4.29)
— (A¢, + 1)WHDA¢ ,

where we used the fact that the scaling dimension of D4¢ is equal to Ay + 1.
As a result, the following substitution

Op — DaDA% = V2p+2W, VWé— (g -2) (VW + gwuwu) , (4.30)
where V2 = gV, V,, leads to the Weyl-invariant action
Spp = /dnx det e(DADA¢)? . (4.31)
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The question we would like to address now is whether it is possible to use
Ricci gauging [or, equivalently, the weak form of the constraint (4.1)] to
completely get rid of the field W,. Lengthy but straightforward calculations
lead to

S = [ dradete {(vw — 46, — (0 — 2)0g,] V46V 6

—¢? [”;4v29 +(n—4)0,,0" — ”(”44)@2} (4.32)

—*(n — 4H)W'V* (0, — g, ©O) } ,

where © = ©),. Notice that the dependence of the action on W, for n =4
is only through the tensor ©,, and Ricci gauging can be used without any
trouble. Although, for general n, there is an explicit W,, dependence in the
last term, it is clear that after the substitution (we assume n # 2)

1

O, = —
" n—2

Suv s (4.33)
this term drops out by virtue of the Bianchi identity (4.18). Therefore, it is
shown that the theory given by the Lagrangian (4.31) can be Ricci gauged in
an arbitrary (not equal to two) number of dimensions. The resulting action
can be written in the following form

Soz = / d"2+/99Q4(9) ¢, (4.34)
with
— 2 i _ vl N~ 4 o
2l = +w[<n—2s“” g“”s>v] -2 (4.35)
n—4 v n(n - 4) 2 .
BCEDE 2)25’#,,5“ *im_2)2 2)25 :

being the Paneitz operator [42]|, which is the Weyl covariant generalization of
(02, see also Appendix D.?

At this point, it is natural to wonder what happens when n — 2. In this
limit, the coefficients in front of the Schouten tensor (2.3) diverge. At the
same time, the Schouten tensor itself vanishes due to the following relation

2In a four dimensional space-time, the Paneitz operator is also known as Paneitz-Riegert
operator and it was constructed by different authors [43—46].
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between Ricci curvatures in two dimensions

R
Ry = 5 G - (4.36)

Therefore, this is a case that has to be examined separately. Actually, as we
will prove in the next chapter, it is not possible to construct a fourth-order
Weyl covariant operator in n = 2 spacetime dimensions. Based on this
observation, we will be able to show that even though the notions of Weyl
and conformal invariance are used interchangeably, the former is not just the
curved-space generalization of the latter, but rather a different concept.

4.3 Torsionful theory

The field strength corresponding to shifts el‘i‘l, and the generalized spin con-
nection wf}B have the same symmetry properties; therefore, they have equal

number of independent components. This is the reason why we were able to

A
I

it in terms of the vielbein and the Weyl vector field W,,. This way, we built

solve the inverse Higgs constraint (4.9) with respect to the w/'® and express

a Weyl-invariant torsionless theory. Here we look for an alternative solution
to this constraint.

In order to understand what the possible solutions might be, we should

analyze the structure of irreducible representations of eﬁl,, since they can
be set to zero independently. Any tensor that possesses the symmetries of

A
(g

spacetime (see also Appendix C). A vector,

the quantity e/, admits the following decomposition in an n-dimensional

e, = EYel (4.37)
a completely antisymmetric tensor

1
JZ{O‘I.-.Un—S — ﬁ 60’102 Unf?)lﬂ’)\e)\A eﬁy , (438)

and a traceless tensor with mixed symmetries

3 1

A A A A A

E = €y — =1 (enel — eyeﬂ) - §E)‘ (efuel,B - efyeug) . (4.39)
Written in this form, the constraints (4.9), make it clear that (4.38) and (4.39)
AB
et
However, for the vector part (4.37) there are two options. The first one,

can only be solved with respect to their counterparts contained in w
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which has been chosen in the previous section, is to eliminate the vectorial
part of the spin connection. The second one is to solve the constraint with
respect to W, keeping w;fBEg, undetermined, which yields a torsionful
theory.

We see from (4.6) that

Wyep — Wye,t = =T, (4.40)

where the torsion tensor T/ﬁ, was defined in (3.33) and reads
Tﬁj = 8Mef — al,eﬁ — wﬁBef + w,‘j‘Bef , (4.41)

Tracing (4.40), we obtain

1
W, = —mvu ) (4.42)

where we denoted with v, the torsion vector

vy = E4Ty, = B4 (Oue) — vely +wiger) . (4.43)

It is straightforward to check that under Weyl rescalings the vector v,
transforms exactly as the Weyl field, i.e.

v, = v, — (n—1)0,c . (4.44)
As a result, once we consider nonvanishing torsion, the degrees of freedom
carried by W, can be traded for the vector v,,.

4.4 Summary and Outlook

In this chapter we touched upon the question of whether the conformal
invariance of a system in flat spacetime implies that the system can be
coupled to gravity in a Weyl-invariant way. We used the prescription of the
standard coset construction in order to gauge scale transformations (along
with the Poincaré group), leading to a Weyl-invariant (in curved spacetime)
theory. It was demonstrated that the main ingredient needed for Ricci gauging,
namely the relation between the additional gauge field corresponding to the
local scale transformations and the Ricci curvature — first obtained in [19] —
can be extracted from the analog of the inverse Higgs constraint.
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This revealed that the two structures (4.1) transform in the same way, and
therefore, whenever the tensor ©,,,, appears in the action, it can be substituted
by its counterpart without any contradiction with the underlying symmetries.
The answer to the question of whether such a prescription for conformally
invariant theories leads to a complete elimination of the gauge field W, does
not have a definite answer at the moment and can only be divined.

We presented a couple of examples of how Ricci gauging works. First,
we obtained the Weyl-invariant action for pure gravity in four spacetime
dimensions, which is given, as is well known, by the square of the Weyl
tensor. Next, we considered a theory with more than one derivative of
a scalar field (4.31). In a four dimensional spacetime, the Ricci gauging
can be straightforwardly employed. However, it so happens that the scaling
dimension of the field is zero in this case; thus, the field is actually conformally
invariant. Notice that there is no contradiction with [19], since the condition

of having at most one derivative was only imposed on conformally variant

fields.

Considering the system in n # 2, we showed that Ricci gauging can be
applied even for theories with more than one derivative of conformally variant
fields. In the example we considered, the procedure turned out to be a little
bit subtle. Namely, the Weyl gauged Lagrangian cannot be written as a
function depending only on ©,,,, but rather, it also depends explicitly on W/,.
However, this dependence drops out, once Ricci gauging is performed.

Finally, we also presented an alternative way of introducing the Weyl sym-
metry. We showed, by solving the inverse Higgs constraint, that the role of
the gauge field associated with local scale transformations can be played by
the vector part of the torsion tensor.
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Chapter 5

Weyl vs. Conformal

5.1 Introduction

The purpose of this chapter, based to a large extent on [47], is to clarify the
difference between the occasionally mixed notions of conformal and Weyl
invariance. The conformal symmetry in a n-dimensional (not necessarily flat)
space-time is defined as the group of coordinate transformations

¥ = F(x), (5.1)
which leave the metric g, invariant up to a conformal factor

OF* OF°
guv(x) = Q(2') gh, (") Dok O (5.2)

For the infinitesimal form of the transformations
ot =t P (5.3)
the relation (5.2) leads to the conformal Killing equations

2
v,ufa + va.fu = gg,uavf ) (5'4)

where we used the shorthand notation Vf =V, f#, and we denoted with V
the metric-compatible covariant derivative

Vufs =0ufs —Thufa (5.5)
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with F/);V being the Christoffel symbols.

Here, we focus only on theories with scalars, leaving the investigation of fields
with non-zero spin for elsewhere. The infinitesimal transformation of a scalar
field with scaling (mass) dimension Ay under the full conformal group can
be written in the following compact form

A
Setp = — (f“quﬁ + fvms) . (5.6)

A system is called conformally invariant if the variation of its action functional
S[guv, @] under the full group of conformal transformations (5.6) is zero, i.e.

55
52 [G &) = /d”x G0 =0. (5.7)

Meanwhile, Weyl rescalings constitute another type of transformations, which
are given by the simultaneous pointwise transformations of the metric and

fields
Gu(z) =e*Wg(z) and ¢(z) =e D7¢(x), (5.8)

with o being an arbitrary function. Writing the above expressions in their
infinitesimal form as

609#1/ = 209#1/ and 0,0 = _A¢U¢ ) (59)

leads to the following condition for a theory to be Weyl invariant

08 )

1%

Note that (5.6) can be written as

0t = 0ad + 059 , (5.11)

where we denoted by dz¢ the Weyl transformation corresponding to the
specific value of 0 = 3 = Vf/n, and d4¢ is the standard transformation of
the scalar field under the general coordinate transformations

b = — [0 . (5.12)
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As a result, equation (5.7) can be rewritten as

0= /d”$ v/ (2 (;ng, — Ay ?Zgb) , (5.13)

n 0w

where we used the fact that the §4¢ transformations can be compensated for
by the corresponding transformations of the metric (provided the theory is
diffeomorphism invariant). It is clear that Weyl invariance implies conformal
invariance, but not the other way around, since Vf is not an arbitrary
function of coordinates.

5.2 Examples

Let us present another way to understand why Weyl invariance necessarily
implies conformal invariance in flat space-time. The corresponding conformal
Killing equations now read

2
ey + vy = EWW&& , (5.14)

with 7, = diag (1, —1,...), the Minkowski metric, and e being the flat space-
time analog of f#. This set of equations has the following (n + 1)(n + 2)/2
parametric solution for n # 2

et = ak +wh o’ + ca” +2(b- x)xt — 2. (5.15)

Here a*, w,, = —wyy, ¢ and 0¥ are constants corresponding to translations,
Lorentz transformations, dilatations and special conformal transformations
(SCT) respectively. In two dimensions, # is given by an arbitrary generalized
harmonic function.!

The standard procedure allows one to build the energy-momentum tensor

08

Timpr —9
v ;
a OGH 1 g =nyu0

(5.17)

which is automatically traceless on the equations of motion, see (5.10). As

! An example of the integrated version of the equation (5.6) is the transformation of a
scalar field under the SCT which is given by

B M2
@) =(1—-2b-z+b%2>)¢(z), with 2= > b x

Tl (5.16)
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a result, all currents of the form j, = TP e? | with et given in (5.15), are
conserved.

Conversely, if a theory is conformally invariant, then according to [48,49)], it
is possible to write all currents corresponding to the conformal group in the
following way

Ju="Tuwe" — 0K, +0"0cL,, , (5.18)

where T}, is the energy-momentum tensor (not necessarily traceless), K, is
a vector and L, is a rank-two tensor such that

T =0, T,=T,, Tﬁ‘ =nd,K" and K,=0"L,, . (5.19)
Notice that for n = 2, there is an additional restriction

Ly = nuw L , (5.20)
with L being a scalar function.

The conditions presented above allow to construct the improved (traceless)
energy momentum tensor T, " .

However, it is not guaranteed that the theory can be made Weyl invariant.
In what follows, we will consider several examples of conformally invariant
theories which cannot be made Weyl invariant when coupled to gravity. We
should mention though, that we will not consider theories with non-linearly
realized space-time symmetries, like in the case of galileons [50]. There, the
reason that the conformal invariance of a certain action for the galileon does
not imply Weyl invariance, is associated with the fact that this action is
actually a Wess-Zumino term, see also [51].

5.2.1 [0

For the purposes of illustration, it is instructive to begin by considering the
Lagrangian of a free massless field in a one-dimensional spacetime

L= (5.21)
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If the scaling dimension of ¢ is Ay = —1/2, then the theory is invariant under
the one-dimensional conformal group

. 1
56 = — <a¢ . 2(]55') , (5.22)
where
sza—i-bt—i—gtz, (5.23)

with a, b and ¢, constants. The conserved currents associated with translations,
dilatations and special conformal transformations can be written according
to (5.18) as

2 ‘ 2
¢—5 - %é + (/)—5 (5.24)

T=3 4

Clearly, this theory cannot be made Weyl invariant, for there are no geometric
structures in n = 1 one could use to account for the non-invariance of ¢2.

5.2.2 [
Let us now consider the theory given by the following Lagrangian
1 2
Lo = 5(H9)" (5.25)

with [0 = n**9,,0, the D’Alembertian. Using the flat space-time analog of
formula (5.6) with Ay =n/2 — 2, it is straightforward to check that in n # 2,
the variation of this Lagrangian is given by a total derivative

6L = —0" [sMLDQ — %8”85 <8u¢8y¢ — ;nw(agb)?ﬂ . (5.26)

In this case, using the following definitions

T;w = N <a>\¢a)\|:|¢ + % (D¢)2) - auljd)auﬁb - aVD¢au¢ )

K, = %D@m + Aﬂ%aﬂm : (5.27)
1

L,uzz = ﬁ (281/¢a,u¢ — Nuwv (8¢)2 + A¢77MV¢D¢) )

it is straightforward to check that the relations presented in (5.19) are satisfied.
Therefore, the system is indeed conformally invariant for n # 2.
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As we showed in detail in Sec. 4.2.2, the Weyl-invariant generalization of the
theory (5.25), reads >

Sue = / /56 Qalg) & (5.28)

with Q4(g) the Paneitz operator that was defined in (4.35). As we mentioned
in the previous chapter, the above expression is not well defined for n — 2.
To understand what is going on in this limit, let us consider the most general
ansatz for the operator QQ4(¢g) in two dimensions

Qu(g) = V*+e1V* (RV,,) + 2 VR + c3R? | (5.29)

with ¢1, co and c3 constants. A straightforward calculation shows the Weyl
variation of V* will produce terms that cannot be cancelled by the variation of
R-dependent terms, for example (V#V,0)V,V,. Therefore, for n = 2 there
is no Weyl covariant generalization of the fourth-order differential operator.
Hence, in this case, the system (5.25) cannot be coupled to gravity in a
Weyl invariant way, although this does not come as a surprise, for as it is
clear from (5.27), the condition (5.20) is not satisfied. One can say that
the system at hand in a two dimensional space-time, is only invariant under
global conformal transformations, which correspond to the six dimensional
sub-algebra of the Virasoro algebra. Let us note that global conformal
transformations are defined on the two dimensional sphere. The non-zero
commutation relations are

[1*17l0] = _lfl ) [lflall] = _2l0 5 [lo,ll] = _ll ,
[[_1,i0] = _Z—l ) [z—lazl] = —QZO i [[o,i1] = —Zl ,

where the generators in terms of the complex coordinates z and Zz, read

ly1=-0,, l_1=-0z (translations) ,
lo=—20,, lg=—z20; (rotations and dilatations) ,
lh=—2%,, Iy=-2%0: (SCT).

2Obviously, we are not forced to resort to the coset construction in order to couple this
theory to gravity in a Weyl invariant manner. It suffices to write down the most general
action with four derivatives and demand that it be invariant under Weyl rescalings. Notice
that by doing so, there will also be a contribution proportional to Weyl tensor squared.
Since this term is invariant by itself, it need not be included.
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5.2.3 [#

The fact that it is impossible to construct a Weyl invariant action for the
system (5.25) in two dimensions, is a particular case of a more general
result [52-54], see also [55]. This states that for even number of dimensions,
there exist Weyl invariant generalizations of (0¥ only for k < 5. Therefore,

considering a theory with six derivatives in a four dimensional space-time
1 2
Lo =5 (9,06) . (5.30)

one is sure that it cannot be made Weyl invariant. This can be immediately
seen by inspecting the Weyl covariant analog of the operator (5.30).% It

contains terms proportional to

1 1
- B,,s*", —V*(B,LV"), 5.31
(n_2)(n_4) 14 n—4 ( 14 ) ( )
thus it does not exist in n = 2 and n = 4 dimensions for a non-zero Bach
tensor B,
By = CpuppoSP7 + VY S0y — V23S, (5.32)

with C),v0 being the Weyl tensor.

However, straightforward computations reveal — taking into account that the
scaling dimension of the field in this case is equal to Ay = n/2 — 3 — that the
conformal variation of the Lagrangian (5.30) is also a total derivative

1., 1 n
0L = —0" ey Ls — E@ Oe <48H8,,¢D¢ - §(D<;5)2 (5 + 3) 17#”)] :

(5.33)
Moreover, one can build the energy-momentum tensor
Ty = 0?6 8,0, — (0,0 0,076 + 9,0 9,0°¢)
+ 0*¢9,0,0,0¢ + 06 0,0,0¢ + 9’0 0,0,00¢ (5.34)

1
— 9,00 8,0¢ — 1, 5 (0\0¢)?* + 02079 9,0,06|

3Explicit expressions for the operator have been obtained in [56,57].
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as well as the operators
K, = 0 0,8,6 8,06 — (n+ a)0"$ 8,0,0¢ — (g +a) 0,060

+(a+5+2) 0u00% + (5 —3) 00.0% . (5.35)

and

Ly = (a . "—410> 060,006 (a " 3’”{;”) 8,6 9,06

n — 10 n + 10 3n—2
+ T8M8V¢ Ug — T¢ 8uaulj¢ + meﬁ D2¢ .

The above satisfy (5.19) for arbitrary values of the constant «, therefore, the
theory is conformal in flat space-time. Notice, though, that for L,, to be

symmetric, we have to set a = —n/4.

5.2.4 Curved space-time

In order to further expose the difference between the concepts of Weyl and
conformal symmetries we consider the curved space-time counterpart of [13.
It is obvious that the sixth-order Weyl covariant operator for n # 2 and n # 4
is also conformally invariant for an arbitrary metric. It may happen though
that there are no conformal Killings for a specific background to start with.
To guarantee that the conformal group is not empty, we stick to Einstein
manifolds only, for which

R
RIU/ = Eguy . (536)

It is easy to check that the Bach tensor (5.32) in this case vanishes identically.*
Therefore, the dangerous terms (5.31) disappear, thus the limit n — 4 of the
conformally invariant curved space analog of (13, can be safely considered. In

4To make this point clear, we proceed as follows. For Einstein manifolds, the Schouten
tensor (2.3) becomes

n—2
2n(n — 1)
Upon plugging the above into the definition of the Bach tensor (5.32) and recalling that
the Weyl tensor is traceless in all of its indices, we find that

Suy - Rguu .

n—2

= =

V.V.R - ¢wV’R) ,

which is zero for all n. This follows trivially from the (contracted) Bianchi identities, which
yield that the scalar curvature R is constant (for n # 2).
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doing so, one obtains a conformally invariant operator with leading term V.

To illustrate the procedure in more detail, we consider the Paneitz operator,
which for Einstein manifolds becomes regular at n = 2. It is straightforward
to check using the relation

V”Vny + mgw/ (n f VUR + 2 RVf) =0 y (537)
following from the conformal Killing equations for n # 2, that the correspond-
ing action

4—n(n—2) n—4
_ n 2,02 2 272
S/d /g9 |V pV=0 2n(n —1) R (V) 4(n—1)¢VR
(5.38)
(n—2)(n+2)(n—4) 5.,
16n(n —1)2 o

is invariant under the (n # 2) conformal transformations, as it should. The
limit n — 2 in turn is regular

V2pVip — R (V)* + %¢2V2R , (5.39)

S= [ e

and is invariant under global conformal transformations. The reason it is
not invariant under the full conformal group is that the relation (5.37) does
not follow automatically for two dimensional theories. Rather, it has to be
imposed by hand, reducing the conformal group to its subgroup of global
transformations. Clearly this is a peculiarity of two dimensions.

5.3 Generalization

The examples we considered clearly show that not any conformally invariant
(both in flat and curved space-time) theory can be made Weyl invariant. In
fact, there is a whole class of theories not allowing Weyl invariant general-
izations. Indeed, as it was mentioned before, according to [52-54], the Weyl
covariant analogs of [(J* exist unless the number of space-time dimensions n
is even and less than k/2. The impossibility to construct the corresponding
operators in even number of dimensions manifests itself through the presence
of terms singular at n = 2,4, 6, ... However, it seems plausible that similar to
the situation described in the previous section those terms vanish (or at least
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become regular) once the geometry is restricted to that of Einstein spaces.
As a result, the corresponding limit n — 4,6,... exists and is invariant
under conformal transformations (or only global conformal transformations
for n — 2).

Since flat spaces are a particular case of Einstein ones, according to the above
argument, the theories whose dynamics is described by the Lagrangian in flat
space-time

Lo = %qﬂ% (5.40)

are conformal (for n # 2). We can convince ourselves that this is the case
by considering the variation of the Lagrangian with respect to conformal
transformations. For kK = 2m and k = 2m + 1, the Lagrangian can be
rewritten as

1 1
Lipm = 5(qub)2 and Lpemi1 = 5(8@%)2, (5.41)
while the variations are respectively given by

2m2 m—1 v—m—1
Sellim = = 0 " Loam — = 9,0¢ | T 90' O™
(5.42)

1 v m—1 )2
and

1
0cLpm+1 = — 3u{€uﬁ|jzm+1 . 0,0¢e [Qm(m + 1)3“8”Dm71¢)|:|m(b
(5.43)
1 n
N 1 7 L m \2
31 (2 1—|—2m(m—|—1)> (@mg) ]} .
At the same time, according to [54], the Lagrangian (5.40) cannot be made

Weyl invariant in an even number of dimensions if n < 2k.

Similarly, it can be proven that for manifolds with vanishing Ricci tensor,
the theories given by the Lagrangian

1
Lgar = §¢v2k¢ , (5.44)
are also conformally invariant.
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Chapter 6

(GGauging nonrelativistic field the-
ories using the coset construc-
tion

6.1 Introduction

After the excursion into the details of Weyl and conformal symmetries we
took previously, we now turn to the gauging of nonrelativistic spacetime
symmetries, namely the centrally extended Galilei algebra (also known as
Bargmann algebra) and the Lifshitz algebra. This chapter follows closely [27].

Nonrelativistic theories coupled to curved backgrounds appear naturally in
Lorentz violating modifications of gravity, like Hofava-Lifshitz gravity [58], as
well as in holographic duals of nonrelativistic systems [59]. Even though there
is a large number of papers dedicated to studying these systems [60-75], we
nevertheless believe that our approach allows one to clarify some subtleties.
For example, it will become clear that for theories with local Galilei invariance
the condition for vanishing spatial torsion is not consistent unless the temporal
part of the torsion is set to zero as well.

One of our goals is to try to generalize the results of chapter 4 for the
case of theories exhibiting local nonrelativistic invariance. Namely, we wish
to understand the conditions under which a theory can be rendered Weyl
invariant without introducing an additional gauge field W, corresponding
to local scale transformations. With the coset construction, we were able to
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show that if for Lorentz invariant theories the field W, appears only in the
very specific combination (2.2), it can be traded for the Schouten tensor (2.3).

Using the same approach, we address this question for the case of nonrelativis-
tic theories coupled to a curved background. Considering first the centrally
extended Galilei algebra, we show that the mere notion of Weyl invariance
can be introduced only for torsionful theories. We show that for twistless
torsionful theories, it is always possible to express the spatial components
of the Weyl vector in terms of torsion, which in turn is a function of the
vielbein.

Next, we turn to the Lifshitz algebra. In this case, there is no obstacle to the
complete elimination of the Weyl gauge field; thus, any scale invariant theory
in flat space can be coupled to a curved background in a Weyl invariant way,
provided one allows for nonvanishing torsion. This is similar to the situation
occurring with Lorentz invariant theories, where torsion may play the role of
an additional degree of freedom making a theory Weyl invariant.

This chapter is organized as follows. In Sec. 6.2, we gauge the Galilei algebra
and we demonstrate how matter fields can be coupled systematically to
curved backgrounds. Moreover, we show what the constraints leading to
torsionless and torsionful geometries are. In Sec. 6.3, we study the scale
invariant generalizations of the Galilei as well as the Lifshitz algebras. For
the former, by solving the inverse Higgs constraint, we express the spatial
part of the vector field associated with scale transformations in terms of the
vielbein. In addition, we demonstrate that locally Lifshitz-invariant theories
can always be made Weyl invariant without introducing the corresponding
independent gauge field. We present our conclusions in Sec. 6.4.

6.2 Galilei algebra

The centrally extended Galilei algebra (sometimes called Bargmann algebra)
in a n-dimensional spacetime can be obtained from the Poincaré one using the
standard Inonii-Wigner contraction [76]. Let us briefly outline the procedure.
The first step is to express the algebra of the Poincaré group (3.22) in terms
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of components !

[Po, Pol = [Po, P] = [P, Pj] =0,

[Joi, Po) = —iP; , [Joi, Pj] = =65 Py

[Jij, Po] = 0, [Jij, Pl = i (6P — 051 F%) (6.1)
[Joi, Joj] = —iJij s [Jij, Jor] = i (dinJoj — djxJoi)

(Jij Jkt] = i (S0 + Jirdji — Judjr — Jjkdir) -

Next, considering the redefinitions

Py=Mc+H,
P, =cP; , (6.2)
Joi = cK;

and taking the limit ¢ — oo, we get — provided M commutes with K; and
P; and therefore plays the role of a central charge — the following non-zero
commutation relations

[Jijs Tl = i (Jjudik + Jixdj1 — Jadjn — Jinda)

[Jij, Pg] = i (6ix Py — 61 P1)

[Jijs Ki] = i (0ik K — 01 K;) (6.3)
[

[

K;, Pj| = —i6ijM |
K;, H| = —iP;

In the above — although there is little room for confusion — J correspond
to (spatial) rotations, K correspond to boosts, H and P correspond to
temporal and spatial translations respectively, and M is the central extension
corresponding to the particle number operator or the mass.

The coset construction techniques have been used to gauge the Galilei group
Gal(n) in [70], where Goldstone bosons for boosts were introduced. To build
a theory with local Galilei invariance but without spontaneously breaking
any symmetry, we consider the coset space of the full Gal(n) group over its
subgroup generated by J, K and M.? Following the logic described in the
previous chapters, we take the coset representative in the form

Q = eHatily’ (6.4)

In what follows, we will use lowercase latin letters to denote spatial Lorentz indices.
2This possibility was mentioned in [70] and partly worked out in [71].
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Introducing the gauge fields n,, and éz for temporal and spatial translations,
respectively, &)L for boosts, 6,/ for SO(n—1) rotations, and flu for the particle
number U(1), we find that the Maurer-Cartan form is given by the following

expression,
Q7D = in H + i€, Py + il K + S0 Ty +iA,M | (6.5)

where the quantities without the tilde could be thought of as the fields in the
unitary gauge. According to the procedure described in the previous section,
the fields n, and eiL are identified with the temporal and spatial components
of the vielbein. For later convenience, we also define the inverse vielbein,
VH = E(’f and EZH, such that

Vi, =1, Vte, =0, n,El'=0, euB!=08;, e,B =0,—n,V".
(6.6)

The transformation properties of the fields can be obtained from the trans-
formation of the coset representative (3.19). However, unlike what we have
encountered so far, the structure of the commutation relations of the Galilei
group (6.3) is not the one presented in (3.18). This fact results in the mixing
of the U(1) gauge field with the vielbein under boosts. In the following
table, we present the transformation properties of the fields under rotations
J, boosts K and U(1) with parameters R;j, n;, and a correspondingly.

J K M
n, ny ny ny
vk v Vi 4y E! V,
e;lf R;jel, eL —n'ny, eL
ol RyE" ol Fold
0 | RuRu0 + (RO,R) . 0} 0]
w;f Riju wl, + 0,7n; + Ouni wl,
Al A, Ay —miel, + n’n, A, + 9

It should be noted that the actual transformation properties of A, are different
from the ones presented in the above table. Indeed, using the commutation
relations of the Galilei group, it is straightforward to show that

o N 4 1
e NPy — (IPY omiKn —IME  ith f = iyt — 57722 . (6.7)
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Hence, the “honest” transformation of the U(1) gauge field under K is given
by

i ].
A:L = A, —miej, + 57727% +0uf . (6.8)

The last term in the expression above was dropped in the previous table,
since it has precisely the form of the gauge transformation of A,,.

The standard definition of the field strengths leads to

Ny = Oy — Oy,

i n i i g, pid, i i

€ = Oue, — Ovey, + 0] ey — 0 ey +wyny, —wyny
i _ 8 il _apid gl pki _ pi pki

0,0, = 0u0;) — 0,0,] + 0,0, b (6.9)
i i i g pid,

Wy = Opwy, — Opwy, + 0] wyj — 0wy

i i
Ay = 0uAy — At wpeni —wj ey -

A straightforward calculation reveals that

J K M
n;w Ny Ny my
Ou | RixRj0k, O 0
w;fu Rijw/]“/ w/il/ + 9;]1’7’]' wa
A;w A A — Uiejw + %Uﬂ?inuu A

6.2.1 Coupling to matter

With the gauge fields at our disposal, we can build the temporal and spa-
tial covariant derivatives of a matter field ¥ belonging to an irreducible

representation of the Galilei group as

ViU =V# (8“\11 + %QLJ,O(JZ])\I/ + ZmAﬂ\I/> ,
. (6.10)
VU = B <8M\I' + 50T + imAu\Il> :

where p is the representation of the so(n — 1) the field belongs to, and m is
the charge of U under U(1). It can be easily shown that at the leading order

3These are induced by representations of the SO(n — 1) rotation group. In our case the
action of boosts on matter fields is trivial.
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inn

(Vt\l’), = VU +n,V,; U |

) (6.11)
(VZ\I/) = VZ\I/ —m mvt\If .

Even though the derivatives defined above do not actually transform covari-
antly under local boosts it is still true that any Lagrangian that is invariant
under the Galilei group in flat space — which corresponds to the limit where
all gauge fields vanish — can be made locally Galilei invariant by substituting
all partial derivatives by covariant ones, i.e. 0; — V; and 9; — V,;. The
local invariance of the Lagrangian under rotations and U(1) is clear, for
under their action, the covariant derivative transforms covariantly. The only
nontrivial point is the transformation with respect to boosts, which in the
flat background has the form

U (t, z) = e_imzi”i‘lf(t,xi +wit) , with v; = const . (6.12)
Let us consider a Lagrangian that is invariant under boosts, i.e.

L]0V, 0,0, 0] =

oo o (6.13)
L [e*’mx v (815\1/ + ’1)181\11) ,671mx v ((92\11 —m Uiat\lj) , \I/(t, m)] s

It follows automatically that the Lagrangian with all partial derivatives
substituted by covariant ones is invariant under local boosts. Indeed, the fact
that the transformations (6.11) coincide in the flat limit [up to the U(1) factor
that we dropped| with the ones presented implicitly in (6.13) guarantees
the cancellation of all factors containing 7 (there are no terms that contain
derivatives of 7).

For example, consider the theory of a field ¢ with spin s in a 2+ 1-dimensional
flat spacetime whose dynamics is described by the following Lagrangian

L= 200w — 500w (6.14)

N | .

= _ _

with ¥ 04 = 0sp — Optpp. Promoting partial derivatives to covariant ones
and multiplying by the determinant of the temporal and spatial vielbeins
(denoted collectively by dete), we obtain the action that is locally Galilei
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and diffeomorphism invariant,
7 —& 1 _
S = /dtd2a: dete | =yVyp — —V,;pVip | . (6.15)
2 2m

It should be stressed that had we chosen a Lagrangian with the time derivative
appearing in the nonsymmetric form, i.e.

_ 1 _
ﬁnonsym = “/Jatqvb - %311/15@@0 ) (616)

which differs from (6.14) by —%@ (1/_1@11), the procedure would not have worked.
The reason is that the Lagrangian in this case is not invariant under boosts, but
rather it shifts by a total derivative. From (6.13), it follows that ALyonsym =
—%vzﬁi (@w), which cannot be written as a total derivative upon promoting
v; to m;(x), since On terms do appear in this case.

6.2.2 Torsionless geometry

At the moment, we have all the building blocks for constructing a theory
with local Galilei symmetry. However, it appears that there are many more
degrees of freedom than are actually needed in order to accomplish our
goal. As we have seen, the standard way to eliminate redundancies within
the coset construction is to impose covariant constraints that can be solved
algebraically.

Using the transformation properties of the fields, we see that the only covariant
quantity is the temporal component of the torsion n,,. Meanwhile, both
the spatial torsion efw and the U(1) field strength A, transform covariant‘ly
under all group operations, apart from boosts. However, the mixing of €],

and A, with n,, can be eliminated by imposing
N =0 . (6.17)

It is clear that in this case n, corresponds to a closed form, i.e. n, = 0,7
where 7 is some function that can be identified with global time. With this
condition, the other two constraints,

e, =0 (6.18)
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and
A =0, (6.19)

become covariant and they can be used to specify completely the so(n — 1)
part of the connection
o 1 . . , ,
0 =G5 =~ [BYOuel — 0yl — (0l 01}
—eun BV ES (Opel — 0p€l) + nyEVES (0,45 — 054,)  (6.20)

—emEJ’?VU(ﬁpng — donp) + €4 EPV O (9pne — &Tnp)] ,

as well as the connection that corresponds to boosts

7 -1 — oYV L, o niZ

+ 5 (Orel BI7 + 0, BT — 0,6, EV7 — 0,e, E') V"e], .

Continuing with the example that we started previously, we see that the term
corresponding to the interaction of the spin and the magnetic field appears
naturally in the action (6.15). Indeed, using the expression (6.20), we see
from the first term in (6.15) that the derivative of the gauge field A, couples

to Yn) as
! SV h O % i EMEY(0,A, — 8,A,)0
“YVih O ——gy; Z.”Ej( Ay — 0 A) DY . (6.22)

Upon an appropriate rescaling of the fields, the coupling constant g5 appears
in front of this term. There is no need for a redefinition of the transformation
properties of the gauge field A, in order to make the theory invariant under
the general coordinate transformations, as was done for example in [61,71].
A somewhat similar approach was suggested in [77].

6.2.3 Torsionful theory

It should be stressed that it is not consistent to impose the spatial torsion-

lessness condition (6.18) without having the temporal torsion be zero as well,
"
is still an alternative to what was done in the previous section. According

for the condition e’ , = 0 alone is not invariant under boosts. However, there

to the coset construction, any covariant constraint can be imposed without
contradicting the symmetry breaking pattern. The tensor n,, can be nat-
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urally decomposed into representations of the so(n — 1), namely, E!' Ej’fnm,
and E!'VVn,,. However, only the first one is a singlet with respect to the
boosts and thus can be safely set to zero,

EZ“E;-’nW =0. (6.23)
The constraints consistent with the above condition are the following:
e, B'EY =0 and E!'EYA,, =0. (6.24)

Consequently, the spin connection 9,? and wa can be fixed only partly, since
we can express in terms of the vielbein and the U(1) gauge field only (n —
1)2(n —2)/2+ (n —2)(n — 1)/2 components. These correspond to 93E,‘: and
wlZEj“ - wﬂEi“, respectively.

We should also note that the condition (6.23) coincides with the one imposed
on the temporal torsion in the case of the twistless torsional Newton-Cartan
(TTNC) geometry discussed in a number of papers [64—69]. Contrary to
our case, the authors of [67,69] were able to fully determine the connections
associated with spatial rotations and boosts. This was made possible by
introducing a “Stiickelberg field," thus requiring that the U(1) symmetry be
realized nonlinearly.

6.3 Adding dilatations

6.3.1 Galilei algebra

It is interesting to investigate under what conditions a theory that is scale
invariant in flat space can be promoted to a Weyl invariant one without
introducing a gauge field corresponding to the local scale transformations.
Notice that the nonzero commutators of the dilatation generator D and the
Galilei ones are

[D,H] = ~2iH ,[D,P] = —iP; ,|D, K] = iE; . (6.25)

As one can see, the scaling of space and time for theories that are not Lorentz
invariant does not have to be homogeneous, which is manifest due to the
factor 2.

At this point we have to decide what geometry to consider. It is rather
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obvious that the standard transformation

n, — e *n, (6.26)
is not consistent with the torsionlessness condition d,n, — d,n, = 0. The
other option is (6.23), which as we saw leads to additional — as compared to
the Newton-Cartan data [60] — independent degrees of freedom.

As we argued previously, the coset construction provides the natural language
to speak about local scale transformations as well. The only modification
one has to make to the procedure used for gauging the Galilei algebra is to
introduce yet another gauge field W, that corresponds to the dilatations, in
complete analogy with the relativistic case of chapter 4. The transformation
properties of the fields under the Galilei group are not changed and are given
in the tables of the previous section. The scaling properties may be found
using the commutation relations presented previously. The ones that are not
singlets are as follows:
Ny, = e%n“, VI = 2yH éﬁt = eaei,
(6.27)

N n] 1) At _—O, i _
Ef =e’E;, w,=¢w,, W,=W,—0,0.

Similarly, for the (modified) field strengths

Ny = Oy, — Oy, + 2(Wyn, — Wyny,) |
efw = aﬂef/ — ayeL + Gf]e,,j — dem + w/iny — w,i/n# + Wuefj — Wl,ei ,
017, = 0,67 — 0,0/ + 6,057 — 6,68,
Wy = Opwy, — Opw), + 0 wyj — 07w, — Waw, + Wow,,
Wy =0,W, —o,W, ,
Ay = 0, A, — O Ay + wheyi — whepi

(6.28)

we find that

~ _ 20 i o1 ~ %
Ny = €Ny €,

=e’e,, , W, = e%w . (6.29)

ZLV v

Imposing the constraint (6.17) does not lead to the torsionless geometry, i.e.
the 1-form n, is not forced to be closed, but rather it satisfies the TTNC
condition (6.23), which is compatible with the scaling transformations (6.27).
On top of that, the constraint on the temporal torsion allows us to express
the spatial part of the Weyl gauge field W, in terms of the vielbein. We
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readily obtain

1
W, = W,E! = —iEZHV”((?,mV —dyny) - (6.30)

Solving the other two constraints (6.18) in this case produces

0 =07 + e, W — el W', (6.31)
wy, = w, + Wiey, , (6.32)

where éff and QL are given respectively by (6.20) and (6.21), and we defined
the temporal component of the Weyl gauge field as W; = V#W,. Having
no other covariant quantities that we can use in order to eliminate W;, we
can conclude that for generic curvature Hff;,, it is impossible to express the
temporal part of the Weyl field in terms of the vielbein and A, so it stays an
independent degree of freedom. However, this does not necessarily mean that
a theory cannot be made Weyl invariant without introducing this additional

degree of freedom.
Indeed, as before [see (6.10)], the covariant derivative can be defined as
DU = VU — Ay W, T, Dyl =V, ¥ — Ay W, | (6.33)

where Ay is the scaling dimension of the field ¥.# We see that if it is possible
to rewrite the Lagrangian of a theory in flat spacetime such that the time

_<
derivative appears only in the “symmetric way” 1941, then in curved space
this leads to

&Btw = 1/_16%/1 ) (6.34)

which is independent of W;. As a result, such a theory is going to be
automatically Weyl invariant, for the time derivative is the only source of W;.

It is interesting to note that, as in relativistic theories, the presence of Weyl
symmetry guarantees that when the flat spacetime limit is considered, the
resulting theory is conformal. The opposite, however, is not true (see 5). In
the context of Galilei-invariant theories, the conformal transformations are
defined analogously to the relativistic case as the diffeomorphisms preserving

“The Weyl transformation of a field has the form ¥ = e~ 2v ¥,
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the vielbein up to a conformal factor €2,

n, = %*n, e;f =Q (Aéei +A'n,) (6.35)

where Az- and A’ are specific functions of the transformation parameters.

6.3.2 Lifshitz algebra

In the previous sections, we saw that the presence of boosts complicates the
situation considerably, since a number of structures transform in a nonco-
variant way under them. Here, we investigate another type of nonrelativistic
spacetime symmetry, the Lifshitz algebra, which can be obtained from the
Galilei one by discarding the boosts. By doing so, the presence of the U(1)
symmetry associated with the central extension becomes unnecessary, since it
decouples from the spacetime generators and turns into an internal symmetry.

Now all the structures can be classified in terms of irreducible representations
of the so(n—1) algebra of spatial rotations. The corresponding transformation
properties of the fields can be read from the tables in Sec. 6.2, as well as
from Eqgs. (6.27) and (6.29). For the Lifshitz algebra, n,, OLjV, and W, are
identical to the ones in (6.28), whereas the spatial torsion reads

el = Ouel, — Oyl + e, — 0 e, + Wyel, — Wel, . (6.36)

Notice that all field strengths transform covariantly.

Imposing the following set of constraints,

nuwBI'VY =0, €, EVEf =0, (€, B —el ,E*) V" =0, ¢, E'VY =0,
(6.37)

enables us to express in terms of the vielbein the connection that is once
again given by (6.31), and the Weyl gauge field whose spatial part is (6.30),
whereas its temporal part reads

Wt = m (8M€§/E]'u + 8u6,3jE”‘ - 3VeLEJ“ - 8V€'ZLEZ#) VV . (638)
The above results are completely analogous to the ones in the torsionful
relativistic theory of Sec. 4.3.
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6.4 Summary and Outlook

The aim of this chapter was to clarify certain issues related to the gauging of
nonrelativistic symmetries. After presenting a systematic way of building a
locally invariant Galilei theory from a globally invariant one, we found that
within this approach the term corresponding to the interaction of a spin s and
the magnetic field is automatically included. In this case, no modification of
the transformation properties of the U(1) gauge field is needed in order to
achieve invariance of the action under boosts.

We demonstrated how the covariant constraints can be used in order to elim-
inate redundant (unnecessary) degrees of freedom. It should be emphasized
once again that it is not consistent to set to zero the spatial torsion, unless
the temporal torsion vanishes as well (provided no Goldstone bosons are
introduced).

We then turned to the question of how the addition of dilatations changes
the situation. We showed that there are no Weyl invariant theories with
vanishing temporal torsion, i.e. with global time. The condition of temporal
torsionlessness is not covariant under local scale transformations. On the
contrary, when torsion is present, it is always possible to express the spatial
part of the Weyl gauge field in terms of geometric data. We showed, however,
that for general backgrounds it is not possible to eliminate the temporal
part of the Weyl vector. Nevertheless, as we saw, it may happen that the
aforementioned field does not appear in the action. As a result, invariance
under Weyl rescalings does not necessarily require the introduction of W.

Finally, we discussed Lifshitz-invariant theories. In this case, the field
strengths transform covariantly, since we relaxed the requirement of having
invariance under Galilei boosts. In these theories both the temporal and
the spatial parts of the Weyl field can always be expressed in terms of the
vielbein.

The fact that for the cases considered in the present chapter the Weyl vector
can be (partly) eliminated in favor of other degrees of freedom, should not
come as a surprise. This is nothing else than torsion playing the role of the
Weyl gauge field. It would be interesting to carry out an analysis similar to
the one in chapter 7 and investigate the behavior of the propagating modes
when terms bilinear in the various field strengths are taken into account.
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Chapter 7

Poincaré gravitational theory

7.1 Introduction

val

In the present chapter, based on the article [78], we abandon the “minimalistic
approach we have followed so far and we consider that vielbein and connection
are independent degrees of freedom. Our purpose is to identify healthy
subclasses of the Poincaré-invariant gravitational theory, with all possible
parity-even as well as parity-odd terms that are at most quadratic in the field
strengths w and T'. This clearly means that the action contains terms with
two derivatives of the fields, at most. Let us explain why we restrict ourselves
this way. From our point of view, the absence of terms with more than two
derivatives is an essential requirement, since higher-derivative theories are
usually plagued by ghosts. Since here vielbein and connection are treated as
independent fields, this theory should not be mistaken for a higher-derivative
theory, but rather as “gravity a la Yang-Mills”; this theory is dubbed Poincaré
gauge theory of gravity (PGT) and it has been studied extensively in the
literature [79-91]. An extensive review as well as historical details can be
found for example in [92-94] and references therein. It is worth mentioning
that PGT incorporates as simplest cases the Einstein-Cartan theory [95],
the teleparallel equivalent of GR [96,97], as well as GR in the absence of
fermionic matter. Given the fact that GR has been extremely successful in
the description of Nature at large scales, the fact that PGT is capable of
reducing to GR in certain limiting cases is encouraging.

The most straightforward way to accomplish our goal is to determine the
particle spectrum of the theory around the flat spacetime. In the present
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work, we do not discuss how the dynamics is modified when arbitrary curved
spacetimes are considered as backgrounds, which constitutes a complicated
problem that deserves to be addressed separately. It is well known that
once a theory is studied around backgrounds different from the Minkowski
one, especially if it contains massive spin-2 modes, pathologies might appear;
this is what happens for example in the Fierz-Pauli theory (Boulware-Deser
effect). Notice though that this is not the case for certain subclasses of the
PGT we consider here, which remain free from ghosts and tachyons when
studied around maximally symmetric backgrounds [89].

Investigating the behaviour of the physical propagator, we find constraints on
the parameters of the action so that the propagating degrees of freedom are
neither ghosts, nor tachyons. We believe that the reason we choose to proceed
this way is clear: the poles of the propagator correspond to the masses of the
particles the theory contains, whereas the sign of the residues evaluated at
the poles determine whether or not the theory is ghost-free 79,80, 98].

Let us give some more details on the methodology we followed. First, we
linearize the action around Minkowski spacetime and we retain only the
bilinear in the fluctuations terms. We then employ the spin-projection
operator formalism initially developed by Barnes [99] and Rivers [100], see
also Ref. [101]. This framework is very powerful and ideally suited for such
kind of problems, the main advantage being that the action for the excitations
naturally breaks into independent spin sectors. Meanwhile, the coefficients
of the expansion of the action in the projectors’ basis can be conveniently
arranged in matrices. This fact, together with the simple orthogonality
relations the operators satisfy, makes the attainment of the propagator a
straightforward exercise.

The inclusion of parity-odd terms, however, makes this exercise algebraically
much more involved with respect to a number of interesting works that have
appeared over a period of many years [79,80,87,88,91]. In these papers, the
authors concentrated mainly on parity-even theories and studied in depth
their particle dynamics. It is our purpose here to extend these works by
including parity non-conserving invariants. We hope that by considering
the effects of these terms in a systematic way could lead to new directions
towards understanding questions that are of big significance in Cosmology,
like the baryon asymmetry of the Universe [102].

There have been studies on PGT with parity-violating terms that are relevant
to what we do here. The first one is work that has been carried out by
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Kuhfuss and Nitch in the 80’s [103], in which the teleparallel equivalent of GR
— a certain sub-category of PGT with vanishing curvature — was studied. They
considered in addition to the three parity-even torsion terms, a parity-odd
torsion term. Since vielbein is the only dynamical degree of freedom of
this theory, projectors associated with the vielbein perturbations only were
derived. The other one is a very interesting and relatively recent work by
Hehl and collaborators [104]. In their paper, the authors allow for parity-odd
pieces in a particular case of PGT that propagates only scalar degrees of
freedom. This theory has interesting cosmological applications [105, 106]
and it has been argued that it remains consistent in the non-linear level as
well [107,108]. The authors determine necessary and sufficient conditions on
the parameters of their theory so that it is physically acceptable. Notice that
they did not resort to linearization or the use of projection operators, but
instead the initial Lagrangian was partially diagonalized for the case where
spin-2 torsion vanishes. Finally, we would like to mention that there has been
some renewed interest in three-dimensional PGT and especially on the effect
of the gravitational Chern-Simons term, see for example [109] and references

therein.

The present chapter is organized as follows. In Sec. 7.2, we introduce the 14-
parameter theory under investigation and we present the linearized quadratic
action for the perturbations. In Sec. 7.3, we review the spin-projection
formalism that is used to decompose the theory into independent spin sectors.
Since we want to elucidate the role of parity-violating terms by treating them
in the same footing as parity-preserving ones, we expand the original basis of
projectors built in [79,80], by introducing appropriate operators that allow
us to work with terms that contain the totally antisymmetric tensor; most
of them have never appeared before, as far as we know. In Sec. 7.4, we find
the constraints on the parameters of the action so that it propagates only
healthy degrees of freedom. This we achieve by requiring positive masses
and residues of the propagators when evaluated at the poles. In Sec.7.5 we
present the concluding remarks.

7.2 The action

In four spacetime dimensions, the most general theory invariant under trans-
lations and local Lorentz transformations — with terms that are at most
quadratic in the field strengths — contains all possible invariants built from
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the torsion and curvature tensor

A A A A _B A _B

T, = Oue,, — Ove,, —w,pe,) +w, e, (7.1
AB AB AB AC B AC B

Wiy = Opw,” — Ouw),” — W Wyo T W, Whe (7.2)

For later convenience, we note that the above can be written in the tangent
basis — where indices are manipulated with the Minkowski metric — with the
help of the inverse vielbein

Tapc = E4EgnepT,, . wascp = E4Egncenprwl, . (7.3)

The Lagrangian of the theory reads [79,80,110-112]*

L=+ %(4@ + tg 4+ 3)\) Tupc TAEC
- é(tl — 23+ 3\) Ty 5 TA%
- é(%l —ty + 3)\) Tupc TECA
- 1—12(t4 + 4t5) ABEL Ty pe The ©

— Z(ty — 2t5) ABEL T g T 1

ABCD

_l’_

(2r1 + r2) waBCcD W

ACBD

+

(r1 —r2) waBcpw

(2r1 + 19 — 6r3) wapop wCPAB

BA

+ o+

Ty +T5)wAB wAB + (r4 —rs)wapw

(r6 —rs) e*PXwwapKr

ABKL CD
(7’7—1-7“8)6 WABCD WK,

ABKL WABCD wCDKL . (7.4)

+
BRI R R DO RW N W

(7”7 - 7“8)
Here )\, t;,r; are 14 arbitrary dimensionless constants and

wap =1"Pwacep , w=n"Pwap . (7.5)

ABCD 0123

!The convention for the totally antisymmetric tensor e is € = —e€p123 = 1. To
keep the expressions as simple as possible, in this chapter we set Mp = 1.
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We have allowed for parity-even (A, t1,to,t3,71,7r2,73,74,75) as well as parity-
odd (t4,ts,76,77,78) terms and we chose these peculiar combinations of
coefficients because in this way the expressions that appear in the propagators
simplify a lot. As it will turn out, these 5 new parity-violating parameters
modify in a non-trivial way the conditions for the absence of ghost and
tachyons. We will come back to this point in Section 7.4.

Some comments concerning our Lagrangian are in order at this point. First
of all, we have not written down a cosmological constant term; we want the
field equations to admit Minkowski spacetime as solution. In addition to
that, we have not included the following four terms

~, ABCD 2 1JKL AB

w, € WABCD , W , € WABIJ WK, » (76)
where

- _ mHh v —~AB

o= E4EL&AP (7.7)

~AB __ —AB —AB -A -CB -A -CB

W) = O0uwy,” — Oy;,” — Wil +Wcw,

and cD;fB was defined in the previous section, see (3.36).2

The first two terms in (7.6) can be related to w and/or torsion squared terms
by virtue of

1
/d%detewz /d4:c [dete w+ZTABCTABC
7.9
1 BCA B AC (7.9)
_iTABCT _TAB T C ,

and up to a total derivative

1
/d4a? det e eABEL G uprr = —2/d4x deteeABKLTABCTKLC. (7.10)

As for the w? term, it is related to wapwB4 and wABCDwCDAB, by virtue of
the Gauss-Bonnet theorem

/d43: dete[w2 —4wABwBA+wABCDwCDAB] =0. (7.11)

1JKL

Finally, the term € WABIJ wﬁ% need not be included, since it is a total

2We have chosen to write the quantities with bar in the “mixed” basis for later conve-
nience.
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derivative.

Before moving on, we would like to stress again that the PGT under consid-
eration contains terms which are at most quadratic in the derivatives of the
independent gauge fields eﬁ and w/‘:‘B. Therefore, it should not be mistaken
for a higher-derivative theory that usually suffer from unitarity issues. One
notable exception is [113]

S:/d4:c dete[@—kc&ﬂ] ,

with ¢ a positive constant. This theory in addition to the graviton, contains
one healthy scalar degree of freedom and provides a viable inflationary model
able to describe the Universe evolution in its primordial stages [114].

Let us now return to the theory under investigation and linearize the ac-
tion (7.4) by considering the weak field approximation for the fields

el‘:‘ ~ 5ﬁ+hﬁ , hﬁ <1 and w;‘B <1. (7.12)

In this limit there is no need to keep the distinction between spacetime and
Lorentz indices, so in what follows we will use only capital Latin letters for
tensorial quantities. It is also convenient to split the vielbein excitations into
symmetric and antisymmetric parts, i.e.

hap = sap +aap , (7.13)
with
1 1
SAB = §(hAB + hBA) and aAB = i(hAB - hBA) . (714)

Using the decomposition (7.12) in the action, expanding in powers of hﬁ and
w;‘B and retaining only the bilinear in perturbations parts, the action can

be recast into the following compact form?*

1 4
52:2/d $Z¢d Daﬁ QZSB’, (715)
&,

where the multiplet ¢4 = (wcaB, SAB,a4p) contains the 40 components of

3The expression for the linearized action can be found in Appendix E.

4When convenient, we denote tensorial indices collectivelly by using Greek indices with
acute accent (&, B, ...). This helps us to unclutter the notation and keep the expressions
as short as possible.
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the fields and the wave operator D 4 contains combinations of derivatives,
the metric and the totally antisymmetric tensor.

The quadratic action for the excitations (E.1) has obviously inherited the
linearised gauge symmetries of the original theory, i.e. it is invariant under

Ohap =04 +8&ap, and OJdwcap = —0c&aB , (7.16)

where &4 and £4p = —&pa are the 10 gauge parameters of the Poincaré
group. This fact has two important consequences.

On one hand, since all fields appear with at most two derivatives in the
action, it shows that 20 degrees of freedom are devoid of physical meaning
and they can be set to zero by appropriately adjusting £4, £4p and using the
constraints. Therefore, out of the 40 independent fields we started with (16 in
vielbein, 24 in connection), we are left with 20.° These are distributed among
the different spin-sectors of the theory as follows: twelve are in the tensor
part, which contains the massless graviton (two degrees of freedom) and two
massive spin-2 fields (ten degrees of freedom). Six degrees of freedom are in
the spin-1 part, which contains two massive vectors, whereas the remaining
two comprise two massive scalar modes.

On the other hand, due to these symmetries, once we allow for the vielbein
and connection to interact with appropriate external sources by introducing

Ssources = /d4IE [hAB TAB + WCAB UCAB] ) (717)
we are immediately led to the following conservation laws
0474 =0 , and 0%can + TaB) =0 . (7.18)

These 10 constraints on the sources will turn out to be very helpful in what
follows.

7.3 The spin-projection operator formalism

In this section we lay the foundations in order to determine the spectrum of
the theory in a systematic way. Our strategy is to study the behaviour of

5This is most easily seen in the canonical formalism, where the number of degrees
of freedom is found by subtracting from the phase-space of the theory the number of
constraints imposed by symmetries.
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the (gauge-invariant) saturated propagator (i.e. the propagator sandwiched
between conserved sources)

H:_Zjo’z D_ldﬁ' ]5 s (7.19)
&6

where the multiplet j4 = (0caB, T(aB), T|ap]) contains sources that couple
only to the gauge-invariant components of the respective fields (physical
sources). We believe this is the most straightforward way to establish con-
ditions on the parameters of the action, since the propagator contains all
important information for the particle states predicted by the theory. First
of all, the position of its poles correspond to the masses that have to be
necessarily positive. Negative mass implies tachyonic behaviour. Also, the
sign of the residues when evaluated at the poles determine whether or not the
particles are ghosts. Negative residues correspond to negative contributions
to the imaginary part of scattering amplitudes, which puts the unitarity of
the theory under scrutiny.

In order to obtain the propagator, the wave operator has to be inverted and
this is a rather non-trivial task. However, our goal is greatly facilitated when
we take into account that vielbein and connection are reducible with respect
to the three-dimensional rotations group. Therefore, they can be decomposed
into subspaces of dimension 2J + 1 with definite spin J and parity P.% In
the absence of parity-odd terms, the wave operator breaks into independent
sectors that connect states with the same J* as follows:

JP | sub-block dimension
2- 1x1
2+ 2 x 2
1~ 4 x4
1+ 3x3
0~ 1x1
0" 3x3

To be able to proceed with this decomposition, it is very convenient to work
in momentum space and employ the spin-projection operator formalism that
was initially developed by Barnes [99] and Rivers [100]. The building blocks

5Notice that this decomposition has nothing to do with the details of a theory. It
simply follows from the construction of irreducible representations from tensorial quantities.
Notice also that the classification of particle states according to their spin and parity has
only meaning in the rest frame.
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are the four-dimensional transverse and longitudinal projection operators; in
momentum space these are respectively given by

kak kak
223 and Qup = 223.

Oap =naB — (7.20)

In their seminal works, Neville [79] and Sezgin-van Nieuwenhuizen [80] studied
the spectrum of the most general Poincaré-invariant theory with parity-even
terms. To accomplish that, they used © and 2 to construct a covariant basis
of projectors P;?X(J P ) 4 which map between subspaces of fields ¢, x with
the same J¥. The lowercase Latin indices (7, 7, ...) denote the multiplicity of
operators. This basis consists of 40 operators and is complete and orthogonal”

PR AAACIES P (7.21)
¢,i,JP
P;ZE(IP); PZ?X(JQ)V’B = 5ET51J5PQ5kl55Pi¢;X(JP)dB . (7.22)

Let us move to the case of interest to us, i.e. the presence of parity-odd terms
in the Lagrangian. The wave operator will now decompose into subspaces
of same spin but not necessarily of same parity. A simple counting exercise
reveals that the wave operator breaks into 3 independent spin sectors: one
3 x 3 corresponding to spin-2 states, one 4 x 4 corresponding to spin-0 states
and a 7 x 7 corresponding to spin-1 states.

It is obvious from the orthogonality conditions (7.22) that the above-mentioned
set of projectors is not able to handle the presence of terms that involve the
totally antisymmetric tensor, since they cannot link states with same spin but
different parity. It is therefore unavoidable to introduce new operators to take
care of this; it turns out that in order to account for all possible mappings
inside each spin sector, it is necessary to practically double in size the original
basis built by Sezgin and van Nieuwenhuizen by adding 34 new operators.
It is our understanding that this is the first time transition projectors that
account for the parity-odd terms involving the connection is presented.®

"Notice that the position of indices other than Lorentz ones is not important.
8Kuhfuss and Nitsch [103] introduced mixing projectors in order to study the interaction
of states with different parity but only for the tertrad excitations.
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In our case, the completeness relation of eq. (7.21) remains unchanged

P =1gs (7.23)
b,1,J

whereas the orthogonality relation becomes

PP J PEX(J) 5 = 051011000 P () g5 - (7.24)
Notice that we have suppressed the parity index. The full list of projectors
as well as details on their derivation are given in the Appendix F and G
respectively.

In terms of the spin-projection operators, the action for the theory becomes

Sy = /d4x Z c;?;?((.]) ba P;f.X(J)dB X s (7.25)
DX, 8,0,3,]

where C¢X (J) are matrices that contain the coefficients of the expansion
of the wave operator in the spin-projection operators basis. All “physical
information” of the theory is contained in the cf}x(J ) matrices: the zeros of
their determinants correspond to the poles of the propagators, whereas their
values at the poles correspond to the residues.

As we mentioned earlier, the action for the perturbations possesses certain
gauge symmetries; namely it is invariant under the linearized form of general
coordinate and local Lorentz transformations (7.16). These invariances mani-
fest themselves in the spin-projectors language as well. The way this happens
is through degenerate coefficient matrices. Let us explain what this means.

Assume that a matrix M;;(J) has dimension (d x d) and rank (M;;(J)) =r,

so there exist (d — r) right null eigenvectors UJR(J ) as well as (d — r) left null

eigenvectors v¥(J). Consider the n right null eigenvector v( ™) (.J) which
J

satisfies

ZMM ol (1) = 0. (7.26)

From the above we are led to the following gauge invariances

dpa =D v P 5f5(])  forall j | (7.27)
Ji,Bmn
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with f4(J) an arbitrary element of the group. On the other hand, for the
nt" left null eigenvector v](-L’n)(J ) we have

S o M) =0, (7.28)

and as result the sources are subject to the following constraints

ZUZ(L,n)(J)P;?X(J)dBS, =0 forallj. (7.29)
if

In the theory under consideration, the 7 x 7 matrix that describes the sector
associated to the vector perturbations of the theory is singular and of rank 4.
In addition to that, the 4 x 4 matrix for the spin-0 sector is also singular and of
rank 3. Using the explicit expressions for these matrices (given in Appendix F),
a direct calculation reveals that eqs. (7.27) and (7.29) respectively yield

dhap = 0a8p +&an , dwcap = —0céaB , (7.30)
and

0rap =0, 0%0cap+7ap =0. (7.31)
The above result is expected and should not come as a surprise.

At this point we can proceed with the inversion of the coefficient matrices
and calculate the propagator. In order to do so and since some of the c?;-X(J )
are singular, we simply have to invert the largest non-singular sub-matrix
b?}X(J) extracted from them [80,101,115]. Deleting (d — r) rows and columns,
practically amounts to imposing (d—r) gauge conditions. Notice however that
the gauge invariance of the propagator is guaranteed due to the (d —r) source
constraints given in (7.29). By virtue of the completeness and orthogonality
relations (7.23) and (7.24) that P;?X(J) obey, the saturated propagator (7.19)
is given by

—1
== > (b)) & PP Ues s - (7.32)
J.b.x,6.,i,3
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7.4 Particle Content

In this section we apply the formalism presented previously and we determine
the restrictions on the parameters of the action (7.4).

7.4.1 Massless sector

Let us start in an unorthodox way by analyzing first the massless sector of
the theory. Since our result for the (massless) graviton must be proportional
to the one that stems from Einstein’s theory, this calculation provides a very
useful check of our algebra. The projectors we use as a basis for expanding
the wave operator are constructed with the use of © 25 and Q45 defined
previously in (7.20), as well as

- ka
ATV

Subsequently, the limit 42 = 0 has to be taken with some care. Apart from

(7.33)

the genuine massless pole that corresponds to the graviton, we will also
find k=2" (n > 1) spurious singularities that originate from the operators
and receive contributions from all spin sectors. Of course, the propagator
should be independent of the basis we use for the expansion. Therefore,
all spurious singularities have to combine appropriately and cancel out in
the final result, upon applying the source constraints. Since the expressions
are rather involved and the calculations lengthy, we will omit them in what
follows and we will only present the final results. The reader is referred to
Appendix F for the explicit form of the coefficient matrices and the projection
operators.

After a considerable amount of calculations involving all 74 projectors, we
find that the cancellations between all spin sectors indeed take place in an
elegant way and the residue of the propagator at the k? = 0 pole is

1 4 2
Res(IL; 0) = Y (8@0’430 TAB) ( 5 1 ) X

(7.34)

Dol IK
X (narmBJ + nAsnBI — NABNLI) 1 :

as it should. The requirement for absence of ghosts in the massless sector of
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the theory is therefore

A>0. (7.35)

7.4.2 Massive sector

For massive states, the propagator for each spin sector can be written as

1
M) = = R —m ()

—1
3 (BNO)) e PR ag ds
b,X:6. i,

(7.36)

by virtue of the completeness and orthogonality relations (7.23) and (7.24)
that PifX(J ) obey. Here bZ;X(J ) is the residue matrix which is degenerate at
the poles k% = m4(J)?, with m.(J) the masses of the states. One might
worry that the appearance of two poles in the propagator necessarily implies
that one of the two states is ghost-like, since we can always write

1 1
(2 =y (DD —m_(1)2)  my ()2 — m_(J)2

(7.37)

g (k = n;u)? TR ni_w) |

However, this is not always the case, for the coefficient matrices contribute
rather non-trivially to the residues and their values at one of the poles can
differ significantly from their values at the other.

The requirement for absence of tachyons and ghosts corresponds to real
masses and positive-definite residues at the poles, i.e.

my(J)? >0, (7.38)
1
() e S0, (7:30)

where we suppressed tensorial indices in the diagonal projection operators.
Since at the pole PgX(J ) contribute only a sign depending on the number of
longitudinal operators ng they contain, the condition (7.39) can be written
equivalently as

-1
P C I Ceo) I (7.40)

%
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After a tedious calculation involving the coefficient matrices of the various
spin sectors given in Appendix F, we apply (7.38) and (7.40), to find the
following conditions on the parameters of the action for the absence of ghosts

spin-0: r9 <0, 2ry(ry —r3+2ry) < frg )
2

T
— 2 -6 7.41
1 — 13+ 2rg > s , ( )

spin-1: (r1+7r4+715) <0, (ri4+ra+mrs)(2r3+7r5) < —r% ,

2r3 +r5 > ——— T 7.42
3 > r1+ry+715 ( )
spin-2: r1 <0, r1(2r —2r3+1ry) < —7‘52; ,
1"2
21y — 2rg + 1y > ——> (7.43)
rl
and tachyons
spin-0: to(t3 —A)+43 >0, (tats +15) ANtz —A) >0, (7.44)
spin-1: totz + 12 < 0, (t; +to)(t1 +t3) + (ts — 2t5)°> > 0,
1+ 42 >0, ta(t] +4t) > —ti(tats +17) (7.45)
spin-2: ti\(t1 +A) <0, ti(t1 +N) +4t2 > 0. (7.46)

Let us now comment on our results. First of all, when parity-mixing terms
are absent, the expressions above reduce to the ones found by Sezgin-van
Nieuwenhuizen [80] and are presented below in (7.49)-(7.54). Meanwhile,
it is apparent that the effect of the parameters corresponding to parity-
odd invariants is indeed not-trivial: they are responsible for the fact that
the inequalities we derived for the mass parameters can be simultaneously
satisfied. Take as an example the tensor part of the theory (eq. (7.46)). We
see that if t5 = 0, there is a contradiction, since the two constraints

t1>\(t1 + )\) <0 and tl)\(tl + )\) >0, (747)
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cannot be simultaneously satisfied. Therefore, if we want healthy behaviour
in the spin-2 sector of the PGT, we have two options: either we consider
the most general case by imposing t5 # 0, or if we insist on restricting the
parameter space by considering t5 = 0, we also have to set t; + A = 0, or
r1 =0, or 2r; — 2rg + r4 = 0. This would correspond to getting rid of the
massive 27 or 27 field respectively, even though in the parity-violating theory
we investigate, this distinction is not entirely accurate.”

However, the inequalities for the coefficients of the kinetic terms of the spin-1
and spin-2 sectors, boil down to °

2 2
rs T3

_ >0, r <0, (7.48)
r 4+ re+ 175 1

r > —
which obviously cannot hold at the same time. As a result, even with the
addition of the parity-odd invariants, vector or tensor ghost degrees of freedom
are expected to be present in the most general quadratic in curvature and
torsion gravitational theory based on the Poincaré group. The designation
“most general” corresponds to the PGT whose action contains all possible
parity-conserving and parity-violating invariants, which are at most quadratic
in the derivatives of the gauge fields e and w. Notice, however, that there
still exist boundaries of the extended parameter space where only healthy
states may be present.

Having determined the restrictions the parameters of the theory should obey,
it is useful at this point to see what happens if we consider a certain limiting
case in the PGT we study.!! Since this is the first time that an analysis
on the full theory has been carried out, we believe that cross-checks on the
results are crucial. Once we consider parity-preserving invariants only, we
recover the results of Sezgin-van Nieuwenhuizen [80] that read

spin-0": 7y —r34+2ry >0, t3\(tz3 —A) >0, (7.49)
spin-0": 79 <0, t2>0, (7.50)
spin-1+: 2r3 415 >0, tltg(tl + tg) <0, (7.51)

9Strictly speaking, the massive states predicted by the theory are not parity eigenstates,
due to the presence of parity-odd terms in the Lagrangian. However, we used the label J”
for convenience.

197 am very grateful to James Nester for pointing out this contradiction.

"Yet another limit that has been studied is the one of massless torsion, see [78].
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spin-1": r1 +r4+7r5 <0, tit3(t1 +t3) >0, (7.52)
spin-27: 2rp —2r3+ 74 >0, tA(t;1 +)) <0, (7.53)
spin-27: 11 <0, ¢t >0. (7.54)

Of course, all 12 healthy subclasses of the above theory found in [80] and [87]
are also limiting cases of the theory we consider here. To name a couple, if we
keep only the term linear in curvature (this amount to setting in the above
ti=0,i=1,....,.5and r; =0,j=1,...,8) we recover General Relativity.
If we assume that there are no torsion terms present (¢ = —ty = —t3 = —A,
ty = 2t5 = 0), we find that the only acceptable theory is given by ro < 0 and
r;, =0,1=1,...,8. Notice that the coefficients of the parity-odd curvature
terms have to be chosen equal to zero in order to avoid higher order poles in
the propagators. Another interesting case is the teleparallel limit [96,97] of
the PGT given in (7.4), studied in detail in [103]. To consider this particular
subclass, one has to impose vanishing curvature with an appropriate Lagrange
multiplier. As a result, the only dynamical degrees of freedom are contained
in the vielbein field. Since the coefficient matrices in this case are very simple,
after a straightforward calculation one can reproduce the results of Kuhfuss
and Nitsch.

7.5 Summary and Outlook

In this chapter we presented a systematic study of the spectrum of the most
general gravitational theory that emerges from the gauging of the Poincaré
group. We considered terms that are at most quadratic in the field strengths
and allowed for the presence of all possible parity-even as well as parity-odd
invariants. Our purpose was to fill a gap in previous analyses of Poincaré-
invariant theories and demonstrate the influence of parity-violating terms in
the dynamics of the particle states.

We derived necessary and sufficient conditions on the 14 parameters of the
action so that all spin sectors of the theory are free from ghosts and tachyons
and propagate simultaneously. This was made possible by examining the
behaviour of the (gauge-invariant) propagator when sandwiched between
conserved sources for the vielbein and connection. After linearizing the action
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around flat spacetime and moving to momentum space, we resorted to the
spin-projection operator formalism that is used extensively for problems like
the one addressed here. In order to account for terms that contain the totally
antisymmetric tensor, we introduced in total 34 parity-violating projectors;
most of them had never been constructed before. With the appropriate tools
at hand we were able to decompose the action into 3 completely separate
spin sectors and extract the corresponding coefficient matrices. Due to the
presence of parity-odd terms, the computations concerning both massless
and massive states was not as algebraically simple as in previous works.

We considered first the massless sector of the theory that is a bit more
involved in comparison to the massive one. Apart from the pole due to
the graviton, the projection operators themselves introduce singularities at
k? = 0. Since the choice of basis should not be of importance, we verified that
these singularities are spurious and cancel in the final saturated propagator.
We showed that the result for the graviton is identical to GR and at the same
time we performed a non-trivial check of our algebra with this calculation.

We then turned our attention to the analysis of the massive degrees of freedom.
Before inverting the coefficient matrices, we calculated the corresponding
determinants and specified what the physical masses of the particles are, i.e.
where the poles of the propagators are located. Additionally, we found the
residues of the propagators at the poles by inverting the coefficient matrices
and evaluating them at the zeros of their determinants.

Following that, we required:

1. Absence of negative masses, since they correspond to particles of
tachyonic nature.

2. Positive-definite residues of the propagator at the poles; this guar-
antees that the particles’ kinetic terms have the appropriate sign,
therefore the theory is unitary.

Imposing the above, we derived the constraints (7.44)-(7.46) on the parame-
ters of the theory, so that it contains only healthy states. As discussed in
the main text, these inequalities cannot be satisfied simultaneously. Con-
sequently, even though the massive spin-2, spin-1 and spin-0 fields do not
exhibit tachyonic behaviour, it still contains ghosts. It should made clear
though, that on the borders of the extended phase portrait, the resulting
theory can be free from pathologies.
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For example, among the many healthy subclasses of Poincaré gravitation
(see [80,84,87,103] and the discussion in the main text) there are two that
have been shown to be of great interest to the late Universe dynamics, since
they can account for the present-day accelerated expansion. Let us shortly
present them before concluding this section.

In the first, on top of the graviton, only a massive scalar and a pseudoscalar
are present. This is achieved by completely eliminating the tensor and vector
modes, i.e. by choosing the parameters that appear in the kinetic terms as
ri =17 =13 =0,2rg =ry,r5 = —r4. A detailed analytical and numerical
study of this case has been carried out in [26] and references therein.

The second interesting subclass contains — in addition to the massless graviton
— one massive spin-2 field and a pseudoscalar. This particular model could
be though of as the torsionful analog of massive gravity and it is obtained
by ﬁxing T =T =T7 =T8 = 0,7“3 = 2T4,t2 =13 = —11 and ty =15 = 0. It
should be noted that contrary to what happens in the Fierz-Pauli theory,
the present case apart from being ghost and tachyon free on the Minkowski
background [80,84,87], it remains healthy also on Einstein manifolds [89].
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Chapter 8

Outline of Part 11

So far, we have have solely discussed aspects of local (spacetime) symmetries
and their significance for the physical systems that posses them. However,
even if scale invariance is not gauged, its presence in a theory has far reaching
ramifications for cosmological phenomenology as we will argue in the following.

It is now well accepted that the shortcomings of the hot big bang model can
be solved in an elegant way if we assume that the Universe underwent an
inflationary period in its early stages. The easiest way for this paradigm to
be realized is by a scalar field slowly rolling down towards the minimum of
its potential [116-119].

As discussed in [120], inflation does not necessarily require the existence of
a new degree of freedom. The role of the inflaton can be played by the SM
Higgs field with its mass lying in the interval where the SM can be considered
a consistent effective field theory up to the inflationary scale. More precisely,
if the Higgs boson is non-minimally coupled to gravity and the value of the
corresponding coupling constant &, is sufficiently large, the model is able
to provide a successful inflationary period followed by a graceful exit to the
standard hot Big Bang theory [121,122]. The implications of this scenario
have been extensively studied in the literature [123-139]. Earlier studies of
non-minimally coupled scalar fields in the context of inflation can be also
found in [140-142].

The Higgs inflation scenario can be easily incorporated into a larger framework,
the Higgs-dilaton model [143, 144]. The key element of this extension is
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invariance under (global) scale transformations

Ly . () — gW(ofl:r) , and P@,;(x) — adiq)i(oflx) , (8.1)

' — a”
with v a constant, ®; the various (matter) fields and d; their scaling dimension.
Thus, no dimensional parameters such as masses are allowed to appear in the
action, but instead, all the scales are induced by the spontaneous breaking of
this symmetry. As we have already mentioned, this can be achieved by the
introduction of the Goldstone boson related to the broken symmetry (the
dilaton) which is exactly massless. The coupling of the dilaton field to matter
is weak and takes place only through derivative couplings, not contradicting
therefore any 5th force experimental bounds [145].

Although the dilatation symmetry described above forbids the introduction of
a cosmological constant term, the ever-present cosmological constant problem
reappears associated to the fine-tuning of the dilaton self-interaction [143].
However, if the dilaton self-coupling § is chosen to be zero (or required
to vanish due to some yet unknown reason), a slight modification of GR,
known as Unimodular Gravity (UG), provides a dynamical dark energy (DE)
stage responsible for the present day acceleration in good agreement with
observations. The scale-invariant UG gives rise to a symmetry-breaking “run-
away” potential for the dilaton [143], which plays the role of a quintessence
field. The strength of such a potential is determined by an integration
constant Ag that appears in the Einstein equations of motion due to the
unimodular constraint § = — det (§u,) = 1 on the metric determinant. The
common origin of the inflationary and DE dominated stages in Higgs-dilaton
inflation allowed to derive extra bounds on the initial inflationary conditions,*
as well as a potentially testable relation between the spectral tilt of scalar
perturbations and the DE equation of state [144].

When the model described above is rewritten in the so-called Einstein frame,
where the gravity part takes the usual Einstein-Hilbert form, it becomes
essentially non-polynomial and thus non-renormalizable, even if the gravity
part is dropped off. Therefore, it should be understood as an effective field
theory valid only up to a certain “cut-off” scale. One should distinguish
between two different definitions of the “cut-off”. Quite often the cut-off
of the theory is understood as the energy at which the tree level unitarity
in high-energy scattering processes is violated. A second definition of the
cut-off is the energy associated to the onset of new physics. As it was stressed

!The fine-tuning needed to reproduce the present dark energy abundance is transferred
into the initial inflationary conditions for the fields at the beginning of inflation.
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in [146], the breaking of tree level unitarity does not imply the appearance of
new physics or extra degrees of freedom right above the corresponding energy
scale; it just signals that the perturbation theory in terms of low-energy
variables breaks down. For the case of Higgs and Higgs-dilaton inflation,
the tree-level scattering amplitudes above the electroweak vacuum appear
to hit the perturbative unitarity bound at energies A ~ Mp /&, [133-136].
Whether the theory requires an ultraviolet completion at these energies or
simply enters into the non-perturbative strong-coupling regime with onset of
new physics at higher energies (which could be as large as the Planck scale) is
still an open question. Nevertheless, this scenario is self-consistent, since the
beginning of the strong coupling regime (i.e. the cut-off scale according to the
first definition which will be used in this thesis) depends on the dynamical
expectation values of the fields, which makes the theory weakly coupled for
all the relevant energy scales in the evolution of the Universe.

It should be noted that even if the theory is unitary, this is not enough
to guarantee that the tree-level results are robust against quantum effects.
However, as we show in chapter 9, if the symmetries of the theory are preserved
at the quantum level as well, then the predictions of the Higgs-dilaton model
are impervious to loop corrections. Thus, the connection between the early
and late Universe observables that the model predicts, remains unaltered.

In the Higgs-dilaton model, to achieve invariance under scale transformations,
we were forced to introduce in an ad hoc manner an extra scalar field, the
dilaton. This need not necessarily be the case, as we discuss in chapter 10.
It is well known that a self-consistent gravitational theory does not require
invariance under the full group of diffeomorphisms [39,40]. Rather, it is
enough to consider the subgroup of the coordinate transformations with
Jacobian equal to unity

_|oF

'=F h that J=|——
x (z) , such tha o

=1, (8.2)

which constitute the transverse diffeomorphisms (TDiffs), also called volume
preserving diffeomorphisms. As one might expect, theories invariant under
TDiffs contain — in addition to the two polarizations of the massless graviton
— an extra propagating scalar mode associated with the determinant of the
metric.? This minimalistic approach to gravitational dynamics, once combined

2Tt is possible to eliminate this extra degree of freedom by forcing the determinant to
take a constant value, like for example in the Higgs-dilaton model where it is fixed to be
equal to one. In this case, we recover UG [147-149].
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with the requirement of exact scale invariance, results into an interesting
class of theories (for which in what follows we will use the acronym SITDiff)
in which the dilaton, being associated with the determinant of the metric, is
already part of the gravitational sector [41].

When these theories are expressed in their diffeomorphism-invariant form, the
action describing their dynamics includes an arbitrary integration constant
that, in general, violates explicitly the scale symmetry. In the case of the
Higgs-dilaton model, this is precisely what is behind the DE dominated stage.
Notice that above we used “in general”, because unlike a theory invariant
under the full group of diffeomorphisms, the dimensionality of the metric
plays a crucial role on whether the scale invariance of the system can be
preserved. It turns out that when the metric carried dimension of area, then
in the theory under consideration, dilatations are not broken.

Once the SM is coupled to this particular system, one can define a specific
limit for the fields and their derivatives (associated with the ultraviolet
domain) in which the only singular terms in the action correspond to the
Higgs mass and the cosmological constant. It is very tempting to speculate
that the self-consistency of the theory may require the regularity of the action,
leading to the absence of these pathological terms. If this principle is to be
taken at face value, one might attribute their presence at low energies to
non-perturbative effects through some yet unknown mechanism.
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Chapter 9

Higgs-dilaton cosmology

9.1 Introduction

The first attempt to formulate a viable scale-invariant theory non-minimally
coupled to gravity was done by Fujii in [150], although without establishing
any connection to the SM Higgs. The role of dilatation symmetry in cosmology
was first considered by Wetterich in [151,152]. In these seminal papers,
the dynamical dark energy, associated with the dilaton field, appears as a
consequence of the dilatation anomaly and is related to the breaking of SI
by quantum effects. The present chapter, which has appeared in [153], has
a number of formal analogies and similarities regarding the cosmological
consequences for the late Universe with [151,152]. At the same time, our
approach to the source of dark energy is different from the one adopted
in [151,152], as we assume that SI is an exact (but spontaneously broken)
symmetry at the quantum level, leading therefore to a massless dilaton.
In [151,152], both the cases of exact and explicitly broken dilatation symmetry
were considered. Our theory with exact dilatation symmetry is different from
that of [151,152] in two essential aspects. First, in our work the Higgs field of
the SM has non-minimal coupling to gravity (it is absent in [151,152]), which
is important for the early Universe and leads to Higgs inflation. Second, the
unimodular character of gravity (as opposed to standard general relativity
used in [151,152]) leads to an automatic and very particular type of dilatation
symmetry breaking, which results in dynamical dark energy due to the dilaton
field (absent in [151,152] for the case of exact scale invariance).

Our purpose in this chapter is to study, following the approach of [154],
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the self-consistency of the Higgs-Dilaton model by adopting an effective
field theory point of view. We will estimate the field-dependent cut-offs
associated to the different interactions among scalars fields, gravity, vector
bosons and fermions. We will identify the lowest cut-off as a function of the
background fields and show that its value is higher than the typical energy
scales describing the Universe during its different epochs. The issue concerning
quantum corrections generated by the loop expansion is also addressed. Since
the model is non-renormalizable, an infinite number of counter-terms must
be added in order to absorb the divergences. It is important to stress at this
point that, in the lack of a quantum theory for gravity, the details of the
regularization scheme to be used cannot be univocally fixed. This means
that the predictions of the model will be sensitive to the assumptions about
the UV-completion of the theory (corresponding to different regularization
prescriptions). We will adopt a “minimal setup" that keeps intact the exact
and approximative symmetries of the classical action and does not introduce
any extra degrees of freedom. Within this approach, the relations connecting
the inflationary and the dark energy domination periods hold even in the
presence of quantum corrections.

The structure of the present chapter is as follows. In Sec. 9.2 we briefly review
the Higgs-Dilaton model. In Sec 9.3 we calculate the cut-off of the theory in
the Jordan frame and compare it with the other relevant energy scales in the
evolution of the Universe. In Sec. 9.4 we propose a “minimal setup” which
removes all the divergences and discuss the sensitivity of the cosmological
observables to radiative corrections. Section 9.5 contains the conclusions.

9.2 Higgs-Dilaton cosmology

We start by reviewing the main results of [143, 144], where the Higgs-Dilaton
model was proposed and studied in detail. The two main ingredients of
the theory are outlined below. The first one is the invariance of the SM
action under global scale transformations, which leads to the absence of any
dimensional parameters or scales.

In order to achieve invariance under these transformations, we let the masses
and dimensional couplings in the theory to be dynamically induced by a
field. The simplest choice would be to use the SM Higgs, already present in
the theory. Note however that this option is clearly incompatible with the
experiment. As discussed in [141,155], the excitations of the Higgs field in
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this case become massless and completely decoupled from the SM particles.

The next simplest possibility is to introduce a new scalar singlet under the
SM gauge group. We will refer to it as the dilaton x. The coupling between
the new field and the SM particles, with the exception of the Higgs boson, is
forbidden by quantum numbers. The corresponding Lagrangian is given by

é = %(%M@ +EXO) R+ Lovposo) — %g“”auxaux ~Vig,x), (9.1)
where ¢ is the SM Higgs field doublet and &, ~ 103 — 10°, &, ~ 1073, are
respectively the non-minimal couplings of the Higgs and dilaton fields to
gravity [144]. The term Ly o) is the SM Lagrangian without the Higgs
potential, which in the present scale-invariant theory becomes

_ P g\? 4
Vip,x) = A (so P =X ) + 8", (9-2)
with A the self-coupling of the Higgs field.

In order for this theory to be phenomenologically viable, we demand the
existence of a symmetry-breaking ground state with non-vanishing background
expectation value for both! the dilaton () and the Higgs field in the unitary

gauge (h). This is given by

hQ:%XQJr%hR, with R =

46N 5

7/\5)( n OthX . (9.3)

All the physical scales are proportional to the non-zero background value of
the dilaton field. For instance, the SM Higgs mass is given by

(1+68) + S(1+68n)
(1 + 6§x)§x + %(1 + 6§h)§h

m¥y = 2aM}p o(B) , (9.4)
with MI% =&,h% + §X)22 o x? the effective Planck scale in the Jordan frame.
The same happens with the effective cosmological constant

BM

1
A=-M}R= : (95)
4 (Ex + §61)? + 4587

which depending on the value of the dilaton self-coupling 3, gives rise to a flat
(8 =0), deSitter (8 > 0) or anti-deSitter (5 < 0) spacetime. It is important

'If ¥ = 0 the Higgs field is massless, and if & = 0 there is no electroweak symmetry
breaking.
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to notice however that physical observables, corresponding to dimensionless
ratios between scales or masses, are independent of the particular value of
the background field Y. In order to reproduce the ratio between the different
energy scales, the parameters of the model must be properly fine-tuned. As
shown in (9.4), the difference between the electroweak and the Planck scale
is encoded in the parameter? o ~ 1073% < 1. Similarly, the hierarchy
between the cosmological constant and the electroweak scale (9.5), implies
B < a. The smallness of these parameters, together with the tiny value of
the non-minimal coupling &,, gives rise to an approximate shift symmetry
for the dilaton field at the classical level, x — x + const. As we will show in
Sec. 9.4, this fact will will have important consequences for the analysis of
the quantum effects.

The second ingredient of the Higgs-Dilaton cosmological model is the replace-
ment of GR by Unimodular Gravity, which is just a particular case of the
set of theories invariant under transverse diffeomorphisms. These theories
generically contain an extra scalar degree of freedom on top of the massless
graviton (for a general discussion see for instance [41| and references therein).
In UG the number of dynamical components of the metric is effectively
reduced to the standard value by requiring the metric determinant g to take
some fixed constant value, conventionally ¢ = 1. As shown in [143], the
equations of motion of a theory subject to that constraint

gUG = g[guuv a.g,ul/a (Da 8@] ) (96)

coincide with those obtained from a diffeomorphism invariant theory with
modified action

<
== "zﬂ[g#lla ag,u,ljv (I)7 8(1)] + A0 . (97)

V9
Note that, from the point of view of UG, the parameter Ag is just a con-
served quantity associated to the unimodular constraint and it should not be
understood as a cosmological constant.

Since the two formulations are completely equivalent?, we will stick to the
diffeomorphism invariant language. Expressing the theory resulting from the

ZNote that the alternative choice &, 3> 1 is not compatible with CMB observations,
see (9.23) and Fig. 9.5.

3 As usual, there are some subtleties related to the quantum formulation of (unimodular)
gravity. However, these will not play any role in the further developments. The interested
reader is referred to the discussion in [41] and references therein.
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combination of the above ideas in the unitary gauge o’ = (0, h/v/2) we get

< 1 1
75 = §(§hh2 + &R — 5((9)()2

where the potential includes now the UG integration constant Ag

_ %(8%1)2 UMY (9.8)

A o 5)\2
Uh,x) = V(h) + 8o = 5 (B = Sx%) +8x* + Ao (9.9)

Notice that the Lagrangian given by (9.8) and (9.9) bears a clear resemblance
with the models studied in [151,152]. In particular, it coincides (up to the non-
minimal coupling of the Higgs field to gravity) with the Brans-Dicke theory
with cosmological constant studied in [151]. However, the interpretation of the
Ap term is different. In our case this constant is not a fundamental parameter
associated with the anomalous breaking of SI [152], but an automatic result

of UG.

The phenomenological consequences of (9.8) are more easily discussed in
the Einstein frame. Let us then perform the following redefinition of the
metric g, = Q2g,, with conformal factor Q? = M];2 (Enh? + &x?). Using
the standard relations

V9 = Q %/ and R = Q? <ﬁ +601og Q — 6370, log Q 9, log Q) , (9.10)

we get

£ M3~ 1 .

N — B=5K(hx)-U(hX) (9.11)
where
= _Ulhx) _ M?D Ao 92 4

is the potential (9.9) in the new frame. The non-canonical kinetic term
in (9.11) can be written as

K(h,x) = k3" 0,2'0,® (9.13)
where the quantity

1 3 0:0%0,02
K m(é,-jJrQ 1%QQ”> (9.14)
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can be interpreted as the metric in the two-dimensional field space (®!, ®2) =
(h, x) in the Einstein-frame. Note that, unlike the simplest Higgs inflationary
scenario [120], expression (9.13) cannot be recast in canonical form by field
redefinitions. In fact, the Gaussian curvature associated to (9.14) does not
identically vanish unless &, = &,, which, as shown in [144], is not consistent
with observations. Nevertheless, it is possible to write the kinetic term in
a quite simple diagonal form. As shown in [144], the whole inflationary
period takes place inside a field space domain in which the contribution of
the integration constant Ay is completely negligible. We will refer to this
domain as the “scale invariant region” and assume that it is maintained
even when the radiative corrections are taken into account (see Sec. 9.4). In
this case, the dilatational Noether’s current in the slow-roll approximation,
(14 6&,)R% + (1 + 6£,)x?, is approximately conserved, which suggests the
definition of the set of variables

Mp . [(1+66)R2 + (1+ 66X 1+ 66, h
=1 =4/——. (9.1
p 5 log [ ;) , tanf 1+ 66, x (9.15)

The physical interpretation of these variables is straightforward. They are

simply adequately rescaled polar variables in the (h,y) plane. Expressed in
terms of p and 6, the kinetic term (9.13) turns out to be

~ 1+ 6¢&, 1 2 Ml%g tan” 6 + 7 2
K= 0 00
( & ) sin? 0 + ¢ cos? 0( P+ & cos?f(tan? 6 + )2 (99)",
(9.16)
with
gx (1 + 6§h>§x
=== and ¢=_—77—-"""22. 9.17
T (1+6&)¢n 947

The potential (9.12) is naturally divided into a scale-invariant part, depend-
ing only on the 0 field, and a scale-breaking part, proportional to Ay and
depending on both 6 and p. These are respectively given by

0(9) B )\Mj‘_f, sin2 6 2
o 45% sin? 0 + ¢ cos2 6

Uno(p:0) = Ao (

(9.18)

14+ 65}1)2 e—40/Mp
&n (sin? 6 4 ¢ cos2 )2’

where we have safely neglected the contribution of o and § in (9.12). Note
that the non-minimal couplings of the fields to gravity with Ag > 0 naturally
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generate a “run-away” potential for the physical dilaton, similar to those
considered in the pioneering works on quintessence [151, 152, 156].

The inflationary period of the expansion of the Universe takes place for field
values £,h? > &, x2. From the definition of the angular variable 6 in (9.15),
this corresponds to? tan?# > 7. In that limit, we can neglect the 1 term in
the kinetic term (9.16) and perform an extra field redefinition

M
r=~"tp and |¢|=¢o— Tptauah*1 [V1—gcost ] , (9.19)

where

Y= 1 66, fx6§ and a= fx(lg— <) . (9.20)
\/ X

The variable ¢’ is periodic and defined in the compact interval ¢’ € [—¢q, ¢o],
with ¢g = Mp/a tanh™! [m] the value of the field at the beginning
of inflation. In terms of these variables the Lagrangian (9.11) takes a very
simple form?®

2 2
L = AR SR 0200 - 0(6) - Uy (r:6) . (920)

with ¢ = ¢9 — |¢’|. The potential (9.18) becomes

- )\M4 )
Ud) = 53 (1 - §Cosh2[a¢/MPD 7
UAO (r,¢) = 72§2 COSh4[CL(;$/MP]@*4'Y7"/MP 7

whose scale-invariant part U(qb) resembles the potential of the simplest Higgs
inflationary scenario [120], see Fig. 9.1. The analytical expressions for the am-
plitude and the spectral tilt of scalar perturbations at order O(&y, 1/, 1/N*)
can be easily calculated to obtain [144]

Asinh?[4¢, N*]

Pr(kg) ~
¢ (ko) 1152726262

ns(ko) ~ 1 — 8¢, coth(4§, N*) , (9.23)

4Strictly speaking, the condition tan®f > n holds beyond the inflationary region
&nh? > £,x* and includes also the reheating stage.

5Note that the definition of the angular variable ¢ used in this work is slightly different
from that appearing in [144]. The new parametrization makes explicit the symmetry of
the potential and shifts its minimum to make it coincide with that in Higgs-inflation.
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Mp

Figure 9.1 — Comparison between the Higgs-Dilaton inflationary potential

(blue continuous line) obtained from (9.22) in the scale-invariant region and

the corresponding one for the Higgs Inflation model (red dotted line). The
AME

amplitudes are normalized to the asymptotic value Uy = preal

where N* denotes the number of e-folds between the moment at which the
pivot scale ko/ag = 0.002 Mpc~! exited the horizon and the end of inflation.
Note that for 1 < 4§, N* < 4N*, the expression for the tilt simplifies and
becomes linear in &,

ng(ko) ~ 1 — 8¢, . (9.24)

An interesting cosmological phenomenology arises with the peculiar choice®
£ = 0. In this case, the DE dominated period in the late Universe depends
only on the dilaton field p, which give rise to an intriguing relation between
the inflationary and DE domination periods. Let us start by noticing that
around the minimum of the potential the value of 8 is very close to zero. In
that limit, tan? < 7, which prevents the use of the field redefinition (9.19).
The appropriate redefinitions needed to diagonalize the kinetic term (9.16)
in this case turn out to be

Mp
§ns

r=~"1p and ¢ ~ (9.25)

Using (9.16) and (9.18), it is straightforward to show that the part of the
theory associated to the Higgs field ¢ simplifies to the SM one. The resulting

5Some arguments in favour of the 8 = 0 case can be found in [9,41,144].
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)

scale-invariance breaking potential for the dilaton is still of the “run-away’
type

Un,(r) = A%fe”‘”’"/ Me (9.26)
making it suitable for playing the role of quintessence. Let us assume that
U Ao 1S negligible during the radiation and matter dominated stages but
responsible for the present accelerated expansion of the Universe. In that
case, it is possible to write the following relation between the equation of
state parameter w, of the r field and its relative abundance €2, [157]

16727 1 1/1 14+ 0,1

1—|—wT:—7 —_ = = -1 logg .
3 1V 2 1—vQ,

For the present DE density Qpg = 2, ~ 0.74, the above expression yields

8 &
31+ 68,

o (9.27)

14+ wpg = (928)

Comparing (9.24) and (9.28), it follows that the deviation of the scalar tilt
ns from the scale-invariant one is proportional to the deviation of the DE

equation of state from a cosmological constant” [144]

ns —1~ —-3(1+wpg), for

N <l+wppKl. (9.29)
The above condition is a non-trivial prediction of Higgs-Dilaton cosmology,
relating two a priori completely independent periods in the history of the
Universe. This has interesting consequences from an observational point of
view® and makes the Higgs-Dilaton scenario rather unique. We will be back to
this point in Sec. 9.4, where we will show that the consistency relation (9.29)
still holds even in the presence of quantum corrections computed within the
“minimal setup”.

"Outside this region of parameter space, the relation connecting ns to wpg is somehow
more complicated

ns — 1~

12(1—|—wDE) |:6N*(1+UJDE) :|
— coth
4—9(1+ wpr) 4 —9(1 + wpr)

8Similar consistency relations relating the rate of change of the equation of state
parameter w(a) = wo + wq (1 — a) with the logarithmic running of the scalar tilt can be
also derived [144]. The practical relevance of those consistence conditions is however much
more limited than that of (9.29), given the small value of the running of the scalar tilt in
Higgs-driven scenarios.
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9.3 The dynamical cut-off scale

Following [154], we now turn to the determination of the energy domain
where the Higgs-Dilaton model can be considered as a predictive effective field
theory. This domain is bounded from above by the field-dependent cut-off
A(®), i.e. the energy where perturbative tree-level unitarity is violated [158].
At energies above that scale, the theory becomes strongly-coupled and the
standard perturbative methods fail. In order to determine this (background
dependent) energy scale, two related methods, listed below, can be used.

(1) Expand the generic fields of the theory around their background values
D(x,t) = @+ 5P(x,1) (9.30)

such that all kind of higher-dimensional non-renormalizable operators

On(69)

an , (9.31)

with ¢, ~ O(1) appear in the resulting action. These operators are
suppressed by appropriate powers of the field-dependent coefficient A(®),
which can be identified as the cut-off of the theory. This procedure
gives us only a lower estimate of the cut-off, since it does not take
into account the possible cancelations that might occur between the
different scattering diagrams.

(2) Calculate at which energy each of the N-particle scattering amplitudes
hit the unitarity bound. The cut-off will then be the lowest of these
scales.

In what follows we will apply these two methods to determine the effective
cut-off of the theory. We will start by applying the method (1) to compute
the cut-off associated with the gravitational and scalar interactions. The
cut-off associated to the gauge and fermionic sectors will be obtained via the
method (2).

9.3.1 Cut-off in the scalar-gravity sector

We choose to work in the original Jordan frame where the Higgs and dilaton
fields are non-minimally coupled to gravity’. Expanding these fields around

9A similar study in the Einstein frame can be found in Appendix H.
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a static background!'®
g,uuzg,uu""(sguua X=X+0x, h:71+5h, (9.32)

we obtain the following kinetic term for the quadratic Lagrangian of the

gravity and scalar sectors

=2 BQ
jﬁ”sz§Q&%£i—@yWD@W+Q&ﬁ¢%V@W—Q&ﬁW%L@

1 1 )
—~0gt15g9) = 5(96X)* = 5(05h)” + (§xXOX + £h6h) (9:0,09™ — Ddg) -

(9.33)

The leading higher-order non-renormalizable operators obtained in this way
are given by

& (6x)?0dg ,  &,(6h)*0ég . (9.34)

Note that these operators are written in terms of quantum excitations with
non-diagonal kinetic terms. In order to properly identify the cut-off of the
theory, we should determine the normal modes that diagonalize the quadratic
Lagrangian (9.33). After doing that, and using the equations of motion to
eliminate artificial degrees of freedom, we find that the metric perturbations
depend on the scalar fields perturbations, a fact that is implicit in the
Lagrangian (9.33). The gravitational part of the above action can be recast

into canonical form in terms of a new metric perturbation 6g,, given by

1

5§/W =T
\/ foQ + fth

The cut-off scale associated to purely gravitational interactions becomes in

[(6xX* + &h*)0guw + 2w (Ex XX + ExhSR)] . (9.35)

this way the effective Planck scale in the Jordan frame

AD =& X+ Enh* . (9.36)

'ONote that, in comparison with the analysis performed in [138] for generalized Higgs
inflationary models, both the dilaton and the Higgs field acquire a non-zero background
expectation value, see Sec. 9.2. As we will see below, this will give rise to a much richer
cut-off structure.
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The remaining non-diagonal kinetic term for the scalar perturbations
(6@, 6®%) = (5h, 5Y) is given in compact matrix notation by

1 . A
Ay = —?—f;fjaﬂaqﬂaﬂdqﬂ , (9.37)
where R;]j = Qzﬁg is the Jordan frame analogue of (9.14) and depends only

on the background values of the fields, i.e.

I L (&P +68) +&h° 6ExXEnh (9.38)
YEX? + &2 665 XEnh EXZ &A1 +68))

In order to diagonalize the above expression we make use of the following set
of variables

. E X (1 +66y) + Eph2(1 +68) . _ ;

Sy = X _ 1) hoh

' V(@ﬁ+$mxgv+aﬂ%(“XX+& " (9.39)
55:4——;L——fpfgwx+gxwg.

\E2XP + EEh?

Note here that this is precisely the change of variables (up to an appropriate
rescaling with the conformal factor ) needed to diagonalize the kinetic terms
for the scalar perturbations in the Einstein frame. To see this, it is enough
to start from (9.13) and expand the fields around their background values
P! — &' + §®'. Keeping the terms with the lowest power in the excitations,
K= _58H5¢>i8“5¢>j +O(3®3), it is straightforward to show that the previous
expression can be diagonalized in terms of

g [EXR(L+6E) + ERh2 (L +68) _
5XZQ1¢?%%+$%XJQ+&W;(&MX+&M@’

(9.40)
Sh=0 1 (e Rsx+ & xoh) .

VEax +gn

Written in terms of the canonically normalized variables (9.35) and (9.39)
these operators read

1 712 ~ ~N\2 A ~ ~
& Oh08 . (00083 . (FR)(3h)00 (0.41)
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where the different cut-off scales are given by

22 212
+&h
Ay = SN S (9.42)

i /Ex® + Enh2

(E2X% + &N (EXP (14 68y) + Eh* (1 + 6&p))

(X2 4 Eh2)\ &P + Enh? 7

gy = (EXFERERA +66) + @1 +66) (9.44)

§x>2€h/_1 ’5}1 - £x| fX)ZQ + ghltLQ

Ay = (9.43)

The effective cut-off of the scalar theory at a given value of the background
fields will be the lowest of the previous scales. We will be back to this point
in Sec. 9.3.3.

9.3.2 Cut-off in the gauge and fermionic sectors

Let us now move to the cut-off associated with the gauge sector. Since we are
working in the unitary gauge for the SM fields, it is sufficient to look at the
tree-level scattering of non-abelian vector fields with longitudinal polarization.
It is well known that in the SM the “good” high energy behaviour of these
processes is the result of cancellations that occur when we take into account
the interactions of the gauge bosons with the excitations dh of the Higgs
field!t [159,160].

In our case, even though purely gauge interactions remain unchanged, the
graphs involving the Higgs field excitations are modified due to the non-
canonical kinetic term. This changes the pattern of the cancellations that
occur in the standard Higgs mechanism, altering therefore the asymptotic
behaviour of these processes. As a result, the energy scale where this part of
the theory becomes strongly coupled becomes lower.

To illustrate how this happens, let us consider the Wy Wy — W W7, scattering
in the s—channel. The relevant part of the Lagrangian is

gmwW,FW=Hsh (9.45)

where my ~ gh. After diagonalizing the kinetic term for the scalar fields

11 the absence of the Higgs field, the scattering amplitudes grow as the square of
the center-of-mass energy, due to the momenta dependence of the longitudinal vectors
~q"/mw.
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with the change of variables (9.39), the above expression becomes
gmw W, WHsh + g"'my Wr W Hsy (9.46)
where the effective coupling constants ¢’ and ¢’ are given by

— g ExX

g =9g—F/—,
X+ &h?
_ _ (9.47)
, & ¢ £ + &2

_g%ﬁﬁ+%w EXP(L+68y) +Enh?(1+68,)

From the requirement of tree unitarity of the S-matrix, it is straightforward

to show that the scattering amplitude of this interaction hits the perturbative
unitarity bound at energies

AG:¢@V“+“Q+&W“+%J. (0.48)

6¢7

It is interesting to compare the previous expression with the results for the
gauge cut-off of the simplest Higgs inflationary model [154]. In order to do
that, let us consider two limiting cases: the inflationary/high-energy period
corresponding to field values &, x? < &,h? and the low-energy regime at
which fXXZ > ,h? . In these two cases, the above expression simplifies to

h  for &,x2 < &,h%
Ag ~ { X (9.49)

Exx . 7
e for &% > &7,

in agreement with the Higgs inflation model.

To identify the cut-off of the fermionic part of the Higgs-Dilaton model, we
consider the chirality non-conserving process ff — Wi Wp. This interaction
receives contributions from diagrams with v and Z exchange (s—channel)
and from a diagram with fermion exchange (t—channel). In the asymptotic
high-energy limit, the total amplitude of these graphs grows linearly with the
energy at the center of mass. Once again, the s—channel diagram including
the Higgs excitations unitarizes the associated amplitude [161-163]. Following
therefore the same steps as in the calculation of the gauge cut-off, we find
that this part of the theory enters into the strong-coupling regime at energies
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L 1 S+ + 62 (1 + 66,)

A =

(9.50)
where y is the Yukawa coupling constant. The above cut-off is higher than
that of the SM gauge interactions (9.48) during the whole evolution of the

Universe.

9.3.3 Comparison with the energy scales in the early and
late Universe

In this section we compare the cut-offs found above with the characteristic
energy scales in the different periods during the evolution of the Universe. If
the typical momenta involved in the different processes are sufficiently small,
the theory will remain in the weak coupling limit, making the Higgs-Dilaton
scenario self-consistent.

Let us start by considering the inflationary period, characterized by &,h? >
&Y’

associated with the gauge interactions Ag. The typical momenta of the

As shown in Fig. 9.2, the lowest cut-off in this region is the one

scalar perturbations produced during inflation are of the order of the Hubble
parameter at that time. This quantity can be easily estimated in the Einstein
frame, where it is basically determined by the energy stored in the inflationary
potential (9.22). We obtain H ~ v/ AMp/&,. When transformed to the Jordan
frame (H = QOH ) this quantity becomes H ~ \/gl_l, which is significantly
below the cut-off scale Ag in that region. The same conclusion is obtained
for the total energy density, which turns out to be much smaller than A4G.
Moreover, the cut-off Ag exceeds the masses of all particles in the Higgs
background, allowing a self-consistent estimate of radiative corrections (see
Sec. 9.4).

After the end of inflation, the field ¢ starts to oscillate around the minimum
of the potential with a decreasing amplitude, due to the expansion of the
Universe and particle production. This amplitude varies between My/\/&),
and My/&p, where My = \/fixi is the asymptotic Planck scale in the low
energy regime. As shown in Fig. 9.1, the curvature of the Higgs-Dilaton
potential around the minimum coincides (up to O(&,) corrections) with that
of the Higgs-inflation scenario. All the relevant physical scales, including
the effective gauge and fermion masses, agree, up to small corrections, with
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Figure 9.2 — Dependence of the different cut-off scales for a fixed value
of the dilaton field Y as a function of the Higgs field h in the Jordan
frame. The cut-off (9.44) is parametrically above the other energy scales
(A1, A2, Ap, Ag and Ap) during the whole history and it is therefore not
included in the figure. The effective field theory description of scalar fields is
applicable for typical energies below the thick blue solid line, which corre-
spond to the minimum of the scalar cut-off scales at a given field value. This
is given by As and A; in the scalar sector, for large and small Higgs values
respectively. The red solid line correspond to the gravitational cut-off (9.36),
while the red dashed one corresponds to the gauge cut-off (9.48). They
coincide with the effective scalar cut-off for the limiting values of the Higgs
field. The scale My is defined as Mo = /&y X and corresponds to the value
of the effective Planck mass at low energies.

98



9.4. QUANTUM CORRECTIONS

those in Higgs-inflation [164] . This allows us to directly apply the results
of [121,122,165] to the Higgs-Dilaton scenario. According to these works,
the typical momenta of the gauge bosons produced at the minimum of the
potential in the Einstein frame is of order k ~ (14 /M)%*3M, with 74 the
mass of the gauge bosons in the Einstein frame and M = MM p/&n the

curvature of the potential around the minimum. After transforming to the

1/6
Jordan frame we obtain k ~ (% Aq, with g the weak coupling constant.

The typical momentum of the created gauge bosons is therefore parametrically
below the gauge cut-off scale (H.4) in that region.

At the end of the reheating period, &, y? > &,h2, the system settles down to
the minimum of the potential U(¢), see (9.22). In that region the effective
Planck mass coincides with the value My. The cut-off scale becomes A; ~
\/§>X>Z /& >~ Mp/&p,. This value is much higher than the electroweak scale
m% ~ 2a/&,Mp (see (9.4)) where all the physical processes take place.
We conclude therefore that perturbative unitarity is maintained for all the
relevant processes during the whole evolution of the Universe.

9.4 Quantum corrections

In this section we concentrate on the radiative corrections to the inflationary
potential and on their influence on the predictions of the model.

Our strategy is as follows. We regularize the quantum theory in such a way
that all multi-loop diagrams are finite, whereas the exact symmetries of the
chosen classical action (gauge, diffeomorphisms and scale invariance) remain
intact. Moreover, we will require the regularization to respect the approximate
shift symmetry of the dilaton field in the Jordan frame, see Sec. 9.2. Then we
add to the classical action an infinite number of counter-terms (including the
finite parts as well) which remove all the divergences from the theory and do
not spoil the exact and approximate symmetries of the classical action. Since
the theory is not renormalizable, these counter-terms will have a different
structure from that of the classical action. In particular, terms that are
non-analytic with respect to the Higgs and dilaton fields will appear [166].
They can be considered as higher-dimensional operators, suppressed by the
field-dependent cut-offs. For consistency with the analysis made earlier in
this work, we demand these cut-offs to exceed those found in Sec. 9.3.

An example of the subtraction procedure which satisfies all the requirements
formulated above has been constructed in [9] (see also earlier discussion
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in [8]). It is based on dimensional regularization in which the 't Hooft-
Veltman normalization point p is replaced by some combination of the scalar
fields with an appropriate dimension, u? — F(x, h) (we underline that we
use the Jordan frame here for all definitions). The infinite part of the counter-
terms is defined as in M S prescription, i.e. by subtracting the pole terms
in €, where the dimensionality of space-time is D = 4 — 2¢. The finite part
of the counter-terms has the same operator structure as the infinite part,
including the parametric dependence on the coupling constants.

Although the requirement of the structure of higher-dimensional operators,
formulated in the previous paragraphs puts important constraints on the
function F'(x,h), its precise form is not completely determined [9, 166, 167],
and the physical results do depend on the choice of F(x,h). This somewhat
mysterious fact from the point of view of uniquely defined classical theory (9.1)
becomes clear if we recall that we are dealing with a non-renormalizable theory.
The quantization of this kind of theories requires the choice of a particular
classical action together with a set of subtraction rules. The ambiguity in the
choice of the field-dependent normalization point F'(x, h) simply reflects our
ignorance about the proper set of rules. Different subtractions prescriptions
applied to the same classical action do produce unequal results. Sometimes
this ambiguity is formulated as a dependence of quantum theory on the choice
of conformally related frames in scalar-tensor theories [168]. The use of the
same quantization rules in different frames would lead to quantum theories
with different choices of F(x,h).

Among the many possibilities, the simplest and most natural choice is to
identify the normalization point in the Jordan frame with the gravitational
cut-off (9.36),

pt o< &x? + &l (9.51)

which corresponds to the scale-invariant prescription of [9]. In the Einstein
frame the previous choice becomes standard (field-independent)

fi? oc M3, (9.52)

A second possibility is to choose the scale-invariant direction along the dilaton
field, i.e.

17 oc E . (9.53)
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When transformed to the Einstein frame it becomes

-9 fozMJ%

X ———, 9.54
Krr ngQ +£hh2 ( )

and coincides with the prescription II of [126] at the end of inflation.

In what follows we will use this “minimal setup" for the analysis of the
radiative corrections. It will be more convenient to work in the Einstein
frame, where the coupling to gravity is minimal and all non-linearities are
moved to the matter sector. The total action in the Einstein frame naturally
divides into an Einstein- Hilbert (EH) part, a purely scalar piece involving
only the Higgs and dilaton (HD) fields and a part corresponding to the chiral
SM (CH) without the radial mode of the Higgs boson [126, 169, 170]

S = Sgu + Sup + Scu - (9.55)

In the next section we estimate the contribution of the scalar sector to the
effective inflationary potential, postponing the study of the chiral SM to
Sec. 9.4.2. All the computations will be performed in flat spacetime, since
the inclusion of gravity does not modify the results 2.

9.4.1 Scalar contribution to the effective inflationary poten-
tial

Let us start by reminding that the initial value of the dilaton field has to be
sufficiently large to keep its present contribution to DE at the appropriate
observational level [144]. The latter fact allows us to neglect the exponentially
suppressed contributions to the effective action stemming from UAO in (9.22).
As a result, the remaining corrections due to the dilaton field will emerge
from its non-canonical kinetic term, whereas all the radiative corrections due
to the Higgs field will emerge from the inflationary potential.

The construction of the effective action for the scalar sector of the theory
is most easily done in the following way: expand the action (9.21) near the
constant background of the dilaton and the Higgs fields and drop the linear
terms in perturbations. After that, compute all the vacuum diagrams to
account for the potential-type corrections and all the diagrams with external

legs to account for the kinetic-type corrections.

12¥We recall that, in the Einstein frame, the coupling among SM particles and gravity is
minimal.
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Dilaton contribution

Let us consider first the quantum corrections to the dilaton itself. Since
our subtraction procedure respects the symmetries of the classical action
(in particular scale invariance, corresponding to the shift symmetry of the
dilaton field 7 in the Einstein frame), no potential terms for the dilaton
can be generated. Thus, the loop expansion can only create two types
of contributions, both stemming from its kinetic term. The first type are
corrections to the propagator of the field, and as we will show below they
are effectively controlled by (mg/Mp)?*, with m%, = —U"(¢) and k the
number of loops under consideration. The second type are operators with
more derivatives of the field suppressed by appropriate powers of the scalar
cut-off Mp. One should bear in mind that the appearance of these operators
in the effective action is expected and consistent. As discussed in the previous
section, their presence does not affect the dynamics of the model, since
the scalar cut-off is much larger than the characteristic momenta of the
particles involved in all physical processes throughout the whole history of
the Universe.

To demonstrate explicitly what we described above, let us consider some of the
associated diagrams. Following the ideas of [9], we perform the computations
in dimensional regularization in D = 4—2¢ dimensions. We avoid therefore the
use of other regularizations schemes, such as cut-off regularization, where the

113, The magnitude

scale invariance of the theory is badly broken at tree leve
of the corrections in dimensional regularization is of the order of the masses
of the particles running in the loops, or in the case of the massless dilaton,
its momentum. The structure of the corrections can be therefore guessed
by simple power-counting and it becomes apparent already at the one-loop

order. We get

Q = s (24 1) (1) oy,
LI L o) G )

(0r)*,

13Similar arguments about the artifacts created by regularization methods that explicitly
break scale invariance can be found for instance in [171].

102



9.4. QUANTUM CORRECTIONS

where the Higgs and dilaton fields are represented by solid and dashed
lines respectively. To keep the expressions as compact as possible we set
1/€ = 1/e—~+log4m and denoted by f and f’ the finite parts of the diagrams,
whose values depend on the normalization point p. The higher-derivative
operator in the second diagram is included for completion, but turns out to
vanish accidentally in this particular case. Numerical factors are absorbed
into the background-dependent coefficients cﬁfv(gg), which depend on the
particular diagram d; under consideration, the number of loops k and the
number of vertices!* V. Their values are always smaller than unity, and vary
slightly with the background value ¢. Their specific form of is presented in
the Appendix I.

In two-loops the situation is somehow similar. The divergent (and finite) part
of the corrections (consider for example the diagrams presented in Fig. 9.3)
is proportional to

. ma\: mu\2/ 0 \2 9 \4 ,
: — — — — 0 V<4.(9.56
vl <MP> " <MP> <MP> - <MP> )", V<. (9:59)
It is not difficult to convince oneself that this happens in the higher order
diagrams as well. The structure of the corrections is therefore proportional

() [(gg)”“ ()
i) Ge) Gy

up to O(1) numerical factors. Notice that some operators involving higher

to

(9.57)

derivatives were already present at lower orders, but they reappear with
extra suppression factors (mg/Mp)? on top of the scalar cut-off Mp. The
corrections from diagrams with gauge bosons and fermions running inside
the loops are given also by (9.57), by consistently replacing my by the mass
of the particle considered.

14YWe introduce the index d; to distinguish between the diagrams with the same number
of vertices but different combinations of hyperbolic functions that appear in higher loops.
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O OO D

Figure 9.3 — Some of the two-loop diagrams for the dilaton.

Higgs contribution

We now turn to the corrections to the Higgs field. Once again we consider
first the potential-type contributions. The situation now is more complicated,
since the effective potential for the Higgs field ¢ will be modified by terms
stemming from the scale-invariant part of the tree-level potential (9.22) as
well as from the non-canonical kinetic term of the dilaton field r, with the
latter starting from the second order in perturbation theory.

Let us start by considering the contributions due to the tree-level potential.
To keep the notation as simple as possible, we express the scale-invariant
part of the potential (9.22) in the following compact form

R 2 4
U(¢) = AUy (uo +) Cosh[2na¢/MP]> , U= 452(];{1)2 » (9-58)
h

n=1

where, for completion, we have explicitly recovered the a and 8 dependence
and defined

32 3/ 2 2 !
u0202700+%+75,ulz%fconB',u2:%+%,(9.59)
with
al+6&, al+6E, ,_ B 1466\
P! . =7 . (9.60
=1t ivee, O Tarves, P T lives,) 000

Expanding the field around its background value ¢, we get

507 2 = cosh®2nad .
O(6+60) =\ Y un 3 20 [2na¢/Mp] (2na6¢)

n=1 =0 i MP
= )\UO; ;un [cn,l cosh[2na¢p/Mp)] <J\4p> (9.61)
21+1
+d,,; sinh[2na¢/Mp] <W> ] ,
) MP
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where ¢, ; and d,, ; account for numerical coefficients and combinatorial factors.
Since the theory is non-renormalizable, the perturbative expansion creates
terms which do not have the same background dependence of the original
potential. Up to numerical factors, the contributions turn out to be of the

form?!?
NI - A _
[4€2(1 — g)];]iﬂ' [ ( ) + fm] Zu ul, cosh’[2nap/Mp|sinh?[2ma¢/Mp] ,
h

(9.62)

where f; ; denotes the (finite) integration constant, and g(1/€) is a function
of the divergent terms. Note that if we set § = 0, we make sure that terms
which contribute to the cosmological constant (9.5) will not be generated by
the loop expansion.

By inspection of the structure of divergences, we can see that the leading
corrections are those appearing with the lowest power in ¢. To gain insight
on their contribution, we calculate the finite part of (9.62) for the maxi-
mal value of the hyperbolic functions. This corresponds to ¢max = ¢g =

Mp/a tanh™[y/1T —¢]. We get
)\i+j

g — o1

i,J i "y hi y A\
X Zunufn cosh'[2na¢/Mp] sinh’ [2ma¢/Mp]‘¢;:¢mx ~ (45}21) fiis

n,m

(9.63)

which makes the corrections coming from the order ¢ + j + 1 negligible
compared to the ones from ¢ + j order. In the last step we have simply set
¢ =1, o0 = ¢, which, given the small value of the parameter a appearing
n (9.60), constitutes a very good approximation.

As we mentioned earlier, potential-type corrections to the Higgs field are
also generated from diagrams associated to the kinetic term of the dilaton
r, starting from two loops. This happens because the first order vacuum
diagrams with dilaton running in the loop, vanish. If we consider higher loop
diagrams, like those in Fig. 9.4(b) but without momenta in the external legs,
we see that even though the background dependence of the corrections is

15To maintain the expressions as compact as possible we decided not to express the
result in terms of mu/Mp.
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Figure 9.4 — Characteristic diagrams produced by the non-canonical kinetic
term of the dilaton field r. Solid and dashed lines represent the Higgs and
dilaton fields respectively. The first one-loop diagram presented in (a) vanishes
in dimensional regularization due to the massless character of the dilaton
field. On the other hand, the second diagram gives rise to higher derivative
terms of the Higgs field. In (b) we consider two and three loop diagrams
which, apart from generating higher dimensional operators, contribute to the
effective potential once we amputate them.

complicated due to the non-canonically normalized dilaton that runs inside
the loops, their contributions to the effective action are of the same order as
those in (9.63).

We now turn to the kinetic-type corrections to the Higgs field. By that we
mean corrections to the propagator, as well as terms with more derivatives
of the field suppressed by the scalar cut-off. The first type of contributions
come only from the scale-invariant part of the potential given by (9.58) |
when the momenta associated to the external legs are considered. It is not
difficult to show that these are precisely of the same form as those in (9.62).
The second type of contributions, i.e. the higher dimensional operators, are
generated both from the Higgs potential at higher loops, as well as from the
non-vanishing diagrams associated to the non-canonical kinetic term of the
dilaton. The terms we get are proportional to
2 o 2
(09)°, F(&p) cee (9.64)

4
P

82
M3

and they can be safely neglected for the typical momenta involved in the
different epochs of the evolution of the Universe.

Before moving on, we would like to comment on the appearance of mixing

106



9.4. QUANTUM CORRECTIONS

terms with derivatives of the fields. These manifest themselves when we
consider diagrams with both fields in the external legs. They are higher
dimensional operators, and it can be shown that they appear suppressed by
the scalar cut-off of the theory, as before.

Since the kinetic-type operators do not modify the dynamics, we will con-
sider only potential-type corrections to estimate the change in the tree-level
predictions of the model. At one-loop, the contribution of the scalar sector
to the inflationary potential becomes [172]

~ U Aa* 1 51+ cosh[dap/Mp] 3
AUgp >~ —5+—5 | = (@)
1 e g1 (% +f2’°> [g 2 +OI]

(9.65)

where we just kept the leading contribution in ¢. The finite part f2( in the
previous expression is given by

3 ~U"(¢
foo = 3 log Mg( )
3 o (9.66)
a _
=5 log [W (g cosh[2a¢p/Mp| + O(C2)>]

If we adopt the M.S scheme, the remaining (logarithmic) corrections will be
suppressed by an overall factor O(107'%) (apart from different powers of )
with respect to the tree-level potential (9.58). The quantum contribution of
the scalar sector to the effective inflationary potential is therefore completely
negligible and rather insensitive to the particular choice of the renormalization
point p. This allows us to approximate the value of ¢ at the end of inflation
by its classical value ¢ ~ Mp/a tanh™* [v1—ccos(2 x 31/4@)], and
compute analytically the spectral tilt ng of primordial scalar perturbations,
which turns out to be
A2
ng(ko) — 1~ —8¢, + %%fm , for 1 <46 N* <4N*.  (9.67)
w4&;
We see therefore that the correction to the tree-level result is controlled by the
effective self-coupling of the Higgs field in the Einstein frame \/ 5,21 The small
value of this parameter makes the scalar radiative contribution completely
negligible and thus hardly modify the consistency relation (9.29). Note
however that there might be still a significant contribution to the inflationary
potential coming from the SM particles, especially from those with a large
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coupling to the Higgs field. The study of this effect is the purpose of the next
section.

9.4.2 Chiral SM contribution to the effective inflationary po-
tential.

The action for the SM fields during the inflationary stage is similar to that
appearing in Higgs inflation [126] and takes the form of a chiral SM with a
nearly decoupled Higgs field. Its contribution to the effective potential can
be analyzed by the methods presented in [126]. The one-loop contribution
during inflation reads'®

where m¥, = ¢g°h?/2, m% = g>h?/2cos® Oy and m? = y?h?/2 stand for the
effective W, Z and top quark masses in the Jordan frame. The choice of the p
parameter here defines the renormalization prescription, as described in the
beginning of Sec. 9.4. To retain the possibility to use the RG equations to run
between the electroweak and inflationary scales we will write u? = A’/‘[—QQF (h, x)-
Here the function F'(h,y) corresponds to the choice of the renormglization
prescription and leads to different physical results, while the parameter
plays the role of the usual choice of momentum scale in the RG approach and
should disappear in the final result. The conformal transformation to the
Einstein frame AU, = AU, /Q* acts only on the coefficients of the logarithmic
terms in (9.68), leaving their arguments completely unchanged. We obtain

therefore
- 6m m? 5 3 m> 5
Al = W (e MW O z (log— Mz 5
' o <0gﬂ2F(h,x)/M?a 6)*6@2 %8 B2F(h,x) /M~ 6
3 omi 3
1672 \ % f2F(h,x) /M3 2)
(9.69)

2

where the Einstein-frame masses m~ are proportional to the effective vacuum

expectation value of the Higgs field in the Einstein frame!”, which is a slowly

16We neglect the contribution (9.65) associated to the scalar sector, which, as shown in
the previous section, turns out to be very small.
"In particular we have i, (¢) = m%(¢) cos? 0., = g /2-v*(¢) and i (d) = yi/2-v>(¢).
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varying function during inflation,

2y I _ MJQD o a¢
v (p) = ETa0-9 <1 — g cosh ]\4p> . (9.70)

This fact allows us to completely factor out the ¢ dependence in front of the
logarithms in (9.69) and perform the analysis below as if v was a constant,

v~ Mp/\/&.

Note that the explicit dependence on the 't Hooft-Veltman normalization
point /i in (9.68) is spurious and is compensated by the running of the coupling
constants A(f1), &, (/1) in the tree level part of the potential (see [126]). Once
the RG running of the couplings is fixed, it is convenient to choose the value
of i in such a way that the logarithmic congributig)n 9.69, for each given value
¢ of the Higgs field, is minimized, fi? ~ %m In that case, the RG
enhanced (RGE) inflationary potential becomes

~ A(f M}, ag \?
Urcr(¢) = ('uf))) §,%(/l(¢>))€1 ST <1 — ¢ cosh? MZ) , (9.71)

which in fact suffices for practical purposes, with the corrections form the

1-loop logarithms being rather small.

As discussed at the beginning of Sec. 9.4, the different choices of i correspond
to different subtraction rules and produce different results. In what follows
we will consider the two most natural choices. The first one is associated to
the scale invariant prescription (9.51). The RG enhancement of the potential
in this case dictates
2 M?2h2 2
o) Yi p Yi 2
== ="y , 9.72

luI (¢) 2 gth + é—XXQ 2 (¢) ( )
which is nothing else than the effective top mass in the Einstein frame. With
this choice, the change in the shape of the potential is very small, given the
insignificant variation of v?(¢) during inflation. The change in the inflationary
observables ng and r is therefore expected to be completely negligible. The
second possibility that we will consider is associated to the prescription (9.53).
In this case the optimal choice of i is
_Z/t2M123h2_y1522 I—¢

2 fXXQ B ??) (¢)§sinh2 (ap/Mp) ’ (973)

which, at the end of inflation, coincides with the effective top mass in the
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Jordan frame. This corresponds to the prescription II in [126]. Note that
contrary to the previous case, this choice strongly depends on the value of
the ¢ field and noticeable contributions to the inflationary parameters are
expected.
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Figure 9.5 — The spectral index ng (top) and tensor to scalar ration r (bottom)
as a function of the non-minimal coupling &,. The solid line corresponds
to the quantization prescription I, which coincides with the tree level result.
Dashed lines stand for the quantization choice II for different Higgs masses.
The minimal Higgs boson mass my;, can be obtained from [173].
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The calculation proceeds now along the same lines as those in [126], using the
tree level RG enhanced potential and the one loop correction. The addition of
the two loop effective potential does not significantly modify the result. The
numerical outcome for the two prescriptions is shown in Fig. 9.5. As expected,
the inflationary observables computed with the first prescription coincide
with the tree level result. The only effect of the quantum corrections is
setting a minimal value for the Higgs mass. This turns out to be myg > muyin,
with mpin ~ 129.5 £ 5 GeV (for details on the latest calculations of this
value see [173,174]). After the end of inflation and preheating, the system is
outside the scale-invariant region and the fields settle down to the minimum
of the potential. From the expansion of the potential (9.26) around the
background, it is clear that all the contributions to the effective action will be
again suppressed by powers of the exponent e~ 7"/Mp in addition to powers
of Mp, not affecting therefore the predictions of the model concerning the
DE equation of state (9.28). Taking into account the above results, we
conclude that the quantum corrections computed with the prescription I
do not modify the classical consistency relation (9.29) characterizing Higgs-
Dilaton cosmology. On the other hand, the inflationary observables computed
using the prescription II clearly differ from the tree level result, especially
for Higgs masses close to the critical value m,,;, at large . Note that in
this prescription, the recent observation of a light Higgs-like state [175,176],
together with the present bounds on the spectral tilt ng [177], further restrain
the allowed &, interval.

9.5 Summary and Outlook

The purpose of this chapter was to study the self-consistency of the Higgs-
Dilaton cosmological model. We determined the field-dependent UV cut-offs
and studied their evolution in the different epochs throughout the history of
the Universe. We showed that the cut-off value is higher than the relevant
energy scales in the different periods, making the model a viable effective
field theory describing inflation, reheating, and late-time acceleration of the
Universe. Since the theory is non-renormalizable, the loop expansion creates
an infinite number of divergences, something that may challenge the classical
predictions of the Higgs-Dilaton model. We argued that this is not the
case if the UV-completion of the theory respects scale-invariance and the
approximate shift symmetry for the dilaton field.

We computed within this framework the effective inflationary potential in
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the one-loop approximation and concluded that the dominant contribution
comes from the chiral SM sector of the theory. We used two different
regularizations prescriptions consistent with the symmetries of the model.
In the “Sl-prescription” of [9], with a field-dependent normalization point
proportional to the effective Planck scale in the Jordan frame, the effective
potential turns out to coincide with the tree level one. This leaves practically
intact the consistency relation (9.29) which connects the inflationary spectral
tilt to the deviation of the DE equation of state from a cosmological constant.
This relation is however modified if the normalization point is chosen only
along the dilaton’s direction, especially for Higgs masses near the critical
value mmin >~ 129.5 £ 5 GeV, which is amazingly close to the mass of the
Higgs particle observed at the LHC [175,176]. In the lack of a Planck scale
UV completion, the proper choice of the normalization point x4 can only be
elucidated by improving the precision of the cosmological and particle physics
observables.
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Chapter 10

Scale-invariant alternatives to gen-
eral relativity: dilaton proper-
ties

10.1 Introduction

In the SITDiff theories introduced and studied in [11], the scalar degree of
freedom related to the metric determinant is identified with a massless dilaton
that only couples derivatively and thus evades the fifth force constraints.
Assuming that the metric is dimensionless and the Lagrangian contains
up to two derivatives of the fields, the most general scalar-tensor theory
that includes matter fields was presented. The form of the action can not
be completely fixed; rather, it involves arbitrary functions of the metric
determinant (“theory defining functions”), since this quantity behaves as a
scalar under the restricted coordinate transformations. It was shown that
the invariance of the system under dilatations, is explicitly broken at the
level of the equations of motion by an arbitrary integration constant that
appears because of TDiff rather than Diff invariance. This gives rise to a
run-away potential for the dilaton. It was demonstrated that by appropriately
choosing the theory defining functions, it is possible to get a theory which
has interesting implications for particle physics and cosmology. Its particle
physics sector can be made identical to the Standard Model, whereas it is
able to account for the inflationary period in the early Universe and provide

a natural candidate for dynamical dark energy.

113



CHAPTER 10. SCALE-INVARIANT ALTERNATIVES TO
GENERAL RELATIVITY: DILATON PROPERTIES

In this final chapter, whose findings were reported in [178], we investigate
what are the implications on the structure of these models when the metric
tensor g,, has (arbitrary) mass dimension. Usually, it is somehow taken
for granted that g,, is dimensionless, whereas the coordinates z# carry
dimensions of length. However, this is nothing more than a particular choice
which follows “naturally” only when the Minkowski space-time is described
in terms of cartesian coordinates. Notice that this choice is certainly not
the most appropriate one when other coordinate systems are used, let alone

when curved space-times are considered.

Let us carry out some elementary dimensional analysis. Although what
follows is in a sense trivial if the theory under consideration is diffeomorphism
invariant, the situation changes considerably for SITDiff theories, since the
metric determinant is a propagating degree of freedom that plays the role of
the dilaton. By definition, [g,,dz"dz"] = [GeV] ™2, so in principle, we have
the liberty to assign arbitrary dimensions — also fractional — both to z* and

Juv, 1.€.
[#4] = [GeV] P, [gw] = [GeV] 27, (10.1)

as long as p + ¢ = 1. The dilatations now act on the coordinates and the
metric as

o — o Pt and g, (z) = a g, (a Px) (10.2)

since the scaling dimensions coincide with the mass dimensions. Of a special
interest is the case in which x* merely label events on the manifold and the
metric carries dimensions of area

p=0 and ¢g=1. (10.3)

We will see that the class of theories with p # 0 is equivalent to that already
described in [41]. However, the case (10.3) is different. In particular, a
dilatation symmetry breaking potential for the dilaton will be shown to be
absent, an otherwise generic feature of the theories with p # 0. Moreover,
it is remarkable that by abandoning the prejudice of a dimensionless metric
and requiring that there are no terms with more than two derivatives in the
action, we can completely fix its form for pure gravity without matter fields.
It should be noted that, in principle, one can relax the requirement of having
an action that contains terms which are at most quadratic in the derivatives.
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To ensure absence of ghosts, the starting point in this case should either
be Horndeski theory [179] or f(R)-gravity, see [180] and references therein.t
For the latter, we will show that they can be used as the starting point for

constructing biscalar SITDiff theories.

Next, we present how a scalar field can be incorporated in a consistent manner.
If this field is identified with the Standard Model Higgs boson, we end up
with a phenomenologically viable SITDiff theory. As we will demonstrate,
the Higgs mass as well as the cosmological constant appear in the action in a
peculiar way, different from the other terms.

Inspired by this, we formulate a set of rules that allows us to distinguish for-
mally the Higgs mass and the cosmological constant from other contributions
to the action based on their behaviour when the dilaton goes to zero. Since
this field is related to the metric determinant that now carries dimension of
length, this limit potentially corresponds to vanishing length and thus it is
in a sense related to the UV regime. More precisely, we notice that when
the theory is expressed in terms of variables that are conjugate to the time
and space derivatives of the fields (canonical four-momenta [182,183]), then
the only terms which involve inverse powers of the dilaton — and thus are
presumably singular at the UV limit — are the Higgs boson mass and the
cosmological constant. Based on that, we speculate that their absence in the
action may be a requirement of the self-consistency of the theory in the UV
domain. The smallness of the observed low energy values of the Higgs mass
and of the cosmological constant, perhaps, could be attributed to some yet
unknown nonperturbative mechanism.

This chapter is structured as follows. In Sec. 10.2, we construct the most
general SITDiff theory that contains only the dilaton and study its properties.
In Sec. 10.3, we demonstrate how matter fields are introduced in this frame-
work. We present a phenomenologically viable model that in addition to the
dilaton contains an extra scalar field, that is identified with the Standard
Model Higgs boson. In Sec. 10.4, we formulate the assumptions that make it
possible to single out the presence of certain terms in the action by requiring
that the theory has a regular limit when determinant of the metric goes to
zero. We present our conclusions in Sec. 10.5.

!The Horndeski theory is the most general scalar-tensor action with second order
equations of motion. The scale- and Weyl-invariant subclasses of this theory have been
identified in [181]. It would be interesting to understand what are the implications of
having invariance under TDiff instead of the full group of diffeomorphisms, an investigation
we leave for elsewhere.
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GENERAL RELATIVITY: DILATON PROPERTIES

10.2 Pure gravity

As a warm-up exercise, we will write down the most general theory that con-
tains at most two derivatives of the fields and is invariant under the restricted
coordinate transformations and dilatations, which are given, respectively,
by (8.2) and (10.2). The unique action that satisfies these requirements reads

1 1 1
S = /d4:1:\/§ {gg‘*(l’—l)R -1 g4<P—1>_Qg“”8ugé7,,g —cog2r=1 | | (10.4)

where (, c1, and co are dimensionless constants and the scalar curvature
R is defined in Appendix J. Observe that for p = 1, the above expression
becomes singular. This is a manifestation of the fact that if we consider the
standard mass (and scaling) dimension for the metric and coordinates, it is
not possible to construct SITDiff theories with the metric determinant only.
This was also realized in [41].

To get a better grasp on the dynamics of this theory, it is desirable to recast
it in a form invariant under the full group of diffeomorphisms. Once we
consider a coordinate transformation with J # 1, we obtain

S = d4x\f § 4(,,1,1)R7 4(,},1)*2 wa 50 o — 2<T171) —-1/2
= q 20’ c1o g Wo0yo — Cc20 +c30 ,
(10.5)

where we defined the dilaton field o = J?¢, a scalar under diffeomorphisms.
Some comments are in order at this point. First of all, when the theory
is written this way, its particle spectrum can be read off immediately. It
contains, in total, three degrees of freedom: the two graviton polarizations
and an additional scalar field which is associated with the determinant of
the metric. Moreover, we notice the appearance of an extra term in the
action proportional to the integration constant c3, which emerged through
the equations of motion, see for example [40,41, 143] and references therein.
It should be noted that for p # 0 (and equivalently g # 1), the resulting
theories are all equivalent to the ones which were already considered in [41].
In this case, the aforementioned constant necessarily carries dimensions and
consequently, its presence explicitly breaks the symmetry of the theory under
dilatations and produces a run-away potential for the dilaton. This is a
generic feature of these models. Hence, it seems that p = 0 is a rather special
point in the phase space of the theory, since c3 is dimensionless and the
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theory under consideration is exactly scale invariant.?

Let us now introduce a field xy with canonical dimensions

X = oFD , (10.6)
and set
_ 1 (10.7)
AT 18— 1)2 '

so that (10.5) is equivalently rewritten as

1
S = /d4x\/§ [gXQR - §g”l’8ux81,x — ot ez Y| (10.8)

In order to eliminate the mixing between the field and the curvature, it is
convenient to write the theory such that the gravitational part takes the
standard Einstein-Hilbert form and all nonlinearities are moved to the scalar
sector. To this end, we perform the following change of variables,

VX

10.
g (10.9)

Juv — w_2gw, , with w=

where Mp = 2.4 x 10'® GeV is the Planck mass. A straightforward calculation
gives us the action in the Einstein frame:

s= [ dieyg [ M M; (1 + 6¢) X 29" 8, XX — 02?4 C‘”’é‘f?’ ~Ap
(10.10)
To bring the kinetic term for the field into canonical form, we define
# ¢
xX=err, 7= T+60 (10.11)

so that (10.10) becomes

M3 ML —ipye
CQC +CSC2P€ e | (10.12)

S = / d%«f[ PR— 59" 0ud0u6 —

We observe that for p = 0, the theory in the Einstein frame boils down to

2 Actually, it coincides with the induced gravity model introduced in [184, 185].
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that of a massless minimally coupled scalar field in curved spacetime,

ch‘_f,
¢ |7

where we denoted ¢ = ¢y — ¢3. Notice that the (exact) scale invariance of the

4 MJ% 1 Ny

model in the Jordan frame has manifested itself as an (exact) shift symmetry,

¢ — ¢ + constant , (10.14)

when the theory was written in the Einstein frame. Thus, instead of the typical
symmetry-breaking exponential potential for the field, we got a contribution
to the cosmological constant term. This is a novel feature of SITDiff theories
with dimensionless coordinates.

At this point, it is worth taking a short detour and discussing the implications
of allowing terms with more than two derivatives of the fields in the action,
even though it lies outside the main scope of this chapter. In general, higher-
derivative terms may put the self-consistency of a theory under scrutiny,
since their presence often (but not always) leads to the appearance of ghostly
degrees of freedom in the spectrum. One of the simplest examples of healthy
theories that involve an arbitrary number of derivatives of the metric in
the action is “f(R) gravity” [180]. It is based on the replacement of the
Einstein-Hilbert term which is linear in the scalar curvature, by an arbitrary
function of R, such that the action reads

4
S = Mép/d%\/gf (R) , (10.15)

where f(R) need not be local and for dimensional reasons can only depend
on R/MI%. This modification to general relativity is motivated both from
theory and phenomenology. Since gravity is an effective field theory, curvature
corrections are expected to be present and play significant role when quantum
effects are taken into account. Also, with an appropriate choice of the function,
it is possible to get interesting cosmological consequences for the early and

late Universe.?

3The succesful Starobinsky model of inflation [114] is a higher-derivative theory with

R 2aR?
Jr -

and a > 0 is a dimensionless constant.
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As is customary when dealing with these theories, it is convenient to express
the above in a way that the dynamics of the extra degree(s) of freedom is sep-
arated from the gravitational sector. Performing a Legendre transformation,
we can cast (10.15) into the following equivalent form,

M4
5= [dava|ror-vio) (10.16)
where prime denotes derivative with respect to x and we define

Vix)=xf ) - flx) - (10.17)

Note that the absence of ghosts forces us to impose f/'(x) > 0, and we have
to require f”(x) # 0 such that y = R.

To make the kinetic term for f’(x) appear explicitly in the action, we Weyl-
rescale the metric as

1

Juw = 57~ 9w 10.18
1% M]%f/(X) H ( )
to obtain
M? 3M?2 V(x)
S—/d4x [ PR L 9. (x)0"f (x) — — 10.19
Finally, we introduce
3 2 pl
o=\ 5Mplog [MEf'(x)] , (10.20)
in terms of which the action takes its “standard” form,
M? 1
5= [ateva | LR J0u07 - U] (10.21)
with
U(p) ()l (10.22)

~ 2/ x(p)]

The above procedure can be straightforwardly generalized to the class of
theories that we are considering here, something that will lead to biscalar
theories. For the purposes of illustration, it suffices to stick to the “special”
case p = 0. Requiring invariance under dilatations and TDiff fixes the action
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as
S = /d4x [f (R) — 1 977/49‘“’8,198,,9 — 02} , (10.23)

where, for the function f to be dimensionless, the scalar curvature must

only appear multiplied by ¢'/%. Repeating the steps outlined previously and
restoring the invariance under general coordinate transformations, we can

write the above as

S = /d4:p\/§{0_1/4f/ (x) R—o_1/4V(X)—cl 0_9/4g“l’auaf),,a—ca_1/2] ,
(10.24)

where, as before, 0 = J?g, ¢ = ¢y — c3, and the “potential” V(x) was
presented in (10.17). As expected, we ended up with a scalar-tensor theory
that contains — on top of the graviton — two propagating fields. Choosing the
function in (10.23) appropriately, it is possible to construct a vast number of
models with interesting cosmological phenomenology.

10.3 Including matter fields

In the present section we wish to generalize the SITDiff theory we constructed
previously by showing how matter fields can be incorporated into this setup.
Let us start by introducing another scalar i with canonical mass dimensions.

We saw that the theory presented previously was completely determined
by requiring invariance under TDiff and scale transformations; see (8.2)
and (10.2), respectively. When we bring into the game an extra scalar field,
the situation changes. The dimensionless quantity,

hQQ_ﬁ , (1025)

is invariant under both TDiff and dilatations. Therefore, arbitrary functions
of the above can, in principle, appear in the action. As in the previous section,
we restrict ourselves to terms that are, at most, quadratic in the derivatives
of the various fields. Dimensional analysis dictates that the gravitational and
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scalar sectors of the action that possess the desired properties read

s—/d%\/g g (h%‘ﬁ)z%
2
_1 9 9 — L1 v
—c1g*=D [ (h g 4(17*1)) g” 8ugayg
1 1
—§F3 (th 4(,,1_1>> 9" 8, hd,h (10.26)
69~ hFy (hzg_i“@l*l)) 9" D,g0,h
1 1
—CQQWV(h%g 4(1)*1))} .

Here F; and V' are arbitrary functions that can only depend on the dimen-
sionless combination (10.25). For later convenience, we have also included
the constants (, c1, co, and 9. We now consider a transformation with J #£ 1
and introduce o = J?¢ to recast the action into its diffeomorphism-invariant
form

1 1
S = /d4x\fg anl)ﬂ (h%‘m) R
2 9 1 _ 5
_010'4(17—1) F2 (h o 4(p—1)) gu auaayo.

—%Fg (h?o ™300 ) ¢ 0,h0,h (10.27)

+60 thFy <h20 4(,3,1)) 9" 9,00,h
o TE Y <h2a*74<p1—1>> feo

We should stress, once again, that unless p = 0, the above theory is completely
analogous to the one presented in [41], in which the term proportional to c3
explicitly violates the invariance of the theory under scale transformations.
Also, like in the purely gravitational theory, the limit p = 1 is peculiar. In
the two-field case, however, the presence of the extra scalar makes it possible
to construct SITDiff theories even if the dimensionality of the metric is zero.

Before moving on, we would like to mention that the inclusion of gauge fields
and fermions in the present framework goes along the same lines as in [41].
Since here we are interested solely on the gravitational and scalar sectors
of the SITDiff theories, the interested reader is referred to this work for an
extensive discussion on the subject.

121



CHAPTER 10. SCALE-INVARIANT ALTERNATIVES TO
GENERAL RELATIVITY: DILATON PROPERTIES

10.3.1 Higgs-dilaton cosmology from TDiff

The presence of gravity in the theory under consideration makes it nonrenor-
malizable. Hence, it should be thought of as an effective field theory which
is valid up to some energy scale. Let us assume that for energies well below
this cutoff, h <« aﬁ. In this case, if the the various functions are analytic
in their argument, we can Taylor expand them as

Fy(h20 T D) 1 + f; h2o T 0 4. |
) ) ) . (10.28)
V(h?0 30-D) ~ 1+ ah?c” -1 4 Bhlo 207D 4 ... |

where the ellipses denote higher order terms, and f;, &, 3 are constants that
depend on the structure of the particular function. Plugging the above
into (10.27) and keeping the leading terms, we see that for p = 0, the action
becomes

2
S = /d4 [CU4+5th %280 4g“8a§0—%g‘“’8hf)h

A
—1-80 1hg“”@ o0, h——h4 5 S omin2—cod ,
(10.29)
with
é_h = %fl s o = —262d s >\ = 462B s C=2C —C3 . (1030)

Making use of (10.6), we can express the above in a more familiar form:

+ &, h? I 1,
S = /d4 [CX & R— ig“ OuXxOux — ig”“ O0uho,h

) (10.31)
Zhél + gx2h2 _CX4

—0 Xflhg‘“’auxa,,h — 5

Notice that once we identify the scalar field A with the Higgs boson (in the
unitary gauge), then for § = 0 (and renaming ¢ = &, ), the above bears
resemblance to the phenomenologically viable Higgs-dilaton cosmological
model that was presented and studied in detail in the previous chapter, see
also [9,143, 144,153,164, 186]. There are, however, certain differences which
should be pointed out. First of all, in the present context, we need not

introduce the field x ad hoc, since this degree of freedom is already present
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in the gravitational sector. Moreover, as we mentioned before, a symmetry-
breaking potential is absent. This means that contrary to what happens in
theories for which p # 0, the scale symmetry of the system remained intact
when it was cast into a form invariant under the full group of diffeomorphisms.
Finally, it is interesting to note that the way this theory is derived here is
much simpler as compared to the conventional SITDiff, where complicated

theory-defining functions have to be chosen [41].

Once we have identified h with the Higgs field, we have to make sure that the
theory has satisfactory particle physics as well as cosmological phenomenol-
ogy, which puts constraints on the various parameters that appear in the
action (10.31). To start with, we observe that we have to set A ~ O(1), in
order for the model to be compatible with the SM predictions. Also, if A
is responsible for the inflationary expansion in the early Universe, then the
nonminimal coupling has to satisfy &, ~ 47000\, such that the amplitude
of the primordial fluctuations agree with the observations [120].

Moreover, since a accounts for the difference between the Higgs boson mass
and the Planck mass, it should be fixed at order O(10~3°). In addition, we
have to impose ¢ ~ O(10712%) to reproduce the hierarchy between the value
of the cosmological constant and the Planck scale. In the next section, we
will present a conjecture about why these two parameters might be zero at
the classical level.

10.4 Regularity?

The fact that the Higgs boson mass and the cosmological constant terms are
much smaller with respect to the Planck scale, might be an indication that
at the level of fundamental action both of them are zero. It is reasonable
to wonder whether it exists some underlying principle or mechanism that
forbids the presence of these terms in the action.

Inspection of (10.29) reveals that due to the peculiar way the dilaton appears,
all terms in the action that involve this field seem to be ill defined when
o — 0, arguably related to the high energy limit. As we will demonstrate in
this section, this is not the case if the theory is expressed in terms of variables
conjugate to space and time derivatives of the fields. These momentum
densities were first introduced by Schwinger [182, 183] (see also [187]) and
should be thought of as the covariant counterparts of canonical momenta.
For a theory described by a Lagrangian .Z[¢;, 0,,¢;] which depends on a set
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of fields ¢; and their derivatives 0,,¢;, these quantities are defined as

= 0.Z .
! 00,0

T (10.32)
Let us focus now on (10.29) and set § = 0, such that there is no kinetic
mixing between the Higgs and the dilaton. This is purely for convenience,
since the results will not be qualitatively different from the case where the
mixing term is present, whereas the manipulations simplify considerably. For
our purposes, it is necessary to cast the action in such a way that it only
contains first derivatives of the metric. A straightforward calculation, along
the lines of the one in [188] for the Einstein-Hilbert action, gives us

S = /d4x\/§$, (10.33)

where the Lagrangian % is

1
CU?Z + §h2 YR
L= T PYRMT o Trons
_5
+ (enah -7 1o,0) ST,y
8 (10.34)
| L
— m o 49 8#0'81/0' — 5 8ﬂh81,h
A
— Zh4 + %a*ihz — ca*% .
Here
1
P)\ul/ =35 (aug#)\ + augku - 8>\g,w) ) (1035)

2

and we introduce the tensors
SRA;LV — gﬁ)\g;w_gyng)\,u and Taﬁ'yﬁ)\,u — gakgﬁngyp,_gaﬂgyﬁgku ) (1036)

Using (10.32), we find that Schwinger’s “momenta,”

iz , 0L
T 5on T T T 50,0

8
ISV

v

) Ay

and p (10.37)
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are given by

T = ERSTMT,, — Oh

1 5 1 10.38
,n_o_u = CU_ZSHAMVFH)\;A + 70_—281/0_ ’ ( )
8 8
and
_1 2
P = o 4;’ &h (Taﬁvk(w') + T)\(IW)GB’Y> Tuss
(10.39)

1 S <§h8ah - ga_iﬁaa) ,

where the parentheses (...) denote symmetrization of the corresponding
indices. Using the relations (10.38), the above can be rewritten as

2
+ SAuucSSaB'Y(SFaﬁ’Y (C2U*i + 52}12) — SA/WH (Ehm,” + 8Com,”) .
(10.40)

(Taﬁvk(u'/) + T/\(/W)aﬁv> Tosy
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In terms of p, 7y, and 75, we find that (10.34) becomes

_ ( 1 ) ((1 +40)¢o™ V4 + (1+4§)§h2> .

(o4 4 ¢h2 (1+6C)Ca*1/4 (1 +6£)Eh?

1 K
<4p SR +4<><o—1/4 TS

1 02 Apv
+ m Pruv P - 7p)\;w:0
2%h

e _ L

(1 +6¢) o~/ + (1 + 66)Eh?) <”“ 2
1

2

+ PA'Z> ThA

16¢o < o /\K>
N ((1+6C)§071/4+(1+65)§h2) Pk Pk | To
_ 48C&oh .
(1+60)Co T+ (1 + 66)¢hz) """
-1/
; (( ot oo ) -

T2\ (1 +60)Co 14 4 (1 + 66)¢h2

~1/4
— 32594 <( Co 7+ (1L+ Goeh” ghz) T )T

1+ 6¢)Co 14+ (1 + 6¢)

A
— Zh4 + %¢77i112 —co 2.

It is convenient to introduce at this point

b1 (14 40)Co™1 + (1 + 4€)Eh? -
=P \ (U 60)cod + (1 + oepenz )

1
3

(1 +6()(a 1+ (1 + 6&
(Co™ + £h?)

v h -8 . 7
(1+6<)<0'_i—|—(1_|_6€)£h2gu (Ehp CoTg2)
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1
(o1 +ER?
f A— ~ 10.42
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such that (10.41) simplifies considerably and reads

1
L= (P P — —P VP’”“’)
@+ N
(L A9ER 1 (14400 <P wp i Lp s
(En2 + o)’ "
2(€2h2 + CQO-;i)P KAPM I
(€n?+¢omay2 " 2

M 2
Tty — 32047y

A
— Zh4 + %O'_ihz — ca_% .
Observe that in the limit where the four-momenta P (or equivalently p) are
kept fixed while ¢ tends to zero, i.e., for

oc— 0,
(10.44)

Th, Ty, P or p — fixed ,

the only terms that blow up are the Higgs mass and the cosmological constant.
Therefore, it is tempting to speculate that both these terms should not be
included in the action in the first place if we want the theory to remain regular
at the UV limit. It is interesting to note that the pathological behavior of
the cosmological constant persists for arbitrary metric dimensions, the reason
being that it is always proportional to o~2. On the other hand, if p is
not chosen to be equal to zero, the Higgs mass term, as well as the term
proportional to am (which does not feed into the cosmological constant
unless p = 0), are singular only if p < 1.

Even though we do not have an answer to what is the origin of this selection
rule, it could be a manifestation of some yet unknown mechanism at very
high energies. Notice that if a scale-invariant regularization scheme is used
(see for example [9]), then these terms cannot be generated at any order
in perturbation theory. It may well be the case that they emerge from
nonperturbative physics, something that can explain their smallness.

10.5 Summary and Outlook

The purpose of this chapter was to investigate a previously unexplored
region of the parameter space of theories with dilatational symmetry whose
gravitational sector is constructed by requiring invariance under the group
of transverse diffeomorphisms. Due to the invariance under this restricted
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group of coordinate transformations, the determinant of the metric becomes
a dynamical degree of freedom which can be thought of as a dilaton.

We argued that the most appropriate and natural option for the description
of arbitrary coordinate systems is for the metric to have dimensionality of
area. We demonstrated that the particular setup is distinct from the ordinary
theories in a number of aspects. The form of the pure gravitational action is
completely fixed and, moreover, once diffeomorphism invariance is restored
via the Stiickelberg mechanism, the scale symmetry remains intact. As a
result, there is no runaway potential for the dilaton.

Next, we investigated the form of the action of a model that on top of the
dilaton contains an extra scalar field which we identified with the Standard
Model Higgs boson. Based on the way the dilaton appears and interacts
with the Higgs field, we observed that the Higgs mass and cosmological
constant are the only singular terms in the specific limit (fixing the proper
variables which we define) involving a metric determinant going to zero.
An appealing hypothesis is that these terms should not be included in the
fundamental theory, but rather their low-energy presence should result from
nonperturbative effects through some yet unknown mechanism.

It would be interesting to understand how these considerations can be applied
to theories without Lorentz invariance, such as, for example in Horava-Lifshitz
gravity (see for example [58,189]), a version of which has recently been proven
to be renormalizable [190].
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Chapter 11

Concluding remarks

Theories that are invariant under scale and conformal transformations are
of utmost interest. In this thesis, we dealt with various aspects — purely of
theoretical but also of phenomenological nature — related to them.

In chapter 3, we presented the necessary modifications that have to be made
such that coset construction can be used to gauge spacetime symmetries.
We argued that — even when a (spacetime) symmetry is linearly realized —
this technique provides us with the appropriate machinery for studying these
systems. To understand the logic behind this framework, we first considered
the gauging of the Poincaré group and we showed how, by imposing covariant
conditions, redundant degrees of freedom can be consistently eliminated.
These should be considered equivalent to the inverse Higgs constraints that
are a standard tool when a symmetry is spontaneously broken. They are used
to eliminate the Goldstone modes which are unnecessary and thus, account
for the fact that their number is smaller than the number of the broken
generators of the group under consideration.

In chapter 4, we employed the coset construction in order to gauge the
Poincaré group plus dilatations. We showed that in the absence of torsion, an
analog of the inverse Higgs constraint allows to trade a certain configuration
of Weyl gauge field for the Schouten tensor. Thus, Ricci gauging appears
naturally in the framework of the coset construction. We determined that
even higher-derivative theories can be coupled to a curved spacetime in a
Weyl invariant way, without the introduction of extra degrees of freedom.
This means that the range of applicability of this method is much larger than
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what was previously thought. We illustrated that the quartic in derivatives
conformal theory of a scalar field in an arbitrary number of spacetime di-
mensions n > 2 can be made Weyl invariant using this procedure. As we
showed, the presence of more than one derivatives of the field brings some
complications, nevertheless, Ricci gauging can be carried out consistently.
Meanwhile, once the requirement of having a torsionless theory is dropped,
then inverse Higgs constraint dictates that the role of the gauge field associ-
ated with the dilatations can be played by one of the irreducible pieces of
the torsion tensor.

In chapter 5, we started by demonstrating in a pedagogic way the difference
between conformal and Weyl symmetries. We then took a closer look at the
higher-derivative theory constructed previously and we investigated what
happens for n = 2. Even though the starting point was a conformal theory, it
turns out that it was not possible to be made Weyl-invariant in two spacetime
dimensions. But this was just the “tip of the iceberg”, since this seems to be
the case for a whole class of higher-derivative theories invariant under the
conformal group (both in curved and flat manifolds), which do not allow for
Weyl invariant generalizations.

In chapter 6, we turned our attention to nonrelativistic spacetime symmetries
and we discussed how they can be gauged in the context of the coset con-
struction. We showed that for a nonrelativistic field theory to be made Weyl
invariant, torsion must not vanish. Considering first the centrally extended
Galilei algebra (which is a contraction of the Poincaré one), we demonstrated
that for a certain subclass of these models (the twistless torsionful theories),
it is always possible to express the spatial components of the Weyl vector
in terms of torsion. We then focused on the Lifshitz algebra and we found
that any scale-invariant theory in flat spacetime can be coupled to a curved
background in a Weyl-invariant way, with torsion acting as the Weyl gauge
field.

Even though it is tangent to the philosophy of the present thesis, in chapter 7,
we allowed for connection and vielbein to be independent degrees of freedom
and we investigated the particle dynamics of the Poincaré gravitational
theory with terms that are at most quadratic in the field strengths. In
order to carry out the analysis, we employed the spin projection operator
formalism and extended it in order to determine the effect of terms that do
not preserve parity. Most of the operators that we constructed had not been
presented previously. We derived constraints that the various parameters of
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the theory must satisfy, so that it contains only healthy modes. We showed
that the parity-odd invariants might prevent the presence of tachyons, but
unfortunately ghosts are still present. Nevertheless, there exist torsionful
theories in which the extra degrees of freedom are neither ghosts nor tachyons
and have vast cosmological applications. As we have argued, parity-odd
terms are non-trivial modifications to the dynamics of the theory. Detailed
analysis has to be made in order to see what the effects beyond the linear
order are, or what happens when the theory is considered on backgrounds
different from flat.

The last two chapters of the thesis were devoted to more phenomenological
aspects related to global scale invariance. Namely, in chapter 9, we studied
the self-consistency of the Higgs-dilaton model — a particular case of scale-
invariant systems invariant under transverse diffeomorphisms (SITDiff)- from
an effective field theory point of view. Taking into account the influence of
the dynamical background fields, we determine the effective cut-off of the
theory, which turned out to be parametrically larger than all the relevant
energy scales from inflation to the present epoch. We formulated a set of
assumptions needed to estimate the amplitude of the quantum corrections
in a systematic way and showed that the connection between the tilt of
scalar perturbations and the DE equation of state remains unaltered if these
assumptions are satisfied.

In chapter 10, we considered SITDiff theories and we showed that if the
metric carries mass dimension [GeV]~2, the scale invariance of the system
is preserved, unlike the situation in theories in which the metric has mass
dimension different from —2. We speculated that for the action to have a
well defined high-energy limit, the one should not include the bare Higgs
mass and cosmological constant in the action. It is reasonable to wonder if a
non-perturbative mechanism could be responsible for their smallness.
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Chapter A

Christoffel symbols and covari-
ant derivatives

The coset construction allows us to write a covariant derivatives for inter-
nal symmetries (having introduced the fields y“, we have made spacetime
translations effectively internal), meaning that it acts only on Lorentz indices
A, B,.... However, the procedure does not produce the covariant derivative
for fields with spacetime indices or, in particular, for the vielbein. Neverthe-
less, one can introduce the analog of Christoffel symbols,! so that the covariant
derivative is consistent with interchanging the Lorentz and spacetime indices.
Namely, using the vector with scaling dimension Ay,

VA — eﬁvu , (Al)
one defines

DV =9,V + G4V = E4e; DV ™ (A.2)

Using the expression for w from (4.10), it is not difficult to show that in this

case

G, =T, +8G5, (A.3)

2

"However, one should be careful, since the new symbols depend explicitly on the scaling
dimension of fields they act on.
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with ' being the standard Christoffel symbols

19, = —E% (wjgel + ouef)) (A.4)
which are compatible with the metric and thus satisfy

V.V =0,V 4TV = B4 0,V — wpVP) (A.5)
with V the standard covariant derivative. Meanwhile

0G7, = Ay W,y + Wb, — Wgu, . (A.6)

Using the fact that the covariant derivative for a field V#* with scaling
dimension Ay + 1 can be written as

D,V =V, V74 (Wyb] + W7 — WG VY = (Ay + W, V7, (A7)

0Ty,

it is straightforward to show that the covariant derivative V, can be made
Weyl covariant, provided all partial derivatives are substituted by

0y — By — AW, | (A8)

where A is the scaling dimension of the field the partial derivative J,, acts
on. For instance

a,u,g)\a — a,ug)\o' + 2Wug/\0' . (Ag)
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Chapter B

Conformal algebra

The conformal group in n # 2 dimensions is an extension of the Poincaré
group. On top of the momenta P4 (translations) and the Lorentz generators
Jap, it contains dilatations D and special conformal transformations (SCT)
K 4, also called conformal boosts. Overall, there are n(n + 1)/2 generators
with the following nonzero commutation relations [1,2]

[JaB, Jcp] =i (Japnsc + JBcnap — Jepnac — Jacnsp)

[D, Py = —iPy ,
[Jap, Pc] =i (npcPa —nacPs) ,
[Ka, Pl = —2i (napD + Jap) , (B.1)
[D, K4l =1iKa4 ,
] _
]

[Jap, Kc| =i (npcKa —nacKp) .

For completeness, let us briefly describe what would happen if the full
conformal group was gauged instead of just Poincaré and dilatations. It
is straightforward to repeat the steps of the coset construction using the
commutation relations for the conformal group. This leads to the following
transformation rules for the gauge fields

A 'AB / ‘A
‘ Cu “n - Wi B
BA A CDA Ap B -1 Bp A
J e Ag wTASAY + (A@HA ) W, BJAg
D | e % w;?B W, + 0, e"‘BZ‘
A AB | A B _9,.C A A_B
K €y wy, Jj;eila W, —2e;ac s B, + jBeu )
—e, —w, ap —«a W, + 0y
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Notice that we introduced the new gauge fields B4, associated with SCT.

;,L 7
The corresponding field strengths are found to be
eﬁy = auef — &,eﬁ — w;?Bef + waef + I/Vuef,1 — W,,e;i1 , (B.2)
w;?f = 8“w{,43 - &,wa - w/’:‘chCB + w,f‘cwgB
+2(Bitel — Bjel — BBell + BEel) | (B.3)
A A
W = 0, W, —8,W, +2 (Bye,a — Byeua) (B.4)

By, = 0,B; — &,B;:‘ - w;j‘BBf +w)pB} — W.B + W,,B;‘ . (B.5)

Their transformations have the following form

e;;?, w;f,B W;/w B;f,‘,
J | eB NG WOPALND W BEAG
D e*ae/‘:‘,j wAB W eO‘B/‘?V
K ef}u w;‘f + eﬁ,jaB W — Qel(fyac B;?,, + agefy
—651,0[‘4 —wffag — aAWW

We notice that under SCT, the gauge fields mix with the vielbein e/‘:‘. The
origin of this unordinary behavior is the specific form of the commutation
relations. According to the rules of the coset construction, the momenta
and all the nonlinearly realized generators should form a representation of
the group formed by the rest of the generators. Clearly, this condition is
broken by the commutation relation between the momenta and conformal
boosts (B.1).

The transformation properties of the gauge fields would create an obstacle on
the way to introducing the covariant derivative for matter fields. However,

looking at the transformations of the field strengths, we see that the expres-
A
nv
pure gravity is concerned, the coset construction produces a sensible result.

sions simplify considerably once e?;, = 0 is imposed. Therefore, as long as

The constraint eﬁy has the same solution as in the main text; see (4.10)-(4.11).
The changes appear when one uses also the constraint ng/‘jf = 0, which
can now be solved algebraically in favor of B/‘?. This leads to

B;:lellA = (n - 2) <R,u1/ - 2<nl_1)g;wR> ) (BG)

where R, = RﬁfE%eA,, and R = g"""R,, are contractions of the curvature
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tensor
Riy =@l + 6wy (B.7)
with @Z‘f and 5wl‘:‘VB given by (7.7) and (4.16).

To obtain the condition for Ricci gauging (4.1), we have to force B;f to vanish.
However, it is clear that this constraint is not consistent with SCT. Therefore,
in one way or another, we have to dispense of SCT and consider only the
gauging of the Poincaré group plus dilatations.
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Chapter C

Irreducible decomposition of tor-
sion

We defined the torsion tensor as

A _ A A A B A B
T, = Oue,, — Ope,, —w,pe,) +w, e, (C.1)

2(p—
and since it is antisymmetric in g and v, it has (TQL D! independent compo-

nents in an n-dimensional spacetime. Under the action of the Lorentz group
SO(1,n — 1), it can be decomposed into three irreducible quantities:!

e The vector v,
vy = EZT;}, =FEY (8“6‘;1 - &,e/‘:‘ + waef) , (C.2)

with n independent components.

e The totally antisymmetric “dual” tensor

norons - L ororon s, i ©3)

«
ndete

with W independent components.

'In fact, every tensor with the same symmetries as Tlf,, admits this decomposition.

141



APPENDIX C. IRREDUCIBLE DECOMPOSITION OF TORSION

2_4 .
e The traceless % - component reduced torsion tensor 7';2,
3 A

A A A
Tow = Tm/ — m (vuey — U,,eu)

. (C4)
- §EM (T e — T eun)
which is subject to the following n + W constraints
EZ‘T;‘V =0 and 6‘71‘72“"’"—3“”‘6)\,47/141, =0. (C.5)

It is a straightforward exercise to show that (C.1) can be written in terms of
the irreducible pieces we presented above as
A
Ty =

n
AA O —
m dete F 60-10—2“.0—n73ul,)\a0-10.2 In—3

1
n—1

(C.6)
+

2
(Uuel’j1 — U,,eﬁ) =+ ngy .

Notice that these expressions for n = 4 boil down to the ones in [111].
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Chapter D

Paneitz-Riegert operator

The Weyl covariant generalization of [J? is the Paneitz operator whose form
in n dimensions (n # 2) was given in (4.35). Using the definition of the
Schouten tensor (2.3), this operator can be written in a more familiar form

as
2
Ag)=V+V Kn—ﬁ“” S —Dm—2)" )V
n—4 _o n—4 v

(n —4)(n® — 4n? 4 16n — 16)

16(n — 1)2(n — 2)2 R

It is interesting to note that for n = 4, the above expression simplifies
considerably

Q(g) — V2 +2V+ [<RW - ;gWR> V”} , (D.2)

and is also known as the Paneitz-Riegert operator [43-46].
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Chapter E

The linearized action

The linearized action for the PGT in chapter 7 can be expressed as the sum
of several terms that contain pure connection and vielbein excitations, as

well as their mixings

Sy = So(w,w) + Sa(s, )+ Se(a,a) + Sz (w, s) + Sa(w,a) + Sa(s,a) . (E.1)

A lengthy calculation reveals that each of the above terms reads

So(w,w) = % d*z {4(2r1 — 2r9 + 314 + 3r5)anCA38DwCAD
— 12(r7 — r8)ePE e apdyw,E T — 3(rr + r8)e B dpweapdP Wt
4+ 24(ry +15)0% P20Pwoap + 3(r7 4 1) e P dcwoapdB wicr s
— 8(rg — 18)e*BPOpwapcOrwiE +16(r1 — 1) weapdpwBP
— 4(2r1 + rg)acwCABawaAB +4(2r; + r2)8DwCA38DwCAB
+ 8(r; — rg)ﬁDoJCAgaDwACB +12(ry + 7‘5)8DwBBA8DwCCA
+ 4(4ry +2ro —4r3 + 3ry — 3r5)6BwCA36DwACD
+ 12(ry — 75)0aw S0P W PP — 24t 52 E o ppwp P
— At — 2t3)wBBAwCCA +4(t1 + tg)wCABwCAB

— 8(ty — 2t5)e P B Go A (2w P + WB )

— 4t — 2t2)wCABwACB} , (E.2)

145



APPENDIX E. THE LINEARIZED ACTION

Sa(s, )

SQ((Z, a)

Sa(w, s)

Sa(w, a)

Sa(s,a)
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1
3 / d*z {3(t1 + N 0csapd°sAP — (t; — 25+ 3)) x

(945045 — 204595548) — 2(2t, — t3 + 3A)835AB(903AC} ,

1
g /d4’JJ {(tl + tg)acaABGCaAB - 2(t2 - tg)aBaABacaAC

(t4 - 2t5)€ABKL (6CaA380aKL - 26CaAC(9LaBK) } 5

2
3 d4x{t1 WCABOEscA + (t1 — 2t3)wCCA (8BSAB — 6,43)
2(t4 + t5)eAKLMwKL38MsAB

(t4 — 2t5)€AKLMwBKL8MSAB} ,

2
3 /d4x{(t1 - 2t3)wCCA83aAB — (t1 — th)wCABf)BacA
(tl + tg)wABCf?Ach + 6t5€AKLMwKLB(9MaAB

(ts — 2t5)e"PEL (wokr + wine) 0%aap

(t4 — 2t5)€AKLN[wBKL8MCLAB} 5

2
§/d4${2(t1 +t3)8BsABﬁcaAC

<t4 — 2t5)eABKLacsACGBaKL} .



Chapter F

Spin-projection operators 1

In this Appendix, we first give the full set of spin-projection operators
PfX(J )3 that we used as a basis to break the theory into spin sub-blocks.
We then present the coefficient matrices, as well as their inverses. We have
arranged matters in such a way that the upper left sub-matrices always
correspond to the negative parity states. When parity-violating terms are
not present in the action, the matrices acquire block-diagonal form, so they
can be inverted separately. This enables us to check our algebra easily by
comparing with the results of Sezgin and van Nieuwenhuizen [80]. Finally, by
looking at the zeros of the determinants, we write down the masses of the
particles related to each spin sector.

In what follows, we denote with © 4p the transverse and with Q4p the
longitudinal projection operators. In momentum space they are respectively
given by

k‘Ak:B kAkB
We also denote ky = ka/Vk?. Tt is understood that the projectors have to be
symmetrized or antisymmetrized in their (A, B) and (I, J) indices, depending
on the symmetries of the fields they act on. For example, Pfjw(J VCABKIJ
have to be antisymmetrized in both (A, B) and (I, J), whereas Py*(J)caBrs

have to be antisymmetrized in (A, B) and symmetrized in (I, J).

The tensorial manipulations that are involved are quite tedious and prone to
algebraic mistakes. For that reason, we have cross-checked extensively our
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APPENDIX F. SPIN-PROJECTION OPERATORS 1

calculations with Mathtensor [191].

F.1 Spin-0
The 16 operators corresponding to the scalar part of the theory are
o 1 2
Pi*(0)capk1y = 3©ck©a10p5 + 304xOp10cy

1
P15’ (0)caBrrs = geABCDQ[D@JK ,

1 N
P (0 = ¢ kPoe;;,
15 (0)caBry 5/3ABoPk 01

1 -
PﬁS(O)CABIJ = %EABCDICDQIJ ,

1
P31°(0)caBkrs = —gﬁlJKLQf,GBC :
2
P35 (0)caBkrs = §@BCQAI@JK ,
er
Py (0)capry = ?kB@CA@IJ ;

9.
P3P (0)canry = \/;k?BQCAQIJ ;

1 N
P3e(0 = ———eryrrk*Oap ,
31 (0) ABK T N

SwW \/§~
P33 (0)apr1s = ?kJGKI@AB ;

1
P33(0)apry = gGAB@IJ ;
SS 1
P3i(0)aBry = \/;@ABQIJ ;
1 -
sz(l'u(o)ABKIJ = —%GIJKL]?LQAB ,

5.
Py (0)apr1s = \/;kJ@KIQAB ,

1
Pi5(0)ars = \/;@IJQAB ,

Pii(0)aprs = Qapy .
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F.1. SPIN-0

Using the above projectors we derived the 4 x 4 coefficient matrix for the
spin-0 sector that reads

w™ wt st st
C11 C12 C13 Cl4\ w
n
OX(0) =[ 21 c22 c23 | (F.3)
€31 C32 €33 C34 | st
C41  C42 €43  C44/ ST

el =k*ra+to
c12 = k’rg —ty
c13 = —iV2k2ty
14 =0,

e = —k*rg +ta
con = 2k%(ry — r3 4 2ry) + t3 ,
co3 = iV2k%t
4 =0,

31 = —iV2k2ty
30 = —iV2k2ts
cs3 =2k (t3 — \)

c34 =0,
¢y =0,
ci2 =0,
c43 =0,
044:0.

Several comments concerning the above coefficient matrix are in order. First
of all, the matrix is not Hermitian, something that can create confusion at
first sight. This fact is simply a consequence of the normalization of the
corresponding parity-mixing projection operators. As discussed in detail in
Appendix G, operators which connect the same states but contain the totally
antisymmetric tensor, are required to have opposite signs. This is because we
want them to obey the simple orthogonality relations given in eq. (7.24), so
that the inversion of the wave operator becomes straightforward. Obviously,
the action is still Hermitian.
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APPENDIX F. SPIN-PROJECTION OPERATORS 1

In addition to that, the matrix (F.3) is clearly degenerate and of rank 3. This

is expected due to the gauge invariances of the theory. To proceed with the

attainment of the propagator we delete the last row and column of (F.3).

Denoting with b?}X(O) the resulting matrix, we perform the inversion to find

_1 2 Bi1 Bia Big
(b;};}((o)> = 7o | Bn Bz Bxs |,
det (bij (0)> B3y Bsz Bsg

B = 4K*(ry — r3 4 2r4)(t3 — ) — 2t3) ,
Bio = —2k%rg(ts — \) — 2M\ty

Bz = iv2k2 (rets + 2(r1 —rg — 2r4)ty)
Boy = 2k%r6(ts — A) + 20ty ,

B = 2k%ra(ts — A) + 2 (ta(ts — \) + 1])

2
Bog = —Z\/; (]{2(’/“2253 — T6t4) + totz + ti) )

B3 = iV2k? (7’6t3 + 2(7’1 —r3 — 27‘4)154) ,
2

B3y =i = (K*(rots — reta) + tots +13)
B33 = /{32 (2T2(T‘1 —rs+ 27“4) + ’r‘g) =+ 2(7‘1 —r3+ 27“4)t2
1 2
+ rots — 2rgty + ﬁ (t2t3 — t4) .

The determinant of the matrix can be written conveniently as
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det (b%X(O)) =2 (2ra(r1 — 13+ 2r4) + 1) X

X (t3 = Nk (k* = m+(0)) (k% — m—(0)*) ,
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F.1. SPIN-0

where the masses of the spin-0 states m4(0)2, are given by

1
m+ 0 2= X
(0) 2 (2ra(r1 — 3 4 2r4) +13) (t3 — )
X { (2(1‘1 —r3+ 2T4)t2 + roty — 2T6t4) A
+ (4 (2r9(r1 — 73+ 2r4) + 73) (tats + £3) (t3 — M)A (F.6)

+ [(2(r1 — 73 + 2r4)ts + rots — 2rets) A

1

—2(r1 — 73 + 2r4) (tats + ti)]zl 2 } .

The notation we chose for the zeros of the determinant leaves no room for
confusion; they correspond to the poles of the propagator, i.e. the physical
masses of the spin-0 particle states of the theory. Therefore, they have to
obey

m4(0)2>0 and m_(0)2>0. (F.7)

In order to simplify as much as possible the calculations for the residue of
the massless graviton, we found it helpful to isolate the k% = 0 pole in the
spin-0 (and spin-2) sector of the theory. To do so, we rewrite the inverse of
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APPENDIX F. SPIN-PROJECTION OPERATORS 1

the coefficient matrix given above as

B L (o o 0
(bﬁ}(O)) - | 0 2 —iveR
0 W22 1

ts 14 0
—t4 1o 0
0 0 —(2)\)_1 (2(’)"1 —r3+ 27‘4)t2 + roty — 2T6t4)

1
+m@+ﬁ

+ 2(2ra(ry — r3 + 2r4) + 12) (t3 — A) (m4(0)2 — m_(0)?) x

«( ! - ! )
(0P = my (07)  m-(0)2(k = m_(0)?)

By1 Bi2 B
X | Ba1 B2y DBag ;
B31 B3z DBass

where the matrix elements B;; were given in (F.4).
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F.2 Spin-1

The 49 operators corresponding to the vector part of the theory are

11'(DeaBrrs = ©cpOarOk

w(l)CABKIJ =2 OcpOak |
% (V)eaprs = V2 kjOcpOar
(1) casrs = V2 kjOcpOar ,

)
“(Doaprrs = eAasxrQ¥Opc
(1)

P’ (V) caBkrs = —\2 ear LV Onc

P (oants = —searsk Opc

59 (D caprrs = V2 QepOar©yk |

s (Doaprrs =2 Qep©ark

55 (Deanrs =2 kp®arQcy

51 (D eaprs =2 kp®arQcy

5 (Veapris = V2 earc Q5 Qpe

5 (V) eapkis = —earstQEQpe

5% (1) capry = earstk™Qpe

;w(l)ABKIJ =2 kpOkOur ,

3,8w(1)ABKIJ =2 k;OurQk5 .

P35(1) a1y =2 ©aQgy

P3i(1)aBrs =2 ©a1By ,
(D) apx1s = V2erxapkPQpy

s’ (1) aBxc1y = €174pk" Bk

D aprs = earstp

Vaprrs = V2 kpOryOuar ,

a4 (

P35
(
A1 (

P42 (Dapkrs =2 kjOa1Qk5B ,

(1)ABIJ =204/Q87,

)

1)aBrg =2 0©41Q8y7,
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APPENDIX F. SPIN-PROJECTION OPERATORS 1

P (1) apris = V2erxapk®Qpy
P (1) aBr1s = ersapkPQpx

L
Pf{‘(l)ABU = earsrflp

““(oaprrs = —erpep50 K
(1) oaprrs = —V2 erpepQhQk
P53 (Dcapry = —V2eacitk*Qpy ,
“()caprs = —V2eacitk*Qpy
55 (Lcabrrs = Ock©®arQps + ©axQp1Ocy ,
““(Veoapkrs = —V2 QukOprOcy |
“(Doapkrs = V2 kpOarOcy
Psi*(Vcapkis = \;ﬁ e1aBpQEO K

P&’ (Veaprry = €14a5p200 sk
P63 (VDcaprs = —eaprrk Qcy
“(V)caprs = —eapink™Qey
(V) caprrs = —V2 Qcr©4s95k
66 (VcaBxrs = Qcx©arOpy
(V) eapkrs = kc©arOpy
P’ (V) aBkrs = _\}EEIABD%D@JK ,
P72 (Dapkrs = —erappk”Qk
P (1) a1y = —eranpQy
(1)ABIJ = —erappQy
(D) oaprrs = V2 kjOa195k
w(l)C’ABKIJ = kx©4198
P

1)aB1s = ©4109B7 .
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The 7 x 7 coefficient matrix corresponding to spin-1 sector is found to be

1
c11 = ]{72(7”1 +ry+15) + E(tl + 4t3) ,

C12

C13

Cl4

C15

C16

C17

C21

C22

€23

C24

C25

C26

Ca7

w w
11 €12
C21 (€22
€31 €32
(1) =l cqy1 c4o
Cs1 €52
Ce1  C62
Cr1 Cr2

-1
= 7(751 - 2t3) ;

3v2

C13
C23
€33
C43
C53
C63
C73

i [k?

== § ?(t]_ - 2t3) B
i k2

= g ?(tl - 2t3) 5

1
= —k*r7 + §(2t4 —t5),

= _?(tll +t5) )

= %\/2k2(t4+t5)
— i(t — 2t3)
3\/§ 1 3)

1
= —(t1+¢

)

- —%x/l??(tl + )

- —%\/172(1&1 +t3)

= \f(u —2t5) ,

1
= ——(ts4 — 2

- %\/ﬁ(u —2t5)

)

C14
C24
C34
Ca4
Cs54
Ce4
C74

wt
C15
C25
€35
C45
Cs55
C65
C75

wt
C16
C26
C36
C46
C56
C66
C76

at
C17
Car
C37
Ca7
Cs7
Ce7
Cr7

(F.9)
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i k2
= oy (-2t
c31 3 2(1 3),

C39 = %m(tl + tg) ,

1
C33 = §k2(t1 +t3)

1
C34 = §k2(t1 + t3) y
1
C35 = g 2k2(t4 + t5) 5

C36 = _%m(t4 — 2t5) N

1
C37 = —gkz(tz; — 2t5) s

i k2
=Bt -2t
ca1 3 2(1 3)

Cy2 = %\/kj(tl + t3) y

1
C43 = §k2(t1 + t3) N

1
Cqq4 = §k2(t1 + t3) ,

e gx/ﬁ(m +t5)
Cap = gﬁ(t4 —2t5) ,
cir = — K (s~ 25)
cs1 = k?rq — %(2754 —t5) ,

V2
Crp = —?(M — 2t5) s

C53 = %\/ 2k2(t4 + t5) 5
Crq = %V ka(t4 + t5) s
1
cs5 = k2 (2rs +15) + g(h +4ts) ,

L= o)
C = — — 5
RARENVCR

i k2
=Bt -2t
57 3 2(1 2)

V2
Cg1 = ?(M +t5) N
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1
Ce2 — g(t4 — 2t5) s

Cg3 = —%m(t;; — 2t5) N

Coa = —% K2(ty — 2t5)

1
Cos = —=
65 372

1
Co6 = g(h + ta) ,

(t1 —2t2)

Cce7 = —%m(tl + tg) ,
Cr1 = %V 2k2(t4 + t5) s
Cro = %\/]{772(254 — 2t5) s

1
C73 — gkz(tzl — 2t5) y

1
Cry = gk2(t4 —2t5) ,

i k2
= Iyt — 2t
c1s = 3 2(1 2)

Crg = %\/I?Q(tl )

1
crr = ng(tl + tg) .

As was the case in the spin-0 sector, the above matrix is not Hermitian because
of the normalization of the projectors that connect states with different parity.
Also, due to the gauge invariances of the theory we expect this matrix to
be singular. It turns out that the rank of the largest non-degenerate sub-
matrix extracted from (F.10) is actually 4. We consider only the coefficients
associated to connection excitations by dropping rows (and columns) 3, 6 and
7. We work with this particular sub-matrix purely for convenience. Clearly,
this is not a unique choice. However, the propagator does not depend on what
(regular) sub-matrix of rank 4 we study; its gauge invariance is guaranteed
from the source constraints that we obtain.

To avoid confusion with the spin-0 sector, we denote the resulting matrix
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with EZX(I) It reads

b1y bia b by

by1 bay bos boy

Xy = | 212 e
i () b31 b3z b3z b3y

: (F.10)

byr bay buz bu

~ 1
bi1 = k2(7“1 +ry+715) + é(tl + 4t3) |
~ -1
bio = ——=(t1 — 2t3) ,
12 3\/§( 1 3)
~ 1
big = —k%ry + §(2t4 —15)
~ V2
b14 = —?(tzl +t5) 5

~ ~1
bo1 = 7(t1 — 2t3) s

3v2
~ 1
boo = §(t1 + t3) s
-
bog = ?(M — 2t5)

—_

boy = —(tg — 2t5) ,

w

~ 1
b31 = k‘2’f’7 — §(2t4 — t5) 5

= V2
b32 = —?(tzl - 2t5) 3

- 1
b3z = k*(2r3 +15) + 6<t1 +4ty)

by = 3\1/5(751 —2la) ,
by = \/3§(t4 +15) ,
byy = %(u —2ts) |
byz = 3\1/5(751 —2ty) |
by = %(h + 1) .
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The inverse of the above matrix can be written as

(EZX(U)_l - Wad‘j (Efjx(l)) , (F.11)

where ad] (gfzx(l)) is the adjoint of matrix (F.10), whose elements are found
to be

3511 512 §13 3514
By By Bas DBy
B31 Bsz Bz Bag ’
By1 By Biz Bua

adj (’Egm)) - (F.12)

~
Bu = {2k2(2r3 +r5) (11 + ta) (tr + ts) + (ts — 2t5)?)
+3 (2t + t (tats + £2) + 4tot2) } ,

By = ﬁ {2k2 [(2r3 +75) ((t1 4+ t2)(t1 — 2t3) — 2(ta — 2t5)(ta + t5))

+3r7(tita + 2tats)] + 3 (tita — 2t1 (tats + £7) + 4tat?) } ,

§13 = i {2k2T7 ((tl + tg)(tl + tg) =+ (t4 — 2t5)2) — 3 [t%t4 — 2 (tQ)} } 5

1
Biya = ——= {2k [3(2r3 + 75) (t1tg + 2t5ts) — r7 ((t1 — 2ta) (¢ + ¢
10 = 1575 {27 3rs £ 75) (b + 2ts) = 77 (11 = 202) (0 + 1)

Oty — 2t5)(ts + t5))] + 324 + 12 (tots + (s + t5)ts) ts} ,

By = ﬁ [9R2 [(2rs +75) (1 + 02) (1 — 2t3) — 2(t4 — 285) b+ 15))

+3r7(trts + 2tots)] + 3 (2t — 21 (fats + 2) + Att2) } :
Boy = %{%4 [(2r3 +75)(r1 + 74 +75) +12)(t1 + t2)]
+ 225 ((t1 + 10t2)ty + 4(t1 + to)ts + 4(ts + t5)?)
+2r3 ((t1 + t2)(t1 + 4ts) + 4(ts + t5)°)
+3(3(r1 + ra)tity — 4r7(taty — tsta))]
+3[63t + Altats + 13) + Atats] |
{2/{2 [3(r1 4 74 + 1) (f1ta + 2tats) — r7 (B + t2)(t1 — 2t3)

1
By = ——
23 18\/5

—2(ty — 2t5)(ta + t5))] + 3 (t5ta + A(tats + (ta +t5)ts)) ts} :
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1
324 = —% {—12k4 [((27“3 + 7"5)(7’1 + 74+ T5) + T?) (t4 — 2t5)]
+2]€2 [3 [—(7’1 + 27’3 +7r4 + 2T5)t1t4 + 4(7’1 + 73+ T5)t2t5 + 4(27“3 + T5)t3t5}

. (t% — 2ty (ty + ta) + Altats + 12 — Ttats + £2 + 3(ts + 4t5))] } ,

By = ~15 {2k2r7 ((t1 4+ t2)(t1 +t3) + (ta — 2t5)%) — 3 [tTta — 2t2]} ,

~ 1

Bu=1 75 {2k2 3(r1 + 74 + 75) (t1ta + 2tats) — 77 ((t1 + t2)(t1 — 2t3)
—2(ty — 2t5)(ts + )] + 3 (2ts + Altats + (ta + t5)t4)) t5} :

~ 1

Bss = T {2k2 [(r1 474+ 75) (b1 +t2) (b1 + t3) + (ts — 2t5)°) ]
+3 (tits + t1 (tats + t7) + 4tst?) } :

~ 1 9

B3y = m {Qk [(27“1 + 2ry — T5) ((tl — 2t2)(t1 + t3) — 2(t4 — 2t5)(t4 + t5))

—6r7 (tits + 2t5ts)] + 3 (tTts — 2ty (tats + 13) + 4tst3) } ,

- 1 )

By = ]_8\/> {2]{7 [ (27"3 + 7“5) (t1t4 + 2t3t5) — 1y ((tl — 2t2)(t1 + tg)
—9(ty — 2t5)(ts + t5))] + 3t2ts + 12 (tats + (ta + t5)ta) t5} ,

-1

B = o —12k" [((2r3 + 75) (11 + 14 +75) 4+ 13) (ta — 2t5)]

+2k2 [3[—(r1 4 2r3 + 14 4 2r5)t1ty + 4(r1 + 73 + 75)tats 4+ 4(2r3 + 15)tsts]
+ 17 (17 — 2t (ta + t3) + A(tats + t5 — Ttats + 12 + 3(ts + 4t5))]} ;

Bys = 1817\/5 {2k2 (271 4 2ry —75) ((t1 — 2t2)(t1 + t3) — 2(tg — 2t5) (ts + t5))
—6r7 (trts + 2tats)] + 3 (t2ts — 2t (tats + £2) + 4t5t2) } 7

By = % {12k4 [(2rs 4+ 75)(r1 + 714 +75))(t1 + t3)]
2k [2(r1 trgrs) (b1 + 482) (b1 + t) + A(ts + 15)2)

+9(4r3 + 75)tits — 24y (tity — t3t5)} + 3 (tits + 4ty (tots + 15 + 4t3t§))} .

The determinant in eq. (F.11) can be written as

~ 1
det (bf’JX(l)) =3 ((2rs 4+ 75)(r1 +ra+15) +17) x

X ((t +ta) (t1 + t3) + (ta — 2t5)%) (K = m . (1)%)(K* = m_(1)*)

(F.13)

where m4 (1)? are given by the following

3
2((2r5 + 75) (11 + 74+ 15) + 72) (t1 + £2)(t1 + £3) + (B2 — 265)2)

mi(l)z = —

X {(r1 + 74 +15) (Bt + ti(tats +13)) + 4tat?) + (25 +15) (t5 + ti(tats +17))
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+4tst2) — 2r7 (t5ta — 2(tats + (ta — 2ts5)ta)ts) £ | —4((2r3 + r5)x

X (ry 414+ 75) + r?) ((t1 + o) (tr + t3) + (ts — 2t5)%) (tats + £2)(£2 + 442)
+ [(r1 + ra+75) (tt2 + t(tats + 13)) + 4tat2) + (2r3 +75) %

x (B3t + t1(tats + 1)) + Atst?) — 2rq (tits

_2(t2t3 + (t4 — 2t5)t4)t5)]2] 2 } . (F14)
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F.3 Spin-2
The 9 operators corresponding to the tensor part of the theory are

P’ (2)caBkrs = 3 Ok (©4)OBs —OcpOAIO K ,

2
Py (2)caBkry = 3 (eaBp(1OK)C — €BCD(IOK)A) OF

s 2V/2 -
Pi¥(2)caBry = 3 eaps (O k",
2
P51°(2)cABKIT = 3 (ersnBOc)k — €rrr5Ocyr) O
2
P35’ (2)casrrr = 20OgcO s — 3 OcBarO K , (F.15)

~ 1
PS5 (2)caprs = V2 kg <901@AJ - 390A@1J> ,

Sw 2\/§ 7.
P3Y(2)aBk1s = — 3 erLpOr)ak” |

~ 1
Ps5 (2)aprrs = V2 ky <@KA@IB - 3@K1@AB> ;
1
P33(2)ap1s = ©a19p — g@AB@IJ :
The coefficient matrix for the spin-2 sector is found to be

w wTt st
€11 €12 €13\ w
+
PX(2) =|Cr Ca2 Ca3 |t (F.16)
c31 C32 33/ s7T

1
e =Ky + §t1 ;

c12 = k*rg + t5
C13 — 1V 2k32t5 ,

2
co1 = —k“rg — t5

1
Coo = ]{:2(27‘1 —2rs + T4) + =t1,

2
k2
o3 =1 ?h )

C31 = 1V 2k2t5 s
k2
C32 = —1 ?tl )
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C33 = kz(tl — /\) .

Since the above is not a singular matrix, we can immediately calculate its

inverse

B 9 Cnn Ci2 Ci3
éX k

(C" (2)) AT TN Co1 Coy Coz | (F.17)
det <Cij (2>> C31 C32 Cs3

2 1
Cii=k (27‘1 — 2rg + 7’4)(751 + )\) - itl)\ ,
012 = —I€2T8(t1 + )\) - )\255 s
k2
Ciz=1 5 (’I”gtl — 2(21”1 —2r3 + 7‘4)t5) ,
021 = k27’8(t1 + /\) + /\t5 N

1

Coz = 2 ((K*r1 +t)(t1 +A) +2t3)
1 1
Co3 = —2\/; (2]€2(T1t1 + 27“8755) + t% + 4t§) )
12

Ca1 = i\[ 5 (rst1 = 2(2r1 = 23 + 1)ts)

) 1
U3y = 2\/; (2k2(r1t1 + 2rgts) + t% + 4t§) )

1

Csz = k2 (r1(2r1 — 2rs + 14) +72) + 5(?)rl —2r3 +14)tq

1 /1
+ 2rsts + 75 <4t% - t§> .

The determinant of the matrix c;-@x (2) reads

det (CZX(2)> = (7‘1(2T1 — 27"3 + 7"4) + Tg) X

F.18
(b VR = QP — 2Py

with m4(2)? given by

1

2)? =
m(2) 4(r1(2r —2rg +rq) +72) (b1 + N) x

{ — (27‘1 —2rg + 7“4) (t% + 4t§)

— (37‘1 —2r3 + T‘4)t1)\ + drgts A
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+ | —4(ri(2rm = 2rs +r4) +13) (8 +£2)(t + M)A

+ [(27“1 — 27“3 + 7“4) (t% + tg)

+ ((3’/"1 —2r3 + 7“4)t1 + 4T8t5) /\]2‘| 2 } R (Flg)

where once again, we require the masses to be positive.

Like in the scalar sector of the theory, it is very convenient to write the
inverse coefficient matrix (F.17) as

0 0 0

-1
(CS#X(Q)) :_Ai 0 =2k iv2k?
0 —iv2k? -1

t1  —2t5 0 )
+ 503 2t5 t1 0
4 2
i+ t5 0 0 AL ((37’1 —2r3 + ’I”4)t1 + 8Tgt5)
(F.20)

1
M 4((tr + N (r1(2r = 2rs +74) +12)) (k2 — my 2) (k2 — my 2)

Cn Ci2 Cis
X Co1 Cap Cag .

C31 C3p Cs3

X

The matrix elements Cj; can be found above in eq. (F.17).
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Chapter G

Spin-projection operators 11

In an attempt to make this thesis as self-contained as possible, we would like
to give some details on the way the projectors used to decompose the theory
into spin sectors are obtained. The operators are classified into two categories.
The first contains the “diagonal” projectors Pifd)(J ), which correspond to
the decomposition of the fields into irreducible representations of the three-
dimensional rotations group. Their derivation amounts to addition of angular
momenta, since with respect to SO(3)

woap — 2 @2V e1 el 1Tl 0 &0,
hap— 2T@1 @l " @1T@0T®0" .

In terms of © and €2, this decomposition of the fields can be written in
covariant form as

4 2
woas = |3 Ok(c©4) 9B — OcBOAIO K +2OK (O )BT — 3 Oca1O K

PE(2) Py (2)

+0cBOAIO K +2 QepOarlik +OckOarflpys +OaxlprOcy

Py (1) Py (1) Pze(1)

1 2
+QckOarOps + §®CK@AI®BJ + §®AK@BI®CJ

Peg” (1) P (0)
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2
+ §@BCQA1@JK W (G.1)

—_——
P2 (0)

and

1
hap = |©a1Ops — §®AB@IJ +2 041085 +2 0408,

P5(2) P35 (1) Pgf (1)

1
+®AI®BJ+§®AB@]J+QABQ[J hIJ. (GQ)

—_—— —/  — N—
ber (1) P35(0) FH)

The second category contains the “off-diagonal” operators Pf;X(J ), with @ # j;
they implement mappings between the same spin subspaces of the fields. They
connect states with the same spin and same parity, as well as states with the
same spin but different parity if the totally antisymmetric tensor is present.

Consider the following mixing term between the symmetric part of the vielbein
and the connection that contributes only to the scalar part of the theory
kP40 Pwoas spe - (G.3)
We wish to find the off-diagonal projectors that link the J* = 0% component
of connection (projected out by P53*(0)) to one of the J¥ = 0% components of
the vielbein, for example P35(0). Plugging the expressions for the operators

from eq. (F.2) into the above, we find after some algebra that the mixing
operators are proportional to

P (0)capry = c(k) kPS40 | Py (0) apkrs = c(k) k' 081048 | (G.4)

Here ¢(k) is a coefficient that depends on momentum and is determined from
the orthogonality relations (7.22). In particular, for these operators we have

Ps#(0)canpe Pss (0P = P8 (0)capkrs (G.5)
P35 (0)aBper Psy ()PP, = P55(0) a1y | (G.6)
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so we immediately find

(k) = ;\/g (G.7)

The construction of operators that are capable of handling terms that contain
the totally antisymmetric symbol follows pretty much the same reasoning
as in the previous example. A term like eABCD ABACD, mixes the JF =
1= (Pge(1)) with the JP = 1% (P%(1)) states of the vielbein excitation. A
straightforward computation reveals that the corresponding projectors read

Py (1) apry = cearyrQp and  PY(1)apry = ¢ erappQy ., (G.8)

where in this case it is necessary to introduce two normalization coefficients
c and ¢, that do not depend on momentum. The orthogonality relations read

P (1) apep P17, = P (1) ap1s (G.9)
P (D) apep P (1) = PE(Dasrs (G.10)
and in order for them to hold, we are required to set ¢ = —¢ = 1. The fact

that the projectors involving the totally antisymmetric tensor differ in sign
is something that holds for all operators that connect states with opposite
parities.

Let us close with a technical remark. Terms that contain the totally antisym-
metric tensor are responsible for the appearance of mixing between states
with (same spin but) different parity. Obviously, they must not affect the
mixing of states with same parity. It is indeed easy to show explicitly that
their contribution vanishes by using the Schouten identity

6ABC'D]{:E +EBCDEkA +ECDEAkB +€DEAB]€C _|_6EABCk,D -0. (Gll)
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Chapter H

Einstein frame cut-offs

Now, we will briefly discuss the computation of the effective cut-off in the
Einstein frame. As before, the cut-off is understood as the energy at which
perturbative unitarity is violated and not necessarily as the onset of new
physics. As shown in Eq. (9.11), the gravitational part of the action in the
transformed frame takes the usual Einstein-Hilbert form, which allows us
to directly identify the gravitational cut-off with the reduced Planck mass
Mp. The cut-off associated to the gauge sector can be also easily determined
by looking at the scattering of gauge bosons with longitudinal polarization.
Since the kinetic terms for the gauge fields are invariant under the conformal
rescaling, the only modification comes through their coupling to the Higgs
field h. The interaction under consideration can be schematically written as

h? s
GRW,SW T = g* W W (H.1)

where we have rescaled the gauge boson fields in the Einstein frame with the
corresponding conformal weight, W* = W#*/Q. Expanding (H.1) around
the background value of the Higgs field, h — h + 0h, we find the following
interaction term

mw = =
where myy ~ gh is the mass of the W bosons in the Jordan frame and the
conformal factor Q depends now on the background values of the Higgs and

dilaton fields. Taking into account the canonically normalized perturbations
of the Higgs field (9.40), together with the unitarity of the S-matrix, we find
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that the cut-off scale associated to the gauge sector is given by

Ao~ 01 \/£Xx2<1 - 6€x)62‘25hh2(1 +66) (H3)
h

For the two limiting cases discussed in 9.3.2, the previous expression becomes

B (H.4)
He - for & x* > Euh? .

Mp 2 2
AGE{ Ve for {x* < Eph”
where we have identified /&, x = Mp. As expected, the gauge cut-off in
the Einstein frame is nothing else that the conformal rescaling of the Jordan
frame cut-off, Ag = Ag/Q.

The computation of the scalar cut-off in the Einstein frame is more com-
plicated than in the single field case [154]. Although all the non-linearities
of the initial frame are moved to the matter sector of the theory, the exis-
tence of non-minimal couplings to gravity give rise to a non-trivial kinetic
mixing for the scalar fields in the Einstein frame (cf. Eq. (9.13)). This
fact substantially complicates the treatment of the problem in terms of the
original (h, x) variables, especially in the high energy region. Therefore, in
order to compute the scalar cut-off at large energies, we choose to recast the
kinetic terms (9.13) in a diagonal form by means of the angular variables de-
fined in (9.19). Expanding the resulting inflationary potential! in Eq. (9.22)
around the background value of the Higgs field ¢ we obtain a series of terms
of the form (cf. Eq. (9.61))

B asé 21 . B add 21+1

Cp,1 cosh[2nag/Mp] () + dy,; sinh[2na¢/Mp] <> . (H.5)

M, P M P

The scalar cut-off during inflation and reheating can be directly read from the
previous expression. Note however that a direct comparison of the previous
result with those obtained in the Jordan frame is only possible in some
limiting cases. The angular perturbation d¢ depends on both of the original
field perturbations and only coincides with the Higgs perturbation A in the
very high energy regime. Indeed, at the beginning of inflation? the angular
dependence on the background field in Eq. (H.5) becomes negligible. We

'Equivalently we could consider higher order terms arising from the non-canonical
kinetic term of the dilaton.

2The background value of the field ¢ is very close to zero. Remember that ¢ is defined
as ¢ = do — |¢'].
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are left therefore with a series of higher order operators suppressed by the
reduced Planck mass Mp, which coincides with the conformally transformed
Jordan frame cut-off in the corresponding regime, A ~ A />~ \/ELh/Q.

The determination of the scalar cut-off in the low-energy regime, &,h? < foQa
is also non-trivial, since the field redefinition (9.19) is no longer applicable.
Fortunately, the kinetic mixing between the Higgs and dilaton fields can be
neglected at low energies and Eq. (9.13) simplifies to

21,2
K(x,h) ~ (0x)* + (1 + %) (0n)? (H.6)

where again we identified \/§,x = Mp. The kinetic term for the Higgs field
can be recast into canonical form in terms of

A ?h? 3 &h2\"
h:h<1++...>:h 1+ cn() , (H.7)
M3 =\ M

where ¢,, are numerical factors. Inverting the above relation and plugging it
to the potential in this limit

U(h) ~ Zht | (H.8)

we see that the cut-off is proportional to Mp/&p, in agreement with the

Jordan frame result.?

3Notice that in the low energy regime the conformal factor is approximately equal to
one.
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Chapter 1

Feynman rules for the dilaton

In this Appendix, we gather the Feynman rules as well as the expressions
for the coefficients appearing in the one-loop diagrams in 9.4.1. We denote
with a dashed (solid) line the dilaton (Higgs) and perform the calculations in
dimensional regularization in D = 4 — 2¢ dimensions. After expanding the
fields around their background values and normalizing the kinetic term for
the dilaton, we find the following Feynman rules stemming from its kinetic

term
N N
N n N 9 _
a ag a 9 | a®
g 7t h _— = 1 t } .
/)— e an |:Mp - 2M;3< + tanh [MP)
4 4

Using the above expression, we can calculate the coefficients appearing in the
different diagrams. Let us start by considering the simplest diagram d; . We

Q — @ (24 1) (2

with 1/é =1/e — v + log4n, and

obtain

2 7 2
cil}l(@ = 6Z7r2 (1 + tanh? [;j;]) , f=-—log {TZJQLI] . (L.1)
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Let us move to the more complicated diagram dy. We find

N o) () sal)

(0r)?,

where

_ a2

2

b 1
tanh? [;;i] , f = 3 —log [ﬂ;é{] and d=0. (1.2)

Note that in this particular diagram, the coefficient d is coincidentally zero.
As we argued in 9.4.1, this kind of terms are expected to appear by simple
power-counting arguments in higher-loop diagrams. We see that in both
diagrams, for the maximal value of the hyperbolic tangent, the corrections
are suppressed by loop factors as well as powers of Mp.
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Chapter J

Dimensional Analysis

When the metric g, is dimensionful, the operation of lowering and raising in-
dices has to be done with some care, since covariant and contravariant tensors
carry different dimensions. For example, the inverse metric g has dimen-

sions of [GeV]??. Moreover, for the metric determinant g = — det(g,) > 0,
we obtain
lg] = [GeV] ™™, (J.1)

whereas from (10.1), it follows that
[0,] = [GeV]? . (J.2)

We are now in a position to determine the dimensionality of various geomet-
rical quantities. First of all, for the Christoffel symbols which are defined as

1 K.
Ffly = 59 A (aug;m + a,ugm/ - ang;w) ) (J3)
we obtain
[rgy} = [GeV] | (J.4)

in accordance with (J.2). Consequently, for the curvatures

iﬂl’ = aﬂriv_aVFi,u—i_Fg\VFZN_Fl))\HF;V ’ R/W = RZNV ’ R= ngRlW ’ (J5)
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we see that

[R"\,] =[GV, [Ry] = [GeV]™ | [R] = [GeV]*PH9) = [GeV]® . (1.6)
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