
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-Ph. Thiran, président du jury
Prof. H. Bourlard, Dr R. Collobert, directeurs de thèse

Dr Y. Grandvalet, rapporteur
Prof. G. Attardi, rapporteur

Dr J.-C. Chappelier, rapporteur

Word Embeddings for Natural Language Processing

THÈSE NO 7148 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 26 SEPTEMBRE 2016

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE L'IDIAP

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2016

PAR

Rémi Philippe LEBRET

He who is not courageous

enough to take risks will

accomplish nothing in life.

— Muhammad Ali

To my grandfathers. . .

Acknowledgements
I would like to express my gratitude to people who contributed to this thesis and my life as a

Ph.D. student.

First, I would like to thank Dr. Ronan Collobert for giving me the opportunity to join his team

at Idiap for doing my doctoral studies. Thanks for being always available during the first two

years to teach me all the tricks of the trade for training neural networks. I would also like

to thank Dr. David Grangier and Dr. Michael Auli for the day-to-day supervision during my

6-month internship at Facebook, where I learned a lot. At that time of my PhD, it gave me

enthusiasm and energy to move forward. Many thanks to Prof. Hervé Bourlard for making

Idiap such a great place to work, to Nadine and Sylvie for their kindness and responsiveness. I

am also particularly grateful to the Hasler Foundation for supporting me financially.

I really appreciate the time and dedication my thesis committee devoted to reviewing my

work: Prof. Giuseppe Attardi, Dr. Yves Grandvalet, Dr. Jean-Cédric Chappelier, and Prof.

Jean-Philippe Thiran. Thank you for the fruitful discussions and your comments.

A special dedication goes to my fellow colleagues from the applied machine learning team at

Idiap: Dimitri, Joël, and Pedro. Thanks to Dimitri for teaching us all the specificities of Switzer-

land and Game of Thrones; to Joël for organizing great team dinners composed of Raclette

and Fondue; and to Pedro for always being in a good mood and for his Brazilian accent. I

have a special thought for César, the Fifth Musketeer, who joined the team for a year before

boarding a plane to Montreal. Also thanks are in order to all my floorball teammates: Bastien,

Laurent, Pierre-Edouard, David, Hugues, Christian, Michael, Manuel, Elie, Paul, Romain, Rémi.

This Ph.D. has given me the opportunity to discover Switzerland, specifically the Canton of

Valais. I would like to thank the people of Le Trétien (the small mountain village where I lived)

for the warm welcome. I particularly want to thank Monique and Christian for their love

and presence; and my closest neighors Vicky and Thierry, Rita and Benoit, Marie-Noëlle, and

Damien for their friendship and generosity.

The two last years of this journey have been stressful with a lot of questions and concerns.

This period would have been very difficult without the unconditional support and love of my

wife Claire. Thank you for all the encouragement, your joie de vivre and for the sacrifices that

i

Acknowledgements

you made for me. Now it is my turn to support you in your project.

Finally, I want to thank my family for their loving support through the years. Thanks to my

parents, Christine and Philippe; to my sister, Julie, her husband, Eddie, my nephew, Matilin,

and my niece, Margaud. Thanks for frequently making the long trip to Le Trétien, where we

shared some good moments together. Last but not least, I thank my grandmother, Jeanne, for

its unfaltering support.

Lausanne, 6 August 2016 R. L.

ii

Abstract
Word embedding is a feature learning technique which aims at mapping words from a vocab-

ulary into vectors of real numbers in a low-dimensional space. By leveraging large corpora

of unlabeled text, such continuous space representations can be computed for capturing

both syntactic and semantic information about words. Word embeddings, when used as the

underlying input representation, have been shown to be a great asset for a large variety of

natural language processing (NLP) tasks. Recent techniques to obtain such word embeddings

are mostly based on neural network language models (NNLM). In such systems, the word

vectors are randomly initialized and then trained to predict optimally the contexts in which

the corresponding words tend to appear. Because words occurring in similar contexts have,

in general, similar meanings, their resulting word embeddings are semantically close after

training. However, such architectures might be challenging and time-consuming to train.

In this thesis, we are focusing on building simple models which are fast and efficient on

large-scale datasets. As a result, we propose a model based on counts for computing word

embeddings. A word co-occurrence probability matrix can easily be obtained by directly

counting the context words surrounding the vocabulary words in a large corpus of texts. The

computation can then be drastically simplified by performing a Hellinger PCA of this matrix.

Besides being simple, fast and intuitive, this method has two other advantages over NNLM.

It first provides a framework to infer unseen words or phrases. Secondly, all embedding

dimensions can be obtained after a single Hellinger PCA, while a new training is required

for each new size with NNLM. We evaluate our word embeddings on classical word tagging

tasks and show that we reach similar performance than with neural network based word

embeddings.

While many techniques exist for computing word embeddings, vector space models for phrases

remain a challenge. Still based on the idea of proposing simple and practical tools for NLP, we

introduce a novel model that jointly learns word embeddings and their summation. Sequences

of words (i.e. phrases) with different sizes are thus embedded in the same semantic space by

just averaging word embeddings. In contrast to previous methods which reported a posteriori

some compositionality aspects by simple summation, we simultaneously train words to sum,

while keeping the maximum information from the original vectors.

These word and phrase embeddings are then used in two different NLP tasks: document

classification and sentence generation. Using such word embeddings as inputs, we show

that good performance is achieved in sentiment classification of short and long text docu-

ments with a convolutional neural network. Finding good compact representations of text

iii

Abstract

documents is crucial in classification systems. Based on the summation of word embeddings,

we introduce a method to represent documents in a low-dimensional semantic space. This

simple operation, along with a clustering method, provides an efficient framework for adding

semantic information to documents, which yields better results than classical approaches

for classification. Simple models for sentence generation can also be designed by leveraging

such phrase embeddings. We propose a phrase-based model for image captioning which

achieves similar results than those obtained with more complex models. Not only word and

phrase embeddings but also embeddings for non-textual elements can be helpful for sentence

generation. We, therefore, explore to embed table elements for generating better sentences

from structured data. We experiment this approach with a large-scale dataset of biographies,

where biographical infoboxes were available. By parameterizing both words and fields as

vectors (embeddings), we significantly outperform a classical model.

Key words: word embedding, natural language processing, PCA, artificial neural networks,

language model, document classification, sentence generation

iv

Résumé
Le word embedding est une méthode d’apprentissage automatique qui vise à représenter

les mots d’un vocabulaire dans des vecteurs de réels dans un espace à faible dimension. En

s’appuyant sur un grand corpus de textes non annoté, de telles représentations vectorielles

peuvent être calculées pour capturer à la fois des informations syntaxiques et sémantiques

sur mots. Ces word embeddings, lorsqu’ils sont ensuite utilisés comme données d’entrée, se

sont révélés être un grand atout pour une grande variété de tâches en traitement automa-

tique du langage naturel (TALN). Les techniques récentes pour obtenir ces représentations

de mots sont principalement basées sur des modèles de langue neuronaux (MLN). Dans de

tels systèmes, les vecteurs représentant les mots sont initialisés aléatoirement, puis entrainés

à prédire de façon optimale les contextes dans lesquels ils apparaissent. Étant donné que

les mots apparaissant dans des contextes similaires ont, en principe, des significations sem-

blables, leurs représentations vectorielles sont sémantiquement proches après l’apprentissage.

Cependant, de telles architectures sont généralement difficiles et longues à entrainer.

Dans cette thèse, nous nous concentrons sur la construction de modèles simples qui sont à la

fois rapides et efficaces avec des ensembles de données à grande échelle. En conséquence,

nous proposons un modèle basé sur le simple comptage de mots pour calculer les word

embeddings. Une matrice de probabilité de cooccurrences peut être facilement obtenue en

comptant directement, dans un grand corpus de textes, les mots de contexte entourant les

mots du vocabulaire d’intérêt. L’obtention des word embeddings peut alors être considérable-

ment simplifiée en effectuant une ACP de cette matrice, avec la distance de Hellinger. En plus

d’être simple, rapide et intuitive, cette méthode présente deux autres avantages par rapport

aux MLN. Tout d’abord, cette méthode permet l’inférence de nouveaux mots ou expressions

(groupes de mots). Deuxièmement, toutes les dimensions de word embeddings peuvent être

obtenues après une seule ACP, alors qu’un nouvel apprentissage est nécessaire pour chaque

nouvelle taille d’embeddings avec les MLN. Nous évaluons ensuite nos représentations de

mots sur des tâches classiques d’étiquetage de mots, et nous montrons que les performances

sont similaires qu’avec des word embeddings obtenus par l’intermédiare de MLN.

Alors que de nombreuses techniques existent pour le calcul de word embeddings, la représen-

tation vectorielle de groupe de mots reste encore un défi. Toujours dans l’idée de proposer

des outils simples et pratiques pour le TALN, nous introduisons un modèle qui apprend

conjointement les word embeddings et de leur sommation. Les séquences de mots de tailles

différentes sont ainsi encodées dans le même espace sémantique, juste en moyennant les

embeddings des mots. Contrairement aux méthodes précédentes qui ont observé a posteriori

v

Abstract

des propriétés de compositionnalité par simple sommation, nous apprenons aux vecteurs de

mots à s’aggréger, tout en gardant le maximum d’informations des vecteurs originaux.

Ces embeddings de mots et groupes de mots sont ensuite utilisés dans deux tâches de TALN

différentes : la classification des documents et la génération automatique de phrases. En utili-

sant les word embeddings comme données d’entrée dans un réseau de neurones convolutifs,

nous montrons que de bonnes performances sont obtenues pour la classification de senti-

ments dans des documents textuels, aussi bien longs que courts. Les systèmes classiques de

classification doivent souvent faire face à des problème de dimensionalité, il est donc crucial

de trouver des représentations de documents compactes. En se basant sur notre modèle de

sommation des word embeddings, nous introduisons une méthode pour représenter les docu-

ments dans un espace sémantique de faible dimension. Cette opération de sommation, suivie

d’une méthode de clustering, permet d’ajouter efficacement de l’information sémantique

aux documents, et ainsi d’obtentir de meilleurs résultats que les approches classiques pour

la classification. Des modèles simples pour la génération automatique de phrases peuvent

également être conçus en tirant profit de ces embeddings de groupes de mots. Nous proposons

ainsi un modèle pour le légendage automatique d’images qui obtient des résultats similaires

que des modèles plus complexes à base de réseaux de neurones récurrents. En complément

des embeddings de mots ou de groupes de mots, les éléments non textuels peuvent aussi être

utiles pour la génération de texte. Nous proposons ainsi d’explorer l’encodage d’éléments

issus de tableaux pour générer de meilleures phrases à partir de données structurées. Nous

expérimentons cette approche sur une grande collection de biographies issues de Wikipedia,

où des tableaux d’informations sont disponibles. En paramétrant les mots et les champs des

tableaux comme vecteurs (embeddings), nous obtenons ainsi de meilleurs résultats qu’avec

un modèle classique.

Mots clefs : word embedding, traitement automatique du langage naturel, ACP, réseau de

neurones artificiels, modèle de langue, classification de documents, génération automatique

de phrases

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures xiii

List of tables xvii

List of abbreviations xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis Contributions . 4

1.4 Thesis Outline . 8

2 Background 11

2.1 Neural Network Models for Natural Language Processing 11

2.1.1 Mathematical Notations . 11

2.1.2 Feed-forward Neural Networks . 12

2.1.3 Transforming Words into Feature Vectors 13

2.2 Document Classification . 14

2.2.1 Bag-of-words Model . 14

2.2.2 Topic Models . 15

2.2.3 Classification Models . 16

2.2.4 Evaluation Metrics . 18

2.3 Language Models . 19

2.3.1 N -gram Models . 20

2.3.2 Smoothing Models . 20

2.3.3 Neural Network Language Models . 22

2.3.4 Recurrent Neural Networks . 23

2.3.5 Evaluation Metrics . 25

vii

Contents

I Building Word Embeddings from Large Text Corpora 27

3 State-of-the-art Word Representations 29

3.1 Brown Clustering . 29

3.2 Through Neural Network Language Models . 31

3.2.1 Pairwise Ranking Approach . 31

3.2.2 Scalable Log-Bilinear Model . 31

3.2.3 Skip-gram Model . 35

4 Word Embeddings through Hellinger PCA 37

4.1 Word Co-Occurrence Probabilities . 37

4.2 Hellinger Distance . 39

4.3 Experimental Setup . 39

4.3.1 Building Word Representations over Large Corpora 39

4.3.2 Evaluating Word Representations . 40

4.4 Analysis of the Context . 41

4.4.1 Type of Context . 41

4.4.2 Context Window Size . 46

4.4.3 Analysis Findings . 46

4.5 Principal Component Analysis (PCA) . 47

4.5.1 Eigen Decomposition (ED) . 48

4.5.2 Singular Value Decomposition (SVD) . 48

4.5.3 Experimental Analysis . 50

4.6 Supervised Evaluation Tasks . 53

4.6.1 Tasks Description . 53

4.6.2 Neural Network Approach . 54

4.6.3 Experimental Setup . 55

4.6.4 Results . 57

4.7 Embedding Inference . 58

4.8 Implementation . 59

4.9 The Revival of Count-based Methods . 60

4.9.1 SVD over Shifted Positive Point Mutual Information 60

4.9.2 Global Vectors (GloVe) . 61

4.10 Conclusion . 61

5 Towards Phrase Embeddings 63

5.1 Related Work . 64

5.2 Hellinger PCA with Autoencoder . 64

5.3 Joint Learning with Summation . 65

5.3.1 Training an Additive Model . 65

5.3.2 Joint Learning with Negative Sampling . 67

5.4 Experimental Results . 67

5.4.1 Phrase Dataset . 67

viii

Contents

5.4.2 Other Methods . 68

5.4.3 Evaluating Word Representations . 68

5.4.4 Evaluating Phrase Representations . 69

5.4.5 Inferring New Phrase Representations . 70

5.5 Conclusion . 72

II Document Classification 73

6 Sentiment Classification with Convolutional Neural Network 75

6.1 Convolutional Neural Network for Sentiment Classification 75

6.1.1 Embedding Layer . 76

6.1.2 Convolutional Layer . 77

6.1.3 Global Document Representation . 77

6.1.4 Binary Classification . 77

6.1.5 Training . 78

6.2 Short Document Classification . 78

6.2.1 Dataset Description . 78

6.2.2 Related Work . 79

6.2.3 Experimental Results . 80

6.3 Long Document Classification . 81

6.3.1 Dataset Description . 81

6.3.2 Related Work . 82

6.3.3 Experimental Results . 82

6.4 Conclusion . 83

7 N-gram-Based Model for Compact Document Representation 87

7.1 Related Work . 88

7.2 A Bag of Semantic Concepts Model . 88

7.2.1 N -gram Representation . 88

7.2.2 K -means Clustering . 89

7.2.3 Document Representation . 89

7.3 Experiments with Sentiment Classification . 90

7.3.1 IMDB Movie Reviews Datasets . 90

7.3.2 Building Bag of Semantic Concepts for Movie Reviews 91

7.3.3 Comparison with Other Methods . 92

7.3.4 Classification using SVM . 93

7.3.5 Results . 93

7.3.6 Computation Time . 94

7.3.7 Inferring Semantic Concepts for Unseen N -grams 95

7.4 Experiments with Text News Classification . 95

7.4.1 Reuters-27000 Dataset . 95

7.4.2 Experimental Setup . 95

ix

Contents

7.4.3 Results . 96

7.5 Conclusion . 97

III Sentence Generation 99

8 Phrase-based Image Captioning 101

8.1 Related Work . 102

8.2 Syntax Analysis of Image Descriptions . 103

8.2.1 Datasets . 103

8.2.2 Chunking-based Approach . 103

8.3 Phrase-based Model for Image Descriptions . 104

8.3.1 Image Representations . 105

8.3.2 Learning a Common Space for Image and Phrase Representations 105

8.3.3 Phrase Representations Initialization . 106

8.3.4 Training with Negative Sampling . 106

8.4 From Phrases to Sentence . 107

8.4.1 Sentence Generation . 107

8.4.2 Sentence Decoding . 107

8.4.3 Sentence Re-ranking . 108

8.5 Experiments . 109

8.5.1 Experimental Setup . 109

8.5.2 Experimental Results . 110

8.5.3 Diversity of Image Descriptions . 111

8.5.4 Phrase Representation Fine-Tuning . 112

8.6 Conclusion . 114

9 Generating Text from Structured Data 115

9.1 Related Work . 116

9.2 Language Modeling for Constrained Sentence Generation 116

9.2.1 Language Model . 117

9.2.2 Language Model Conditioned on Tables 117

9.2.3 Copy Actions . 119

9.3 A Neural Language Model Approach . 120

9.3.1 Embeddings as Inputs . 120

9.3.2 In-Vocabulary Outputs . 122

9.3.3 Mixing Outputs for Better Copying . 122

9.3.4 Training . 123

9.4 Experiments . 123

9.4.1 Biography Dataset . 123

9.4.2 Baseline . 124

9.4.3 Training Setup . 124

9.4.4 Evaluation Metrics . 125

x

Contents

9.5 Results . 125

9.5.1 The More, The Better . 125

9.5.2 Attention Mechanism . 126

9.5.3 Sentence Decoding . 126

9.5.4 Qualitative Analysis . 126

9.6 Conclusion . 129

10 Conclusion 131

10.1 Achievements . 131

10.2 Perspectives for Future Work . 133

Bibliography 145

Curriculum Vitae 147

xi

List of Figures
1.1 Two different approaches for encoding words into vector spaces. One-hot en-

coding on the left-hand side. Word embedding on the right-hand side. 2

1.2 From word to phrase embeddings. 3

1.3 Defining semantic concepts from phrase embeddings for representating text

document as a bag of semantic concepts. Best viewed in color. 4

1.4 Screenshot of the English Wikipedia page about Vladimir Vapnik. Red rectan-

gles highlight the overlap of sequences of words between the infobox and the

introduction section. 6

1.5 Chunking analysis of the ground-truth descriptions of a training image from MS

COCO dataset. NP, VP and PP mean, respectively, noun phrase, verbal phrase

and prepositional phrase. 8

2.1 Simple recurrent neural network (Mikolov et al., 2010). 23

2.2 Long Short-term Memory Cell (Graves, 2013). 24

3.1 The class-based bigram language model, which defines the quality of a clustering,

represented as a Bayesian network. 29

3.2 An example of a Brown word-cluster hierarchy. Each node in the tree is labeled

with a bit string indicating the path from the root node to that node, where 0

indicates a left branch and 1 indicates a right branch. 30

4.1 A toy example illustrating that related words have similar word co-occurrence

probability distributions. 38

4.2 Cumulative probability distribution of unigrams that occur at least a hundred

times in the English Wikipedia. 41

4.3 Performance on word similarity datasets with different types of context word

vocabularies D (in the ascending order of their number of words), and different

window sizes (in the legend, wsz1 is for symmetric window of 1 context word,

etc.). Spearman rank correlation is reported. 43

4.4 Performance on word analogy datasets with different types of context word

vocabularies D (in the ascending order of their number of words), and different

window sizes (in the legend, wsz1 is for symmetric window of 1 context word,

etc.). Accuracy is reported. 44

xiii

List of Figures

4.5 Performance on datasets with different eigenvalue weighting parameter p. Word

embeddings dimension is 512. Context vocabulary interval is]1;10−5] with a

symmetric window of 10 words. Spearman rank correlation is reported on word

similarity tasks. Accuracy is reported on word analogy tasks. 50

4.6 Performance on datasets with different dimensions using context interval]1;10−5]

with a symmetric window of 10 words. Dimensionality reduction has been ob-

tained with the Hellinger PCA using randomized SVD. Spearman rank correlation

is reported on word similarity tasks. Accuracy is reported on word analogy tasks. 51

5.1 Architecture for the joint learning of word representations and their summation.

Considering the noun phrase s = the red cat, each word wt ∈ s is represented

as the square root of its co-occurrence probability distribution
√

Pwt . These are

the inputs given to an autoencoder which encodes them in a lower dimension

xwt ∈ Rd wrd
. These new representations are then given to a decoder which is

trained to reconstruct the initial inputs. This is the first objective function. The

second objective is to keep information when words are summed. All xwt are

averaged together to represent s in the same space as wt . A dot product between

the phrase representation xs and all the other word representations from the

dictionary W is calculated. These scores are trained to be high for words that

appear in s and low for the others. 66

5.2 Recall@1 based on the number of words per phrases. Comparison of perfor-

mance across all models with 100-dimensional word vector representations. . . 70

6.1 Convolutional neural network for sentiment classification. 76

6.2 Selection of tweets from the test set where sentiments are highlighted using our

model outputs. The blue color scale indicates negative sentiment, the red one

indicates positive sentiments. Best viewed in colors. 81

6.3 Highlighting sentiments in IMDB movie reviews. The blue color scale indicates

negative sentiment, the red one indicates positive sentiments. Best viewed in

colors. 84

7.1 Performance of the three models on Reuters-27000 with different training sizes.

Bar chart (left axis) is the number of features. Line chart (right axis) reports the

F1-scores. Our method is denoted by BOSC. BOSC and LSA have a fixed number

of features, K = 300. 97

8.1 Statistics on the number of phrase chunks (NP, VP, PP) per ground-truth descrip-

tions in Flickr30k and COCO training datasets. Best viewed in colors. 104

8.2 The 20 most frequent sentence structures in Flickr30k and COCO training datasets.

The black line is the appearance frequency for each structure, the red line is the

cumulative distribution. Best viewed in colors. 105

8.3 Schematic illustration of our phrase-based model for image descriptions. . . . 106

xiv

List of Figures

8.4 The constrained language model for generating description given the predicted

phrases for an image. 108

8.5 Qualitative results for images on the COCO dataset. Ground-truth annotation

(in blue, at the top), the NP, VP and PP predicted from the model and generated

annotation (in black, at the bottom) are shown for each image. The last row are

failure samples. 112

9.1 Wikipedia infobox of Frederick Parker-Rhodes. The introduction of his article

reads: “Frederick Parker-Rhodes (21 March 1914 – 21 November 1987) was an

English linguist, plant pathologist, computer scientist, mathematician, mystic,

and mycologist.”. 117

9.2 Schematic example of the language model conditioned on tables. 119

9.3 Schematic example of the embedding-based language model. {·} symbolizes the

max operation over the embeddings. 122

9.4 Comparison between our best model (Table NNLM) and the baseline (Template

KN) for different beam sizes. The x-axis is the average timing (in milliseconds) for

generating one sentence. The y-axis is the BLEU score. All results are measured

on a subset of 1,000 samples of the validation set. 128

xv

List of Tables

4.1 The average number of context words according to the type and the size of context. 45

4.2 Two rare words with their rank and their 5 nearest words with respect to the

Hellinger distance, for a symmetric window of 1 and 10 context words. 46

4.3 Performance on word similarity and word analogy datasets using a context

word vocabulary with P (wt) > 10−5, and different window sizes. For dense

representations, we report results using the first 512 principal components after

Hellinger PCA with SVD. Spearman rank correlation is reported for similarities.

Accuracy is reported for analogies. 52

4.4 Words with their rank in W and their 10 nearest neighbors in the word embed-

ding space (according the the Euclidean metric). Dimension of word embed-

dings is 128. A window of 10 context words has been used to build the word

co-occurrence matrix. 52

4.5 Performance comparison on named entity recognition (NER) and chunking

(CHUNK) tasks with different embeddings. The first column reports results with

the original embeddings. The second column reports results after fine-tuning

the embeddings for the task. Results are reported in F1 score (mean ± standard

deviation of ten training runs with different initialization). H-PCA is for Hellinger

PCA, while E-PCA stands for Euclidean PCA. 57

4.6 CPU time for computing word embeddings. min is for minutes and sec for seconds. 58

4.7 Three phrases with their 10 nearest words with respect to the Euclidean distance

between the inferred phrase embeddings and the pre-computed word embed-

dings. Word co-occurrence statistics for these phrases are built using a context

window of 10 words with a vocabulary containing the 6961 most frequent words. 59

5.1 Evalution of word representations on both similarity and analogy tasks. Com-

parison of performance between Hellinger PCA with randomized SVD and with

autoencoder. We use 100-dimensional word vector representations. Spearman

rank correlation is reported on word similarity tasks. Accuracy is reported on

word analogy tasks. 68

5.2 Evaluation of phrase representations. Comparison of performance across all

models with 100-dimensional phrase vector representations on word retrieval.

R@K is Recall@K , with K = {1,5,10}. 69

xvii

List of Tables

5.3 Examples of phrases and five of their ten nearest phrases from the collection of

phrases. Representations for the collection of phrases have been computed by

averaging the word representations. Query phrase representations are inferred

using the two different alternatives: (1) with the encoding function f using

counts from a symmetric window of ten context words around the query phrase,

(2) by averaging the representations of the words that compose the query phrase.

All distributed representations are 100-dimensional vectors. 71

6.1 Accuracy on the Twitter sentiment classification test set. The three classical

models (SVM, BiNB and MaxEnt) are based on unigram and bigram features; the

results are reported from Go et al. (2009). 80

6.2 Accuracy on the IMDB test set for sentiment classification. When BI is used as

prefix, models include bigram features. 82

6.3 Set of words with their 10 nearest neighbors before and after fine-tuning for the

movie review task (using the Euclidean metric in the embedding space). Before

tuning, antonyms are highlighted in blue. After tuning, antonyms have been

replaced by some task-specific words which are highlighted in red. Best viewed

in colors. 83

6.4 The top 3 positive and negative filters [α]i and their respective top 3 windows of

words within the whole IMDB review dataset. 84

7.1 Classification accuracy on both movie review tasks with K = {100,200,300} num-

ber of features. 93

7.2 Selected pairs of antonyms and their cluster number. Here, n-grams from Maas

et al’s dataset have been partitioned into 300 clusters. Each n-gram is accompa-

nied with a selection of others from its cluster. 94

7.3 Computation time for building movie review representations with K = 300 se-

mantic concepts. Time is reported in seconds. 94

7.4 N -gram frequencies on Reuters-27000 according to the number of documents

in the training size. 96

8.1 Chunking analysis of an image description. 103

8.2 Statistics of phrases appearing at least ten times. 109

8.3 Recall on phrase retrieval. For each test image, we take the top 20 predicted NP,

the top 5 predicted VP, and the top 5 predicted PP. 110

8.4 Comparison between human agreement scores, state-of-the-art models and our

model on both datasets. Note that there are slight variations between the test

sets chosen in each paper. Scores are reported in terms of BLEU metric. 111

8.5 Examples of three noun phrases from the COCO dataset with five of their nearest

neighbors before and after learning. 113

xviii

List of Tables

9.1 Valid and test perplexity for all models. Valid and test BLEU for table-conditioned

models. For neural network language models (NNLM) we report the mean with

standard deviation of five training runs with different initialization. BLEU scores

are computed over sentences generated with a beam search (beam size is 5). �

and † are not directly comparable as the output vocabulary is slightly different. 125

9.2 Visualization of attention scores for Nellie Wong’s Wikipedia infobox. Rows

represent the probability distribution over (field, position) pairs from the table

after generating each word. The columns represent the conditioning context,

e.g., the model takes n −1 words as context. The darker the color, the higher the

probability. Best viewed in colors. 127

9.3 First sentence from the current Wikipedia article about Frederick Parker-Rhodes

and the sentences generated from the three versions of our table-conditioned

neural language model (Table NNLM) using the Wikipedia infobox seen in Fig-

ure 9.1. 129

xix

List of Abbreviations

AI Artificial Intelligence

BC Bhattacharyya Coefficient

BLEU Bilingual Evaluation Understudy

BOSC Bag Of Semantic Concepts

BOW Bag Of Words

BP Brevity Penalty

CNN Convolutional Neural Network

CPU Central Processing Unit

CRF Conditional Random Field

ED Eigen Decomposition

GloVe Global Vectors

GPU Graphical Processing Unit

HLBL Hierarchical Log-Bilinear

KN Kneser-Ney

LDA Latent Dirichlet Allocation

LM Language Model

LSA Latent Semantic Analysis

LSTM Long Short-Term Memory

MAP Maximum A Posteriori

MaxEnt Maximum Entropy

ML Maximum Likelihood

MLP Multilayer Perceptron

NB Naive Bayes

NCE Noise-Contrastive Estimation

NER Named Entity Recognition

NLP Natural Language Processing

NNLM Neural Network Language Model

NP Noun Phrase

PCA Principal Component Analysis

PMI Pointwise Mutual Information

PP Prepositional Phrase

RNN Recurrent Neural Network

SG Skip-Gram

xxi

List of Abbreviations

SVD Singular Value Decomposition

SVM Support Vector Machine

TF-IDF Term Frequency-Inverse Document Frequency

VP Verbal Phrase

xxii

1 Introduction

1.1 Motivation

Natural language can be described as a system which “makes infinite use of finite means” (Hum-

boldt, 1836), meaning that an infinite number of sentences can be generated from a finite set

of words. One can understand a sentence never before heard or express a meaning never ex-

pressed before. This capacity to generate an infinite number of possible sentences results from

some underlying mechanisms. Linguists have defined compositionality, hierarchy, and recur-

sion as the universal features of human language. The Principle of Compositionality (Frege,

1892) emphasizes that the meaning of an expression is a function of the meanings of its parts

and of the way they are syntactically combined. Sentences are hierarchically structured: words

are grouped into phrases, which are grouped into higher-level phrases, and so on until they

form a complete sentence. A logical form of a sentence can then be derived from its syntactic

structure (Montague, 1974). Recursion theorizes that longer sentences can be constructed by

inserting recursively, sentences within another sentence (Chomsky, 1957). Human language

permits infinite recursion, at least in theory, which makes this feature a fundamental aspect of

language for some linguists (Hauser et al., 2002). All those features are connected: recursion

requires hierarchy and hierarchy requires compositionality. This big picture of linguistic theo-

ries tells us how it is crucial to capture the meaning of words along with their compositionality,

the basis for understanding all sentences.

Natural language processing (NLP) aims at modeling the interactions between computers and

human language, which involve many different tasks such as information extraction, docu-

ment classification, natural language generation, machine translation, question answering,

etc. To tackle this variety of tasks, one need to build “intelligent” systems, capable of under-

standing and analyzing human language. For such systems to work, it is, therefore, necessary

to capture the meaning of words into vector spaces, along with modeling the compositionality,

hierarchy and recursion of these vector spaces.

1

Chapter 1. Introduction

cat

dog

three

two

france

england

cat

dog

three

two

france

england

Figure 1.1 – Two different approaches for encoding words into vector spaces. One-hot encoding
on the left-hand side. Word embedding on the right-hand side.

1.2 Objectives

Modeling natural language is a diverse and complex problem which involves many underlying

mechanisms, as mentioned previously. This thesis focuses on bringing efficient and effective

methods for computers to understand the foundations of human language: the meaning of

words and their compositionality. The objectives are the following:

• Capturing the meaning of words into dense vectors. Compared with other fields of

artificial intelligence where inputs are represented as vector spaces (images in computer

vision, temporal signals in speech processing), machines are facing the challenge of

getting words as inputs when dealing with natural language. A classical approach to

address this issue is to define a |W |-dimensional vector where all entries are set to 0

except for a single entry that identifies a word wt ∈W (a fixed vocabulary of words);

this is called one-hot encoding. As illustrated in Figure 1.1, a one-hot vector is a poor

way to encode the meaning of words, since a separate dimension represents each word.

A better solution is rather to encode words into dense vectors where the dimensions

capture syntactic and semantic properties about words, such that related words are

close in this continuous vector space. Such representation in a much lower dimension

space compared to the vocabulary W is called word embedding.

• Composing words into phrases. Following the Principle of Compositionality, we then

want to define a function that combines word embeddings to get representations of

phrases (i.e. sequences of words). Similar phrases are often composed of different num-

ber of words. As illustrated in Figure 1.2, such a composition function must combine

word embeddings independently of their number to represent words and phrases into

the same semantic space.

Having semantic representations of words and phrases, the objective is then to use them for

solving NLP tasks. In this thesis, we leverage these embeddings for attacking two tasks in both

supervised and unsupervised manners:

2

1.2. Objectives

y

x

twenty
thirty

threetwo

catdog pig
rabbit

india

franceengland
ireland

y

x

twenty

thirty
threetwo

twenty_two

thirty_one
forty_three

catdog pig
rabbitthe_black_cat

pink_pig

a_small_bunny

india

franceengland
ireland

the_great_britain
wallis_and_futuna

czech_republic

Figure 1.2 – From word to phrase embeddings.

• Document classification. Given a document, and assuming we are given a fixed size

vocabulary W (possibly including million of words), a standard approach is to count

word occurrences in the document. The |W |-dimensional vector of counts is a classical

representation (often called bag-of-word representation (BOW)), which is used as input

for training standard machine learning classifiers. Consequently, such systems do not

rely on the meaning of words for classifying documents, since the classifiers are trained

to find the most discriminative keywords. In this thesis, we want to go beyond keyword-

based models, investigating new ways to find semantic document representations in an

unsupervised manner. By capturing the meaning of words and phrases in the same

embedding space, expressions from the same semantic group are now close in this

space. As illustrated in Figure 1.3, semantic concepts can be defined to represent a

given document as a bag of semantic concepts. Such representation adds semantic

information while reducing the number of features dramatically compared to a classical

BOW representation.

In supervised learning, neural network models are established as powerful models for

classification problems, like object recognition in computer vision, or acoustic modeling

in speech recognition. Despite their success, they have not yet been extensively applied

for text classification. Document representations are traditionally high dimensional

and sparse feature vectors, which do not fit well with neural networks. By encoding all

words in a given document with embeddings, we obtain a real-value representation

which enables the use of neural network models for text classification. Furthermore,

word embeddings carry semantic information that can help to attack more complex text

classification problems.

• Sentence generation. While document classification is about understanding natural

language (i.e. reading) to provide the right prediction, sentence generation is about

analyzing computer-based representation (e.g. images or tables) with the goal of con-

3

Chapter 1. Introduction

verting it into natural language (i.e. writing). Traditional methods are based on a series

of processes that makes decisions for transforming concepts (e.g. objects in images, or

values in tables) into words or expressions, which are then combined to form sentences,

according to rules of syntax, morphology and orthography. Consequently, such ap-

proaches generate text using cut-and-paste actions without understanding the meaning

of what they produce. In this thesis, we want to investigate whether vector-based repre-

sentations of words and expressions can be used for generating sentences. We want to

leverage our semantically rich representations to propose more efficient and effective

models for natural language generation, by bypassing the need for hand-crafted rules.

y

x

twenty
thirty

threetwo

twenty_two

thirty_oneforty_three

cat
dog pig

rabbitthe_black_cat

pink_pig

a_small_bunny

india

franceengland
ireland

the_great_britain
wallis_and_futuna

czech_republic

twenty
thirty

threetworeeree

twenty_twotwentytwenty
thi th

thirty_one
tytyforty_thrthirt

threethree thithi
hirthirt

NUMBER

cat
dog
catcat pig

rabbit
p gg

the_black_c
cata rabrab

pink_piggg pigi

a_small_bunny
bbitt_cat_catrabra

ANIMAL

india

ranceenglanfrfrirelandfrfr
englanenglanfrfrfrfr

the_great_britainenglandenglandff

wallis_and_futuna
t b it it b it i

czech_republic

COUNTRY

(a) Semantic concepts from phrase embeddings.

In November, a
pack of wolves has
been discovered
in the Czech Re-
public. Twenty
two lynx and five
bears have also
been found in the
Beskid Mountains.

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MONTH 1
...

...
SPORT 0

...
...

COUNTRY 1
...

...
NUMBER 2

...
...

ANIMAL 3
...

...
MOUNTAIN 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� K

(b) Bag of semantic concepts.

Figure 1.3 – Defining semantic concepts from phrase embeddings for representating text
document as a bag of semantic concepts. Best viewed in color.

1.3 Thesis Contributions

The first objective of this thesis is to encode words into real-value vectors:

• Word embeddings through Hellinger PCA. There has been a lot of effort to capture the

meaning of words into vector space models, often called word embeddings. Popular

approaches such as Brown clustering algorithm (Brown et al., 1992) have been used with

success in a wide variety of NLP tasks. Recently, approaches based on neural network

language models (NNLM) have revived the field of learning word embeddings. However,

a neural network architecture can be hard to train. Finding the right hyper-parameters

to tune the model is a challenging task and the training phase is, in general, compu-

tationally expensive. This thesis aims to show that word embeddings can be obtained

4

1.3. Thesis Contributions

using simple (linear) operations. Linguists assumed long ago that words occurring in

similar contexts tend to have similar meanings (Harris, 1954; Firth, 1957). We, therefore,

propose to compute word embeddings using the word co-occurrence statistics and a

well-known dimensionality reduction operation such as Principal Component Analysis

(PCA), along with an appropriate metric (i.e. the Hellinger distance). An evaluation

on classical NLP tasks shows that such a simple spectral method can generate word

embeddings as good as with neural network architectures. Besides being simple, this

method is also very fast and provides a framework to infer new words or phrases.

This work has been first presented at a deep learning workshop (Lebret and Collobert,

2013), before being published in an NLP conference (Lebret and Collobert, 2014).

This first contribution enables the encoding of words into continuous low-dimensional vec-

tors. We leverage these word embeddings for solving document classification and sentence

generation in the two following contributions:

• Convolutional neural networks for sentiment classification. Neural network archi-

tectures have shown their potential in several supervised NLP tasks, by using word

embeddings. Good performance is achieved on tasks where the syntactic aspect is dom-

inant such as part-of-speech tagging, chunking and named entity recognition (Turian et

al., 2010; Collobert et al., 2011). Such system can also be a good alternative to classical

approaches for supervised tasks where the semantic aspect predominates, such as in

sentiment classification. Inspired by its success in computer vision, we propose a con-

volutional neural network (CNN) model for predicting sentiments in text documents.

Each word in a given document is first mapped into a pre-trained embedding, thanks

to an embedding layer. Then, a convolutional layer locally extracts sentiments from

sequences of words. Finally, a max layer pools the best local sentiments into a global

document representation which is used to train a linear classifier. As word embeddings

are usually generated over large corpora of unlabeled data, words are represented in a

generic manner. Because the system is trained in an end-to-end manner, embedding

specialization is easily done which yields good performance in sentiment classification

of short (tweets) and long (movie reviews) documents.

This work has been published in Lebret and Collobert (2014) for long document classifica-

tion. Experiments on short documents have been reported in Lebret et al. (2016b).

• Generating text from structured data. Unsupervised learning methods for NLP can

also be developed by leveraging systems that rely on embeddings. In this thesis, we

propose to explore the use of NNLM for the concept-to-text generation, which addresses

the problem of rendering structured records into natural language (Reiter et al., 2000). In

contrast to previous work, we scale to the large and very diverse problem of generating

biographies for personalities based on Wikipedia infoboxes (i.e. a fact table describing

a person). As illustrated in the example in Figure 1.4, there exists a large overlap of

sequences of words between an article and its infobox. To tackle this problem we thus

5

Chapter 1. Introduction

Figure 1.4 – Screenshot of the English Wikipedia page about Vladimir Vapnik. Red rectangles
highlight the overlap of sequences of words between the infobox and the introduction section.

introduce a statistical generation model conditioned on a Wikipedia infobox. We focus

on the generation of the first sentence of a biography which requires the model to

select among a large number of possible fields to generate an adequate output. Such

diversity makes it difficult for classical count-based models to estimate probabilities of

rare events due to data sparsity. In our case, we can address this issue by parameterizing

words and fields as embeddings, along with a neural language model operating on these

embeddings (Bengio et al., 2003). This factorization allows us to scale to a large number

of words and fields compared to classical approaches where the number of parameters

grows as the product of the number of words and fields. As with our CNN model for

sentiment classification, our model exploits structured data both globally and locally.

Global conditioning summarizes all information about a personality to understand

high-level themes such as that the biography is about a scientist or an artist while local

conditioning describes the previously generated tokens regarding their relationship

to the infobox. Our evaluation on biography generation shows that our model can

generate a wide variety of natural sentences, with high overlap (BLEU) compared to

human reference sentences.

This work has been published in Lebret et al. (2016a).

Given that we built representations of words in a vector space, the Principle of Composition-

ality can be addressed by combining word embeddings to get representations of phrases or

6

1.3. Thesis Contributions

sentences:

• Composing word embeddings. Given pre-computed word embeddings, some compo-

sitional models involve vector addition or multiplication (Mitchell and Lapata, 2010).

Others use the syntactic relations between words to treat certain words as functions and

other as arguments such as adjective-noun composition (Baroni and Zamparelli, 2010)

or noun-verb composition (Grefenstette et al., 2013). Still based on the idea of proposing

efficient and effective methods for NLP, we propose to learn word embeddings that can

be averaged together to quickly compute representations of phrases in the same embed-

ding space, with no addition of memory. To get representations in a low-dimensional

space, we will reproduce the Hellinger PCA of the word co-occurrence matrix using an

autoencoder network. In Mikolov et al. (2013b), the authors train word embeddings

with linear models and show that some nice properties can be found using an additive

compositionality, meaning that such representations exhibit linear structures. For com-

bining word representations in a common semantic space, a compositional model based

on vector addition is chosen due to its simplicity and its inherent structure. The autoen-

coder architecture enables this compositional function to be trained simultaneously

with the word vector representations.

This work has been published in Lebret and Collobert (2015b) which introduces the

learning of word embeddings via autoencoders. The joint learning with summation has

been published in Lebret and Collobert (2015c).

Defining a common semantic space for n-grams (i.e. sequences of n words) can be useful for

many NLP tasks. We leverage these new embeddings for solving our two tasks of interest:

• Bag of semantic concepts for document classification. Bag-of-words (BOW) based

models have long been state-of-the-art methods to classify documents. These tech-

niques count words (1-grams) within documents. Classifiers are then trained to identify

the most discriminative words for classifying documents. Documents sharing those

discriminative words are considered similar. Such models work very well in practice as

certain topic keywords are indicative enough for classification. However, having n-gram

representations could help to increase classification performance for certain types of

documents. For instance, it has been shown that classification accuracy for movie

reviews can be improved by using 2-grams (Wang and Manning, 2012). This outcome

is not really surprising, since a document that contains 2-grams such as not good or

not funny would probably be classified as positive with a BOW model. By leveraging

the ability of our word embeddings to compose, we propose instead a bag of semantic

concepts model, where semantic concepts are defined with a K -means clustering of all

n-gram representations. Using the same classifiers as with BOW-based models, we show

that such model yields good results in the classification of movie reviews and news.

This work has been published in Lebret and Collobert (2015a).

7

Chapter 1. Introduction

A given image i ∈I Ground-truth descriptions s ∈S:

a man riding a skateboard up the side of a wooden ramp︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
NP VP NP PP NP PP NP

a man is grinding a ramp on a skateboard︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
NP VP NP PP NP

man riding on edge of an oval ramp with a skate board︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
NP VP NP PP NP PP NP

a man in a helmet skateboarding before an audience︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
NP PP NP PP NP

a man on a skateboard is doing a trick︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
NP PP NP VP NP

Figure 1.5 – Chunking analysis of the ground-truth descriptions of a training image from MS
COCO dataset. NP, VP and PP mean, respectively, noun phrase, verbal phrase and prepositional
phrase.

• Phrase-based model for image captioning. Composing word embeddings is also valu-

able in the context of sentence generation. As illustrated in Figure 1.5, an exploratory

analysis of image captions reveals that their syntax is quite simple. The ground-truth de-

scriptions can be represented as a collection of noun, verbal and prepositional phrases.

The different entities (e.g. a man, a skateboard, a wooden ramp) in a given image are

described by the noun phrases while the interactions or events between them are

explained with verbal or prepositional phrases. For automatically generating image

captions, we thus propose to train a model that predicts the set of phrases present in

the sentences used to describe the images. By leveraging our embedding model, phrase

vector representations are obtained by aggregating the word embeddings that compose

the phrases. Image vector representations can also be easily obtained from some pre-

trained convolutional neural networks, leveraging previous work in computer vision. We

then introduce a model that learns a common embedding space between these phrase

and image representations. By introducing a constrained language model based on our

prior knowledge about the caption syntax, we generate syntactically correct sentences

from the subset of phrases that best describe a given test image. Evaluation on two

datasets using the BLEU metric shows that our generated sentences achieve similar

performance as humans and other more complex models.

This work has been published in Lebret et al. (2015b), and extended in Lebret et al. (2015a).

1.4 Thesis Outline

The rest of the thesis is structured as follows:

• Chapter 2, Background. We first introduce the standard feed-forward neural network,

with the specific layers for NLP. We then describe the standard machine learning ap-

8

1.4. Thesis Outline

proaches for text document classification. Finally, we describe language modeling which

is at the core of sentence generation.

• Chapter 3, State-of-the-art Word Representations. We provide information about

other approaches for computing word embeddings. We start with a clustering method;

we then describe the main methods based on neural network language models.

• Chapter 4, Word Embeddings through Hellinger PCA. This chapter introduces our

proposed model for getting word embeddings. We conduct an exploratory analysis of

the parameters needed to build the word co-occurrence matrix, relying on benchmark

datasets of word similarities and word analogies. We then describe the different tech-

niques for performing the Hellinger PCA. Finally, we compare the obtained embeddings

with other state-of-the-art methods on two classical NLP tasks: chunking and named

entity recognition.

• Chapter 5, Towards Phrase Embeddings. We introduce a model that jointly learns word

embeddings and a function for combining them to compute phrase embeddings. We

also describe a new dataset extracted from Wikipedia, which contains noun phrases and

verbal phrases used to train and test the embeddings.

• Chapter 6, Sentiment Classification with Convolutional Neural Network. This chap-

ter describes a convolutional neural network for text document classification. We then

evaluate the proposed model in sentiment classification of short (tweets) and long

(movie reviews) documents.

• Chapter 7, N-gram-Based Model for Compact Document Representation. This chap-

ter gives an alternative to classical BOW models for document representations, lever-

aging our phrase embeddings. It introduces the bag of semantic concepts model which

adds semantic information coming from n-grams, while offering compact document

representations. We evaluate the proposed model on sentiment classification of a small

and a large dataset of movie reviews, as well as text news classification.

• Chapter 8, Phrase-based Image Captioning. In this chapter, we propose a phrase-

based model for image captioning. Based on the analysis of captions from two large

datasets, we propose to decompose the sentences describing the images into noun, ver-

bal and prepositional phrases. Thanks to our embedding model described in Chapter 5,

we introduce a bilinear model which learns a common semantic space between phrases

and images. We then use our prior knowledge about the caption syntax to define a

constrained language model which produces sentences from a given set of top-ranked

phrases.

• Chapter 9, Generating Text from Structured Data. This chapter presents a NNLM

approach for generating text from Wikipedia infoboxes. We introduce a statistical

language model with both local and global conditioning, as well as its neural network

version. We also describe the dataset of biographies extracted from Wikipedia, which is

used to train and test this model.

9

Chapter 1. Introduction

• Chapter 10, Conclusion. This last chapter concludes this thesis and proposes directions

for further research in NLP using word and phrase embeddings.

10

2 Background

This thesis mainly focuses on machine learning techniques based on neural networks for

tackling two tasks in NLP: document classification and sentence generation. In this chapter, we

first introduce neural network models with a focus on how they deal with natural language. We

then describe the classical approaches for text document classification. Sentence generation

is often possible thanks to language modeling, which is detailed in the last section, going from

statistical language models to neural network language models.

2.1 Neural Network Models for Natural Language Processing

Machine learning algorithms in NLP are traditionally based on linear models trained over very

high dimensional yet very sparse feature vectors. Inspired by the success of neural networks in

computer vision, nonlinear neural networks models have recently emerged for tackling NLP

problems. It, therefore, requires a paradigm shift in the way the models are dealing with the

features. Fully connected feed-forward neural networks learn over dense inputs, which need

to switch from classical sparse feature vectors to continuous word vector features, aka word

embeddings.

2.1.1 Mathematical Notations

We consider a neural network φθ(·), with parameters θ. Any feed-forward neural network with

L layers can be seen as a composition of functions φl
θ

(·), corresponding to each layer l :

φθ(·) =φL
θ(φL−1

θ (. . .φ1
θ(·) . . .)) . (2.1)

For NLP, the first layer is the embedding layer, the final layer is the output layer and the

in-between layer are called the hidden layers.

In the thesis, bold upper case letters represent matrices (X, Y, Z), and bold lower-case letters

represent vectors (a, b, c). Ai represents the i th row of matrix A, [A]i , j is the scalar at row

11

Chapter 2. Background

i and column j . For a vector v, we denote [v]i the scalar at index i in the vector. Unless

otherwise stated, vectors are assumed to be column vectors. We use [v1;v2] to denote vector

concatenation.

2.1.2 Feed-forward Neural Networks

Single-layer perceptron

The simplest neural network is the single-layer perceptron, which is a linear function of its

inputs x ∈Rd in
:

φθ = Wx+b (2.2)

where θ = {W,b} are the trainable parameters with W ∈Rd out×d in
the weight matrix, and b ∈Rd out

a bias term.

Multi-layer perceptron

Nonlinear problems are addressed by introducing a nonlinear hidden layer l :

φl
θ = Wl h(φl−1

θ)+bl (2.3)

where h(·) is a nonlinear function that is applied element-wise to the previous layer output

φl−1
θ

∈Rd l−1
(also called a nonlinearity or an activation function). Wl ∈Rd l×d l−1

and bl ∈Rd l

are the weight matrix and the bias term of the next linear transformation. Networks with more

than one hidden layer are usually named deep neural networks.

Output layer

A neural network outputs a d out dimensional vector. When d out = 1, such a network outputs

only a scalar and can be used for regression (the output corresponds to a score), or for binary

classification (the class depends on the sign of the output). For a k-class classification problem,

it outputs a d out = k > 1 dimensional vector where each dimension is associated with a class

(the maximal value corresponds to the predicted class). The output can also be interpreted as

a distribution over class assignments (all entries are positive and sum to one), when using a

softmax transformation of the output layer (see Section 2.3.3 for more details).

Common nonlinearities

Several nonlinear function h(·) exist. The choice is purely an empirical question.

12

2.1. Neural Network Models for Natural Language Processing

Sigmoid The sigmoid activation function σ(·) transforms each value x into the range [0,1].

σ(x) = 1

1+e−x (2.4)

Hyperbolic tangent (Tanh) The hyperbolic tangent transforms each value x into the range

[−1,1].

Tanh(x) = e2x−1

e2x+1 (2.5)

Hard-Tanh It is a “hard” version of the hyperbolic tangent. It has the advantage of being

slightly cheaper to compute, while leaving the generalization performance unchanged (Col-

lobert, 2004).

HardTanh(x) =

⎧⎪⎨
⎪⎩

−1 if x < 1

x if −1 ≤ x < 1

1 if x > 1

(2.6)

2.1.3 Transforming Words into Feature Vectors

When dealing with natural language, the input x encodes features such as words, part-of-

speech tags or other linguistic information. Conventionally, supervised lexicalized NLP ap-

proaches take a word and convert it to an index, which is then transformed into a feature

vector f using a one-hot representation. We consider a fixed-sized word vocabulary W . Given

a word wt ∈W , ft is a |W |-dimensional vector where all entries are zeros except at the t th

feature, in which the value is 1:

ft =
[

0 , 0 , 0 , . . . , 1 , . . . , 0 , 0 , 0

at index t

]T

∈R|W |. (2.7)

The core of neural network based models is to stop representing each feature as one-hot rep-

resentations and representing them instead as dense vectors, the so-called word embeddings.

Embedding layer

A layer is thus defined to transform the one-hot representations into word embeddings. Given a

sequence of T words {w1, w2, . . . , wT }, each word wt ∈W is embedded into a d wrd-dimensional

vector space, by applying the following operation:

φθ(wt) = Eft (2.8)

13

Chapter 2. Background

where the matrix E ∈Rd wrd×|W | represents all the word embeddings to be learned in this layer,

just as the other parameters of the network. In practice, we use a lookup table to replace this

computation with a simpler array indexing operation where Ewt ∈Rd wrd
corresponds to the

embedding of the word wt . This lookup table operation is then applied for each word in the

sequence. A common approach is to concatenate all resulting word embeddings:

φθ(w1, w2, . . . , wT) = [
Ew1 ; Ew2 ; . . . ; EwT

] ∈R(d wrd×T). (2.9)

This vector can then be fed to further neural network layers.

2.2 Document Classification

In document classification, we are given a description d ∈ D of a document, where D is

the document space; and a fixed set of classes Y = {y1, y2, . . . , ym}. Typically, the document

space D is represented as a high-dimensional space, the so-called bag-of-words model. Such

representations are then used to learn classification models or topic models.

2.2.1 Bag-of-words Model

With a bag-of-words model, a document is represented as the bag of its words. Documents

are first pre-processed for avoiding unnecessarily large feature vectors. Usual pre-processing

methods involve the filtering of meaningless words (e.g. it, a, the, that), reducing the number

of distinct words by only keeping word stems, and performing lowercase conversion. By

defining this word feature list W to consider, a document d ∈D is represented as a |W |-entry

vector vd where each dimension corresponds to a separate word:

vd = [
w1, w2, . . . , w|W |

]T . (2.10)

Each word wi ∈W can then transformed into a real value feature, in order to train classifiers

such as MaxEnt or SVM. The simplest approach is to use binary values (appearing or not in

the document):

wi =
⎧⎨
⎩0 if wi ∉ d

1 if wi ∈ d
. (2.11)

Another possibility is to use the frequency of the word wi in d , called term frequency (tfwi).

Some term weightings have also been defined to reflect how important a word is for a docu-

ment. A popular method is the term frequency-inverse document frequency (TF-IDF) model:

wi = tfwi × log
|D|

|{d ∈D|wi ∈ d}| , (2.12)

14

2.2. Document Classification

where

• tfwi is term frequency of word wi in document d (a local parameter),

• log |D|
|{d∈D|wi∈d}| is inverse document frequency (a global parameter). |D| is the total

number of documents in the document set;
∣∣{d ∈D|wi ∈ d}

∣∣ is the number of documents

containing the word wi .

2.2.2 Topic Models

In topic modeling, the objective is to discover the latent topics that occur in a collection of

documents. Using such techniques, documents are represented in much lower dimensional

spaces than with bag-of-words models while modeling the hidden semantic structures. These

representations are usually ideal for document indexing, but they can also be used as an

alternative to bag-of-words models for document classification. Topic models are either based

on probabilitic models (e.g. Latent Dirichlet Allocation), or can be derived from distributional

semantic modeling (e.g. Latent Semantic Analysis). Such latent variable models are approaches

to unsupervised learning.

Latent Dirichlet Allocation

The idea behind Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is to model documents as

a mixture of various topics, where a topic is defined to be a distribution over a fixed vocabulary

of words, with a Dirichlet prior. Assuming that the collection of documents contains K topics,

each document exhibits these topics with different proportions. More formally, LDA defines a

hidden variable model of documents. The observed data are the words of each document and

the hidden variables represent the latent topical structure, i.e., the topics themselves and how

each document exhibits them. The interaction between the observed documents and hidden

topic structure emerges from the probabilistic generative process associated with LDA, the

imaginary random process that is assumed to have produced the observed data.

Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997) measures occurrence frequency

of words in documents to discover a set of hidden topics (i.e. concepts). LSA write frequencies

as a term-document matrix; it is a sparse matrix whose rows correspond to terms and whose

columns correspond to documents. Each entry of the matrix is then transformed using a

weighting scheme, such as TF-IDF. A mathematical technique called singular value decom-

position (SVD) is then used to reduce the number of rows while preserving the similarity

structure among columns. After selecting the K largest singular values, each document is then

expressed as a K -dimensional vector, where each entry gives the degree of participation of the

document in the corresponding topic.

15

Chapter 2. Background

2.2.3 Classification Models

Given a training set of m hand-labeled documents (d1,c1), . . . , (dm , ym), we wish to learn a

classifier γ that maps documents to classes:

γ :D �→Y . (2.13)

This type of learning is called supervised learning. Successful classifiers for text classification

are Naive Bayes (NB), Maximum Entropy (MaxEnt), and Support Vector Machine (SVM).

Naive Bayes Classifier

Naive Bayes is a probabilistic learning method which has shown to work well on text classi-

fication (Manning and Schütze, 1999). The probability of a document d being in class y is

computed as:

P (y |d) ∝ P (y)
∏

wi∈d
P (wi |y) (2.14)

where P (wi |y) is the conditional probability of word wi occurring in a document of class y .

P (y) is the prior probability of a document occurring in class y . Bayesian classifiers attempt to

build a probabilistic classifier based on modeling the underlying word features in different

classes. The classification of text documents is then based on the posterior probability of

the documents belonging to the different classes on the basis of the word presence in the

documents. Given a new unlabeled document d , the objective is to find the best class for this

document, which is the most likely or maximum a posteriori (MAP) class yMAP:

yMAP = argmax
y∈Y

P̃ (y |d) = argmax
y∈Y

P̃ (y)
∏

wi∈d
P̃ (wi |y) (2.15)

where the probabilities P̃ are estimated from the training set.

Maximum Entropy Classifier

The idea behind Maximum Entropy (MaxEnt) models is that one should prefer the most

uniform models that satisfy a given constraint (Nigam, 1999). Unlike the Naive Bayes classifier,

the MaxEnt classifier does not assume that the features are conditionally independent of each

other. Additional features such as bigrams and phrases can thus be included in the model

without worrying about features overlapping.

We define a feature fi (d , y) which is any real-valued function between the document d and

the class y . The expected value of feature fi with respect to the empirical distribution P̃ (d , y)

16

2.2. Document Classification

is:

∑
d∈D

∑
y∈Y

P̃ (d , y) fi (d , y). (2.16)

The probability P̃ (d) of the document d to be chosen from the training data is:

P̃ (d) = 1

|D| . (2.17)

Because each document from the training data has been labeled, it is clear that:

P̃ (y |d) =
⎧⎨
⎩0 if y 	= y(d)

1 if y = y(d)
, (2.18)

where y(d) ∈Y denotes the class which is assigned to d by the expert. The expected value of

feature fi in Equation 2.16 can be rewritten as follows:

1

|D|
∑

d∈D
fi
(
d , y(d)

)
(2.19)

The expected value of feature fi with respect to the model P (y |d) is equal to:

∑
d∈D

∑
y∈Y

P̃ (d)P (y |d) fi (d , y). (2.20)

Maximum entropy allows us to constrain the expected value to be the equal to the empirical

value:

1

|D|
∑

d∈D
fi
(
d , y(d)

)= 1

|D|
∑

d∈D

∑
y∈Y

P (y |d) fi (d , y). (2.21)

Then, it can be shown that if we find the
{
λ1, . . . ,λn

}
parameters which maximize the dual

problem, the probability given a document d to be classified as y is equal to:

P (y |d) = exp
(∑

i λi fi (d , y)
)

∑
y∈Y exp

(∑
i λi fi (d , y)

) (2.22)

To classify a new document (given that the lambda parameters have been estimated), a MAP

decision rule is used to select the category with the highest probability.

Support Vector Machines

Support Vector Machines (SVM) are a learning tool for solving two-class pattern recognition

problem (Cortes and Vapnik, 1995). Given a set of training documents (v1, y1), . . . , (vm , ym)

with vi ∈R|W | and yi ∈ {−1;1}, we search for a separating hyper-plane that divides positive and

17

Chapter 2. Background

negative samples from each other with maximal margin. A SVM is trained via the following

optimization problem:

argmin
w

1

2
‖w‖2 +C

∑
i
ξi , (2.23)

with constraints

yi (vi ·w+b) ≥ 1−ξi ξi ≥ 0, ∀i , (2.24)

where weight vector w and constant b are learned, and C is a penalty parameter. Joachims

(1998) sums up why SVM are appropriate for learning text classifiers:

• High dimensional input space: SVM use over-fitting protection.

• Few irrelevant features: SVM do not need an aggressive feature selection.

• Document vectors are sparse: each document vector vd contains only few entries which

are not zero.

• Most text categorization problems are linearly separable.

There are nonlinear extensions to the SVM, but the linear kernel usually outperforms nonlinear

kernels in text classification (Yang and Liu, 1999).

In the multiclass classification framework, the standard approach is to reduce the single multi-

class problem into multiple binary classification problems. Two strategies can be envisaged

for building such binary classifiers:

1. one-versus-all which distinguishes between one of the classes and the rest,

2. one-versus-one which distinguishes between every pair of classes.

2.2.4 Evaluation Metrics

For classification, the terms true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN) compare the results of the classifier under test with trusted external

judgment. The terms positive and negative refer to the classifier’s prediction, while true and

false refer to the external judgment’s prediction.

18

2.3. Language Models

Accuracy

The accuracy is the proportion of true results (both true positives and true negatives) among

the total number of cases examined.

Accuracy = TP+TN

TP+FP+TN+FN
(2.25)

Precision

Precision measures the exactness of a classifier. A higher precision means less false positives,

while a lower precision means more false positives. This is often at odds with recall, as an easy

way to improve precision is to decrease recall.

Precision = TP

TP+FP
(2.26)

Recall

Recall measures the completeness, or sensitivity, of a classifier. Higher recall means less false

negatives, while lower recall means more false negatives. Improving recall can often decrease

precision because it gets increasingly harder to be precise as the sample space increases.

Recall = TP

TP+FN
(2.27)

F-1 score

Precision and recall can be combined to produce a single metric known as the F-1 score. It can

be interpreted as a weighted average of the precision and recall. The F-1 score is the harmonic

mean of precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall
(2.28)

2.3 Language Models

Language modeling (LM) is a central task in NLP for problems involving natural language

generation. Given a sentence s = w1, . . . , wT composed of T words from a vocabulary W , a

19

Chapter 2. Background

language model estimates:

P (s) =
T∏

t=1
P (wt |w1, . . . , wt−1) . (2.29)

2.3.1 N -gram Models

Let ct = wt−(n−1), . . . , wt−1 be the sequence of n −1 context words preceding wt ∈ s. In an

n-gram language model, Equation 9.1 is approximated as

P (s) ≈
T∏

t=1
P (wt |ct) , (2.30)

assuming an order n Markov property. Typically, n is taken to be two or three, corresponding

to a bigram or trigram model, respectively. The probabilities P (wt |ct) are estimated over a

large corpus of text (called training data),

PML(wt |ct) = P (ct wt)

P (ct)
(2.31)

= n(ct wt)∑
wt

n(ct wt)
, (2.32)

where n(α) denotes the number of times the string α occurs in the text. This is called the max-

imum likelihood (ML) estimates for P (wt |ct). Although the maximum likelihood estimation is

intuitive, it becomes poor with a small training data (Chen and Goodman, 1996).

2.3.2 Smoothing Models

When the amount of training data is insufficient, there are many events α such that n(α) = 0 in

Equation 2.31. The ML estimate is therefore PML(wt |ct) = 0. Even if an event has never been

observed in training data, it does not mean it will never occur at inference time. Smoothing

methods have thus been introduced to deal with data sparsity.

Add-one smoothing

Also called Laplace smoothing (Laplace, 1820), this simple smoothing technique just adds one

to all the counts:

P+1(wt |ct) = n(ct wt)+1

n(ct)+|W | (2.33)

It prevents zero probabilities, but tends to reassign too much mass to unseen events.

20

2.3. Language Models

Good-Turing estimation

The Good-Turing estimate (Good, 1953) is central to many smoothing techniques. The idea is

to re-estimate the amount of probability mass of n-grams with zero or low counts by looking

at the number of n-grams with higher counts. Let nr be the number of n-grams that occur r

times, an adjusted count r∗ is computed as follows:

r∗ = (r +1)
nr+1

nr
. (2.34)

For an n-gram ct wt with r counts, this count is then converted into a probability:

PGT (ct wt) = r∗

N
, (2.35)

where N =∑∞
r=1 r nr . In practice, the Good–Turing estimate is not used by itself for n-gram

smoothing, because it does not include the combination of higher-order models with lower-

order models necessary for good performance.

Interpolation methods

Higher and lower order n-gram models have different strengths and weaknesses. High-order

n-grams are sensitive to more context, but have sparse counts. Low-order n-grams consider

only very limited context, but have robust counts. The idea with interpolation methods is to

combine them. For instance in a trigram model, the estimate is defined as follows:

P (wt |wt−2, wt−1) =λ1×PML(wt |wt−2, wt−1)+λ2×PML(wt |wt−1)+λ3×PML(wt) , (2.36)

where λ1, λ2 and λ3 are three additional parameters with 0 ≤λi ≤ 1 and
∑

i λi = 1. The λi can

be estimated on some held-out data set using EM algorithms.

Kneser–Ney smoothing

Kneser-Ney (KN) smoothing is considered as the most effective method for both higher and

lower order n-gram models. This method is optimized for giving high probability to lower-

order model only when count is small or zero in higher-order model. Considering the bigram

San Francisco, we want to give Francisco a low unigram probability because it mostly occurs

after San. For each unigram wt , we then count the number of different words that it follows,

normalized by the number of words preceding all words:

PCON T I NU AT ION (wt) =
∣∣{wt−1 : n(wt−1wt) > 0}

∣∣∑
w ′

t

∣∣{w ′
t−1 : n(w ′

t−1w ′
t) > 0}

∣∣ . (2.37)

21

Chapter 2. Background

For bigrams, the estimate is defined as follows:

PK N (wt |wt−1) = max
(
n(wt−1wt)−δ,0

)
n(wt−1)

+λwt−1 PCON T I NU AT ION (wt) . (2.38)

The parameter δ is a constant which denotes the discount value subtracted from the count

of each n-gram, usually between 0 and 1. λ is a normalizing constant which defines the

probability mass that have been discounted:

λwt−1 =
δ

n(wt−1)

∣∣{wt : n(wt−1wt) > 0; ∀wt ∈W}
∣∣ . (2.39)

For n-grams, we have by recursion:

PK N (wt |ct) = max
(
n(ct wt)−δ,0

)
n(ct)

+ δ

n(ct)

∣∣{w ′
t : n(ct w ′

t) > 0}
∣∣PK N (wt |wt−(n−2), . . . , wt−1) .

(2.40)

2.3.3 Neural Network Language Models

Neural neural language models (NNLM) address the n-gram data sparsity issue through

parameterization of words as vectors (word embeddings) and using them as inputs to a neural

network (Bengio et al., 2003). By applying the softmax function (Bridle, 1990) to the output

layer of the network with parameters θ, the conditional distribution corresponding to context

ct , P (wt |ct), is defined as

Pθ(wt |ct) = exp
(
φθ(wt ,ct)

)
∑|W |

i=1 exp
(
φθ(wi ,ct)

) = exp
(
φθ(wt ,ct)

)
Zθ(ct)

, φθ ∈R|W |, (2.41)

where φθ(wt ,ct) is the output score that quantifies the compatibility of word wt with context

ct , and Zθ(ct) is the partition function that normalizes this into a probability distribution.

Word embeddings obtained through NNLM exhibit the property whereby semantically close

words are likewise close in the induced vector space. This feature will be discussed in more

details in Section 3.2.

Maximum likelihood learning

NNLM are trained by maximizing a likelihood over the training data, using stochastic gradient

descent. This learning procedure leads to optimizing cross-entropy between the target proba-

bility distribution (e.g., the target word that should be predicting), and the model predictions.

We can express the log-likelihood for a single word/context observation (wt ,ct) as follows:

L(wt ,ct ;θ) =φθ(wt ,ct)− log Zθ(ct) (2.42)

22

2.3. Language Models

Because it requires computing φθ(wt ,ct) for all words in the vocabulary W , maximum likeli-

hood training of neural language models is tractable but tends to be very slow and expensive.

2.3.4 Recurrent Neural Networks

Figure 2.1 – Simple recurrent neural network (Mikolov et al., 2010).

Unlike standard feed-forward neural networks, recurrent networks retain a state that can

represent information from an arbitrarily long context window. This feature can be useful in

language generation for modeling long-term dependencies.

Figure 2.1 illustrate a simple recurrent neural network (RNN) (Mikolov et al., 2010). The input

layer xt represents input word at time t , yt is the output layer, and the hidden layer ht (also

called context layer or state) maintains a representation of the sentence history. The layers are

connected with weight matrices θ = {U,W,V}. The values in the hidden and output layers are

computed as follows:

ht =σ
(
Uxt +Wht−1

)
, (2.43)

yt = g
(
Vht

)
. (2.44)

where σ(·) is the sigmoid activation function (see Section 2.1.2), and g (z) is the softmax

function:

g (zm) = ezm∑
k ezk

. (2.45)

23

Chapter 2. Background

As for NNLM, the model is trained using standard backpropagation to maximize the data

conditional likelihood:

L(θ) =∏
t

P
(
yt |x1 . . .xt

)
(2.46)

Long Short-Term Memory

Figure 2.2 – Long Short-term Memory Cell (Graves, 2013).

In practice, standard RNN encounter difficulties for storing information about long-past in-

puts (Hochreiter et al., 2001). Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,

1997) have therefore been introduced to provide a solution to the exploding and vanishing

gradient problem (Bengio et al., 1994).

Figure 2.2 illustrates a single LSTM memory cell (Graves, 2013). Such LSTM cell contains gates

that determine when the input is significant enough to remember, when it should continue

to remember or forget the value, and when it should output the value. The objective of this

memory cell is to substitute the hidden layer in traditional RNN. The hidden layer is thus

24

2.3. Language Models

implemented by the following composite functions:

it =σ
(
Wxi xt +Whi ht−1 +Wci ct−1

)
(2.47)

ft =σ
(
Wx f xt +Wh f ht−1 +Wc f ct−1

)
(2.48)

ct = ft ct−1 + it Tanh
(
Wxc xt +Whc ht−1

)
(2.49)

ot =σ
(
Wxoxt +Whoht−1 +Wcoct

)
(2.50)

ht = ot Tanh(ct) (2.51)

where σ(·) and Tanh(·) are activation functions (see Section 2.1.2), and i, f, o and c are re-

spectively the input gate, forget gate, output gate, cell and cell input activation vectors, all

of which are the same size as the hidden vector h. The weight matrix subscripts have the

obvious meaning, for example Whi is the hidden-input gate matrix, Wxo is the input-output

gate matrix, etc. The weight matrices from the cell to gate vectors (e.g.Wci) are diagonal, so

element m in each gate vector only receives input from element m of the cell vector. The bias

terms (which are added to i , f , c and o) have been omitted for clarity.

2.3.5 Evaluation Metrics

Perplexity

A very common method to measure the quality of a language model is to evaluate the perplexity

of the model on some held-out data. Given a new test sentence s = w1, . . . , wT , we can measure

its probability P (s) under the language model.

The cross-entropy over a sentence is then:

H(P) =− 1

T
logP (s) (2.52)

=− 1

T

T∑
t=1

logP (wt |w1, . . . , wt−1)

The perplexity for that sentence is 2H(P).

Perplexity can be interpreted as a measure of on average how many different equally most

probable words can follow any given word. Lower perplexities represent better language

models. However, evaluating language models only with perplexity is not optimal, as data may

not be drawn from the same distribution than the test set in real world applications.

BLEU metric

BLEU (bilingual evaluation understudy) is an algorithm that has been first introduced for

evaluating machine translation systems (Papineni et al., 2002). But this measure can also

be used for comparing candidate sentences against reference sentences in a same language.

25

Chapter 2. Background

BLEU is about n-gram precision. It measures the proportion of n-grams in the candidate text

that also appear in a reference text.

To deal with over-generation of frequent words, BLEU uses a clipped notion of precision that

only accepts as many instances of a word as actually appear in some reference text. Give a set

of candidate sentences C ∈ {Candidates}, a modified n-gram precision score pn is computed

as follows:

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countcl i p (n-gram)

∑
C ′∈{Candidates}

∑
n-gram′∈C ′

Count (n-gram′)
, (2.53)

where Countcl i p = min
(
Count , M ax_Re f er ence_Count

)
.

A high-scoring candidate sentence must also match the reference sentence in length. Can-

didate sentences longer than their references are already penalized by the modified n-gram

precision measure. Consequently, only a brevity penalty (BP) factor is introduced. Let c be the

length of the candidate sentence and r be the effective reference corpus length. The brevity

penalty is computed as follows:

BP =
⎧⎨
⎩1 if c > r

e1−r /c if c ≤ r
. (2.54)

Then, the BLEU score is the geometric mean of different sizes of n-gram (usually up to N = 4):

BLEU = BP ·exp
(1

N

N∑
n=1

log pn
)
. (2.55)

26

Part IBuilding Word Embeddings from
Large Text Corpora

27

3 State-of-the-art Word Representations

In this chapter, we introduce the state-of-the-art methods for computing word embeddings.

Clustering techniques have been employed in the past to obtain word representations in

discrete form. A first section is devoted to describing Brown clustering which is the main

clustering algorithm for word representations. More recently, models based on NNLM have

been proposed to compute distributed word representations. In a second section, we present

the major methods going from the pioneer work of Collobert and Weston (2008) to the most

popular technique, the Skip-gram model from Mikolov et al. (2013a).

3.1 Brown Clustering

This algorithm is first introduced in (Brown et al., 1992) with the idea of partitioning a corpus

vocabulary into clusters, where clusters (ideally) include semantically similar words.

Initially, each word in the vocabulary is considered to be in its distinct cluster. The algorithm

then repeatedly merges the pair of clusters which causes the smallest decrease in the likelihood

of the text corpus, according to a class-based bigram language model defined on the word

clusters (Liang, 2005), as illustrated in Figure 3.1.

Given a sequence of words w1, . . . , wT ∈W and a partition function C of the vocabulary into k

c1 c2 c3 ct cT

w1 w2 w3 wt wT

Figure 3.1 – The class-based bigram language model, which defines the quality of a clustering,
represented as a Bayesian network.

29

Chapter 3. State-of-the-art Word Representations

apple pear Apple IBM bought run of in

000 001 010 011 100 101 110 111

00 01 10 11

0 1

Figure 3.2 – An example of a Brown word-cluster hierarchy. Each node in the tree is labeled
with a bit string indicating the path from the root node to that node, where 0 indicates a left
branch and 1 indicates a right branch.

classes, the likelihood model is defined as

P (w1, . . . , wT) =
T∏

t=1
P
(
wt |C (wt)

)
P
(
C (wt)|C (wt−1)

)
. (3.1)

More conveniently,

logP (w1, . . . , wT) =
T∑

t=1
logP

(
wt |C (wt)

)
P
(
C (wt)|C (wt−1)

)
. (3.2)

Let n(w, w ′) be the number of times that word w precedes w ′ in the corpus, and n(w) the

number of times we see word w . The quality of a cluster C is measured as

Quality(C) = 1

T

T∑
t=1

logP
(
C (wt)|C (wt−1)

)
P
(
wt |C (wt)

)
= ∑

w,w ′

n(w, w ′)
T

logP
(
C (w ′)|C (w)

)
P
(
w ′|C (w ′)

)

= ∑
w,w ′

n(w, w ′)
T

log
n
(
C (w),C (w ′)

)
n
(
C (w)

) n(w ′)
n
(
C (w ′)

)
= ∑

w,w ′

n(w, w ′)
T

log
n
(
C (w),C (w ′)

)×T

n
(
C (w)

)×n
(
C (w ′)

) + ∑
w,w ′

n(w, w ′)
T

log
n(w ′)

T

=∑
c,c ′

n(c,c ′)
T

log
n(c,c ′)×T

n(c)×n(c ′)
+∑

w ′

n(w ′)
T

log
n(w ′)

T

=∑
c,c ′

P (c,c ′) log
p(c,c ′)

p(c)×p(c ′)
+∑

w
P (w) logP (w)

= I (C)−H

(3.3)

where P (c,c ′) = n(c,c ′)
T , P (w) = n(w)

T and P (c) = n(c)
T . The first term I (C) is the mutual informa-

tion between adjacent clusters and the second term H is the entropy of the word distribution.

30

3.2. Through Neural Network Language Models

At the end of the algorithm, we obtain a hierarchy of word types which can be represented as a

binary tree as in Figure 3.2. Within this tree, each word is uniquely identified by its path from

the root, and this path can be compactly represented with a bit string.

3.2 Through Neural Network Language Models

Word embeddings can be induced using neural network language models (NNLM), which

use neural networks as the underlying predictive model. However, training of NNLM is slow,

scaling as the size of the vocabulary for each model computation (see Section 2.3.3). On

the other hand, for feature learning, we do not necessarily need a full probabilistic model.

In recent years, several authors have thus proposed to eliminate that linear dependency on

vocabulary size and allow scaling to very large training corpora.

3.2.1 Pairwise Ranking Approach

Collobert and Weston (2008) consider a standard NNLM, but they train the model to discrim-

inate a two-class classification task: if the word wt in the middle of a sequence of words is

related to its context ct or not. By considering all possible sequences of words from the corpus,

they build a training set of all context/word pairs (wt ,ct) ∈ T . Those pairs are the positive

examples. A negative example is then the same sequence but where the middle word wt has

been replaced by a random word wi ∈W , with wi 	= wt .

They train this problem with a ranking-type cost:

L(θ) = ∑
(wt ,ct)∈T

|W |∑
i=1

wi 	=wt

max
(
0,1−φθ(wt ,ct)+φθ(wi ,ct)

)
, (3.4)

where W is the vocabulary of words, and φθ is the scoring function without the softmax

activation function. φθ(wi ,ct) is thus the score for a corrupted sequence where the middle

word is replaced by the random word wi .

3.2.2 Scalable Log-Bilinear Model

In Mnih and Hinton (2007), the authors introduce a purely linear NNLM. Given a context ct ,

the model combines the embeddings of the n −1 context words:

φ2
θ(ct) =

n−1∑
i=1

Ciφ1
θ(wi) , (3.5)

where Ci is the weight matrix associated with the context position i , and φ1
θ

(·) is the embedding

layer, as described in Section 2.1.3. It then learns a linear model to predict the embedding of

31

Chapter 3. State-of-the-art Word Representations

the next word wt . The similarity between the context embedding and the embedding for each

word wt in the vocabulary is computed using the inner product:

φθ(wt ,ct) =φ2
θ(ct) ·φ1

θ(wt)+bwt , (3.6)

where bwt is the bias for word wt , which is used to capture the context-independent word

frequency. The softmax activation function can then be used to obtain the distribution of

the next word P (wt |ct). Best word embeddings are obtained by learning high-dimensional

embeddings from very large quantities of data, which makes scalability of the training method

a critical factor. The same authors have thus proposed two methods for scaling up to a large

vocabulary, with hierarchical softmax or noise-contrastive estimation.

Hierarchical Softmax

Based on the hierarchical model from Morin and Bengio (2005), Mnih and Hinton (2009)

propose to speed up this model by using a hierarchy to exponentially filter down the number

of computations that are performed. The model, combined with this optimization, is called

the hierarchical log-bilinear (HLBL) model. As in Brown clustering described in Section 3.1,

this model organizes the output vocabulary into a binary tree where the leaves are the words.

This allows each word to be represented by a binary string which it is called a code. At each

node, the HLBL model then uses a probabilistic model for making the decisions. Each of the

non-leaf nodes in the tree is represented with an embedding that is used for discriminating

the words in the left sub-tree form the words in the right sub-tree of the node. The probability

of the next word being wt is the probability of making the sequences of binary decisions

specified by the word’s code, given the context. Since the probability of making a decision

at a node depends only on the context embedding and the embedding for that node, the

probability of the next word is expressed as a product of probabilities of the binary decisions:

P (wt |ct) =∏
i

P (di |qi ,ct) , (3.7)

where di is the i th digit in the code for word wt , and qi is the embedding for the i th node in

the path corresponding to that code. The probability of each decision is given by:

P (di |qi ,ct) =σ
(
φ2
θ(ct) ·qi +bi

)
, (3.8)

where σ(x) is the logistic function and φ2
θ

(ct) is the context embedding computed using

Equation 3.5. bi in the equation is the node’s bias that captures the context-independent

tendency to visit the left child when leaving this node. If the tree is perfectly balanced, this can

reduce the complexity from O(V) to O(logV).

32

3.2. Through Neural Network Language Models

Noise-Contrastive Estimation

Noise-Contrastive Estimation (NCE) is another approach which enables fast training without

the complexity of working with tree-structured models, such as hierarchical softmax (Mnih and

Teh, 2012). It reduces the language model estimation problem to the problem of estimating

the parameters of a probabilistic binary classifier that uses the same parameters to distinguish

samples from the empirical distribution from samples generated by the “noise” distribution

Q (Gutmann and Hyvärinen, 2012). In practice, Q is the empirical context-independent (i.e.

unigram) distribution, Q(w). We denote P̃ (wt |ct) and P̃ (c) the empirical distributions. We are

interested in fitting the context-dependent Pθ(wt |ct) to P̃ (wt |ct). The two-class training data

is generated as follows:

1. sample a context ct from P̃ (c),

2. sample one “true” sample from P̃ (wt |ct), with auxiliary label D = 1 indicating the data

point is drawn from the true distribution,

3. sample k “noise” samples from Q(w), with auxiliary label D = 0 indicating these data

points are noise.

Thus, given ct , the joint probability of (d , wt) in the two-class data has the form of the mixture

of two distributions:

P (d , wt |ct) =
⎧⎨
⎩

k
1+k ×Q(w) if d = 0

1
1+k × P̃ (wt |ct) if d = 1

. (3.9)

Using the definition of conditional probability, this can be turned into a conditional probability

of d having observed wt and ct :

p(D = 0|ct , wt) =
k

1+k ×Q(w)
1

1+k × P̃ (wt |ct)+ k
1+k ×Q(w)

= k ×Q(w)

P̃ (wt |ct)+k ×Q(w)
(3.10)

p(D = 1|ct , wt) = P̃ (wt |ct)

P̃ (wt |ct)+k ×Q(w)
. (3.11)

Note that these probabilities are written in terms of the empirical distribution.

NCE replaces the empirical distribution P̃ (wt |ct) with the model distribution Pθ(wt |ct), and θ

is chosen to maximize the conditional likelihood of the “proxy corpus” created as described

above. To avoid the expense of evaluating the partition function, NCE makes two further

assumptions:

1. it proposes partition function value Z (ct) be estimated as parameter zct (thus, for every

33

Chapter 3. State-of-the-art Word Representations

empirical ct , classic NCE introduces one parameter);

2. for neural networks with lots of parameters, it turns out that fixing zct = 1 for all ct is

effective (Mnih and Teh, 2012). This latter assumption both reduces the number of

parameters and encourages the model to have “self-normalized” outputs (i.e., Z (ct) ≈ 1).

Consequently, the normalizing factor from Equation 2.3.3 can be dropped, and we simply use

exp
(
φθ(wt ,ct)

)
in place of Pθ(wt |ct) during training. Making these assumptions, we can now

write the conditional likelihood of being a noise sample or true distribution sample in terms

of θ as

P (D = 0|ct , wt) = k ×Q(w)

exp
(
φθ(wt ,ct)

)+k ×Q(w)

= k ×Q(w)(
k ×Q(w)

)
×
(

exp
(
φθ(wt ,ct)

)
k×Q(w) +1

)
= 1

1
k×Q(w) exp

(
φθ(wt ,ct)

)+1

= 1

exp
(
φθ(wt ,ct)− log

(
k ×Q(w)

))+1

= 1− 1

1+exp
(
−φθ(wt ,ct)+ log

(
k ×Q(w)

))
= 1−σ

(
Δφθ(wt ,ct)

)
(3.12)

p(D = 1|ct , wt) = exp
(
φθ(wt ,ct)

)
exp

(
φθ(wt ,ct)

)+k ×Q(w)

= exp
(−φθ(wt ,ct)

)×exp
(
φθ(wt ,ct)

)
exp

(−φθ(wt ,ct)
)× (

exp
(
φθ(wt ,ct)

)+k ×Q(w)
)

= 1

1+exp
(−φθ(wt ,ct)

)×k ×Q(w)

= 1

1+exp
(
−φθ(wt ,ct)+ log

(
k ×Q(w)

))
=σ

(
Δφθ(wt ,ct)

)
, (3.13)

where σ(x) is the logistic function and Δφθ(wt ,ct) =φθ(wt ,ct)−log
(
k×Q(w)

)
is the difference

in the scores of word wt under the model and the (scaled) noise distribution. The scaling

factor k in front of Q(w) accounts for the fact that noise samples are k times more frequent

than data samples.

We now have a binary classification problem with parameters θ that can be trained to maximize

34

3.2. Through Neural Network Language Models

conditional log-likelihood of the training set T , with k negative samples chosen:

LNC Ek =
∑

(wt ,ct)∈T

(
logP (D = 1|ct , wt)+kEwi∼Q

[
logP (D = 0|ct , wi)

])
. (3.14)

Unfortunately, the expectation of the second term in this summation is still a difficult summa-

tion – it is k times the expected log probability (according to the current model) of producing

a negative label under the noise distribution over all words in W in a context ct . We still have

a loop over the entire vocabulary. The final step is therefore to replace this expectation with its

Monte Carlo approximation:

LMC
NCEk

= ∑
(wt ,ct)∈T

(
logP (D = 1|ct , wt)+k ×

k∑
i=1,wi∼Q

1

k
× logP (D = 0|ct , wi)

)

= ∑
(wt ,ct)∈T

(
logP (D = 1|ct , wt)+

k∑
i=1,wi∼Q

logP (D = 0|ct , wi)

)

LMC
NCEk

(θ) = ∑
(wt ,ct)∈T

(
logσ

(
Δφθ(wt ,ct)

)+ k∑
i=1,wi∼Q

log
(
1−σ

(
Δφθ(wi ,ct)

)))
. (3.15)

This objective is maximized when the model assigns high probabilities to the real words, and

low probabilities to noise words. Technically, this is called Negative Sampling, and there is good

mathematical motivation for using this loss function. The updates it proposes approximate

the updates of the softmax function in the limit. But computationally it is especially appealing

because computing the loss function now scales only with the number of noise words that we

select (k), and not all words in the vocabulary (W). This makes it much faster to train.

3.2.3 Skip-gram Model

The Skip-gram model is also a purely linear NNLM (Mikolov et al., 2013a). Given a training

sample (wt ,ct), the model predicts source context-words wi ∈ ct from the target word wt

(usually the word in the middle of a sequence):

∑
wi∈ct

logP (wi |wt) . (3.16)

By defining two embedding layers, an input embedding layer φin
θ

and an output embedding

layer φout
θ

, a score between a context word wi and a target word wt is computed with an inner

product:

φθ(wt , wi) =φin
θ (wt) ·φout

θ (wi) . (3.17)

35

Chapter 3. State-of-the-art Word Representations

Negative Sampling

For training the Skip-gram, the authors use a variation of NCE, where the conditional proba-

bilities are defined as follows:

P (D = 0|wi , wt) = 1

φθ(wt , wi)+1
=σ

(−φθ(wt , wi)
)

(3.18)

P (D = 1|wi , wt) = φθ(wt , wi)

φθ(wt , wi)+1
=σ

(
φθ(wt , wi)

)
. (3.19)

The objective to maximize is thus defined as

LNEGk (θ) = ∑
(wt ,ct)∈T

∑
wi∈ct

(
logσ

(
φθ(wt , wi)

)+ k∑
j=1,w j∼Q

logσ
(−φθ(wt , w j)

))
. (3.20)

This negative sampling does not have the same asymptotic consistency guarantees that NCE

has, but it works well for learning word embeddings.

Sub-Sampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times

(e.g., “in”, “the”, and “a”). Such words usually provide less information value than the rare

words. To counter the imbalance between the rare and frequent words, Mikolov et al. (2013b)

introduce a sub-sampling method that randomly removes words wt that are more frequent

than some threshold t with a probability

P (wt) = 1−
√

t

tfwt

, (3.21)

where tfwt is the word frequency of wt in the corpus. The recommended value for t is typically

around 10−5. Although this sub-sampling formula has been chosen heuristically, it works

well in practice. It accelerates learning and seems to help learning better embeddings for rare

words.

36

4 Word Embeddings through Hellinger
PCA

Building word embeddings has always generated much interest for linguists. Popular ap-

proaches such as Brown clustering algorithm (see Section 3.1) have been used with success in

a wide variety of NLP tasks (Schütze, 1995; Koo et al., 2008; Ratinov and Roth, 2009). Recently,

distributed approaches based on neural network language models (NNLM) have revived the

field of learning word embeddings (Collobert and Weston, 2008; Huang and Yates, 2009; Turian

et al., 2010; Collobert et al., 2011; Mikolov et al., 2013b; Mnih and Kavukcuoglu, 2013). How-

ever, a neural network architecture can be hard to train. Finding the right hyper-parameters to

tune the model is often a challenging task and the training phase is in general computationally

expensive.

A NNLM learns word embeddings by predicting the words among the vocabulary that are

likely to appear in the surrounding of sequences of words. More formally, it learns the word

co-occurrence probability distributions. Instead, simply counting words on a large corpus

of unlabeled text can be performed to retrieve those word distributions and to represent

words (Turney and Pantel, 2010). In this chapter, we thus show that similar word embeddings

can be computed using the word co-occurrence statistics and a well-known dimensionality

reduction operation such as Principal Component Analysis (PCA). In contrast with NNLM,

PCA is a simple, non-parametric method of extracting relevant information from confusing

data sets. Previous work has therefore attempted to build word representations with such

techniques with varying degrees of success (Schütze, 1993; Bengio et al., 2001). We claim that,

assuming an appropriate metric, this simple spectral method can however generate word

embeddings as good as with NNLM architectures.

4.1 Word Co-Occurrence Probabilities

“You shall know a word by the company it keeps" (Firth, 1957). Keeping this famous quote in

mind, word co-occurrence probabilities are computed by counting the number of times each

37

Chapter 4. Word Embeddings through Hellinger PCA

Figure 4.1 – A toy example illustrating that related words have similar word co-occurrence
probability distributions.

context word ct ∈D (where D ⊆W) occurs around a word wt ∈W :

P (ct |wt) = P (ct , wt)

P (wt)
= n(ct , wt)∑|D|

i=1 n(ci , wt)
, (4.1)

where n(ct , wt) is the number of times a context word ct occurs in the surrounding of the word

wt . The number of context words to consider around each word is variable and can be either

symmetric or asymmetric. A multinomial distribution of |D| classes (words) is thus obtained

for each word wt :

P (c1, . . . ,c|D||wt) = {
P (c1|wt), . . . ,P (c|D||wt)

}
. (4.2)

This distribution becomes less sparse when the window of context words is high.

For illustrative purposes, we denote both target and context vocabularies as follows

W =
{

cat,dog,cloud
}

, (4.3)

D =
{

breeds,computing,cover, food, is,meat,named,of
}

. (4.4)

We see in Figure 4.1 that related words (cat and dog) have similar word co-occurrence proba-

bilities, while a non-related word (cloud) has a completely different probability distribution

over this specific context vocabulary D.

Because we are facing discrete probability distributions, the Hellinger distance (Hellinger,

1909) seems appropriate to calculate similarities between these word representations.

38

4.2. Hellinger Distance

4.2 Hellinger Distance

Similarities between words can be derived by computing a distance between their correspond-

ing word distributions. Several distances (or metrics) over discrete distributions exist, such as

the Bhattacharyya distance, the Hellinger distance or Kullback-Leibler divergence. We chose

here the Hellinger distance for its simplicity and symmetry property (as it is a true distance).

Considering two discrete probability distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the

Hellinger distance is formally defined as:

H(P,Q) = 1�
2

√√√√ k∑
i=1

(
�

pi −�
qi)2 , (4.5)

which is directly related to the Euclidean norm of the difference of the square root vectors:

H(P,Q) = 1�
2
‖
�

P −
√

Q‖2 . (4.6)

Note that it makes more sense to take the Hellinger distance rather than the Euclidean distance

for comparing discrete distributions, as P and Q are unit vectors according to the Hellinger

distance (
�

P and
√

Q are units vector according to the
2 norm). The Hellinger distance thus

forms a bounded metric on the space of probability distributions over a given probability

space. The maximum distance 1 is achieved when P assigns probability zero to every set to

which Q assigns a positive probability, and vice versa. Finally, the Hellinger distance is related

to the Bhattacharyya coefficient (Bhattacharyya, 1943) BC (P,Q) as it can be defined as

H(P,Q) =
√

1−BC (P,Q) , (4.7)

The Bhattacharyya coefficient is another divergence-type measure which is defined as

BC (P,Q) =
k∑

i=1

�
pi qi . (4.8)

4.3 Experimental Setup

After building our word vector representations over the English Wikipedia, we use benchmark

datasets for evaluating them and selecting the right hyper-parameters accordingly.

4.3.1 Building Word Representations over Large Corpora

A large amount of text is necessary to build the word co-occurrence probability distributions.

Our English corpus is thus composed of the entire English Wikipedia1 (where all MediaWiki

1Available at http://download.wikimedia.org. We took the January 2014 version.

39

Chapter 4. Word Embeddings through Hellinger PCA

markups have been removed2). We consider lower case words to limit the number of words

in the vocabulary. Additionally, all occurrences of sequences of numbers within a word

are replaced with the special token “0”. The resulting text is tokenized using the Stanford

tokenizer3. The final dataset S contains about 1.6 billion words. As vocabulary W , we consider

all the words within our corpus which appear at least one hundred times. This results in a

191,268 words dictionary.

4.3.2 Evaluating Word Representations

Word analogies

The word analogy task consists of questions like, “a is to b as a∗ is to ?”. It was introduced

in Mikolov et al. (2013a) and contains 19,544 such questions, divided into a semantic subset

(SEM) and a syntactic subset (SYN). The 8,869 semantic questions are analogies about places,

like “Bern is to Switzerland as Paris is to ?”, or family relationship, like “uncle is to aunt as

boy is to ?”. The 10,675 syntactic questions are grammatical analogies, involving plural and

adjectives forms, superlatives, verb tenses, etc. To correctly answer the question, the model

should uniquely identify the missing term, with only an exact correspondence counted as a

correct match. With word vector representations, we thus want the hidden vector b∗ to be

similar to the vector b −a +a∗. The analogy question can be solved by optimizing:

argmax
b∗∈V

(
sim(b∗,b −a +a∗)

)
, (4.9)

where V is the question vocabulary excluding the question words b, a and a∗, and sim(·) is

a similarity measure (usually the cosine similarity measure). As the number of questions is

different in each category of analogy, the macro-averaged accuracy is reported for these two

tasks.

Word Similarities

Word vector representations are also evaluated on two word similarity datasets: the WordSimilarity-

353 (WS-353) Test Collection (Finkelstein et al., 2002) and the Stanford Rare Word (RW) (Lu-

ong et al., 2013). They both contain sets of English word pairs along with human-assigned

similarity judgments. WS-353 contains 353 word pairs of relatively common words, like com-

puter:internet or football:tennis. On the other hand, the RW dataset focuses on rare words.

It contains 2,034 pairs where one of the two words is rare or morphologically complex, such

as brigadier:general or cognizance:knowing. Performance is measured by Spearman’s rank

correlation coefficient.

2We used Wikipedia Extractor available at http://medialab.di.unipi.it/wiki/Wikipedia_Extractor.
3Available at http://nlp.stanford.edu/software/tokenizer.shtml

40

4.4. Analysis of the Context

4.4 Analysis of the Context

As regards the context, two main hyper-parameters are involved:

1. The type of context to use, i.e. which words are to be chosen for defining the context

dictionary D. Do we need all the words, the most frequent ones or, on the contrary, the

rare ones?

2. The context window size to consider, i.e. the number of context words ct to count

surrounding a given word wt (symmetric context window).

4.4.1 Type of Context

Several types of context vocabularies D are considered to build the word co-occurrence

probabilities. Mikolov et al. (2013b) have shown that better word representations can be

obtained by sub-sampling of the frequent words. We thus want to find the right balance

between frequent and rare words, while maintaining a reasonable number of context words in

D.

0.
1

0.
2

0.
5

1.
0

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(11) (64) (911) (6960) (31471) (132926)

Unigram probability distribution (with word rank)

0.01 0.001 1e−04 1e−05 1e−06 1e−07

Figure 4.2 – Cumulative probability distribution of unigrams that occur at least a hundred
times in the English Wikipedia.

Figure 4.2 reports the analysis of the unigram distribution of our corpus of text, with

P (wt) = n(wt)

|S| , ∀wt ∈W . (4.10)

We see that the 64 most frequent words with P (wt) > 10−3 represent about half of the entire

41

Chapter 4. Word Embeddings through Hellinger PCA

corpus. These words are considered as stop words and can be removed from the context

vocabulary. Because the choice of stop words is arbitrary, this list can also include words with

P (wt) > 10−4 which represent less than a thousand words (911). By selecting all words with

P (wt) > 10−6, we see that we cover about 95% of our corpus. The size of context vocabulary

becomes however quite large, as 31,471 words are above this threshold. A practical alternative

is therefore to select words with P (wt) > 10−5, which already covers about 87% of the corpus.

Finally, we observe a long tail of rare words which results in very sparse word representation

when selecting large context vocabularies.

For a complete analysis, we thus define the following types of context vocabularies:

1. Only the most frequent words, where we consider all words with P (wt) > 10−5. This

results in a context vocabulary of size |D| = 6960.

2. Same vocabulary as 1 where we remove words with P (wt) > 10−3; |D| = 6896.

3. Same vocabulary as 1 where we remove words with P (wt) > 10−4; |D| = 6049.

4. All words with P (wt) > 10−6; |D| = 31471.

5. Same vocabulary as 4 where we remove words with P (wt) > 10−3; |D| = 31407.

6. Same vocabulary as 4 where we remove words with P (wt) > 10−4; |D| = 30560.

7. Same vocabulary as 4 where we remove words with P (wt) > 10−5; |D| = 24511.

8. Only rare words, where we consider all words with P (wt) < 10−5; |D| = 184308.

9. Context vocabulary D is the same as the target vocabulary W ; |D| = 191268.

Figures 4.3 and 4.4 present the performance obtained on the benchmark datasets for all

these nine scenarios with different sizes of context. No dimensionality reduction has been

applied in this analysis. Similarities between words are calculated with the Hellinger distance

between the word probability distributions. For the word analogy task, we used the objective

function 3COSMUL defined by Levy and Goldberg (2014), as we are dealing with explicit word

representations in this case:

argmax
b∗∈V

cos(b∗,b)cos(b∗, a∗)

cos(b∗, a)+ε
, (4.11)

where ε= 0.001 is used to prevent division by zero.

First, using all words as context does not imply to reach the best performance. With our

smallest context vocabularies, performance is fairly similar than with all words. An in-between

situation with words whose appearance frequency is greater than 10−6 gives also quite similar

performance. Secondly, discarding the most frequent words from the context distributions

helps to increase performance when using only one word of context. With five or ten context

42

4.4. Analysis of the Context

]1e−4;1e−5]]1e−3;1e−5] [1;1e−5]]1e−5;1e−6]]1e−4;1e−6]]1e−3;1e−6] [1;1e−6]]1e−5;0] [1;0]
(6049) (6896) (6960) (24511) (30560) (31407) (31471) (184308) (191268)

R
el

at
ed

ne
ss

 s
co

re
 (

S
pe

ar
m

an
 c

or
re

la
tio

n)

0.25

0.30

0.35

0.40

Context type interval (with the number of words)

wsz1
wsz5
wsz10

(a) WordSim-353 dataset

]1e−4;1e−5]]1e−3;1e−5] [1;1e−5]]1e−5;1e−6]]1e−4;1e−6]]1e−3;1e−6] [1;1e−6]]1e−5;0] [1;0]
(6049) (6896) (6960) (24511) (30560) (31407) (31471) (184308) (191268)

R
el

at
ed

ne
ss

 s
co

re
 (

S
pe

ar
m

an
 c

or
re

la
tio

n)

0.10

0.15

0.20

0.25

Context type interval (with the number of words)

wsz1
wsz5
wsz10

(b) Rare Word dataset

Figure 4.3 – Performance on word similarity datasets with different types of context word
vocabularies D (in the ascending order of their number of words), and different window
sizes (in the legend, wsz1 is for symmetric window of 1 context word, etc.). Spearman rank
correlation is reported.

43

Chapter 4. Word Embeddings through Hellinger PCA

]1e−4;1e−5]]1e−3;1e−5] [1;1e−5]]1e−5;1e−6]]1e−4;1e−6]]1e−3;1e−6] [1;1e−6]]1e−5;0] [1;0]
(6049) (6896) (6960) (24511) (30560) (31407) (31471) (184308) (191268)

A
cc

ur
ac

y
(%

)

45

50

55

60

65

Context type interval (with the number of words)

wsz1
wsz5
wsz10

(a) Mikolov’s syntactic

]1e−4;1e−5]]1e−3;1e−5] [1;1e−5]]1e−5;1e−6]]1e−4;1e−6]]1e−3;1e−6] [1;1e−6]]1e−5;0] [1;0]
(6049) (6896) (6960) (24511) (30560) (31407) (31471) (184308) (191268)

A
cc

ur
ac

y
(%

)

20

30

40

50

60

70

Context type interval (with the number of words)

sym1
sym5
sym10

(b) Mikolov’s semantic

Figure 4.4 – Performance on word analogy datasets with different types of context word
vocabularies D (in the ascending order of their number of words), and different window sizes
(in the legend, wsz1 is for symmetric window of 1 context word, etc.). Accuracy is reported.

44

4.4. Analysis of the Context

words, the most frequent words seem helpful, except in the Mikolov’s semantic task. On

this semantic task, adding rare words in the context vocabulary helps improving the general

performance, since results with words whose appearance frequency is less than 10−5 are

the best. However, these observations might be explained by the sparsity of the probability

distributions.

TYPE DIM. WINDOW SIZE

1 5 10

FROM 10−4 TO 10−5 6049 151 660 946
FROM 10−3 TO 10−5 6896 230 942 1319
UP TO 10−5 6960 264 998 1380
FROM 10−5 TO 10−6 24511 134 1615 1028
FROM 10−4 TO 10−6 30560 282 1333 1974
FROM 10−3 TO 10−6 31407 362 998 2347
UP TO 10−6 31471 396 1672 2408
FROM 10−5 184308 250 1305 2050
ALL 191268 514 2303 3430

Table 4.1 – The average number of context words according to the type and the size of context.

Counts in Table 4.1 show significant differences in terms of sparsity depending on the type

of context. Similarities between words seem to be easier to find with sparse distributions.

Consequently, adding the most frequent words hurt the performance when the distributions

are very sparse since it introduces noise. The overlap between two word distributions on the

most frequent words is probably high which eliminates the information coming from the less

frequent words. When the number of context words is higher (5 or 10), the opposite occurs.

Frequent words as context increase the general performance. As the number of counts for

frequent words becomes higher with larger contexts, both most common and most rare words

provide relevant information.

The average number of context words (i.e. features) whose appearance frequency is less

than 10−5 and greater than 10−6 with a symmetric window of size 1 is extremely low (134).

Performance with these hyper-parameters are still highly competitive on word similarities and

syntactic analogies. Within this framework, it then becomes a good option for representing

words in a low and sparse dimension. But overall the context vocabulary with only the most

frequent (words with P (wt) > 10−5) appears like the ideal solution when considering larger

context windows. The overall performance is very competitive yet with a far smaller number

of context words. We thus choose this context vocabulary for performing the dimensionality

reduction in the next section.

45

Chapter 4. Word Embeddings through Hellinger PCA

WINDOW SIZE

1 10

BAIKAL

(no37415)
MÄLAREN LAKE

TITICACA SIBERIA

BALATON AMUR

LADOGA BASIN

ILMEN VOLGA

SPECIAL-NEED

(no165996)
AT-RISK PRESCHOOL

SCHOOL-AGE KINDERGARTEN

LOW-INCOME TEACHERS

HEARING-IMPAIRED SCHOOLS

GRADE-SCHOOL VOCATIONAL

Table 4.2 – Two rare words with their rank and their 5 nearest words with respect to the
Hellinger distance, for a symmetric window of 1 and 10 context words.

4.4.2 Context Window Size

Except for semantic analogy questions, best performance are always obtained with symmetric

context window of size 1. However, performance dramatically drop with this window size on

the latter. It seems that a limited window size helps to find syntactic similarities, but a large

window is needed to detect the semantic aspects. The best results are thus obtained with a

symmetric window of ten words on the semantic analogy questions task. This intuition is

confirmed by looking at the nearest neighbors of certain rare words with different sizes of

context. In Table 4.2, we can observe that a window of one context word brings together words

that occur in a same syntactic structure, while a window of ten context words will go beyond

that and adds semantic information. With only one word of context, Lake Baikal is therefore

neighbor to other lakes, and the word special-needs is close to other words composed of two

words. With ten words of context, the nearest neighbors of Baikal are words in direct relation

to this location, i.e. these words cannot match with other lakes, like Lake Titicaca. This also

applies for the word special-needs, where we find words related to the educational meaning of

this word. This could explain why the symmetric window of one context word gives the best

results on the word similarity and syntactic tasks, but performs very poorly on the semantic

task.

4.4.3 Analysis Findings

The analysis of the context reveals that word similarities can even be found with extremely

sparse word vector representations. But these representations lack semantic information since

they perform poorly on the word analogy task involving semantic questions. A symmetric

46

4.5. Principal Component Analysis (PCA)

window of five or ten context words seems to be the best option to capture both syntactic

and semantic information about words. The average number of context words is much larger

within these parameters, which justifies the need of dimensionality reduction. Furthermore,

this analysis show that a large vocabulary of context words is not necessary to achieve signif-

icant improvements. Good performance on syntactic and similarity tasks are reached with

our smallest vocabularies of context words. Using instead a distribution of a limited number

of rare words increases performance on the semantic task while reducing performance on

syntactic and similarity tasks.

4.5 Principal Component Analysis (PCA)

As discrete distributions are vocabulary size-dependent, using directly the distribution as a

word representation is, in general, not really tractable for large vocabularies. This is even more

true in the case of a large number of context words, distributions becoming less sparse. As

dimensionality reduction technique, we choose to perform a principal component analysis

(PCA) of the word co-occurrence probability matrix C ∈ R|W |×|D|. The word co-occurrence

matrix C is defined as follows

C =

⎛
⎜⎜⎜⎜⎝

P (c1|w1) · · · P (c|D||w1)

P (c1|w2) · · · P (c|D|W2)
...

. . .
...

P (c1|w|W |) · · · P (c|D||w|W |)

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

Pw1

Pw2

...

Pw|W |

⎞
⎟⎟⎟⎟⎠ . (4.12)

PCA uses an orthogonal transformation to convert a set of observations (the target words, i.e.

rows of C) of possibly correlated variables (the context words, i.e. columns of C) into a set of

values of linearly uncorrelated variables called principal components C̄ defined as

C̄ = CA, (4.13)

where columns of A ∈R|D|×|D| are orthonormal vectors. This transformation is defined in such

a way that the first principal component has the largest possible variance (that is, accounts for

as much of the variability in the data as possible). Keeping only the first d principal compo-

nents gives a truncated transformation of C, leading to C̄d ∈R|W |×d where d �|D|. Reducing

dimensions means that redundancy in the data is eliminated. Redundancy doesn’t mean that

the variables are identical; it means that there is a strong correlation between them. PCA is

usually done by eigenvalue decomposition (ED) of a data covariance (or correlation) matrix

CT C or singular value decomposition (SVD) of C, after normalizing the variables. Because

we are dealing with discrete probability distributions, we use the Bhattacharyya coefficient

to quantify the redundancy between two word context distributions. Taking the square root

of C, PCA thus learns to project word co-occurrence probability distributions to a lower di-

mensional manifold, while minimizing the reconstruction error according to the Hellinger

47

Chapter 4. Word Embeddings through Hellinger PCA

distance

min
Ad∈R|D|×d

|W |∑
i=1

∥∥∥√Pwi −Ad AT
d

√
Pwi

∥∥∥
2

. (4.14)

Covariance-based PCA of high-dimensional matrices can lead to round-off errors, and thus

fails to properly approximate these high-dimensional matrices in low-rank matrices. And

SVD will generally requires a large amount of memory to factorize such huge matrices. To

overcome these barriers, we propose a dimensionality reduction based on a fast randomized

SVD.

4.5.1 Eigen Decomposition (ED)

PCA can be done by ED of the covariance (or correlation) matrix R. The symmetric, positive

semi-definite matrix R can be rewritten as

R = ADAT , (4.15)

where D is the diagonal matrix of eigenvalues of R and A is the orthogonal matrix of eigenvectors

of R. As we use the Bhattacharyya coefficient to quantify the redundancy between context

distributions, the matrix R is obtained as follows

R =
√

CT
�

C , R ∈R|D|×|D| . (4.16)

With a limited size of context word dictionary D (thousands of words), this operation can be

performed very quickly since it is highly parallelizable. Word embeddings are then obtained

by projecting the transformed word distributions
√

Pwt into the d first principal components

C̄ =
�

CAd , (4.17)

where the columns of Ad ∈R|D|×d are the first d eigenvectors, and each row of C̄ ∈R|W |×d is a

word embedding.

4.5.2 Singular Value Decomposition (SVD)

The principal components transformation can also be associated with another matrix factor-

ization, the SVD of
�

C,

�
C = UΣVT (4.18)

Here Σ ∈ R|W |×|D| is a rectangular diagonal matrix of positive numbers, called the singular

values. The columns of U ∈ R|W |×|W | are orthogonal unit vectors called the left singular vectors,

and the columns of V ∈ R|D|×|D| are the right singular vectors. In terms of this factorization,

48

4.5. Principal Component Analysis (PCA)

the matrix R =
�

CT
�

C can be written as

R = VΣUT UΣVT (4.19)

= VΣ2VT . (4.20)

Consequently, the right singular vectors V are equivalent to the eigenvectors of R, while the

singular values are equal to the square roots of the eigenvalues. A truncated transformation of

C can be obtained by considering only the first d largest singular values and their left singular

vectors:

C̄ =
�

CVd (4.21)

= UdΣd VT
d Vd (4.22)

= UdΣd . (4.23)

Computing the SVD can be extremely time-consuming for the large-scale problems. Thus, we

turn to randomized methods which offer significant speedups over classical methods.

Fast Randomized SVD

Halko et al. (2011) propose a two-stage algorithm that uses randomized techniques for com-

puting a low-rank approximation of
�

C.

Stage A We seek to find a matrix Q which approximates the range of the input matrix
�

C,

where the number of columns should be as few as possible. Q has orthonormal columns and

�
C ≈ QQT

�
C . (4.24)

Stage B Assuming we have found such a Q, we can then compute an SVD of
�

C as follows:

1. construct B = QT
�

C,

2. compute SVD of the small matrix B: B = SΣVT ,

3. as
�

C ≈ QQT
�

C = Q
(
SΣVT

)
, we see that taking U = QS, we have computed a low rank

approximation
�

C ≈ QQT
�

C.

When Q has few columns, this procedure is efficient because we can easily construct the

reduced matrix B and rapidly compute its SVD.

49

Chapter 4. Word Embeddings through Hellinger PCA

4.5.3 Experimental Analysis

As seen in Section 4.4.1, we are dealing with very sparse distributions. PCA is about reducing

dimensionality by removing redundant variables. It makes thus sense to use context vocabu-

laries which provide variables with the less sparsity for performing Hellinger PCA over word

probability distributions. In our experiments, we perform the dimensionality reduction over a

context of words with probability P (wt) > 10−5, following the findings of Section 4.4.1.

Eigenvalue Weighting

0 0.5 1

R
el

at
ed

ne
ss

 s
co

re
 (

S
pe

ar
m

an
 c

or
re

la
tio

n)

0.3

0.4

0.5

0.6

0.7

Eigenvalue weighting parameter p

WS−353
RW

(a) Word similarities datasets

0 0.5 1

A
cc

ur
ac

y
(%

)

50

55

60

65

70

Eigenvalue weighting parameter p

SYN
SEM

(b) Word analogies datasets

Figure 4.5 – Performance on datasets with different eigenvalue weighting parameter p. Word
embeddings dimension is 512. Context vocabulary interval is]1;10−5] with a symmetric
window of 10 words. Spearman rank correlation is reported on word similarity tasks. Accuracy
is reported on word analogy tasks.

It has been shown that adding a parameter p to control the eigenvalues matrix Σ helps to get

better word representations after SVD (Caron, 2001),

C̄p = UdΣ
p
d . (4.25)

Since Σ is diagonal and the eigenvalues are sorted in ascending order, setting p < 1 gives more

emphasis to the later components of U. We thus evaluate word embeddings with p ∈ {0,0.5,1},

where p = 1 corresponds to the traditional factorization, and p = 0 means that the eigenvalue

matrix is dismissed. Results reported in Figure 4.5 show that the best performance is achieved

when discarding the eigenvalue matrix. We also observe a significant drop when we use the

traditional principal components (with p = 1). For the next sections, we will therefore define

50

4.5. Principal Component Analysis (PCA)

the word embeddings as

C̄ = Ud . (4.26)

Number of Dimensions

32 64 96 128 256 512 1024

R
el

at
ed

ne
ss

 s
co

re
 (

S
pe

ar
m

an
 c

or
re

la
tio

n)

0.4

0.5

0.6

0.7

Number of principal components

WS−353
RW

(a) Word similarities datasets

32 64 96 128 256 512 1024

A
cc

ur
ac

y
(%

)

40

45

50

55

60

65

70

Number of principal components

SYN
SEM

(b) Word analogies datasets

Figure 4.6 – Performance on datasets with different dimensions using context interval]1;10−5]
with a symmetric window of 10 words. Dimensionality reduction has been obtained with
the Hellinger PCA using randomized SVD. Spearman rank correlation is reported on word
similarity tasks. Accuracy is reported on word analogy tasks.

When a dimensionality reduction method is applied, a number of dimensions needs to be

chosen. This number has to be large enough to retain the maximum variability. It also has to

be small enough for the dimensionality reduction to be truly meaningful and effective. We

thus analyze the impact of the number of principal components from the Hellinger PCA of

the co-occurrence matrix. Figure 4.6 reports performance on the benchmark datasets for

different numbers of dimensions. On both tasks, we observe that performance is optimal

with 512 dimensions. However, performance with about a hundred dimensions gives already

competitive results.

Dense vs Sparse Word Representations

In Table 4.3, we compare performance on the benchmark datasets described in Section 4.3.2

between sparse word representations and the dense word representations obtained after

Hellinger PCA. The ability of the PCA to summarize the information compactly leads to im-

proved results on the both tasks, where performance is better than with no dimensionality

51

Chapter 4. Word Embeddings through Hellinger PCA

SPARSE DENSE

Context Window Size 1 5 10 1 5 10

WORDSIMILARITY-353 0.39 0.41 0.39 0.53 0.67 0.69
RARE WORD 0.17 0.13 0.11 0.38 0.42 0.41
SYNTACTIC ANALOGIES 51.9 54.1 52.6 50.7 68.8 70.9
SEMANTIC ANALOGIES 21.8 50.3 58.1 18.3 54.5 64.1

Table 4.3 – Performance on word similarity and word analogy datasets using a context word
vocabulary with P (wt) > 10−5, and different window sizes. For dense representations, we
report results using the first 512 principal components after Hellinger PCA with SVD. Spearman
rank correlation is reported for similarities. Accuracy is reported for analogies.

reduction. This observation is especially true for finding word similarities, where the improve-

ment is the most significant.

Qualitative Analysis

ASSOCIATED ABBEY BAIKAL ZIDANE SPECIAL-NEEDS

(n°866) (n°2980) (n°37415) (n°49155) (n°165997)

CONSISTENT PRIORY AMUR ZINEDINE DAYCARE

CLOSELY MONASTERY SIBERIAN RONALDINHO HEARING-IMPAIRED

ALONG FRIARY URAL MARADONA PRESCHOOL

DEALT ABBOT TITICACA FIGO SCHOOL-AGE

DEALING CLUNY ALTAI MESSI SCHOOLS

FAMILIAR NUNNERY URALS RONALDO KINDERGARTENS

CONTRASTED CISTERCIAN SIBERIA CANTONA SCHOOLCHILDREN

INTIMATELY BENEDICTINE YAKUTIA PLATINI VOCATIONAL

SYNONYMOUS CASTLE VOLGA CRUYFF BOARDING

ASSOCIATING CARTHUSIAN KAMCHATKA PELÉ MIDDLE-SCHOOL

Table 4.4 – Words with their rank in W and their 10 nearest neighbors in the word embedding
space (according the the Euclidean metric). Dimension of word embeddings is 128. A window
of 10 context words has been used to build the word co-occurrence matrix.

Table 4.4 shows the ten nearest neighbors of a few randomly chosen words in the word

embedding space. Word embeddings are the 128 first principal components of the Hellinger

PCA of the word co-occurrence matrix built with a context window of ten words. First, we

see that our method produces appealing word embeddings for both frequent and rare words.

Furthermore, we see that both syntactic and semantic information about words are captured.

For instance, nearest neighbors of associated are other similar verbs in the past particle form,

52

4.6. Supervised Evaluation Tasks

but also adverbs and adjectives with the same meaning. For baikal and special-needs that

have been analyzed in Table 4.2, we see that the nearest neighbors are now a combination

of syntactically and semantically related words. Abbey is close to other buildings whether or

not they are religious ones (e.g. castle), and also close to words related to religion that are not

buildings (e.g. abbot or benedictine). For a person like zidane, both nationality and occupation

have been captured as we see that other French football players are in the nearest neighbors

(e.g. platini or cantona), along with other well famous players.

4.6 Supervised Evaluation Tasks

While benchmark datasets described in Section 4.3.2 are useful for evaluating the quality of

word embeddings, these tasks are not relevant in a real word context. Using word embed-

dings as feature proved that it can improve the generalization performance on several NLP

tasks (Turian et al., 2010; Collobert et al., 2011; Chen et al., 2013). Good word embeddings

should be those which give the best performance in such real world applications. We thus

evaluate our word embeddings on two standard word tagging tasks: chunking (CHUNK) and

Named Entity Recognition (NER). For that purpose, we trained a neural network with a window

approach as in Collobert et al. (2011).

4.6.1 Tasks Description

Chunking

Also called shallow parsing, chunking aims at labeling segments of a sentence with syntactic

constituents such as noun or verbal phrases (NP or VP). Each word is assigned only one unique

tag, often encoded as a begin-chunk (e.g., B-NP) or inside-chunk tag (e.g., I-NP). Chunking is

often evaluated using the CoNLL 2000 shared task4. Sections 15–18 of Wall Street Journal data

are used for training and section 20 for testing. Validation is achieved by splitting the training

set. As a benchmark, we report a F-1 score around 94.3% coming from several systems based

on second-order random fields (Sha and Pereira, 2003; McDonald et al., 2005; Sun et al., 2008).

These systems use features composed of words, part-of-speech tags, and other tags.

Named Entity Recognition

This task labels atomic elements in the sentence into categories such as “PERSON" or “LO-

CATION". The CoNLL 2003 setup5 is a NER benchmark data set based on Reuters data. The

contest provides training, validation and testing sets. As a benchmark, we report the system

of Ando et al. (2005) which reached 89.31% F1 with a semi-supervised approach. Their sys-

tem uses many hand-crafted features (words, part-of-speech tags, suffixes and prefixes and

4See http://www.cnts.ua.ac.be/conll2000/chunking.
5See http://www.cnts.ua.ac.be/conll2003/ner/.

53

Chapter 4. Word Embeddings through Hellinger PCA

CHUNK tags), but overall is less specialized than CoNLL 2003 challengers.

For both tasks, we adopt the BIO2 annotation standard.

4.6.2 Neural Network Approach

We learn a neural network approach for tagging with a label each word in a given sentence.

Using a sliding window approach, embeddings of the word to tag with some context words are

given to a nonlinear classification model. We train the model by maximizing the log-likelihood

at the sentence level.

Sliding window

Context is crucial to characterize word meanings. We thus consider n context words around

each word wt to be tagged, leading to a window of N = (2n+1) words, {wt−n , . . . , wt , . . . , wt+n}.

We first define an embedding layer φ1
θ

(see Section 2.1.3) which maps each word in a given

window to a d wrd-dimensional vector. By concatenating the resulting vectors, we obtain a

d wrd ×N vector, which aims at characterizing the middle word wt in this window:

φ1
θ(wt) = [

Ewt−n ; . . . ; Ewt ; . . . ; Ewt+n

] ∈R(d wrd×N). (4.27)

Given a complete sentence of T words s = {w1, . . . , wT }, we can obtain for each word wt a

context-dependent representation by sliding over all the possible windows in the sentence.

Each window representation is then given to a nonlinear classifier which gives a score for each

possible tag yk

φθ(wt) = W2h
(
W1φ1

θ(wt)+b1
)
+b2 ∈RK (4.28)

where θ = {
E, W1, W2, b1, b2

}
are the trainable parameters of the network, and h(·) is the

activation function. E is the word embedding matrix which is initialized with our pre-trained

embeddings, and W1 ∈ Rnhu×(d wrd×N), W2 ∈ RK×nhu , b1 ∈ Rnhu and b2 ∈ RK are the classifier

parameters, with K the number of classes.

CRF-type inference

There exists strong dependencies between tags in a sentence: some tags cannot follow other

tags. To take the sentence structure into account, we want to encourage valid paths of tags

during training, while discouraging all other paths. Considering the matrix of scores outputted

by the network φθ(s) ∈RT×K for a given sentence s of T words, we train a conditional random

field (CRF). At test time, the best path minimizing the sentence score is inferred with the

Viterbi algorithm (Viterbi, 1967). The element [φθ]yk ,wt of the matrix is the score outputted

by the network for the tag yk at the word wt ∈ s. We introduce a transition matrix Z, where

54

4.6. Supervised Evaluation Tasks

[Z]yi ,y j is the score for jumping from yi to y j tags in successive words, and an initial score

[Z]yi ,0 for starting from the tag yi . As the transition scores are going to be trained, we define

θ̃ = θ∪Z. The score of a sentence s along a path of tags y = {y1, . . . , yT } is then given by the

sum of transition scores and classification scores:

φθ̃(s, y) =
T∑

t=1

(
[Z]yt−1,yt + [φθ]yt ,wt

)
. (4.29)

We normalize this score over all possible tag paths ȳ using a softmax, and we interpret the

resulting ratio as a conditional tag path probability. Taking the log, the conditional probability

of the true path y is therefore given by:

logPθ̃(y |s) =φθ̃(s, y)− logadd
∀ȳ

φθ̃(s, ȳ) , (4.30)

where we adopt the notation

logadd
i

zi = log(
∑

i
ezi) . (4.31)

Computing the log-likelihood efficiently is not straightforward, as the number of terms in

the logadd grows exponentially with the length of the sentence. It can be computed in linear

time with the Forward algorithm, which derives a recursion similar to the Viterbi algorithm

(see Rabiner (1989)). This allows for maximizing the log-likelihood over all the training pairs

(s, y). In contrast to classical CRF, all parameters θ̃ are trained in a end-to-end manner, by

backpropagation through the Forward recursion, following Collobert et al. (2011). At inference

time, the Viterbi algorithm is used to find the best path for a given sentence s among all the

possible path ȳ :

argmax
ȳ

φθ̃(s, ȳ) . (4.32)

4.6.3 Experimental Setup

Word Embeddings

For the purpose of a fair comparison, we choose to compare only with other word embeddings

that have been trained on the same corpus than our word embeddings (i.e. the entire English

Wikipedia). We thus compare with word embeddings from SENNA6 and word embeddings

trained with a Skip-gram model. For all embeddings, we train two versions of our system. In

the first version, word embeddings are considered as fixed inputs, as a classical approach

would use them. In the second version, we leverage the deep architecture of our system and

we tune the word embeddings for the given task.

6Available at http://ml.nec-labs.com/senna/

55

Chapter 4. Word Embeddings through Hellinger PCA

SENNA SENNA’s embeddings covers 130,000 words with 50 dimensions for each word. They

were trained for about two months, over Wikipedia, using a NNLM with a pairwise ranking

approach (see Section 3.2.1). These embeddings have, furthermore, been fine-tuned for NER

and chunking. This makes those embeddings highly competitive for these two tasks.

Skip-gram Nowadays, the Skip-gram model (see Section 3.2.3 for details) is considered as

the state-of-the-art method for getting word embeddings. This method has become popular

thanks to the word2vec7 toolkit, which provides a user-friendly and efficient implementation

of the method. We thus use this toolkit to compute word embeddings on the same Wikipedia

corpus using the same context window sizes (1, 5 and 10 words). Embeddings have been

trained with negative sampling (with 5 negative samples) and sub-sampling of frequent words

(with t = 10−5).

As SENNA’s embeddings are only available with d wrd = 50 dimensions, we thus compute

word embeddings with Skip-gram and with Hellinger PCA (H-PCA) in that dimension for

this experiment. To highlight the importance of the Hellinger metric, we also compute word

embeddings using the matrix C instead of
�

C. These embeddings are named Euclidean PCA

(E-PCA).

Other Features and Hyper-parameters

For chunking, the networks are fed only one raw feature: the word embeddings. In NER where

the goal is to tag entities, we use an additional raw feature: a capital letter feature. The “caps”

feature tells if each word was in lowercase, was all uppercase, had first letter capital, or had

at least one non-initial capital letter. Each caps feature is mapped to an embeddings of size

5, which is learned during training as the other parameters. No other feature has been used

to tune the models. This is a main difference with other systems which usually include more

features, such as part-of-speech tags, prefixes and suffixes or gazetteers (only for NER). We

also introduce a special “PADDING” word for context at the beginning and the end of each

sentence. Hyper-parameters were tuned by early-stopping on the validation set. We selected

n = 2 context words leading to a window of 5 words. The number of hidden units is nhu = 300.

For chunking, the best context window size is 1. It makes sense since it is purely a syntactic task.

For NER, the best context window size is 5. This task combines both syntactic and semantic

aspects, it is thus not surprising that this context window size gives the best performance.

Since the capacity of our tagging model mainly comes from the word embeddings, we use

word embedding dropout as a regularization, following (Legrand and Collobert, 2014).

7Available at https://code.google.com/archive/p/word2vec/

56

4.6. Supervised Evaluation Tasks

Embeddings Normalization

Word embeddings are continuous vector spaces that are not necessarily in a bounded range.

To avoid saturation issues in the network architectures, embeddings need to be properly

normalized. Considering the matrix of word embeddings E, we normalize the rows of E.

4.6.4 Results

CHUNK NER

BENCHMARK 94.29 89.31

Embeddings Fixed Tuned Fixed Tuned

SENNA 93.35 ± 0.06 94.18 ± 0.05 88.54 ± 0.13 89.55 ± 0.15
SKIP-GRAM 91.83 ± 0.09 93.66 ± 0.05 87.50 ± 0.20 88.96 ± 0.24
E-PCA 90.46 ± 0.09 93.18 ± 0.07 85.56 ± 0.16 87.50 ± 0.07
H-PCA 92.74 ± 0.10 94.19 ± 0.07 88.07 ± 0.25 89.45 ± 0.09

Table 4.5 – Performance comparison on named entity recognition (NER) and chunking
(CHUNK) tasks with different embeddings. The first column reports results with the original
embeddings. The second column reports results after fine-tuning the embeddings for the task.
Results are reported in F1 score (mean ± standard deviation of ten training runs with different
initialization). H-PCA is for Hellinger PCA, while E-PCA stands for Euclidean PCA.

H-PCA’s embeddings

Results summarized in Table 4.5 reveal that performance on both tasks can be as good with

word embeddings from a word co-occurrence matrix decomposition as with a NNLM. The F1

scores with the H-PCA tuned embeddings are as good as SENNA tuned embeddings, which

yields state-of-the-art results on both tasks. When the embeddings are not tuned, H-PCA’s

embeddings are slightly outperformed by the SENNA’s embeddings, which is not surprising as

the latter are already fine-tuned for those tasks. However, HPCA’s embeddings always achieve

better results than Skip-gram’s embeddings on both tasks. It is worth mentioning that on both

tasks, H-PCA’s embeddings outperform the E-PCA’s embeddings, demonstrating the value of

the Hellinger distance.

Embedding Fine-Tuning

By leveraging the deep architecture of our system, we can tune the word embeddings by

backpropagating the error through the embedding layer. Results in Table 4.5 show that tuning

the embeddings increases the general performance on both chunking and NER tasks. This is

a great advantage compared to conventional approaches where these embeddings remain

unchanged, as they are not structurally able to fine-tune them.

57

Chapter 4. Word Embeddings through Hellinger PCA

CPU Time

Embedding size d wrd = 50 d wrd = 512

SENNA 2 months -

Context Window Size 1 5 1 5

SKIP-GRAM 39 min 62 min 73 min 138 min
H-PCA 24 sec 77 sec 229 sec 660 sec

Table 4.6 – CPU time for computing word embeddings. min is for minutes and sec for seconds.

The Hellinger PCA is very fast to compute8. We report in Table 4.6 the time needed to compute

the embeddings used for this experiment (50 dimensions). For this benchmark we used Intel

i7 3770K 3.5GHz CPU. Although word embeddings with word2vec are also quickly computed,

we see that a randomized SVD is done in a few seconds for getting the 50 first principal

components. When setting a larger number of components, this operation is a bit longer

but it provides all embedding sizes in a single operation. This is not the case with the Skip-

gram model, where word2vec needs to be relaunched for each new embedding size. We

intentionally do not mention the time for building the word co-occurrence matrix in Table 4.6.

The sparse matrix C is stored as a set of triplets
{

wt ,ct ,n(wt ,ct)
}
, making our model much

more scalable than NNLM where each pair {wt ,ct } is treated separately. Counts n(wt ,ct)

can easily be aggregated in time over multiple corpora of text. This counting operation is

furthermore highly parallelizable. For each new matrix C, just the randomized SVD needs to

be run for extracting new word embeddings, while NNLM need to run a complete process.

4.7 Embedding Inference

While inference is not possible with NNLM-based methods, one main advantage of computing

word embeddings through Hellinger PCA is the possibility to infer embeddings for unseen

words. Given a new word wnew, one only needs to count its context words over a large corpus

of text to build the distribution
√

Pwnew . Embedding for that word is then computed with the

eigenvectors by projecting its word co-occurrence distribution
√

Pwnew into a dimensionally

reduced feature space,

ewnew = AT
d

√
Pwnew (4.33)

where Ad are the d first eigenvectors, and ewnew ∈ Rd is the resulting embedding for wnew.

The few examples in Table 4.7 show that this nice feature can be extrapolated to phrases. By

building word co-occurrence distributions for phrases in the same way, phrase embeddings

are easily computed. It thus becomes a valuable asset which offers a simple approach for

8The randomized SVD is done with MATLAB. We use the implementation of Mark Tygert available at http:
//tygert.com/software.html.

58

4.8. Implementation

NEW YORK CITY PRESIDENT OF THE UNITED STATES HOME PLATE

MANHATTAN LINCOLN INFIELD

BROOKLYN REAGAN DUGOUT

MINNEAPOLIS TRUMAN BATTER

HARLEM APPOINTEE FIELDERS

CHICAGO PRESIDENT-ELECT OUTFIELD

BOSTON PRESIDENT CREASE

D.C. NIXON ELBOW

WASHINGTON NOMINATING SIDELINE

NYC EISENHOWER GOALPOST

THEATER SENATOR BALL

Table 4.7 – Three phrases with their 10 nearest words with respect to the Euclidean distance
between the inferred phrase embeddings and the pre-computed word embeddings. Word
co-occurrence statistics for these phrases are built using a context window of 10 words with a
vocabulary containing the 6961 most frequent words.

embedding sequences of words, such as entities or multiword expressions.

4.8 Implementation

We implemented a standalone version of the Hellinger PCA for computing word embeddings,

written in the C++ language9. The runtime version contains about 2,800 lines of C++ code, and

it has been designed to run on any standard computer. The toolkit provides 7 different tools

for computing the following step:

1. Corpus pre-processing. Given a tokenized corpus of text, preprocess implements

lowercase conversion and/or replaces all numbers with a special token (0).

2. Vocabulary extraction. Given a pre-processed corpus, vocab extracts all words with

their respective frequency.

3. Getting co-occurrence probability matrix. Given the pre-processed corpus and the ex-

tracted vocabulary, cooccurrence constructs word-word co-occurrence statistics from

the corpus. Several options are available for setting the word context vocabulary, the

context window size, and for discarding target words with a low frequency of occurrence.

4. Performing Hellinger PCA. When the co-occurrence matrix is ready and given the

number of components to keep, pca runs the randomized SVD with respect to the

Hellinger distance. This tool uses the external redsvd library10, which implements the

9Available at https://github.com/rlebret/hpca
10Available at https://code.google.com/p/redsvd/.

59

Chapter 4. Word Embeddings through Hellinger PCA

randomized SVD using Eigen311.

5. Extracting word embeddings. embeddings generates word embeddings from the Hellinger

PCA for a given dimension. An option for eigenvalue weighting is available, as well as

embeddings normalization.

6. Evaluating word embeddings. eval provides a quick evaluation of the word embed-

dings produced by embeddings for an English corpus. It includes all datasets described

in Section 4.3.2.

7. Computing word embeddings nearest neighbors. neighbors is an exploratory tool to

evaluate word embeddings quality. Given a word, it computes its nearest neighbors

according to the Euclidean distance between their embeddings.

The three first steps which led to the creation of the word co-occurrence matrix are all highly

parallelizable. POSIX Threads is thus used to allow parallel execution and speed up the process.

Users can also control the memory usage when getting the co-occurrence matrix.

4.9 The Revival of Count-based Methods

After introducing our count-based model for getting word embeddings, other new count-

based approaches have emerged. In this section, we introduce two recent works that propose

alternative approaches to build the word co-occurrence matrix.

4.9.1 SVD over Shifted Positive Point Mutual Information

Levy and Goldberg (2014) show that the Skip-gram model implicitly factorizes a word co-

occurrence matrix, where each entry is the pointwise mutual information (PMI) of the word

and context pairs, shifted by a global constant. PMI measures the association between a word

wt and a context ct ,

P M I (wt ,ct) = log
P (wt ,ct)

P (wt)P (ct)
= log

n(wt ,ct) · |S|
n(wt)n(ct)

. (4.34)

The positive PMI (PPMI) has shown to be a better alternative for word representation (Bulli-

naria and Levy, 2007), as it allows sparsity and consistency,

PP M I (wt ,ct) = max
(
P M I (wt ,ct),0

)
. (4.35)

Inspired by the success of negative sampling in Skip-gram, the authors then propose a shifted

version of PPMI,

SPP M I (wt ,ct) = max
(
P M I (wt ,ct)− log(k),0

)
, (4.36)

11See http://eigen.tuxfamily.org/.

60

4.10. Conclusion

where k is a prior on the probability of observing a positive example (an actual occurrence of

(wt ,ct) in the corpus S) versus a negative example. After building the Shifted PPMI matrix,

SVD is used for dimensionality reduction.

4.9.2 Global Vectors (GloVe)

In contrast with our model, Pennington et al. (2014) suggests that the appropriate starting

point for word vector learning should be with ratios of co-occurrence probabilities rather than

the probabilities themselves. A training objective is then defined to learn word embeddings

such that their dot product equals the logarithm of the their co-occurrence probability,

ewi · ẽw j +bwi + b̃w j = log
(
n(wi , w j)

) ∀(wi , w j) ∈S , (4.37)

where ewi and ẽw j ∈Rd wrd
are word embeddings, bwi and b̃w j are additional scalars. Because

the logarithm of a ratio equals the difference of logarithms, this objective associates (the

logarithm of) ratios of co-occurrence probabilities with vector differences in the word vector

space. The model is fit to minimize a weighted least square loss, giving more weight to

frequent (wi , w j) pairs. At the end, each word wt has two different embeddings ewt and ẽwt .

The authors uses the summation of the two word vectors as final embedding. As the Skip-gram

model, the main drawbacks of this model are that it does not allow inference of unseen words,

and it trains one embedding size at the time.

4.10 Conclusion

We have demonstrated that appealing word embeddings can be obtained by computing a

Hellinger PCA of the word co-occurrence matrix. While a NNLM can be painful and long to

train, we can get a word co-occurrence matrix by simply counting words over a large corpus

of text. The resulting embeddings give similar results on NLP tasks, even from a word co-

occurrence matrix computed with only a relatively small context vocabulary (i.e. a small

number of columns). It reveals that having a significant, but not too large set of common

words, seems sufficient for capturing most of the syntactic and semantic characteristics of

words. As PCA of a such matrix is really fast to compute, our method gives an interesting

and practical alternative to NNLM for generating word embeddings. By leveraging the deep

architecture of neural networks, we also show that existing embeddings can be fine-tuned to a

specific task which leads to improve general performance for this task. Last but not least, this

method enables inference of unseen words or phrases.

61

5 Towards Phrase Embeddings

While there has been a lot of effort to capture the meaning of words, distributed representa-

tions of phrases still remain a challenge. Many recent works are however based on distributed

representations of phrases to tackle a wide range of applications in NLP: machine transla-

tion (Bahdanau et al., 2015; Zhao et al., 2015), constituency parsing (Legrand and Collobert,

2014) or sentiment analysis (Socher et al., 2013). In all these works, phrase representations

are learned from composition of word embeddings. There is therefore a clear need for word

embeddings that can be easily extrapolated to meaningful phrase representations.

We argue that distributed representation and composition must go hand in hand, i.e., they

must be mutually learned. We present a model that learns to capture meaning of words in

distributed representations using a low-rank approximation of a large word co-occurrence

matrix. We choose to stochastically perform this low-rank approximation (with an autoencoder

network) which enables the model to simultaneously train these representations to compose

for producing representations of phrases (see Figure 5.1). As composition function, we choose

a simple weighted addition for its simplicity and for enabling sequences of words with different

lengths to be represented in a common vector space. Aside from generating distributed

representations of words and phrases, this model gives an encoding function (represented by a

matrix) which can be used to encode new words or even phrases based on their co-occurrence

counts. This offers two different alternatives for phrase representations: (1) representation for

a query phrase can be inferred by averaging vector representations of its words (only if they all

were in the training set), or (2) by using its word co-occurrence statistics.

Evaluation on the popular word similarity and analogy tasks demonstrate the capability of our

joint model for capturing as good distributed representations as with Hellinger PCA. We then

introduce a novel task for evaluating phrase representations. Given a phrase representation,

the objective is to retrieve the words that compose the phrase. We compare our model against

other state-of-the-art methods for distributed word representations which capture meaningful

linear substructures (Mikolov et al., 2013a; Pennington et al., 2014). We show that our model

achieves similar performance on word evaluation tasks, but that it outperforms other methods

on the phrase evaluation task.

63

Chapter 5. Towards Phrase Embeddings

5.1 Related Work

Given representations of words in a vector space, techniques for combining them have been

proposed to get representations of phrases or sentences. These compositional models involve

vector addition or multiplication (Mitchell and Lapata, 2010). Such simple compositions

have shown to perform competitively on the paraphrase detection and phrase similarity

tasks (Blacoe and Lapata, 2012). More sophisticated approaches use techniques from logic,

category theory, and quantum information (Clark et al., 2008). Others use the syntactic re-

lations between words to treat certain words as functions and other as arguments such as

adjective-noun composition (Baroni and Zamparelli, 2010) or noun-verb composition (Grefen-

stette et al., 2013). Recursive neural network model for semantic compositionality has also

been proposed (Socher et al., 2012), where each word has a matrix-vector representation: the

vector captures its meaning (as it is initialized with a pre-trained distributed representation),

while the matrix learns through a parse tree how it modifies the meaning of the other word

that it combines with.

All these methods learn to compose pre-trained word embeddings. In contrast, we propose to

simultaneously learn word embeddings and the composition function.

5.2 Hellinger PCA with Autoencoder

Inspired by the success of Hellinger PCA for computing meaningful word embeddings (see

Chapter 4), we propose to stochastically perform the low-rank approximation. For this purpose,

we use an autoencoder with only linear activation to find an optimal solution related to the

Hellinger PCA (Bourlard and Kamp, 1988). Replacing the PCA by an autoencoder allows us to

learn jointly a cost function which constrains the word information to be kept by summation.

An autoencoder is employed to represent words in a lower dimensional space. It takes a

distribution
√

Pwt as input, encodes it in a more compact representation, and is trained to

reconstruct its own input from that representation:∥∥∥√Pwt − g
(

f
(√

Pwt

))∥∥∥
2

, (5.1)

where φθ = g
(

f
(√

Pwt

))
is the output of the network, f (·) is the encoding function which

maps distributions in a d wrd-dimension (with d wrd << |D|), and g (·) is the decoding function.

f
(√

Pwt

)
is a distributed representation that captures the main factors of variation in the data

as the Hellinger PCA does. Here, encoder f (·) and decoder g (·) are defined as follows:

f (x) = Ux , g (x) = VT x , (5.2)

64

5.3. Joint Learning with Summation

where x ∈R|D|, and U and V ∈Rd wrd×|D|. We see that we can reformulate Equation 5.1 as follows:

∥∥∥√Pwt −VT U
√

Pwt

∥∥∥
2

, (5.3)

which correspond to the same minimization function than with the Hellinger PCA (see Equa-

tion 4.14). The autoencoder parameters θ = {U,V} are trained by backpropagation using

stochastic gradient descent.

5.3 Joint Learning with Summation

Interesting compositionality properties have been observed from models based on the addi-

tion of representations (Mikolov et al., 2013b). An exhaustive comparison of different compo-

sition functions has indeed revealed that an additive model performs well on pre-trained word

representations (Mitchell and Lapata, 2010). Because our word representations are learned

from linear operations, the inherent structure of these representations is linear. To combine

a sequence of words into a common vector space, we then simply apply an element-wise

addition of their vector representations. This approach makes sense and works well when

the meaning of a text is literally “the sum of its parts”. This is usually the case with noun and

verb phrase chunks. For example, into phrases such as “the red cat” or “struggle to deal”, each

word independently has its proper meaning. Distributed representations for such phrase

chunks must retain information from the individual words. An objective function is thus

defined to learn how to combine the word vector representations, while keeping the maximum

information from the original vectors. An operation as simple as a weighted sum will probably

fail for sequences where individual words act as operators that modify the meaning of another

word, or for multiword expressions. Other more complex functions could be chosen to also

include such cases, but we choose to propose a much simpler model (i.e., averaging the word

representations) to get phrase chunk representations with unsupervised learning. In this work,

we therefore focus on noun and verb phrase chunks.

5.3.1 Training an Additive Model

We define s = {w1, . . . , wT } ∈S a phrase chunk of T words, with S a set of phrase chunks. By

feeding all
√

Pwt into the autoencoder, a representation xwt ∈ Rd wrd
of each word wt ∈W is

obtained:

xwt = f
(√

Pwt

)
. (5.4)

By an element-wise addition, a representation of the phrase chunk s can be calculated as:

xs = 1

T

∑
wt∈s

xwt . (5.5)

65

Chapter 5. Towards Phrase Embeddings

|D
|

s =

� P
th

e

the

� P
re

d

red

� P
ca

t

cat

f (•) x t
h

e

x r
ed

x c
at g (•)

g
(f(� P

th
e
))

g
(f(� P

re
d
))

g
(f(� P

ca
t))

∑

x s d
w

rd

x t
h

e

x w
2 . . .

x r
ed . . .

x w
i

·

. . .

x c
at . . .

x w
|W

|

scores xs ·xwi ∀wi ∈W

Figure 5.1 – Architecture for the joint learning of word representations and their summation.
Considering the noun phrase s = the red cat, each word wt ∈ s is represented as the square
root of its co-occurrence probability distribution

√
Pwt . These are the inputs given to an

autoencoder which encodes them in a lower dimension xwt ∈Rd wrd
. These new representations

are then given to a decoder which is trained to reconstruct the initial inputs. This is the first
objective function. The second objective is to keep information when words are summed.
All xwt are averaged together to represent s in the same space as wt . A dot product between
the phrase representation xs and all the other word representations from the dictionary W
is calculated. These scores are trained to be high for words that appear in s and low for the
others.

66

5.4. Experimental Results

In predictive-based model, such as the Skip-gram model, the objective is to maximize the

likelihood of a word based on other words in the same sequence (see Section 3.2.3). Instead,

our training is slightly different in the sense that we aim at discriminating whether words

are in the phrase chunk or not. An objective function is thus defined to encourage words wt

which appear in the chunk s to give high scores when calculating the dot product between xwt

and xs . On the other hand, these scores must be low for words wi ∉ s that do not appear in the

chunk. We train this problem with a ranking-type cost:

∑
s∈S

∑
wt∈s

∑
wi∈W

wi 	∈s

max
(
0,1−xs ·xwt +xs ·xwi

)
. (5.6)

5.3.2 Joint Learning with Negative Sampling

In contrast with other methods which have subsequently found nice compositionality proper-

ties by simple summation, the novelty of our method is the explicit learning of word repre-

sentations suitable for summation. The system is then designed to force words with similar

context to be close in a d wrd-dimensional space, while these dimensions are learned to be

combined with other related words. This joint learning is illustrated in Figure 5.1.

Due to the large size of W , a negative sampling approach is used to speed up the training. In

Equation 5.6, the whole dictionary W is thus replaced by a subset W− ⊆W with N randomly

chosen negative samples wi 	∈ s. A new set W− is randomly picked at each iteration during the

training. The whole system is trained by minimizing both objective functions (5.1) and (5.6)

over the training data using stochastic gradient descent. For a training sample s ∈S , the loss

function is thus as follows:

L(s;θ) = ∑
wt∈s

∥∥∥√Pwt − g
(

f
(√

Pwt

))∥∥∥
2
+ ∑

wi∈W−
wi 	∈s

max
(
0,1−xs ·xwt +xs ·xwi

)
. (5.7)

5.4 Experimental Results

For our experiments, the corpus of text is the entire English Wikipedia described in Sec-

tion 4.3.1.

5.4.1 Phrase Dataset

To learn the summation of words that appear frequently together, we choose to consider only

the noun and verb phrase chunks to build S . We extract these chunks with a phrase chunking

approach by using the SENNA software1. By retaining only the phrase chunks appearing at

least ten times, this results in 1,823,259 noun phrase chunks and 255,232 verb phrase chunks,

1Available at http://ml.nec-labs.com/senna/

67

Chapter 5. Towards Phrase Embeddings

for a total of 2,078,491 phrase chunks. We divided this set of phrases into three sets: 1,000

phrases for validation, 5,000 phrases for testing, and the rest for training (2,072,491 phrases).

An unsupervised framework requires a large amount of data. Because our primary focus is to

provide good word representations, validation and testing sets are intentionally kept small to

retain as much phrases as possible in the training set.

5.4.2 Other Methods

We compare our distributed representations with other available models for computing vector

representations of words:

1. the GloVe model which is also based on co-occurrence statistics of corpora (Pennington

et al., 2014)2 (see Section 4.9.2),

2. the Skip-gram (SG) model which learns representations from prediction-based mod-

els (Mikolov et al., 2013b)3 (see Section 3.2.3).

The same corpus and dictionary W as the ones described in Section 4.3.1 are used to train

100-dimensional word vector representations. We use a symmetric context window of ten

words, and the default values set by the authors for the other hyper-parameters.

5.4.3 Evaluating Word Representations

SVD AUTOENCODER

WORDSIMILARITY-353 0.64 0.64
RARE WORD 0.37 0.39
SYNTACTIC ANALOGIES 65.6 68.0
SEMANTIC ANALOGIES 52.7 51.3

Table 5.1 – Evalution of word representations on both similarity and analogy tasks. Comparison
of performance between Hellinger PCA with randomized SVD and with autoencoder. We use
100-dimensional word vector representations. Spearman rank correlation is reported on word
similarity tasks. Accuracy is reported on word analogy tasks.

The first objective of the model is to learn word embeddings as good as with Hellinger PCA

through randomized SVD. To evaluate this, we use both analogy and similarity tasks described

in Section 4.3.2. As expected, results reported in Table 5.1 show that our model gives similar

results than with the randomized SVD. Even with the addition of a second objective function,

2Code available at http://www-nlp.stanford.edu/software/glove.tar.gz.
3Code available at http://word2vec.googlecode.com/svn/trunk/.

68

5.4. Experimental Results

the autoencoder approach has captured the same syntactic and semantic information about

words.

5.4.4 Evaluating Phrase Representations

We aim at learning to sum word representations to generate phrase representations, while

keeping the original information coming from the words. We thus introduce a novel task to

evaluate the phrase representations.

Description of the Task

As dataset, we use the collection of test phrases described in Section 5.4.1. It contains 5000

phrases (noun phrases and verb phrases) extracted from Wikipedia with a chunking approach.

Among them, 2244, 2030 and 547 are, respectively, composed of two, three and four words.

The remaining 179 are composed of at least five words with a maximum of eight words. For a

given phrase s = {w1, . . . , wT } ∈S of T words, the objective is to retrieve the T words from its

distributed representation xs . Scores between the phrase s and all the possible words wi ∈W
are calculated using the dot product between their distributed representations xs · xwi , as

illustrated in Figure 5.1. The top T scores are considered as the words composing the phrase s.

Results

To evaluate whether words making a given phrase can be retrieved from the distributed phrase

representation, we use Recall @K , which measures the fraction of times a correct word was

found among the top K results. K is proportional to the number of words per phrase, e.g. for a

3-word phrase with a Recall@5, the correct words are found among the top 15 results. Higher

Recall @K means better retrieval performance. Since we care most about the top-ranked

retrieved results, the Recall @K with small K are more important.

R@1 R@5 R@10

SKIP-GRAM 7.96 22.26 30.04
GLOVE 54.97 79.97 86.54

SVD 17.42 32.87 40.72
OUR MODEL 64.22 91.72 95.85

Table 5.2 – Evaluation of phrase representations. Comparison of performance across all models
with 100-dimensional phrase vector representations on word retrieval. R@K is Recall@K , with
K = {1,5,10}.

Results reported in Table 5.2 show that our distributed word representations can be averaged

69

Chapter 5. Towards Phrase Embeddings

together to produce meaningful phrase representations, since the words are retrieved with a

high recall. Our model significantly outperforms other methods on this task. The comparison

with SVD results is particularly interesting since we observe a significant gap. By introducing

the second objective, we learn word embeddings distributed differently, which allows the

summation without discarding the information carried by the original vectors.

2 3 4 5+

Our Model
GloVe
SVD
Skip−gram

Number of Words in Phrases

R
ec

al
l (

%
)

0
10

20
30

40
50

60

Figure 5.2 – Recall@1 based on the number of words per phrases. Comparison of performance
across all models with 100-dimensional word vector representations.

In Figure 5.2, a more detailed analysis of results reveals that the GloVe model competes with

ours for the 2-word phrases. However GloVe’s representations cannot maintain this perfor-

mance for longer phrases. It is probably not too surprising as this model is trained using

ratios of co-occurrence probabilities for two target words. Consequently, it well learns linear

substructures for pairs of words. In contrast, our joint model can learn more complex sub-

structures which make possible the aggregation of multiple words within a low-dimensional

vector space.

5.4.5 Inferring New Phrase Representations

Representations for new phrases can thus be generated by simply averaging its word repre-

sentations, assuming that all words are in the vocabulary W . Considering that Wn tends to

grow exponentially with n, it gives a nice framework to produce the huge variety of possible

70

5.4. Experimental Results

QUERY PHRASES NEAREST PHRASES

ENCODING FUNCTION f (·) AVERAGING WORDS

AMERICAN AIRLINES

BRANIFF AIRLINES AMERICAN AIRWAYS

ALOHA AIRLINES PAN AMERICAN AIRLINES

BRANIFF AIRWAYS AMERICAN EAGLE AIRLINES

JETBLUE AIRWAYS NORTH AMERICAN AIRLINES

BRANIFF INTERNATIONAL AIRWAYS AMERICAN OVERSEAS AIRLINES

CHICAGO BULLS

DENVER NUGGETS CHICAGO COLTS

SEATTLE SUPERSONICS CHICAGO HORNETS

CLEVELAND CAVALIERS CHICAGO STAGS

BOSTON CELTICS BUFFALO BULLS

DALLAS MAVERICKS CHICAGO CARDINALS

HOME PLATE

RIGHT FIELDER THE HOME PLATE UMPIRE

CENTER FIELDERS THE HOME PLATE AREA

THE OUTFIELD FENCE THE HOME LEG

LEADOFF BATTER THE BALL HOME

THE INFIELD THE DIAMOND STATE BASE BALL CLUB

PRESIDENT OF THE UNITED STATES

PRESIDENT COOLIDGE THE UNITED STATES PRESIDENT

PRESIDENT EISENHOWER THE UNITED STATES PRESIDENCY

U.S. PRESIDENT DWIGHT EISENHOWER THE FIRST UNITED STATES SECRETARY

PRESIDENT TRUMAN THE UNITED STATES MINISTER

PRESIDENT REAGAN THE FIRST UNITED STATES SENATOR

Table 5.3 – Examples of phrases and five of their ten nearest phrases from the collection of
phrases. Representations for the collection of phrases have been computed by averaging
the word representations. Query phrase representations are inferred using the two different
alternatives: (1) with the encoding function f using counts from a symmetric window of ten
context words around the query phrase, (2) by averaging the representations of the words that
compose the query phrase. All distributed representations are 100-dimensional vectors.

sequences of n words in a timely and efficient manner with low memory consumption, unlike

other methods. Relying on word co-occurrence statistics to represent words in vector space

also provides a framework to easily generate representations for unseen words or phrases, as

described in Section 4.7. Table 5.3 presents some examples of phrases, where we use both

alternatives to compute their distributed representations. It can be seen that both alternatives

give distinct representations. For instance, by using the encoding function f (·), our model

infers a representation for the entity Chicago Bulls which is close to other NBA teams, like the

Denver Nuggets or the Seattle Supersonics. By averaging the representations of both words

Chicago and Bulls, our model infers a representation which is close to other Chicago’s sport

teams. Both representations are meaningful, but they carry different information. Relying on

co-occurrence statistics gives entities that occur in a similar context, while the summation

tries to find entities containing the maximum amount of similar information. This also works

with longer phrases, such as President of the United States. The first alternative gives men who

served as president, when the second gives related positions.

71

Chapter 5. Towards Phrase Embeddings

5.5 Conclusion

We introduce a model that combines both count-based methods and predictive-based meth-

ods for generating distributed representations of words and phrases. Using a chunking ap-

proach, a collection of noun phrases and verb phrases is extracted from Wikipedia. For a

given n-word phrase, we train our model to generate a low-dimensional representation for

each word based on its co-occurrence probability distribution. These n representations are

averaged together to generate a distributed phrase representation in the same semantic space.

Thanks to an autoencoder approach, we can simultaneously train the model to retrieve the

original n words from the phrase representation, and therefore learn complex linear substruc-

tures. Furthermore, we show that the autoencoder learns word embeddings as good as with

the conventional SVD. Performance on a novel task for evaluating phrase representations

confirm the ability of our model to learn complex substructures, which make possible the

aggregation of multiple words within a low-dimensional vector space. Better still, inference of

new phrase representations is also easily feasible when relying on counts. Some qualitative

examples demonstrate that both alternatives can give different but meaningful information

about phrases.

72

Part IIDocument Classification

73

6 Sentiment Classification with Convo-
lutional Neural Network

Successful methods for document classification are traditionally based on bag-of-words

(BOW), where words are transformed into numeric values. These are considered as features

for training a classifier, such as Naive Bayes, Maximum Entropy, or Support Vector Machine

(see Section 2.2). Such methods work well in practice, since finding the most discriminative

keywords is generally enough to classify documents. However, sentiments might be harder

to detect when relying only on keywords. An obvious example is when “not” is used with an

adjective. Then, a negative expression is likely to be predicted as a positive sentiment. Adding

n-grams could be a solution to overcome this limitation, but the number of features grows

exponentially with n, causing an increase in the computational cost. We thus propose to

address this issue with an approach based on a convolutional neural network (CNN). CNN are

powerful models for classification, and are already a great success in computer vision. Thanks

to word embeddings, CNN-based models can also be designed for tackling NLP problems.

Words are represented as dense vectors that can be fed to a convolutional layer. Stacking many

layers has as consequence a high computational cost, which requires the use of Graphical Pro-

cessing Unit (GPU). However, traditional models in text document classification are relatively

simple, leading to a rapid classification. In this chapter, we therefore introduce a simple CNN

with only one convolutional layer followed by one max layer for classifying documents with

sentiments. We evaluate our approach on short and long documents, using tweets and movie

reviews.

6.1 Convolutional Neural Network for Sentiment Classification

In sentiment classification, we are given a document d ∈ D and a class y ∈ {−1;1} where

y = −1 is negative sentiment and y = 1 is positive sentiment. Traditional NLP approaches

extract a rich set of hand-designed features from documents which are then fed to a standard

classification algorithm. In contrast, we want to pre-process our features as little as possible.

In that respect, a convolutional neural network architecture seems appropriate as it can be

trained in an end-to-end fashion on the task of interest (Collobert et al., 2011). A convolutional

layer receives pre-trained word embeddings as inputs, and learns which sequences of words

75

Chapter 6. Sentiment Classification with Convolutional Neural Network

d = the craziest , most delirious spectacle you ’re likely to lay eyes on this year .

φ1
θ

(the) φ1
θ

(likely) φ1
θ

(year)

k
d

w
rd

word features

Convolution layer
φ2
θ

(·)

d
n

fi
lt

er

local features

Max layer
maxt [φ2

θ
(·)]i 1 ≤ i ≤ nfilter

d
n

fi
lt

er

global features

Classifier

�

Figure 6.1 – Convolutional neural network for sentiment classification.

are good indicators of sentiments. Documents might contain multiple sentiments with various

levels of polarity, especially for long documents such as movie reviews. As we want to extract

the most discriminative sentiments, we use a max layer which summarizes all local features

into a global document representation. This final representation is used to train a classifier.

The architecture is illustrated in Figure 6.1.

6.1.1 Embedding Layer

Given a document of T words {w1, w2, . . . , wT }, each word wt ∈W is first embedded into a

d wrd-dimensional vector space, using an embedding layer φ1
θ

as described in Section 2.1.3.

The embedding layer produces the following matrix by applying this operation for all T words

in d :

φ1
θ(w1, w2, . . . , wT) =

(
Ew1 Ew2 . . . EwT

)
∈Rd wrd×T , (6.1)

76

6.1. Convolutional Neural Network for Sentiment Classification

where E ∈ Rd wrd×|W | is the word embedding matrix which is initialized with pre-trained em-

beddings using Hellinger PCA (see Chapter 4). As sentiment classification is clearly a semantic

task, we select embeddings obtained with a context window size of 10 words.

6.1.2 Convolutional Layer

The convolutional layer takes the complete document d and successively produces local

features by applying a nonlinear transformation to all sequences of words in d . We define a

kernel size k (a hyper-parameter), which corresponds to a fixed window size of words. The

layer then applies a k-word sliding window over the matrix of embeddings. It first concatenates

each column vector to produce a (d wrd ×k)-dimensional vector. This vector is then fed to a

nonlinear hidden layer,

φ2
θ(wt , . . . , wt+k) = W2h

(
W1φ1

θ(wt , . . . , wt+k)+b1
)
+b2 ∈Rnfilter . (6.2)

The hyper-parameter nfilter is the number of filters of the convolution layer. The weight

matrices W1 ∈Rnhu×(d wrd×k) and W2 ∈Rnfilter×nhu , and the biases b1 ∈Rnhu and b2 ∈Rnfilter are the

same across all windows in the document.

6.1.3 Global Document Representation

Each window of words in a document d is represented as a set of (trained) filters produced by

the convolutional layer. We now aim at focusing on the most important filters in the document,

regardless of their location. The maximum value obtained by the i th filter over the whole

document is:

[
φ3
θ(d)

]
i = max

1≤t≤T−k+1

[
φ2
θ(wt , . . . , wt+k)

]
i 1 ≤ i ≤ nfilter , (6.3)

where φ3
θ

(d) ∈Rnfilter is a global document representation. It can be seen as a way to measure if

the information represented by the filter has been captured in the document or not.

6.1.4 Binary Classification

Finally, we feed all these intermediate scores to a linear classifier, leading to the following

simple model:

φθ(d) =α ·φ3
θ(d) , α ∈Rnfilter . (6.4)

The i th filter might capture positive or negative sentiment depending on the sign of [α]i .

77

Chapter 6. Sentiment Classification with Convolutional Neural Network

6.1.5 Training

The neural network is trained using stochastic gradient descent. We denote θ = {E, W1, W2, b1,

b2, α} all the trainable parameters of the network. Using a training set D, we minimize the

following logistic loss function with respect to θ:

L(θ) = ∑
(d ,y)∈D

log
(
1+e−yφθ(d)

)
. (6.5)

6.2 Short Document Classification

As a first experiment, we want to evaluate whether our approach can detect sentiments in

short documents. For that purpose, we use Twitter as a data source. Twitter is an online social

networking service that enables users to send and read short 140-character messages called

tweets. Users post messages where they can express opinions about different topics, which

includes products or services. These tweets are publicly visible by default, which makes Twitter

a gold mine for consumers, marketers or companies. Consumers can analyze the opinions of

Twitter users about products or services before making a purchase. Marketers can analyze

customer satisfaction or research public opinion of their company and products. Companies

can gather critical feedback about problems in newly released products. Identifying and

extracting this subjective information has therefore become a key point.

6.2.1 Dataset Description

Twitter data posses many unique properties that make sentiment classification much more

challenging than in other domains:

• Maximum length of a tweet is 140 characters. The dataset considered has in average 14

words and 78 characters.

• The quantity of misspelling, slang and informal language is much higher than in other

types of data.

• Twitter users post an infinitude of different subjects. This differs from classical sentiment

classification datasets, which are usually focused on a specific domain (such as movie

reviews).

For our experiments, we consider the same dataset used by Go et al. (2009). For the training

data, the tweets were extracted using the official Twitter Application Programming Interface

(API)1. The sentiment of Twitter posts have been predicted using distant supervision. The

positive tweets were selected with a query for tweets containing “:)”, “:-)”, “:)”, “:D”, “=)”. The

negative ones with a query for tweets containing “:(”, “:-(”, “: (”. The tweets in the training set

1http://apiwiki.twitter.com

78

6.2. Short Document Classification

are from the time period between April 6, 2009 to June 25, 2009. The following filtering were

applied on the data:

• emoticons were removed from the tweets,

• tweets containing both positive and negative emoticons were removed,

• retweets were removed to avoid giving extra weight to a particular weight.

Stripping out the emoticons causes the classifier to learn from the other features (the words in

our case) present in the tweet. The final training data consists of a total of 1.6M tweets, half

labeled as positive and half labeled as negative. The test data is manually collected, using the

web application. A set of 177 negative tweets and 182 positive tweets were manually marked.

Not all the test tweets have emoticons. We also consider the particularity of Twitter language

to reduce the vocabulary size and make the data more concise. This is achieved with the

following data pre-processing:

• Target: words started with the character @ are replaced by the special token “TARGET”.

• Link: every URL (http://...) is replaced by the special token “URL”.

• Hashtag: words started with the character # are replaced by the token “HASHTAG”.

• Repeated Letters: every letter occurring more than two times is replaced with two

occurrences (e.g., ‘huuuuuuuungry’ is replaced by ‘huungry’)

• Digit: all occurrences of sequences of numbers within a word are replaced with the

special token “NUMBER”.

Finally, all words are lowercased. The resulting tweets have been tokenized using the CMU

ARK Twitter NLP tools2 (Gimpel et al., 2011). This results in a 323,393 words vocabulary W .

6.2.2 Related Work

Go et al. (2009) proposed a model to automatically extract sentiment from tweets. They

consider three different feature-based classical machine learning classifiers to infer senti-

ment on tweets: (i) Naive Bayes (NB), (ii) Max-Entropy (MaxEnt) and (iii) Support Vector

Machine (SVM). They report results for different set of features: Unigram, Unigram+Bigram

and Unigram+Part-of-Speech (POS). More recently, Poria et al. (2014) outperform these base-

line methods by employing lexical resources to provide polarity scores (from SenticNet) or

emotion labels (from WordNet-Affect) for words and concepts. Kalchbrenner et al. (2014) have

proposed a dynamic convolutional neural network (DCNN) for modeling sentences. While we

2http://www.ark.cs.cmu.edu/TweetNLP/

79

Chapter 6. Sentiment Classification with Convolutional Neural Network

propose to simply extract a global feature vector with a max approach after one convolutional

layer, they used multiple layers of convolution followed by dynamic k-max pooling to induce

a structured feature graph over a given tweet. This approach is therefore much more complex

(deeper) than our proposed model.

6.2.3 Experimental Results

Tweets are inherently very short documents. We thus use a small window size of k = 3 words

for the convolutional layer, along with nfilter = 30 filters. For the nonlinear hidden layer, we

use nhu = 50 hidden units. All these hyper-parameters were chosen considering a validation

set extracted from the training data. Word embeddings dimension is d wrd = 50. Because each

input (a tweet) contains a limited number of words, we choose not to introduce a special

embeddings for unknown words. For each word in W where its embedding is not available,

we use instead a random initialization. These new embeddings are then learned, while the

existing ones are tuned during the training.

MODEL ACCURACY (%)

SVM 81.6
NB 82.7
MAXENT 83.0
EMOSENTICSPACE 85.1
DCNN 87.4
OUR MODEL 88.3

Table 6.1 – Accuracy on the Twitter sentiment classification test set. The three classical models
(SVM, BiNB and MaxEnt) are based on unigram and bigram features; the results are reported
from Go et al. (2009).

Results reported in Table 6.1 show that our model significantly outperforms the baseline

models, and a model with a prior knowledge on sentiments (EmoSenticSpace). It also slightly

outperforms a much deeper convolutional neural network (DCNN), which indicates that there

is no need for multiple convolutional layers in sentiment classification of short documents.

The number of filters used in our model is very low, nfilter = 30. This means that tweets

are represented in 30-dimensional global representations. Conversely, traditional bag-of-

words based classifiers will represent tweets with as many features as there are words in the

vocabulary. Considering that our vocabulary W contains 323,393 words, this is about ten

thousand times higher than our tweet representations.

At inference time, our model can also output polarity scores for each k-word window in a

given tweet by simply removing the max layer. This is a valuable asset to detect which parts of

a tweet are positive or negative, as illustrated in Figure 6.2. This also helps to understand why

certain tweets are misclassified. Some examples of misclassified tweets are in Figure 6.2 where

80

6.3. Long Document Classification

Figure 6.2 – Selection of tweets from the test set where sentiments are highlighted using our
model outputs. The blue color scale indicates negative sentiment, the red one indicates
positive sentiments. Best viewed in colors.

both sentiments have been detected.

6.3 Long Document Classification

Our second experiment focuses on long text documents. In that respect, we consider movie

reviews as data source. As Twitter, movie reviews are widely available online. Many websites

offer a platform for expressing opinions on movies, such as IMDB (www.imdb.com) or Rotten

Tomatoes (http://www.rottentomatoes.com/). But unlike Twitter, those reviews are, in general,

well written as they are subject to moderation by the website, and they contain a polarity score.

Distance supervision is therefore not needed.

6.3.1 Dataset Description

We used a collection of 50,000 reviews from IMDB introduced in Maas et al. (2011)3. This

dataset contains no more than 30 reviews per movie, with an even number of positive and

negative reviews, so randomly guessing yields 50% accuracy. Reviewers from IMDB give a

score from 1 to 10 in addition to their reviews, which allows supervised learning. Only highly

polarized reviews have been considered. A review is considered as negative if the score ≤ 4,

and as positive if the score ≥ 7. The final dataset has been evenly divided into training and test

sets (25,000 reviews each). In contrast with tweets, IMDB movie reviews are long documents

since each review contains on average 271 words. IMBD reviews guidelines indeed say that

the minimum length for reviews is 10 lines of text, with a recommended lengths of 200 to 500

words. As data pre-processing, we just replace all digits with a special token and lowercase all

words.

3Available at http://www.andrew-maas.net/data/sentiment

81

Chapter 6. Sentiment Classification with Convolutional Neural Network

6.3.2 Related Work

As a baseline system, we report the best model from Maas et al. (2011). By mixing unsupervised

and supervised techniques, they learn word vectors capturing general semantic information,

as well as rich sentiment content. Then they combine these word representations with BOW

representations for classifying sentiment of movie reviews. Later, Wang and Manning (2012)

explored variants of Naive Bayes (NB) and Support Vector Machines (SVM) for movie reviews.

They propose to combine generative and discriminative classifiers to introduce a simple

model where an SVM is built over NB log-count ratios as feature values (see Section 7.2.3 for

details). These baselines are proving to be highly competitive, as they provide state-of-the-art

performance on this task.

6.3.3 Experimental Results

When dealing with movie reviews, the model has to classify much longer documents than

in Twitter. The convolutional layer therefore uses a window of k = 5 words and nfilter = 1000

filters. The number of hidden units is nhu = 300. A simple cross-validation has been performed

on the training set to choose these optimal hyper-parameters. Word embeddings dimension

remains d wrd = 50, but this time, we introduce a special embedding for unknown words.

MODEL ACCURACY (%)

MAAS ET AL. (2011) 88.9
SVM 86.9
BISVM 89.2
NB 83.5
BINB 86.6
NBSVM 88.3
BINBSVM 91.2
OUR MODEL 90.2

Table 6.2 – Accuracy on the IMDB test set for sentiment classification. When BI is used as
prefix, models include bigram features.

Results in Table 6.2 show that our model outperforms the baseline from Maas et al. (2011) and

other classical approaches based on models with unigrams. We note that including bigrams

to those classical approaches significantly helps to increase the general performance. This

confirms the need of considering longer sequences of words for sentiment classification, which

legitimizes the use of our convolutional model to tackle this task. However, it is interesting to

see that the best result is obtained with SVM classifier built over NB features from unigrams

and bigrams. For long document classification, those simple models are highly competitive

which raises the question of how relevant CNN models are for this task. One answer to this

question is that CNN can help fighting the curse of dimensionality, as they provide global

document representations in much lower dimensional space than BOW models.

82

6.4. Conclusion

Embeddings fine-tuning

BORING BAD AWESOME
before after before after before after

SAD CRAP HORRIBLE TERRIBLE SPOOKY TERRIFIC

SILLY LAME TERRIBLE STUPID AWFUL TIMELESS

SUBLIME MESS DREADFUL BORING SILLY FANTASTIC

FANCY STUPID UNFORTUNATE DULL SUMMERTIME LOVELY

SOBER DULL AMAZING CRAP NASTY FLAWLESS

TRASH HORRIBLE AWFUL WRONG MACABRE MARVELOUS

LOUD RUBBISH MARVELOUS TRASH CRAZY EERIE

RIDICULOUS SHAME WONDERFUL SHAME ROTTEN LIVELY

RUDE AWFUL GOOD KINDA OUTRAGEOUS FANTASY

MAGIC ANNOYING FANTASTIC JOKE SCARY SURREAL

Table 6.3 – Set of words with their 10 nearest neighbors before and after fine-tuning for
the movie review task (using the Euclidean metric in the embedding space). Before tuning,
antonyms are highlighted in blue. After tuning, antonyms have been replaced by some task-
specific words which are highlighted in red. Best viewed in colors.

As we have seen in Section 4.6.4, tuning word embeddings for the given task helps to increase

the general performance. In sentiment classification, it is even more important since antonyms

tend to be close in the original embedding space. We see in Table 6.3 that bad is, for instance,

close to antonyms such as good or fantastic. After fine-tuning, antonyms have been removed

from the nearest neighbors, and replaced by words that are related to the task of interest. In

terms of results, the accuracy drops from 90.2% to 88.0% when the word embeddings remain

fixed during the training. Fine-tuning is therefore quite important in sentiment classification.

Sentiment Detection

As our method takes the whole review as input, we can extract windows of words having the

most discriminative power: it is a major advantage of our method compared to conventional

bag-of-words based methods. We report in Table 6.4 some examples of windows of words

extracted from the most discriminative filters [α]i (positive and negative). Note that there is

about the same number of positive and negative filters after learning.

As with Twitter, each k-word window can receive a polarity score for highlighting which parts

of the movie reviews contains positive and negative sentiments. This feature makes more

sense when dealing with long document as it gives a nice visualization tool to quickly explore

the most interesting sequences of words, as seen in Figure 6.3.

6.4 Conclusion

As we have built embeddings carrying meaningful semantic information about words, we

propose to tackle sentiment classification with a convolutional neural network. A convolu-

83

Chapter 6. Sentiment Classification with Convolutional Neural Network

k-WORD WINDOW
[α]i < 0 [α]i > 0

THE WORST FILM THIS YEAR BOTH REALLY JUST WONDERFUL .
VERY WORST FILM I ’VE . A TRULY EXCELLENT FILM

VERY WORST MOVIE I ’VE . A REALLY GREAT FILM

WATCH THIS UNFUNNY STINKER . EXCELLENT FILM WITH GREAT PERFORMANCES

, EXTREMELY UNFUNNY DRIVEL COME EXCELLENT FILM WITH A GREAT

, THIS LUDICROUS SCRIPT GETS EXCELLENT MOVIE WITH A STELLAR

IT WAS POINTLESS AND BORING INCREDIBLE . JUST INCREDIBLE .
IT IS UNFUNNY . UNFUNNY PERFORMANCES AND JUST AMAZING .
FILM ARE AWFUL AND EMBARRASSING ONE WAS REALLY GREAT .

Table 6.4 – The top 3 positive and negative filters [α]i and their respective top 3 windows of
words within the whole IMDB review dataset.

Figure 6.3 – Highlighting sentiments in IMDB movie reviews. The blue color scale indicates
negative sentiment, the red one indicates positive sentiments. Best viewed in colors.

84

6.4. Conclusion

tional layer learns local features from windows of k-word embeddings. A global (and compact)

document representation is then obtained by extracting the most discriminative local features

with a max layer. This global representation is finally used for training a linear classifier which

gives better performance than classical approaches in short documents classification. Bag-

of-words based models with bigram features are still highly competitive in long documents

classification, but we show that the proposed model is a good alternative for fighting the curse

of dimensionality, while offering a framework for sentiment visualization.

85

7 N-gram-Based Model for Compact
Document Representation

Day after day, the amount of text documents available online is growing. Effective text mining

is getting worse without efficient organization, summarization and indexing of document

content. Traditional representation of documents known as bag-of-words (BOW) considers

every document as a vector in a very high dimensional space where each element of this vector

represents one term appeared in the document collection. One limitation of this model is that

the discriminative words are usually not the most frequent ones. A large vocabulary of words

needs to be defined to obtain a robust model. Classification or text clustering then must deal

with a huge number of features, and it becomes time-consuming and memory-hungry.

Furthermore, such models are based on words alone, which raises another limitation. A

collection of words cannot capture phrases or multiword expressions, while n-grams have

shown to be helpful features in several natural language processing tasks (Tan et al., 2002; Lin

and Wu, 2009; Wang and Manning, 2012). N -gram features are not commonly used in text

mining, probably because the vocabulary Wn tends to grow exponentially with n. Phrase

structure extraction can be used to identify only n-grams which are phrase patterns, and

thus limit the vocabulary size. However, this adds another step to the model, making it more

complex. To overcome these barriers, we propose that documents be represented as a bag

of semantic concepts, where n-grams are considered instead of only words. By leveraging

the ability of word vector representations to compose (see Chapter 5), representations for

n-grams are easily computed with an element-wise addition. Using a clustering algorithm

such as K -means, those representations are grouped into K clusters which can be viewed as

semantic concepts. Text documents are now represented as bag of semantic concepts, with

each feature corresponding to the presence or not of n-grams from the resulting clusters. By

setting a small K , semantic information is captured while remaining in a low-dimensional

space as the number of features is dramatically reduced. We evaluate the proposed model in

the classification of movie reviews and news.

87

Chapter 7. N-gram-Based Model for Compact Document Representation

7.1 Related Work

Some techniques have been proposed to reduce the dimensionality and represent documents

in a low-dimensional semantic space. Latent Semantic Analysis (LSA) (Deerwester et al., 1990)

uses the term-document matrix and a singular value decomposition (SVD) to represent terms

and documents in a new low-dimensional space. Latent Dirichlet Allocation (LDA) (Blei et

al., 2003) is a generative probabilistic model of a corpus. Each document is represented as a

mixture of latent topics, where each topic is characterized by a distribution over words. By

defining K topics, documents can then be represented as K -dimensional vectors. Pessiot et

al. (2010) also proposed probabilistic models for unsupervised dimensionality reduction in

the context of document clustering. They make the hypothesis that words occurring with the

same frequencies in the same document are semantically related. Based on this assumption,

words are partitioned into word topics. Document are then represented by a vector where

each feature corresponds to a word-topic representing the number of occurrences of words

from that word-topic in the document. Other techniques have tried to improve text document

clustering by taking into account relationships between important terms. Some have enriched

document representations by integrating core ontologies as background knowledge (Staab

and Hotho, 2003), or with Wikipedia concepts and category information (Hu et al., 2009).

Part-of-speech tags have also been used to disambiguate words (Sedding and Kazakov, 2004).

7.2 A Bag of Semantic Concepts Model

The model is divided into three steps:

1. vector representations of n-grams are obtained by averaging pre-trained representations

of its individual words;

2. n-grams are grouped into K semantic concepts by performing K -means clustering on

all n-gram representations;

3. documents are represented by a bag of K semantic concepts, where each entry depends

on the presence of n-grams from the concepts defined in the previous step.

7.2.1 N -gram Representation

The first step of the model is to generate continuous vector representations for each n-gram.

Leveraging the model described in Chapter 5, word representations are summed to generate

n-gram representations:

1

n

n∑
i=1

xwi . (7.1)

88

7.2. A Bag of Semantic Concepts Model

These representations are vectors which keep the semantic information of n-grams with

different n in the same dimensionality. Distances between them are thus computable. It

allows the use of a K -means clustering for grouping all n-grams into K classes.

7.2.2 K -means Clustering

K -means is an unsupervised learning algorithm commonly used to automatically partition a

data set into K clusters. Considering a set of n-gram representations xi ∈Rd wrd
, the algorithm

will determine a set of K centroids γk ∈ Rd wrd
, so as to minimize the average distance from

each representation to its nearest centroid:

∑
i

∥∥xi −γσi

∥∥
2

, where σi = argmin
k

∥∥xi −γk

∥∥
2 . (7.2)

The limitation due to the size of the vocabulary is therefore overcome. By setting K to a low

value, documents can also be represented by more compact vectors than with a bag-of-words

model, while keeping all the meaningful information.

7.2.3 Document Representation

Denoting D = {
d1,d2, . . . ,dm

}
a set of text documents, where each document di contains a set

of n-grams. First, each n-gram is embedded into a common vector space by averaging its word

vector representations. The resulting n-grams representations are assigned to clusters using

the centroids γk defined by the K -means clustering. Documents di are then represented by a

vector of K features, vi ∈RK . Each entry [vi]k usually corresponds to the frequency of n-grams

from the kth cluster within the document di . The set of text documents is then defined as

D̄ = {
v1,v2, . . . ,vm

}
.

With Naive Bayes Features

For certain type of document, such as movie reviews in Section 6.3, the use of Naive Bayes

features can improve the general performance (Wang and Manning, 2012). Success in sen-

timent classification relies mostly on the capability of the models to detect negative and

positive n-grams in a document. A proper normalization is then calculated to determine how

important each n-gram is for a given class y ∈ {−1,1}. We first define a set of count vectors for

all n-grams contained in D,
{

f1, . . . , fN
}

where ft ∈Rm is the frequencies of the t th n-gram. [ft]i

represents the number of occurrences of the t th n-gram in the training document di . We then

define count vectors for each sentiment. p ∈RN is for positive sentiment, where each entry

corresponds to a n-gram such as

[p]t = 1+
m∑

i :yi=1
[ft]i (7.3)

89

Chapter 7. N-gram-Based Model for Compact Document Representation

is the number of occurrence of the t th n-gram in positive documents. The same operation is

applies to define a count vector q ∈RN for negative sentiment, where

[q]t = 1+
m∑

i :yi=−1
[ft]i (7.4)

is the number of occurrence of the t th n-gram in negative documents.

A log-count ratio is then calculated to determine how important n-grams are for the sentiments

(classes y):

r = log

(
p/||p||1
q/||q||1

)
, with r ∈RN . (7.5)

Because n-grams are in clusters, we extract the maximum absolute log-count ratio for every

cluster k ∈ {1, . . . ,K }:

[ṽi]k = argmax
[r]t

∣∣[r]t
∣∣ , ∀n-gram t ∈ k where [ft]i > 0 (7.6)

These document representations can then be used for several NLP tasks such as classification

or information retrieval. As for BOW-based models, this model is particularly suitable for

linear SVM.

7.3 Experiments with Sentiment Classification

Sentiments can have a completely different meaning if n-grams are considered instead of

words. A classifier might leverage a bigram such as “not good” to classify a document as

negative, while this would probably fail if only unigrams (words) were considered. We thus

benchmark the bag of semantic concepts model on sentiment classification.

7.3.1 IMDB Movie Reviews Datasets

Datasets from IMDB have the nice property of containing long documents. It is thus valuable

to consider n-grams in such a framework. We did experiments with small and large collections

of reviews. We can thus analyze how well our model competes against classical models, for

different dataset sizes.

90

7.3. Experiments with Sentiment Classification

Pang and Lee (2004)

The collection consists of 1,000 positive and 1,000 negative processed reviews1. So a random

guess yields 50% accuracy. The authors selected only reviews where rating was expressed

either with stars or some numerical value. To avoid domination of the corpus by a small

number of prolific reviewers, they imposed a limit of fewer than 20 reviews per author per

sentiment category. As there is no test set, we used 10-fold cross-validation.

Maas et al. (2011)

The collection consists of 100,000 reviews2. It has been divided into three datasets: training and

test sets (25,000 labeled reviews each), and 50,000 unlabeled training reviews. See Section 6.3.1

for more details.

7.3.2 Building Bag of Semantic Concepts for Movie Reviews

In the following experiments, we use the word representations trained with the model de-

scribed in Chapter 5. By following the three steps described in Section 7.2, movie reviews are

then represented as bags of semantic concepts.

Computing n-gram representations.

We consider n-grams up to n = 3. Only n-grams with words from our vocabulary W are

considered for both datasets3. This results in a set of 34,360 1-gram representations, 419,918

2-gram representations, and 921,837 3-gram representations for the Pang and Lee’s dataset.

And 67,847 1-gram representations, 1,842,461 2-gram representations, and 5,724,871 3-gram

representations for the Maas et al.’s dataset. Because n-gram representations are computed by

averaging representations of its word, all n-grams are also represented in a 100-dimensional

vector.

Partitioning n-grams into semantic concepts.

Because n-grams are represented in a common vector space, similarities between n-grams of

different length can be computed. To evaluate the benefit of adding n-grams for sentiment

analysis, we define semantic concepts with different combinations of n-grams:

• only 1-grams (i.e. clusters of words),

• only 2-grams,

1Available at http://www.cs.cornell.edu/people/pabo/movie-review-data/.
2Available at http://www.andrew-maas.net/data/sentiment.
3Our English corpus is not large enough to cover all the words present in the IMDB datasets. We thus use the

same 1-gram vocabulary with the other methods.

91

Chapter 7. N-gram-Based Model for Compact Document Representation

• only 3-grams,

• with 1-grams and 2-grams,

• with 1-grams, 2-grams and 3-grams.

Each of these five sets of n-gram representations are then partitioned in K = {100,200,300}

clusters with the K -means clustering. The centroids γk ∈ R100 are obtained after K -means

convergence (usually after 10 iterations of the algorithm).

Movie review representations.

Movie reviews are then represented as bags of semantic concepts with Naive Bayes features as

described in Section 7.2.3. The log-count ratio for each n-gram is calculated on the training

set for both datasets.

7.3.3 Comparison with Other Methods

We compare our models with two classical techniques for representing text documents in a

low-dimensional vector space: LSA and LDA. Both methods use the same 1-gram vocabulary

than with the bag of semantic concepts model with K = {100,200,300}. In the framework of

Maas et al.’s dataset, LSA and LDA benefit from the large set of unlabeled reviews.

Latent Sentiment Analysis (LSA) (Deerwester et al., 1990).

Let X ∈R|W |×m be a matrix where each element [X]i , j describes the log count ratio of words i

in document j , with m the number of training documents and W the vocabulary of words (i.e.

34,360 for Pang and Lee’s dataset, 67,847 for Maas et al’s dataset). By applying truncated SVD

to the log-count ratio matrix X, we thus obtain semantic representations in a K -dimensional

space for movie reviews.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003).

We train the K -topics LDA model using the code released by Blei et al. (2003)4. We leave the LDA

hyper-parameters at their default values. Like our model, LDA extracts K topics (i.e. semantic

concepts) and assigns words to these topics. Considering only the words in documents,

we thus apply the method described in Section 7.2.3 to get document representations. A

movie review di is then represented in a K -dimensional vector, where each feature [ṽi]k is the

maximum absolute log-count ratio for the kth topic.

4Available at http://www.cs.princeton.edu/~blei/lda-c/.

92

7.3. Experiments with Sentiment Classification

7.3.4 Classification using SVM

Having representations of movie reviews in a K -dimensional vector, a classifier is trained to

determine whether a given review is positive or negative. Given the set of training documents

D̃ = {
(ṽi , yi)| ṽi ∈RK , yi ∈ {−1,1}

}m
i=1, we picked a linear SVM as a classifier, trained using the

LIBLINEAR library (Fan et al., 2008):

min
w

1

2
wT w+C

∑
i

max
(
0,1− yi wT ṽi

)2 , (7.7)

with w the weight vector, and C a penalty parameter.

7.3.5 Results

PANG AND LEE, 2004 MAAS ET AL., 2011

K = 100 200 300 100 200 300

LDA 76.20 77.10 76.80 85.43 85.45 84.40
LSA 81.60 82.55 83.75 85.82 86.63 86.88

1-GRAM 81.60 82.60 82.70 84.51 84.76 85.54
2-GRAM 82.30 82.25 83.15 88.02 88.06 87.87
3-GRAM 73.85 73.05 72.65 87.41 87.46 87.22

1+2-GRAM 83.85 84.00 84.00 88.10 88.19 88.18
1+2+3-GRAM 82.45 83.05 83.05 88.39 88.46 88.55

Table 7.1 – Classification accuracy on both movie review tasks with K = {100,200,300} number
of features.

The overall results summarized in Table 7.1 show that the bag of semantic concepts ap-

proach outperforms the traditional LDA and LSA approaches to represent documents in a

low-dimensional space. Good performance is achieved even with only 100 clusters, where

LSA needs more clusters to improve. We also denote that our approach performs well on a

small dataset, where LDA fails. A significant increase is observed when using 2-grams instead

of 1-grams. However, using only 3-grams hurts the performance. The best results are ob-

tained using a combination of n-grams, which confirms the benefit of the method. That also

means that word vector representations can be combined while keeping relevant semantic

information.

This is illustrated in Table 7.2 where semantically close n-grams are in the same cluster. We can

see that the model is furthermore able to clearly separate antonyms, which is a good asset for

sentiment classification. The results are also very competitive with a traditional BOW-model.

93

Chapter 7. N-gram-Based Model for Compact Document Representation

GOOD NOT GOOD ENJOY DID N’T ENJOY

k = 269 k = 297 k = 160 k = 108

NICE ONE SUFFICIENTLY BAD ENTERTAIN SCEPTICS

LIKED HERE NOT LIKED ADORED THEM DID N’T LIKE

IS PRETTY NICE IS FAR WORSE ENJOYING N’T ENJOY ANY

THE GREATEST THING NOT THAT GREATEST WATCHED AND ENJOY VALUELESS

Table 7.2 – Selected pairs of antonyms and their cluster number. Here, n-grams from Maas
et al’s dataset have been partitioned into 300 clusters. Each n-gram is accompanied with a
selection of others from its cluster.

Using the same 1-gram vocabulary and a linear SVM classifier with the Naive Bayes features,

BOW-model achieves 83% accuracy for Pang and Lee’s dataset, and 88.58% for Maas et al’s

dataset. Our model therefore performs better with about 344 times less features for the first

dataset, and yields similar result with about 678 times less features for the second one.

7.3.6 Computation Time

1-GRAM 2-GRAM 3-GRAM 1+2-GRAM 1+2+3-GRAM

N -GRAM 0 43.00 164.34 43.00 207.34
K -MEANS 14.18 291.62 747.90 302.34 1203.99

DOCUMENT 36.45 173.48 494.06 343.29 949.01

TOTAL 50.63 508.10 1406.30 688.63 2360.34

Table 7.3 – Computation time for building movie review representations with K = 300 semantic
concepts. Time is reported in seconds.

The bag of semantic concepts model can leverage information coming from n-grams to

improve sentiment classification of documents. This model has also the nice property to

build document representations in an efficient and timely manner. The most time-consuming

and costly process step in the model is the K -means clustering, especially when dealing

with millions of n-gram representations. However, this step can be done very quickly with

low memory by using mini-batch K -means method. Computation times for generating 300-

dimensional representations are reported in Table 7.3. All experiments have been run on

single CPU core Intel i7 2600K 3.4 GHz. Despite the fact that single CPU has been used for

this benchmark, the three steps of the model are highly parallelizable. The recorded times

could thus be divided by the number of CPU available. We see that representations can

be computed in less than one minute with only 1-gram vocabulary. About 10 minutes are

94

7.4. Experiments with Text News Classification

necessary when adding 2-grams, and about 40 minutes by adding 3-grams. In comparison,

LDA needs six hours for extracting 100 topics and three days for 300 topics. Our model is also

very competitive with LSA which takes 540 seconds to generate 300-dimensional document

representations. However, adding 2-grams and 3-grams to perform a LSA would be extremely

time-consuming and memory-hungry while our model can handle it.

7.3.7 Inferring Semantic Concepts for Unseen N -grams

Another drawback of classical models is that they cannot deal with unseen words. Only words

present in the training documents are used to infer representations for a new text document.

Unlike these models, our model can easily assign semantic concepts for new n-grams. Because

n-gram representations are based on its word vector representations, a new n-gram vector

representation can be calculated if a representation is available for each of its words. This

new representation is then assigned to the nearest centroid γk , which determines its semantic

concept. With a small training set, this is a valuable asset when compared to other models.

7.4 Experiments with Text News Classification

The classification of full-text news is another important application in natural language

processing. Given the huge amount of this type of document, an unsupervised method for

obtaining low-dimensional document representations is therefore interesting. In this section,

we then use our method to represent text news in a low-dimensional vector space.

7.4.1 Reuters-27000 Dataset

We used the Reuters-27000 corpus recently released by Mourino-García et al. (2015)5. This

corpus comprises 23,722 online news from Reuters agency, belonging to only one category.

There are about 3,000 news for each of the 8 following categories: Health, Art, Politics, Sports,

Science, Technology, Economy and Business. We divided this corpus into two parts: (1) we

randomly selected 1,000 news from each category to compose a test set, (2) the remaining

15,722 documents are the training set.

7.4.2 Experimental Setup

One of the findings from the experiments on sentiment classification in Section 7.3 is that

our method becomes a good alternative to classical approaches when the training size is

relatively small. In this framework of text news classification, we aim to exploit this po-

tential. We compare our method to LSA and BOW models with different training sizes

L = {50,100,500,1000,1500,2000} 6. Given the overall results on the Pang and Lee’s dataset, we

5Available at http://www.itec-sde.net/reuters_27000.zip
6Here, LDA is deliberately left out as it gives poor performance with small datasets.

95

Chapter 7. N-gram-Based Model for Compact Document Representation

choose to group 1-grams and 2-grams into K = 300 clusters.

Bag of semantic concepts for text news

For each training size L, we consider only the 1-grams and 2-grams that appear in the training

set to learn the centroids γk ∈R100. The resulting number of n-grams is reported in Table 7.4.

SIZE 1-GRAM 2-GRAM 1+2-GRAM

50 14839 90870 105709
100 20755 156142 176897
500 41220 506027 547247
1000 52292 801121 853413
1500 59483 1038236 1097719
2000 64010 1221578 1285588

Table 7.4 – N -gram frequencies on Reuters-27000 according to the number of documents in
the training size.

As for sentiment classification, the word vector representations trained in Chapter 5 are used

in this experiment. Once the centroids are defined, each news document is represented as a

bag of semantic concepts by assigning n-gram representations to their nearest centroid. As

described in Section 7.3.7, this method provides a way to easily assign n-grams from the test

set which are not in the training. The popular TF-IDF (term frequency-inverse document

frequency) is then used as weighting factors, where terms are clusters.

Other methods

In this framework, we compared our method to LSA and BOW models for each training size L.

For both models, we consider words (1-grams) with TF-IDF weighting.

Classification using multiclass SVM

Reuters-27000 contains news for eight different categories. We are thus facing a multiclass

problem. A common approach to solve this problem is to reduce the single multiclass problem

into a multiple binary classification problems. We thus train a linear SVM classifier with a

“one-versus-all” strategy, using the LIBLINEAR library (Fan et al., 2008).

7.4.3 Results

Results reported in Figure 7.1 show that our method is also competitive for representing

text news in a low-dimensional vector space. It performs as well as a BOW model with the

96

7.5. Conclusion

30
0

20
00

0
40

00
0

60
00

0

50 100 500 1000 1500 2000

Number of training documents

N
um

be
r

of
 fe

at
ur

es

70
80

90

F
1−

sc
or

e
(%

)

BOW
LSA
BOSC

Figure 7.1 – Performance of the three models on Reuters-27000 with different training sizes.
Bar chart (left axis) is the number of features. Line chart (right axis) reports the F1-scores. Our
method is denoted by BOSC. BOSC and LSA have a fixed number of features, K = 300.

smallest training set L = 50, where LSA gives a poorer result. Increasing the number of training

documents helps the BOW model to outperform our method, but the number of features

also increases dramatically. LSA also gives slightly better results than our method when the

training set contains at least 500 documents. Below this number, our method outperforms

LSA. A larger training set has, however, an impact on the computational cost while our method

does not suffer from that. Those results also confirm that using n-grams with n > 1 in text

news classification is not particularly interesting. Finding the right keywords seems enough

for predicting news categories.

7.5 Conclusion

In this chapter, we leverage our model described in Chapter 5 to propose an unsupervised

method for producing compact representations of text documents. As word embeddings

can be summed together, n-grams with different lengths n can then be embedded in a same

dimensional vector space with a simple element-wise addition. This makes it possible to

97

Chapter 7. N-gram-Based Model for Compact Document Representation

compute distances between n-grams, which can have many applications in natural language

processing. We therefore propose a bag of semantic concepts model to represent documents

in a low-dimensional space. Semantic concepts are obtained by performing a K -means

clustering which partitions all n-grams into K clusters. This model has several advantages

over classical approaches for representing documents in a low-dimensional space: it leverages

semantic information coming from n-grams; it builds document representations with low

resource consumption (time and memory); it can infer semantic concepts for unseen n-grams;

and finally, it is capable of providing relevant document representations even with a small

set of documents. We have shown that such model is suitable for document classification,

both for text news or movie reviews. Competitive performance has been reached on binary

sentiment classification tasks, where this model outperforms traditional approaches. It also

attained similar results to traditional bag-of-words with considerably fewer features.

98

Part IIISentence Generation

99

8 Phrase-based Image Captioning

Being able to automatically generate a description from an image is a fundamental problem

in artificial intelligence, connecting computer vision and natural language processing. The

problem is particularly challenging because it requires to correctly recognize different objects

in images and how they interact. Another challenge is that an image description generator

needs to express these interactions in a natural language (e.g. English). Therefore, a language

model is implicitly required in addition to visual understanding. Recently, this problem

has been studied by many different authors. Most of the attempts are based on recurrent

neural networks to generate sentences. These models leverage the power of neural networks

to transform image and sentence representations into a common space (Mao et al., 2015;

Donahue et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015).

In this chapter, we propose a different approach to the problem that does not rely on complex

recurrent neural networks. An exploratory analysis of two large datasets of image descriptions

reveals that their syntax is quite simple. The ground-truth descriptions can be represented as

a collection of noun, verb and prepositional phrases. The different entities in a given image

are described by the noun phrases, while the interactions or events between these entities are

encoded by both the verb and the prepositional phrases. We thus train a model that predicts

the set of phrases present in the sentences used to describe the images. By leveraging word

vector representations defined in Chapter 5, each phrase can be represented by the average of

the representations of the words that compose the phrase. Vector representations for images

can also be easily obtained from some pre-trained convolutional neural networks. The model

then learns a common embedding between phrase and image representations (see Figure 8.3).

Given a test image, a bilinear model is trained to predict a set of top-ranked phrases that

best describe it. Several noun phrases, verb phrases and prepositional phrases are in this set.

The objective is therefore to generate syntactically correct sentences from (possibly different)

subsets of these phrases. We introduce a trigram constrained language model based on our

knowledge about how the sentence descriptions are structured in the training set. With a

very constrained decoding scheme, sentences are inferred with a beam search. Because these

sentences are not conditioned to the given image (apart with the initial phrases selection),

101

Chapter 8. Phrase-based Image Captioning

a re-ranking is used to pick the sentence that is closest to the sample image (according to

the learned metric). The quality of our sentence generation is evaluated on two very popular

datasets for the task: Flickr30k (Hodosh et al., 2013) and COCO (Lin et al., 2014).

8.1 Related Work

The classical approach to sentence generation is to pose the problem as a retrieval problem:

a given test image will be described with the highest ranked annotation in the training set

(Hodosh et al., 2013; Socher et al., 2014; Srivastava and Salakhutdinov, 2014). These matching

methods may not generate proper descriptions for a new combination of objects. Due to this

limitation, several generative approaches have been proposed. Many of them use syntactic

and semantic constraints in the generation process (Yao et al., 2010; Mitchell et al., 2012;

Kuznetsova et al., 2012; Kulkarni et al., 2013). These approaches benefit from visual recognition

systems to infer words or phrases, but in contrast to the proposed model they do not leverage

a multimodal metric between images and phrases.

More recently, automatic image sentence description approaches based on deep neural

networks have emerged with the release of new large datasets. As starting point, these solutions

use the rich representation of images generated by Convolutional Neural Networks (LeCun

et al., 1998) (CNN) that were previously trained for object recognition tasks. These CNN are

generally followed by recurrent neural networks (RNN) in order to generate full sentence

descriptions (Donahue et al., 2014; Chen and Zitnick, 2015; Mao et al., 2015; Venugopalan

et al., 2014; Kiros et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015). Among these

recent works, long short-term memory (LSTM) is often chosen as RNN. In such approaches,

the key point is to learn a common space between images and words or between images and

sentences, i.e. a multimodal embedding.

Vinyals et al. (2015) consider the problem in a similar way as a machine translation problem.

The authors propose an encoder/decoder (CNN/LSTM networks) system that is trained to

maximize the likelihood of the target description sentence given a training image. Karpathy

and Fei-Fei (2015) propose an approach that is a combination of CNN, bidirectional RNN over

sentences and a structured objective responsible for a multimodal embedding. They then

propose a second RNN architecture to generate new sentences. Similarly, Mao et al. (2015)

and Donahue et al. (2014) propose a system that uses a CNN to extract image features and a

RNN for sentences. The two networks interact with each other in a multimodal common layer.

Our model shares some similarities with these recent proposed approaches. We also use a

pre-trained CNN to extract image features. However, thanks to the phrase-based approach,

our model does not rely on complex recurrent networks for sentence generation, and we do

not fine-tune the image features.

102

8.2. Syntax Analysis of Image Descriptions

8.2 Syntax Analysis of Image Descriptions

The art of writing sentences can vary a lot according to the domain. When reporting news or

reviewing an item, not only the choice of the words might vary, but also the general structure

of the sentence. In this section, we wish to analyze the syntax of image descriptions to identify

whether captions have their own structures. We therefore proceed to an exploratory analysis

of two datasets containing a large amount of images with descriptions: Flickr30k (Hodosh et

al., 2013) and COCO (Lin et al., 2014).

8.2.1 Datasets

The Flickr30k dataset contains 31,014 images where 1,014 images are for validation, 1,000

for testing and the rest for training (i.e. 29,000 images). The COCO dataset contains 123,287

images, 82,783 training images and 40,504 validation images1. We use two sets of 5,000 images

from the validation images for validation and test, as in Karpathy and Fei-Fei (2015)2. In both

datasets, images are given with five (or six) sentence descriptions annotated using Amazon

Mechanical Turk (see Figure 8.3). This results in 559,113 sentences when combining both

training datasets.

8.2.2 Chunking-based Approach

A quick overview over these sentence descriptions reveals that they all share a common

structure, usually describing the different entities present in the image and how they interact

between each other. This interaction among entities is described as actions or relative position

between different objects. The sentence can be short or long, but it generally respects this

process. To confirm this claim and better understand the description structures, we used

a chunking (also called shallow parsing) approach which identifies the phrase chunks of a

sentence (i.e., the non-recursive cores of various phrase types in text). These chunks are

usually noun phrases (NP), verb phrases (VP) and prepositional phrases (PP). We extract them

from the training sentences with the SENNA software3. Pre-verbal and post-verbal adverb

phrases are merged with verb phrases to limit the number of phrase types. Table 8.1 presents

an example sentence with its chunking analysis.

a man is grinding a ramp on a skateboard .︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸
NP VP NP PP NP O

Table 8.1 – Chunking analysis of an image description.

Statistics reported in Figure 8.1 and Figure 8.2 confirm that image descriptions possess a

simple and distinct structure.

1The testing images were not released at the time of the experiment.
2Available at http://cs.stanford.edu/people/karpathy/deepimagesent/
3Available at http://ml.nec-labs.com/senna/

103

Chapter 8. Phrase-based Image Captioning

0 1 2 3 4 5 6+

NP
VP
PP

A
pp

ar
ea

nc
e

fr
eq

ue
nc

ie
s

(%
)

0
10

20
30

40
50

60

Figure 8.1 – Statistics on the number of phrase chunks (NP, VP, PP) per ground-truth descrip-
tions in Flickr30k and COCO training datasets. Best viewed in colors.

These sentences do not have much variability. All the key elements in a given image are

usually described with a noun phrase (NP). Interactions between these elements can then be

explained using prepositional phrases (PP) or verb phrases (VP). A large majority of sentences

contains from two to four noun phrases. Two noun phrases then interact using a verb or

prepositional phrase. Describing an image is therefore just a matter of identifying these

chunks. We thus propose to train a model which can predict the phrases which are likely to be

in a given image.

8.3 Phrase-based Model for Image Descriptions

By leveraging pre-trained word and image representations, we propose a simple model which

can predict the phrases that best describe a given image. For this purpose, a metric between

images and phrases is trained, as illustrated in Figure 8.3. The proposed architecture is then

just a low-rank bilinear model UT V.

104

8.3. Phrase-based Model for Image Descriptions

A
pp

ar
ea

nc
e

fr
eq

ue
nc

ie
s

(%
)

NP V
P N

P P
P N

P O

NP V
P N

P O

NP P
P N

P V
P N

P O

NP P
P N

P P
P N

P O

NP V
P N

P P
P N

P P
P N

P O

NP V
P N

P V
P N

P O

NP P
P N

P V
P N

P P
P N

P O

NP P
P N

P O

NP P
P N

P P
P N

P P
P N

P O

NP V
P N

P V
P N

P P
P N

P O

NP N
P V

P N
P O

NP V
P N

P P
P N

P V
P N

P O

NP P
P N

P O
 N

P O

NP P
P N

P P
P N

P V
P N

P O

NP V
P N

P P
P N

P P
P N

P P
P N

P O

NP N
P V

P N
P P

P N
P O

NP P
P N

P V
P N

P P
P N

P P
P N

P O

NP O
 N

P V
P N

P O

NP V
P N

P S
BAR V

P N
P O

NP V
P N

P O
 V

P N
P O

0

5

10

15

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8.2 – The 20 most frequent sentence structures in Flickr30k and COCO training datasets.
The black line is the appearance frequency for each structure, the red line is the cumulative
distribution. Best viewed in colors.

8.3.1 Image Representations

For the representation of images, we choose to use a Convolutional Neural Network. CNN

have been widely used in different vision domains and are currently the state-of-the-art in

many object recognition tasks. We consider a CNN that has been pre-trained for the task of

object classification (Simonyan and Zisserman, 2014). We use a CNN solely to the purpose of

feature extraction, that is, no learning is done in the CNN layers.

8.3.2 Learning a Common Space for Image and Phrase Representations

Let I be the set of training images, C the set of all phrases used to describe I, and θ the

trainable parameters of the model. By representing each image i ∈ I with a vector zi ∈ Rn

thanks to the pre-trained CNN, we define a metric between the image i and a phrase c as a

bilinear operation:

φθ(c, i) = uT
c Vzi , (8.1)

105

Chapter 8. Phrase-based Image Captioning

V

A man in a helment skateboarding before an audience.
Man riding on edge of an oval ramp with a skate board.
A man riding a skateboard up the side of a wooden ramp.
A man on a skateboard is doing a trick.
A man is grinding a ramp on a skateboard.

U

a man

a wooden ramp

riding

on

a skate board

is grinding

with

NP

VP

PP

Figure 8.3 – Schematic illustration of our phrase-based model for image descriptions.

with U = (uc1 , . . . ,uc|C|) ∈Rm×|C| and V ∈Rm×n being the trainable parameters θ. Note that UT V

could be a full matrix, but a low-rank setting eases the capacity control.

8.3.3 Phrase Representations Initialization

Noun phrases or verb phrases are often a combination of several words. By leveraging the

ability of our word vector representations to compose by simple summation (see Chapter 5),

representations for phrases are easily computed with an element-wise addition. A vector

representation uc ∈Rm for a phrase c = {w1, . . . , wK } is then calculated by averaging its word

vector representations pre-trained on Wikipedia:

uc = 1

K

K∑
k=1

xwk . (8.2)

Vector representations for all phrases c ∈ C can thus be obtained to initialized the matrix

U ∈Rm×|C|. V ∈Rm×n is initialized randomly and trained to encode images in the same vector

space than the phrases used for their descriptions.

8.3.4 Training with Negative Sampling

Each image i is described by a multitude of possible phrases Ci ⊆ C. We consider |C| classifiers

attributing a score for each phrase. We train our model to discriminate a target phrase c j from

a set of negative phrases ck ∈ C− ⊆ C, with ck 	= c j . With θ = {U,V}, we minimize the following

logistic loss function with respect to θ:

L(θ) = ∑
i∈I

∑
c j∈Ci

(
log

(
1+e−φθ(c j ,i))+ ∑

ck∈C−
log

(
1+e+φθ(ck ,i))) . (8.3)

106

8.4. From Phrases to Sentence

The model is trained using stochastic gradient descent. A new set of negative phrases C− is

randomly picked from the training set at each iteration.

8.4 From Phrases to Sentence

After identifying the L most likely constituents c j in the image i , we propose to generate

sentences out of them. From this set, l ∈ {1, . . . ,L} phrases are used to compose a syntactically

correct description.

8.4.1 Sentence Generation

Using a statistical language modeling framework, the likelihood of a certain sentence is given

by:

P (c1,c2, . . . ,cl) =
l∏

j=1
P (c j |c1, . . . ,c j−1) (8.4)

Keeping this system as simple as possible and using the second order Markov property, we

approximate Equation 9.2 with a trigram language model:

P (c1,c2, . . . ,cl) ≈
l∏

j=1
P (c j |c j−2,c j−1) . (8.5)

The best candidate corresponds to the sentence P (c1,c2, . . . ,cl) which maximizes the likelihood

of Equation 8.5 over all the possible sizes of sentence. Because we want to constrain the

decoding algorithm to include prior knowledge on chunking tags t ∈ {N P,V P,PP }, we rewrite

Equation 8.5 as:

P (c1,c2, . . . ,cl) =
l∏

j=1

∑
t

P (c j |t j = t ,c j−2,c j−1)P (t j = t |c j−2,c j−1)

=
l∏

j=1
P (c j |t j ,c j−2,c j−1)P (t j |c j−2,c j−1) . (8.6)

Both conditions P (c j |t j ,c j−2,c j−1) and P (t j |c j−2,c j−1) are probabilities estimated by counting

trigrams in the training datasets.

8.4.2 Sentence Decoding

At decoding time, we prune the graph of all possible sentences made out of the top L phrases

with a beam search, according to three heuristics:

• we consider only the transitions which are likely to happen (we discard any sentence

107

Chapter 8. Phrase-based Image Captioning

which would have a trigram transition probability inferior to 0.01). This thresholding

helps to discard sentences that are semantically incorrect;

• each predicted phrases c j may appear only once4;

• we add syntactic constraints which are illustrated in Figure 8.4.

NP c

VP

PP

.

c

start

N

Figure 8.4 – The constrained language model for generating description given the predicted
phrases for an image.

The last heuristic is based on the analysis of syntax in Section 8.2. In Figure 8.2, we see that a

noun phrase is, in general, always followed by a verb phrase or a prepositional phrase, and

both are then followed by another noun phrase. A large majority of the sentences contain

three noun phrases interleaved with verb phrases or prepositional phrases. According the

statistics reported in Figure 8.1, sentences with two or four noun phrases are also common,

but sentences with more than four noun phrases are marginal. We thus repeat this process

N = {2,3,4} times until reaching the end of a sentence (characterized by a period).

8.4.3 Sentence Re-ranking

For each test image i , the proposed model will generate a set of M sentences. Sentence

generation is not conditioned on the image, apart from phrases which are selected beforehand.

Some phrase sequences might be syntactically good, but have low match with the image.

Consider, for instance, an image with a cat and a dog. Both sentences “a cat sitting on a mat

and a dog eating a bone” and “a cat sitting on a mat” are correct, but the second is missing an

important part of the image. A ranking of the generated sentences is therefore necessary to

choose the one that has the best match with the image.

Because a generated sentence is composed from l phrases predicted by our system, we simply

average the phrase scores given by Equation 8.1. For a generated sentence s composed of l

4This is easy to implement with a beam search, but intractable with a full search.

108

8.5. Experiments

phrases c j , a score between s and i is calculated as:

φθ(s, i) = 1

l

∑
c j∈s

φθ(c j , i) . (8.7)

The best candidate is the sentence which has the highest score out of the M generated sen-

tences. This ranking helps the system to chose the sentence which is closer to the sample

image.

8.5 Experiments

8.5.1 Experimental Setup

Feature Selection

Following Karpathy and Fei-Fei (2015), the image features are extracted using VGG CNN (Si-

monyan and Zisserman, 2014). This model generates image representations of dimension

4096 from RGB input images.

For each training set, only phrases occurring at least ten times are considered. This threshold

is chosen to fulfill two objectives: (i) limit the number of phrases C and therefore the size of

the matrix U and (ii) exclude rare phrases to better generalize the descriptions. Statistics on

the number of phrases are reported in Table 8.2.

FLICKR30K COCO

NOUN PHRASE (NP) 4818 8982
VERB PHRASE (VP) 2109 3083
PREPOSITIONAL PHRASE (PP) 128 189

TOTAL |C| 7055 12254

Table 8.2 – Statistics of phrases appearing at least ten times.

For Flickr30k, this threshold covers about 81% of NP, 83% of VP and 99% of PP. For COCO, it

covers about 73% of NP, 75% of VP and 99% of PP. Phrase representations are computed by

averaging vector representations of their words, trained with the model described in Chapter 5

in d wrd = 400-dimensional vectors.

Learning the Multimodal Metric

The parameters θ are V ∈R400×4096 (initialized randomly) and U ∈R400×|C| (initialized with the

phrase representations), which are trained with 15 randomly chosen negative samples. It takes

about 2.5 hours on single CPU (Intel i7 4930K 3.4 GHz) to train on the COCO training dataset,

109

Chapter 8. Phrase-based Image Captioning

which is much faster than models based on deep neural networks.

Generating Sentences from the Predicted Phrases

Transition probabilities for our constrained language model (see Figure 8.4) are calculated

independently for each training set. No smoothing has been used in the experiments. Concern-

ing the set of top-ranked phrases for a given test image, we select only the top five predicted

verb phrases and the top five predicted prepositional phrases. Since the average number of

noun phrases is higher than for the two other types of phrases (see Figure 8.1), more noun

phrases are needed. The top twenty predicted noun phrases are thus selected.

8.5.2 Experimental Results

FLICKR30K COCO

NOUN PHRASE (NP) 38.14 45.44
VERB PHRASE (VP) 20.61 27.83
PREPOSTIONAL PHRASE (PP) 81.70 84.49

TOTAL 44.92 52.49

Table 8.3 – Recall on phrase retrieval. For each test image, we take the top 20 predicted NP, the
top 5 predicted VP, and the top 5 predicted PP.

As a first evaluation, we consider the task of retrieving the ground-truth phrases from test

image descriptions. Results reported in Table 8.3 show that our system achieves a recall of

around 50% on this task on the test set of both datasets, assuming the threshold considered for

each type of phrase (see 8.5.1). Note that this task is extremely difficult, as semantically similar

phrases (the women / women / the little girls) are classified separately. Despite the possible

number of noun phrases being higher, results in Table 8.3 reveal that noun phrases are better

retrieved than verb phrases. This shows that our system is able to detect different objects

in the image. However, finding the right verb phrase seems to be more difficult. A possible

explanation could be that there exists a wide choice of verb phrases to describe interactions

between the noun phrases. For instance, we see in Figure 8.3 that two annotators have used

the same noun phrases (a man, a skateboard and a (wooden) ramp) to describe the scene,

but they have then chosen a different verb phrase to link them (riding versus is grinding).

Therefore, we suspect that a low recall for verb phrases does not necessarily mean that the

predictions are wrong. Finding the right prepositional phrase seems, on the contrary, much

easier. The high recall for prepositional phrase can be explained by much lower variability of

this type of phrase compared to the two others (see Table 8.2).

As a second evaluation, we consider the task of generating full descriptions. We measure the

110

8.5. Experiments

FLICKR30K COCO

B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4

HUMAN AGREEMENT 0.55 0.35 0.23 0.15 0.68 0.45 0.30 0.20

MAO ET AL. (2015) 0.60 0.41 0.28 0.19 0.67 0.49 0.35 0.25
KARPATHY AND FEI-FEI (2015) 0.57 0.37 0.24 0.16 0.62 0.45 0.32 0.23
VINYALS ET AL. (2015) 0.66 0.42 0.28 0.18 0.67 - - -
DONAHUE ET AL. (2014) 0.59 0.39 0.25 0.16 0.63 0.44 0.30 0.21
OUR MODEL 0.60 0.37 0.22 0.14 0.73 0.50 0.34 0.23

Table 8.4 – Comparison between human agreement scores, state-of-the-art models and our
model on both datasets. Note that there are slight variations between the test sets chosen in
each paper. Scores are reported in terms of BLEU metric.

quality of the generated sentences using the popular, yet controversial, BLEU score (Papineni

et al., 2002). Table 8.4 shows our sentence generation results on the two datasets considered.

BLEU scores are reported up to 4-gram. Human agreement scores are computed by comparing

the first ground-truth description against the four others5. For comparison, we include results

from recently proposed models. Our model, despite being simpler, achieves similar results to

state-of-the-art results. It is interesting to note that our results are very close to the human

agreement scores.

We show examples of full automatic generated sentences in Figure 8.5. The simple language

model used is able to generate sentences that are in general syntactically correct. Our model

produces sensible descriptions with variable complexity for different test samples. Due to the

generative aspect of the model, it can occur that the sentence generated is very different from

the ground-truth and still provides a descent description. The last row of Figure 8.5 illustrates

failure samples. We can see in these failure samples that our system has however outputted

relevant phrases. There is still room for improvement for generating the final description. We

deliberately choose a simple language model to show that competitive results can be achieved

with a simple approach. A more complex language model could probably avoid these failure

samples by considering a larger context. The probability for a dog to stand on top of a wave is

obviously very low, but this kind of mistake cannot be detected with a simple trigram language

model.

8.5.3 Diversity of Image Descriptions

In contrast to RNN-based models, our model is not trained to match a given image i with

its ground-truth descriptions s, i.e., to give P (s|i). Because our model outputs instead a set

5For all models, BLEU scores are computed against five reference sentences which give a slight advantage
compared to human scores.

111

Chapter 8. Phrase-based Image Captioning

A man riding skis on a snow covered ski slope.
NP: a man, skis, the snow, a person, a woman, a snow covered slope,
a slope, a snowboard, a skier, man.
VP: wearing, riding, holding, standing on, skiing down.
PP: on, in, of, with, down.

A man wearing skis on the snow.

A man is doing skateboard tricks on a ramp.
NP: a skateboard, a man, a trick, his skateboard, the air, a
skateboarder, a ramp, a skate board, a person, a woman.
VP: doing, riding, is doing, performing, flying through.
PP: on, of, in, at, with.

A man riding a skateboard on a ramp.

The girl with blue hair stands under the umbrella.
NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a
little girl, a cell phone.
VP: holding, wearing, is holding, holds, carrying.
PP: with, on, of, in, under.

A woman is holding an umbrella.

A slice of pizza sitting on top of a white plate.
NP: a plate, a white plate, a table, pizza, it, a pizza, food, a sandwich,
top, a close.
VP: topped with, has, is, sitting on, is on.
PP: of, on, with, in, up.

A table with a plate of pizza on a white plate.

A person on a surf board in the ocean.
NP: a dog, a wave, a person, the water, a man, the ocean, top, that,
the snow, a surfboard.
VP: riding, standing on, wearing, laying on, sitting on.
PP: on, of, in, with, near.

A dog standing on top of a wave on the ocean.

A cat sitting in a chair staring at a plate on a table.
NP: a table, top, a desk, a cat, front, it, that, a laptop, a laptop
computer, the table.
VP: sitting on, is, sitting in, sitting next to, has.
PP: of, on, with, in, next to.

A cat sitting on top of a desk with a laptop.

People gather around a truck parked on a boat.
NP:a man, a bench, a boat, a woman, a person, luggage, that, a train,
water, the water.
VP: sitting on, carrying, riding, sitting in, sits on.
PP: of, on, with, in, next to.
A man sitting on a bench with a woman carrying luggage.

A baseball player swinging a bat on a field.
NP: the ball, a game, a baseball player, a man, a tennis court, a ball,
home plate, a baseball game, a batter, a field.
VP: swinging, to hit, playing, holding, is swinging.
PP: on, during, in, at, of.

A baseball player swinging a bat on a baseball field.

A bunch of kites flying in the sky on the beach.
NP: the beach, a beach, a kite, kites, the ocean, the water, the sky,
people, a sandy beach, a group.
VP: flying, flies, is flying, flying in, are.
PP: on, of, with, in, at.

People flying kites on the beach.

Figure 8.5 – Qualitative results for images on the COCO dataset. Ground-truth annotation (in
blue, at the top), the NP, VP and PP predicted from the model and generated annotation (in
black, at the bottom) are shown for each image. The last row are failure samples.

of phrases, this is not really surprising that only 1% of our generated descriptions are in the

training set for Flickr30k, and 9.7% for COCO. While a RNN-based model is generative, it

might easily over-fit a small training data. Vinyals et al. (2015) report, for instance, that the

generated sentence is present in the training set 80% of the time. Our model therefore offers a

good alternative with the possibility of producing unseen descriptions with a combination of

phrases from the training set.

8.5.4 Phrase Representation Fine-Tuning

Before training the model, the matrix U is initialized with phrase representations obtained

from the whole English Wikipedia. This corpus of unlabeled text is well structured and large

112

8.5. Experiments

PHRASES NEAREST NEIGHBORS

before after

A GREY CAT

1 A GREY DOG A GRAY CAT

2 A GREY AND BLACK CAT A GREY AND BLACK CAT

3 A GRAY CAT A BROWN CAT

4 A GREY ELEPHANT A GREY AND WHITE CAT

10 A YELLOW CAT GREY AND WHITE CAT

HOME PLATE

1 A HOME PLATE A HOME PLATE

4 A PLATE HOME BASE

6 ANOTHER PLATE THE PITCH

9 A RED PLATE THE BATTER

10 A DINNER PLATE A BASEBALL PITCH

A HALF PIPE

1 A PIPE A PIPE

2 A HALF THE RAMP

5 A SMALL CLOCK A HAND RAIL

9 A LARGE CLOCK A SKATE BOARD RAMP

10 A SMALL PLATE AN EMPTY POOL

Table 8.5 – Examples of three noun phrases from the COCO dataset with five of their nearest
neighbors before and after learning.

enough to provide good word vector representations, which can then produce good phrase

representations. However, the content of Wikipedia is clearly different from the content of

the image descriptions. Some words used for describing images might be used in different

contexts in Wikipedia, which can lead to out-of-domain representations for certain phrases.

This becomes thus crucial to adapt these phrase representations by fine-tuning the matrix

U during the training6. Some examples of noun phrases are reported in Table 8.5 with their

nearest neighbors before and after the training. These confirm the importance of fine-tuning

to incorporate visual features. In Wikipedia, cat seems to occur in the same context than dog

or other animals. When looking at the nearest neighbors of a phrase such as a grey cat, other

grey animals arise. After training on images, the word cat becomes the important feature of

that phrase. And we see that the nearest neighbors are now cats with different colors. In some

cases, averaging word vectors to represent phrases is not enough to capture the semantic

meaning. Fine-tuning is thus also important to better learn specific phrases. Images related to

baseball games, for example, have enabled the phrase home plate to be better defined. This is

also true for the phrase a half pipe with images about skateboarding. This leads to interesting

6Experiments with a fixed U phrase representations matrix significantly hurt the general performance. We
observe about a 50% decrease in both datasets with the BLEU metric. Since the number of trainable parameters is
reduced, the capacity of V should be increased to guarantee a fair comparison.

113

Chapter 8. Phrase-based Image Captioning

phrase representations, grounded in the visual world, which could be possibly used in natural

language applications in future work.

8.6 Conclusion

With this model, we propose to infer different phrases from image samples by leveraging

pre-trained word and image representations. From the phrases predicted, our model is able to

automatically generate sentences using a statistical language model. We show that the problem

of sentence generation can be effectively achieved without the use of complex recurrent

networks. Our algorithm, despite being simpler than state-of-the-art models, achieves similar

results on this task. Also, our model generate new sentences which are not generally present in

training set. Future research directions will go towards leveraging unsupervised data and more

complex language models to improve sentence generation. Another interest is assessing the

impact of visually grounded phrase representations into existing natural language processing

systems.

114

9 Generating Text from Structured Data

Concept-to-text generation addresses the problem of rendering structured records into natural

language (Reiter et al., 2000). A typical application is to generate a weather forecast based

on a set of structured records of meteorological measurements. While previous work has

experimented with datasets that contain only a few tens of thousands of records such as

WEATHERGOV reports, or the ROBOCUP dataset, we scale to the large and very diverse prob-

lem of generating biographies for personalities based on the structured data contained in

Wikipedia infoboxes. Similar applications include the generation of product descriptions

based on a product catalog which may contain millions of items with dozens of attributes

each.

To tackle this problem we introduce a statistical generation model conditioned on a Wikipedia

infobox. Such diversity makes it difficult for classical count-based models to estimate proba-

bilities of rare events due to data sparsity. We address this issue by parameterizing words and

fields as vectors (embeddings), along with a neural language model operating on these em-

beddings. This factorization allows us to scale to a large number of words and fields compared

to Liang et al. (2009) and Kim and Mooney (2010) where the number of parameters grows as

the product of the number of words and fields. Moreover, our approach does not restrict the

relations between the record content and the generated text. This contrasts with less flexible

strategies that assume the generation to follow an hybrid alignment tree (Kim and Mooney,

2010), a probabilistic context-free grammar (Konstas and Lapata, 2013), or a tree adjoining

grammar (Gyawali and Gardent, 2014).

Our model exploits structured data both globally and locally. Global conditioning summarizes

all information about a personality to understand high-level themes such as that the biogra-

phy is about a scientist or an artist, while as local conditioning, or attention, describes the

previously generated tokens in terms of the their relationship to the infobox. We analyze the

effectiveness of each and demonstrate their complementarity.

115

Chapter 9. Generating Text from Structured Data

9.1 Related Work

Traditionally, generation systems relied on rules and hand-crafted specifications (Dale et

al., 2003; Reiter et al., 2005; Green, 2006; Galanis and Androutsopoulos, 2007; Turner et al.,

2010). Generation is divided into modular, yet highly interdependent, decisions: (1) content

planning defines which parts of the input fields or meaning representations should be selected;

(2) sentence planning determines which selected fields are to be dealt with in each output

sentence; and (3) surface realization generates those sentences.

Data-driven approaches have been proposed to automatically learn the individual mod-

ules. One approach first aligns records and sentences and then learns a content selection

model (Duboue and McKeown, 2002; Barzilay and Lapata, 2005). Hierarchical hidden semi-

Markov generative models have also been used to first determine which facts to discuss and

then to generate words from the predicates and arguments of the chosen facts (Liang et al.,

2009). Sentence planning has been formulated as a supervised set partitioning problem over

facts where each partition corresponds to a sentence (Barzilay and Lapata, 2006). End-to-end

approaches have combined sentence planning and surface realization by using explicitly

aligned sentence/meaning pairs as training data (Ratnaparkhi, 2002; Wong and Mooney, 2007;

Belz, 2008; Lu and Ng, 2011). More recently, content selection and surface realization have

been combined (Angeli et al., 2010; Kim and Mooney, 2010; Konstas and Lapata, 2013).

Our model is probably most similar to Mei et al. (2016) who use an encoder-decoder style

neural network model to tackle the limited WEATHERGOV and ROBOCUP tasks. Their architec-

ture relies on LSTM units and a fairly complicated attention mechanism which reduces it’s

scalability compared to our much simpler design.

Our approach is inspired by the recent success of neural language models in image caption-

ing (Kiros et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015; Fang et al., 2015; Xu et

al., 2015), neural machine translation (Devlin et al., 2014; Bahdanau et al., 2015; Luong et al.,

2015), and in modeling conversations and dialogues (Shang et al., 2015; Wen et al., 2015; Yao

et al., 2015).

9.2 Language Modeling for Constrained Sentence Generation

Conditional language models are a popular choice to generate sentences. We introduce a table-

conditioned language model for constraining the sentence generation to include elements

from fact tables.

116

9.2. Language Modeling for Constrained Sentence Generation

9.2.1 Language Model

Given a sentence s = w1, . . . , wT composed of T words from a vocabulary W , a language model

estimates:

P (s) =
T∏

t=1
P (wt |w1, . . . , wt−1) . (9.1)

Let ct = wt−(n−1), . . . , wt−1 be the sequence of n −1 context words preceding wt ∈ s. In an

n-gram language model, Equation 9.1 is approximated as

P (s) ≈
T∏

t=1
P (wt |ct) , (9.2)

assuming an order n Markov property.

9.2.2 Language Model Conditioned on Tables

Figure 9.1 – Wikipedia infobox of Frederick Parker-Rhodes. The introduction of his article
reads: “Frederick Parker-Rhodes (21 March 1914 – 21 November 1987) was an English linguist,
plant pathologist, computer scientist, mathematician, mystic, and mycologist.”.

As seen in Figure 9.1, a table consists of a set of field/value pairs, where values are sequences

of words. We therefore propose language models that are conditioned on these pairs.

Local conditioning

The table allows us to describe each word not only by its string (or index in the vocabulary)

but also by a descriptor of its occurrence in the table. Let F define the set of all possible fields

117

Chapter 9. Generating Text from Structured Data

f . The occurrence of a word w in the table is described by a set of (field, position) pairs.

zw = {
(fi , pi)

}m
i=1 , (9.3)

where m is the number of occurrences of w . Each pair (f , p) indicates that w occurs in field f

at position p. In this scheme, most words are described by the empty set as they do not occur

in the table. For example, the word linguistics in the table of Figure 9.1 is described as follows:

zlinguistics =
{
(fields,8); (known for,4)

}
, (9.4)

assuming words are lower-cased and commas are treated as separate tokens.

Conditioning both on the field type and the position within the field allows the model to

encode field-specific regularities, e.g., a number token in a date field is likely followed by a

month token; knowing that the number is the first token in the date field makes this even

more likely.

The (field, position) description scheme of the table does not allow to express that a token

terminates a field which can be useful to capture field transitions. For biographies, the last

token of the name field is often followed by an introduction of the birth date like ‘(’ or ‘was

born’. We hence extend our descriptor to a triplet that includes the position of the token

counted from the end of the field:

zw = {
(fi , p+

i , p−
i)
}m

i=1 , (9.5)

where our example becomes:

zlinguistics =
{
(fields,8,4); (known for,4,13)

}
. (9.6)

We extend Equation 9.2 to use the above information as additional conditioning context when

generating a sentence s:

P (s|z) =
T∏

t=1
P (wt |ct , zct) , (9.7)

where zct = zwt−(n−1) , . . . , zwt−1 are referred to as the local conditioning variables since they

describe the local context (previous word) relations with the table.

Global conditioning

The set of fields available in a table often impacts the structure of the generation. For biogra-

phies, the fields used to describe a politician are different from the ones for an actor or an

athlete. Knowing which fields are available in the table provides type information and helps

to determine which fields should be mentioned, both of which greatly influence sentence

118

9.2. Language Modeling for Constrained Sentence Generation

structure. We introduce global conditioning on the fields g f as

P (s|z, g f) =
T∏

t=1
P (wt |ct , zct , g f). (9.8)

Similarly, global conditioning gw on the words occurring in the table is introduced:

P (s|z, g f , gw) =
T∏

t=1
P (wt |ct , zct , g f , gw). (9.9)

Words provide information complementary to fields. For example, it may be hard to distinguish

a basketball player from a hockey player by looking only at the field names, e.g. teams, league,

position, weight and height, etc. However the actual field values such as team names, league

name, player’s position can help the model to give a better prediction. Here, g f ∈ {0,1}F and

gw ∈ {0,1}W are binary indicators over fixed field and word vocabularies.

Figure 9.2 illustrates the model with a schematic example. For predicting the next word wt

after a given context ct , we see that the language model is conditioned with sets of triplets for

each word occurring in the table, along with all fields and words from this table.

input

table

output, wt ∈W ∪Q

P (wt |ct , zct , g f , gw)

ct John Doe (18 April 1352) is a

zct

(name,1,2) (name,2,1) � (birthdate,1,3) (birthdate,2,2) (birthdate,3,1) � � �
(spouse,2,1)

(children,2,1)

g f gw

name John Doe
birthdate 18 April 1352
birthplace Oxford UK
occupation placeholder
spouse Jane Doe
children Johnnie Doe

wt the . . . april . . . placeholder . . . john . . . doe

idx 1 . . . 92 . . . 5302 . . . 13944 . . . unk

zwt

� . . . (birthdate,2,2) . . . (occupation,1,1) . . . (name,1,1) . . . (name,2,1)
(spouse,2,1)

(children,2,1)

Figure 9.2 – Schematic example of the language model conditioned on tables.

9.2.3 Copy Actions

So far, we have extended context description with table information. The scoring of each

potential output word can also leverage table information. In particular, knowing that a word

appears in the table is valuable. For instance, sentences which expresses facts from a given

table often copies words from the table. We therefore extend our language model to enable

copy operations. Like for context/input conditioning, we describe each word w with both

119

Chapter 9. Generating Text from Structured Data

its string (or index in a vocabulary) and its table descriptor zw . Our model reads a table and

defines an output domain Q∪W which encompases all vocabulary words W as well as all

table tokens Q, as illustrated in Figure 9.2. A side effect is that we can generate words which

are outside our vocabulary, for instance a word like Park-Rhodes from the table of Figure 9.1

is unlikely to be in the vocabulary W , but its table descriptor expresses that it occurs as the

second token of the name field. Therefore the output space of each decision Q∪W is often

larger than W .

9.3 A Neural Language Model Approach

As described in Section 2.3.3, a feed-forward neural network language model (NNLM) esti-

mates P (wt |ct) in Equation 9.1 with a parametric function φθ which results from the composi-

tion of simple differentiable functions or layers. Given a context input ct , it outputs a score for

each next word wt ∈W , φθ(wt ,ct).

9.3.1 Embeddings as Inputs

A key aspect of neural language models is the use of word embeddings as inputs. Similar words

have generally similar embeddings, as they share latent features. Because the probability

estimates are smooth functions of the continuous word embeddings, a small change in the

features results in a small change in the probability estimation (Bengio et al., 2003). Therefore,

the neural language model can achieve better generalization for unseen n-grams. Just as the

discrete feature representations of words are mapped into continuous word embeddings, the

discrete feature representations of tables can be mapped into continuous vector spaces, as

illustrated in Figure 9.3.

Word embeddings

As described in Section 2.1.3, the embedding layer maps each context word index to a continu-

ous d wrd-dimensional vector. It relies on a parameter matrix E ∈Rd wrd×|W | to convert the input

ct into n −1 vectors of dimension d wrd:

ct =
[
Ewt−(n−1) ; . . . ;Ewt−1

] ∈R(d wrd×(n−1)) , (9.10)

where E is initialized with pre-trained word embeddings obtained with Hellinger PCA (see

Chapter 4).

Embeddings for tables

As described in Section 9.2.2, the language model is conditioned with elements coming

from the tables. Embedding matrices are therefore defined to model both local and global

120

9.3. A Neural Language Model Approach

conditioning information. For local conditioning, we denote l the maximum length that a

sequence of words. Each field f j ∈F is associated with 2× l vectors of d dimensions, a first

set of l vectors covers each possible starting position in 1, . . . , l and a similar set covers ending

positions. This results in a parameter matrix Z ∈R|F |×(2×l)×d . For a given triplet (f j , p+
i , p−

i),

Z j ,p+
i

and Z j ,p−
i

respectively refer to the embedding vectors of the start and end position for

field f j .

Finally, the global conditioning is handled with two other parameter matrices G f ∈R|F |×g and

Gw ∈R|W |×g . Each row G f
j maps a table field f j into a vector of dimension g , while each row

Gw
t maps a word wt into a vector of the same dimension. In general, Gw shares its parameters

with E, provided that d wrd is equal to g .

Aggregating embeddings

We represent each occurrence of a word wt as a triplet (field, start, end) where we have

embeddings for the start and end position as described above. Often times a particular word

wt occurs multiple times in a table, e.g., ‘linguistics’ has two instances in Figure 9.1. In this

case, we perform a component-wise max over the start embeddings of all instances of wt

to obtain the best features across all occurrences of wt . We do the same for end position

embeddings:

zwt =
[

max
{

Z j ,p+
i

,∀(f j , p+
i , p−

i) ∈ zwt

}
; max

{
Z j ,p−

i
,∀(f j , p+

i , p−
i) ∈ zwt

}]
(9.11)

Note that a special no-field embedding is assigned to wt , when that word is not associated

with any fields.

For global conditioning, we define Fq ⊂F as the set of all the fields in a given table q , and Q
as the set of all words in q . We also perform max aggregation. This yields the vectors

g f = max
{

G f ,∀ f ∈Fq} , (9.12)

and

gw = max
{

Gw ,∀w ∈Q}
. (9.13)

The final context input is then the concatenation of these vectors:

xct =
[
ct ; zct ; g f ; gw

] ∈Rd 1
, (9.14)

with d 1 = (n −1)× (2×d +d wrd)+ (2× g).

This input is mapped to a latent context representation using a linear operation followed by a

non-linear activation function h(·),

hct = h
(
W1xct +b1) . (9.15)

121

Chapter 9. Generating Text from Structured Data

input

table

output, wt ∈W ∪Q

P (wt |ct , zct , g f , gw)θ = {E,Z,F,Gw ,G f }

ct E j ohn Edoe E−l r b− E0 Eapr i l EX X X X E−r r b− Ei s Ea

zct Zname,1

⎧⎨
⎩

Zname,2
Zspouse,2
Zchi l dr en,2

⎫⎬
⎭ Z� Zbi r thd ate,1 Zbi r thd ate,2 Zbi r thd ate,3 Z� Z� Z�

g f gw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G f
name

G f
bi r thd ate

G f
bi r thpl ace

G f
occupati on

G f
spouse

G f
chi l dr en

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gw
j ohn

Gw
doe

Gw
0

Gw
apr i l

Gw
X X X X

Gw
ox f or d

G f
uk

G f
pl aceholder

G f
j ane

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

wt the . . . april . . . placeholder . . . john . . . doe

idx 1 . . . 92 . . . 5302 . . . 13944 . . . unk

zw F� . . . Fbi r thd ate,2 . . . Foccupati on,1 . . . Fname,1 . . .

⎧⎨
⎩

Fname,2
Fspouse,1
Fchi l dr en,1

⎫⎬
⎭

Figure 9.3 – Schematic example of the embedding-based language model. {·} symbolizes the
max operation over the embeddings.

9.3.2 In-Vocabulary Outputs

The representation of the context hct is then multiplied by a matrix with one row per word,

this produces a real value score for each word in the vocabulary,

φW
θ (ct) = Wouthct +bout ∈R|W | , (9.16)

where W1 ∈ Rnhu×d 1
, Wout ∈ R|W |×nhu , b1 ∈ Rnhu , and bout ∈ R|W | are learnable weights and

biases.

9.3.3 Mixing Outputs for Better Copying

Section 9.2.3 explains that each word wt is also associated with zwt , the set of fields in which it

occurs, along with the position of wt in that field. Similarly to local conditioning, we represent

each field, position pair (j , i) with an embedding F j ,i . These embeddings are then projected

into the same space than the latent representation of a context input hct . Using the max

operation over the embeddings dimension, each word is finally embedded into a unique

vector:

qwt = max
{

h
(
W2F j ,i +b2),∀F j ,i ∈ zwt

}
(9.17)

122

9.4. Experiments

where W2 ∈ Rnhu×d , and b2 ∈ Rnhu are learnable weights and biases, and qwt ∈ Rnhu . A dot

product with the context vector hct produces a real value score for each word wt in the table,

φQ
θ

(wt ,ct) = hct ·qwt . (9.18)

Each word wt ∈W ∪Q then receive a final score by summing its vocabulary score and its field

score:

φθ(wt ,ct) =φW
θ (wt ,ct)+φQ

θ
(wt ,ct) , (9.19)

where φQ
θ

(wt ,ct) = 0 when wt ∉Q.

9.3.4 Training

The neural language model is trained to minimize the negative log-likelihood of a training

sentence s with stochastic gradient descent:

Lθ(s) =−
T∑

t=1
logP (wt |ct , zct , g f , gw) , (9.20)

with θ = {
E, Z, G f , Gw , F, W1, b1, W2, b2, Wout, bout

}
.

9.4 Experiments

Our neural network model (Section 9.3) is designed to generate sentences from tables for

large-scale problems, where a diverse set of sentence types need to be generated. Biographies

are therefore a good framework to evaluate our model, with Wikipedia offering a large and

diverse dataset.

9.4.1 Biography Dataset

The corpus consists of 728,321 biography articles extracted from English Wikipedia (dump of

September 2015). These biographies have been detected using “WikiProject Biography” 1. For

each biography article, only the introduction section and the infobox are kept. Introductions

are split into sentences and tokenized with the Stanford CoreNLP toolkit (Manning et al.,

2014). All numbers are mapped to a special token ‘0’, except for years which are mapped to

another special token ‘XXXX’. Infobox values have also been tokenized, templates for birth

dates and death dates have been formatted in natural language2. All tokens in introductions

and infoboxes have been lowercased. The final corpus has been divided into three sub-parts

to provide training (80%), validation (10%) and test sets (10%). We will release this data with

1See https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Biography
2See https://en.wikipedia.org/wiki/Template:Birth_date

123

Chapter 9. Generating Text from Structured Data

the camera-ready.

9.4.2 Baseline

Our baseline is an interpolated Kneser-Ney (KN) language model and we use the KenLM

toolkit to train 5-gram models without pruning (Heafield et al., 2013). We equip the baseline

with copy actions of words from tables to sentences by pre-processing words occurring in both

as follows: each copied word w is replaced by a special token reflecting its table descriptor

zw (Equation 9.3). When words occur in multiple fields the longest common field sequence

is chosen. In case of ties the most frequent field is preferred. The introduction section of

the table in Figure 9.1 may look as follows under this scheme: “name_1 name_2 (birthdate_1
birthdate_2 birthdate_3 – deathdate_1 deathdate_2 deathdate_3) was an english linguist ,

fields_3 pathologist , fields_10 scientist , mathematician , mystic and mycologist .”

At decoding time, we copy words from the tables when those special tokens are emitted. This

baseline can be seen as a template model, and it is called Template KN in the next sections.

9.4.3 Training Setup

For our neural models, we train 11-gram language models (n = 11) with the following hyper-

parameters:

• number of word types: |W | = 20000,

• number of field types: |F | = 1740,

• maximum number of occurrences of a word in a table: m = 10,

• maximum length of a word sequence in a field, l = 10,

• word embeddings size: d wrd = 64,

• field embeddings size: d = 64,

• global embedding size: g = 128,

• number of hidden units: nhu = 256,

All fields that occur at least 100 times in the training data are included in the set of fields F . We

include the 20,000 most frequent words in the vocabulary. The other hyper-parameters are set

through validation, maximizing BLEU over a validation subset of 1,000 sentences. Similarly,

early stopping is applied: training ends when BLEU stops improving on the same validation

subset. One should note that the maximum number of tokens in a field l = 10 means that we

encode only 10 positions: for longer field values the final tokens are not dropped but their

position is capped to 10.

124

9.5. Results

MODEL PERPLEXITY BLEU

valid test valid test

KN 10.54 10.51 2.2 2.2
NNLM 9.43+−0.01 9.40+−0.01 2.6+−0.4 2.4+−0.3
+ LOCAL (FIELD, START, END) 8.63+−0.01 8.61+−0.01 4.4+−0.2 4.2+−0.5

TEMPLATE KN 7.48� 7.46� 19.7 19.8
TABLE NNLM W/ LOCAL (FIELD, START) 4.59+−0.01† 4.60+−0.01† 26.0+−0.4 26.0+−0.4
+ LOCAL (FIELD, START, END) 4.60+−0.01† 4.60+−0.01† 26.7+−0.4 26.6+−0.4
+ GLOBAL (FIELD) 4.30+−0.01† 4.30+−0.01† 33.4+−0.2 33.4+−0.2
+ GLOBAL (FIELD & WORD) 4.40+−0.02† 4.40+−0.02† 34.7+−0.3 34.7+−0.4

Table 9.1 – Valid and test perplexity for all models. Valid and test BLEU for table-conditioned
models. For neural network language models (NNLM) we report the mean with standard
deviation of five training runs with different initialization. BLEU scores are computed over
sentences generated with a beam search (beam size is 5). � and † are not directly comparable
as the output vocabulary is slightly different.

9.4.4 Evaluation Metrics

We use two different metrics to evaluate our models. Performance is first evaluated in terms of

perplexity, as this is the standard metric for language modeling (see Section 2.3.5). We report

perplexity results on a per sentence basis. For models with copy actions, we measure the

quality of the generated sentences using the BLEU score (see Section 2.3.5).

9.5 Results

This section describes our results and discusses the impact of the different conditioning

variables.

9.5.1 The More, The Better

The results (Table 9.1) show that more conditioning information helps to improve the perfor-

mance of our models.

Without copy actions.

In terms of perplexity the (i) neural network language model (NNLM) is slightly better than an

interpolated KN language model, and (ii) adding local conditioning on the field start and end

position further improves performance. BLEU over the model generations is generally very

low but there is a clear improvement when using local conditioning because it allows learning

transitions between fields and links past model predictions to the table unlike KN or plain

125

Chapter 9. Generating Text from Structured Data

NNLM.

With copy actions.

For experiments with copy actions we use the full local conditioning (Equation 9.4) in the

neural language models. Perplexity can only be compared between variants of Table NNLM

models as described above and improvements are less clear when adding features in terms

of this measure. However, BLEU clearly improves when moving from Template KN to Ta-

ble NNLM and more features successively improve accuracy. Global conditioning on the

fields improves the model by over 7 BLEU and adding words gives 1.3 points. This is a total

improvement of nearly 15 BLEU over the template KN baseline.

9.5.2 Attention Mechanism

Our model implements attention over input table fields. For each word wt in the table, Equa-

tion (9.19) takes the language model score φW
θ

(wt ,ct) and adds a bias φQ
θ

(wt ,ct). The bias is

the dot-product between a representation of the table field in which wt occurs and a repre-

sentation of the context, Equation (9.18) that summarizes the previously generated fields and

words.

Figure 9.2 shows that this mechanism adds a large bias to continue a field if it has not generated

all tokens from the table, e.g., it emits the word occurring in name_2 after generating name_1.

It also nicely handles transitions between field types, e.g., the model adds a large bias to the

words occurring in the occupation field after emitting the birth date.

9.5.3 Sentence Decoding

We use a standard beam search to explore a larger set of sentences compared to simple greedy

search. This allows us to explore K times more paths which comes at a linear increase in the

number of forward computation steps for our language model. We compare various beam

settings for the baseline Template KN and our Table NNLM (Figure 9.4). The best validation

BLEU can be obtained with a beam size of K = 5. Our model is also several times faster than

the baseline, requiring only about 200 ms per sentence with K = 5. Beam search generates

many n-gram lookups for Kneser-Ney which requires many random memory accesses; while

neural models perform scoring through matrix-matrix products, an operation which is more

local and can be performed in a block parallel manner where modern graphic processors

shine (Kindratenko, 2014).

9.5.4 Qualitative Analysis

Table 9.3 shows generations for different conditioning information from the Wikipedia table

shown in Figure 9.1. First of all, comparing the reference to the fact table reveals that our train-

126

9.5. Results

na
m

e

bi
rt

hd
at

e

bi
rt

hp
la

ce

na
tio

na
lit

y

oc
cu

pa
tio

n

1 2 1 2 3 1 2 1 1 2

< s >

nellie

wong

(

born

september

12

,

1934

)

is

an

american

poet

and

activist

.

Table 9.2 – Visualization of attention scores for Nellie Wong’s Wikipedia infobox. Rows rep-
resent the probability distribution over (field, position) pairs from the table after generating
each word. The columns represent the conditioning context, e.g., the model takes n −1 words
as context. The darker the color, the higher the probability. Best viewed in colors.

127

Chapter 9. Generating Text from Structured Data

100 200 500 1000 2000

15
20

25
30

35
40

45

time in ms

B
LE

U

1
2 3

4
5

6 8 10 15 2025

1

345 67 810
15 20 25

Template KN
Table NNLM
beam size

Figure 9.4 – Comparison between our best model (Table NNLM) and the baseline (Template
KN) for different beam sizes. The x-axis is the average timing (in milliseconds) for generating
one sentence. The y-axis is the BLEU score. All results are measured on a subset of 1,000
samples of the validation set.

ing data is not perfect. The month of birth mentioned in the fact table and the first sentence of

the Wikipedia article are different; this may have been introduced by one contributor editing

the article and not keeping the information consistent.

All three versions of our model correctly generate the beginning of the sentence by copying the

name, the birth date and the death date from the table. Knowing that the person has died, the

past tense is used. Frederick Parker-Rhodes was a scientist, but this occupation is not directly

mentioned in the table. The model without global conditioning can therefore not predict

the right occupation, and it continues the generation with the most common occupation

(in Wikipedia) for a person who has died. In contrast, the global conditioning over the fields

helps the model to understand that this person was indeed a scientist. However, it is only

with the global conditioning on the words that the model can infer the correct occupation, i.e.,

computer scientist.

128

9.6. Conclusion

MODEL GENERATED SENTENCE

REFERENCE

Frederick Parker-Rhodes (21 March 1914 – 21 November 1987)
was an English linguist, plant pathologist, computer scientist,
mathematician, mystic, and mycologist.

TABLE NNLM
W/ LOCAL

frederick parker-rhodes (21 november 1914 – 2 march 1987)
was an australian rules footballer who played with carlton in the
victorian football league (vfl) during the XXXXs and XXXXs .

+ GLOBAL (FIELD)

frederick parker-rhodes (21 november 1914 – 2 march 1987)
was an english mycology and plant pathology , mathematics at
the university of uk .

+ GLOBAL (FIELD & WORD)

frederick parker-rhodes (21 november 1914 – 2 march 1987) was
a british computer scientist , best known for his contributions
to computational linguistics .

Table 9.3 – First sentence from the current Wikipedia article about Frederick Parker-Rhodes
and the sentences generated from the three versions of our table-conditioned neural language
model (Table NNLM) using the Wikipedia infobox seen in Figure 9.1.

9.6 Conclusion

We have shown that our embeddings-based model can generate fluent descriptions of arbitrary

people based on structured data. Local and global conditioning improves our model by a large

margin and we outperform a Kneser-Ney language model by nearly 15 BLEU. Our task uses an

order of magnitude more data than previous work and has a vocabulary that is three orders of

magnitude larger.

In this chapter, we have only focused on generating the first sentence, but this model can

be extended for the generation of longer biographies. Furthermore, the current training loss

function does not explicitly penalize the model from generating incorrect facts, e.g. predicting

the wrong nationality or a wrong occupation is not currently considered worse than choosing

the wrong determiner. A loss function that could assess factual accuracy would certainly

improve sentence generation by avoiding such mistakes.

129

10 Conclusion

Natural language is complex and subtle, which makes its understanding an AI-hard problem.

For solving NLP tasks, computers need to become as intelligent as people and thus, apprehend

the underlying mechanisms that determine human language. This thesis does not have the

ambition to solve NLP but aims at bringing efficient and effective solutions for computers to

understand the basics of human language: words and phrases. Just as humans know that cat

and dog are close semantically, we propose an approach that allows computers to understand

that too, by capturing syntactic and semantic properties of words into vector space models

(aka word embeddings). Because a red persian cat is also close to cat, we then propose a model

that enables phrases with different length to be encoded into the same semantic space. The

model is trained in such a manner that word vector representations can be aggregated together

while keeping the maximum information from the original vectors so that computers know

that a red persian cat is a composition of three features. Finally, we show that “intelligent”

systems can be built upon the understanding of these basics for classifying text documents or

generating natural language.

10.1 Achievements

This thesis proposes techniques for:

• Building word embeddings from large text corpora. In Chapter 4, we demonstrate

that appealing word embeddings can be obtained by computing a Hellinger PCA of the

word co-occurrence matrix built from the English Wikipedia. While PCA can be compu-

tationally expensive with huge matrices, our findings reveal that having a significant,

but not too large set of context words, is sufficient for capturing most of the syntactic

and semantic properties of words. With a limited number of columns and a randomized

SVD, PCA is fast to compute and becomes a good alternative to NNLM.

In Chapter 5, we show that Hellinger PCA can be performed with an autoencoder

network, which enables to construct a joint learning architecture. Given an input phrase

131

Chapter 10. Conclusion

composed of n words, the network learns embeddings for the n words, while keeping

the maximum information of each individual word when they are summed together.

Considering that the word vocabulary grows exponentially with n, this approach gives a

nice framework to produce the huge variety of possible sequences of n words in a timely

and efficient manner with low memory consumption. Relying on word co-occurrence

statistics to represent words in vector space also provides a framework to easily generate

representations for unseen words or phrases.

Regarding technology transfer, we have released a complete toolkit in C++ for computing

word embeddings from a large corpus of text with Hellinger PCA1. An open source

software for the autoencoder approach is also available on github.com2. Pre-trained

word embeddings and the phrase dataset from Chapter 5 are both available online3.

• Document classification. As we have built embeddings carrying meaningful semantic

information about words, we propose to tackle sentiment classification with a convo-

lutional neural network in Chapter 6. The objective of sentiment classification is to

classify a text document according to the sentimental polarities of opinions it contains

(e.g. positive or negative). Traditional BOW models usually need bigram features not

to misclassify documents containing bigrams such as not good or not funny, leading to

high-dimensional yet sparse document representations. We show that the proposed

model is a good alternative for fighting the curse of dimensionality, while offering good

performance and an interesting framework for sentiment visualization.

In Chapter 7, we leverage our model described in Chapter 5 to propose an unsuper-

vised method for producing compact representations of text documents, while adding

more semantic information. As word embeddings can be summed together, we group

n-grams with different lengths n into semantic concepts. Documents are then repre-

sented as bags of semantic concepts. Such model has several advantages over classical

approaches for representing documents in a low-dimensional space: it leverages se-

mantic information coming from n-grams; it builds document representations with low

resource consumption (time and memory); it can infer semantic concepts for unseen

n-grams; and finally, it is capable of providing relevant document representations even

with a small set of documents. We show that such model is suitable for the classification

of text news and movie reviews, reaching similar performance than traditional BOW

models with considerably fewer features.

• Sentence generation. Chapter 8 proposes a model for generating image descriptions,

leveraging our pre-trained word embeddings from Chapter 5 and image representations

from pre-trained CNN. Exploiting such rich representations enables the design of an

effective model that achieves good performance without the use of complex recurrent

networks. In this chapter, we also show that the multimodal learning leads to improve

the quality of phrase vector representations, by incorporating visual features.

1Available at http://github.com/rlebret/hpca.
2Available at http://github.com/ParallelDots/WordEmbeddingAutoencoder.
3Available at http://www.lebret.ch/words.

132

10.2. Perspectives for Future Work

Chapter 9 addresses the problem of concept-to-text generation, rendering Wikipedia

infoboxes into natural language. To tackle this problem we propose to parameterize

words and fields from infoboxes as embeddings, along with a neural network language

model operating on these embeddings. We show that our embeddings-based model can

generate fluent descriptions of arbitrary people based on structured data, outperforming

a standard template-based model.

Regarding technology transfer, we have released the code of our phrase-based model

for image captioning4. All biography articles and infoboxes from Chapter 9 will also be

released online soon.

10.2 Perspectives for Future Work

As mentioned in the introduction, natural language is based on three mechanisms: compo-

sitionality, hierarchy and recursion. Even if not optimal, this thesis provides a solution for

the first mechanism. The two other mechanisms are however not addressed in this thesis.

Perspectives for future work are thus the following:

• Considering word order for compositionality. Our approach for compositionality

makes sense and works well when the meaning of a phrase is literally “the sum of

its parts”, where each word independently has its proper meaning. However, Landauer

(2002) estimates that 80% of the meaning of English text comes from word choice and

the remaining 20% comes from word order. It, therefore, seems important to preserve

word order, but commutative or associative operations ignore word order and thus the

syntactic structure of expressions. To overcome this shortcoming, connectionist ap-

proaches have been proposed to develop distributed representations which encode the

structural relationships between words (Hinton, 1986; Pollack, 1990; Elman, 1991). Fu-

ture work is to investigate these recurrent architectures, which could convert sequences

of words of variable sizes into a same semantic space while retaining the word order.

• Hierarchical structure for higher-level phrase embeddings. Knowing the hierarchical

structure, those approaches based on recurrent neural network architectures can pro-

duce representations of syntactic sentence structures in an efficient way (Kwasny and

Kalman, 1995). When operating over a parse tree, good performance can be achieved

on tasks such as sentiment detection or semantic relationships classification (Socher et

al., 2012). Future work would be to learn higher-level phrase embeddings by combining

both compositionality and hierarchical structure in an unsupervised manner.

• Recursion for sentence embeddings. With recurrent architectures, the recursion theory

could then be addressed by compressing recursively higher-level phrase embeddings

within another higher-level phrase embeddings to compute sentence embeddings.

4Available at http://github.com/rlebret/phrase-based_image_captioning.

133

Chapter 10. Conclusion

Sentence embeddings would be helpful for document classification and natural language

generation. For instance, we could define the semantic concepts from Chapter 7 by clustering

sentences instead of n-grams. After the generation of the first sentence in Chapter 9, we could

use the embedding of this sentence as conditioning for generating the next one, and thus

produce a short paragraph summary for a given Wikipedia infobox.

134

References

References

R. K. Ando, T. Zhang, and P. Bartlett. 2005. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research.

G. Angeli, P. Liang, and D. Klein. 2010. A simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Computational Linguistics.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to
align and translate. In 3rd International Conference on Learning Representations (ICLR).

M. Baroni and R. Zamparelli. 2010. Nouns are Vectors, Adjectives are Matrices: Representing
Adjective-Noun Constructions in Semantic Space. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, pages 1183–1193. Association for
Computational Linguistics.

R. Barzilay and M. Lapata. 2005. Collective content selection for concept-to-text generation.
In Proceedings of the conference on Human Language Technology and Empirical Methods in
Natural Language Processing, pages 331–338. Association for Computational Linguistics.

R. Barzilay and M. Lapata. 2006. Aggregation via set partitioning for natural language gener-
ation. In Proceedings of the main conference on Human Language Technology Conference of
the North American Chapter of the Association of Computational Linguistics, pages 359–366.
Association for Computational Linguistics.

A. Belz. 2008. Automatic generation of weather forecast texts using comprehensive probabilis-
tic generation-space models. Natural Language Engineering, 14(04):431–455.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Y. Bengio, R. Ducharme, and P. Vincent. 2001. A Neural Probabilistic Language Model. In NIPS
Workshop.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. 2003. A Neural Probabilistic Language
Model. Journal of Machine Learning Research, 3:1137–1155.

A. Bhattacharyya. 1943. On a Measure of Divergence Between Two Statistical Populations
Defined by Probability Distributions. Bulletin of the Calcutta Mathematical Society, 35:99–110.

W. Blacoe and M. Lapata. 2012. A Comparison of Vector-based Representations for Semantic
Composition. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning, pages 546–556. Association
for Computational Linguistics.

D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. Journal of Machine
Learning Research.

H. Bourlard and Y. Kamp. 1988. Auto-Association by Multilayer Perceptrons and Singular
Value Decomposition. Biological Cybernetics, 59(4):291–294.

135

References

J. S. Bridle. 1990. Probabilistic interpretation of feedforward classification network outputs,
with relationships to statistical pattern recognition. In Neurocomputing, pages 227–236.
Springer.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J C. Lai. 1992. Class-based n-gram
models of natural language. Computational Linguistics.

J. A. Bullinaria and J. P. Levy. 2007. Extracting semantic representations from word co-
occurrence statistics: A computational study. Behavior Research Methods, 39(3):510–526.

J. Caron. 2001. Computational information retrieval. chapter Experiments with LSA Scoring:
Optimal Rank and Basis, pages 157–169. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

S. F. Chen and J. Goodman. 1996. An empirical study of smoothing techniques for language
modeling. In Proceedings of the 34th annual meeting on Association for Computational
Linguistics, pages 310–318. Association for Computational Linguistics.

X. Chen and C. L. Zitnick. 2015. Mind’s Eye: A Recurrent Visual Representation for Image Cap-
tion Generation. In IEEE International Concference on Computer Vision and Patter Recognition
(CVPR).

Y. Chen, B. Perozzi, R. Al-Rfou’, and S. Skiena. 2013. The Expressive Power of Word Embeddings.
CoRR, abs/1301.3226.

N. Chomsky. 1957. Syntactic Structures. Mouton.

S. Clark, B. Coecke, and M. Sadrzadeh. 2008. A compositional distributional model of meaning.
In Proceedings of the Second Quantum Interaction Symposium (QI-2008), pages 133–140.

R. Collobert and J. Weston. 2008. A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning. In ICML.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. 2011. Natural
Language Processing (Almost) from Scratch. Journal of Machine Learning Research.

R. Collobert. 2004. Large Scale Machine Learning. Ph.D. thesis, Université Paris VI.

C. Cortes and V. Vapnik. 1995. Support-vector networks. Machine Learning, 20(3):273–297.

R. Dale, S. Geldof, and J.-P. Prost. 2003. Coral: Using natural language generation for naviga-
tional assistance. In Proceedings of the 26th Australasian computer science conference-Volume
16, pages 35–44. Australian Computer Society, Inc.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. 1990. Indexing by
Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6):391–
407.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz, and J. Makhoul. 2014. Fast and robust
neural network joint models for statistical machine translation. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, volume 1, pages 1370–1380.

136

References

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. 2014. Long-term Recurrent Convolutional Networks for Visual Recognition and
Description. arXiv preprint arXiv:1411.4389.

P. A. Duboue and K. R. McKeown. 2002. Content planner construction via evolutionary
algorithms and a corpus-based fitness function. In Proceedings of INLG 2002, pages 89–96.

J. L. Elman. 1991. Distributed Representations, Simple Recurrent Networks, and Grammatical
Structure. Machine Learning.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. 2008. LIBLINEAR: A Library for Large Linear
Classification. Journal of Machine Learning Research.

H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollar, J. Gao, X. He, M. Mitchell, J. C.
Platt, L. C. Zitnick, and G. Zweig. 2015. From Captions to Visual Concepts and Back. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin. 2002.
Placing Search in Context: The Concept Revisited. ACM Transactions on Information Systems.

J. R. Firth. 1957. A Synopsis of Linguistic Theory 1930-55.

G. Frege. 1892. über sinn und bedeutung. In Mark Textor, editor, Funktion - Begriff - Bedeu-
tung, Sammlung Philosophie. Vandenhoeck & Ruprecht, Göttingen.

D. Galanis and I. Androutsopoulos. 2007. Generating multilingual descriptions from linguisti-
cally annotated owl ontologies: the naturalowl system. In Proceedings of the Eleventh European
Workshop on Natural Language Generation, pages 143–146. Association for Computational
Linguistics.

K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. Mills, J. Eisenstein, M. Heilman, D. Yogatama,
J. Flanigan, and N. A. Smith. 2011. Part-of-Speech Tagging for Twitter: Annotation, Fea-
tures, and Experiments. In Proceedings of the 49nd Annual Meeting of the Association for
Computational Linguistics.

A. Go, R. Bhayani, and L. Huang. 2009. Twitter Sentiment Classification using Distant Supervi-
sion. CS224N Project Report.

Irving J Good. 1953. The population frequencies of species and the estimation of population
parameters. Biometrika, 40(3-4):237–264.

A. Graves. 2013. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

N. Green. 2006. Generation of biomedical arguments for lay readers. In Proceedings of the
Fourth International Natural Language Generation Conference, pages 114–121. Association for
Computational Linguistics.

E. Grefenstette, G. Dinu, Y. Zhang, M. Sadrzadeh, and M. Baroni, 2013. Proceedings of the 10th
International Conference on Computational Semantics (IWCS 2013) – Long Papers, chapter
Multi-Step Regression Learning for Compositional Distributional Semantics, pages 131–142.
Association for Computational Linguistics.

137

References

M. U. Gutmann and A. Hyvärinen. 2012. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. The Journal of Machine
Learning Research, 13(1):307–361.

B. Gyawali and C. Gardent. 2014. Surface Realisation from Knowledge-Bases. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, volume 1, pages
424–434.

N. Halko, P.-G. Martinsson, and J. A. Tropp. 2011. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217–288.

Z. Harris. 1954. Distributional Structure. 10.

M. D. Hauser, N. Chomsky, and W. T. Fitch. 2002. The Faculty of Language: What Is It, Who
Has It, and How Did It Evolve? Science.

K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn. 2013. Scalable Modified Kneser-Ney
Language Model Estimation. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics, pages 690–696, Sofia, Bulgaria, August.

E. Hellinger. 1909. Neue Begründung der Theorie quadratischer Formen von unendlichvielen
Veränderlichen. Journal für die reine und angewandte Mathematik, 136:210–271.

G. E. Hinton. 1986. Learning Distributed Representations of Concepts. In Proceedings of the
8th Annual Conference of the Cognitive Science Society, pages 1–12. Hillsdale, NJ: Erlbaum.

S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural computation,
9(8):1735–1780.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. 2001. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies.

M. Hodosh, P. Young, and J. Hockenmaier. 2013. Framing image description as a ranking task:
data, models and evaluation metrics. Journal of Artificial Intelligence Research.

X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou. 2009. Exploiting Wikipedia As External
Knowledge for Document Clustering. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, pages 389–396, New York, NY,
USA. ACM.

F. Huang and A. Yates. 2009. Distributional Representations for Handling Sparsity in Super-
vised Sequence-Labeling. In ACL.

W. Humboldt. 1836. Über die Verschiedenheit des menschlichen Sprachbaues: Und ihren
Einfluss auf die geistige Entwickelung des Menschengeschlechts. Druckerei der Königlichen
Akademie der Wissenschaften.

T. Joachims. 1998. Text categorization with Support Vector Machines: Learning with many
relevant features. In C. Nédellec and C. Rouveirol, editors, Machine Learning: ECML-98,
volume 1398 of Lecture Notes in Computer Science, pages 137–142. Springer Berlin Heidelberg.

138

References

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A Convolutional Neural Network
for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, volume 1, pages 655–665.

A. Karpathy and L. Fei-Fei. 2015. Deep Visual-Semantic Alignments for Generating Image
Descriptions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June.

J. Kim and R. J. Mooney. 2010. Generative alignment and semantic parsing for learning from
ambiguous supervision. In Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, pages 543–551. Association for Computational Linguistics.

V. Kindratenko. 2014. Numerical Computations with GPUs. Springer.

R. Kiros, R. Salakhutdinov, and R. S. Zemel. 2014. Unifying visual-semantic embeddings with
multimodal neural language models. arXiv preprint arXiv:1411.2539.

I. Konstas and M. Lapata. 2013. A global model for concept-to-text generation. Journal of
Artificial Intilligence Research, 48(1):305–346, October.

T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-supervised dependency parsing. In
ACL.

G. Kulkarni, V. Premraj, S. Dhar, Siming Li, Yejin Choi, A. C. Berg, and T. L. Berg. 2013. Baby
Talk: Understanding and Generating Simple Image Descriptions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(12):2891–2903.

P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, and Y. Choi. 2012. Collective Generation
of Natural Image Descriptions. In Proceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 359–368. Association for
Computational Linguistics, July.

S. C. Kwasny and B. L. Kalman. 1995. Tail-Recursive Distributed Representations and Simple
Recurrent Networks. Connection Science, 7:61–80.

T. K. Landauer and S. T. Dumais. 1997. A solution to Plato’s problem: The Latent Semantic
Analysis theory of the acquisition, induction, and representation of knowledge. Psychological
Review.

T. K. Landauer. 2002. On the computational basis of learning and cognition: Arguments from
LSA. In The psychology of learning and motivation. Academic Press.

P.-S. Laplace. 1820. Théorie analytique des probabilités. V. Courcier.

R. Lebret and R. Collobert. 2013. Is Deep Learning Really Necessary for Word Embeddings? In
NIPS Deep Learning Workshop.

R. Lebret and R. Collobert. 2014. Word Embeddings through Hellinger PCA. In Proceedings of
the 14th Conference of the European Chapter of the Association for Computational Linguistics,
pages 482–490. Association for Computational Linguistics.

139

References

R. Lebret and R. Collobert. 2015a. N-gram-Based Low-Dimensional Representation for
Document Classification. In 3rd International Conference on Learning Representations (ICLR)
– Workshop Track.

R. Lebret and R. Collobert. 2015b. Rehabilitation of Count-Based Models for Word Vector
Representations. In Alexander Gelbukh, editor, Computational Linguistics and Intelligent
Text Processing, volume 9041 of Lecture Notes in Computer Science, pages 417–429. Springer
International Publishing.

R. Lebret and R. Collobert. 2015c. “The Sum of Its Parts”: Joint Learning of Word and Phrase
Representations with Autoencoders. In ICML Deep Learning Workshop.

R. Lebret, P. O. Pinheiro, and R. Collobert. 2015a. Phrase-Based Image Captioning. In
Proceedings of the 32st International Conference on Machine Learning (ICML).

R. Lebret, P. O. Pinheiro, and R. Collobert. 2015b. Simple Image Description Generator via
a Linear Phrase-Based Model. In 3rd International Conference on Learning Representations
(ICLR) – Workshop Track.

R. Lebret, D. Grangier, and M. Auli. 2016a. Neural Text Generation from Structured Data with
Application to the Biography Domain . In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

R. Lebret, P. O. Pinheiro, and R. Collobert. 2016b. Twitter Sentiment Analysis (Almost) from
Scratch. Idiap-RR Idiap-RR-15-2016, Idiap, 5.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE.

J. Legrand and R. Collobert. 2014. Joint RNN-based Greedy Parsing and Word Composition.
arXiv preprint arXiv:1412.7028.

O. Levy and Y. Goldberg. 2014. Linguistic Regularities in Sparse and Explicit Word Representa-
tions. In CoNLL, pages 171–180.

P. Liang, M. I. Jordan, and D. Klein. 2009. Learning semantic correspondences with less
supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume
1-Volume 1, pages 91–99. Association for Computational Linguistics.

P. Liang. 2005. Semi-supervised learning for natural language. Ph.D. thesis, Citeseer.

D. Lin and X. Wu. 2009. Phrase clustering for discriminative learning. In Proceedings of
the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1030–
1038. Association for Computational Linguistics.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
2014. Microsoft COCO: Common Objects in Context. In Computer Vision–ECCV 2014, pages
740–755. Springer.

140

References

W. Lu and H. T. Ng. 2011. A probabilistic forest-to-string model for language generation from
typed lambda calculus expressions. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1611–1622. Association for Computational Linguistics.

M. Luong, R. Socher, and C. D. Manning. 2013. Better Word Representations with Recursive
Neural Networks for Morphology. In CoNLL, pages 104–113. Citeseer.

M.-T. Luong, I. Sutskever, Q. V Le, O. Vinyals, and W. Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Proceedings of the 53nd Annual Meeting of the
Association for Computational Linguistics, pages 11–19.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. 2011. Learning Word
Vectors for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages 142–150.
Association for Computational Linguistics.

C. D. Manning and H. Schütze. 1999. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA, USA.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky. 2014. The
Stanford CoreNLP natural language processing toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations, pages 55–60.

J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille. 2015. Deep Captioning with
Multimodal Recurrent Neural Networks (m-RNN). In 3rd International Conference on Learning
Representations (ICLR).

R. McDonald, K. Crammer, and F. Pereira. 2005. Flexible text segmentation with structured
multilabel classification. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pages 987–994. Association for Computa-
tional Linguistics.

H. Mei, M. Bansal, and M. R. Walter. 2016. What to talk about and how? Selective Gen-
eration using LSTMs with Coarse-to-Fine Alignment. In Proceedings of Human Language
Technologies: The 2016 Annual Conference of the North American Chapter of the Association
for Computational Linguistics.

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and Sanjeev Khudanpur. 2010. Recurrent neural
network based language model.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013a. Efficient Estimation of Word Represen-
tations in Vector Space. 1st International Conference on Learning Representations (ICLR) –
Workshop Track.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013b. Distributed Representa-
tions of Words and Phrases and their Compositionality. In Advances in neural information
processing systems, pages 3111–3119.

J. Mitchell and M. Lapata. 2010. Composition in Distributional Models of Semantics. Cognitive
Science.

141

References

M. Mitchell, X. Han, J. Dodge, A. Mensch, A. Goyal, A. Berg, K. Yamaguchi, T. Berg, K. Stratos,
and H. Daumé, III. 2012. Midge: Generating Image Descriptions from Computer Vision
Detections. In Proceedings of the 13th Conference of the European Chapter of the Association
for Computational Linguistics, pages 747–756. Association for Computational Linguistics.

A. Mnih and G. Hinton. 2007. Three new graphical models for statistical language modelling.
In Proceedings of the 24th International Conference on Machine Learning, pages 641–648.

A. Mnih and G. Hinton. 2009. A Scalable Hierarchical Distributed Language Model. In
Advances in Neural Information Processing Systems, pages 1081–1088.

A. Mnih and K. Kavukcuoglu. 2013. Learning Word Embeddings Efficiently with Noise-
Contrastive Estimation. In Advances in Neural Information Processing Systems, pages 2265–
2273.

A. Mnih and Y. W. Teh. 2012. A fast and simple algorithm for training neural probabilistic
language models. In John Langford and Joelle Pineau, editors, Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12), ICML ’12, pages 1751–1758, New York, NY,
USA, July. Omnipress.

Richard Montague. 1974. English as a Formal Language. In Richmond H. Thomason, editor,
Formal Philosophy: Selected Papers of Richard Montague, pages 188–222. Yale University Press,
New Haven, London.

F. Morin and Y. Bengio. 2005. Hierarchical Probabilistic Neural Network Language Model. In
Aistats, volume 5, pages 246–252. Citeseer.

M. Mourino-García, R. Pérez-Rodríguez, and L. Anido-Rifón. 2015. Bag-of-Concepts Docu-
ment Representation for Textual News Classification. In the 16th International Conference on
Intelligent Text Processing and Computational Linguistics.

K. Nigam. 1999. Using maximum entropy for text classification. In In IJCAI-99 Workshop on
Machine Learning for Information Filtering, pages 61–67.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics.

J. Pennington, R. Socher, and C. D. Manning. 2014. GloVe: Global Vectors for Word Repre-
sentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

J.-F. Pessiot, Y.-M. Kim, M.-R. Amini, and P. Gallinari. 2010. Improving Document Clustering
in a Learned Concept Space. Information Processing & Management, 46(2):180–192.

J. B. Pollack. 1990. Recursive Distributed Representations. Artificial Intelligence.

S. Poria, A. F. Gelbukh, E. Cambria, A. Hussain, and G.-B. Huang. 2014. EmoSenticSpace: A
novel framework for affective common-sense reasoning. Knowledge-Based Systems.

L. R. Rabiner. 1989. A tutorial on hidden markov models and selected applications in speech
recognition. In Proceedings of the IEEE, pages 257–286.

142

References

L. Ratinov and D. Roth. 2009. Design challenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Conference on Computational Natural Language
Learning (CoNLL). Association for Computational Linguistics.

A. Ratnaparkhi. 2002. Trainable approaches to surface natural language generation and their
application to conversational dialog systems. Computer Speech & Language, 16(3):435–455.

E. Reiter, R. Dale, and Z. Feng. 2000. Building natural language generation systems, volume 33.
MIT Press.

E. Reiter, S. Sripada, J. Hunter, J. Yu, and I. Davy. 2005. Choosing words in computer-generated
weather forecasts. Artificial Intelligence, 167(1):137–169.

H. Schütze. 1993. Word Space. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances
in Neural Information Processing Systems 5, pages 895–902. Morgan-Kaufmann.

H. Schütze. 1995. Distributional part-of-speech tagging. In Proceedings of the 7th conference
on European Chapter of the Association for Computational Linguistics, pages 141–148. Morgan
Kaufmann Publishers Inc.

J. Sedding and D. Kazakov. 2004. WordNet-based Text Document Clustering. In Proceedings of
the 3rd Workshop on RObust Methods in Analysis of Natural Language Data, pages 104–113,
Stroudsburg, PA, USA. Association for Computational Linguistics.

F. Sha and F. Pereira. 2003. Shallow parsing with conditional random fields. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 134–141. Association for Compu-
tational Linguistics.

L. Shang, Z. Lu, and H. Li. 2015. Neural Responding Machine for Short-Text Conversation.
arXiv preprint arXiv:1503.02364.

K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image
recognition. CoRR.

R. Socher, B. Huval, C. Manning, and A. Ng. 2012. Semantic Compositionality Through
Recursive Matrix-Vector Spaces. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
pages 1201–1211. Association for Computational Linguistics.

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y Ng, and C. Potts. 2013. Recursive
Deep Models for Semantic Compositionality Over a Sentiment Treebank. In Proceedings of
the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP), volume
1631, page 1642. Association for Computational Linguistics.

R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. 2014. Grounded Compositional
Semantics for Finding and Describing Images with Sentences. Transactions of the Association
for Computational Linguistics, 2:207–218.

N. Srivastava and R. Salakhutdinov. 2014. Multimodal Learning with Deep Boltzmann Ma-
chines. Journal of Machine Learning Research.

143

References

S. Staab and A. Hotho. 2003. Ontology-based Text Document Clustering. In Intelligent Infor-
mation Processing and Web Mining, Proceedings of the International IIS: IIPWM’03 Conference
held in Zakopane, pages 451–452.

X. Sun, L.-P. Morency, D. Okanohara, and J. Tsujii. 2008. Modeling latent-dynamic in shallow
parsing: a latent conditional model with improved inference. In Proceedings of the 22nd
International Conference on Computational Linguistics-Volume 1, pages 841–848. Association
for Computational Linguistics.

C. Tan, Y. Wang, and C. Lee. 2002. The Use of Bigrams to Enhance Text Categorization. Journal
of Information Processing and Management.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for
computational linguistics, pages 384–394. Association for Computational Linguistics.

R. Turner, S. Sripada, and E. Reiter. 2010. Generating approximate geographic descriptions. In
Empirical methods in natural language generation, pages 121–140. Springer.

P. Turney and P. Pantel. 2010. From Frequency to Meaning: Vector Space Models of Semantics.
Journal of Artificial Intelligence Research.

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. J. Mooney, and K. Saenko. 2014. Trans-
lating Videos to Natural Language Using Deep Recurrent Neural Networks. arXiv preprint
arXiv:1412.4729.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015. Show and Tell: A Neural Image Caption
Generator. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June.

A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory.

S. I. Wang and C. D. Manning. 2012. Baselines and Bigrams: Simple, Good Sentiment and Topic
Classification. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Short Papers-Volume 2, pages 90–94. Association for Computational Linguistics.

T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young. 2015. Semantically
Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems. arXiv
preprint arXiv:1508.01745.

Y. W. Wong and R. J. Mooney. 2007. Generation by inverting a semantic parser that uses
statistical machine translation. In HLT-NAACL, pages 172–179.

K. Xu, J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio. 2015. Show,
attend and tell: Neural image caption generation with visual attention. In Proceedings of The
32nd International Conference on Machine Learning, volume 37, July.

Y. Yang and X. Liu. 1999. A re-examination of text categorization methods. In Proceedings
of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, pages 42–49. ACM.

144

References

B. Z. Yao, X. Yang, L. Lin, M. W. Lee, and S. C. Zhu. 2010. I2T: Image Parsing to Text Description.
Proceedings of the IEEE, 98(8):1485–1508.

K. Yao, G. Zweig, and B. Peng. 2015. Attention with Intention for a Neural Network Conversa-
tion Model. arXiv preprint arXiv:1510.08565.

K. Zhao, H. Hassan, and M. Auli. 2015. Learning Translation Models from Monolingual
Continuous Representations. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 1527–1536, Denver, Colorado, May–June. Association for Computational Linguistics.

145

Rémi Lebret
Ph.D.
Machine Learning / Natural Language Processing
http://lebret.ch

Rue du Village, 14
1923 Le Trétien, SUISSE
� +41 (0) 76 592 26 12

� remi@lebret.ch
DOB: 26th December 1985

French nationality

Professional Experience
May 2012
June 2016

Research Assistant, Idiap Research Institute, Martigny, Valais, Switzerland.
Working on deep learning approaches for Natural Language Processing (NLP) under the supervision
of Ronan Collobert.

September 2015
March 2016

Research Intern, Facebook Artificial Intelligence Research, Menlo Park, California, USA.
Working on concept-to-text generation under the supervision of David Grangier and Michael Auli.

September 2011
May 2012

CNRS Research Engineer, Heudiasyc laboratory of CNRS at University of Technology in
Compiègne. Paul Painlevé Laboratory, within the Probability and Statistics team, University
Lille 1. MODAL Team, INRIA Lille - Nord Europe, Lille, France.
Developing softwares in R and C++ for supervised and unsupervised classifications under the
supervision of Yves Grandvalet and Christophe Biernacki.

March 2011
August 2011

CNRS Studies Engineer in Biostatistics, Institute Pasteur of Lille, Genomics and
metabolic diseases, Lille, France.
Supporting the researchers in the design of statistical genetic analyses. Creating new tools for
high-speed analyses.

January 2009
March 2011

Statistical Programmer/Analyst, PharmacoGenomic Innovative Solutions (PGXIS).
Paul Painlevé Laboratory, within the Probability and Statistics team, University Lille 1,
High Wycombe, UK.
Designing a software for the multivariate analysis of large-scale datasets in genetic.

Education
July 2016 École Polytechnique Fédéral de Lausanne (EPFL), Switzerland.

Ph.D. in Electrical Engineering.

September 2009 École Polytechnique Universitaire de Lille (Polytech’Lille), France.
“Diplôme d’ingénieur” (Master’s degree in Engineering) in Software Engineering and Statistics

Fall 2008 Oklahoma State University, USA.
Exchange student for a semester in the department of Statistics

Computer Skills
Programming languages

C++/C Software Design Torch Deep Learning Framework
R Creation of packages Lua/Perl Script for data management

SQL Data management with mySQL PHP/HTML Website design

Parallel POSIX Threads, Open MPI Other LATEX. Multi-platform system adminis-
tration under Linux, Mac OS X, Unix,
Windows.

Languages spoken
French (native), English (fluent, TOEIC: 895), German (basic knowledge)

147

Publications
Journal
R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The
R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification
Mixmod Library. Journal of Statistical Software, 67(1):1–29, 2015.
Conference
Lebret R., Grangier D., and Auli M. Neural Text Generation from Structured Data with
Application to the Biography Domain . In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP), Austin, USA, November 2016.

Lebret R., Pinheiro P. O., and Collobert R. Phrase-based Image Captioning. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), volume 37, pages 2085–2094,
Lille, France, July 2015.

Lebret R. and Collobert R. Rehabilitation of Count-based Models for Word Vector Repre-
sentations. In Alexander Gelbukh, editor, Computational Linguistics and Intelligent Text
Processing (CICLing): Proceedings of the 16th International Conference, volume 9041 of
Lecture Notes in Computer Science, pages 417–429, Cairo, Egypt, April 2015. Springer.

Lebret R. and Collobert R. Word Embeddings through Hellinger PCA. In Proceedings of the
14th Conference of the European Chapter of the Association for Computational Linguistics
(EACL), pages 482–490, Gothenburg, Sweden, April 2014. Association for Computational
Linguistics.
Workshop
Lebret R. and Collobert R. “The Sum of Its Parts”: Joint Learning of Word and Phrase
Representations with Autoencoders. In ICML Deep Learning Workshop, July 2015.

Lebret R., Pinheiro P. O., and Collobert R. Simple Image Description Generator via a Linear
Phrase-Based Model. In ICLR Workshop, May 2015.

Lebret R. and Collobert R. N-gram-Based Low-Dimensional Representation for Document
Classification. In ICLR Workshop, May 2015.

Lebret R., Legrand J., and Collobert R. Is Deep Learning Really Necessary for Word
Embeddings? In NIPS Workshop on Deep Learning, December 2013.

Lebret R., Iovleff S., and Langrogner F. Rmixmod: A MIXture MODelling R Package.
Statlearn’12 - Workshop on Challenging problems in Statistical Learning, Lille, France, avril
2012.

Lebret R., Biernacki C., Iovleff S., Jacques J., Preda C., McCarthy A., and Delrieu O.
Genetic epistasis analysis using ’taxonomy3’. 2nd International BIO-SI Workshop, Rennes,
France, october 2011.

Lebret R., Iovleff S., Biernacki C., Jacques J., Preda C., McCarthy A., and Delrieu O. Rapid
multivariate analysis of 269 hapmap subjects and 1 million snps using ’taxonomy3’. Cold
Spring Harbor/Wellcome Trust meeting on Pharmacogenomics, Hinxton, UK, september
2009.
Softwares and Packages
Lebret R. HPCA, 2015. C/C++ implementation of the Hellinger PCA for computing word
embeddings.

Lebret R., Iovleff S., and Langrognet F. Rmixmod: MIXture MODelling Package, 2012.
R package for Model-Based supervised and unsupervised classification on qualitative and
quantitative data.

Lebret R. and Iovleff S. Taxonomy3, 2011. C/C++ implementation of a statistical method
providing an analytical framework for high dimensional datasets and complex problems
combining several variable types: genetics, genomics, biomarkers and phenotypes.

148

