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Résumé

Dans cette these, nous étudions le calcul des variations pour les formes différentielles.
Le premiere partie est dédiée au développement des outils des méthodes directes du calcul
des variations pour résoudre des problémes de minimisation de fonctionnelles d’une ou plusieurs

variables de la forme

/Qf(dw), /Qf(dwl,...,dww), et /Qf(dw,(Sw).

Nous introduions les notions de convexitées appropriées a chaque cas, appelées polyconvezité
ext., quasiconvexité ext., et un-converité ext. pour des fonctionnelles de la forme fQ f(dw), et la
polyconvexité ext. vectorielle, la quasiconvexité ext. vectorielle, et la un-convexité ext. vectorielle
pour des fonctionnelles de la forme fQ f(dwn,...,dwy,) ainsi que la polyconvezxité ext-int., la qua-
siconvexité ext-int. et la un-convexité ext-int. pour les fonctionnelles de la forme [, f(dw, dw)..
Nous étudions les liens et relations entre ces notions de convexité et leur homolgues du cas
classique du calcul des variations, c’est-a-dire, la polyconvexité, la quasiconvexité et la rang un
convexité. Nous étudions également la semi-continuité inférieure et la continuité faible de ces
fonctionnelles sur des espaces appropriés et nous nous occupons des problemes de coercivité et
obtenons des théoremes d’existence a des problemes de minimization de fonctionnelles d’une
forme différentielle.

Dans la deuxiéme partie, nous étudions les problemes aux limites pour des opérarteurs de
type Maxwell linéaires, semi-linéraires et quasi-linéaires pour des formes différentielles. Nous
étudions l'existence et établissons la régularité intérieure ainsi que des estimations pour la

régularité L? sur le bord pour l'opérateur de MAxwell linéaire
0(A(z)dw) = f
avec différentes conditions au bord ainsi que le systeme de type Hodge-Laplace associé
I(A(x)dw) + dow = f,

avec les données au bord appropriées. Nous déduisons également sous la forme d’un corollaire
Iexistence et la régularité de solutions pour de systemes du premier ordre de type div-rot. Nous

déduisons également un résultat d’existence pour le probleme au limites semi-linéaire

d(A(z)(dw)) + f(w) = Aw in Q,
v Aw =0 on 0f.

Pour finir, nous discutons brievement des résultats d’existence pour des opérarteurs de Maxwell

quasilinéaires

0(A(z, dw)) = f,



avec différentes données au bord.
Mots-clés Calcul des variations, formes différentielles, quasiconvexité, probleme de mini-

mization, semicontinuité, opérateur de Maxwell.



Abstract

In this thesis we study calculus of variations for differential forms.

In the first part we develop the framework of direct methods of calculus of variations in the

context of minimization problems for functionals of one or several differential forms of the type,

/Qf(dw), /Qf(dwl,...,dwm) and /Qf(dw,&,u).

We introduce the appropriate convexity notions in each case, called ext. polyconvexity, ext.
quasiconvexity and ext. one convexity for functionals of the type fQ f(dw), vectorial ext. poly-
convezxity, vectorial ext. quasiconvexity and vectorial ext. one convexity for functionals of the
type fQ fldwy, ..., dwy) and ext-int. polyconvexity, ext-int. quasiconvexity and ext-int. one
convezity for functionals of the type fQ f(dw,dw). We study their interrelationships and the
connections of these convexity notions with the classical notion of polyconvexity, quasiconvex-
ity and rank one convexity in classical vectorial calculus of variations. We also study weak
lower semicontinuity and weak continuity of these functionals in appropriate spaces, address
coercivity issues and obtain existence theorems for minimization problems for functionals of

one differential forms.

In the second part we study different boundary value problems for linear, semilinear and
quasilinear Maxwell type operator for differential forms. We study existence and derive interior

regularity and L? boundary regularity estimates for the linear Maxwell operator
d(A(x)dw) = f
with different boundary conditions and the related Hodge Laplacian type system
I(A(z)dw) + déw = f,

with appropriate boundary data. We also deduce, as a corollary, some existence and regularity
results for div-curl type first order systems. We also deduce existence results for semilinear

boundary value problems

0(A(z)(dw)) + f(w) = Aw in £,
v Aw =0 on 0.

Lastly, we briefly discuss existence results for quasilinear Maxwell operator
6(A(z, dw)) = f,

with different boundary data.



Key words Calculus of variations, differential forms, quasiconvexity, minimization problem,

semicontinuity, Maxwell operator.
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Chapter 1

Introduction

1.1 Analysis with differential forms

Differential forms are among the fundamental objects in geometry, topology and global analysis.
All the familiar operators from vector calculus like gradient, curl and divergence and the related
identities are best expressed, in a crisp manner, in the language of differential forms. Also
differential forms, as mathematical objects, are independent of the coordinate system we choose
to describe them in local co-ordinates. This makes them handy in manifolds, where they
carry real geometric meaning on one hand and on the other hand allow us to manipulate
them using any local coordinate system we deem convenient. The alternating structure of the
exterior algebra is also extremely rich in its own right and this algebraic structure also behaves
unexpectedly well with respect to the topology of componentwise weak convergence, as we shall

make explicit later in this thesis.

Partial differential equations, on the other hand, have always been the heart of analysis.
Time and again in the rich history of partial differential equations, it has been observed that
those equations or systems of equations which have a variational structure, i.e appear as FEuler-
Lagrange equations of functionals, typically integral functionals, are by far the most important
subclass of problems. There are several reasons for this. The most primary reason for this
is that they tend to be ubiquitous in mathematics and even in other branches of science. On
the other hand, their variational structure makes them amenable to a variety of techniques
which are inapplicable in the non-variational case. One such example is the extremely powerful
techniques of the so called direct methods, where one works directly with the functional instead
of the equation to prove existence. Such methods can be broadly classified into two rather

distinct classes:
e Direct Minimization,
e Critical Point methods.

If the functional is bounded below then the strategy is to solve a minimization problem. If we
can prove the existence of a minimizer in a suitable function space, then this minimizer will
solve the Euler-Lagrange equation at least in some weak sense. Of course, the strategy is the
same if the functional is only bounded above, in which case we just consider the negative of the

functional. But when the functional is unbounded both above and below, of course we can have



no hope of solving the minimization problem and we look for other methods to look for critical
points of the functional, typically for saddle-type critical points as opposed to local minima

type critical points in the minimization case.

However, in spite of the fact that differential forms are well-known and widely useful geomet-
ric objects and variational methods are, by now, quite well developed for equations involving
scalar valued and even vector valued unknown functions, variational problems for differential
forms have not attracted the same amount of attention. Non-variational problems for differen-
tial forms have been studied even less. Nowadays, there has been a growing interest in these
problems coming from branches like quasiregular mappings, gauge theory, harmonic maps be-
tween manifolds, pullback equations for differential forms, optimal transports etc, just to name
a few. But still, some areas received surprisingly little attention till date. This thesis is a

contribution to a number of such areas.

One such area is the direct minimization techniques for integral functionals with possibly
non-convex integrands. To the best of our knowledge, this has not been studied systematically
even in the simplest case of smooth, bounded subsets of R™. The first part of this thesis deals
with the situation. In this part, our main interest is to develop a framework for solving a class
of minimization problems involving differential forms, the simplest of which typically has the

form,

m = inf{/Qf(dw) cwe X(Q)},

where 2 is an open, bounded subset of R™ with smooth enough boundary, w : Q € R” — A*(R")
is a differential k-form on Q, f : A¥¥1(R") — R is a given continuous function and X () is a
function space of differential forms on 2. The principal question related to this problem is the
existence of a minimizer in a suitable space X (£2). But before discussing the problems we shall

treat in details, first a few remarks about the functional analytic setting are in order.

1.2 Functional Analytic setting

Nonsmooth differential forms It is well-known in the analysis of partial differential equa-
tions and calculus of variations that the Sobolev spaces are particularly well adapted to existence
problems. It is much easier, in general to obtain existence results in Sobolev spaces than in
some other space of more regular functions. However, differential forms are generally defined on
a smooth manifold, using the smooth structure, i.e the smooth charts and atlases and are there-
fore not well suited for our purpose. For this reason, we shall define and work with non-smooth

differential forms, whose components are measurable functions and not necessarily smooth.

Sobolev spaces and partial Sobolev spaces For essentially the same reason as above,
we need to define Sobolev spaces of differential forms. But apart from the usual W!» spaces,
we shall also work with the so-called partial Sobolev spaces. These are spaces of LP forms for
which we require that some combination of derivatives (in contrast to all of the derivatives in

the WP case) are in LP. Also, in contrast to the standard Sobolev spaces, they do not have a



well-defined Trace map to the boundary. However, the spaces we shall work with, for example
WP i.e the space of forms w for which w,dw € LP, does have partial Trace maps. In the case
of W%P spaces, only the ‘tangential trace’ to the boundary can be defined (cf. Chapter 2 for

more on this).

1.3 Classical calculus of variations

Now we discuss the abstract framework of classical calculus of variations. When v : Q ¢ R"* —

RY is a vector valued function, the minimization problem

m::inf{/ﬂf(VU) :ueX(Q)},

is well studied and forms the subject matter of the so-called direct methods in calculus of
variations. In this case, the spaces X (Q) are generally Sobolev spaces of WP type, often
with prescribed boundary values. The conditions on the integrand f, which guarantees the
existence of minimizer are well-known. These conditions can typically be classified into two
types: convexity conditions and growth conditions or coercivity conditions.

The functional analytic framework is rather simple. The growth condition ensures coercivity,
i.e they ensure that when the the value of the integral decreases to the infimum value, the Sobolev
norm of the minimizing sequence remains bounded. This implies that the minimizing sequence
is bounded in a Sobolev space. Hence up to a subsequence, these sequences converge, weakly
to a limit. The convexity condition essentially ensures the sequential lower semicontinuity of
the functional with respect to the weak topology. This in turn implies that the weak limit of
the minimizing sequence is itself a minimizer. The subject matter of direct methods in classical
calculus of variations is therefore finding fairly general convexity and growth conditions. Our
goal is to build a similar framework for functionals of differential forms. The growth conditions
we use is essentially the same as the ones in classical calculus of variations. So we focus mainly on
the convexity conditions. The relevant convexity conditions in the classical calculus of variations,
apart from convexity, are called rank one convexity, quasiconvexity and polyconvexity. Our aim

is to find analogous conditions in the case of differential forms.

1.4 Calculus of variations for differential forms

With the understanding that differential form always mean their nonsmooth cousins and the
basic spaces in which to prove existence are different partial and standard Sobolev spaces, we
can now focus on our problems in more detail. The domain € for us is always an open, bounded
subset of R™ with smooth enough boundary. Often we impose topological restriction on the
domain also. We investigate the existence of minimizers for minimization problems for the

following type of functionals:

/ f(dw), (1.1)
Q

/ fldwr, ..., dwy), (1.2)
Q



and

/ f(dw, dw). (1.3)
Q

Analysis of (1.1) can be seen as an unified way of dealing with minimization of functionals of

the form

o [10. =)
Q

° /f(curlw), (k=2)
Q

etc. (1.2) is a much more general version of these, involving multiple unknown differential
forms, which also generalizes classical calculus of variations. Whereas for £ = 1 and n = 3,
(1.3) reduces to the form [ f(curlw,divw). The main focus is primarily on finding the correct
notions of convexity. .

1.5 Functions of exterior derivative of a single differential form

For functionals of the form (1.1), we introduce the appropriate notions of convexity which
are named, for want of a better terminology, ext. one convexity, ext. quasiconverity and ext.
polyconvezity, which plays the analogous roles played by rank one convexity, quasiconvexity and

polyconvexity respectively, in classical calculus of variations. A function f : A¥ — R is called

e crt. one conver if it satisfies,

f€+ 1 —t)n) <tf(&) + (1 —1t)f(n),

for every £,m € A¥ such that there exists a € A',b € A1 with &€ —n = a A b. This is just
convexity in the direction of the 1-divisible forms, i.e k-forms which can be written as a

wedge product of a k — 1 form and an 1-form.

e ert. quasiconvex if it satisfies,

/Qf(§+dw) > f (&) meas 2

for every bounded open set Q C R”, for every ¢ € A* and for every w € I/Vol’OO (Q; Akfl) .
This is just the usual quasiconvexity inequality, except that we have the operator d in

place of the gradient.

e cxt. polyconver, if there exists a convex function
F AP s A% oo x AlPHE R

such that
F©) =F (&€ €M),

8



where
EMi=EN...NE.
—_——
m times
This just means that an ext. polyconvex function is a convex function of all the wedge

powers.

The corresponding notions for the case with J, the codifferential operators, which is the formal
adjoint of the operator d, are called int. one convezity, int. quasiconvexity and int. polycon-
vexity.

The definition of ext. quasiconverity is reminiscent of the definitions of A-quasiconvexity
and A — B-quasiconvexity in classical calculus of variations, introduced by Dacorogna in [22]
and [23]. The definition of ext. one converity is basically the convexity in the direction of the
‘wave-cone’, a concept introduced by Tartar in [67], of the operator d. The definition of ext.
polyconverxity, however depends on the characterization of ext.-quasiaffine functions, which has
been obtained here for the first time. We then proceed to analyze the relationships between

these notions of convexity.

Ext. Quasiaffine functions The first crucial theorem is Theorem 3.20, which characterizes

all ext. quasiaffine functions. The theorem shows that for any f : AF — R,
f ext. polyaffine < f ext. quasiaffine < f ext. one affine

and any such function f is necessarily of the form

[n/k]
f(&) = Z (cs; %) for any € € AF

s=0

for some forms ¢, € A¥, 0 < s < [n/k] ., where £° € A is defined as the constant function 1 by
convention. It basically says that all the convexity notions coincide at the level of affinity and
that any ext. quasiaffine function is a linear combination (up to a constant ) of the nontrivial

wedge powers. For example, this shows that for k = 2, n = 4, the nonlinear function
fE) = (et A NS NN ENE) for any & € A%(R%)

is ext. quasiaffine and any non-affine ext. quasiaffine function g : A2(R*) — R is of the form
cf(€), for some non-zero real number ¢, modulo affine functions of £. This result is analogous to
the characterization theorem for quasiaffine functions in the classical case, established by Ball
in [4] (see Theorem 5.20 in Dacorogna[25]).

Already this theorem shows several peculiarities of the algebraic structure of the exterior forms.
Since whenever k is an odd integer, £ A & = 0 for every ¢ € AF(R") in any dimension n, this
implies that if k is odd, all ext. quasiaffine functions are actually affine in any dimension n.
This in turn implies the striking result that ext. polyconvexity is equivalent to convexity, as

soon as k is odd.



Relationship between notions of convexity Next we analyze the interrelationship be-
tween ext. one convexity, ext. quasiconvexity and ext. polyconverity in great detail for any
1 < k < in any dimension n. The results obtained are summarized in Theorem 3.37. Before
proceeding, recall that the case kK = 1 is the classical case of the gradient of a scalar function,

i.e the ‘scalar case’ of classical calculus of variations.
The theorem asserts that if 1 <k <n and f: A¥ (R") — R,

(i) The following implications then hold
f convex = f ext. polyconvex = f ext. quasiconvex = f ext. one convex.
(ii)) f k=1,n—1,nor k =n —2is odd, then
f convex < f ext. polyconvex < f ext. quasiconvex < f ext. one convex.
Moreover if k is odd or 2k > n, then
f convex < f ext. polyconvex.
(iii) If either k =2 and n >4 or3<k<n-—3or k=n—2>4is even, then
= .
f ext. polyconvex o f ext. quasiconvex
while if 2 < k <n —3 (and thus n > k4 3 > 5), then
. =
f ext. quasiconvex - f ext. one convex.

The last counter implication is reminiscent of the counter example of Sverdk in the classi-
cal calculus of variations (see [65]), with an additional algebraic construction, which is quite
involved.

This yields a complete picture of the implications and counter implications, except the
counter implication

f ext. quasiconvex <= f ext. one convex
for the case when £k = n — 2 > 2 is even. This means the critical dimensions for which we can

not settle the counter-implication for a k-form is k 4+ 2, when k is even.

Quadratic case Quadratic functions, i.e functions of the form

F(O = (ME&E)  for any € € AF,

for some symmetric linear operator M : A* (R”) — A¥ (R"), form an important subclass since
in this case the Euler-Lagrange equations for the minimization problem are linear. Hence we
also analyze this special case thoroughly and the results obtained are summarized in Theorem
3.30, which states:

For quadratic functions,

10



(i) The following equivalence holds in all cases
f ext. quasiconvex < f ext. one convex.
(ii) Let k =2.If n =2 or n = 3, then
f convex < f ext. polyconvex < f ext. quasiconvex < f ext. one convex.
If n =4, then
= .
f convex o f ext. polyconvex < f ext. quasiconvex < f ext. one convex
while if n > 6, then
= = .
f convex ¢ f ext. polyconvex - f ext. quasiconvex < f ext. one convex.
(iii) If k£ is odd or if 2k > n, then
f convex < f ext. polyconvex.
(iv) If k is even and 2k < n, then
=
f convex - f ext. polyconvex.
(v) If either 3<k<mn—3ork=mn—22>4is even, then
= .
f ext. polyconvex - f ext. quasiconvex < f ext. one convex.

As can be seen from above, the picture is also complete in this case except that the equiva-

lence between polyconvexity and quasiconvexity remains open for kK = 2 and n = 5.

The analogy of these results with the classical case of the gradient of a vector-valued function
u: Q C R® — R¥is also interesting. The analogue to conclusion (i) in the classical vectorial

calculus of variations, i.e the result that for quadratic functions f : RV*" — R,
f quasiconvex < f rank one convex ,

was first proved by Van Hove ([72],[73]), though it was implicitly known earlier.

For quadratic functions f : R?*? — R, the equivalence in the classical case,
f polyconvex < f quasiconvex < f rank one convex,

has a long history involving contributions by Albert [3], Hestenes-McShane [37], McShane [46],
Marcellini [47], Reid [56], Serre [59], Terpstra [69] and Uhlig [71]. For k = 2 and n = 4, the

11



proof of the equivalence
f ext. polyconvex < f ext. quasiconvex < f ext. one convex,

is reminiscent of the ideas in Hestenes-McShane [37], Marcellini [47] and Uhlig [71].

If N,n > 3 in the classical vectorial calculus of variations, then for quadratic functions, in
general

=
f polyconvex¢ f rank one convex .

The counter example was given by Terpstra [69] and later by Serre [59](see also Ball [5], Davit-

Milton [36] provides another recent counterexample). The proof of the counter implication
= .
f ext. polyconvex - f ext. quasiconvex < f ext. one convex,

for k = 2 and n > 6 is inspired by ideas used in constructing the abovementioned counterexample
in Serre [59] and Terpstra [69].

Existence theorems After the analysis of convexity notions, we turn our attention to exis-
tence theorems for minimization problems. There are two aspects of the difficulties involved.
The first one is the weak lower semicontinuity and the second one is the coercivity of the func-
tional (1.1). Ext. quasiconvexity of f is enough to ensure weak lower semicontinuity of the
functional in the appropriate space with the usual growth assumptions on f. However, there
is already a striking difference from the classical case. From the point of view of weak lower

semicontinuity, the appropriate space is W%?, not WP, This already poses the significant dif-

ficulty that when f is ext. quasiconvex, although the functionals / f(dw) and / f(z,dw) are
Q Q

semicontinuous in W%P, the functionals of the form / f(z,w, dw), i.e functionals with explicit
Q

dependence on w are generally not weakly lower semicontinuous on WP, For example, the

1 1
I(w)—/ldwlp—/lwlp
b Ja P Ja

is not weakly lower semicontinuous on W%?(Q; A*) as soon as k > 2. However, when k = 1, this

1 1
I(w)=/|Vw|”—/lw|”,
pJa b Ja

which is weakly lower semicontinuous on W%P(Q; A!). Note also that for k = 1, the two spaces
coincide, i.e WaP(Q; Al) = WHP(Q; A'). On the other hand, though all these functionals are

weakly lower semicontinuous on WP, the functionals are not a priori coercive on WP with the

functional

functional is

usual growth assumptions, since those assumptions only imply that for any minimizing sequence

wy, the sequence dw, is uniformly bounded in L?, but Vw, need not be.
However, for functionals of the form [ f(dw) and / f(z,dw), these difficulties can be

circumvented by solving certain type of boundary value problems involving differential forms.
In fact, in these cases it can be shown that the existence for the minimizer on WP can be

derived from the existence of minimizer of the same functional on another subspace of WP,
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on which the functional is both coercive and weakly lower semicontinuous. This is achieved in
Theorem 3.64, which in effect proves the existence of a minimizer, under the assumption of ext.

quasiconvexity and usual growth assumptions on f, for the following minimization problem

inf{/ f(z,dw) :wewo+W()1’p (Q;Ak_1>} =m.
)

Of course, by Hodge duality, all the preceding discussion is also true for functionals of the form

[ 1@, [ fadwyand [ (o)

as well if we replace W%P by WP, Theorem 3.67 gives the existence result for the corresponding
problem for / f(x,dw). These two theorems also imply that addition of terms which are linear

Q
in w with special structure still enables us to solve the minimization problem. We also show
in Theorem 3.69 that when the explicit dependence on w is an additive term which is convex,

coercive and nonnegative, i.e the functional is of the form

/ f (@, dw) + g(z,w)]
9]

with ¢ being nonnegative and convex and coercive with respect to w variable, existence of
minimizer can be obtained in a subspace of WP which however, is in general larger than WP,
1.6 Functions of exterior derivatives of several differential forms

After analyzing the situation for the functional (1.1), we turn our attention to functionals of
the form (1.2). Our first priority is, once again, to figure out the correct convexity notions.
The appropriate notions, called vectorial ext. one convexity, vectorial ext. quasiconvexity and
vectorial ext. polyconvexity are introduced.

A function f: A¥1 x ... x A¥» 5 R is called

e vectorially ext. one conver if it satisfies,
f&+ @ =), + (1= )nm) < tF(E - 6m) + (1 =) f (1, - 0m),

for every collection &;,n; € A% such that there exists a € A, b; € A¥~1 with & —n; = anb;,
forall 1 <i<m.

e vectorially ext. quasiconvex if it satisfies,
1
meas@/gf@l +dwy (2), &2 + dwa (), .. Em + dwm (@) > f (€1, €2, - &m)

for every bounded open set €2, for every collection of & € A¥, 1 < i < m and for every
w; € I/Vol’OO (Q;Aki_l) , 1 <i<m.
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e vectorially ext. polyconvex, if there exists a convex function such that

f(é'la"‘agm) :F(T1(§17"-7£m>7"' 7TN(§17~'7§m))7

where
n
N:=|———
min k;
1<i<m
and for every 1 <r < N, T,.(&1,. .., &n) denotes the vectors with components £ A. .. 5™,

where the nonnegative integers c;s vary over all possible choices such that )", a; = 7.
This just means that a vectorially ext. polyconvex function is a convex function of all the

possible wedge products of the arguments of the function, including repeated products.

Once again, the definition of vectorial ext. one convexity is basically the convexity in the direc-
tion of the ‘wave-cone’ in this case (see Dacorogna [23] and references therein). The definition
of vectorial ext. quasiconvezity, however, already appeared in Iwaniec-Lutoborski [39], which
the authors simply called quasiconverity. The same article also defines a notion of polycon-
vexity, which coincides with wvectorial ext. polyconvezity if all the k;s are odd integers, but in

general is a strict subclass of vectorially ext. polyconvex functions. For example, the function
f1: ARt x AF2 5 R given by,

file,&) = (& N&)  for every & € AP & € AR2

where ¢ € Ak1+k2) i constant, is polyaffine in the sense of Iwaniec-Lutoborski [39] and also

vectorially ext. polyaffine. However, the function fo : A¥1 x A¥2 — R given by,

fa(&1,&) = (&1 N &)  for every & € Akl,fg c Ak2

where ¢ € A" is constant, is vectorially ext. polyaffine, but not polyaffine in the sense of
Iwaniec-Lutoborski [39]. Note also that it is easy to see, by integrating by parts that both f;
and fo are wvectorially ext. quasiaffine and hence are also quasiaffine in the sense of Iwaniec-
Lutoborski [39]. Also, when m = 1, i.e there is only one differential form, reducing the problem
to the form (1.1), their definition of polyconvezity coincide with usual convexity. On the other
hand, when m = 1, vectorial ext. polyconvexity reduces to ext. polyconvexity, which is much
weaker than convexity.

We do not pursue the interrelationship between the notions of convexity in great detail,
though we believe that it can indeed prove to be rewarding. We of course obtain the basic

relationship which states,

f convex = f vectorially ext. polyconvex = f vectorially ext. quasiconvex

= f vectorially ext. one convex.

Since we have already studied the counter-implication in great detail for the simpler case of

single forms, instead of pursuing such a course, we move on to the characterization of vectorially
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ext. quasiaffine functions.

Vectorially Ext. Quasiaffine functions The crucial theorem is Theorem 4.12, which once

again establishes the expected fact that
f vectorially ext. polyaffine & f vectorially ext. quasiaffine < f vectorially ext. one affine

and any such function f is necessarily a linear combination of all possible nontrivial wedge
products of the arguments of f. This result, although a natural development from the per-
spective of our program so far, is actually powerful enough to yield the classical result about
the quasiaffine functions (cf. theorem 5.20 in Dacorogna [25]) as a special case. In fact, this
result points towards a natural framework to look at classical calculus of variations. Classical
quasiaffine functions are linear combinations of determinants and adjugates because they are

precisely the wedge products when one considers each row of the matrix as a 1-form.

Semicontinuity

Motivated by the last observation, we turn towards tackling one of the central problems in all of
calculus of variations, namely weak lower semicontinuity and ask whether the setting of several
differential form is the more natural setting to study the semicontinuity problem. We obtain
an answer in the affirmative but the results at the same time shows the special feature of the

gradient case which is absent for the this general setting. If the functional is of the form

/ fz,dws, ..., dwy),
Q

i.e they do not have any explicit dependence on wy,...,w,, the semicontinuity result is given
in Theorem 4.25.

Let k1, ...,k be m integers where 1 < k; < n for all 1 <7 < m. Let p1,...,pm be extended
real numbers such that 1 < p; < co. Let © C R™ be open, bounded, smooth. Let f : Q x AF1 x
... x A¥» — R be a Carathéodory function, satisfying the growth condition, for almost every
z € Q and for every collection (&1,...,&y,) € AR x ... x AFm,

—Bx) = > GUE) < fx,61,. . &m) < Bl@) + D GHE),

i=1 =1

where 3 € L'(€) is nonnegative and the functions G'ls in the lower bound and the functions

G¥s in the upper bound has the following form:

e If p; =1, then,

GL(&) = GH(&) = wiléi for some constant a; > 0.
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e If 1 < p; < oo, then,

GL(&) = ayl&|
and

Gi (&) = gi(@)|&l™,

for some 1 < ¢; < p; and for some constant «; > 0 and some non-negative measurable

function g;.

o If p;, = oo, then,
Gi(&) = GH&) =i (&) -
for some nonnegative, continuous, increasing function 7;.

Also let (&1,...,&m) — f(z,&1,...,&n) is vectorially ext. quasiconvex for a.e z € Q. Let {w/}

be sequences such that for every 1 < i < m, we have,
Wl —w; in WP (S if p = o0),

for some w; € WPi(Q), then Theorem 4.25 says that we have,

liurgi(gf/ﬂf(m,dwf,...,dw;) dx > /Qf(:c,dwl,...,dwm) dzx.

In other words, the theorem says that assuming a growth condition on f = f(z,&1,...,&mn),
which is basically just the sum of usual power type growth conditions on each argument of f,
the functional is weakly lower semicontinuous in the product space WPt x ... x W%Pn  where
p; are the powers that appear in the growth condition for each argument &;, if (§1,...,&n) —
flx, &, ..., &n) is vectorially ext. quasiconvex for a.e x € 2. Note also that these exponents
pis are allowed to be different from one another and are allowed to take any value between
1 <p; < o0, i.e both 1 and oo is included.

The proof of this semicontinuity result uses ideas which are reminiscent of the proof of
the semicontinuity results in classical case by Acerbi-Fusco [1] and Marcellini [48], which are
used in combination with a classical lemma on equiintegrability of Fonseca-Muller-Pedregal
[30] and Kristensen [43], along with lemma 4.17, which is a generalization of a classical result
relating quasiconvexity with W1P-quasiconvexity in the classical case by Ball-Murat [8]. The
other crucial ingredient is proposition 4.19, which generalizes the classical Lipscitz inequality for
separately convex functions with growth assumptions (cf. Proposition 2.32 in Dacorogna [25])
in Fusco [31], Marcellini [48], Morrey [53]. We remark that all our results related to sufficiency
of vectorial ext. quasiconvexity for weak lower semicontinuity, e.g. lemma 4.21, theorem 4.22
and theorem 4.25 can also be proved in a different manner by introducing Young measures and
utilizing the blow-up argument of Fonseca-Muller [29]. However, in this thesis we refrain from

introducing Young measures.

16



However, if the functional has explicit dependence on wy, ..., wn, i.e it is of the form
/ flzywr, .. wm, dwy, ..., dwpy),
Q

then the functional is not necessarily weakly lower semicontinuous in WPt x ... x W%Pm with

the usual growth assumptions. For example, even for the simplest case of m = 1, the functional

1 1
I<w>—/|dw|p—/|w|p
P Jao P Jao

is a counter example if k£ > 1. However it can be shown that the functional of the form

we mentioned before, i.e

/f(:c,wl,...,wm,dwl,...,dwm),
Q

is nonetheless, weakly lower semicontinuous in WPt x ... x WPm_ The real issue here is that
the LP norm of dw can not control the LP norm of w, i.e the unavailability of Sobolev-Poincaré
inequalities in WP spaces. Theorem 4.14 proves the necessity of vectorial ext. quasiconvexity

for weak lower semicontinuity.

Weak continuity and compensated compactness The semicontinuity results and the
characterization of vectorially ext. quasiaffine functions paves the way to inspect closely the
relationship between weak convergence and wedge products. It is well known that nonlinear
terms, in general, do not behave well with respect to weak convergence, i.e in more precise terms,
a general nonlinear function which is continuous need not be continuous with respect to the
weak topology. However, for weakly convergent sequences for which there is an uniform bound
on some combination of derivatives, there can be nonlinear functions which are still ‘weakly
continuous’ on such sequences, i.e the the image sequence converges, in some weak topology,
to the image of the weak limit. This class of nonlinear functions, called ‘Null Lagrangians’, of
course depend on the combination of derivatives for which we can deduce the uniform bounds.
This, in essence, is the philosophy of the theory of compensated compactness and is explained
in Tartar [67].

We shall restrict our attention to the case of the exterior derivative, i.e we shall try to find
nonlinear functions which are ‘weakly continuous’ with respect to sequences with uniformly
bounded exterior derivative. This has been investigated first in Robin-Rogers-Temple [57].
Theorem 4.34 proves the weak continuity of wedge products. The borderline case, i.e when the
wedge products are only L!, we have used the result presented in Robin-Rogers-Temple [57],
but we supply a new proof based on the semicontinuity theorems for the other cases. Theorem
4.31 answers the question posed in the same paper in the affirmative, i.e it proves that any such

‘weakly continuous’ functions must be a linear combination of wedge products.

1.7 Functions of exterior and interior derivative of a single differential form

Functionals of the form (1.3) present fewer challenges than what we might expect. By the

classical Gaffney inequality, for differential forms satisfying certain boundary conditions, if we
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can control the LP norm of both dw and dw, then we can control the LP norm of Vw, i.e the
norms of all the first order derivatives can be controlled. So there is no the lack of coercivity and
Sobolev-Poincaré type inequalities are also available, making the analysis simpler in this case in
this respect. Figuring out the appropriate convexity conditions is still a reasonable goal and we
introduce the notions, which we called, again for want of anything better, ext-int. one convexity,
ext-int. quasiconvezity and ext-int. polyconvexity. We call a function f : AFH1 x AF~1 & R is
called

e crt-int. one convex if it satisfies,

f(té-l + (1 - t)£27t771 + (1 - t)772) < tf(flﬂh) + (1 - t)f(£27772)7

for every &1,& € AL ny,my € AF7! such that there exists a € Al b € AF with & — & =
aAband n —n2 = aub.

e crt-int. quasiconver if it satisfies,

/f<§+dwm+6w>zm,n)measg
Q

for every ¢ € A¥1 e AF~1 and for every w € W&’OO (Q; Ak) .

e ext-int. polyconvez, if there exists a convex function
F o AR A2RHD 5o x A[ﬁ](kﬂ) x AR s A2k i A[W#’““](n_kﬂ) —R

such that
e =F (68 elmil (2, )

Once again, the definition of ext-int. quasiconvexity is along the lines of A-quasiconvexity and
A — B-quasiconvexity. The definition of ext-int. one convexity is just convexity in the directions
of the 'wave cone’ of the differential operator (d,d), acting componentwise.

We do not study the interrelationships in great detail here either. We deduce the basic

result
f convex = f ext-int. polyconvex = f ext-int. quasiconvex = f ext-int. one convex.

The characterization of all ext-int. quasiaffine functions are obtained in Theorem 5.11.
Note that it is also easy to see that these are precisely the ‘Null Lagrangians’ in this case. The

theorem establishes the expected result that
f ext-int. polyaffine < f ext-int. quasiaffine < f ext-int. one affine.

It also says is that every ext-int. quasiaffine (or ext-int. polyaffine or ext-int. one affine)
functions are a sum of an ext. quasiaffine (or ext. polyaffine or ext. one affine ) function and an
int. quasiaffine (or int. polyaffine or int. one affine ) function. This is striking since it means at

the level of notions of affinity, no new nonlinear functionals pop up by considering both d and
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0 together. This surprising situation is, in a sense, kind of like the situation for higher order
derivatives in the classical case, considered in Ball-Currie-Olver [6], where no new quasiaffine
functions arise as well. Here this surprise is magnified by the fact that it also says either the
ext. quasiaffine part or the int. quasiaffine part can be nonlinear, but not both. More precisely,
if an ext-int. quasiaffine function is a sum of a nonlinear ext. quasiaffine function and an int.
quasiaffine function, then the int. quasiaffine part is necessarily affine and vice versa. However,
this is not the case at the level of notions of convexity. More precisely, though every ext-int.
polyaffine function is the sum of an ext. polyaffine and an int. polyaffine function, an ext-int.
polyconvex function need not be just a sum of an ext. polyconvex and an int. polyconvex one.
For example, the function f : A*(R*) x A%(R*) — R given by ,

f&m) =exp(EAEP+n?)  for every £ € AY(RY),n € A°(RY),

is clearly not a sum of an ext. polyconvex function in the ‘first’ variable and an int. polyconvex
function in the ‘second’ variable. But it is ext-int. polyconvex and hence ext-int. quasiconvex

and ext-int. one convex as well, though not convex.

Existence theorems As functionals of the form (1.3) are coercive in WP with the usual
growth assumption, as long as we impose the appropriate boundary conditions, the only issue

we need to address is the weak lower semicontinuity on W1P. The functionals of the form

/ f(z,w, dw, dw)
Q

are weakly lower semicontinuous in WP if (£,n) — f(z,w, £, n) is ext-int. quasiconvex for every
w € A* for a.e x € Q, with usual growth assumptions. Note that unlike the case of only d or
only 4, here explicit dependence on w can be handled as long as it satisfies the usual growth

restrictions. Theorem 5.21 and theorem 5.22 give the existence results.

1.8 Relationship with the classical calculus of variations

Ext. convexity notions as a special case of classical convexity notions The relation-
ship of the convexity notions introduced here with the classical notions of rank one convexity,
quasiconvexity and polyconvexity is an interesting one. We have seen already that the notions
we introduced play analogous roles, but whether they are related to each other in any explicit
sense is a reasonable question, which actually has a startlingly elegant answer. Before we can
summarize the answers, we first need to analyze the specific algebraic structure of exterior forms

in greater detail. To accomplish this, we introduce a projection mappings from Ak’l(R”) x R™,
n
which we identify with ]R(k—l) *" "to A¥(R™). The main idea behind introducing the map is that
n
a k — 1-form is a map from Q C R™ to A*~1(R"), so it has R(kfl) components. If we take the

n
usual gradient of these components, the gradient takes values in R(k—l) *" whereas the exterior

derivative of a k — 1-form is a k-form and hence takes values in A*(R™). Thus, to study the

n
relationship it is useful to find a projection map from ]R(kfl) " to AF(R™), which takes the

gradient of a k — 1-form to its exterior derivative. We introduce such a projection map, denoted
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ext ( ext,k

by 7" (or sometimes when we want to emphasize that the image is a k-form), where ext

stands for the exterior derivative, such that
7(Vw) = dw for every w € Wh1(Q; A* 1)

When k£ = 2, this projection coincides with the standard alternating projection or skew-
symmetric projection map which sends an n x n matrix A to its skew-symmetric part %(A — AT),

where AT is the transpose of A. The map 7 actually also has the property that for any a € R”

n
(seen both as a vector and a 1-form) and any b € A*~! thought of also as a vector in R(kfl),
we have,
™ (a®b)=aAnb.

These two properties immediately imply that for any map f : A¥ — R, we have,

f ext. quasiconvex < f o7 quasiconvex
and

f ext. one convex < fo7®™" rank one convex.
This strongly hints that the statement

f ext. polyconvex < fo ™" polyconvex

might also be true. Indeed it is true, but it is much harder to prove and is actually the nontrivial

part of Theorem 3.54. The proof involves obtaining a formula for connecting wedge powers of
n
7 (X) with adjugates of the matrix X € R(kfl) “™ and a few algebraic niceties.

n
Similarly, we can define a projection map from R(k+1) *™ to A¥(R™), which takes the gradient

of a k 4 1-form to its interior derivative. Such a projection map, denoted by 7" (or sometimes

74k when we want to emphasize that the image is a k-form), where int stands for the interior

derivative, has the property that
(VW) = dw for every w € Wh1(Q, AR,

Once again, the same map actually also has the property that for any a € R™ (seen both as a

n
vector and a 1-form) and any b € A**! thought of also as a vector in R(’Hl), we have,
% (a @ b) = ab.
These two properties immediately imply that for any map f : A¥ — R, we have,

f int. quasiconvex < fom™ quasiconvex
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and
f int. one convex < f o™ rank one convex.
We do not prove directly the result

f int. polyconvex < fom™ polyconvex,

since all three statements actually follows from the corresponding ones for ext. quasiconvexity,

ext. polyconvexity and ext. one convexity by Hodge duality.

Special structure of the ext. convexity notions So we see with this analysis how the

results about functionals of the type / f(dw) relate to the classical case / f(Vw), where one
Q Q

n
views the k — 1-form w as a vector-valued function taking values in R(kfl). Since

| #taw) = [ (£ om0 (va),

one might be tempted to view the theory for the functionals / f(dw) as a corollary of the
classical calculus of variations. However, this is not the case. The projection map has a very
special algebraic structure which makes the ext. convexity notions very different from classical
convexity notions. For example, if F' : R(kﬁl) L Ris polyconvex (respectively quasiconvex

or rank one convex) and if there exists a map f : A¥ — R such that
F = f o 7Text,k’

then f is ext. polyconvex (respectively ext. quasiconvex or ext. one convex). But this last
requirement is a very strong condition which forces such a function F' to have additional prop-
erties, which are not at all typical for a general polyconvex (respectively quasiconvex or rank

one convex) function. Any polyconvex (respectively quasiconvex or rank one convex) function

n
F R(’ffl) *™ — R need not be of the form f o 7% with f ext. polyconvex (respectively ext.

quasiconvex or ext. one convex). For example, for n = k = 2, the function
= = = 2x2
F(E)=ddetZ for every 2 € R**%,

is polyconvex (and thus quasiconvex and rank one convex) for every d € R. If d # 0, there
is however no function f : A%2(R?) — R (in particular no ext. one convex and thus no ext.
quasiconvex and no ext. polyconvex function f) such that F' = f o 7¢%2, Indeed if such an
f exists, it can be shown that we must have d = 0. Many such manifestations of the special
structure of the projection maps are also apparent in Theorem 3.37. The example given above
is only a particular case of the fact that when k£ = n, there are no nonconvex quasiconvex
function F': R"*™ — R that can be of the form F' = fonx®™%"" for any function f : A”(R") — R.

n
Similarly, if & = n — 1, there are no nonconvex quasiconvex function F’ : R(n*2) “™ 5 R that

21



can be of the form F = f o n®®"~1 for any function f : A»"!1(R") — R. The case for k =n — 2
with n odd is similar. But in all those cases, if we do not require the restriction that it must

be of the form f o 74F there exist many nonconvex quasiconvex functions.

None of the conclusions of Theorem 3.37 and Theorem 3.30, except Theorem 3.30(i), can be
derived from the classical case using the equivalence theorem (Theorem 3.54). With hindsight,
the structure theorem for ext. quasiaffine functions (Theorem 3.20) can be deduced as a corollary
of the classical result for quasiaffine functions (Theorem 5.20 in [25]), but the proof given in this
thesis is not only a direct one, but also considerably shorter. The only results we can obtain
relatively cheaply from the classical results via the equivalence theorem (Theorem 3.54) are the
semicontinuity results in section 3.6 (see for example, theorem 3.58), but these do not require
the full conclusion of theorem 3.54 and can also be deduced independently as a special case of

the semicontinuity results for vectorially ext. quasiconvex functions (see Theorem 4.25).

Ext-int. convexity notions and classical convexity notions We can also define a pro-
jection map which maps the gradient of a k-form to its exterior and interior derivative by

taking both the exterior and interior projections together. We denote this projection map

ext-int,k

by emphasizing that the argument is a k-form. The map 7tk . R/ >

AFFL(R™) x A*=1 (R™) has the property that,

gext-int.k (Vw) = (WeXt’kH (Vw) , ekl (Vw)) = (dw,d0w)  for every w € Wl’l(Q, Ak).

We also have, for any a € R™ (seen both as a vector and a 1-form) and any b € A*, thought of

n
also as a vector in R(k),
ext-int,k (a ® b) _ (WeXt’k+l (a ® b) ’ﬂ_int,k—l (a ® b)) = (a A D, a_,b) .

These two properties immediately imply that for any map f : A¥Tt x AF=1 - R, we have,

ext-int, k

f ext-int. one convex < fom rank one convex

and

ext-int,k

f ext-int. quasiconvex < for quasiconvex.

These two results help us to derive the semicontinuity results for ext-int. quasiconvex functions

from the classical results about semicontinuity of quasiconvex functions.

Classical convexity notions as a special case of vectorial ext. convexity notions The

theory for classical calculus of variations for / f(Vu), where u is a vector-valued function taking
Q

values in RY for some N, can be viewed as a special case of the functional / fldwy, ... dwy).

Q
We just view each component of u, which are real-valued functions, as 0-forms. This connection
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is made explicit in proposition 4.11. For any integer m > 1, by seeing & € A! as a vector in R,
which in turn is viewed as the i-th row of an m X n matrix Z, and conversely, by viewing each

row of an m X n matrix = as a 1-form, any function

fiA < x AL SR,
N—

m times
given by,
(€1, &m) = F(Er, ... €m) for every (£1,...,&n) € Al x ... x AL,
| —
m times
can also be viewed as the map
E— f(E) for every = € R™*".

The proposition says that under this identification, we have,

f:Al x ... x A' = R is vectorially ext. polyconvex < f:R™ ™ — R is polyconvex,
—_————
m times

R™*™ — R is quasiconvex,

A % .. x A = R is vectorially ext. quasiconvex < f :
| —
m times
f:AYx ... x A = R is vectorially ext. one convex < f:R™™ — R is rank one convex.
—_——

m times

Thus, the structure theorem for vectorial ext. quasiaffine functions (Theorem 4.12) immediately
imply, in particular, the classical result for quasiaffine functions (cf. theorem 5.20 in [25]).
The semicontinuity results in the classical case, for example theorem 8.4 in [25], which has
been established by Morrey [52], [53] under additional hypotheses and has been refined by
Meyers [49], Acerbi-Fusco [1] and Marcellini [48], follows as a particular case of theorem 4.22.
However, also theorem 8.8 and theorem 8.11 in [25] can be derived from the a semicontinuity

result which we state in theorem 4.27.

1.9 Mazwell operator

In the second part of this thesis, we study a number of boundary value problems for partial dif-
ferential equations for differential forms. Since a differential form always has several components

unless it is a 0-form, these ‘equations’ are actually systems of partial differential equations.

A simple example of the type of systems we shall be studying is,
I(A(z)(dw)) = f in Q, (1.4)

where Q) C R" is an open, smooth, bounded set and A is a matrix field on 2. This is of course

a linear system of second order partial differential equations. The system (1.4) shall be called
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linear Mazwell equation for k-forms in this thesis. The name derives from the fact when k =1,

n =3 and A(x) =1, the system becomes, up to a sign,
curlcurl £ = f,

for an unknown vector field F. This important equation in physics is called the time-harmonic
Mazwell’s equation. In fact, lots of essential features of the general system (1.4) are already
present at the level of 1-form. This, however is not true for the case of 0-forms. When k = 0,

the system (1.4) reduces to, the equation
div(A(z)(Vu)) = f,

for an unknown function u. Though this equation is the central object of study in the theory

of linear elliptic partial differential equations, it is considerably easier to handle than (1.4).

We shall also be interested in semilinear or quasilinear versions of the Maxwell’s equation for

k-forms. In particular, a system of the form
B(A@)(dw) = fw) i ®, (L5)

is called semilinear Mazwell equation for k-forms. At the level of O-forms, the well-studied

semilinear Poisson problem

—Au = |[ulP?u in Q

is the prototype equation for most of the theory of semilinear elliptic equations. Following
the same practice, we shall mostly be interested in power-type nonlinearity, i.e the cases when
flw) = £wP~?w.

Likewise, a system of the form
(A(x,dw)) = f in €, (1.6)

is called quasilinear Mazwell equation for k-forms. A particularly important example is the case

when A(z,dw) = |dw|P~?dw and f = 0, when the equation reduces to
§(JdwlP~2dw) =0 in Q,

whose solutions are called p-harmonic fields. Also, at the level of 0-forms , both the p-Laplace
equation
div(|VuP~2Vu) =0

and the p-harmonic equation
div(o(Vu)) =0

are particular cases of equation (1.6). Although the techniques involved are basically variational

in nature in all cases, sometimes our hypotheses will allow treatment of cases which need not
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come from a minimization problem.

Full Dirichlet boundary data for linear and quasilinear case We solve the full Dirichlet
data boundary value problem for the linear and quasilinear Maxwell operator. More precisely,

the boundary value problem in the linear case is,

0(A(z)(dw)) = f in Q,
(A(z)(dw)) = f w7
w = wqy on 0f2,
where A(z) is a matrix field and for the quasilinear case is
0(A(z,dw)) = f in Q,
(A(z,dw)) = f (1.8)
w = wqy on 012,

where A is a nonlinear with respect to the second variable. The difficulty in both cases is that
the operators, with usual hypothesis on A are not elliptic. They have a large infinite dimensional
kernel, as any closed differential form with zero boundary values is in the kernel. But we shall see
that this freedom is essentially what allows us to solve the full Dirichlet data problem. However
both results can be proved by minimization techniques with appropriate assumptions on A. To
weaken the hypothesis on A somewhat, we prove these two results directly. In the linear case,
we use a decomposition result coupled with Lax-Milgram theorem to show the existence of the

elliptic boundary value problem

0(A(x)(dw)) = dw + f in Q,
dw =0 in €, (1.9)
v Aw =0 on 0.

We then use this existence result to solve the full Dirichlet data problem (1.7). Though for that
we only need the case A = 0, we however show the existence for the general system (1.9).
Using the same decomposition result and the monotone operator theory, we show the exis-

tence for the quasilinear system

d(A(z,dw)) = f in Q,
dw =0 in €, (1.10)
v Aw =0 on 0.

This system is important in its own right. A special case of this system for k-forms, which we
obtain by taking A(z, &) = p(|£]?)¢ for some function p: R — R for every ¢ € A¥1 and f =0,

is the system,

§(o(]dw|?)dw) = 0 in Q,
dw =0 in £, (1.11)
v Aw =0 on 0f.
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For every solution w of this system, its exterior derivative v = dw satisfies,

) = an v=0in
{5(g(|v| Ju) =0 d dv=0in Q, (1.12)

v Av =0 on 09.

Such forms v that solve (1.12) are called p-harmonic Dirichlet k-forms. Conversely, when € is a
contractible domain, every solution v of (1.12) can be written as v = dw, where w solves (1.11).
Thus, under this identification the two systems are equivalent on contractible domains. Along
with g-harmonic Dirichlet and Neumann k-forms, o-harmonic k-forms, has been studied before
by a number of authors, most notably in the celebrated paper by Uhlenbeck [70] and also by
Hamburger [35] (see also Beck-Stroffolini [14]).

We use existence result for (1.10) to prove the existence for the full Dirichlet boundary value

problem (1.8). Exactly the similar analysis applies to the dual problems

w = wqy on 0f2,

{d(A(fC)(5w)) =fingQ,

and

d(A(x)(dw)) = Aw + f in Q,
dw =0 in €,

vaw = 0 on 012,

and of course also to

{d(A(x,cSw)) = finQ,

w = wqy on 0L,
and

d(A(x,dw)) = f in Q,
dw =0 1in €,
vow = 0 on 992.

Regularity results for linear system and consequences We also study the up to the

boundary W72 regularity results for the system

0(A(z)(dw)) = dw + f in Q,
dw =0 in £,
v Aw =0 on 09,
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which also applies to the system

0(A(z)(dw)) + ddw = Aw + f in £,
v Aw =0 on 09, (1.13)
v Adw =0 on 9N.

This last system can be viewed as a generalization of the Hodge Laplacian system

Aw = A w + f in Q,
v Aw =0 on 01,
v A dw =0 on 0f2,

where A = §d + dd here denotes the Hodge Laplacian. Of course, interior regularity results,
both in L? and Holder space settings follow quite easily from the corresponding ones for linear
elliptic system, but there is no easy way to obtain the up to the boundary results from the usual
theory of linear elliptic systems, because of the special nature of the boundary conditions. Up
to the boundary W2 regularity results for the system (1.13) , as far as we are aware, are new.

This analysis also allows us to solve, in W2 spaces the following first order systems

d(A(x)w) =f and §(B(r)w)=g inQ,
vAA(r)w=rvAuw on 01,
and
{d(A(:c)w) =f and J(B(zr)w)=g¢g in{,
viB(z)w = viwp on 0N.

Of course, when both A(z) = B(x) =1, the system reduces to

dv=f and dw=g¢g in
with either
VAw=VAuwy on 01,

or

VW = VW on 0f).

These systems are called div-curl systems or sometimes the Cauchy-Riemann systems. In
this special case however, regularity results up to the boundary can be proved in W™ and
C™% also. These results follow from the Hodge-Morrey decomposition, a consequence of the
regularity results of the Hodge-Laplacian, originally due to Morrey (cf. [53]). The derivation of
WP and C™ regularity results for these systems from the Hodge-Morrey decomposition is well-
known (cf. Csaté-Dacorogna-Kneuss [21] for the results except WP regularity for 1 < p < 2
and cf. Subsection 2.5.2 of this thesis, for this case).
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Eigenvalue problem for the Semilinear Maxwell operator We also study the eigenvalue

problem for semilinear Maxwell operator, i.e the boundary value problem

(1.14)

§(A(z) (dw)) + |w|P?w = dw in Q,
v Aw =0 on 0.

However, if the semilinearity had a different sign, as in the boundary value problem

{ §(A(z)(dw)) = M + |w|P2w + f in Q,

vAw=vAwyon Jf,

then the sign of the semilinearity makes the lower order term in the energy functional convex,
coercive and nonnegative. Hence, direct minimization techniques apply and we can show exis-
tence of a solution for any f, any boundary value wg, but only for nonnegative A away from the
spectrum of the principal part of the operator, which is linear. Though we show existence by
using monotone operator theory, to weaken the hypotheses a bit.

But the original eigenvalue problem (1.14) is much harder. In fact, this problem we are
only able to solve for a range of A\, for A in the real half-line containing the spectrum of the
principal linear part. The techniques are also completely different. Here the energy functional
is unbounded both above and below and hence minimization techniques do not apply. We use
critical point techniques to show that the energy functional admits a saddle-type critical point.

However, in contrast to the case k = 0, when the equation is
—Au = \u + |ulP"2u,

the energy functional for (1.14) is indefinite on an infinite dimensional subspace as soon as
1 <k <n-—1. So usual critical point theory also does not apply. We use the technique of
‘Nehari-Pankov’ manifolds, suitably modified. When k = 1,n = 3 and A(z) =1, (1.14) reduces

to

curl curlw + |wP~2w = Iw in Q,
v Aw =0 on 0,

The existence result in this case, using the technique of ‘Nehari-Pankov’ manifolds, is obtained
in Bartsch-Mederski [13]. We generalize their results to handle the more general case. Also,
even when k = 1 and n = 3, the result presented here is new and slightly more general than

[13], as it can handle systems of the form
curl(A(z) curlw) + |wP~2w = \w,

when A(z) need not even have constant coefficients.
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1.10 Organization

We conclude this introduction with some remarks about the organization of the rest of the
thesis, materials and notations. More often than not, the burden of notations is quite heavy
while working with differential forms. So it is crucial to use good notations and shorthands to
keep the calculations manageable and readable. Appendix A contains the notations used in this

thesis.

Appendix B contains usual facts about the function spaces used. Chapter 2 contains the
necessary background material, both algebraic and analytic, that is used in this thesis. Although
most results are known and are stated without proof with a reference to articles or books where

the proof can be found, there are some new results and full proofs are given for them.

Primary material is divided into two parts. Chapters 3, 4 and 5 constitute the first part,
titled Direct Methods in Calculus of Variations for Differential Forms. Chapter 3 contains the
analysis for functionals of the form

| s,
Q
t

including its relationship with the classical case of / f(Vw) via the projection maps 7m.
Q
Chapter 4 deals with the case for the functional

/ fldwy, ... dwy),
Q

along with weak lower semicontinuity and weak continuity results. The case for functionals of

| #aw.0)

the form

is contained in chapter 5.

Chapters 6 and 7 constitute the second part of this thesis, titled Some Boundary value
problems for Differential Forms. Chapter 6 presents the existence and regularity results about
linear Maxwell operator and the related boundary value problems for first and second order
systems. Chapter 7 presents the existence results for the nonlinear Maxwell operator, starting
with the semilinear operator, treats the different sign of the semilinearity separately and then

presents the existence results for the quasilinear Maxwell operator.

Most of the results in the first part also appeared elsewhere, divided between the articles

Bandyopadhyay-Dacorogna-Sil [10], Bandyopadhyay-Sil [11] and Bandyopadhyay-Sil [12].
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Chapter 2

Differential forms

2.1 Introduction

The present chapter serves as the concise conglomeration of background material for the rest of
this thesis. We start by describing the algebraic preliminaries of exterior forms and introduce
a suitable notion of ‘differential forms’. For the rest of this thesis, we shall be using the term
‘differential forms’ to mean ‘differential forms with measurable components’, deviating from the
common practice of using the term to mean ‘smooth differential forms’. We then introduce the
function spaces which we shall use throughout our analysis of problems involving differential
forms. We also record an extremely important inequality, called the Gaffney inequality and
several important facts about these spaces. We shall, for the most part, restrict our attention
to the cases where the domain is a bounded open subset of R™ with smooth enough boundary,
though most of the results stated in this section can be proved for a compact Riemannian
manifold with boundary. Most of the material in this chapter is well known, though not always
easy to find in one place in the available literature. We present the definitions and statements
of the results and refer to the bibliography for proofs of well known results. Only lesser known

or new results are proved in complete details.

The rest of the chapter is organized as follows. In Section 2.2, we define the exterior forms
and the basic operations on them, namely the exterior product, interior product and Hodge
start operator. We present the basic properties of these operations and finally we present a few
results about the divisibility in the space of exterior forms. In section 2.3, we define the notion of
differential forms that we shall use, namely differential forms with measurable components and
define the exterior derivative and the codifferential. Section 2.4 discusses the function spaces
of differential forms that we shall use. We define the partly Sobolev classes which are crucial
for working with differential forms and summarize some of their properties. We also provide a
definition for the Trace operator in these spaces and present the important Gaffney inequality.
In the final section, i.e section 2.4.3, we present the Hodge-Morrey decompositions and derive

some of its corollaries that will be useful later on.
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2.2  Exterior forms

2.2.1 Definitions and main properties

Definition 2.1 (Exterior form) Let k > 1 be an integer. An exterior k-form over R™ is an

alternating k-linear map from R™ to R. More precisely, an exterior k-form & is a map

E:R"x...xR" >R
—————

k times
such that,
1. & is linear in each variable
and
2. for every Xi,..., X, € R" and for every permutation o € Si, we have,

E(Xo@)s - Xomy) = sgn(0)é (X1,..., Xp) .

We write A¥(R™) to denote the set of exterior k-forms over R™. If k = 0, we set A°(R"?) = R.
Note that A¥(R") = {0} for k > n. If we choose {e1,...,e,} as a basis for R”, then we write

its dual basis as {e!,...,e"}, which is a basis for A}(R").

Definition 2.2 (Exterior product) Let f € A¥(R") and g € AY(R™). The exterior product of
f and g, written as f A g is an exterior (k + 1)-form and is defined by,

(f/\g)(le-'-vXk—H) = Z sgn(a)f (Xo(l),"on‘(k:))g(Xa'(k—i-l)v"'aXo(k—i—l))

O'ES;C,[

for every Xi,...,Xpq € R" and for every permutation o € Sy, where Sy is the subset of

permutations defined by,
Spi={0€ Sy :01)<...<o(k);ok+1)<...<o(k+1)}.

Note that If we choose {e1,...,e,} as a basis for R?, {et A... Ae 11 <y <...<ip <n}is
a basis for AF(R™) and this immediately yields, dim (A*(R")) = (7).

From here onwards, the notation ™, where £ is a k-form and m is a positive integer will be

employed to denote the exterior power of a form. More precisely,

€= ENLLNE.
~——

m times

We now list a few elementary properties of the exterior product.

Proposition 2.3 The exterior product is bilinear, associative and graded commutative. More
precisely, if f € A¥(R™), g € A (R™) and h € AP(R™) and \, i € R, then we have the following:
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e Bilinearity:

ANf+pug) Nh=Af ANh+ pugAh,
FAAg+ph)=AfNg+ uf Ah.

e Associativity:
(fAg)Nh =[N (gAh).

e Graded Commutativity:
frg=(Dgnf.

Definition 2.4 (Hodge duality) The Hodge star operator is the linear map
* Ak(]R") — A”fk(}R")

defined by

fAg=(f:g)et A Nem
for every g € A" (R™).
The following properties are easy to verify.

Proposition 2.5 Let 0 < k < n be an integer. Then for any f,g € A*(R™) and for any I € T*,
J € T"F such that el Ne’ = (=1)"el A... Ae™, we have,

1. x(el) = (~1)7¢.

2. x1=el A nem

3okl AL ne) =1,

4o #(ef) = (1P g

5. FAN(xg) = (f;9)et AL Aem.

Definition 2.6 (Interior product) Let 0 < | < k < n be integers and f € Ak(R”), g €
AYR™). The interior product gof is a (k — 1)-form defined by,

gof = (=1)"* D s (g A (x1)).

We now record the following useful properties. For the proof, see Proposition 2.16 in [21].

Proposition 2.7 Let f € A¥(R"), g € AY(R™) and h € AP(R") with integers 0 < k,1,p < n.
Then
(hAg)af = (=1 ha(gaf).
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Note that when | 4+ p > k, the above identity holds trivially with both sides equal to zero. Fur-
thermore, if p =k + [, then

(f Agihy = (=1)! D g; fun) = (—1)%(f; g ).
If € € AL(R™), then

E(fAg)=(Eaf)Ng+ (DM (Eg N f
= (Eof) Ag+ (=D)FF A (Eg).

Again, if £,n € ALY(R™), then
EsmAf)+nnEaf) =& f

and

EA(ENF)+EN(ES) = €S

and

€ f2 = 1€ A DIPHEN ENPP = EPIEA FIP +1Ef ).

2.2.2 Divisibility
Definition 2.8 Let 1 <k < n and £ € AF(R™).

(i) We say that & is 1-divisible if there exist a € A'(R™) and b € A*~1(R™) such that

E=aANb.

(ii) We say that ¢ is totally divisible if there exist ai,...,ar € AY(R™) such that

E=a1 N...N\ag.

Definition 2.9 Let 1 <k <n and £ € AF(R"). Let
A% = {u e Al 3g e AP with g€ = u} .
Then we define the rank of order 1 of £ as,
rank; [¢] = dim (A%) .

Now we present a few algebraic facts related to 1-divisibility. For the proofs, see Proposition
2.37 and Proposition 2.43 of [21].

Proposition 2.10 Let 1 <k <n and & € A¥(R™) with £ # 0.
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(i) Let a € A',a # 0 be such that
aN& =0,

Then, € is 1-divisible, there exists a form b € A*=1 such that € = a Ab and a € A%.

(ii) & is totally divisible if and only if
rank; [¢{] = k

if and only if
bAE=0 for all b € Af.

(iii) If k = 2, then rank;[] is even and any even integer greater than or equal to k and less

than or equal to n can be achieved. Moreover, rank[£] = 2m if and only if

E™£0 and ™ = 0.
(i) If 3 < k <mn, then
rank;[¢] € {k,k+2,...,n}
and any of the values can be achieved.

(v) rank;[¢] can never be k + 1. In particular, when k =n — 1 then

rank;[¢] =n — 1.

(vi) If k is odd and if rank,[{] = k + 2, then £ is 1-divisible.

Remark 2.11 Note that (i) and (ii) implies that every & € A™ is 1-divisible and totally divisible.
Also, (ii) and (v) together implies that every & € A"~ is 1-divisible. Likewise (i) and (vi)
implies that if k is odd then every & € A"~2 is 1-divisible. Of course, every & € A is trivially
1-divisible.

2.8  Differential forms and their derivatives

Usually, differential forms are either defined or tacitly understood as meaning smooth differential
forms, i.e smooth functions w : Q — A*. However, in this thesis, we are going to work with their

nonsmooth cousins rather heavily.

Definition 2.12 (Differential form) Let 0 < k < n and let & C R™ be open, bounded and
smooth. A differential k-form w is a measurable function w : Q — A*. We write w € M (Q; Ak) .

We now define two important operations on differential forms which form the basis of exterior
differential calculus. We start with the definition of exterior derivative. Our definition is very

similar to the usual definition of weak derivative.

Definition 2.13 (Exterior derivative) Let 0 < k < n—1, let Q C R"™ be open, bounded and
smooth and let w € Ll _(Q;A*). A differential (k + 1)-form ¢ € LL _(Q; A*T1) is called the
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exterior derivative of w, denoted by dw, if

/nAwZ(—l)”_k/dnAw,
Q Q

for alln € C° (Q; AP~F1).

Remark 2.14 Let w = Z ardry € Wf}f (Q;Ak>, Then, for every I = (i1,...,ik+1) € Tkt1,
1€Ty;,
we have that

k+1
d _ 1)1 aaih---ﬂ’y—l7iw+1,---7ik+1 0
( w)(i1:-~-7ik+1) - (1) y @.€. 0n il
=1

833‘1',Y

Oy, i 4 iy 1oipgd
ox;

where are weak derivatives of @iy iy i1, i -

~

The formal adjoint of d gives us another extremely important operator to look at.

Definition 2.15 (Hodge codifferential) Let 1 < k < n, let Q C R™ be open and let w €
L. (Q;Ak) be such that dw exists. Then, the Hodge codifferential of w is a (k — 1)-form
dwe Ll (Q; Ak_l) defined as

dw = (—1)" s dxw.

Remark 2.16 Let w = Z ardry € VVlif (Q;Ak>. Then, for every I = (i1,...,ik—1) € Tk—1,
1€Ty,
we have that

k
Oai. . . .
(0W) (i1 ,.sin 1) = Z(—1)7_1 Z Zl’”“éj'lwl"u’zk, a.e. on €,
j

y=1 iy —1<J <y

Oy, io 1o 1.y,

Y are understood as weak derivatives.
J

where

Remark 2.17 Of course, for smooth differential forms, both these operations coincide with the

usual exterior derivative and the codifferential.

2.4 Function Spaces of differential forms on R™

Various function spaces of differential forms like the Lebesgue spaces LP (Q, Ak), Sobolev spaces
WP (Q; Ak), Hoélder spaces C™% (Q; Ak) etc are defined in the usual way with the obvious norms
by requiring each component to lie in the scalar versions of the corresponding spaces. For the
sake of completeness, we briefly recall their definitions and state a few useful properties of these

spaces in Appendix B.

2.4.1 Partly Sobolev classes

In addition to the usual Sobolev spaces W""P (Q; Ak), there are some additional Sobolev type
spaces specifically suitable for forms. The reason for introducing these spaces springs from the
observation that the partial differentiation on forms occurs only via operators d and §. We first

introduce partial Sobolev spaces of first order. See [40] for more detail.

35



Definition 2.18 (Partial Sobolev spaces) Let 0 < k < n — 1, let Q@ C R™ be open and
let 1 < p < oo. We define WP (Q;Ak) to be the space of differential k-forms such that w €
LP (S AF) and dw € LP(Q; AFY). It is endowed with the norm

lwllap = llwllp + ||dwlp, for allw e wep (Q;Ak> .

Similarly, for 1 < k < n, we define WP (Q; Ak’) as the space of differential k-forms such that
w € LP(Q; AF) and sw € LP(Q; AF1), equipped with the norm

5p = |lwllp + [[0wllp, for all w € WP <Q;Ak) .

o]

It is often useful in nonlinear problems to introduce another type of partial Sobolev spaces.

Definition 2.19 (Partial Sobolev spaces of (p,q) type) Let 0 < k <n—1, let Q C R" be
open and let 1 < p,q < co. We define Wepd (Q; Ak) to be the space of differential k-forms such
that w € L1 (Q; Ak) and dw € LP (Q; AkH) , endowed with the norm

[wllapq = lollg + Idwllp, for all w € W (4%

Similarly, for 1 < k < n, we define WP (Q;Ak) to be the space of differential k-forms such
that w € L4 (Q; Ak) and dw € LP (Q; Ak_l) , equipped with the norm

[ll5pq = ol + 18wl for all w € W7 (Q; A¥).

Remark 2.20 Of course, when p = q, we have WP (Q;Ak) = Wp (Q;Ak), Wopp (Q;Ak) =
Wwor (Q; Ak).

There is also another class of Sobolev spaces involving both operators d and §.

Definition 2.21 (Total Sobolev spaces) Let 1 < k < n —1, let Q C R™ be open and let
1 < p < co. We define L1P (Q;Ak) to be the space of k-forms such thatw € LP (Q;Ak),dw €
LP (Q; Akﬂ) and dw € LP (Q; Ak’l) , equipped with the norm

|l 210 = eollp + ldwlly + 13wl for all w € 217 (54%).

2.4.2 Trace on partial Sobolev spaces

The notion of trace on partial Sobolev spaces play an important role in the subsequent discus-

sion. We begin with the following definitions.

Definition 2.22 Let 0 < k < n, let Q C R"™ be an open, bounded set and let 1 < p < co. We
define

WP (03AF) = {w e W (Q;AF) /Q(dw;¢>> — - /Q<w;5gz5>, for all ¢ € C (2 Ak“)} .

War (2:AF) = {w e Wor (0348 ; /Q<5w; ) = — /Q<w;d¢>, for all ¢ € C (& A’“)} .
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Remark 2.23 Note that, if w € W;f’p (Q;Ak), we have that dw € W;f’p (Q;Ak+1). Similar
statement holds in W]f,’p (Q; Ak).

Definition 2.24 We set
ke (Q;A’“) — koo (Q; A"") Wit (Q;A’“) .

Definition 2.25 Let 0 < k < n, let Q CR"™ be an open, bounded set and let 1 < p,q < co. We
define,

W9 (QiAF) = $w e W (QAF) ¢ [ (dwid) = — | (wida), for allé € C (AR 4.
Q Q
WP (Q;A’“) —{wewdr (Q; Ak) | (Bw;¢) = — [ (wide), for all 6 € C= (ﬁ; Ak—l) .
Q Q
Now we define the trace maps. The following theorems were proved in [50]. See Proposition 4.1

in [50].

Theorem 2.26 (Tangential trace in W (;AF)) Let 0 < k < n —1, let Q@ C R" be a
1

smooth, bounded domain and let 1 < p < oco. The map Trp : WP (Q; Ak) — WP (89; Ak“)

defined via the duality pairing

[ @)imion = [+ [ @i,

Q
for all w € WP (Q;Ak), » e Whv' (Q;Ak+1), is a well-defined, bounded linear operator.

Theorem 2.27 (Normal trace in WP (Q;Ak)) Let 1 < k < n, let Q C R"™ be a smooth,
1

bounded domain and let 1 < p < co. The map Try : WP (Q;Ak) — WP (8(2; Ak_l) defined

via the duality pairing

/ag (Try (w); Tr () :/Q<5W;¢>+/Q<W;d¢>’

for all w € WP (Q;Ak), e Whv' (Q;Ak_l), 1s a well-defined, bounded linear operator.

Remark 2.28 1. In Theorems 2.26 and 2.27, p' is the Holder conjugate exponent of p and
/ 1 .
Tr: Whp (Q; Akil) — WP (8Q;Akﬂ) 1s the usual Sobolev trace map.

2. See [50] for a precise description of the images of the maps Trp and Try. A particularly
important detail concerning this is unlike the usual trace map, the tangential and normal
trace maps are not onto, in general. We would not be encountering this fact anymore, but
it 48 important to point out that this is a chief reason why in all the theorems for boundary
value problems appearing later in this thesis, it will be explicitly assumed that the given

boundary value actually is the trace of a given differential form.

Theorems 2.26 and 2.27 lead us to the definition of the tangential and normal components.

Definition 2.29 (Tangential and normal components) Let 0 < k < n, let 1 < p < ©

and let 2 C R™ be a smooth, bounded domain.
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1.

If w e WP (Q; Ak), we say that Trp (w) is the tangential component of w on ON.

2. If we WoPp (Q;Ak), we say that Try (w) is the normal component of w on ON).

Remark 2.30 Let 0 < k < n, let Q@ C R™ be a smooth, bounded domain and let 1 < p < oo.
Note that,

1.

If w e whrp (Q; Ak), then we have a gain of reqularity for the traces. More precisely, we
1 1
have Trp (w) € W oP (Q; A*Y) and Try (w) € Wil (Q; A1), and furthermore,

Try (w) =v ATr(w) and Try (w) = voTr (w) on ON.

2. For smooth (up to the boundary) differential forms, the tangential and normal components

defined here coincides with the usual definition (see [20] or [21] for a detailed discussion on
tangential and normal components for classical differential forms) tangential component

wr =V Aw and normal component wy := viw respectively.

Moreover,
wkv (Q; A’“) - {w € Win (Q;A"“) :Try (w) = 0 on aQ} :
W]f,’p (Q;Ak) = {w e Wor (Q; Ak) :Try (w) =0 on 89} .
. From here onwards we shall use the notations v A w and vaow to mean tangential and

normal trace respectively.

Admissible boundary coordinates

Another important notion concerning traces is the notion of admissible boundary coordinates.

This will be an indispensable tool for regularity theory later, to flatten the boundary.

Definition 2.31 Let Q C R™ be an open set. Let xg € 02 and let V. C R™ be an open
neighborhood of xo in R™. We say the map ® : U — V is an admissible (local) boundary

coordinate system for Q around xq if

1.

2.

3.

U C R™ is an open neighborhood of (yh,0) for some yf € R"~1,

©((yp,0)) = o,

. oNNV = {(I)((y/70)) : (y/70) € U}7 VnQ= {Q)(y’7yn) : (y,ayn) eU and y, < 0}7

For every 1 <i <n and for every (y',0) € U,

L A
(0% /.00 ) = G

where § denotes the Kronecker delta.
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For any open set 2 C R” such that 02 is of clagss C™ for some integer » > 1 and some 0 < o < 1,
then for any xy € 0f2, there exist an open set U C R", an open neighborhood V' C R™ of z¢ in
R™ and an admissible boundary coordinate system ® € Diff"*(U; V). See Proposition 3.17 in
[21] or [53] for a proof.

The importance of an admissible boundary coordinate system is that it helps us to reduce the

vanishing of tangential and normal components at the boundary to particularly simple forms.

Proposition 2.32 Let Q C R"™ be an open C? set and let 0 < k < n be an integer. Let
we Wh? (Q; Ak) for some 1 <p < oo and let xg € O and @ : U — V is an admissible (local)

boundary coordinate system for Q around xo. We set B = ®*(w). Then we have the following:
1. vAw =0 0on VNOQ if and only if Bi,..i, =0 on UNIRY for every 1 <ip < ... <ip <n.

2. vaw =0 on VN OQ if and only if Bi;..5, =0 on UNOIRY for every 1 <iyp < ...ip_1 <

ik = n.
3. vAw=0o0onVNoQ implies v ANdw =0 on VN IA.

4. vaw =0 on V N OQ implies vidw =0 on V N OIS

The proof of this result for the case of smooth differential forms can be found in Section 3.2 in
[21] (cf. Corollary 3.21 and Theorem 3.23 in particular). By continuity of the trace map the

result holds in the WP setting as well via density.

Now we need a few important subspaces.

Definition 2.33 Let r > 0 is an integer. The spaces CF (ﬁ; Ak) and Cy (ﬁ; Ak) are defined
by,

Cr (Q;Ak> = {w eC” (ﬁ;Ak> :vAw=0 on 89}
and

Cly (ﬁ; Ak) = {w eC” (ﬁ; Ak> :vow =0 on GQ} .

Now we state a density result. See [40] for the proof.

Theorem 2.34 Let r > 1 is an integer, 1 < p < 0o and  C R™ is a bounded open C™T! set.
Then the following statements hold true.

(i) Cp (4 AF) is dense in WP (Q; AF) .
(ii) Cr (Q;AF) is dense in WP (Q; AF) .
(iii) C (9 AF) is dense in WP (Q; AF) .
(iv) C (0 AF) is dense in WP (€; AF) .
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We also record the Gauss-Green theorem and Integration by parts formula below. Again, the

case of smooth differential forms is easy and the results follow by density.

Theorem 2.35 (Gauss-Green theorem) Let 0 < k < n, let @ C R™ be a smooth, bounded
domain and let 1 < p < co. Then the following holds.

o IfweWer (Q;Ak), then,
/dw:/ vAw.
Q o0

/&uz/ Vw.
Q o0

Theorem 2.36 (Integration by parts formula) Let 1 < k< n—1andlet 1 < p,g <
1 1
with = + = = 1. Let Q@ C R™ be a smooth, bounded domain and let « € WP (Q;Ak) and

p q
B e wha (Q; Ak) . Then

o)+ [ wan) = [ wnais) = [ o)

Remark 2.37 If on the formula above, if « € WP (Q;Ak) and B € Wt (Q;Ak), then we

still have
[ ety + [ tson) = [ wnass).

Similarly, if o € WP (Q; Ak) and B € W4 (Q; Ak) , we have

/Q<d04; 5>+/Q<a;5ﬁ> Z/m@;w@.

In both cases, the other boundary integral is not well defined (see Theorems 2.26 and 2.27).

o IfweWor (Q;Ak), then,

2.4.3 Gaffney inequality and Harmonic fields

We start with the well known Gaffney inequality, the proof of which is well known and hence
omitted here and can be found, among other places, in theorem 4.8 in [40] and theorem 5.16 in
[21].

Theorem 2.38 (Gaffney Inequality) Let 1 <k <n—1,1<p < oo, Q CR" be a bounded

smooth open set. Then there exists a constant Cp, = C,(Q2) such that,
lwllwre < Cp (lwllze + [|dwll e + [[6w]|e)

for every w € W%’p (Q;A%) U WJ{,’p (Q;A%).
Now we need the notion of harmonic fields.

Definition 2.39 (Harmonic fields) Let 0 < k <n be an integer and Q C R™ be an open set.
The space of harmonic k-fields on ) is defined by,

H(Q; AF) = {w e w2 (Q;Ak> :dw =0 and dw = 0}.
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If 09) is reqular enough, we define the space of harmonic k-fields with vanishing tangential
component on 92 and the space of harmonic k-fields with vanishing normal component on 9f2

on Q, respectively, by the following:

A (AR = {w e (AR v Aw=0 on 0Q},
and

A (QAF) = {w e (AP vaw =0 on 0N

Clearly, if 99 is regular enough, all these space J#(Q; A¥), 5 (Q; A¥) and Ay (Q; AF) are
closed subspaces of the Hilbert space LQ(Q; Ak) and hence have orthogonal complements in L?.
We denote the complements of these spaces in L? by J1(Q; AF), 72+ (Q; AF) and 45 (Q; AF)
respectively. Thus we have the following direct sum decompositions which are orthogonal with

respect to the L? inner product:

and
L2(Q; AF) = o2(Q; AF) @ - (Q; AF).

An immediate corollary of Gaffney inequality for harmonic fields is that the spaces .7 (; A¥)
and 4 (Q; AF) are always finite dimensional. Indeed, Gaffney inequality implies that for any
h € 75 (Q; AF) ((or (9 AF)) we have,

[hllwre < cllp]|zr
for any 1 < p < co. Now since the embedding
whe <Q; A’“) < LP <Q; A’“)

is compact, this implies that the closed unit ball in % (Q; A¥) ( or 4 (92; A¥)) is compact,
implying the finite dimensionality.
Also, since every harmonic field h € #(Q; A¥) satisfies

Ah = 6dh + dSh = 0,

we immediately obtain from classical Weyl’s lemma that every harmonic field is C*° in the
interior of the domain. Another well known facts about harmonic fields is that if h € % (Q; A¥)
(or (9 AF)) and 99 is regular enough, then h € C*(; A¥). We shall prove even more
general up to the boundary regularity results later in the second part of the thesis, so for now

we omit the proof. We shall also mention a well known result about these spaces, which is a
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special case of the classical deRham theory.

Proposition 2.40 Let Q C R™ be such that there exist xg € Q and F' € C* ([0, 1] x Q; ) such
that for every x € Q,
F(0,z) = xo and F(l,z) = x.

Such a set € is called a contractible set.

Then if moreover € is bounded, open, C? set, we have,
(9 AF) = {0} if0<k<n-—1,
and
A (Q; AF) = {0} if1<k<n.

The proof can be found in [21] (cf. Theorem 6.5). It uses only classical Poincaré lemma and
does not use the Hodge decomposition theorem. With classical Poincaré lemma, since for any
h € 5 (Q;AF), dh = 0 and € is contractible, we can find a k — 1-form ¢ such that h = dg in
Q. Hence, we have, integrating by parts and using the fact that v.h = 0 on 01,

Il = [ om = [ gy == [ t@on) + [ (givam ~o.

This implies h = 0. The proof for . (; A¥) follows by duality.
Now we record another corollary of Gaffney inequality. For the proof, see theorem 4.11 in
[40].

Corollary 2.41 Let 1 <k<n—1,1<p<oo, 2 CR" be a bounded smooth open set. Then
there ezists a constant Cp, = Cp(2) such that,

lwllwrr < Cp (ldwl| e + [16w]| Lr)

for every w € W%’p (Q;Ak) N L%”TL (Q;Ak). Also the same holds true if w € W]i,’p (Q;Ak) N
L%"]\% (Q;Ak) instead.
2.5  Decomposition theorems and consequences

2.5.1 Hodge-Morrey decomposition

We state the classical Hodge-Morrey decomposition in this subsection. The theorem is well-
known and we do not include a proof here (cf. theorem 6.12 in [21], also [40], [53], [58], [68]).

Theorem 2.42 (Hodge-Morrey decomposition) Let r > 0 and 0 < k < n be integers and
let0<a<1l<p<oo. Let Q CR"™ be open, bounded, smooth set with exterior unit normal v.
Let f € W™P(Q, A¥), respectively f € C™*(Q, AF).
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(i) There exist

a e Wit (@, AR, g e withP(Q, AR,
h e (Q;A’“) and w € WEP(Q, AF),

respectively

= C’}—Fl,a(ﬁ’ Akfl)’ ﬁ c (;v;‘:i-l,oz(ﬁ7 ka+1>7
he Ay (Q; Ak) and w € CT2(Q, M),

such that in €, we have,
f=da+d68+h, a=dw and B = dw.
Moreover, there exist constants C1 = C1(r,p, ) and Cy = Co(r, a, Q) such that

[wllwrize + l[hllyrs < Crlfllyrs

[wllgriza + [[Bllgra < C2llfllgra -

(i) There exist

a € W P(Q, AR, B e WP (Q, AR,
he Ay (Q; Ak) and w € WP (Q, AF),

respectively

a € O @A), B e O (@AM,
he Aty (Q; A"“) and w € CF2(Q, AY),

such that in , we have,
f=da+d8+h, a=dw and B = dw.
Moreover, there exist constants C1 = C1(r,p, Q) and Cy = Co(r, a, Q) such that

[llywrn + [1Allwrs < Crll fllwrs

[wllerrza + [hllgre < Co [ fllgre -
(iii) There exist

a e WP (@ AR, B e WP (@AM,
he At (Q;Ak) , wh e WEPP(Q, AF) and w? € WP (Q, AF),
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respectively

a € Opfh (@ AR, g e O (@AM,
het (Q;Ak) L wh e CIP2(Q, AR and w? € CTF2P(0, AF),

such that in €, we have,
f=da+ 98+ h, a = dw' and B = dw?.
Moreover, there exist constants C1 = C1(r,p, ) and Cy = Co(r, a, Q) such that

o lyyrizp + @ lwrien + 1Pllwre < Collfllwes

! crrza + |02l graza + hllora < Collfllgra -

2.5.2 Classical boundary value problems for differential forms

We now show the solvability of certain boundary value problems ((Pr) and (P4) below) involving
differential forms, which is crucial to settle minimization problems (e.g. Theorem 3.64, Theorem
3.67). The results are already known and are proved for the restricted case 2 < p < oo in [21]
(cf. theorem 7.2 and 8.16 in [21]) and [58]. Essentially both the results follow from Hodge-
Morrey decomposition (theorem 2.42). But the methods presented in [21] can be extended to
the case 1 < p < oo with slight modification of the argument. The aforementioned modification
essentially amounts to arguing via LP-L?" duality instead of the L2 norm. Also, since apart from
this modification, the proof is essentially the same, we prove only one of the theorems presented
below to illustrate the modification.

The first one is a generalized div-curl type systems, sometimes called a Cauchy-Riemann type

systems.

Theorem 2.43 (Div-Curl Systems with tangential data) Let r > 0 and 0 < k < n be
integers. Let 0 < a <1 <p < oo and 2 CR™ be a bounded open smooth set with exterior unit
normal v. Let f:Q — A1 g Q — A1 and wo : 90 — A*. Then the following statements

are equivalent:

(i) Let

f e WrP(Q; AR, g € WrP(Q AR ) and v Awy € WTITRP(00; AR,
respectively
feom AkH), g € 0™ (Q; Ak_l) and v A\ wgy € CTH’O‘((’)Q; AkH),
satisfy the conditions
df =0in Q, 6g=01inQ, and v Ndwy =v A [ on 0S, (A1)
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and for every x € (0 AFTY) and o € 74 (Q; AP,
L= [ w0 and [ (o) =o (A2)

Q

(ii) There exists w € WHLP(Q; AF), respectively w € C™H1(Q; A¥), such that

(Pr)

do=f and dw=g inf,
VAW =vAwy on 0f).

In addition, there exist positive constants C1 = C1(r,p,Q) and Cy = Ca(r, o, ) such that,
lwllyprr+1m(qy < Ch (HfHWr,p(Q) + lgllwrr@) + lv A wo\lwrﬂ;,,p(m)) ;

respectively

[wllgrt.a() < Co (Hf‘ cra(@) + lglleraq) + lv A Wo”cwl,a(ag)) :

Remark 2.44 When r = 0, the condition v A dwo = v A f on OS2 in (Al) is to be interpreted
as,
| tr80) = [ nwnide) =0
Q o0
for every ¢ € C=(Q, A*+2). See remark 7.3(iii) in [21] for details.

Proof We only prove the the Sobolev case to illustrate how we can remove the restriction p > 2
in the proof of theorem 7.2 in [21] (see also [58]). We also assume r = 0 to show how to tackle
the ‘weak’ form of the condition v A dwg = v A f on 0f.

(73) = (i): The first two conditions in (A1) follows by integrating by parts , since

/Q<f;5¢> :/Q<dw?590> Z—/Q<W;55s0) =0

for every ¢ € C§° (O Ak“) , and we also have,

/Q<g; dep) =/Q<5w;d<p> = —/Q<w;dd<p> =0

for every ¢ € Cg° (Q; Ak’Z) . For the third condition in (A1), we have, by integrating by parts,

[trs0r = [ tdsssor == [ wisoo)+ | wnwdo) = [ wnaniso)

for every ¢ € C™(Q, A*+2).
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The first condition in (A2) follows by integrating by parts. Indeed, for any x € 7 (; Ak‘H) )

L= [ e = [ = [ @nai

— [ a0 - [ @ =o,

The second condition in (A2) follows in a similar way. We have,

/Q<9;1/)> ==/Q<5wu/}>Z—/Q<w;dw>+/m<w;um/)>:0

for every ¢ € 4 (Q; AF1).
(1) = (i1): We first extend (see Lemma 7.1 of [21]) wp by @ to the full domain © so that
Qo € WEP(Q; AF) and v A wg = v A @ on 9 and there is a constant ¢ = ¢(£, p) such that

[@ollyrpary <€ ||w0||W17%¢p(8Q;Ak) :

Step 1 We now show that (A1) implies the following two equations

/(f;5s0> —/<d@o;5s0> =0 Ve O®(AM?) (2.1)
Q Q

[ vy =0 voecp@at?) (29)
Q

Since dwq are closed in the sense of distributions, we have,

/Q<f;5<p>Z/aQ<V/\wO;5¢>=/Q<d®o;6<p>-

Equation (2.2) follows immediately from the second equation in (Al).

Step 2 We apply the Hodge-Morrey decomposition(cf. Theorem 6.12 in [21]) to decompose

f — day and obtain (if £ = n, we do not need this construction),

f—dog =day + 08+ x5 in )
day =0, dBf =0 in Q
vAar=0,vABr=0 on dQ,

where x ¢ € 7 (Q; AkH) . Moreover there exists a positive constant C' = C(p, Q) such that

leslwio < C (1@ + IZollwise) -

We claim that §3; and x vanish. Firstly, since xs is a harmonic field, x; is C* and hence
xy € LP for all 1 < p < oo and also dx; = 0 = dxy, we have, using condition (2.1) and
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integrating by parts,
0:/<Xf;f>_/ <Xf;V/\OJo>=/<Xf;f—d<7do>=/<Xf;daf+55f+><f>
0 o0 Q Q

:/Q<Xf;d0‘f>+/Q<Xf955f>+/ﬂ<xf3xf> ——/Q<<5><f;af>—/Q<d><f;5f>Jr/QIXfI2

=/ Xyl
Q

This implies xy = 0. Now we have,

0= [ (7~ dawibe) = [ (dagidor+ [ @880 = [ (aissieh+ [ (657:50)
— [ 685300,

for every ¢ € C*°(Q;A*2). This implies 68y = 0 by virtue of density of §C*°(Q; A*"?) in
swtr' (Q; Ak”), which is the dual of WP (Q; Ak“)(cf. [40] for these and lots more related
density and duality results). Hence we have found ay € whp (ﬁ; Ak) satisfying (if k = n, we
take ay = 0)

doy = f—dwg and dar =0 in
{ f=1 - do ! (2.3)

vAar=0 on 0f2.
We now apply the same decomposition to g — dwg (if & = 0, we do not need this construction)
and get
g — 0wy = dag + 084 + 1Py in Q
day =0, dB, =0 inQ
vAayg=0,vAB;=0 on o,

where 1, € 7 (Q; Ak’l) . Moreover there exists a positive constant C' = C(p, 2) such that

1Bollwroa < € (I9l o) + 10l orra)) -

Using (2.2), the second equation in (A2), and the similar argument as before, we have that doy
and 1, vanish. Hence we have found 3, € C™14(Q; A¥) satisfying (if k = 0, we take 3, = 0)

{ dB, =0 and 6B, =g 0@y inQ 2

vABy=0 on 0f).

We now set

w=ay+ B4+ w&o

which satisfies, due to (2.3) and (2.4),

{dw—daf—i—dwo:f and dw =08, +6p=g inQ

VAW=VvAwyg=VAw on 0f).
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This concludes the proof. m

Remark 2.45 The modification in the proof is applicable in the same way to several results
presented in [21] that has the restriction p > 2 (see also [58]). Comparing the proof of the above
theorem presented here and the proof of theorem 7.2 in [21], one easily sees that the basic point
is, if 1 < p < 2, writing expressions like [, |6B¢|% or Jo |dag|? is no longer possible, as they do
not make sense (though [ Ix¢|? is well defined since x¢, being a harmonic field is C*). The
trick is to argue instead with expressions like fQ<5Bf; da) for éa in the dual space of 6f;.

Now we present the result for normal boundary data.

Theorem 2.46 (Div-Curl Systems with normal data) Let r > 0 and 0 < k < n be inte-
gers. Let 0 < aa <1 < p < oo and 2 C R™ be a bounded open smooth set with exterior unit
normal v. Let f:Q — AL g Q — A1 and wo : 90 — A*. Then the following statements
are equivalent:

(i) Let

FeWrP(QARY) g e WrP(Q; A1) and vowy € W 5P (90; AR,
respectively

feom (& Ak+1), g € Ch™(Q; Ak_l) and v_wy € C’T"'l’a(aQ;AkH),
satisfy the conditions
df =0in Q, 6g =0 1in Q, and vidwy = vag on OS2, (A1)

and for every x € S (4 AFTY) and ) € S (Q; AR,
[a0= [t =0amd [ (ri0)=0 (A2)

(ii) There exists w € WTTLP(Q; A¥), respectively w € CTHH(Q; A¥), such that

dv=f and ow=gqg in(,
{ (Pn)

VW = VW on 0f).

In addition, there exist positive constants C; = Cy(r,p, Q) and Cy = Co(r, o, ) such that,
|wllwr+1.p0) < Ch <||f||Ww>(Q) + [lgllwrr@) + llv AC00||Wr+1_117,p(m)> ,
respectively
[wllgritay < Co (Hf”cm(ﬂ) + llgllera + v /\WOHCHLCV(QQ)) -
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We now present the other theorems without proof. The proofs for p > 2 are in [21] and the

same modification as above removes this restriction.

Theorem 2.47 (Poincaré lemma for d with Dirichlet data) Letr >0 and 0 < k <n be
integers. Let 0 < a <1< p< oo and ) CR"™ be a bounded open smooth set with exterior unit
normal v. Let f: Q — AL g Q — A1 and wo : 90 — A*. Then the following statements
are equivalent:

(i) Let f € WrP(Q; AM1) and wy € WT+17%’p(8Q; AR, respectively f € C™(Q; AF*1) and
wo € C™TLY(98Q; AF), satisfy the conditions

df =01in Q, vAdwy=vAf on 0, (B1)

and for every x € 4 (€ AFF1) |
[0 [ wnaio=o (B3)
Q o0

(ii) There exists w € WHLP(Q; AF), respectively w € C™H1(Q; A¥), such that

dw = imn €,
{ ! (Pa)

w=wy on ON.
In addition, there exist positive constants Cy = Cy(r,p, ) and Cy = Ca(r, o, Q) such that,
fellwessoor < Ca (1wesie) + ool s )

respectively

Jlloriray < Co (Ifllorag + leollgrnagen)) -

Theorem 2.48 (Poincaré lemma for § with Dirichlet data) Let r >0 and 0 < k <n be
integers. Let 0 < a <1 < p < oo and  CR"™ be a bounded open smooth set with exterior unit
normal v. Let g : Q@ — AF"1 g : Q — A*1 and wg : 90 — AF. Then the following statements

are equivalent:

(i) Let g € W™P(Q; AF=1) and wy € WTH_%’p((?Q;Ak), respectively g € C™(Q; A*~1) and
wo € CTHLY(9Q; A¥), satisfy the conditions

0g=01mQ, vidwy=rig on 01, (B1)

and for every x € v (Q; AFFL) |
/(g;x> - / (vawo; x) = 0. (B3)
Q a0
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(ii) There exists w € WHLP(Q; AF), respectively w € C™H1(Q; A¥), such that

ow=yg n €,
(P2)

w=wy on ON.

In addition, there exist positive constants Cy = Cy(r,p, ) and Cy = Co(r, a,, Q) such that,
fellwrssoia) < o (lalwroor + ol s )
respectively

[lloriragy < Co (Igllgnagy + lwollorraon ) -

2.5.3 Important Consequences

The results in the last subsection immediately imply a number of important results. We start
with a few embedding theorems which will be quite useful later. But before stating the result,

we need to introduce the following important subspaces.

Definition 2.49 Let 0 < k < n, let Q C R™ be an open, bounded set and let 1 < p < co. We
define

Wg% (Q;Ak> = {w € W;-l,’p (Q;Ak> 10w = 0 in the sense of distributions } .

Wi’% (Q;Ak> = {w € Wi;p (Q;Ak> :dw = 0 in the sense of distributions } )

Now Gaffney inequality implies that these two subspaces actually embed into WP for

1 < p < co. This is the content of the following proposition.

Proposition 2.50 Let 1 <k <n—1, let Q C R™ be open, bounded, smooth and contractible.
Let 1 < p < co. Then the following continuous embeddings hold,

Wp (AF) > W2 (QAF)  and WPk (QiAF) o W (A7),
Moreover, there exist constants Crp, = Crp(2) and Cnyp = Cnp(Q) such that,
lwlws < Crplidwlis — for allw e Wi (24F)
and
|lwllwie < Cnpllow|| e for allw € Wg”if (Q;Ak> .

Proof We just prove the first one. The second one is completely analogous. We break the

proof in two steps.
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Step 1 First we want to show that dw = 0 in the sense distributions implies that
/(w;dgb) =0 for every ¢ € W&’pI(Q;Ak_l), (2.5)
Q

where p’ is the Holder conjugate exponent of p. Indeed, by virtue of density of C>°(€2; A*~1) in
Wol’p/(Q;Ak_l), for any ¢ € Wol’p/(Q; AF=1) we can find a sequence {¢.} C C°(Q; A*~1) such
that dp. — d¢ in LP'. Thus, we have,

] [ 56— d6.)| < lolald0 — docl s 0.

Since ¢. € CP( A1) and dw = 0 in the sense distributions implies [,(w;d¢.) = 0, this
shows (2.5).

But (2.5) implies , by definition of weak derivatives, that
/<5w; ¢)=0 for every ¢ € L (; A*1),
Q

which implies 6w = 0 as LP(€2; A¥~1) functions and [6wl| p(;a5-1) = 0.

Step 2 Now we want to show a slightly stronger result than the theorem itself. We shall
show that the space Wg’p (Q; Ak) N Wop (Q; Ak) continuously embeds into WP (Q; Ak) . Since
by Step 1, Wg’ff (Q; Ak) C W:,Gf’p (Q; Ak) N wor (Q; Ak) , this will imply the proposition.

Now we show the claimed embedding. Since WP (Q; A*) ﬂWYdJP (2; A¥) is dense in W;f’p (Q; AF)
(by density of C2® (Q; Ak) in Wg’p), for every w € W;E’p (Q;Ak) nwor (Q; Ak), we can find a
sequence {v;} C WP (Q; AF) N Wg’p (Q; A¥) such that v; — w in WP,

Now using theorem 2.43, we solve, for each j, the following boundary value problem:

duj =0 and duj; =dv; in Q,
vAu; =0 on 0f).

Similarly, again by virtue of theorem 2.43, we can solve,

du=0 and du=dw in €,
vAu=0 on 0f).

Now we set w; = v; — u; + u. Now, since uj,u € whp (Q;Ak) , clearly w; € whp (Q;Ak)

also. It is also immediate that v A w; = 0 on 0f2. Now, we have,
dw]' = d’Uj — de + du = de,
and

dw; = 0vj — du; + du = dw,
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for every j. Now by corollary 2.41, we obtain,

il < € (sl o + N1l 1)

= c(lldvill o + llowllp) -

But since v; — w in WP, this implies {||w;l|;;1,} is uniformly bounded, since {||vj|,,} is
uniformly bounded. Thus, w; — @& weakly in WP for some @ € WP (Q;Ak). But since

dwj = dv; — dw in LP and dw; = éw, by uniqueness of weak limits we have,
dw = dw and 0w = dw.
Also, v A& =0 = v Aw on 99. Hence, we have,
dw—-—w)=0,0(@w—-—w)=0in Qand v A (@ —w) = 0 on IN.

This implies @ — w € - (Q; AF). Since Q is contractible, we must have @ = w and this shows
we whep (Q; Ak) . Continuity of the embedding follows from the estimate obtained by applying

corollary 2.41 to w now. This concludes the proof. m

Remark 2.51 Note that the proof actually shows that we have the stronger embeddings:

thf,p (Q;Ak> A WoP (Q;Ak> oy TLP (Q; Ak) 7

WaP (94 AF) W (@3 AF) < whe (0s4F)

We present a decomposition theorem that will be useful later.

Theorem 2.52 Let 1 < k< n—1, let Q CR"™ be open, bounded, smooth and contractible. Let
l<p<g<p'<oifp<norl<p<qg<ooifp=n. Then there exists a topological direct

sum decomposition
WP (Q; AR) = WER(0; AF) @ dWg (5 A,

where p* = ana is the Sobolev conjugate exponent of p. Moreover, if p < n and 2 < p < g <
pf<ooorifp>=mnand2 < p<q<oo, then the decomposition is orthogonal with respect to
the L? inner product.

Proof First note that if v € Wg’:,]f(Q;Ak), by proposition 2.50, we have v € W%’p(Q;Ak) and
hence by Sobolev embedding v € L9(; A¥), since ¢ < p*. Hence W;&Q(Q;Ak) C WEPI(; AF).
Clearly, since © has finite measure and p < g, dWy'(Q; A1) € WEP9(Q; AF) also. Now
let w € wa’p’q(Q;Ak). Since w € L7(Q;AF), by Hodge decomposition theorem there exists
a € Wi A¥1) and 8 € W,9(€; A+1) such that

w=da+ 5.

Now we first show that 68 € WE(Q; AF).

Indeed, §(65) = 0 in the sense of distributions. Also, since € is bounded and p < ¢, 083 €
L1(Q; AF) = 68 € LP(; AF). Also, since dw = d(da) +d(68) = d(6B) and dw € LP(Q; A*+1), we
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have d(63) € LP(; A¥), implying 63 € WP (Q; AF). Again, we have, 0 = vAw = vAda+vASB =
v AdS on 012, since o € W%’q(Q; AF=1) implies v Aa = 0 on 9, which in turn implies v Ada = 0
on 0N (cf. theorem 3.23 in [21]).

Now since v A da = 0 on 92 and d(da) = 0 in the sense of distributions, by theorem 2.47 there
exists 0 € W14(Q; A¥=1) such that,

df = do in €,
=0 on 0f).

Hence, we have,
w=df+p,

with 638 € Wg’ff(Q;Ak) and § € W, 9 A*1). The decomposition is clearly a direct sum

decomposition. The L? orthogonality is also obvious. This concludes the proof. m

Proceeding analogously, we also have the dual statement.

Theorem 2.53 Let 1 < k< n—1, let Q CR"™ be open, bounded, smooth and contractible. Let
l<p<g<p'<oifp<norl<p<qg<ooifp=n. Then there exists a topological direct
sum decomposition

WP AF) = Wok (0 A%) @ W5 (@A),

where p* = nn—z) is the Sobolev conjugate exponent of p. Moreover, if p < n and 2 < p < q¢ <

pf<ooorifp>=mnand2 < p<q<oo, then the decomposition is orthogonal with respect to

the L? inner product.
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Part 1

Direct Methods in Calculus of

Variations for Differential Forms
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Foreword to part I

The principal aim in this part is to develop a framework for applying the direct methods in
calculus of variations to minimization problems involving differential forms. The framework for
classical direct methods in vectorial calculus of variations is already well developed and by now,
standard. However, as we shall see, the special algebraic features of differential forms demand

independent attention.

The main goal in this part is twofold: firstly, to show that a framework for direct methods for
diffential forms is indeed possible and can be developed independently of the classical framewortk.
Such a theoretical pursuit is indeed worthwhile, as we shall also see that the resulting theory
is quite distinct, i.e contains a lot of features entirely absent from the classical one and is quite
rich and interesting in its own right. Secondly, this analysis would also show that in a way, the
language of differential forms is the more natural of the two frameworks. The determinants and
the minors of the Jacobian matrix already play a central role in classical vectorial calculus of
variations. We shall put these results into perspective by showing that it is actually the exterior
product that should be given this central conceptual role, and determinants and the minors are

nothing but particular examples of this general structure.

The material in this part is divided into three chapters. In chapter 3, we shall start carrying
out this program of building a framework for direct methods for the case of functionals which
depend on exterior (or interior) derivatives of a single differential form. This program will be
carried out quite comprehensively, yielding a more or less complete picture in this case. In
chapter 4, we shall focus on functionals depending on exterior derivatives of more than one
differential forms. Here however, the main focus is the semicontinuity results which generalize
the classical semicontinuity theorems in vectorial calculus of variations. These analysis mainly
try to make precise the sense in which the language of differential forms should be the more
natural one in calculus of variations. We shall indeed take the shortest route to the semicon-
tinuity results. The analysis which we shall undertake for functionals of exterior derivatives of
single differential forms will not be carried out completely for functionals depending on several
forms. But such an analysis would probably be quite rewarding. We conclude this part with
chapter 5, where we discuss the scope of possible generalizations to other type of functionals.
Unfortunately, we shall see that the basic results that we can derive already shows us that such
generalizations would not yield anything essentially new at the level of ‘quasiaffine’ functions.

So we shall confine ourselves mostly to presenting those basic results in chapter 5.
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Chapter 3

Functionals depending on exterior derivative

of a single differential form

3.1 Introduction

In this chapter we set ourselves the task of developing a framework for applying the so-called

‘direct methods’ in calculus of variations to minimization problems for integral functionals of

/Q f(dw),

where 1 < k < n are integers, f : A¥ — R is a continuous function and w is a differential k — 1-

the form

form on (). Before we begin, it will be helpful to take a moment to understand exactly what
we are trying to accomplish. The framework for direct methods in classical vectorial calculus

of variation concerns itself with minimization problems for functionals of the form

/Q F(V).

where N > 1 is an integer, f : RV*® — R is a continuous function and u : @ ¢ R® — R is
a vector-valued function. The most important convexity condition that ensures the existence
of a minimizer, in case of suitable growth assumptions on f is called quasiconvexity. The
literature for this problem is huge and constitutes the main body of the existing theory (see
[25]). However, though attempts to generalize this results to differential operators more general
than the gradient has met with some success, the resulting theory is in no way as complete and
comprehensive as for the case of the gradient. Such generalizations stems from the observation

that curl(Vu) = 0. The basic idea is to study minimization of functionals of the form
/ f(o), with the constraint A¢ = 0 in €,
Q

where A is a first-order differential operator. In the terminology of calculus of variations, the
crucial convexity notions in this case is called A-quasiconvezity (see [22] and [23], also [29]). In
the case of the gradient the operator A is just the curl and in the case we are interested in, A
is just the exterior derivative d, by virtue of the identity dd = 0. But only a few theorems in

the gradient case has an analogue in this general case. If we suppose that the operator A has a
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special structure, i.e there exist another first order differential operator B such that ABv = 0,
i.e the range of B is contained in the kernel of A, the corresponding important convexity notion
is called A — B-quasiconvexity (see [22], [23], [26]). Clearly, in the classical gradient case, this
operator B is the gradient operator and in our case, it is the operator d. However, even with
this stronger assumption the situation is not much better. Though it is possible to prove the
analogues of a few more results (see e.g Murat[54]), but both the settings are still too general
for obtaining a complete characterization theorem of either A-quasiaffine functions or A — B-
quasiaffine, which is crucial for generalizing another extremely important related convexity
notion, called polyconvexity in the case of the gradient. So our goal is precisely to show that
it is possible to develop an analogous, comprehensive theory if we restrict our attention to the

operator d or 8.1

Also we can expect that the theory will have new features due to the special algebraic struc-
ture of the exterior product, which are absent in the vectorial calculus of variations, where the
relevant algebraic structure is that of the tensor product. It is also possible to obtain a precise
relationship between the notions of convexity introduced in this case, namely ext. polycon-
vexity, ext. quasiconverity and ext. one convexity with the classical notions of polyconvexity,

quasiconvexity and rank one convexity respectively.

The rest of the chapter is organized as follows. We begin with section 3.2, where we define
the appropriate convexity notions and derive a few of their properties. In section 3.3, we prove
the characterization theorem for ext. quasiaffine functions. Section 3.4 explores the relations
between these convexity notions in detail both for general functionals and the important special
case of quadratic functionals. Section 3.5 deals the question of the precise relationship between
these convexity notions and the classical ones. Finally, the chapter ends with section 3.4, where
semicontinuity issues are discussed and the existence theorem for minimization problems with
ext. quasiconvex functionals are obtained. The crucial point for these existence theorems are
that growth assumptions on functionals yields only a bound for the L? norm of dw, but not for
Vw. However, this can be circumvented when the functional depend on dw, but not explicitly

on w.

3.2 Notions of Convexity
3.2.1 Definitions
We start with the different notions of convexity and affinity.

Definition 3.1 Let 1 <k <n and f: A* (R?) = R.

(i) We say that f is ext. one convex, if the function

g:t—=g(t)=fE+tanp)

1Some other and related attempts to generalize quasiconvexity, e.g in the setting of elliptic complexes, Carnot
groups etc have been tried before (cf. [32], [61]).
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is convex for every & € AF, o € A and p € A*~1. If the function g is affine we say that f is

ext. one affine.

(ii) A Borel measurable and locally bounded function f is said to be ext. quasiconvex, if

/Q F (€ +dw) > f (€) meas(Q)

or every bounded open set Q, for every & € A* and for every w € W Q; A1) | If equality
0

holds, we say that f is ext. quasiaffine.

(11i) We say that f is ext. polyconvex, if there exists a convex function
F AP s A%F oo ARE R

such that

If F is affine, we say that f is ext. polyaffine.

Remark 3.2 (i) The ext. stands for exterior product in the first and third ones and for the

exterior derivative for the second one.

(ii) When k is odd (since then £° = 0 for every s > 2) or when 2k > n (in particular when
k=mn ork=mn—1), then ext. polyconvezity is equivalent to ordinary convezity (see Proposition

3.16).

(iii) When k = 1, all the above notions are equivalent to the classical notion of convexity
(cf. Theorem 3.12).

(iv) As in Proposition 5.11 of [25], it can easily be shown that if the inequality of ext.

quasiconvexity holds for a given bounded open set ), it holds for any bounded open sets.

(v) The definition of ext. quasiconvexity is equivalent (as in Proposition 5.13 of [25]) to the
following. Let D = (0,1)" | the inequality

[rerarzre
D
holds for every & € A* and for every
wE W;éﬁo (D;Ak_1> = {w e Wwhe (D;Ak_1> tw D- pem’odic} .
We now present the corresponding definitions when d is replaced by 6.

Definition 3.3 Let 0 <k <n—1 and f: A¥ (R") — R.

(i) We say that f is int. one convex, if the function

g:t—=g@)=f(§+tasp)

is convex for every & € AF, oo € AY and B € AFTL. If the function g is affine we say that f is

int. one affine.
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(ii) A Borel measurable and locally bounded function f is said to be int. quasiconvex, if

/Q F(€+6w) > f () meas(Q)

for every bounded open set Q, for every & € A* and for every w € VVOI’Oo (Q;Ak“) . If equality

holds, we say that f is int. quasiaffine.

(11i) We say that f is int. polyconvex, if there exists a convex function
F o AP F o A2007R) L AR/ (=R R) R

such that
J() = F (46, (:)%, -+ , (s)ln/ =)

If F is affine, we say that f is int. polyaffine.

There is a natural correspondence between the two sets of definitions, as highlighted in theorem

3.5. To state the theorem, we first need another definition.

Definition 3.4 Let 1 <k <n and f : A¥ (R") — R. The Hodge transform of f is the function
fe : AP7F(R?) = R defined as,

fe(w) = f(xw), for allw e A" F(R")
Theorem 3.5 Let 1 <k <n and f: A¥(R") = R. Then,

) is ext. one convex if and only if f« is int. one convex.
Y

(ii) f is ext. quasiconver if and only if fi is int. quasiconvex.

(iii) f is ext. polyconvex if and only if fy is int. polyconvex.

(i) f is convex if and only if f« is conver.

Proof

(i) f is ext. one convex if and only if

g:t—=gt)=f(E+tanp)

is convex for every ¢ € AF, o € A and B € AF~1. Also, f, is int. one convex if and only if

g:t—g(t) = fu(§+talp)

is convex for every ¢ € A" % a € Al and B € A"+t But,

gt)=f(€+tasf)=f(x(E+tasp)) = f(x§ +tanxp)
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and conversely,
gt)y=f(E+tanp)
—f (* ((—1)"““*1) « €+ tas(—1)"kD 4 5))
= fu (M=) Vg + tas(-1)"ED 5 )
The result follows.

(ii) This follows from the fact that,

| e = [ ferio = [ f(sera-10 )

and conversely,

[ oy = [ 7 (<140 w6+ a8((-17E D w)))

The result follows.
(iii) Immediate from the definitions.
(iv) Obvious.

This completes the proof. =

3.2.2 Preliminary lemmas

In this subsection, we state two approximation lemmas which will be used in sequel. We start

with the scalar version of the approximation lemma. For the proof, see Lemma 3.10 of [25].

Lemma 3.6 (Scalar approximation lemma) Letn € N, a <b, o, € R", t € [0,1] and let
Uq g : R — R" be defined as

uq,g(z) = (ta+ (1 —t)B)x, for all z € R.

Then, for every e > 0, there exist u € Aff jicce ([a,b]; R™) and disjoint open sets I,,1g C (a,b)
such that

1. meas(I,) = t(b — a) and meas(Ig) = (1 —t)(b—a),
2. u(a) = tapla) and u(®) = uas(b),

3. ||u— Ua,BHLOO([a,b]) <€, and

o) oa, ifw € L,
+ u(x)_{ 8, ifxels.

We now extend Lemma 3.6 for differential k-forms. See Lemma 3.11 of [25] for the case of the

gradient.
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Lemma 3.7 Let 1 < k < n, t € [0,1] and let o, 3 € A* be such that o # B and o — 3 is
ext.one-divisible. Let  C R™ be open, bounded and let w: Q@ — A1 satisfy

dw=ta+ (1-1)8, in Q.

Then, for every € > 0, there exist w, € C! Q; Ak’l) and disjoint open sets Qy,Slg C € such

piece (
that
1. |meas(£2,) — t meas()| < € and | meas(Qg) — (1 —t) meas()| < e,

2. we = w, in a neighbourhood of 02,

3. |lwe — wllLeo () <6,
) Qq,
boduwy =] @ ITE
B, if x e Qg,

5. dist (dwe(z); {ta+ (1 —t)B : t € [0,1]}) <€, for all z € Q a.e.

Proof Let € > 0 be given. We recall that a k form « is said to be one-divisible, ext.one-divisible
or one-decomposable, if there exist a € A! and b € A*~! such that o = a A b. Now since o — 3
is 1-divisible, there exists @ € A*¥~1\ {0} and v € A, ||v|| = 1 such that

a—fF=vAw. (3.1)

We now consider two cases. In the first case, we assume that

Case 1. v = ¢l

Note that, by writing €2 as the union of cubes parallel to co-ordinate axes and a set of

small positive measure and by setting w. = w on the set of small measure, we may assume that
Q=(0,1)"
Let Q. CC Q, let n € Affyiece (22) and let L > 0 be such that

meas (2 — Q) < € and suppn C Q, (3.2)
0<n(z) <1, forall z € Q, (3.3)
n(x) =1, for all x € Q, and (3.4)
L
|Dn(x)|| < —, for all z € Q\ Q¢ a.e. (3.5)
€

We invoke Lemma 3.6 at this point. Let us choose §,
2
O<5<min{e,L}. (3.6)

With this 0, using Lemma 3.6, we find u € Affpicce ([O, 1]; Ak’l), where A¥~1 = AF=1(R™), and
two disjoint open sets Q1,9 C (0, 1) such that

QU0 =[0,1],
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meas (1) =t and meas (Q2) = (1 — ),

u(0) = u(1) =0,
[[wll oo (0,1 < 6 and (3.7)
()= LTI Hsey (38)
—tw, if s € Qo.

Note that, we have applied Lemma 3.6 by setting
a=(1—1t)wand g = —tw,

in Lemma 3.6.

We now define ¢ : [0,1] x R*t — AF=1 by
Y(x) = (x1, ..., 2n) :=u(xy), for all z € [0,1] x R,

Therefore,
dip(x) = e' A/ (1), for all 2 € [0,1] x R*™! ae.

Indeed, writing

u(s) == Z ar(s)dz’, for all s € [0, 1],

TeTk-1

we have

P(x) =u(z) = Z ar(xy)da!, for all z € [0,1] x R™ L,
TeTk-1
Hence,
aa[ 1 I
dy(z) = Z %(xl)da: A dx
1

IeTk-1

= da' A ( Z a}(:cl)dxl) =e! A/ (21), forall z € [0,1] x R* ! ae.
TeTk-1

Therefore, it follows from Equations (3.1) and (3.8) that

_ 1 ! _ (1—t)(()é—6), if.ZEGQl X (Oal)n_l’
lz) = e nule) = { —t(a—B), ifzeQx(0,1)" (39)
Therefore,
dy 4+ dw € {a, f},a.e. in Q. (3.10)

Finally, we define w, : = [0,1]* — A*~1 by

we(m) :==n(z)((x) + w(x)) + (1 — n(x))w(z), for all x € Q.
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We now show that w, satisfies the conclusions of the lemma with
Qo ={r€Q 21 €W} and Qg :={z € Qc: 21 € W}

Indeed, in a neighbourhood of 01, it follows from (3.2) that we = w. Furthermore, using
Equations (3.3), (3.7) and (3.6), we deduce that

|we = wll Lo () = MYl Lo (@) < Y]l Loe() < < e
We now calculate dw.. To show this, we note that
dwe = dn AN + ndy + dw, a.e. in Q.

Using Equations (3.4) and (3.9), we find that

in Q
dwe = dip +dw =4 ¢ e (3.11)
B, in Qg.
It remains to prove that
dist(dwe; co{a, B}) < ¢, a.e. in . (3.12)

Since
dw=ta+ (1 —-1t)p € co{a, B}, in Q,

it follows from Equation (3.10) that
ndy + dw = n (dy) + dw) + (1 — n)dw € co{a, B}, in Q.

Furthermore, using Equations (3.5) and (3.6), it is easy to check that

L
ldn Al oo ey < Nl oo @y 1| ooy < Z0 S

which proves Equation (3.12). This proves the theorem for the first case. We now consider the

general case.
Case 2. General v.

Let T € O(n) be such that T*(v) = e!. Let us define
QF :=TYQ),a* := T*a, and §* := T*B,
where T™ is the pullback of 7. Note that,

o = =T(a-p)=T"vAw)=Tv NT"®
=T W) AT G =e' NT*G.

Using Case 1, we find w* € C!

Licce (% A*1) and disjoint open sets 2., Q5. C Q" such that

1. |meas (€f.) — t meas (2*) | < € and | meas (QE) — (1 —t)meas ()| <,
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2. w! = w*, in a neighbourhood of 9Q*, where w* satisfies
dw* =ta* + (1 —1)3*, in Q.

3. [lws _W*”Loo(W) <6

o, ifzeQ.,

4. dw’(z) =
(@) { 5%, ifl'GQ;*, and

5. dist(dw?(x); co{a™, f*}) < ¢, for all x € QF a.e.

Then, it is easy to check that the function w, € Aff;cce (ﬁ; Ak_l) defined as
we(z) == ((T")*w}) (z), for all z € Q,
satisfies all the desired properties. To prove this, it is enough to observe that
dwe = (TY)*dw*, a.e. in Q.

This proves the theorem. m
Now we present an interesting observation which we will not need, but nonetheless we prove it

here in full. See Ball-James [7] for the case of the gradient.

Proposition 3.8 Let 0 < k < n—1, a,8 € A*1 and Q C R™ is open, bounded, smooth and
contractible. Then there exists w € W1 (Q; AF) satisfying

dw € {a, B} a.ein Q,

taking both values, if and only if a A (o — B) = 0 for some a € A

Proof (=) Define
Qo ={reQ:dov(z)=a} and Qp:={recQ:dw(z)=/}.

Also set

o) = wlz) -

Note that ¢ € W1>(Q; A¥) and

T 1(3:45) for every x € Q.

o — in Qg,
do = 5
0 in Q3.

Thus d¢(z) = xq, (x) (o — ) . Since xq, () is not constant, there exists p € C2°(£2) such that,

ai= [ xa.(0)Vplx) £0
Q

Clearly we can also assume |a| = 1.
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Now we claim that a A (o — 3) = 0. Indeed, we have,
an(a—p)= /Q Xou (£)Vp(x) A (a - B) = /Q V() A d(x) = /Q 4(Vo(z) A d(z)).

Since Vp(x) A ¢(x) € Wy (Q; AFH1), we obtain the claim by integration by parts .

(<) Conversely, suppose a A (o — 3) = 0 for some a € A'. Then there exists b € A* such that
a— ) =aAb. Now we find u € WH°(Q) such that

Vu € {a,0} a.e. in Q,

taking both values. Now we define

w(z) = u(z)b+ (xap)  for every x € Q.

k+1

Then w € W°(Q; A¥) and we have, for a.e. x € Q,
dw=VuNb+={anb0}+ 5 ={pF}

This finishes the proof. =

Remark 3.9 The natural question that what we can prove if dw takes s distinct values a.e. for
small s > 2 would be an interesting question worth looking into. In the classical case, this is
addressed by Sverdk [62], [64] and Zhang [75] for the case s = 3, Chlebik-Kirchheim [19] for
s =4 and Kirchheim-Presiss [41] for s > b.

3.2.3 Main properties
The different notions of convexity are related as follows.
Theorem 3.10 Let 1 <k <n and f : A¥ (R") — R. Then

f convex = f ext. polyconver = f ext. quasiconvex = f ext. one conver.

Moreover if f : A (R™) — R is ext. one convex, then f is locally Lipschitz. If, in addition f is
C?, then for every € € A¥, o € A and B € AF1,

Remark 3.11 (i) As already pointed out, when k is odd or when 2k > n (in particular when

k=mnork=mn-—1), then ext. polyconvexity is equivalent to the classical conveity.

(ii) Since ext. one convex functions are locally Lipschitz continuous so are ext. one quasi-

convex or ext. one polyconvex functions.
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Proof (i) In view of Theorem 3.54, the result follows at once from the general fact (see Theorem
5.3 in [25])

f convex = f polyconvex = f quasiconvex = f rank one convex.

However, we will also provide a direct proof of these facts here.

Step 1. The implication
f convex = f ext. polyconvex

is trivial.

Step 2. The statement
f ext. polyconvex = f ext. quasiconvex

is proved as follows. Observe first that if £ € AF and w € W&’OO (Q; Ak’l) , then
/ (£ +dw)® = & meas (Q), for every integer s. (3.13)
Q

We proceed by induction on s. The case s = 1 is trivial, so we assume that the result has already

been established for s — 1 and we prove it for s. Note that

(€4 dw)® = EA(E4dw)* " + dw A (€ + dw)®
= EA(E4dw) T d |w A (E+dw) T
Integrating, using induction for the first integral on the right hand side and the fact that w =0

on 0 for the second one, we have indeed shown (3.13). We can now conclude. Since f is ext.

polyconvex, we can find a convex function
F o AF x AZF <o AVEE R

such that
F© =F(&€,....gM).

Using Jensen inequality we find,

: : ! [n/k]
meaSQ/fzf(£+dw) ZF(rneasQ/Q<£+dw)7”"meaSQ/Q(ngdw) )

Invoking (3.13), we have indeed obtained that

/Qf (€ +dw) > f(€) meas,

and the proof of Step 2 is complete.
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Step 3. Let f: AF (R") — R be ext. quasiconvex and let £ € A*¥, a € A', b € AF~! be fixed.
We need to show that the function

g:t—=g(t)=f(E+tand)
is convex. To show this, let A € [0,1], ¢, s € R. We shall show,
gt + (1= N)s) < Ag(t) + (1 = A)g(s).
But this is equivalent to showing that
fE+ A+ (1 =N)s)anb) < Af(E+taAb)+ (1 =N f(&+ saAb).

We assume t # s, as otherwise the inequality is trivial.
Using Lemma 3.7, we find disjoint open sets €21, C 2 and ¢ € Wol’OO(Q; AF=1) such that

1. | meas(21) — Ameas(2)| < € and | meas(€2) — (1 — \) meas(Q)| < e,
2. [|9llLe(q) < o0,

3. dé(x) (L=XN(t—s)aAnb, ifze,
: x) =
ANt —s)anb, ifxe Q.

Since f is ext. quasiconvex, we have,
/ FE+ M+ (1—XN)s)aAb+ do)
Q
= fE+M+ (L =Ns)anb+ (1 —=X)(t—s)aAb)
Q1

+ fE+ A+ (1= N)s)aAbA(t — s)a AD)
Q2

—|—/ FE+ A+ (1 =XN)s)aAb+do)
Q\(21U9Q2)
=meas(Q)f (£ + ta A b) + meas(Qa) f(§ + sa A D)

+/ FE+At+ (L= N)s)aAb+dp).
Q\(Qlqu)
But we have,

meas(Q \ (21 UQs)) = Ameas(Q2) — meas(Q21) + (1 — A\) meas(£2) — meas({23) < 2e.
Also, we have,

meas(21)f(E+taNnb) < Ameas(Q)f(§ +taAb)+ef(E+tand), if f(E+tand) >0,
meas() f(€ +ta Ab) < meas(Q)f(E+taAb) —ef(§E+tand), if f(€+tand)<O.
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Similar inequalities hold for meas(Q2)f(§ + sa A b). Combining them and letting ¢ — 0, we

obtain,

meas(Q) f(§ + (At + (1 — N)s)aAb) < /Qf(g + M+ (1 —=XN)s)aAb+ do)

Ameas(Q) (€ +ta Ab) + (1 — X)) meas(Q2) f(€ + sa A D).

This proves the result.

(ii) The fact that f is locally Lipschitz follows from the observation that any ext. one convex
function is in fact separately convex. These last functions are known to be locally Lipschitz (cf.
Theorem 2.31 in [25]).

(iii) We next assume that f is C2. By definition the function

g:t—=gt)=[fE+tanp)

is convex for every £ € AF, o € A and 8 € A*~1. Since f is C?, we get the claim from the fact
that ¢” (0) > 0. m

There are some cases where all the different notions are equivalent.

Theorem 3.12 Let k=1,n—1,n ork =n—2 and n odd and let f : A¥ (R") = R. Then
f conver < f ext. polyconver < f ext. quasiconver < f ext. one convex.

Remark 3.13 The last result, i.e. when k = n — 2, is false when n is even, as the following
simple example shows. Let f : A? (R4) — R be defined by

f({):<el/\62/\63/\e4;§/\£>.

The function f is clearly ext. polyconvex but not convex. However as soon as n > 5 and
k =n—2 (since then 2k > n), then, as already mentioned, convexity and ext. polyconvexity are

equivalent. However this is not the case with ext. quasiconvexity (see Theorem 3.30 (iii)).

Proof In all cases under consideration any ¢ € AF can be written as (see Remark 2.11)

E=anp

with & € A! and 8 € A1, The result then follows at once. m

We now give an equivalent formulation of ext. quasiconvexity.

Proposition 3.14 Let f : A¥ — R be continuous, 1 < p < 0o, ¢ > 0 be such that, for every
£ e AF,
F Ol <ecl+[EF).

The following two statements are then equivalent.
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(i) The function f verifies
[ 7+ o) = 1 (©measo
Q

1, Ak
for every bounded smooth open set Q C R™, for every & € A* and for every w € Wy ™ (Q, AP 1) .

(1) For every bounded smooth open set Q@ C R", for every & € AF and for every w €
Wi (95 A1)

/Qf(§+dw) > f (&) meas Q.

Remark 3.15 Given a function f : A¥ — R the ext. quasiconvex envelope, which is the largest

ext quasiconvex function below f, is given by (as in Theorem 6.9 of [25])

Qeatf (¢) = inf {me; a /Q fE+dw) i we Wy™ (Q;Ak—1>}

:inf{ ! Af(§+dw):w€Wi$°<Q;Ak_l>}.

meas (2

Proof (i) = (ii). Let ¢ € I/Vol’oo (Q;Ak’l). Appealing to Theorem 2.43, we can find w €
W(;l”%) (Q; A*1) such that
dw=dy in )
dw=0 inQ
vAw=0 on 9.

The result follows by approximating w by W; ;" forms, using the bound on the function f.
(ii) = (i). Let ¢ € W;%x’ (Q; A*=1) . Then, by Theorem 2.47, we can find w € W, P (Q; A1)

such that
dw=dy in Q
w=0 on 0.

The result follows by approximating w by VVO1 > forms, using the bound on the function f. m

We finally have also another formulation of ext. polyconvexity.

Proposition 3.16 Let f : A* (R") — R.
(i) The function f is ext. polyconvex if and only if, for every & € A¥, there exist cs = ¢, (€) €
AR 1 < s < [n/k], such that

[n/k]
FO) =+ (ea(@sn® =€), for everyn € A",
s=1

(ii) Let

[n/k]
7 = dim(A" x X +ee X ) E ks

s=1

Then the function f is ext. polyconvex if and only if, for any collection {t;,&; Z:+11 C Rt x Ak,
S
with Ez:rll t; =1 and Zztll tig® = (Z;rll ti&) ; for every 1 < s < [n/k],
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we have
T+1 T+1
f (Z tz‘fi) <> tif (&)
i=1 i=1
(iii) If either k is odd or 2k > n, then ext. polyconvezity is equivalent to ordinary convexity.

Proof (i) (=) Since f is ext polyconvex, there exists a convex function F' such that
F being convex, there exist, for every &€ € A*| ¢y = ¢, (€) € AF®, 1 < s < [n/k], such that
[n/k]
OENEE) :F(n,--- ,n[”/’“]) —F(fw" ,f[”/’“]) > Y {esin® =€)
s=1

as claimed.

(<) Conversely fix £ € AF and let, for 8 € AF x ... x AlP/kF

[n/k]
FO)= s GRS i (es ()50 (& €M)

OENk X ... x Aln/k]k

Clearly F' is convex. Then it is easy to see, as in Theorem 5.6 in [25], that

(&) =F (& )

and thus f is ext. polyconvex.

(ii) Like (i) above, this is again a consequence of convexity and Carathéodory theorem
for convex functions on R% and d + 1-simplexes. The proof is essentially the same as that of
Theorem 5.6 in [25], with the obvious modifications.

(iii) When k is odd, then &° = 0 for every s > 2 and similarly when 2k > n. The result

follows at once from this observation. m

3.8 The quasiaffine case

3.3.1 Some preliminary results

We start with two elementary results.

Lemma 3.17 Let f: A¥ (R") — R be ext. one affine with 1 < k < n. Then

N
P ) maina) = F@+ Sulf € +aina -1 @)

for every t; € R, € € A¥ a; € A¥=1 a € AL
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Proof Step 1. It is easy to see that f is C! (in fact C>°). We therefore find

f&+tana)=f()+t(Vf(§);aNa)
f&+ana)=[f)+(Vf(§);ana

and thus

f&+tana)=fE)+tlf(E+ana)—f(&)].

Step 2. Let us first prove that
f€+ana+pBra)+f)=Ff(E+ara)+f(E+BNa).
First assume that s # 0. We have, using Step 1, that

f+sana+pBAa)

=f(§+s (oz—i—iﬁ) /\a)
1@+ |1 e+ (s 58) na) - 1)
and hence, using Step 1 again,

f+sana+BAa)
—r@+s{rEerana+iiferanatsna - reranal-re]
=@ +slfE+anag = fOI+[f(E+anatBfra) = [f(E+ana).

Since f is continuous, we have the result by letting s — 0.

Step 8. We now prove the claim. We proceed by induction. The case N =1 is just Step 1.
We first use the induction hypothesis to write

N
f <£+Ztiai/\a>
=1

N-1
:f<§+tNOtN/\a—|— Ztmxﬂ\a)

=1
N—-1

=f(§+tNaN/\a)+Zti[f(f—kt]vow/\a—kai/\a)—f(§+tNozN/\a)].
i=1
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We then appeal to Step 1 to get

f<£+ZjV1tiama>
=) +in[f(E+anAa)— (&)

+NZ_1751'{ fl+aina)+ty[f(E+aihatayAa)—f(E+a;Na) }
i=1 —f &) —tn[f(E+anAa)— f(E)]

and thus

N N
Fe X tana) = 1© + a6 +aina) - 1)

N—1
f+aNa+anyha)—f(E+a;Na)
t t; .
Hin { —f(E+anna)+ f(§) }

i=1

Appealing to Step 2, we see that each term in the last term vanishes and therefore the induction

reasoning is complete and this achieves the proof of the lemma. m

We have as an immediate consequence the following result.

Corollary 3.18 Let f: AF (R") — R be ext. one affine with 1 < k < n. Then

[f(E+tana+BAb)—fEOI+[f(E+BAa+and)— f(§)]
=[f+ana)=fOI+[fE+BNa)—f(&)]
+[f(E+anb) = fEI+[fE+BAL)—f(E)].

for every € € A*, a, 3 € AF=1 a,b e AL

Proof Step 1. It follows from Lemma 3.17 that

fl&+ana)+fE+BNa)=fE)+[(E+(a+p)Aa
FE+anb)+fE+BAL)=F(E)+f(E+(at+B)Nb

and thus

fE+ana)+fE+BAa)+ f(E+anb)+ f(E+LNAD)
=2f )+ f(E+(at+P)Aha)+ f(E+(atB)AD).

Step 2. Observe that

aNa+pANb=(a+B)Na+ LA (b—a)
BAa+arb=(a+B)Na+aN(b—a)
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and thus

f+ana+BAb)+fE+BNa+anDd)
=f+@+B)rnat+BA(b—a)+ f(E+(a+B)Aatan(b—a)).

We therefore have from Lemma 3.17 that

fE+ana+BAD)+f(E+BANa+aNnD)
=f+(@+B)ANa)+ fE+(a+tB)Aa+ (a+B)A(b—a))
=f+(a+B)Aa)+ f(E+ (a+B)AD).

Comparing Step 1 with the above identity, we have indeed obtained the claim. m
We also have another corollary which we will not be needing in the sequel, but we nonetheless

present it here in full.

Corollary 3.19
N N N N
D> {fwraina) - fw}=f|w+ (Z > M| ] = Fw) (3.14)

for all f: A¥ = R ext. one affine with 1 < k <n and any w € A*, a; € A! for all1 <i < N,
ajGAk’lforalllgjgNandanyNZl.

Proof
N N
DN {flwtainag) - f(w)}
i=1 j=1
n N
= Z flw+a; A (Z a;)) — f(w) [ By Lemma (3.17) |
= j—N
=f(w+ (Z a;)) N(» «j))— f(w) [By Lemma (3.17) again ]
i=1 j=1
[

3.3.2 The characterization theorem

Now we are going to present the characterization theorem for ext. quasiaffine functions. The
proof given here is, in a way, the cleanest direct proof of this result and is essentially the proof
in [10]. Another proof, using the result of classical vectorial calculus of variation can be found in
section 3.5, which is the one in [11]. Another direct algebraic proof, which is more constructive

but also a bit messy, can be found in [12].

Theorem 3.20 Let 1 < k < n and f : A¥(R") — R. The following statements are then

equivalent.
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(i) [ is ext. polyaffine.

(ii) f is ext. quasiaffine.

(iit) [ is ext. one affine.

(iv) There exist c; € A**, 0 < s < [n/k], such that, for every & € AF,

[n/k]
FE) =) (es6%).

s=0

Remark 3.21 (i) €0 € A° is defined to be 1 for any € € A,
(ii) When k is odd (since then & = 0 for every s > 2) or when 2k > n (in particular when

k=mn ork=mn—1), then all the statements are equivalent to f affine.
(iii) In the terminology of Ball [4], these fucntions are precisely the ‘Null Lagrangians’ in this

context.

Proof The statements
follow at once from Theorem 3.37. The statement
() = (i)
is a direct consequence of the definition of ext. polyconvexity. So it only remains to prove
(1ii) = (iv).

We divide the proof into two steps.
Step 1. We first show that f is a polynomial of the form

[n/K]
FO=Df(&) where [ (&)= Y cp.pép--n (3.15)
r=0 I} I3
with Crlry € R and the ordered multiindices
Ili:(l%v ’Zli)’ vlli:(zi’ 712)

have no index in common. Moreover each of the f; is ext. one affine. Once the above statement
will be proved we decide, in order to avoid any ambiguity, to fix the order in which we take the

ordered multiindices I ,1 ,-++, I} and we choose that
it <<

The present step will be obtained in the next two substeps.
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Step 1.1. We first prove that f must be a polynomial of degree at most n of the form

FEO=> 1 (3.16)
r=0

where the f; are homogeneous polynomial of degree s and each of them is ext. one affine. So

let us show (3.16). We proceed by induction on n. The case n =1 is trivial. We write

En = E 51‘11'2...1‘k€1/\62/\"'/\61C
2<i1 << <n

so that
E= ) G NEPA AR HEN

2<ia< <1<

We therefore can invoke Lemma 3.17 to obtain

f€)=1rEn)+ Z Erigein [f(En FE N A Ae™) — f(En)]-

2<ia < <ip<n

We then apply the hypothesis of induction to

f(&n) and [f (§N+61/\6i2 /\~--/\ei") —f(§N)]

to get that both terms are polynomials of degree at most (n — 1). The fact that each of the fs

is ext. one affine is obvious, since the fs have different degrees of homogeneity.

Step 1.2. Each of the fs in (3.16) being a homogeneous polynomial of degree s we can write

S
koM

fs (€)= Z Crlrg 51; 95 (3.17)
I

where iy € R. We now claim that the ordered multiindices, in (3.17),
1 1 .1 . .
I = (11’... ,Zk)’... ng(zi’... ’@Z)

have no index in common, so in particular we deduce that the polynomial f has a degree at
most [n/k]. We proceed by contradiction and assume that one of the index appears more than
once, say r times, 2 < r < s. This means that there exist ordered multiindices J,i oo JE so
that

g 70

and the J,%,-~- ,J;, have one index in common say, in order not to burden even more the
notations (this can be achieved by relabeling), that this index is 1 and that it appears in the
first » multiindices J,% ,- -, Ji so that
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We then choose ¢t € R and

5=t§ie$+-§ieﬁ
a=1

a=r+1
in order to have

fJ%:"':fJ,Z:t and £J£+1:"‘:£J,f:1

while all the other coefficients {;m are 0. We therefore have according to (3.17) that

fs(@) =trep s

However, letting &y = >0, 41 e’k | we should have, since fs is ext. one affine and according to

Lemma 3.17, that fs (£) is linear in the variable ¢, more precisely

fs (5) :fs <§N+t Zng> :fs (éN)+t Z [fs (§N+6Jg) _fs (&V)] :

This is the desired contradiction. The result is therefore established.

Step 2. From now on we assume that f and fs are as in (3.15). So the theorem will be

proved if we can show that

fs (&) = {es:€7) - (3.18)

The above statement is equivalent to proving that the ¢ 111 defined in (3.15) satisfy

Co(1i13) = sgn (o) Crl..1; (3.19)

where ¢ is a permutation of the indices that respect the order defined in Step 1.

Step 2.1. Let us first show that (3.18) is equivalent to (3.19). The fact that (3.18) implies
(3.19) is obvious so we need to prove only the reverse implication. We fix a set of s distinct

ordered multiindices

We arrange them in increasing order and rename them as
Jo= Gt di) e Ji = G 2k -
More precisely, we have
A< << i< << << <G
and the set of indices are such that
INu---Uli=Jtu---UJi.
Now note that the coefficient of

1 s i1 i1 ] is
el N pnelh =T A Nl A ASIT A e A TR
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in £° is equal to

()Y sen(0) &, () o)

where the sum runs over all allowed o. Since we assume that (3.19) is true, we can infer from
(3.15) that we can define the coefficient of

1
.

in ¢, € AFS as )

Cri.gs .
sl Tk Ji

The claim then follows.

Step 2.2. Before concluding the proof, we observe that

s—1
fs (Z t; Oéz‘> =0
i—1

for any t; € R and where q; is any of the vectors of the standard basis of A*. This is a direct

consequence of the fact that fs is homogeneous of degree s and that

s—1
§= Z iy
i=1

has only (s — 1) coefficients that are non-zero.

Step 2.3. We finally establish (3.19) namely

CO’(I;-“IZ) = sgn (U) Crt..1;

where ¢ is a permutation that respects the ordering scheme, more precisely if

Senl
I
—
<.
——

\'S
e
SN—

7[2:@?’ ,ZZ)
then, for every 1 < m < s,
o(i) < - < o(@) and o(i}) <--- < o(if).

Note that it is enough to prove the result for the case where o is a k-flip (see A.3 for definitions
), since o respects the ordering, any such permutation can be written as a product of k- flips

(not uniquely, but parity is the same for any such decomposition). We want to show

Crjery = Co(1p13) » (3.20)

when o is a k-flip.
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Since o is a k-flip, we have that o flips two indices ifi and i/, with ¢; # ¢2. Note that,
from (3.15), we have

Crigs = [s (i: eIfyvn) = fs (i: TN A eikm) (3.21)

m=1 m=1

and
S

%@dﬁzﬂ(zyﬂwg=ﬁ<i}WWAmAJWO. (3.22)
m=1

m=1

We next apply Corollary 3.18 with fs in place of f (recall that fs is ext. one affine),

S
-q1 -q2 -m -m
a=¢e", b=e¢'"2, = g e A Nek
m=1
m#q ,q2

—_ —

-d1 -q1 -q1 42 42 P
a==xe1 A--Ae1t A Ae% and B=det A AeT2 A Nelk
and the signs are chosen in order to have
q1 -q1 -42 a2 -92 ;92
anNa=eclk = Ao neR and BAb=¢elk =€l ANl

Note that our choice of a, b, o, 3, implies that,

ﬁ@+aAa+ﬂAb%:ﬁ<§:&TA~wm@)
m=1

and

fs(f‘f’ﬂAa—l—a/\b):fs (Zea(im/\.../\eo(i}f)> .

m=1

We therefore obtain

[fs(+ana+BAb)—fs (] +[fs(E+BAa+and)— fs(E)]
=[fs(E+ana)—fs (O] +[fs E+BAD) — fs(&)]
+[fs €+ BNa) = fs (O + [fs (E+anb)— fs(E)]

But except for
fs(E+ana+BAb) and fs(E+BAa+aAb)

all the other terms are 0 by Step 2.2. We therefore find that

fsE+anha+BAb)=—fs(E+BNa+aAb)

Together with (3.21) and (3.22), this proves (3.20). This concludes the proof of Step 2.3 and
thus of the theorem. m
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Of course, we also have the following corresponding theorem.

Theorem 3.22 Let 0 < k < n —1 and f : A¥(R") — R. The following statements are then

equivalent.
(i) [ is int. polyaffine.
(ii) f is int. quasiaffine.
(iii) f is int. one affine.
(iv) There exist d, € AR 0 <5< [ﬁ] , such that, for everyn € AF,

Remark 3.23 As before, once again these fucntions are precisely the ‘Null Lagrangians’, in

the terminology of Ball [4], in this context.

Proof By virtue of theorem 3.5, f is int. one affine if and only if f, is ext. one affine and the

theorem follows using theorem 3.20. m

3.4  FEzamples

3.4.1 The quadratic case

The special case when f : A¥ — R is a quadratic form on A* deserves a special attention.

Some preliminary results

Before stating the main theorem on quadratic forms, we need a lemma. The proof of this lemma

is exactly analogous to Lemma 5.27 in [25] and is omitted.

Lemma 3.24 Let 1 < k < n, M : A¥(R") — A¥(R"™) be a symmetric linear operator and
[ AF(R™) — R be such that, for every € € A¥ (R"),

f(&) = (ME;¢).

The following statements then hold true.
(i) f is ext. polyconvez if and only if there exists B € A%* (R™) so that, for every & € AF (R™),

&) = (B:ENE).

(ii) f is ext. quasiconvez if and only if

/Qf(dw)zo

1,00 . —
for every bounded open set 2 and for every w € W, (Q, AF 1) .
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(iii) f is ext. one convez if and only if
fland)>0
for every a € A¥=1(R") and b € A* (R").

Remark 3.25 Clearly, f is convex if and only if f(£) > 0 for every € € AF.

Some examples in the quadratic case

We recall that a k form « is said to be 1—divisible if there exist a € A¥~! and b € Al such that
a=aAb.

Proposition 3.26 Let 2 < k < n — 2. Let a € A* (R™) be not 1—divisible, then there exists
¢ > 0 such that

F&) =€l —c({€)?

is ext. quasiconvex but not convex. If, in addition aNa = 0, then the above f, for an appropriate

¢, is ext. quasiconvex but not ext. polyconvex.
Remark 3.27 (i) It is easy to see that « is not 1—divisible if and only if
rank; [xa] = n.

This results from Remark 2.44 (iv) (with the help of Proposition 2.33 (iii)) in [21]. Such an «
always exists if either of the following holds (see Propositions 2.37 (ii) and 2.43 in [21])
-k=2o0ork=n—2andn > 4 is even,
-3 <k <n-—3 (this, in particular, implies n > 6).
For example
a=e' nePned et ned neb e A3 (RG)

1s not 1—divisible.

(ii) Note that when k = 2 every form a such that a A o = 0 is necessarily 1—divisible.
While, as soon as k is even and 4 < k < n — 2, there exists o not 1—divisible and such that

a A a=0; for ezample
a:61/\62/\63/\64+61/\62/\65/\66+63/\64/\€5/\66€A4(R6).

Proof Since the function is quadratic, the notions of ext. one convexity and ext. quasiconvexity
are equivalent (see Theorem 3.30 below). We therefore only need to discuss the ext. one

convexity. We divide the proof into two steps.

Step 1. We first show that if

- = sup {((a;a/\b>)2:]a/\b]:1}
C  aeAk—1 peAl
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then X
= < af?.
c

We prove this statement as follows. Let a; € A¥~!, b, € A! be a maximizing sequence. Up to a

subsequence that we do not relabel we find that there exists A € A¥ so that
as Nbs — A with |\ = 1.

Similarly, up to a subsequence that we do not relabel, we have that there exists b € A! so that

bs -
— b
|bs|
Since .
as Abg A — =0
|s]
we deduce that
AAND=0

Appealing to Cartan lemma (see Theorem 2.42 in [21]), we find that there exists @ € A*~! such
that

We therefore have found that

Note that % < |Oz|2 otherwise @A b would be parallel to a and thus a would be 1—divisible which
contradicts the hypothesis.

Step 2. So let
F©) = e —c(a:6)?.

(i) Observe that f is not convex since ¢|al? > 1 (by Step 1) and
fta)=12af (1 - c|a|2> :

(ii) However f is ext. one convex (and thus, invoking part (i) of Theorem 3.30, f is ext.

quasiconvex). Indeed let
g(t)=FfE+tanb)=|¢+tand’ —c((aE+tanb))’.

Note that
g" (t) =2 [la b = c((aa A b))

which is non-negative by Step 1. Thus g is convex.

(iii) Let « A @ = 0 and assume, for the sake of contradiction, that f is ext. polyconvex.
Then there must exist (cf. Lemma 3.24) 8 € A?* so that, for every & € A¥,

F(&) = (B;ENE).
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This is clearly impossible, in view of the fact that ¢ |a|2 > 1, since choosing £ = «, we get

f@)=laf* (1~ clof) <0=(;ana).

The proof is therefore complete. m

We conclude with another example.

Proposition 3.28 Let 1 < k < n, T : R® — R"™ be a symmetric linear operator and T™ :
AR (R™) — AF (R™) be the pullback of T. Let f : A¥ (R™) — R be defined, for every & € A*, by

f(&)=(T"(&):¢)-
Then f is ext. one convex if and only if f is convez.

Proof Since convexity implies ext. one convexity, we only have to prove the reverse implication.

Step 1. Since T' is symmetric, we can find eigenvalues {A1, -+, A, } (not necessarily distinct)
with a corresponding set of orthonormal eigenvectors {51, e ,6”}. Let {el, e ,e”} be the
standard basis of R™. Let A = diag (A1, -+, A,) and @ be the orthogonal matrix so that

Q" (67’) =eé, fori=1,---,n.
In terms of matrices what we have written just means that

T = QAQ'.

Observe that, for every i =1,--- | n,

T (') = (QAQY)" (1) = (@) (A" (@ (¢
= (@) (ne') = ()(6):&‘8?

This implies, for every 1 <k <mnand I € T",
T*(EI):T*(sil/\-~/\s"’“):T*(ei1) /\T* = H)\Z] el

Step 2. Since f is ext one convex and in view of Lemma 3.24 (iii), we have

£ = (I () 2y 2 0

and thus

||
I\/
o

1

(3.23)

<.
Il
—_
.
m
~
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Writing ¢ in the basis {51, e ,E”} , we get

1€) = (T (€):6) = <T* Sl |0y 5]af>

IeTk IeTk
= < doar(e): Y f> = < > (H Ai) 2D é>
IeTk IcTk IeTk i€l IeTk
S (H Az) @)
IeTk \iel

which according to (3.23) is non negative. This shows that f is convex as wished. m

A counterexample for k = 2 in the quadratic case
Theorem 3.29 Let n > 6. Then there exists a quadratic form f : A% (R") — R ext. one conver

but not ext. polyconvex.

Proof We first prove that it is enough to establish the theorem for n = 6. Assume that we
already constructed an ext. one convex function g : A? (Rﬁ) — R which is not ext. polyconvex.
In particular (cf. Proposition 3.16 (iii)) there exist (¢;,7;) € Ry x A% (R%) with > # = 1 so that

Y tiglm)<g (Z tml) and Yt = (Z tmz)s, s=2,3.

Define then o : A? (R") — A? (R%) to be

o(§)=o Z Gje' Nel | = Z Gije' Nel, for £ € A*(R™).

1<i<j<n 1<i<j<6

Finally let
[ (&) =g(0(8)-

This function is clearly ext. one convex, since g is so. It is also not ext. polyconvex, since
choosing & € A? (R") so that & = n; (i.e. all the components of & appearing in e’ A e/ are 0
whenever one of the i, is larger or equal 7), we get that o (§) = & = 7 (note that §§ = 0

whenever s > 4),

> tig(o (&) <g (a (Zt@)) and > 4 = (ZU&)S, §=2,--, [g} _

So from now on we assume that n = 6. Our counterexample is inspired by Serre [59] and
Terpstra [69] (see Theorem 5.25 (iii) in [25]). It is more convenient to write here £ € A% (RY) as

&= Z §§ et Nel.
1<i<j<6
So let
g = (&) + (&) + (@) + )+ )+ (@) +h©
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where

2

he) = (-8 -+ (@ -g+a) + (@ -6-9)"+ @)+
Note that g > 0. We claim that there exists v > 0 so that

FO=9g&—7¢

is ext. one convex (cf. Step 1) but not ext polyconvex (cf. Step 2).

Step 1. Define
fy:inf{g(a/\b) ca,be Al (R6)7 la A b = 1}-

We claim that v > 0. This will imply the ext one convexity of

&) =g(&)—vl¢f.

We proceed by contradiction and assume that v = 0. This implies that we can find a,b € A! (Rﬁ)
with |a A b| = 1 such that

1 2 4 5

aby—aby =0 a*bs —a’by =0

L o e a%bs — a’by = 0
abg—ab1:0 abg—ab4:0 3 6

2 3 5 6 abg—abgzo
ab3—al)2=0 abg—abg):()

(a1b4 — a4b1) — (a3b5 — a5b3) — (a2b6 — aﬁbg) =0
(a1b5 — a5b1) — (a3b4 — a4b3) + (albﬁ — aﬁbl) =0
(a264 — a4b2) — (a3b4 - a4b3) - (a1b6 - a6b1) 0.

Let us introduce some notation, we write

al by at by
a = a2 ’ b - b2 y a= CL5 ) B = b5
ad b3 ab b

Note that the first and second sets of equations lead to
allb and al|b.

We consider two cases starting with the generic case.

Case 1: there exist \, u € R such that
a=Ab and @=pub.

(The same reasoning applies to the case b = Aa and b = pa). Note that A # u, otherwise we
would have a = Ab and thus a A b = 0 contradicting the fact that |a A b| = 1. Inserting this in
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the third and fourth sets of equations we get

()\ — ,u) [blb4 — bgb5 — b2b6] =0
(A = p) [brbs — bsby + bibg] =

{ (A — 1) babs =0
()\ — ,u) [bgb4 — bgb4 — blbﬁ]

0
()\—,u)bgb(;:O 0

and thus, since\ # u,

bobs =0
b1bs — bgbs + bi1bg = 0

biby — b3bs — babg = 0
{ bsbe =0
baby — b3by — bibg =0

We have to consider separately the cases by = b3 =0, b5 = bg = 0, by = bg = 0 and b3 = b5 = 0.
Case 1.1: by = b3 = 0. We thus have

biby =0
b1bs + bibg =0
bibg = 0.

So either by = 0 and thus b = 0 and hence a = 0 and again this implies that a = pb which
contradicts the fact that |a Ab| = 1. Or by = b5 = bg = 0 and thus b = @ = 0 which as before
contradicts the fact that |a A b| = 1.

Case 1.2: bs = bg = 0. This is handled as before. More precisely

b1bs =0
b3bs =0
baby — b3by =0

Either by = 0 and thus b = @ = 0 which as before contradicts the fact that |[a Ab| = 1. Or

b1 = by = b3 = 0 and the same contradiction holds.

Case 1.8: by = bg = 0. We thus have

b1bs — b3bs =0
bibs — b3by =0
bsbs = 0.

So either b3 = 0 and we are back in Case 1.1 or by = 0 and thus b3bs = b1b; = 0 and this time

we are in Case 1.2.

Case 1.4: by = bs = 0. We therefore get

b1by — babg =0
bibe =0
babs — b1bs = 0.

Thus either bg = 0 and we are back in Case 1.2, or by = 0 and hence babg = boby = 0 which, as

before, is impossible.
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Case 2: b=0and @ =0 (or a = 0 and b = 0 which is handled similarly). This means that
a* =a® =a% =0 and b; = by = b3 = 0. We therefore have

a'bs — a’by + a'bg = 0

a2b4 - a3b4 — a1b6 =0.

1 3 2y
a2b5:0 ab4—ab5—ab6—0
a3b6:0

Four cases can happen a® = a®> =0, a®> = bg =0, a® = b5 = 0 and b5 = bg = 0.

Case 2.1: a® = a® = 0. We thus have

a1b4 =0
alb5 + a1b6 =0
a1b6 =0.

So either a! = 0 and thus @ = 0 which is impossible. Or by = b5 = bg = 0 and thus b = 0 which
again cannot happen.

Case 2.2: a®> = bg = 0. We thus have
a'by — adbs =0

a'bs —adby =0
a’by =0

which again cannot happen.
Case 2.3: a®> = bs = 0. We thus have
alb4 - a2b6 =0
a1b6 =0
a2b4 - ale = 0.

The same reasoning applies also.

Case 2.4: bs = bg = 0. We thus have

a1b4 =0
a3b4 =0
a2b4 — a3b4 =0.

As before this is impossible.

Step 2. We now show that f is not ext. polyconvex. In view of Lemma 3.24 (ii) it is
sufficient to show that for every o € A4 (RG) , there exists £ € A2 (RG) such that

£+ 5 lasEn8) <0.
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We prove that the above inequality holds for forms & of the following form
=3 > g nd
i=1 j=4

where
gi:b+d7 gézc_aa §é:a

G=c+a, &=0, =0

all the other 5; being 0. In other words
=(b+dernet+(c—a)el NP+ (a)el Neb

+(cta)e* Net +(b)e* ANeb +(c)e Aet + (d)ed Aed.

Note that
1
55/\52(02—a2)61A62A64/\65+(ac+a2—62—bd)elA62Ae4A66
ab—be)el AN Ae® A ed —|—( ac—bd —d*) e’ Ne* Net AP
ac)e! Ned Aet Aeb + (ad) et AeP Aed A el

+
+
+(—cd—ad)e* Ne3ANet Aed + (be) e Aed Net el
+

(
(
(=
(bd)e* Ned Ae® A ed
For such forms we have g (£) = 0 and therefore

F€) =167 = 7 [(b+ D +(c— ) + @+ (c+a)f + 82+ 2 + 2

moreover

1
(o ENE) =15 ? —a?) + aqaug (ac+ a® — b> — bd
2

+ a1256 (ab — be) + a1345 (62 —ac—bd — d2) + au3q6 (ac)
+ 1356 (ad) + a23a5 (—cd — ad) + azsse (be) + aasse (bd) -

We consider three cases.

Case 1. If a1946 > 0, then take a = c=d =0 and b # 0, to get

f(&)+ <a€A€> e + 5 <Oé§/\§>
= —y (2b2) — a1246b < 0.

Case 2. If aiysgs > 0, then take a =b=c =0 and d # 0, to get

/ (5) <O‘ N §> - (2d2) — a1345d2 < 0.

87



We therefore can assume that aj946 < 0 and a345 < 0.

Case 3. If a4 + 1345 < 0 (246 < 0, 1345 < 0), then take a =b=d =0 and ¢ # 0 to
get

f (5) + % <O‘;§ N 5) =7 (302) + (041245 + 011345) ¢ < 0.

We therefore assume aro46 < 0, 1345 < 0 and 945 + 1345 > 0. From these three inequalities

we deduce that ajo46 — 245 < 0, and then taking b =c=d =0 and a # 0, we get
1 2 2
6+ B (a;ENE) = =7 (3a”) + (1246 — v1245) a” < 0.
And this concludes the proof of the theorem. m

The main result for quadratic functions

We now turn to the main theorem.

Theorem 3.30 (Summary of the quadratic case) Let 1 <k <n, M : A*¥ (R?) — A* (R")
be a symmetric linear operator and f : A¥ (R™) — R be such that, for every & € A* (R™),

1 (&) = (Mé&e).
(i) The following equivalence holds in all cases
f ext. quasiconvex < f ext. one convex.
(it) Let k =2. If n =2 orn =3, then
f convexr & f ext. polyconver < f ext. quasiconvex < f ext. one conver.
If n =4, then
= .
f convex - f ext. polyconvex < f ext. quasiconvex < f ext. one conver
while if n > 6, then
= .
f ext. polyconvex - f ext. quasiconvex < f ext. one convex.
(iit) If k is odd or if 2k > n, then
f conver < f ext. polyconver.
(iv) If k is even and 2k < n, then

=
f convex o f ext. polyconvex.
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(v) If either 3<k <n—3 ork=mn—22>4is even, then
= .
f ext. polyconvex o f ext. quasiconvex < f ext. one convex.

Remark 3.31 (i) We recall that when k = 1 all notions of convezity are equivalent.

(ii) When k = 2 and n = 5, the equivalence between polyconverity and quasiconvexity

reMaIns open.

Proof (i) The result follows from Theorem 3.54 and classical results (see Theorem 5.25 in [25]).

It can, of course, be proved directly using Fourier transform in a completely analogous manner.

(ii) If n = 2 or n = 3, the result follows from Theorem 3.12. If n > 6, see Theorem 3.29. So
we now assume that n = 4 (for the counter implication see (iv) below). We only have to prove
that

f ext. one convex = f ext. polyconvex.

We know (by ext. one convexity) that, for every a,b € A! (R4)
fland) >0

and we wish to show (cf. Lemma 3.24) that we can find a € A* (R?) so that

(&) =z (a;6n¢).

Step 1. Let us change slightly the notations and write & € A2 (]R4) as a vector of RS in the

following manner

£ = (&12,613, 814,623, €24, 634)

and therefore f can be seen as a quadratic form over R® which is non-negative whenever the

quadratic form (note also that g is indefinite)
g(&) =(e' "2 Ne® Ne'ENE) =2 (E1asa — &usbos + E1aos)
vanishes. Indeed note that
g(§)=0 & ENE=0 < rank[{] =0,2
This last condition is equivalent to the existence of a,b € A (R4) so that
E=aNnb

and by ext. one convexity we know that f (a A b) > 0.

Step 2. We now invoke Theorem 2 in [47] (see also [37] or [71]) to get that there exists A € R
such that

(&) —=Ag(€) = 0.
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But this is exactly what we had to prove.
(iii) This is a general fact (cf. Theorem 3.16).

(iv) The counterexample is just

f(&) = (:ENE)

for any o € A% (R™), a # 0.

(v) This is just Proposition 3.26 and the remark following it. Indeed we consider the two
following cases.

- If k is odd (and since 3 < k < n — 3, then n > 6), then we know from (iii) that f is
ext. polyconvex if and only if f is convex and we also know that there exists an o which is not
1—divisible. Proposition 3.26 gives therefore the result.

- If k is even and 4 < k < n — 2 (which implies again n > 6), then there exists an a which

is not 1—divisible such that a A a = 0. The result thus follows again by Proposition 3.26. =
3.4.2 Ext. quasiconvexity does not imply ext. polyconvexity
We here give another counterexample for k = 2.

Proposition 3.32 Let n > 4. Then there exists an ext. quasiconver function over A?(R™)

which is not ext. polyconver.

Remark 3.33 This ezample is mostly interesting when n = 4 or 5. Since when n > 6, we

already have such a counterexample (cf. Theorem 3.29).

Proof As in previous theorems it is easy to see that it is enough to establish the theorem for
n=4Letl<p<2 a=c Ae?+e3ne andg:AQ(R4) — R be given by

/
9(6) = (& ~21(@:8)[ +[of*)"" = min {lg ~ P |¢ + al?}.

The claim is that f = Qetg has all the desired properties (the proof is inspired by the one
of Sverék [63], see also Theorem 5.54 in [25]). Indeed f is by construction ext. quasiconvex
and if we can show (cf. Step 2) that f is not convex (here since the function f grows less
than quadratically ext. polyconvexity and convexity are equivalent) we will have established

the proposition.

Step 1. First observe that a direct computation gives
2 2 . 2 2 1 2 1
&P = 21(es )l + laf* = min {J¢ — al* le + o’} 2 5 |1 = 5 {anasE A )| 2 0.

We therefore get that there exists a constant ¢; > 0 such that

1 2_1 . p/2
9925 |IeF - 5lanaseng)

> 1 [[&12 — &3al” + €13 + Eou|” + |61a — E23]7]
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Call h the right hand side, namely

h (&) = c1 |12 — &al’ + €13 + &aa P + €14 — E23]7] -

Step 2. Note that if f were convex (clearly f > 0), we should have

0§f(0)=f(1a+1(a)> < f(@+ ey =0,

2 2
We however will show that

f(0)>0

and this will establish the proposition. We proceed by contradiction and assume that
f(0)=0.

Use the remark following Proposition 3.14 to find a sequence of ws € W; b (Q; Al) (we can
choose an Q with smooth boundary and by density we can also assume that ws € C3% (5 A'))

such that

! 1 1 1
/g(dws) <Qextg(0)+—==f(0)+-=-.
Q S s s

— meas )

From Step 1, we deduce that

meas )

Og/ﬂh(dws)g

We now invoke Step 3 to get that there exists a constant ¢ > 0 such that

2 [Vt , < /Qh(dws).

Thus ||dws||;, — 0 and hence, up to the extraction of a subsequence,

1
— [P
g [ 9(e) 5 ©) = lal” £0.
Since at the same time
5 | 92) > Quug (0) = 7 0) =0
meas Q Qg Ws extd - -

we have obtained the desired contradiction.

Step 8. It remains to prove that there exists a constant A > 0 such that

AMVwl|lf, < /Qh(dw) = H[h (dw)]l/pHLp , for every w € C5% (A1)
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To establish the estimate we proceed as follows. Let w € O5% (% AY), o, 8,7 € C* (Q) be
such that

a = (dw)y—(dw)y = —wl +w? +wd —wi,
B = (dw)z+ (dw)y = _wolcg + ng - W92c4 + chz
v o= (dw)yy — (dw)yy; = —wl, +wj, +wi, —w,
0 = dw = wil—i—wgg—kwis—{—w;i.

Note that
h(dw) = c1 [laf” + |87 + [7]7] .

Differentiating appropriately the four equations we find

Aw' = —ag, — Bay — Vau
Aw® = 0y, — By + Yas
AW’ = oy + By — Yao
Awt = —agy + Boy + Yay -

Letting
¢ = adz' A da? + Bdat A da® + ydat A dat — ydx? A da® + Bda® A dat — ada® A daxt,

we get,
Aw=40¢ in

vAw=0 on N2
vAdw=0 on .

and This implies via elliptic regularity of the Hodge Laplacian that

IVwllp < A2 [|¢]l Lo

or, in other words,

1960 < X216l < A e B, M) < A | 1 ()

e

This is exactly what had to be proved. m

3.4.3 Ext one convexity does not imply ext quasiconvexity

We now give an important counterexample for any k£ > 2. It is an adaptation of the funda-
mental result of Sverdk [65] (see also Theorem 5.50 in [25]), though with nontrivial algebraic

manipulations.

Theorem 3.34 Let 2 < k < n — 3. Then there exists f : A¥ (R") — R eat. one convex but not

ext. quasiconver.

92



Remark 3.35 We know that when k= 1,n—1,n or k =n — 2 is odd, then
f convexr & f ext. polyconver < f ext. quasiconvexr < f ext. one conver.

Therefore only the case k =n —2 > 2 even (including k = 2 and n = 4) remains open.

The main algebraic tool in order to adapt Sverdk’s example is given in the following lemma.

This algebraic part is trivial in the Sverdk’s proof in the classical case.

Lemma 3.36 Let k> 2 and n =k + 3. There exist
a, B,y € span{eil Ao A1 3<i < <ipg <k +3} c AL (Rk+1)
such that if
L= span{e1 Aa,e? A B, (61 + 62) A 7}

1.€.
¢ € AP (RFF3)
E=xel Natye? AB+z (61—|—€2)/\’7
=elAN@a+z7y)+eE2AYyB+27)

L:

z,y,z2 € R

and we write, as a shorthand, any § € L as § = (x,y, z), then any 1—divisible £ = (z,y,z) € L
(meaning that € = a A'b for a certain a € A' and b € A*~1), necessarily verifies

xy =xz =yz = 0.

We now establish Lemma 3.36.
Proof Step 1. We choose, recall that n = k + 3,

S (2 aeHT) ik =2

a: —_— —_
St (62i_1 A 62’) ifk=20+1
&3 A 243 if k= 20
8= (@A@)+G¥A§)ﬁk:3

1=

Sio (A k=204 land k25

S (67—\1 A e?) if k=2l

T (FT AT 4 (P ST k=241

where we write, by abuse of notations,
CNel =N NN AT A AT,
Observe that {«, 3,7} are linearly independent.
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Step 2. We now prove the statement, namely that if £ = (z,y,2) € L is 1—divisible (i.e.
€ =bAaforac A" and b € A1), then necessarily

ry =22 =yz = 0.

Assume that £ # 0 (otherwise the result is trivial) and thus a # 0. Note that if £ = b A a, then

a N €& =0. We write
k+3

a= Z ajet # 0.
i=1
Step 2.1. Since a A € = 0 we deduce that the term involving e A e must be 0 and thus
—asxa+ary B+ (ag —az)zy=0.
Since {a, #,v} are linearly independent, we deduce that
asr = a1y = (a1 —ag) z = 0.

From there we infer that zy = xz = yz = 0, as soon as either a; # 0 or as # 0. So in order to
establish the lemma it is enough to consider a of the form

k+3

a:Zaiei # 0.
i=3

We therefore have

k+3

Soaie Al Awatzy)+e AyB+27)] =0
=3

which implies that
(3.24)

k+3

{ a/\(;ca—&—Z’y):Zizrg’aiei/\(xa—i—zv):0
aN(yB+zv) =313 aie' Ay B+ zv) =0.

We continue the discussion considering separately the cases k even, k = 3 and k£ > 5 odd. They

are all treated in the same way and we prove it only in the even case.

Step 2.2: k = 2l > 2. We have to prove that if

2l+3

a= Zaiei #0
i=3

satisfies (3.24), then necessarily

zy =22 =yz = 0.
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We find (up to a + or — sign but here it is immaterial)

aNo=) (a2i+1€2i> + <a2i€2i+1> + ag40e?t3
i—2 i=2

o~ —_—
alp= a21+3€3 + a3€2l+3

I+1 !
any=ased+ (a%—lezi) +)° (a2i+262i+1> -
i—2 i=2
Therefore
! P - o
aN(ra+zy)=za4e3 + Z (2 azip1 + zagi—1) €2 + Z (zag; + 2z agiy2) ¥+ 4 x agy e t3
i=2 i=2
aN(yB+zvy) = (yaysis+zag)ed + 2 {Z (azi_162i> + <a2i+262i+1> } + y aze?lt3,
i=2 i=2

Case 1 : x = z = 0. This is our claim.

Case 2 : z =0 and x # 0. We can also assume that y # 0 otherwise we have the claim

y = z = 0. From the first equation we obtain
az =0, 1=2,---[+1

a2i+1:07 12277l+1

So only ag might be non-zero. However since y # 0 we deduce from the second equation that

as = 0 and thus a = 0 which is impossible.

Case 3 : * = 0 and z # 0. We can also assume that y # 0 otherwise we have the claim

x =y = 0. From the first equation we obtain
ay =0, 1=2,---,1+1

agi—1 =0, +=2,---, 1+ 1.

So only ag; 13 might be non-zero. However since y # 0 we deduce, appealing to the second

equation, that ag+3 = 0 and thus a = 0 which is again impossible.

Case 4 : xz # 0. From the first equation we deduce that
ay; =0, 1=2,---,1+1

Inserting this in the second equation we get
I+1

an(yB+z7)=yauize’ +z Z (021‘—16%) + y aze+3.
=2
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Since z # 0, we infer that
asi—1 =0, i=2,---,1+1.

So only a9 43 might be non-zero. However returning to the first equation we have
xagy+3 = 0.

But since x # 0, we deduce that agi;3 = 0 and thus @ = 0 which is again impossible. This
settles the case k even. The odd case is handled in a very similar manner and we leave out the

details m

We may now conclude with the proof of Theorem 3.34, which is, once the above lemma

established, almost identical to the proof of Sverdk.

Proof Preliminary step. We prove here that it is enough to establish the theorem for n = k+3.
Assume that we already constructed an ext. one convex function g : A* (Rk+3) — R which is not
ext. quasiconvex. In particular there exists n € A¥ (RF+3) and ¢ € Wpese (Dpps; AF1(RFF3))
where D,, = (0,1)", so that

/D g (n+dy (2)) dw < g (1)

Define then o : A¥ (R™) — A" (RFF3) to be, for £ € AF (R"),

c@=c| 3 Gae A-nen

1<y << <n

= Z 511% Gil VANKIERIVAN ei’“.

1<iy < <ip <k+3

Finally let
f(&) =g (&)

This function is clearly ext. one convex, since g is so. It is also not ext. quasiconvex, since
choosing any ¢ € A* (R") so that o (&) =71 and

o P (g e apys) f1<d <o <ip<k+3
S011..-%71 (1'17 o ,xn) —
0 if not

we get that ¢ € Wy (Dn; AF~1(R)) and
| seras@nar<sie).

So from now on we assume that n = k + 3.

Step 1. We start with some notations. Let L be as in Lemma 3.36. An element & of L is,
when convenient, denoted by £ = (x,y,2) € L. Recall that if £ = (z,y,2) € L is 1—divisible,
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meaning that £ = b A a for a certain a € A and b € A*~!, then necessarily
zy =22 =yz = 0.

We next let P : AF (]Rk“’) — L be the projection map; in particular P (§) = ¢ if £ € L.
Step 2. Let g : L C A¥ (R*3) — R be defined by

g(§)=—zyz

Observe that g is ext. one affine when restricted to L. Indeed if £ = (z,y,2) € L and n =
(a,b,c) € L is 1—divisible (which implies that ab = ac = bc = 0), then

g(E+1tn) = —(x +ta) (y + tb) (2 + tc)
=—zyz—tlzyc+zzb+yzal.

We therefore have that, for every £,n € L with n 1—divisible,

2

d
l s = — —|— t = O'
g (5 77) dth (f 77) —0

Step 3. By abuse of notations we identify the exterior forms {«, 8,~v} with differential forms
(replacing €' with dz?). Let w be defined by

w= (sinxy) o+ (sinzg) S+ (sin (1 + z2)) v
so that w € C}g, ((0, om)F 3. Ak_l) and

dw = (cosz1) dz' A+ (cosxa) dz? A B+ (cos (z1 + x2)) (da' + da®) Ay

and hence dw € L. Note that

27 27 27 27
/ / g (dw) dzq dzg = / / (cos x1)2 (cos x2)2 dxq dxoy < 0.
0 0 0 0

Step 4. Assume, cf. Step 5, that we have shown that for every e > 0 we can find v = v (¢) > 0
such that

f (&) =g(P(©) +ele +elel* +~1€— P

is ext. one convex. Then noting that
fe (dw) = g (dw) + € |dw|? + € |dw]*
we deduce from Step 3 that for € > 0 small enough

/(02 o fe (dw) dz < 0.

This shows that f. is not ext. quasiconvex. The proposition is therefore proved.
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Step 5. It remains to prove that for every ¢ > 0 we can find v = 7 (¢) > 0 such that

f (&) =g(P(©)+ele +eléel* +v1€— PO

is ext. one convex. This is equivalent to showing that, for every &, € A* with n 1—divisible,

L @
s = — t
(&) dth(£+ n) i

= Ly (P (), P () + 2¢ |n|* + e & [n]* + 8¢ (&) + 2 |In — P ()
> 0.

Step 5.1. Observe that since g is a homogeneous of degree 3 polynomial, we can find ¢ > 0
so that

Ly (P(£),P(n) = —clélnf.

We therefore deduce that
Ly (&m) = (—c+4elé]) €] Inf?

and thus Ly (&,7) > 0 holds for every n € AF (independently of the fact that n is 1—divisible)
and for every ¢ € A* which satisfies

C
> —.
> o

Step 5.2. Tt therefore remains to show that Lf (£,7) > 0 in the compact set

K = {(fﬂ?) € AP x A €] < i, Inf=1,n1 —divisible}

in view of Step 5.1 and of the fact that Ly (£,n) is homogeneous of degree 2 in the variable 7.

Moreover we also find that

Ly (&) = H(Em,7) =Ly (P (&), P (n) +2en*+2vn— P (n)

and therefore Ly (&,7) > 0 will follow if we can show that for every e > 0 we can find v = v (¢)
so that H > 0 on K. Assume, for the sake of contradiction, that this is not the case. We can

then find ~, — oo, (§,,1,) € K so that

Ly (P (&), P (m)) +2€ < Ly (P (&), P () + 2¢ + 29 [ — P (n,)]* < 0.

Since K is compact, we have up to a subsequence (still labeled (§,,7,)) that

(fu,nu)%(&ﬁ) €K, LQ(P(f)vp(n))"i'zeSO and P(U):U-

However we have € > 0 and, cf. Step 2,
Ly(P(£),P(n)=0, V&mne AR with P(n) =n where 7 is 1 — divisible.

This leads to the desired contradiction. m
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3.4.4 Summary of implications and counter-implications

The examples, counter examples and results we have obtained so far gives us an almost complete
picture of the relationship between the different notions of convexity. We summarize them in

the following theorem.

Theorem 3.37 Let 1 <k <n and f: A¥(R") = R.
(i) The following implications then hold

f conver = f ext. polyconvexr = f ext. quasiconver = f ext. one convex.
(ii) If k=1,n—1,n or k =n —2 is odd, then
f convexr & f ext. polyconver & f ext. quasiconver < f ext. one conver.
Moreover if k is odd or 2k > n, then
f convex < f ext. polyconvex.
(ii) If either k =2 andn >4 or3<k<n-—3 ork=n—2 >4 is even, then
= .
f ext. polyconver - f ext. quasiconvex
while if 2 <k <n—3 (and thus n > k+3 >5), then
. =
f ext. quasiconvex o f ext. one convex.

Remark 3.38 (i) The study of the implications and counter implications for convexity, poly-

convexity and quasiconvexity is therefore complete. For the last implication namely
. =
f ext. quasiconvex o f ext. one convex

only the case k =n —2 > 2 even (including k = 2 and n = 4) remains open.

(ii) The last statement in (ii) for k even and n > 2k is false, as the following simple example
shows. Let f : A? (R4) — R be defined by

f({):<el/\62/\e3Ae4;§/\§>.

The function f is clearly ext. polyconvex but not conver.
(iii) It is interesting to read the theorem when k = 2.

-Ifn=2 orn=3, then

f convexr & f ext. polyconver < f ext. quasiconvexr < f ext. one conver.
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- Ifn >4, then
= = ‘
f convex - f ext. polyconvex - f ext. quasiconvex.

- If n > 5, then

. =
f ext. quasiconvex f ext. one convex
&

while the case n = 4 remains open.

Proof (i) This conclusion is exactly Theorem 3.10.
(ii) The first statement is just Theorem 3.12. The extra statement (i.e. when k is odd or
2k > n)

f convex < f ext. polyconvex.
is proved in Proposition 3.16 (iii).
(iii) The statement that

=
f ext. polyconvex - f ext. quasiconvex

when 3 <k <n-—3ork=n—2 2> 4iseven follows from Theorem 3.30 (v) and from Proposition
3.32 when k =2 and n > 4 (for k = 2 and n > 6, we can also apply Theorem 3.30 (ii)).

The statement that if 2 < k <n —3 (and thus n > k + 3 > 5), then
. =
f ext. quasiconvex - f ext. one convex

follows from Theorem 3.34. m

3.5 The ext convexity properties and the classical notions of convezity.

3.5.1 The projection maps

In this section we explore the relationship between the notions of ext. polyconvexity, ext.
quasiconvexity and ext. one convexity and the classical notions of the calculus of variations
namely rank one convexity, quasiconvexity and polyconvexity (see [25]). We first introduce

n
some notations. As usual, by abuse of notations, we identify A* (R™) with R\k/.

n
Definition 3.39 (exterior projection) Let2 < k < n. To a matriz = € R(k—l) “" the upper

indices being ordered alphabetically, written, depending on the context, as

=1 (k=1) —=1--(k—1)
Bl . =n
—=(n—k+2)--n —=(n—k+2)--n
= e By
=1-(k—1)
=T IeTk-! - . = —_
= (“i)z'e{L---,n} = : = (81, - ,En)

=(n—k+2)--n
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n
we associate a map wEHF R(kfl) 5 AR (R™) in the following way,
n
7rea:t,k (E) _ 2 : § 1)j+1 Hu U151k 11 A--- A etk = E :Ez A el
1<ip <--<ip<n j=1 i=1

where
- _ =i lh—1 iy AL i1 =1 I

=y = E = et N---Ne = E = €.

1<ip <-<ip_1<n IeTk-1

Remark 3.40 Observe that this projection map can also be written as,

ek (E) Z ngn(],l )_ el

I€T, \jel

Remark 3.41 Note also that when k = 2, we find that €% : R"*" — A2 (R") is given by

& 0 &
§= :(5177571)

and

ﬂ_e:ct,k (g) — Zfz Aet = z <§; — 53) N
i=1

1<i<j<n

so that when restricted to the set of skew symmetric matrices, namely
Ry" ={¢eRV™: & = —¢}

we have

Ttk (£) =2 Z f;-ei/\ej.

1<i<j<n

Similarly as above,

n
Definition 3.42 (interior projection) Let 1 < k < n —1. To a matriz = € ]R(kﬂ) o

upper indices being ordered alphabetically, written, depending on the context, as

—1--(k+1) =1-(k+1)
=4 e En
—(n—k)--n —(n—k)--n
=h e By
=1 (k+1)
_ (=1 1Ty _ . e —_
- (“‘i)ie{l}... n} : - (‘—‘17 e 7‘—‘71)

=(n—k)--n

2See Appendix A for the notation I;.
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. n
we associate a map T R(kH) 5 AR (R™) in the following way,

k+1 n
; — i+1 =11 1Yk i i —_ i
Tt (Z) = § g (1) E F TR ) A LA e = E =€’
1<ii<-<ip<n \ j=1 15 -1<y<ij =1

where

- A ; ; -
Ei= E ETT e A N etk = E zlel.
lSi1<"'<ik+1§n I€7—kn+1

The following properties are easily obtained.

Proposition 3.43 Let 2 < k <n and 7 . R(k—l) T AR (R™) be as above.

(i) If a € AF=1(R?) ~ R and B € Al (R") ~ R", then,
Tk (0 @ B) = a A B.
(ii) Let w € C* (Q;Ak_l) , then, by abuse of notations,
T (Vw) = dw.
Proof (i) We note that

al+=Dg . glelg

a®p= . :
a(n7k+2)---nﬁl . a(nfk+2)---nﬁn

so that

k
Wext,k (Oé ® 6) _ Z Z (_1)]+1 ailmijili]qumik_'—lﬁij eil A A eik =aA ﬁ

1<t << <n j=1

(ii) As above we have

awl---(k—l) Bwl...(k_l)
Vw = : :
8w(n—k+2)---n aw(n—k+2)---n
and thus 7¢4* (Vw) = dw since

. Ow " ti—1%+1"" 41 .
7_‘_eXt,k vw _ —1 J+1 ell/\_.,/\elk.
LTRSS

1<iy<-<ip<n j=1

Similarly we have the following.

X n
Proposition 3.44 Let1 <k <n-—1 and mintk . R(Hl) Xy AR (R™) be as above.

102



(i) If a € AR+ (R?) ~ R4 and B € Al (R") ~ R", then,
7E (0 @ B) = af.
(ii) Let w € C* (Q; AF*1) | then, by abuse of notations,
T (V) = dw.

Proof (i) We note that

1o (k41 1---(k+1
at~kthg . gkt g,
a®pf= : :
am=k)-ng .o gn=k)ng,
so that
k+1
qint.k (Oé ® /B) _ Z Z (_1)]4—1 Z azl"'zj_le"'l""kﬁ,y e N Aet = aup.
1<ii<-<ip<n \ j=1 151 <y<ij
(ii) As above we have
6w1-~(k+1) 6w1-~(k+1)
ozx e Oz
Vw = : :
6w(n7k)mn &U(nfk)mn
and thus 7% (Vw) = dw since
k+1 UV T
. . Ot —170j41" k41 . .
COEED DR DUIC DS 5 e AN,
x
1<ip<--<ip<n \ j=1 ij_1<y<ij v

This is already enough to show the relation between rank one convexity and ext. one
convexity and quasiconvexity and ext. quasiconvexity. But the relation between polyconvexity
and ext. polyconvexity is much harder. We need an important formula (Proposition 3.45) and

a crucial lemma ( Lemma 3.47 ).

Proposition 3.45 (Adjugate formula) If k is even, then for 2 < s < [n/k], 3

s - -
SCIECDY > sen(J; 1) (adj, 2 | ¢’
IeTsk | J={j1j2...ds}=li1j2--3s],
I={I*12...I5}y=[I"I2,...,I°]
Jul=I

3See Appendix A for the notation sgn(.J; ).
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and
[Wezt,k(z)]s =0 for [n/k] < s <min {n, (kﬁl)} .
If k is odd,
[Wezt,k(g)r =0 foralls, 2<s<min {n, (kﬁl)} .

Proof Except the first equality, everything else is trivial, by properties of the wedge power.

So we prove the case when k is even and 2 < s < [n/k]. We prove it by induction.
Step 1 To start the induction, we first prove the case when s = 2.
We have,

TRE) = 3 (D sen(i )E) | f
IeTk \jel

So,

( ext, k(E)) _ ﬂext,k(5> A 7T_ext,k(5>

Z sgn([l,l2) Z sgn(jl,ll):ﬁl>

Il, 12 jrelt
_ ‘=1 I
= nrz=p €

IeT?2k
o =L
Z sgn (]27Ij2) ‘:j2
jo€I?

%)

Now, since k is even, we have
sgn(I', 1%) = sgn(1%, 1)

and hence,

(ﬂ_ext,k(E))2

. . L
=2 (Z sen([jr, I4], Lia, I2]) sen(iv, 1) sgn(ja, I4)E 1 5.2

IeT?k

) ) _Il '_12
+sen([j1, 13,], [, Ij,)) sen(iv, I7,) sgn(z, I, ) 2,0 2572 ))61

It 1?2 r 12
=2 > (Z sgn(ji, I, jo, 152, 202 + sen(jy, I, o, 1 ) 250 E 72 >€I
IeT?k

Now, since k is even,

Sgn(j17]}17j2ylj22) = (_1)(k71) Sgn(j1)1]22>j271}1) = _Sgn(jla-[]i)]é?]]ll)

Hence,

t,k 9 1L 72 7
ex : = i1 J2 = J1=I2
(rH(Z))7 =2 Z Z sgn Jl’lal’ﬂv['z)(ﬁl B —ER'E) e

I€Tsk
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That is,
I 2
(mxEk(2))2 = 2 Z (Z sgn Jl,Ijl,]Q,IJQ)(adJQ _)Jg;2> el (3.28)
I€Tay
which proves the case for s = 2.
Step 2 We assume the result to be true for some s > 2 and show that it holds for s + 1, thus

completing the induction. Now we know, by Laplace expansion for the determinants,

s+1

. - 1112...18+1 - :I'm I+ Il Im Is+1
(adJs+1 H)jm...jsﬂ = Z =7 (=) (adj, = ) FLeFiefett (3.29)
m=1
Hence,
172 1 sl stt 1 1
. —\I'72..stt _ ,_‘[m l+m It Jm. st
(adJS-H “)j1j2---js+1 T s4+1 ; Zl ad‘]s )31‘..11...]”1 (3'30)
Also,
Sgn(jla Ilv cee 7js+1a IS+1) = (_1){(l71)+(m71)(k71)} Sgn(jla Ima il,m) (331)

Here I is a shorthand for the permutation (ji, 1%, ..., s, I®),

where
o j1<j2<...<jsand {ji,j2, -, Js} = {Jr.d2s- - dts .- dsri}
e N« PP<. . <Isand {IN12,.. I} = {1\, I2,..., ", ... Ist1}.

Note that this means j, = j, for 1 < r < [ and j, = jy41 for | <r < s . Similarly, I" = I" for
1<r<mand I"=I"" form <r <s.
The easiest way to see (3.31) is to note that,

sgn(jl,Il,...,jsH,ISH)

_ ( 1){(k 1)+2(k—1)4...+s(k—1)} Sgn(jl,jQ, o ,js-l,-l,Il,IQ, o 7Is+1)
:(—1)%sgn(jl,j27...,j5+1,11,12,...,f‘9+1)
— (D)D)= G0y G e, T T, T
_ (D)0 DHm=) =D} g (4, . o)

Now since k is even, k — 1 is odd and hence we have,*

(_1){(l—1)+(m—1)(k—1)} = (~1)m,
So,

sen(jn, It ... jest, I5TY) = (=) F ™ sgn(yy, 1™, IV™)
= (1) sgn(ji, I'™) sgn(I") sgn([jr, I™], [IV™])

4See Appendix A for explanation of the notations.
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Thus,

y - . —\Tl72 541
Sgn(jlu-[l,. . ,js+l7ls+1)(ad.]s+l :)I I“...1

J1J2---Js+1
1 = Crmy [7lm Crmy=I™ Flm RN S0 L0 Lo
- (3+1) lzl Sgn([]l"[ ]’[I Dsgn(]la-[ )‘—‘]l Sgn(‘[ )(adJs H)]lﬁjs+1
m=
Hence,?

I 172 7s+1
o7l . +1 c IR I
(s+18 > (Zsﬂsgn(ﬁ’l v dst I )(adJs+1~)m2...js+1>e
IeT (s+1k

s+1

I . ”‘l7 . ’:‘I"L
(5 + 1)] Zs+l Z Sgn([]lvlm]a [I m})sgn(]lvlm)‘—']’l 7
= s Z I,m=1 €

TeT(s+1)k “lm -
© sgn(1"™)(adj, =)

L. Jm. Jst+1
J1ee-Jie-Js+1

s+1
I . m "’l7 . :Im
o S sl I ) s 1|
—(3) Z I,m=1 e

IeT s+ Dk OV TIE=V AN T Lo
sgn(l adj, =) =
gn(I™)(adj E)j 5

Now, rewriting the sum, we obtain,

s+1
! : 7, : =
" Do 2 sl I 1) sen (i, I™ES” |
3-) Z I,m=1 e

TeT(s+1)k =l PNV A (O L
SgH(I m)(adjs :')j1...jAl...js+1

S (sanlr 0T et =)
jer I

Z I'cr
= 1167’k €
I€T s+ Dk (I\I'] <z T 121
| : 1 : s D AV A L §
(5, (E . sen(gi, I, ..., Js, %) (adj, H)jmmjs )))

To see that the RHS of the above equation is indeed just a rewriting of the LHS, note
that once we have expanded all the sums on both sides, the map sending j; — j, I — I ]’~,

TN, I, It to T8 12, 1% respectively and ji, ..., 0« jsc1 tO J1, 72, -, js TESpeC-

tively is a bijection between the terms on the two sides of the equation.

See Appendix A for explanation of the notations.
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So, we have,

I .o . +1 P VAW L N
(s +1)! Z (ZS+1 sgn(jn, Iy dsr1, 157 ) (adjg “)jljg...js+1 e
IeT stk

Z sen(I’, [I\I'] < coefficient of ¢! in weXt’k(E)>
I'cr

= Y I'eT, el (3.32)
IeT stk '
X ( coefficient of e\l in [WeXt’k(E)r >

by the induction hypothesis.
But this implies,

I .o . +1 VAT LE S N
(s+1)! Z (ZS+1sgn(jl,I sy Jst1, P )(aLdJS_HH)]-U-Q'”]»SJrl e
IeT(s+Dk

+1 +1
= Z <coefﬁcient of ¢! in [WeXt’k(E)r )eI = [WeXt’k(E)]s , (3.33)
IeT(+Dk

completing the induction and thereby proving the desired result. m
Since we have seen that [WCXt’k(E)]S depends only on adj, =, we are now in a position to

define a linear projection for every value of s. These maps will be useful later.

Notation 3.46 For cvery value of 2 < s < min {n, (kfl)}, we define the linear projection

n
maps w& R((kgl)) x(3) — A*S(R™) by the condition,
reth (adj,(2)) = [rH@)] for all = € R,

It is clear that this condition uniquely defines the projection maps . For the sake of consistency,
we define, ﬂfxt’k = 7%k gnd ngt’k is defined to be the identity map from R to R.
3.5.2 A crucial lemma

Now, to show the relation between polyconvexity and ext. polyconvexity, we need a lemma.
Lemma 3.47 Let N = (,",). Let

min{N,n}

g(X,d) = f(x" (X)) - Y (dsadj, X)
s=0

N n
where d = (dy,da, ..., dmingnny)s ds € R(s)x(s) for all 0 < s < min{N,n} and X € RV*",
If for a given vector d, the function X + g(X,d) achieves a minimum over RNX" then for all
0<s<min{N,n},

TéR(Y))  for allY € ]R(];[) * (Z)

r s

(ds,Y) = <7rsewt’k(d8)

107



The lemma is quite technical and quite heavy in terms of notations. So before proceeding
to prove the lemma as stated, it might be helpful to spell out the idea of the proof. The plan is
always the same. In short, if dg 2 WEXt’k(dS) for any 0 < s < min{N,n}, then we can always
choose a matrix X such that g(X.d) can be made to be smaller than any given real number,
contradicting the hypothesis that the map X +— ¢(X,d) assumes a finite minimum. Note that
since f takes values in R, i.e finite values, if X — ¢(X,d) achieves a minimum, the minimum

must be finite.

We shall show the lemma in three cases. The first one, the case for k£ = 2 is mostly for the
sake of illustration. The other two being the case of k being an even integer ( k > 2) and the

case of k being an odd integer.

Example Case : k = 2, n arbitrary

Proof Fix a vector d and assume that for this d, the function X +— ¢(X, d) achieves a minimum

over RVX"_ Note that the minimum is a finite real number ( since f is finite ).

Step 1 We will first show that all adjugates with a common index must have zero coefficients.

More precisely, we claim,

Claim 3.48 For every 1 < s <min{N,n} , for every J, I € T*,
(ds)" = 0 whenever TN .J # 0. (3.34)

Step 1a We prove claim 3.48, using induction over s. To start the induction, we first show the
case s = 1. We choose X = e @ €', then clearly 7%2(X) = 0. Also, g(X,d) = f(0) — X (d1)".
By letting A to 400 and —oo respectively, we deduce that (dl);i = 0, since otherwise we obtain

a contradiction to the fact that g achieves a finite minima.

Step 1b Now we assume that claim 3.48 holds for all 1 < s < p and prove the result for
s=p+ 1.

We consider (ds);llzjzlf;:l with i; = jp, for some 1 <l,m <p+ 1.

Now we first order the rest of the indices ( other than the common index ) in subscripts
and superscripts. Let i1 < ia < ... < Ep and j; < jo < ... < ip represent the indices in the set
{i1,92, ... ipy1} \ {ét} and {j1, j2, ..., Jp+1} \ {Jm} respectively.

Now we choose,

P
X=xdt@em + Y er@e.
r=1
Since i; = jp, we get 74*(X) is independent of A. Also, all lower order non-constant adjugate
of X must contain the index i; = j,, both in subscript and in superscript and hence their
coefficients are 0 by the induction hypothesis. Hence, the only non-constant adjugate of X
appearing in the expression for g(X,d) is ,

. iliQ...’i +1 [e%
(ad.]p—i-l X>j1j2---;;+1 - (_1) )‘7
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where « is a fixed integer. Since whether « is odd or even has no bearing on our following
argument, we would not bother ourselves with it. Now,

g(X,d) = (—1)* X (ds)zllzzl]’;:l + constants .

Again as in Step la, we let A to +o0o and —oo and we deduce, by the same argument,
(ds);ﬁzzj’;:l = 0. This completes the induction and proves the claim.

Step 2 By Step 1, it is clear that dy = 0 for all s > [§], since in all those cases, there must
be a common index. Now we will show that the coefficients of two different adjugates having

the same set of indices are related in a precise manner. More precisely, we claim,

Claim 3.49 For every 1 < s < [%]7

(3.35)

S

sgn(J; 1) (ds)} = sgn(J; 1) (ds)

whenever [J, 1) = [J, 1], with J,1,J,1 € T* and JN I = .

Step 2a We will prove the claim by induction over s. To start the induction, we first prove

it for the case s = 1.

For the case s = 1, we just need to prove,

sgn(j, i) (i)} = sgn(i, j) ()7 . (3.36)

We choose X = \e/ @ ¢! + \e! @ e, Clearly, 7%%2(X) = 0 and this gives,

9(X,d) = £(0) + A ()] + (@)])
where we have used Step 1 to deduce that (dz)g =0 (assuming i < j). Letting A to +00 and
—00, we get (3.36).

Step2b Now we assume the result for all 1 < s < sp and show it for s = sy + 1. Take
J = {j1ja.-dsor1}s I = {iria...isgs1} and J = {jijo.. . Jsor1} and I = {irio...i5p41}-
Now since we have [J, I] = [.J, I], the strings (J, 1) and (j, f) are permutations of each other,
preserving an order relation. The order relation is easy to write down. j1 < j2 < ... < jso+1 and
11 <1 < ... <ig41. Thus the two above mentioned strings can be related by any permutation
(of 2(sp + 1) indices ) that respects this order. Since any such permutation can be factorized
into a product of 1-flips (see Appendix A for definition), it is enough to prove the claim in case
of a 1-flip.

We now assume (J, ) and (j , I ) are related by a 1-flip interchanging the subscript j; € J
with superscript i, € I and keep all the other indices unchanged. Also, we assume that after
the interchange, the new position of the index j; in the superscript is p and the new position of

the index i,, in the subscript is ¢ , i.e ,

Ji=1p ; tm = Jq- (3.37)
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We also order the remaining indices and assume

[y ={ideduf =GN and  {ib={ik. i | = 1\ fin})

Now we choose,

X = Mell @ e + \ed1 @ e + Z e @ eir. (3.38)
1<r<sg

Note that 7¢*%2(X) is independent of \, by (3.37). Also, all non-constant adjugates of X
appearing with possibly non-zero coefficients in the expression for g(X,d) have, either j; in
subscript and 4, in superscript or has jq as a subscript and %p as a superscript, but never
both as then they have zero coefficients by Step 1. Also, these adjugates occur in pairs. More
precisely, for every non-constant adjugates of X appearing with possibly non-zero coefficients in
the expression for g(X,d) having j; in subscript and 4,, in superscript, there is a non-constant
adjugates of X appearing with possibly non-zero coefficients in the expression for g(X, d) having

5(1 as a subscript and %p as a superscript. We will make this last statement more precise shortly.

Step 2c¢ Now first we show that, for any 1 < s < s + 1, for any subset {j1,jo,...,js—1} =
{js_l} C {j}, and any subset {iy,i2,...,i5 1} = {1:3_1} C {f} , we have,

A o)
Sgn( [jljs—l] ) [imjs—l]) a Sgn( [jqjs—l] ; [gpjs—l]). .

(adj; X)

Let a; be the position of j; in [jljs,l] , by be the position of i,, in [imfs,l], as be the
position of jq in [jqjs,l} and bs be the position of %p in [%pf_s,ﬂ.

Then we have,

sen([fiJe-1] 5 [imLe1]) = (=) M= DFCD son (G iy, ) sgn(Jo—1; L)
sgn( (i, imls [(Js—1; Ls-1)]) (3.40)

and

Sgn([]qjsfl] ) [ipjsfl]) = (_1){(a271)+(b271)} Sgn(jqa%p) Sgn(jstQ fsfl)

sgn([ig, 1p), [(Js-1; Ls—1)])- (3.41)
We also have,
(adj, X)g:”‘]f‘ll]] = (~1)PH (adj,_, X)) (3.42)
and
(adj, X)szll]] = (~1)™*%2 ) (adj,_, X)) (3.43)
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Now since [ji, im] = [Jq,p] and sgn(jy, im) = —sgn(Jjy, i,) we have,

sgn([j;ljf_ﬂ ; [iznis—l]) — —(—1)l@r+b)—(az+ba), (3.44)
sgn([qus—ﬂ ; [ip s—1])
Also, clearly, _
. imls—
(ad, X))
% = (—1)lertb(aathe), (3.45)
) ipTs
(adj, X)[jqjsjl]

Combining the two equations above, the result follows.

Step 2d We now finish the proof of claim (3.49).By Step 2c, we have,

90X d) = A3 (=1) (sen(J: 1) (dyy 1)y = sen(: 1) (1))

.= .= [im_sfl]
1 | senlnTama] s [imTama]) ()5
" Z (S - 1! Z (_1),35 ~ 3 Y7 [ ][;psl]
! Locl = sen([g o] : [ipla]) (@) 757"
Js—1CJ

+ constants .

By the induction hypothesis, the sum inside the braces in the above expression is 0. Hence,

we obtain,

) + constants . (3.46)

N

9(X.d) = (=1)°A (sen(J: D) (deg 1)) — sen(J: 1) (dsg 1)

Letting A to 400 and —oo, we obtain the claim.

Step3 By proposition (3.45), the claims (3.48) and (3.49) imply the result and finishes the

proof. m

Now we prove the lemma in complete generality.
Proof Let us fix a vector d and assume that for this d, the function X — ¢(X,d) achieves a
minimum over RV*7",

We will first show that all adjugates with a common index between subscripts and super-

scripts must have zero coefficients. More precisely, we claim that,
Claim 3.50 For any 2 < k < n and for every 1 < s < min{N,n}, for every J € T5,1 =
{11 ) ..Is} where I', ... I° € T 1 we have,

(ds); = 0 whenever TN.J # 0.

We prove claim 3.50, using induction over s. To start the induction, we first show the case
s=1. Let j € I, where I € T*~1. We choose X = \e/ @ !, then clearly 7%2(X) = 0. Also,
g(X,d) = f(0) — A (d1)§. By letting A to +00 and —oo respectively, we deduce that (d1)§ =0,

since otherwise we obtain a contradiction to the fact that g achieves a finite minima.
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Now we assume that claim 3.50 holds for all 1 < s < p and prove the result for s = p + 1.

P I Gith € I f 1<im<p+1
et with j; € or some 1 <({,m<p+ 1.

Now we first order the rest of the indices (other than the common index) in subscripts and the

We consider (dp+1)

rest of the multiindices (other than the one with the common index) in superscripts. Let I' <
...<IPandji <...< j, represent the multiindices and indices in the sets {I', ..., IP*1}\{I™}

and {j1,...,Jp+1} \ {Ji} respectively.
Now we choose,

P
X =Xl @el™ + Zej’" ® eir.
r=1
Since j; € I, we get w(X) is independent of A\. Also, all lower order non-constant adjugates
of X must contain the index j; both in subscript and in superscript and hence their coefficients
are 0 by the induction hypothesis. Hence, the only non-constant adjugate of X appearing in

the expression for g(X,d) is,

. Ittt «
(a'd.]p—i-l X)jl---jp+1 = (_1) /\7
where « is a fixed integer. Now,
1 Ittt
g(X,d) = (=1)*T'\ (dp+1)j1...jp+1 + constants .

Ittt

Again as before, we let A to +00 and —oo and we deduce, by the same argument, (alpﬂ)jlmjp+1 =

0. This completes the induction and proves the claim.

At this point we split the proof in two cases, the case when k is an even integer and the case

when k is an odd integer.

Case 1: k is even

Note that, unless & = 2, it does not follow from above that ds = 0 for all s > [£]. The
possibility that two different blocks of multiindices in the superscript have some index in common
has not been ruled out. Now we will show that the coefficients of two different adjugates having

the same set of indices are related in the following way:

Claim 3.51 For every s > 1,

whenever JUT = JU I, with J,J € T° , I = {Il...IS} = [Il,...,IS], I= {fljs} =
[fl,...,fs], Y I 1Y I e TR Y and TN I = 0. In particular, given any U € T*S, there
exists a constant Dy € R such that,

sgn(J; 1) (d)}; = D, (3.47)
forall JUI=U with J€T* , I={I'.. .} = [I',... . I°], I',... . I* € TF"1,

We will prove the claim again by induction over s. We first prove it for the case s = 1.
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For the case s = 1, we just need to prove, for any index j, any multiindex I € 7#~! such
that NI = (), we have

sgu(j, 1) (d1)} = sgn(7. 1) (d)! (3.48)

where [4, 1] = [, I]. We choose X = Asgn(j,I)e! @ e! — )\sgn(j,f)63 ® el. Clearly, m(X) =0
and this gives,
9(X,d) = f(0) + A (sgn(j, ) (d)] — sen (3, 1) ()],

[11]

where we have used claim 3.50 to deduce that (dg)[ﬁ] = 0. Letting A to +0o0 and —oco, we get

(3.48).

Now we assume the result for all 1 < s < sy and show it for s = sy + 1. Suppose first
[TV 1504 Y0 Gsggn] = [T 1%, jgo11]. Note that the sets {I'...I%% 15 .. js 11}
and {f LT sotly ~jso+1 are permutations of each other, preserving an order relation given
by j1 < oo < Jsgils J1 < oor < Jsgr1s IV < ... < It and ' < ... < I°t'. Thus the
aforementioned sets can be related by any permutation (of k(so + 1) indices) that respects this
order. Since any such permutation is a product of k-flips, it is enough to prove the claim in

case of k-flips, cf. definition A.3.
We now assume (.J,I) and (.J, ) are related by a k-flip interchanging the subscript j; with

one index in the superscript block I and keep all the other indices unchanged. Also, we assume
that after the interchange, the position of the multiindex containing j; in the superscript is p
and the new position of the index from the multiindex I™ in the subscript is ¢, i.e, j; € I? and

3q € I'". We also order the remaining indices and assume ,
R O LR

and

T =gl = G = {i oo

respectively. Now we choose,

X = Asgn(j, I™e @™ — )\sgn(jq,fp)ejq el + Z e @ elr.
1<r<sg

Note that 7tk (X) is independent of A\. Also, all non-constant adjugates of X appearing
with possibly non-zero coefficients in the expression for g(X, d) have, either j; in subscript and
I'™ in superscript or has jq as a subscript and I? as a superscript, but never both as then they
have zero coefficients by claim 3.50. Also, these adjugates occur in pairs. More precisely, for
every non-constant adjugate of X appearing with possibly non-zero coefficients in the expression
for g(X,d) having j; in subscript and I™ in superscript, there is one having jq in subscript and
I? in superscript.

Let us show that, for any 1 < s < so + 1, any subset J,_; = {j1,...,js—1} C J of s indices

and any choice of of s — 1 multiindices I',..., I*~! out of so multiindices fl, ... ,fso, we have,
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. [Im7f17'”yfs—l] . [zpljl’.”’fs—l}
(adJs )[jljs 1] _ (ad.]s X)[qusfﬂ (349)

A T Y Col R T SO X

Let a; be the position of j; in [jljs,l] , as be the position of Eq in [qus,l , b1 be the
position of I"™ in [I™ I',..., I°"'] and by be the position of I? in [fp, I, ..., 151,

Since k is even,
sgn(ljiJsa); (1™ I, ..., 7))
_ (71){((11—1)4-(61—1)} Sgn(jh Im) Sgn(js—1; {I_l o ]_—s—l})
sgn([jr, I™], [(Jo—r; {I" ... °7'})]),

and
Sgn(gqjs—lh [jpa jl? e 7j5_1])
= (—1){le2= 04D} gon (G 1P sgn(J,_y: {I"... 1))
sgn([g, I7], [(Jo—; {T" ... 1)),
We also have,

m 71 7s—1
(aci, X)) = (1)@ s, TN (g X) 1,

and

IPI,J*l a < F .. Is_
(adj, X){J o I = —(-1) 2+b2 sgn(jq, IP)A (adJS 1X)[— 1].

Combining the four equations above, the result follows.

We now finish the proof of claim 3.51. Using (3.49), we have,

90X d) = A3 (=1) (sen(J: 1) (dyy1)y = sen(: 1) (i)

— m 1 75—1
sen([jiJe s (1™ IV, .. T70) (dg) Tl

- 7]
s l
+ Z]_ Z ks,’y = [Ip [1 Is—l]
s=

—sgn(ljg o] [P, 1., I°71]) (dy )[Jqu 1]

+ constants,

where Y% is a shorthand, for every 1 < s < s, for the sum over all possible such choices of
Jo_1, 1N I%,..., I and ks~ is a generic placeholder for the constants appearing before each

term of the sum and « is an integer.
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By the induction hypothesis, the sum on the right hand side of the above expression is 0.

Hence, we obtain,

) + constants .

N

9(X,d) = (~1)° (sen(J: 1) (dug 1)} = sgn(J5 1) (dog+1)

Letting A to 400 and —oo, the claim is proved by induction.

Note that by virtue of claim 3.51, claim 3.50 now implies, that for every 1 < s < min{N,n}
, for every J € T°, 1 = {Il .. .IS} where I', ..., I* € T, we have,

(ds){] = 0 whenever either 1N .J # () or I' N I™ # () for some 1 <[ < m < s. (3.50)

Indeed, if I NJ # (), we are done, using claim 3.50. So let us assume I NJ =0 but I'NI™ # ()
for some 1 <[ < m < s. Then there exists an index 4 such that i € I' and i € I"™, we consider
the k-flip interchanging some index j from subscript with the index 4 in I'. More precisely, let
JeT%and I' € T be such that i € J, J\ {i} € J, I'\ {i} € I' and JUI' = JUI', then
by claim 3.51 we have,

sen(: ) @)l = s (7 [P0 ]y a0 )

Since, i € Jand i € I, Jn {[7,[1, . ,fl, .. .,Is} # (), the right hand side of above equation is
0 and so (ds)g = 0, which proves (3.50). So this now implies, ds = 0 for all s > [7]. Hence we
have, using (3.47), (3.50) and proposition 3.45,

< Svad.]s Z Z gadjs Y)J

IeTsk

=2 Zisgn(J;f)(ds)[}sgn(J;f)(adjsY)§

IeTsk
1 I . s
= Z QD[Zs(s!)sgn(J;I)(adJsY){]
IeTsk
= <IDS’7T§Xt’k(adjs Y)>7

1
where D, = 5 g Dye’, which finishes the proof when k is even.
s!
IeTs*

Case 3: k is odd

In this case, by proposition 3.45, it is enough to show that all coefficients of all terms, except
the linear ones must be zero. As in the case above, the plan is to establish a relation between
the coefficients of two different adjugates having the same set of indices. But when k£ is odd, the
relationship is not as nice as in the even case and as such there is no general formula. However,

we still have a weaker analogue of claim 3.51 for the case of k-flips.

Claim 3.52 For s > 1, if J,J € T°, and I' ..., I°.1',...,I° € T* ', where J = {j1...js},
J={. g}, T={I"...15} = [1',...., 1] and I = {fl...fS} = [I',..., 1% be such that
JNI =0 and (J,I) and (j, I) are related by a k-flip interchanging an index j; in the subscript
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with one from the multiindex I™ in the superscript. Also, we assume that after the interchange,
the position of the multitndex containing j; in the superscript is p and the new position of the
index from the multiindex I™ in the subscript is q , i.e , j, € IP and 3q elm.

Then we have,

sen(J; 1) (dy)h = (=1) P sgn(J; 1) (dy) .

Since the proof of claim 3.52 is very similar to that of claim 3.51, we shall indicate only a

brief sketch of the proof. Since k is odd, we deduce,

sgn ([ Js_1]; [I™, I, ..., I*71))
= () sgn(ji, 1) sgn(Jo-y: {1 I7HY)
sgn([ji, I™], [(Jo—r; {1 .. °71)),

Sgn([jqjs—lk [ipv jlv e 7j5_1])
— (_1){(&2—1)} Sgn(jq, jp) Sgn(js—l; {jl o js—l})

sgn([g, I7), [(Jo—i; {11 ... °71D)]),
and hence, in a manner analogous to the proof of (3.49), we have,
[177171117"'7175_1]

(adjs XD, 77"
sgn([jiJs_1); [I™, 11, ..., I5~1])

. [jpj1 ..... Tsfl]
= —(—1)tr=b2) ~(ac_ile X)[zqfs__l] _ (3.51)
Sgn([jqjsfl]; [Ip’ 117 .. 7Is—l])’

for any 1 < s < sg + 1, any subset Js_1 = {j1,...,7s_1} C J of s — 1 indices and any choice of
of s multiindices I', ..., I*"! out of sy + 1 multiindices, where a; is the position of j; in [j;Js—1]
, as is the position of j, in [jgJs—1], b1 is the position of I™ in [I™, I',... , I°~!] and by is the
position of I? in |IP,I',..., 57|, Claim 3.52 follows from above.

Note that claim 3.52 and claim 3.50 together now rule out the possibility that an adjugate
with non-zero coefficient can have common indices between the blocks of multiindices in the
superscript and proves ds = 0 for all s > [Z]. Furthermore, by claim 3.52, the coefficients of any
two adjugates (d8)5 ) (ds)g such that 7 U.J = I U J, can differ only by a sign. So clearly, all of
them must be 0 if one of them is. So without loss of generality, we shall restrict our attention to
the coefficient of a particularly ordered adjugates, one with all distinct indices in subscript and
superscripts , for which j; < ... < js <ii < ... < z',lc_l < ... <1] << ... <154, henceforth
referred to as the totally ordered adjugate, Hence for a given s, 2 < s <[], and given 7 ¢ Tk,

we shall show that, L s o
(o) it i g (352)
where j; < ... < js < z% <. . < i}c_l <...<if <...<1j_. To prove (3.52), we first need
the following:
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Claim 3.53 For any 1 <r <k —1, we have,

Q1 1.2 a2 o 4 4 .0 o ois s
(d ){1112...mr+lzT+2...zk71}{1T+11T+2...zk711112...zT}...{zfzg...ziil}
S/j1j2---Js

{itid il Mi%i3.a2 Yy {dfis. i )

- (ds)ﬁjz---js (3.53)

We prove the claim by induction over r. The case for r = 1 follows from repeated applications
of claim 3.52 as follows.
Using claim 3.52 to the k-flip interchanging j; and i}, then to the k-flip interchanging il
and 4% and finally to the k-flip interchanging j; and %, we get,
{idig- iy HiZid a5y b {iga5.a7 1}
(s);, ...,
_ s {ig i Hidi3 g b afi5 07y}
=(=1) (ds)jg...jsz&
{jrad.ar_ Matd3..a2 Y {agis.as )
= _(_1)8 <d5)j2...§5i§k IEASTRFAEL N 12 tg—1

— _(_1)3(_1)572 (dsﬁi‘i?;ﬁfl}{z%l%111e711%}{zf1312—1} )

This proves the case for r = 1.

We now assume that (3.53) is true for 1 < r < ry — 1 and show the result for r = r¢. To

show this, it is enough to prove that for any 2 < rg <k — 1,

11 1 a2 2 o 4o 1 2.0 o s
(d ){1112""r0—1zr0’r0+1“'lk—1}{1r0"r0+1'“Zk—ﬂlzz"'lro—l}"'{Z;ZS'"Z;—J
S/j1j2---Js
11 1 2 o 4 1 2.0 o s
{1112...1T0_12T01T0+1A..zk_1}{ZTO+11TO+2...7,k_1217,2“.7,r0}...{1?1%...12_1}
= (ds)jyjs...5. . (3.54)

Indeed the result for r = rg follows by combining the induction hypothesis and (3.54). The

proof is similar to the case for r = 1. Indeed, by applying claim 3.52 to the k-flip interchanging

1
TO?

j1 and 4., then to the k-flip interchanging i,%o and 7;20 and finally to the k-flip interchanging j;

and 7;20, we deduce

41 o 2 4o 1 9 0 s s

(d ){Zl"'zro—lzro"'lk—1}{zr02r0+1"'%—121""ro—l}"'{zilg“'zz—l}
S/j1j2---Js
i 4 o o R RS ois
B (_1)8_1 (d ){]127‘0—}—1"‘7%—121‘“7‘1"0—1}{7’1“'17‘0—117‘0“‘Z)c—l}"‘{z‘ilg“'li—l}
s j2--~]’si}«0
_ _(_1)371 (d ){jliioJrl...iiilif...ifofl}{i}...i,l_oifOJrl...iifl}...{ifig...iifl}
s j2~~-jsi%0

11 9 9 q 1 a2 9 o5
_ —(—1)8_1(—1)5_2 (d ){11‘~-~1r‘0%0+1~-~1k_1}{lr0+1-~-Zk_1l1~~~1r0}-~~{1f@~-~12_1}
$79192---Js :

This proves (3.54)) and establishes claim 3.53.

Now, using claim 3.53, in particular for » = k — 1, we obtain,

(d ){z}ié...iiil}{ifig...izil}...{ifig...izil}
$/j1j2---Js

(g AR i)
o S/j1j2---Js :

117



This proves (3.52) and finishes the proof of the lemma in the case when k is odd and thereby

establishes lemma 3.47 in all cases. m

3.5.3 Equivalence theorem

Theorem 3.54 Let 2 < k < n,
n
f:APRY) >R and 7. R(k’—l)xn — AF(R™)

be the projection map. Then the following equivalences hold

ext,k

f ext. one conver & for rank one convex

ext,k

f ext. quasiconver < fom quasiconver.

ext,k

f ext. polyconvexr < fom polyconver

Remark 3.55 (i) One should not misinterpret the meaning of the theorem.

n
- The theorem does not say that any quasiconvez or rank one convex function ¢ : ]R(k—l) [

R is of the form f o we* with f ext. quasiconvex or ext. one convex as the following example
shows. Weletn=k=2,deR and

¢ (2) = ddet

[1]

which is clearly polyconvex (and thus quasiconvex and rank one convex) for every d € R. If
d # 0, there is however no function f : A¥ — R (in particular no ext. one conver and thus no
ext. quasiconvex and no ext. polyconver function f) such that ¢ = f o w®*. Indeed if such an

f exists, we must have d = 0, since letting

1
X = 0 and Y = 00
01 0 0

we have T¢"* (X) = 7%k (V) = 0 and thus

d=6(X) = f (7 (X)) = f (77 (V) = 6 (V) = 0.

n
- It can be that a result is false for general quasiconvexr functions ¢ : R(k—l) 5 R but is
n

valid for functions f o &k . R\k=1)""™ s R. This has been seen on several occasions (see, for
example, theorems 3.37 (i) or 3.30 (ii)).

(ii) The following equivalence is, of course, trivially true

ext,k

f conver & for convex.

(iii) When k = 1, clearly all the notions are equivalent to ordinary converity.
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Proof (i) Recall (cf. Proposition 3.43) that
7 (@ B) =a A pB.

The rank one convexity of f o #%¥ follows then at once from the ext. one convexity of f. We

now prove the converse. Let ¢ € A*, o € A¥=! and € A'; we have to show that
git—=gt)=rE+tanp)

n
is convex. Since the map 7*“* is onto, we can find = € R(kfl) ™ 50 that 74k (2) = ¢.

Therefore

gt)=fE+tanp)=f (we’“’k E) +tr™ (a® 5)) =f (wem E+ta® 5))

and the convexity of g follows at once from the rank one convexity of f o 7%,

(ii) Similarly since (cf. Proposition 3.43) 7% (Vw) = dw, we immediately infer the quasi-
convexity of fox®%* from the ext. quasiconvexity of f. The reverse implication follows also in
the same manner as above.

(iii) Step 1. Since f is ext. polyconvex (see Proposition 3.16) we can find, for every a € A*,
cs =c¢s(a) € AFs. 0 < 2k < n, such that

[n/k]

f(B) = f(a)+ Z co (@) 85 —a®), for every g e AF.

n
Appealing to the proposition 3.45 we get, for every £ € ]R(kfl) o

[n/k]

f<7rext,k (n)> Zf( extk )+ Z< < extk )> ;[ extk(n)i| [ exct k (f)r>

[n/k]
= (7€) + D (@ () sadjen — adj, €)
s=1

n
for every n € R(k—l) " which shows that fom®¥ is indeed polyconvex ( By theorem 5.6, part
3in [25] ).
Step 2. We now prove the reverse implication.Take N = (kﬁl)

ext,k ;

Since for is polyconvex, we have ( see theorem 5.6, part 3 in [25]), for every ¢ € RNV*"

there exists ds = ds () € R(s) (%) for all 0 < s < min {N,n} such that
min{N,n}
F(rE ) = f (75 ©) + D0 (A (€)adiyn — adj, €) (3.55)

s=0

for every n € RVx™,
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But this means that there exists d, given by d = (d1,da, . . ., dinfn,n}) such that the function
X — g(X,d), where g(X,d) is as defined in lemma 3.47, achieves a minima at X = &.

Then lemma 3.47 implies, for every 0 < s < min {N,n},
(ds,adjsn — adj, &) = <7r§"“’“<ds>; 7o (adjsn) — 7 (adj, £)> for every n € RNX".

Hence, we obtain from (3.55), for every ¢ € RV*",

[n/K]
F (7R ) = f (7208 () + 3 (7R (d) (€) 3w K (adj, ) — 7 (adj, €)) (3.56)

s=1

for every n € RVX™,

Since 7*Y* is onto, given any «,3 € A¥, we can find 7, ¢ € RV*" such that 7% (n) = 3
and 7%F(¢) = . Now using (3.56) and the definition of 7™"* we have, by defining c,(a) =
7SR (d)(€), for every a € A¥,

[n/k]
FB) = F@)+ > (e(a);8°—a®), forevery B € AF.
s=1

This proves f is ext. polyconvex by virtue of Proposition 3.16 and concludes the proof of
the theorem. m
3.6 Weak lower semicontinuity and existence theorems

3.6.1 Weak lower semicontinuity

In this subsection we shall prove some easy semicontinuity results which will be enough for
proving the existence theorems we need. However, the semicontinuity results can be improved

considerably and this will be accomplished in the next chapter in the context of several forms.

We begin by introducing the appropriate growth condition.

Definition 3.56 (Growth condition) Let 1 <k <n, 1 <p < oo and let f:Q x A¥ =R is
a Carathéodory function. Then, f is said to be of growth (Cp) if for some o > 0 and 1 < r < p,

it satisfies,

—B(x) — al¢]” < f(2,€) < B(z) + g(@)|P, for all & € A* for acx€Q,
where 3 € L'(Q) is nonnegative and g is a nonnegative measurable function.
Remark 3.57 The semicontinuity results need not hold if we allow r = p.

Theorem 3.58 (Sufficient condition for 1 <p <o) Let 1 <k <n, 1 < p < oo and let
f:QxA¥ — R be a Carathéodory function with growth (Cp) such that & = f(z,€) is ext.
quasiconvex for every & € A* for a.e x € Q. Let Q C R™ be a smooth and bounded open set. Let
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{ws} ¢ Lt (Q;Ak_l) be a sequence such that,
dwg — dw in LP (Q;Ak>

for some w € L! (Q;Ak_l). Then

§—00

liminf/f(x,dws)Z/f(aj,dw).
Q Q

Remark 3.59 In particular, I(w) = [ f(z,dw) is sequentially weakly lower semicontinuous
in WP (Q;Ak_l) and Wp (Q;Ak_l), for every 1 < p < oo and also in WeP4 (Q;Ak_l), for
every 1 < p < oo and any 1 < g < oo.

Proof Using theorem 2.46, for each s € N, we find a, € WP (Q; Ak_l) such that

{das =dws; and dayz=0 in €,

vaag =0 on 0f).

and we have the estimate,

lesllwre < Clldws | e

for some constant C' > 0, independent of s. Since {dws} is weakly convergent in LP (Q; Ak_l),
it follows that the sequence {as} is bounded in WP (Q; Ak_l). Therefore, up to extraction
of a subsequence that we do not relabel, there exists o € WP (Q;Ak_l) such that ay —
a in Whp (Q; Ak_l) . Note that this implies dw = da in €2, by uniqueness of the weak limit in
LP.

According to Theorem 3.54, we have that X — f(z,7%%#(X)) is quasiconvex for every
X e R(kﬁl)xn for a.e x € Q. Since f has growth (C,), f(z, 7*%¥(X)) also satisfies the usual
growth conditions. Then classical results (see, for example, Theorem 8.4 in [25]) show that

liminf/ f(z,dws) = liminf/ [z, das) = liminf/ f (:L’,ﬂ'eXt’k (Va5)>
Q Q Q

§—00 5§—00 §—00

Z/Qf<x’7rext,k (Va)):/ﬂf(;p,da):/ﬂf(x,dw)

This completes the proof. =

Analogously, we can show the dual results.

Theorem 3.60 (Sufficient condition for 1 <p<o0) Let 0 < k<n—1,1<p < oo and
let f:Q x A¥ — R be a Carathéodory function with growth (Cp) such that & v f(x,&) is eat.
quasiconvex for every ¢ € A* for a.e x € Q. Let Q@ C R™ be a smooth and bounded open set. Let
{ws} c L (Q;Ak“) be a sequence such that,

dwg — ow in LP (Q; Ak)
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for some w € L' (Q;Ak+1). Then

liminf/f(x,éws) Z/f(x,éw).
Q Q

5§—00

Remark 3.61 In particular, I(w) = [q, f(z,0w) is sequentially weakly lower semicontinuous
in WP (Q; ARFY) and WP (Q; AFFY) | for every 1 < p < oo and also in WP (Q; AF1), for
every 1 < p < oo and any 1 < ¢ < oo.

However, the semicontinuity result is no longer true, in general, if we have explicit dependence
on w. When k = 1, the spaces WP and WP coincide and the semicontinuity result holds (cf.

theorem 3.23 in [25]). However, as soon as k > 2, we have the following result.

Theorem 3.62 (Counterexample to semicontinuity) Letn > 2,2 <k <n,1<p<
and let Q = [0,27]" C R™. Let

I(w) == 1/!dw]p ! / |wP, for all w € WP (Q;Ak_l> .
bJja P Ja
Then I is not weakly lower semicontinuous in WP (Q; Ak’l) .
Proof Consider a sequence of exact forms {df,} C L? (; Ak’l) such that
9, — df in L (Q;A’H) ,

but
6, /> df in LP (Q;A’H) ,

for some df € LP (Q;Akfl).
To construct such a sequence, it is enough to consider a sequence {6,} c WP (Q;Ak’2)

which converges weakly to 6 in W1» (Q; Ak’2), but not strongly. For example, define
L. i i
0, := —sin(vai)e't A... Aeh2
v

where 2 < i1 < ... < i;_9 < n, with the understanding that when k — 2 = 0, we just take

0, := Lsin(vay). We have,
df, = cos(vri)e! Aet AL ez,
Clearly, {d6,} C WP (Q; A*"1) and df € WP (Q; A*~1) and we have,

6, — df in L (Q;A’H) . but db, /A df in L (Q;A’H) .
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But, clearly,

liminf 7(df,) = lim inf (—1 / \d0y]p>
V—00 V—00 p 0

1
= —limsup/\dﬂy]p
p Q

V—00

< —1liminf/d9,,|p
p V—00 O
1

< [ Jaop
pJo

= 1(db).

But by semicontinuity,

liminf I(df,) > I(df).

V—00
These two together implies,

liminf I(df,) = I(d6).

V—00

But the equality is impossible since that would imply,
tim supl|d6, |, = lim inf[d6, |1}, = lim [|d6, |1, = [d6][%.

V—00

Since df,, — df in LP, this implies the strong convergence in L”, which contradicts the fact that
de, /4 d in LP (Q; Ak’l) . This finishes the proof. m

Remark 3.63 (i) Note that when k = 1, this functional reduces to

1 1
I(u) := /]Vu\p—/m]p, for all uw € WHP (Q).
bJa bJja

This is known to be weakly lower semicontinuous in WP (cf. theorem 38.23 in [25]).

(ii) Analogously, for n > 2 and 0 < k < n — 2, the functional
1 1 5 k+1
I(w)=—- [ [ow]f — = [ |w, foralleW’p(Q;A )
P Ja P Ja

is not weakly lower semicontinuous in WP (Q; Akﬂ) .

3.6.2 Existence theorems in WP

Theorem 3.64 Let 1 < k < n,1 < p < oo, Q CR" be a bounded smooth open set, wy €
witp (Q;Ak’l) and f : Q x A¥ (R") = R be a Carathéodory function such that & — f(z,€) is

ext. quasiconvex for every & € A* for a.e x € Q and verifies, for every & € AF,

cr[§f + () < f(2,8) < e [€7 + 72(x)
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for a.e x € Q for some c1,c2 > 0 and some 1,72 € LY(Q). g € e (€ A*=1) be such that 6g = 0

i the sense of distributions. Let

Pow) it { [ 17 (o) + (gl 0 € W7 (2 41) | =

Then the problem (P ;) has a minimizer.

Remark 3.65 (i) When k = 1, the condition 6g = 0 in the sense of distributions, is auto-

(ii)

(iii)

(i)

matically satisfied for all g € Lp’(Q) and hence is not a restriction.

However, as soon as k > 2, g being coclosed is a non-trivial restriction and the theorem
does not hold if we drop this assumption. In fact, we can even show that if (7307d) admits a
minimizer and 2 < k < n, then we must have dg = 0 in the sense of distributions. Indeed,
suppose w € wy + Wol’p (Q; Ak’l) is a minimizer for (Po,d)- Now if §g # 0, there exists a
0 € C°(Q; A*=2) such that

| a0y o0

1
(Jolgsdo))

0, we can also assume that

| sy = 1.

But w+df € wy + Wol’p (Q; Ak_l) and we have,

Replacin 6 by —

/[f(x,d<w+d0>>+<g;w+de>1=/[f(x,dw>+<g;w>J+/<g;d9>:m—1<m,
Q Q Q

which is impossible since w is a minimizer. This establishes the necessity of the condition
0g = 0.

When k > 2, let v be the outward unit normal to 02 and let
Por) it { [ 1F o)+ i) s € o+ WRE (95051) | =
where w € wy + W(;l’%) (Q;Ak_l) stands for the set of w € WLP (Q;Ak_l) such that
bw=0inQ and vAw=rvAwy on IS

The proof of the theorem will show that (735’T) also have a minimizer under the hypotheses
of the theorem 3.64 and that msT = m.

Note that if f : Q x A¥ (R") — R satisfies the hypotheses of the theorem for some 1 < p <
00, then for any G € L' (Q;Ak) , the function F : Q x A* (R") = R, defined by,

F(z,6) = f(2,€) + (G(x);€)  for every & € A",
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also satisfies all the hypotheses with the same p.

(v) When the function f is not ext. quasiconvez, in general the problem will not have a
solution. However in many cases it does have one, but the argument is of a different nature
and uses results on differential inclusions, see Bandyopadhyay-Barroso-Dacorogna-Matias
[9], and Dacorogna-Fonseca [26].

Proof Step 1 First we claim that we can assume g = 0. Since g € LPI(Q; AF=1Y satisfies g = 0
in the sense of distributions, by theorem 2.43, we can find G € W' (Q; A¥), such that,

dG=0 and 060G =g in ),
vANG=0 on Of).

Then we have, substituing and integrating by parts,

[ = [ 66:) = =[Gt + [ it == [ @)+ [ 0sGian)

Given wyg € WP (Q; A" ) and g € LPI(Q;A’“_l), Jo0 (V2G5 wo) is just a real number and thus,

mt { [ 17 ) + (g5 0 € W37 (05057) |
=it { [ 17 o) — (Gl 0 €+ WP (9505 o+ [ (o).

Q

Hence finding a minimizer of (Powt) is equivalent to finding a minimizer of the following:

inf {/ F(2,dw) : w € w4+ Wy P (Q;Ak1>} =m,
Q
where F : Q x A¥ (R") — R is given by,

F(z,€) = f(2,6) + (G(x);€)  for every € € A",

It is easy to verify that F' satisfies all the hypotheses that f satisfies. This shows the claim.
Step 2 By step 1, we assume from now on that g = 0. Now note that if

as —a in WhHP (Q;Ak_l)
then by theorem 3.58, we have,

liminf/ f(z,dag) > / f(z,da).
Q Q

5—00

Step 3 Let ws be a minimizing sequence of (P ,), i.e.

/Q f (&, dws) — m.
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In view of the coercivity condition, we find that there exists a constant ¢z > 0 such that
ldws || p < c3.
(i) According to Theorem 2.43 , we can find a, € wp + Wéljzf (9; A*71) such that

dos = dws in O
dag =0 in €

VAas =V Aws =V Awy on Jf)

and there exist constants ¢4, c5 > 0 such that

lsllwie < callldws| o + llwollys] < ¢5-

(ii) Therefore, up to the extraction of a subsequence that we do not relabel, there exists
a € wy + Wik (2; AF1)
as —a in WhHP <Q;Ak_1) .

(iii) We then use Theorem 2.47 , to find w € wp + Wol’p (©; A*=1) such that
dw =da in Q
w=uwp on JN.

Step 4 We combine the two steps to get

§—00

m = liminf/ f(z,dws) = liminf/ f(z,das) > / f(z,da) = / f(z,dw) > m.
Q 5700 JQ Q Q

This concludes the proof of the theorem. m

Remark 3.66 Unless k = 1, uniqueness of minimizer can not be expected even with additional
assumptions like topological restrictions on the domain and strict convexity of the map £ —
f(x,€). Firstly, if w € wo + Wol’p (Q; A*Y) s a minimizer of (Po.cxt) then w + h is also a
minimaizer for every nontrivial harmonic field h which vanishes on 0S), i.e h € C* (Q; Ak_l) is

a solution to

dh =0 in €,
Sh=0 inQ, (H)
h=0 on 0f.

However, even when § is contractible, i.e there are no nontrivial solutions to (H), w + df is
a minimizer for every 6 € Wg’p (Q; Ak’Q) for any minimizer w € wo + Wol’p (Q;Ak’l). In
fact, if Q0 is contractible, by Poincaré lemma, i.e theorem 2.47, this implies that adding any
a € Whp (Q;Ak’l) which satisfies v A a = 0 on 0 and da = 0 in Q) to a minimizer yields

another minimizer.

In exactly analogous manner, we have,
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Theorem 3.67 Let 0 < k < n—1,1 < p < oo, Q C R"” be a bounded smooth open set,
wo € WHp (Q; Ak“) and f: Qx AF (R") = R be a Carathéodory function such that & — f(x,€)

is int. quasiconvex for every € € AF for a.e x € Q and verifies, for every € € AF,

cil§ff +m(z) < f(2,8) < e[ +72(2)

for a.e x € Q for some c1,ca > 0 and some v1,72 € LY(Q). g € 5 (€ AF*1) be such that dg = 0

in the sense of distributions. Let

(Posni) inf{ [ 17 8) + (gl s € o+ W3 (Q;Akﬂ)} o

Then the problem (Py ;,,) has a minimizer.

Remark 3.68 (i) Analogously, the condition dg = 0 is not a restriction when k =n—1 and
a non-trivial restriction and indeed, a necessary condition for the existence of minimizers

as soon as k <n — 2.

(i) Analogue of remark 3.65(iii) holds as well. When k < n — 2, let v be the outward unit

normal to 0 and let
(Pan) inf {/Q [f (z,0w) + (g;w)] : w € wo + Wi’f\’, (Q; Ak_l)} = mgnN
where w € wy + W(;l’%) (Q;Ak_l) stands for the set of w € WLP (Q;Ak_l) such that
dw=01nQ and viw=rviwy on ON2.
Then (Pd,N) also have a minimizer under the hypotheses of the theorem 3.67 and that

mqgnN =M.

(iii) Analogously, if f : Q x A¥ (R™) — R satisfies the hypotheses of the theorem 3.67 for some
1 < p < oo, then for any G € L¥ (Q;Ak) , the function F : Q x A* (R") — R, defined by,

F(z,8) = f(2,8) + (G(x);€)  for every & € A",
also satisfies all the hypotheses with the same p.

(iv) Once again, uniqueness can not be expected unless k = n—1 even with additional assump-

tions like topological restrictions on the domain and strict convezity of the map & — f(x,§).

Note that integrands with more general explicit dependence on w, i.e f(x,w,dw) or f(x,w,dw)
can not be handled by the above method, as the weak limit of the minimizing sequence {ws}
is not the minimizer. In fact, the minimizing sequence {ws} need not have a limit point in
wtp (Q; Ak_l) (respectively, WP (Q; Ak+1)), at all. On the other hand, though the minimizing
sequence {ws} must have a limit point in WP (Q; AF=1) (respectively, WP (Q; A*1)), the
functional need not be semicontinuous in WP (Q; Ak_l) (respectively, WP (Q; AkH) ), as shown

by the counterexample in theorem 3.62 (respectively, remark 3.63(ii)). However, if the explicit
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dependence on w is in the form of an additive term which is convex and coercive, then existence
of minimizers can be still be ensured, although in a larger space. This is the goal of the next

subsection.

3.6.3 Existence theorems in WP

Theorem 3.69 Let 1 <k <n,1 < p,qg < oo, 2 CR" be a bounded smooth open set, wy €
Wdpa (Q;Ak_l) and f: Q x A¥ (R") = R be a Carathéodory function such that & — f(x,&) is

ext. quasiconvex for every € € AF for a.e x € Q and verifies, for every & € A*,

et [§lP + (@) < f(2,6) < 2 €] + 72(2)

for a.e x € Q for some c1,ca > 0 and some y1,v2 € L' (). Let g : Q@ x A¥"1(R") — R be a
Carathéodory function such that ug — g(z,ug) is convex for every ug € A*=1 for a.e x € Q and
verifies, for every ug € AF1,

g (x,up) > e3|ug|? + v3(x)

for a.e x € Q for some c3 > 0 and some 3 € L*(Q). Let
(Py) inf {/ [f (2, dw) + g(z,w)] : w € wy + WEPI (Q; Ak_l)} =m.
Q

I
I{wo) = /Q [f (@, dwo) + g, w0)] < oo,

then the problem (P) has a minimizer.

Proof Step 1 Let {ws} be a minimizing sequence of (P), i.e.

[ 1f o + 0] > m.
In view of the coercivity condition, we find that there exist constants C7, Cy such that,
ldwsllp, <C1 and lwsl[pa < Co
But this implies, by passing to a subsequence if necessary, which we do not relabel,
dws — ain LP, and ws— win L9,

for some o € LP (Q;Ak_l) and some w € L4 (Q;Ak_l) .
Step 2 Now we will show that o = dw. Since wg € wy + WP (Q; A*1) for every s, for any
¢ € C (Q;A*1) | we have,

/Q<dws — dwo, ¢) = /<Ws — wo, 60),

Q

for every s. By weak convergence of {dw,} and {ws}, as s — 0o, both sides of the above equation
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converges to yield,

/Q(Oé—dwm@ :—/Q<W—w0,5¢>.

Since ¢ is arbitrary, it follows that (w — wp) € W;f’p 7 (Q; AF1) and a—dwy = d (w — wp) . Thus,
w € wy + W;mq (2; A*1) and dw = a. Hence we can write,

dwg — dw in LP, and ws— win L9,

Step 8 The hypothesis on f implies, by theorem 3.58, that

liminf/ f(z,dws) > / f(z,dw) .
Q Q

S§—00

Also, by convexity of g,(cf, theorem 1.2 in [24]) we have,

liminf/g(m,ws)Z/g(w,w).
Q Q

Thus,
m = liminf/Q [f (z,dws) + g (x,ws)] > /Q [f (z,dw) + g (z,w)] = m.

§—00

This completes the proof. =

Similarly, we have the following for the dual situation.

Theorem 3.70 Let 0 < k <n—1,1 < p,qg < oo, & C R™ be a bounded smooth open set,
wo € WoPa (2 Akﬂ) and f : Qx A¥ (R") — R be a Carathéodory function such that & — f(x, &)

is int. quasiconvex for every & € A* for a.e x € Q and verifies, for every &€ € AF,

e |E)P +m(x) < f(2,6) < ca|€)P 4 72(x)

for a.e x € Q for some ¢y ,ca > 0 and some y1,v2 € L' (). Let g : @ x A¥1(R") — R be a
Carathéodory function such that ug — g(x,ug) is convex for every ug € A**1 for a.e x € Q and
verifies, for every ug € AL,

g (z,u0) > esfugl? +y3(2)

for a.e x € Q for some c3 > 0 and some 3 € L1(Q2). Let

(Pint.0) inf {/Q [f (z,00) + g(z,w)] : w € wy + WP (Q; A’““)} =m.

if
T{wo) = /Q [f (2, 8w0) + gl w0)] < oo,

then the problem (P,,, ) has a minimizer.
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Chapter 4

Functionals depending on exterior derivatives

of several differential forms

4.1 Introduction

In this chapter, we begin our analysis of the functionals of the form

/ fldwsy, ..., dwy),
Q

where m > 1 is an integer and f : ARt % x AFm — R is a continuous function, where 1 < k; < n
are integers for each 1 < ¢ < m. The functional depends on m-differential forms, wi,...,wm,
where for each 1 < i < m, w; is a k; — 1-differential form on 2. When m = 1, the functional is
precisely the one we studied in Chapter 3. However, for a general m > 1, if we assume k; = 1

for all 1 <7 < m, this functional reduces to the functional

/Q f(vu),

where u : Q C R®™ — R™ is a function. This one is the central object of study in classical
calculus of variations, m = 1 corresponding to the so-called ‘scalar case’ and for m > 1, the
vectorial calculus of variations. So the functionals we study in this chapter is a generalization
of both the classical calculus of variations and the calculus of variations for a single differential
form. The analysis of this chapter gives us a unified viewpoint to deal with both in the same
footing.

The main question, once again, centers around the appropriate notions of convexity. We
introduce the appropriate notions, which are called, again for want of a better terminology,
vectorial ext. polyconvexity, vectorial ext. quasiconverity and wvectorial ext. ome convexity.
However, unlike chapter 3, we do not strive towards a complete picture of implications and
counter-implications regarding the relationship between these notions. Such a study can indeed
be quite rewarding, as the notions are general enough to allow considerable richness, but we
leave such an undertaking for the future. Our focus in this chapter would primarily be on the

following two aspects,

e Study of sequential weak lower semicontinuity and weak continuity results,
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e Deriving the central results of classical calculus of variations for the gradient case from

our analysis.

We also see that if we allow explicit dependence on lower order terms, the case of the gradient

is rather special.

4.2 Notions of Convezity
4.2.1 Definitions

We start with the different notions of convexity and affinity. However, to define all the relevant

notions of convexity, we first need to introduce a notation.

Notation 4.1 Let k = (k1,...,kn) where 1<k <n forall<i<m. We denote A¥ =

HAk (R"™). Likewise, A¥t" stands forHAkZ+T (R™) for anyr € Z\{0}. Let € = (&1,...,&m) €
i=1 i=1

m 3
k and (€] = <Z|§2|2> . Let a = (aq,...,apm,) € {NU{0}}'™ be a multiindex, in the usual

multitndex notations, with 0 < «; < [,%} for all 1 < i < m. We denote |a] = Zai and

m
|k0¢| = Z k,()éz
=1
Now we define, for |ka| < n,

£ = ¢ . NG

where the powers on the right hand side represent wedge powers (e.g £ = & A &1). Moreover,
& is also defined similarly, i.e x€ = {1 N\ ... A x&y, and

(€)™ i= (+€1) ™ A A (6Em) ™,
where the x represents the Hodge star operator.

Notation 4.2 Also, for any integer 1 < s < n, Ts(&) stands for the vector with components

&>, where o varies over all possible choices such that |a| = s.

Notation 4.3 Let p = (p1,...,pm) where 1 < p; < oo for all 1 <i < m. We define the spaces
LP(Q, A*) and WIP(Q, A¥), WP(Q, A*) to be the corresponding product spaces. E.g.

Wd p Ak) H Wd,Pz Ak?z

They are obviously also endowed with the corresponding product norms. When p; = oo for all

1 <i < m, we denote the corresponding spaces by L™ , W1 etc

Notation 4.4 In the same manner, w’ — w in WP (Q;Ak_l) will stand for a shorthand of
wf = w; in WP <Q;Aki_1> (= if pi = o0),
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for all1 <i<m, and f (dw"”) — f (dw) in D'(Q) will mean

fldoy, ... dwh) — f(dwy,...,dwy,) in D'(Q).

m
Definition 4.5 Let 1 < k; <n forall1<i<m and [ : HA]” (R") — R.
i=1
(i) We say that f is vectorially ext. one convex, if the function

g:t—=gt)=f(&+tanPb,l+tanPo,....qn+taNBy)

is convex for every collection of & € A¥, 1 <i<m, a € A' and B; € A¥1 for all1 <i <m.

If the function g is affine we say that f is vectorially ext. one affine.

(ii) A Borel measurable and locally bounded function f is said to be vectorially ext. quasi-

convex, if

/Qf (&1 + dwi(x), & + dwe(x), ..., &m + dwm () > f(&1,&2, ..., &n) meas(Q)

for every bounded open set ), for every collection of & € A¥ and w; € I/Vol’OO (Q;Aki*l) , 1<
1 < m. If equality holds, we say that f is vectorially ext. quasiaffine.

(11i) We say that f is vectorially ext. polyconvex, if there exists a convex function such that

f(&) =F (1), -, Tn(E)),

where
n
N=|——
min k;
1<i<m

If F' is affine, we say that f is vectorially ext. polyaffine.

Remark 4.6 The definition of vectorial ext. quasiconvexity already appeared in Iwaniec-
Lutoborski [39], which the authors simply called quasiconvexity. In the same article, the authors
also introduce another convexity notion, which they called polyconvexity. But the definition of
polyconvexity introduced in Iwaniec-Lutoborski [39] is not the same as vectorial ext. polycon-

vezity. See remark 4.10 for more on this.

m
Definition 4.7 Let 0 < k; <n—1 forall1 <i<m and f : HAki (R") — R.
i=1
(i) We say that f is vectorially int. one convex, if the function

g :t—)g(t) :f(fl +ta461,§2—|—t()uﬁ2,...,§m—|—t0uﬁm)

is convex for every collection of & € AF, 1 <i<m , a € A and B; € A¥*! for all1 <i < m.

If the function g is affine we say that f is vectorially int. one affine.

(ii) A Borel measurable and locally bounded function f is said to be vectorially int. quasi-
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convex, if

/Qf(gl +6W1(.’E),§2 + 5(,;}2(1]), s 7£m +(5Wm(x)) Z f(§1,§2, cee agm) meaS(Q)

for every bounded open set Q, for every collection of & € AF and w; € VVOLOo (Q;Aki“) , 1<
i < m. If equality holds, we say that f is vectorially int. quasiaffine.

(iii) We say that f is vectorially int. polyconvex, if there exists a convex function such that

f(&) = F(T1(x€), -+, Tn(xE)),

where

n

1glgnm{n — k;}

N —
If F is affine, we say that f is vectorially int. polyaffine.

4.2.2 Main Properties

The different notions of vectorial ext. convexity are related as follows.
Theorem 4.8 Let k= (ki,...,ky) with1 <k; <n foralll <i<m and f: A* = R. Then

feonver = f wvectorially ext. polyconver = f vectorially ext. quasiconvex

= f wvectorially ext. one conver.

Moreover if f : A¥ (R") — R is vectorially ext. one convex, then f is locally Lipschitz. If,
in addition f is C2, then for every & € A¥, o€ A and B; € A¥~ for 1 <i <m,

Y. Y eletansians) >0

where & = Z fuel foralll <i<m.
IeTki

Proof The proof is very similar to the proof of Theorem 3.10. We only mention here the

essential differences. The implication that
f convex = f vectorially ext. polyconvex

is trivial.

To prove

f vectorially ext. polyconvex = f vectorially ext. quasiconvex ,
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we once again use Jensen’s inequality. The argument is exactly the same as in Theorem 3.10 as

soon as we show

[ 6+ ) = €2 meas (0).
Q

for any & € AF, for any w € W&’M(Q,Ak) and for any multiindex a@ = (aq,...,qm,) €
{NU{0}}"™ with 0 < «; < [%} for all 1 < i < m. We prove this using induction over |c|.
The case |a] =1 is trivial. So we assume || > 1. Thus, there exists ¢ such that oy > 2. Now,

we have,

(&4 dw)™ = & A (€ + dw)P + dw; A (€ + dw)
=& A (E+dw)? +d |wi A (€ +dw)? |
where 3 is a multiindex with 8; = o;—1 and 8; = «j for all 1 < j < m, i # j. Since |B] = |a| -1,

integrating the above and using induction for the first integral and the fact that w; = 0 on 92

for the second, we obtain the result.

To prove
f vectorially ext. quasiconvex = f vectorially ext. one convex,

we also proceed in the same lines as in Theorem 3.10. For any A € [0,1], we find, using
Lemma 3.7, for each 1 < i < m, we find disjoint open sets Q},Q5 C Q and a function ¢' €
W, ™ (Q; AFi=1) such that

1. |meas(Q) — Ameas(Q)| < € and | meas(Q%) — (1 — \) meas(Q)| < ¢,
2. 16"l oo @y < 0,

(1=N)(t—s)and, ifxrei,
—At—s)and, ifxe Q.

3. doi(x) = {
Define . .
O =9 and Q=()0%.
i=1 i=1
Since this implies
meas(Q\ (Q1 UQ)) < Ameas(Q) — meas(Q%) + (1 — \) meas(Q) — meas(Q5) < 2,

the proof follows.

The fact that f is locally Lipschitz follows once again from the observation that any vecto-

rially ext. one convex function is separately convex. Now if f is C2, the function

g:t—=gt)=f(E&+tanB,&+taNPa, ..., &n+taBy)

is convex and C2. The claim follows from the fact that ¢” (0) > 0. m
We can have another formulation of vectorial ext. polyconvexity. The proof of which is

similar to Proposition 3.16 (see also Theorem 5.6 in [25]) and is omitted.
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Proposition 4.9 Let k = (ky,... ky) with 1 < k; <n for all1 < i <m and f : A¥ = R.
Then, the function f is ext. polyconvez if and only if, for every & € AF, there exist cq =
cal(€) € AR(R™), for every o = (ay, ..., o) such that 0 < a; < [k%} foralll1 <1< m and
0 < |ka| < n, such that

Fm) =€)+ (s (€)in™—€), for every n € A*.

Remark 4.10 This formulation of the definition is better suited for comparison with the defi-
nition of polyconvexity introduced in definition 10.1 in ITwaniec-Lutoborski [39], one easily sees
that their definition allows only the case o; € {0,1} for all 1 < i < m. We remark that unless
kis are all odd integers, these two classes of polyconvex functions do not coincide and ours is

strictly larger. For example, the function fi : AF1 x A¥2 = R given by,

fi(&1,&) = (&1 N &)  for every & € Ak1,§2 € AR

where ¢ € A¥1F2 s q constant, is polyaffine in the sense of Iwaniec-Lutoborski [39] and also

vectorially ext. polyaffine. However, the function fo : AFt x AF2 - R given by,

fo(&1,&) = (&L A &) for every & € AP & € AR

where ¢ € A" is a constant, is vectorially ext. polyaffine, but not polyaffine in the sense of
Twaniec-Lutoborski [39]. Note also that it is easy to see, by integrating by parts that both fi
and fs are vectorially ext. quasiaffine and hence are also quasiaffine in the sense of Iwaniec-
Lutoborski [39]. Also, when m = 1, i.e there is only one differential form, reducing the problem
to the form (1.1), their definition of polyconvexity coincide with usual convexity. On the other
hand, when m = 1, vectorial ext. polyconvexity reduces to ext. polyconvexity, which is much

weaker than convexity.

We finish this section with another result which says that when k; = 1 for all 1 < i < m,
the notions of vectorial ext. polyconvexity, vectorial ext. quasiconvexity and vectorial ext.
one convexity are exactly the notions of polyconvexity, quasiconvexity and rank one convexity,

respectively.

Proposition 4.11 Let k = (k1,...,kp) with 1 < k; <n foralll1 <i<m and f : AF S R If
ki =1 for all 1 <i < m, then for each & € A*, by identifying & € A' as the i-th row, & can be

written as a m x n matriz. With this identification, it follows that,

f:A* = R is vectorially ext. polyconvex < f:R™™ — R is polyconvez,
[+ AF = R is vectorially ext. quasiconver < f:R™"™ — R is quasiconver,

f: AR = R is vectorially ext. one conver < f:R™™ — R is rank one convez.

Proof The first conclusion is immediate as soon as we note that in this case, the adjugates of
the matrix is precisely the wedge powers of the rows. The conclusion is about quasiconvexity

is obvious from the definitions. For the conclusion about rank one convexity, note that for any
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1-form « and O-forms f1, ..., By, we can identify o with a vector in R"™ and we can define the

vector in R™ as

b1

bm

Then, we have, for any ¢t € R,
AR S (G A+t A B, em+1a A By) = (€ +ta® B) € R™,

where £ stands for &, written as a m x n matrix. This concludes the proof. m

4.3 Vectorially ext. quasiaffine functions

Theorem 4.12 Let k = (ki,...,kp) with 1 <k; <n for all1 <i<m and f : A* 5 R. The
following statements are then equivalent.

(i) f is vectorially ext. polyaffine.

(ii) f is vectorially ext. quasiaffine.

(iii) f is vectorially ext. one affine.

(iv) There exist co € AF(R™), for every a = (o, ..., o) such that 0 < a; < [%} for all
1<i<m and 0 < |ka| < n, such that for every € € Ak,

FE&= > (caié®.

a,
0<|kar|<n

Remark 4.13 If k; = 1 for oll 1 < i < m, then this theorem recovers the characterization

theorem for quasiaffine functions in classical vectorial calculus of variation as a special case.
n

Indeed, let X € R™*™ be a matriz, then setting & = ZX,-jej for all 1 < i < m, we recover

j=1
exactly the classical results ( cf. Theorem 5.20 in [25]).

Proof (i) = (ii) = (éii) follows from Theorem 4.8. (iv) = (i) is immediate from the definition

of vectorial ext. polyconvexity. So we only need to show (iii) = (iv).

We show this by induction on m. Clearly, for m = 1, this is just the characterization
theorem for ext. one affine functions, given in theorem 3.20. We assume the result to be true
for m < p — 1 and show it for m = p. Now since f is vectorially ext. one affine, it is separately
vectorially ext. one affine and using ext. one affinity with respect to §,, keeping the other

variables fixed, we obtain,

(5]
f (g) = Z(Cs(gla cee agpfl);gz%
s=1
p—1
where for each 1 < s < [%L the functions ¢ : HA’“ — A% are such that the map
i=1

(€1, &p1) = F(&, ... &p1,&p) is vectorially ext. one affine for any &, € AF. Arguing
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by degree of homogeneity, this implies that for each 1 < s < [k"—pL every component cé is vecto-
rially ext. one affine, i.e (£1,...,&-1) — cl(&1,...,&—1) is vectorially ext. one affine for any
I € Ty, Applying the induction hypothesis to each of these components and multiplying out,

we indeed obtain the desired result. m
4.4 Weak lower semicontinuity

4.4.1 Necessary condition

We first show that vectorial ext. quasiconvexity is indeed a necessary condition for sequential

weak lower semicontuinty of the functional of the form

| #aw. )

The proof of this result is very similar to the classical result for the gradient case (cf. Theorem
3.15 in [25]).

Theorem 4.14 (Necessary condition) Let k = (k1,...,kp) where 1 < k; < n for all 1 <
i <m, let @ CR"™ be open, bounded. Let f : Q x A¥=1 x A¥ — R be a Carathéodory function
satisfying, for almost all x € Q and for all (w, &) € AF~1 x AF,

f (2, w, &) < alz) + b(w, §), (4.1)

where a € L' (R"), b € C (A*=1 x A*) is non-negative. Let I : W% (Q; A*~1) — R defined
by
I(w) := / f(z,w(z),dw(x)) dz, for all w e W™ (Q;Ak_l) ,
Q

is weak * lower semicontinuous in W™ (Q;Ak_l). Then, for almost all xg € Q0 and for all
wo € ARL, &y € A* and ¢ € W (D; AF),

/Df(x()yw()ago —|—d¢($)) dx > f<x07w()a£0)a

where D := (0,1)" C R™. In particular, & — f (z,w,&) is vectorially ext. quasiconvex for a.e
x € Q and for every w € A*1,

Remark 4.15 Since I being weak x lower semicontinuous in W% (Q;Ak_l) s a necessary
condition for I to be weak lower semicontinuous in WP (Q; Ak_l) for any p = (p1,..-,Pm)
where 1 < p; < oo for all 1 < i < m, [ being vectorially ext. quasiconvex is a necessary

condition for weak lower semicontinuity in WP (Q; Ak_l) as well.

Proof Let wg € A*™1, £ € A* and ¢ € W (D;Ak_l) be given. Let us choose affine
we (™ (R”; Ak_l) such that

W(xg) = wp, dw = &g in R".
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Let us define

A=A (@0, €0, ®) :=l1llyace ity + ol + 1Bl oo (000
By i={(@,€) € A" 1 x AR | + €] < A},

Y ::max{b(w,ﬁ) : (w75) € B)\} : (42)

For every v € N and € > 0, we find a compact set K, C Q and continuous f, : R” x Ak~ x A¥ —
R such that f: K, x By — R is continuous and

meas (Q\ K,) < % and /Q\K (a(x) +v)dx < e. (4.3)

Furthermore,
1. f, = fin K, X Bj.
2. ”fVHc(RnXAk—IXAk) = HfHC(K,,xB,\)‘

3. For all w € W (; Ak=1),

/ (@, w(z), de(@)| do < e. (4.4)
O\K,
Let us write

Qo = ﬂ T € U K : x is a Lebesgue point of xr, and axo\x,
veN jEN

Note that meas (2\ Qp) = 0. Let z¢ € Qp be fixed. For all s € N, let us write Qs := z + %D.
We choose s € N sufficiently large, say s > sg, for which Q4 C 2. Extending ¢ by periodicity
with respect to D to R", for all r € N and s > so, we define ¢, ; € Wdoo (Q; Ak_l) by

%(b (rs(x —xz)), if x € Qs,
0, ifx € Q\ Qs.

¢r,s(x) =
Note that, for each s € N with s > s,
by s 200 in Wb (Q; Ak_l) , as r — oo.
On defining, for each » € N and s € N with s > 59, w, s € Wdoo (Q; Ak) as
wrs(r) == w(x) + ¢, (), for all x € Q,

we note that, for each » € N and s € N with s > s,

(W(x),dw(z)), (wrs(z),dw,s(x)) € By, for a.e z € Q. (4.5)
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Moreover, for each s € N with s > s,

wyps — w in L™ (Q;Ak_1> and w;. 2@ in Whe (Q; Ak_1> , as r — o0o. (4.6)

A .
87]

xg, for all 0 < j < r™ — 1. Then, we have that

Let us split @, into subcubes of edge-length % and let x; be the vertex of Qy ; closest to

r—1

1 _ __
=wj+-_Dand Q= U @z (4.7)
7j=1
For each v, € N and s > sq, let us define
r"—1
0wy =3 / fo (2, @(25), dwrs(2)) de,
j=1 Q%
r"—1
1% (v) = Z [y (@, wrs(@), dwr s (2)) — fo (25, 0(25), dwr s(2))] de,
_]*1 Q;J

Note that, for all v,r € N and s > s,
I(wrs) = / f (@, (), da(z)) dz + I () + I3 () + 157 ().
Q\Qs

We now estimate each term.
Step 1. Estimation of 17°(v).

Note that, for all v,» € N and s > s,

° = » (s ’d rs d
YRS /. o0, ()
rv—1
= ; /xj+1}gD fv (x5, @0(xj), 80 + dop(rs(x — xp))) dx
r—1

= ; ! /Dfl/ ($J75($3)7§0+d¢(y+7“8(xj —.’L‘O))) dy

(rs)"

r—1

=Y o [ )60+ o)

(rs)"

Therefore, for all v € N and s > sq,

lim 17(m) = / s ( /D £ (2, @(x), € +d¢(y))dy) da. (4.8)

7—00

Step 2. Estimation of I5°(m).
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Since f, is uniformly continuous on Qs x By, using Equations (4.5) and (4.6), it follows that
for all v € N and s > sg,
lim I;%(v) = 0. (4.9)

r—00
Step 2. Estimation of I3°(v).

Note that, for all v,r € N and s > s, using the bound (4.1) on f and using Equations (4.5),
(42), (43), (4.4)

I:?S(V) g/Q |f (2, wrs(), dw; s(2) — fu (2, wr s (1), dw; s () [dx
:/ |f (2, wrs(), dwy s(2) — fu (2, wrs(), dw; s(2)) |d
O\K,
:/ (If (z,wprs(2), dwys(2)) | + | fo (2, wrs(2), dwr s(7)) |) dz
O\K,

g/ (a(x) +7)dx + € < 2e. (4.10)
O\K,

We now use Equations (4.8), (4.9), (4.10), (4.6), and the weak lower semicontinuity of I, to
deduce that, for all v € N and s > s,

/Q\st(x,w(:c),dw(x))der/ (/D fv (x,w(x),go+d¢(y))dy> dr + 2

E]

> / [ (z,@(z),dw(x))dx + lim I7°(m) + lim I3°(m) + limsup I3°(m)
Q\Qg rT—00 T—00

T—00

> lim sup (/ [ (z,0(z),dw(x))dz + I;°(m) + I;°(m) + Ig’s(m)>
ON\Qs

r—r00

> liminf I(w, ) > I(w) = /Qf (x,@(x),dw(z)) dx.

T—00

Letting v — oo, we deduce that, for all s > sg and € > 0,

/Qs </D f(z,0(x), & + do(y)) dy) dx + 2€ > / fz,w(z), dw(z)) dz.

s

Therefore, for all s > s,
/ ([ 1@ ota).60+ do)dy ) s > | 1), s (11)
S D S
Let us define F':  — R by

F(z) = /D f (2,@(2), €0 + d(y)) dy — [ (2.8(x), &) , for all 2 € Q.

It remains to show that
F(x9) > 0. (4.12)
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Since f is Carathéodory and satisfies (4.1), it follows from Equation (4.2) that

| F ()] </ | (z,@0(x), &0 + db(y))| dy + [ f (z,@(x), €o)]

/<wm+w 2),€0 + d(y))) dy + alz) + b(@(), &)
(a(z) + ), for all z € Q. (4.13)

For each v € N, since f is continuous on K, x B}, it follows that

1
Iim ——— F(z)de = F . 4.14
e meas(Qs N Ky) Jo.nk, (z)de (o) ( )

Since, for each v € N and s > sq,

1 ~ meas(Qs N K,) 1
e @ o, T = @) e Qe Sy, T

= (o Jo 1) (.70 o, %)

it follows from Equation (4.14) and the fact that zo € Q,

1
lim ——— F = F =F for all . 4.1
li s /Q P = i, (1) (x0) = Flzo), for all m € N (4.15)

Furthermore, for all v € N and s > s¢, using Equation (4.13) we deduce that,

@
s F(x)dx
meas(Qs) Jo,\(Q.nK,) )

) / F(x XQ\KV (x)dx

s

4.1
meas Qs /QS XQ\KV(x)d:C (4.16)

B ' meas QS

Therefore, for all v € N,

1

hm —_——
meas(Qs) Qs\(QsNK,)

5§—00

F(x)dz| < 2(a(zo) +7)Xa\k, (To) = 0.

Hence, it follows from Equations (4.15) and (4.11) that, for all v € N,

1 1
F(zo) = lim ————— F(z)dz + lim ————
WS%MM>WQU“£MW@AWW

1
=lim ——— F(x)dz > 0,
SLI& meaS(Qs) Qs ([B) v

F(z)dx

which proves Equation (4.12). This proves the theorem. m
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4.4.2 Sufficient condition
Lower semicontinuity for quasiconvex functions without lower order terms

We start by defining the growth conditions that we need.

Definition 4.16 (Growth condition) Let k = (k1,...,kp) where 1 < k; <n for all1 <i <

m, p= (p1,...,pm) where 1 < p; < oo for all 1 <i < m and let @ C R™ be open, bounded. Let
f:AF SR

f is said to be of growth (Cp), if for every &€ = (&1,...,&m) € AR, f satisfies,

o (1 I Z@(@) < fl)<a (1 + ZG?(&)> 7 (Cp)
i=1 =1

where o > 0 is a constant and the functions G's in the lower bound and the functions G%s in

the upper bound has the following form:

o Ifp, =1, then,

GL(&) = G (&) = ailéi] for some constant a; > 0.

o If1 < p; <oo, then,

Gi(&) = ail&| ™
and
G (&) = ail&l™,
for some 1 < q; < p; and for some constant a; > 0.

e [fp; =00, then,
Gi(&) = G (&) = mi (&) -
for some nonnegative, continuous, increasing function ;.

Now we derive a lemma which is essentially an analogue of the result relating quasiconvexity

with WhP-quasiconvexity in the classical case (see [8]).

Lemma 4.17 (W%P-vectorial ext. quasiconvexity) Letk = (ki,...,ky) wherel < k; <n
foralll <i<m, p=(p1,...,pm) where 1 < p; < oo for all1 < i < m and let @ C R™ be
open, bounded, smooth. Let f: A* — R satisfy, for every € = (&1,...,6m) € AF,

f§) <a (1 +)° G%‘(&)) :

where a > 0 is a constant and the functions Gi's has the following form, as defined above, i.e,
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o Ifp;, =1, then,

Gi'(&) = ail&il for some constant a; > 0.

o If1 < p; <oo, then,
G (&) = ail&l|,
for some constant o; > 0.

o Ifp; =00, then,

G (&) =mi (1&l) -
for some nonnegative, continuous, increasing function ;.

Then the following are equivalent.
(i) f is vectorially ext. quasiconvex.

(i) For every q such that p; < q; < oo for everyi=1,...,m, we have,

1
meas()

/Q &+ d) > 18,

for every ¢ € W;f’q (Q; Ak_l) .

Proof (ii) implies is (i) is trivial. So we only need to show (i) implies (ii). So we assume
f: A* — R is vectorially ext. quasiconvex.

Now we claim that for any ¢ € W;’q (Q;Ak_l) C W;f’p (Q;Ak_l), we can find ¢¥ €
C (O Ak_l) such that {¢*} is uniformly bounded in WP (2 Ak_l) and d¢¥ — d¢ for a.e
x € Q.

Indeed, if p; < oo, then we can actually find {¢?} C C (Q;A*~1) with ¢V — ¢; in
W d:pi (Q; Aki*l) , which clearly implies what we claimed. If p; = oo, then by the usual trick of
truncating and mollifying, we easily find a sequence {¢?} € C° (Q; Ak_l), which is uniformly
bounded in W% (Q; Aki*l) and d¢; — d¢; in wr (Q; Aki*l) , for any 1 < 7 < oco. This shows

the claim.

Now using the bound on f and the fact that f is continuous since it is vectorially ext.quasiconvex,

using Fatou’s lemma we obtain,

limnf [ {a (1 +ZG$<¢;>) - f(£+d¢”)] - [ {a (1 +ZG§‘<¢»> - F€ +dg)
i=1 Q i=1

Q
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Now since {¢Y} is uniformly bounded in W4 (2 Aki_l), using dominated convergence theorem

Jim, (”ZC’W”) -/ (”ZGW”)'

Q

we deduce,

Hence using vectorial ext. quasiconvexity of f, we deduce,

[ g+ do) >hmsup/f(£+dd>”)2/gf(£)

V—r00

This proves the lemma. =

We now generalize an elementary proposition from convex analysis in this setting. The proof
is straightforward and is just a matter of iterating the argument in the proof of Proposition
2.32 in [25].

Proposition 4.18 Let k = (ki,...,ky) where 1 <k; <n foralll1 <i<m,p=(p1,...,Pm)
where 1 < p; < 0o for all 1 <i < m and let Q@ C R™ be open, bounded, smooth. Let f : A¥ — R

be separately convex and satisfy, for every &€ = (£1,...,&m) € AF,
m
f(&)| < a (1 + ZW) :
i=1
where o > 0 is a constant. Then there exist constants 3; > 0,i =1,...,m such that
/(&) - Z 1+Z<I£jl”i +|<ﬂf:) 1€ = Gil,
i=1 j=1

for every & = (&1,...,&m), ¢ = (C1,-.-,Gn) € AR, where pl is the Hélder conjugate of

exponent of p;.

Proof We know that for any convex function g : R — R, we have, for every A > p > 0 and for

every t € R,
gt £p) —g(t) _ g(t£A) —g(t)
7 - A '

The strategy for the proof is to use these inequalities for suitable choice of A and p, when all

but one of the components of £ is fixed. To this end, we define, for any 1 < i < m, any I € A,
~i,I In,
&= (&N G ).

~i, 0, .
In words, {Z is the vector whose components are precisely all the components of & except &!.
Now let

gl (t) = f(t, €.

Py
Choosing = ¢/ — &l and A =1+ |&| + |G| + Z|£j|1’i , we obtain,
J#i

#9(55 +A) — (&)

9(&) =g =gl&l +n)—g(&) < X
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Using the growth conditions, this implies that there is a constant C' such that,

T4\ — g(e]

o (T 1€l + AP+ Sy url€d 1P+ Syl ) + (14 Sl

(1 e+ 1G] +z#i\sj|??)

&l - ¢

by

Py Py
SO+ &1 +1G17 + > 1617 |1 = ¢l
JFi

This gives,

Py Pi Pj
g¢h —g&h <cli+1glm + a1 + > 1617 |1 = ¢
J#i

Exactly the same way, the same estimate can be derived for g(&/) — g(¢/). Hence, we have,

Py Dy Py
9(¢) — gDl < C [ L+ 1&l7 + (617 + ) 1617 | 16 = ¢
JFi

Our plan is to write f(&)— f(¢) as sum of differences of functions, whereas in each such difference,
only one component changes and the others are kept fixed. We plan to use the estimate above
to each such difference. The only trouble is, the estimate is not symmetric with respect to the
endpoints. When writing f(&) — f(¢) as sum of differences of functions, the ‘fixed’ components
will not always be fixed at their values at &, but some components will be fixed at their values
at € and some components at their values at ¢. So we can not really use precisely this estimate
to all such differences. But that is easily rectified as the estimate above immediately yield the

estimate,
I I o o > A I A
o -aehi < 1+ 16 + 1ot + 3 (161 + 1617 ) | 16] - ¢l
J#i
We can also get rid of the dependence of I on the right hand side completely, as this implies,
o 5 oy B
o - sehi < 1+l 4ot + 3 (1617 +161) ) 16— i
i

This estimate now is true for all such differences. Stitching the argument together, this gives
the desired inequality and finishes the proof. =

Now we generalize this proposition to cover the case where some of the p;s can be co as well.

Proposition 4.19 Let k = (ki,...,ky) where 1 <k; <n foralll <i<m. Let 0 <r <m be
an integer. Let p = (p1,...,pm) where 1 < p; < oo foralll <i<r and pyy1=...= ppy = 0.
Let Q C R” be open, bounded, smooth. Let f : A* — R be separately convex and satisfy, for
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every € = (§1,...,&m) € A,
f(&)] < a <1 D L (!&D) :
i=1 i=r+1

where o > 0 s a constant and ;s are some nonnegative, continuous, increasing functions. Let

i nv m
Q- -c,opFn W o T ak

i=r+1

be a cube and define
K =A% . x AP x Q.

Then there ezist constants 3; = Bi(K) > 0,i = 1,...,m such that

OGN IESY <|£j|4 " |<j|”?> & -
=1

j=1
+ Y0 B | LD (g G | 16— Gl (4.17)
i=r+1 j=1

forevery& = (&1,...,6m), ¢ = (C1, ..., Gn) € K, where p), is the Holder conjugate of exponent
of pi-

Remark 4.20 1. Clearly, when r = m, the last term in the inequality (4.17) is not present.

2. Of course, the assumption on the naming of the variable is not a restriction at all, since

we can always relabel the variables.

Proof We write,

f(g)_f(C) :f(E)_f(Ch"wCT?gTJrla"'7£m)+f(c17"'7CTa€T+1a"'a£m)_f(C)'

Hence we have,

‘f(&) _f(C)’ < ‘f(&) _f(Clw~'7€7‘7€T+17"-7§m)| + ’f(<177CT7€T+177£TTL) _f(C)‘ (418)

Now since [§;| < C and ;s are continuous for all r + 1 < i < m, the function

h(’)/la"'afyr) :f(717"'77Ta§T+15"'a€m)

satisfies the growth condition

(V1) < p(K) (1 +Z|%\pi> ,
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where the constant p depends on both « and the set K, or more precisely on the bound C.

Hence, using proposition 4.18 on h, we obtain,

p
p

B, ) = RG-S B[ 1+ (Ifjl - |<ﬂf) & — Gil-
i=1 Jj=1

This gives,

) =[G G &) <5 [ 143 (rgjvi " \g\%) &~ Gl
i=1 j=1

Hence, our proof will be finished if we show that
F(Gre s Gty m) = FOLS D0 B | L+ D (G +1¢G1P) | 16— Gl
i=r+1 j=1

To this end, we note once again that for any convex function g : R — R, we have, for any

T,y € [_Ca C])

M —m
_ < _
l9(2) —9()l < — 5~z —ul,
where M = max ¢(t) and m = min ¢(¢). This implies the estimate

t|<4C jt|<4C
!

o) — 9()| < "ol — o],

where M’ = lrlnax |g(t)|. Using separate convexity and writing as as sum of differences of func-
t|<4C

tions, whereas in each such difference, only one component changes and the others are kept

fixed, this immediately generalize to the estimate,

for every z,y € Q, for every separately convex function G : " 11 AF — R, where ¢ > 0 is a

constant and M = £n2$|G(t)| is the the maximum of |G| in the cube
€

m

s o(» m
1Q 1= [0, 4C)— ) IT A%
1=r+1

Setting
G(’Y?"+la cee aﬁ)/m) - f(Cla .. '76‘)77"4’17 cee 77777,)

and using this estimate for G, we obtain, by the growth condition on f,
m AR (14 25,1G 1)
|G(€7‘+17"'7€m)_G(CT+17"'7Cm)| < Z C |x74_y74|

i=r+1

147



This implies,

m o BE) (1 + 220 (16F7 +1G1P7)
|G(€r+1’~-7€m)*G(Cr—i-lw--’Cm)’S Z ( - 1C’ ’ ’ >‘x’by1’
i=r+1

This immediately implies the estimate
m T
1F(Cty s Gty m) = OIS D B [ 14D (6P +1G1P) | 1€ - Gl
i=r+1 7=1

and finishes the proof. m

Now we are in a position to prove the semicontinuity result. We start with a lemma which is
essentially about changing the boundary values of a sequence. In classical calculus of variations,
such a lemma is well-known (see Acerbi-Fusco[l], Marcellini[48], Meyers[49], Morrey[52], [53]
etc.).

Lemma 4.21 Let k = (k1,..., k) where 1 < k; < n foralll <i<m, p= (p1,-..,0m)
where 1 < p; < oo for all1 < i < m. Let D C R™ be a cube parallel to the azxes. Let
€= (&1,...,6n) € AR, Let f: AF — R be vectorially ext. quasiconvex satisfying the growth
condition (Cp) . Let

¥ =0 in WP (D;Ak_1> (2 if ps = o0).

Then

V—00

lim inf/ f(&+de”) > f(€) meas(D).
D
Proof Let DY CC D be a cube having sides parallel to the axes and let
1 . O
R:= idlst(D ,0D).

Let M be an integer and let DY C D* C D be a family of cubes each having sides parallel to
the axes, 1 < p < M integers, be such that
dist(D°, 9DM) = ﬁ 1< <M.

We then choose 6, € C*(D),1 < < M, such that

aM 1 if # € DF1
) e,LL:

0<6, <1, |D9“|S? 0 ifzeD— DFL

where a > 0 is a constant. Let

wz =0,0".
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Since w?, € Wi (2 AF~1) | by lemma 4.17, we obtain,

/D GE /D £l + dwt(2)
= [ s+ [ serasen+ [ e do )

Dr—1

This implies,

[ ro< [ serdsio)+ [ e+ dotia)

Rewriting, we obtain,

[ 1o [ seraoan- [ perdgans [ g doto)

—pDnur—1 Dr—_Dp—1

- [ s+ ag @)1+ (4.19)

Now we estimate I7 and Io.

Estimation of I : Using (Cp), we have,

m l 5
i “/D_DH (1 +2_Gile+dg >)
= /D—DO (1 * i%‘&@ + iVi’dﬁbli/’ai) ) (4.20)

where a',v; > 0 are constants and the powers §; are given by,

1, if p; =1,
=X ¢, the powers in the lower bound in (Cp) if 1 < p; < o0,
0, if p; = oo.

The validity of such an estimate is obvious for the terms for which 1 < p; < co. For the terms
where p; = oo follows from the fact that since |§; + d¢?| is uniformly bounded in L* and 7; are

continuous, we have the estimate

ni(|& +dgr]) < C.

We proceed from (4.20). The terms for which p; = ¢; = 1 can be made as small as we please
by choosing R small enough by equiintegrability of the sequence {d¢?}. For the other terms
where i is such that 1 < p; < oo, we use the fact that ¢; = ¢; < p; and hence using Holder

inequality, we obtain,

Pi—4;

a;
[ Jasi < ( / rd¢z|pf) " (meas(D — Do)
D—DO D—DO9
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Hence, by choosing R sufficiently small, these terms can be made arbitrarily small as well.

Combining all these, we get, for any fixed given € > 0, we can obtain, for R small enough,

L] < e. (4.21)

Estimation of Iy: Using (Cp), we have,

Ll < a 1+ G (E+dw”) |,
pl<af ( >Gie ,))
Note that

dw ; = 0,deY + V0, A oY,

for all 1 <4 < m. Using this and the uniform bounds, we deduce,

I < o// 1+
| L] T >

PiF#00

. ’ ey " CLM ViDs
<%‘fi\m +;ldo7 [P+ <R) for ’pz> . (4.22)

Now we simply plan to sum these estimates with p running from 1 to M, noting that the
domain of integration on the right hand side of the last estimate telescopes. This trick of using
the telescoping sum to avoid concentration was first used by De Giorgi [28] (see also Marcellini
[48]), in the classical calculus of variations. So, returning back to (4.19) and adding from p =1
to M and dividing by M, we obtain,

M
[ e+ a0 @) = LE Y meas(ot
D =

Oél . / X " QM X
> om0 [ (14 3 (e allast ol () o)
pr=Do Pi7F00
a//
> e 4.23
S (4.23
Now since
| M
meas(Dp) < i z:lmeas(D“) < meas(D),
“:

and € and Dy is arbitrary, taking M — co, we obtain,

lim inf/ f(&+dop”(x)) > f(&) meas(D).
V—00 D
This completes the proof. =

Theorem 4.22 Let k = (ki,...,ky) where 1 < k; <n for alll1 <i<m. Let 0 <r < m be
an integer. p = (p1,...,Pm) where 1 < p; < oo for all1 <i<r and pr41 =...= pm = 00. Let
Q C R™ be open, bounded, smooth. Let f : A¥ — R be vectorially ext. quasiconvez, satisfying
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the growth condition (Cp) . Let I : WP (Q; Ak_l) — R defined by
I(w) := / f(dw(x)) dz, for allw € WP (Q; Ak_1> .
Q

Then I is weakly lower semicontinuous in WP (Q; Ak_l) .

Proof We need to show that
liminf I (w") > I(w),

V—00

for any sequence
W’ —w in WP (Q; Ak_1> (i if p; = 00).

We divide the proof into several steps.
Step 1 First we show that it is enough to prove the theorem under the additional hypotheses
that |dw? [P is equiintegrable for every 1 < ¢ < r. Suppose we have shown the theorem with this

additional assumption. Then for any sequence
W’ = w in WP (Q;Ak_1> ,

we first restrict our attention to a subsequence, still denoted by {w"} such that the limit inferior

is realized, i.e

L :=lim inf/ f(dw”(z)) de = lim / f(dw”(z)) dx.
V—r00 QO V—r00 [¢)

Now we use a decomposition lemma in calculus of variations ( cf. Lemma 2.15 in [29]) to find,

passing to a subsequence if necessary, a sequence {v}} C LP" such that {|v/ |’} is equiintegrable

and
v — dw; in LP(Q, A%)
and
lim meas (), =0,
V—00
where

Qy :={z € Q:v/(x) # dwi (x)},

for all 1 <+ < r with p; > 1. Note also that if p; = 1, we can take v} = dw}.

)

Now, we have, using (Cp),

/ f(dw"(x)) dz > / F @Y (@), vf (@), dwf iy (), oty (7)) da
Q O\

— a/ (C+Z|dwﬂa¢> ,
2 i=1

151



where C is a positive constant, depending on the uniform L* bounds of {dw!} and 7;s in (Cp),
for all r +1 <4 < m and ¢ = ¢, as given in (Cp), if p; > 1 and ¢; = 1 if p; = 1 for any
1<i<m.

Using (Cp) again, we obtain,
r ~
/Qf(de(x)) 2/Qf(uf,...,u;:,dng,...,dw;:H) —a/Q <C+Z(|dwg|qi+|v;pi)>.
v i=1

Now we have lim,_,o, measQ, = 0 , {|v?|P} is equiintegrable by construction and {|dw}|%} is

equiintegrable since ¢; = ¢; < p; if p; > 1 and ¢; = 1 if p; = 1. Using these facts, we obtain,

V—00 V—00

L= lim/f(dw"(x)) dleiminf/f(vll’,...,v,’f,dw,”,ﬂ,...,dw;ﬁrl) Z/f(dw(ac)) dx,
Q Q Q

by hypotheses. This proves our claim.

Step 2 Now by Step 1, we can assume, in addition that |dw!|P7 is equiintegrable for every
1 < i < r. Now we approximate ) by a union of cubes D, with sides parallel to the axes and
whose edge length is %, where h is an integer. We denote this union by Hj and choose h large
enough such that

meas( — Hp) <0  where Hy, := UDS'

Also, we define the average of dw; over each of the cubes D; to be,

: 1
= dw; € A¥.
& meas(Dy) /DS wi

Also, let & == (&1,...,€") and &(z) = &sxp,(z) for every x € Hj. Since as the size of the

ER

cubes shrink to zero, dw; converges to & in LPi (Q;Aki) for each 1 < i < r, we obtain, by

choosing h large enough,
1

(Z |dwi—§g|m> <O, (4.24)
S Ds

for every 1 < i < r. Also, by the same argument, we obtain, by choosing h large enough,

Z/ |dwi — €] < Che, (4.25)
s Ds

for every r +1 <1i < m.

Now consider

[(w”) = I(w) Z/Q[f (dw”(2)) — [ (dw(z))] dz

=1+ I+ I3+ Iy,
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where
e [ 1f e (@) - f (dwla) da.
O—H,
L=Y /D [ (dw + (dw” — dw)) — f (€ + (dw” — dw))] da,

I3 := Z/D [f (€s + (dw” — dw)) — [ (&s)] duz,
=Y [ 1 (€0~ f(dw) d.

Now we estimate Iy, Io and I4.

FEstimation of Ir: Using the growth condition (Cp), we have,

- a ; Ldw w
I > /QHh (1 + ;Gz(d )> +f(d )]
> _/QH;L (a+ f(dw)) — « /QH Zf}/i|dw;/|%, (4.26)

hoi=1

where o/, ~; > 0 are constants and the powers g; are given by,

1, if p; =1,
@G =9 qi, the powers in the lower bound in (Cp) if 1 < p; < o0,
0, if p; = oo.

The validity of such an estimate is obvious for the terms for which 1 < p; < co. For the terms
where p; = oo follows from the fact that since |dw!| is uniformly bounded in L*® and 7; are
continuous, we have the estimate

mi(|dwt]) < C'.

Now we proceed from (4.26). The terms for which p; = ¢; = 1 can be made as small as we
please, uniformly in v, by choosing ¢ small enough by equiintegrability of the sequence {dw? }.
For the other terms where 7 is such that 1 < p; < oo, we use the fact that ¢; = ¢; < p; and

hence using Hélder inequality, we obtain,

Pi—4q;

JE ( / |dwz|pi)’” (meas(Q2 — Hy)) "7
Q—H, Q—H,,

Hence, by choosing § sufficiently small, these terms can be made arbitrarily small uniformly in
v as well. Combining all these, we get, for any fixed given € > 0, choosing § small enough, we
obtain

I, > —C1ae (4.27)

uniformly in v.

Estimation of Iy: Since f is vectorially ext. quasiconvex, it is separately convex and since
both {dw; + (dw? — dw;)} and {&! + (dw! — dw;)} is uniformly bounded in L (; A*) for every

153



r 4+ 1 <14 < m, using proposition 4.19, we have,

Py

T T pi‘7 ) L] )
|12 SZ/D > B 1+Z<|dwg'+(dw§—dwj)\”i +\€§+(dwg—dwg')|pi) |dw; — &
S ]:1

s =1

m T
+3 /D S B[ 1+ (ldwy + (dw? — duoy) [P + €]+ (dw — dwoy)[P7) | |dow; — €1
s j=1

S 4g=r+4+1

The terms in the first sum can be easily estimated by using Holder inequality and the estimate
(4.24). So we concentrate on the second sum.
We have,

m r
Z/D D0 B[ 14D (Jdwj + (dof — duwy)|Pi + €] + (dwf — dw))[P7) | |dwi — €]
s J=1

Sa=r+1

<Z/D DB | 14D (el + |dw; — EJP) | ldws — €L,
s j=1

S a=r+1

for some positive constants (3;s.

Now the terms of the form
> [ lde -6l
s D

can be easily estimated using the estimate (4.25). For the other terms, for clarity of presentation,
we fix r+1<i<mand 1< j<r. Forsuch i,j fixed, we obtain,

> /D Bildw; — €l Pr]dwi — €1 < 2Billdwill ey S /D doy — P, (4:28)

since |dw; — 1] < 2[|dw;]| o (q) for any s. Using the estimate (4.24), this shows that these terms
can be made as small as we please by choosing h large enough. Now estimate for the terms of

the type
3 / Bildw? P9 | duoy — 1]
s Ds

is a bit more involved. Once again, we fix r +1 <4 < m and 1 < j < r. Since {|dw[P7} is

uniformly bounded in L' and is equiintegrable, we know,

lim sup / |dw? [P7 = 0.

M—oo
Qﬁ{|dw]V|pJ' >M}

This implies, for any € > 0, there exists M = M (e) such that

/ |dwy [P < —  forallw

QN{|dw? |3 >0} Billdwill o=y
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Thus, we have,

> [ Bildagieoids - €
S Dy

- / Bl P du; — €3] + / Bilduot P s — €1

HyN{|dw? |73 > M} HyN{|dw? |P3 <M}
Se—‘rgiMZ/ |dwz—§;|
s Ds

By (4.25), we can choose h large enough such that

- €
dw; — €] < <.
g/Ds| | BiM

Combining, by choosing h large enough, we deduce,
Iy > —Cae (4.29)

uniformly in v.

Estimation of I4: This estimate is similar but simpler than that of I5. Using the same

arguments as above and using proposition 4.19, we obtain, by choosing h large enough,
I2 2 —0426 (430)
uniformly in ».

Now we finish the proof. Using the estimates (4.27), (4.29) and (4.30) and taking the limit

v — o0, we obtain,

liunigéfl(w”) —I(w) > —(C12+ Coz + Caz)e + Zliminf/ [f (€s + (dw” — dw)) — f (&s)] dz.

V—00
s

(4.31)
Since
dw’ —dw —~0 in WP (DS; Ak—1>

for every s, we have, by lemma 4.21

lim inf/ f(&s + (dw” — dw)) dx > / f(&s) for every s.
D, D

V—00

Combining this with (4.31) and the fact that e is arbitrary, we have finished the proof of the

theorem. m

Lower semicontinuity for quasiconvex functions with dependence on =

We start by defining the growth conditions that we need.
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Definition 4.23 (Growth condition) Let k = (k1,...,kp) where 1 < k; <n for all1 <i <
m, p= (p1,...,pm) where 1 < p; < oo for all 1 <i < m and let @ C R™ be open, bounded. Let
f:Qx AF = R be a Carathéodory function.

f is said to be of growth (CZ), if , for almost every x € Q and for every € = (&1,...,6m) € AF,
f satisfies,

—B(z) = > Gi(&) < f(x,8) < Blx) + Y GH&), cx)
i=1 =1

where 8 € LY() is nonnegative and the functions Gés in the lower bound and the functions Gi's

in the upper bound has the following form:

o Ifp;, =1, then,

GL(&) = GH(&) = il for some constant c;; > 0.

o If1 < p; <oo, then,

GL(&) = €| @
and

Gi'(&) = gi(@)|&[™,

for some 1 < q; < p; and for some constant a; > 0 and some non-negative measurable

function g;.

e If p; = o0, then,
Gi(&) = Gi&) =i (&) -
for some nonnegative, continuous, increasing function ;.

Now we are ready to prove the semicontinuity result for functionals with explicit dependence

on z, but we first prove the result in a simplified setting.

Theorem 4.24 Let k = (k1,...,ky) where 1 < k; <n forall1 <i<m. Let 0 <r <m be an
integer. p = (P1,...,pm) where 1 < p; < oo forall1 <i <r and pry1 = ... = py = 0o. Let
Q C R™ be an open cube with sides parallel to the azes. Let f: Q x A* — R be a Carathéodory
function, satisfying, for almost every x € Q and for every &€ € A¥,

= ail&l < (@8 < B@) + D aal&l + Y mi(1&)) cz)
7 1=1 i=r+1
pi=1

for some nonnegative 5 € Ll(Q), where a; > 0 for all 1 < i <r are constants and n;s are some

nonnegative, continuous, increasing function for each r +1 < i < m. Also, let € — f(x,&) is

156



vectorially ext. quasiconvez for a.e x € Q. Let I : WP (Q; Ak_l) — R defined by
I(w):= / f (z,dw(z)) dz, for allw € WP <Q;Ak_1) .
Q

Let
W w  in WP <Q; Ak_l) (i if pi = 00),

with {|dwY|Pi} is equiintegrable for every 1 < i <r. Then

liminf I(w") > I(w).

V—00

Proof The strategy is to freeze the points and then use Theorem 4.22.

Step 1 Since {|dw?|Pi} is uniformly bounded in L' for every 1 <i < r, then for every € > 0,

there exist constants M! > 1, independent of v, such that if
K., = {2z € Q:|dw!["" or |dw;|"" > M},

then

- €
meas K, < —,
’ r
for every 1 < i < r and for every v.

We define ;
Ke,:=JKl, and Q. :=0Q\K,.
=1

Also, {||dw||L>~} is uniformly bounded for every r +1 < i < m, i.e there exist constants
~; > 0 such that
| dw{||Lee <y for all v,

for all » +1 < i < m. Define

m

ki= Y mi(w).

i=r+1

Since 8 € L'(Q) and nonnegative, given any ¢ > 0, we can find M? < 1 such that if
Eo:i={xeQ:p(z) < M}

then

meas(2\ Ee) <

<< (x)dz < e,
k O\E.

and, in particular,
MP meas(Q\ E.) < e.

Now by the Scorza-Dragoni theorem (cf. theorem 3.8 in [25]), we find a compact set K. C €2,
with
meas(Qe \ Ke) < ¢
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such that f: K. x S¢ is continuous, where

S.:={eecAr |gPi < Miforall1 <i<r, |¢] <~ forallr+1<i<m}.

Step 2 Now we divide €2 into a finite union of cubes Dy of side length % Choosing h such
that the edge length of the cube Q is an integral multiple of 1/h, we have,

meas (Q \ U DS) =0.

Estimation of [, f (z,dw):

We fix xs € Dy and obtain,

/ f(z,dw) = /Q\EE f(z,dw) + /EE\(EEmKE)f(x dw) +Z/EHKEHDS (x, dw)
_Il—l—Ig—f—Z/ f(z,dw) — f (x5, dw)] —1—2/ f(zs, dw)

ENKeNDg E.NKeNDyg

_11+12+13+Z/ f(2s, dw),

6ﬂKeﬁDs

where

I :/Q\Eef(x’d“’)’

IQ - / f(l’,dOlJ),
EN\(ENKe)

I3 = Z/E I (z,dw) — f (x5, dw)].

Now, we have,

Il—/Q\Eef(x,dw)</Q\

< 6+Z/Q |dw;[P" + kmeas(Q2\ E),
i=1 Y Q\Ee

<2+ Y 01(5),
=1

/6(33)4‘204%‘6&“2‘1)2"‘ Z ni (|dwi])

i=r+1

where §(t)s are non-negative and increasing functions such that &% (¢) — 0 as t — 0, for each
1<i<r since dw; € LPi forall 1 <i<r.
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We also have,

Bla)+ Y i (ldwil)

i=r+1

<.
e\(EemKe)

/ Za1|dwz|pl
6 6 6

(Mf + k) meas(E, \ (E. N K,)) + Z 6% (meas(E, \ (BN K.)))
< (MB + k) meas(2\ K¢) + Z &) (meas(Q\ K))

MP + k) (meas(2\ Q) + meas( \ K¢)) + Z 5% (meas(Q\ Q) + meas(Q \ K))

gz(M§+k)e+zr:5§(2e).

=1

Also, since x5 — x as h — oo and f is uniformly continuous on K, x S, we have,

I — Z/Emmms f (0, dw) — f (25, dw)] < €

Combining, we have,

/Qf(x,dmgzs:/mmsf(xs,dwn[ (Mﬁ+k)+3}e+z[al )46 (20)]

=1

This implies,

/Qf(gc,dw)gzsj/Dsf(g;s,de [2 (M£+/c)+3}e+;[i(;)wi(ze)]. (4.32)

Estimation of [q f (x, dw”):
We obtain,

/Qf(x,dw”):/Q\Ef(:c,dw”)—i—/E\(EmK) [ (z,dw”) —|—Z/EQKQD (x, dw")
=I+1 +Z/ [f (z,dw”) — f (x5, dw") +Z/ f (zs, dw"”)

«NKeNDs EmKEmDS

—Il +I2 +.[3 +Z/ f(l's,dwu)

E.NKeNDg

:1{+15+1§+14V+Z/ f (zg, dw")
S Ds
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where

1 =/ f (2, du?),
Q\E.

Iy :/ f(z,dw"”),
E\(EnK.)

I3 = Z/E - (x,dw”) — f (x5, dw")],
= Z/ f (e, de)

D\(E.NK.NDy)

Since for all 7 such that p; = 1, the sequences {|dw?|} are equiintegrable, we deduce the
existence of the non-negative and increasing functions d3(t)s with &% (t) — 0 as t — 0, for each

i such that p; = 1. Proceeding along the same lines as before, we obtain,

If:/ f (2, dw”) > — / Zal|dwl|> 252
O\E.

pz—l Pz—l

Similarly, we have,

I”:/ I (z, dw” 2—/ a;ldw;| > — 5 (2¢
) P, ( ) 6\(EEQK6)ZZ |dw;] Z 5(2€).

pi=1 Pv.fl

Also, once again by uniform continuity of f on K. x S, we have,
Bzollz-3 [ fde) - f (o det) 2 e
B NKNDs
For the last one, we deduce,

IZ:Z/ f (s, dw”) > — Z/D ai]dwi]

D \(EcNKNDy) \(EcNKeNDyg)
pz—l

> — Z 54 (meas(Q\ E. N K,))
Piil

> — Z 55 (meas(Q \ E. + meas(Q\ K,))
pziﬁl

> — Z 65 (2€ —|—
pz—l

Combining, we obtain the estimate,

/f z, dw") >Z/ [ (xs,dw”) — Z [ (£)+6§(26)+55(26+2) — €. (4.33)

Plfl
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Combining the estimates (4.32) and (4.33) and using Theorem 4.22, we obtain,

liminf/ f(z,dw"”)

> liyrgior.}fZ/ f (x5, dw”) — Z [ (%) + 0%(2€) 4 05(2¢ + 2)] —€
> Z/D. (s do) = Y [%) +03(20) + 84(2e + T)] — ¢
pzlil
/f z, dw) — [ (%) + 05(2€) + 05(2¢ + %)} - [2 (M§+k:) +4} €
pl—l

- Z [5Z + 05 26)}

Since € > 0 is arbitrary, this concludes the proof. =

Now we are ready to prove the semicontinuity result in full generality.

Theorem 4.25 (Sufficient condition) Let k = (k1,...,kny) where 1 < k; < n for all 1 <
i < m. Let 0 < r < m be an integer. p = (p1,...,pm) where 1 < p; < 0o for alll < i <r
and pry1 = ... = pm = 00. Let Q C R™ be open, bounded, smooth. Let f : Q x A¥ = R be a
Carathéodory function, satisfying the growth condition (C;) and & — f(x,&) is vectorially ext.
quasiconvex for a.e x € Q. Let I : WP (Q; A"’_l) — R defined by

I(w) := /Qf (z,dw(z)) dz, for allw € WP <Q;Ak_1) .

Then I is weakly lower semicontinuous in WP (Q; Ak_l) (weakly * in i-th factor if p; = c0).
Proof We just need to show that we can reduce the theorem to the particular case proved in
Theorem 4.24. We divide the proof into several steps.

Step 1 We begin by showing that we can assume f satisfies the following growth condition,

m

—Za@\m < f(x,€) < B(x) + Zaz|£zr+ > g@lal+ > mlaD, (4

i i=r+1
pizl pz_l 1<p;<oco

We choose a sequence
W’ = w in WP (Q;Ak_1> .
Since
wy = w; in oo (Q; Aki_l) for every r + 1 < i < m,
we have,
|dw!||pe < ;i forevery r+1<i<m,

for some constants ; > 0.
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Also, if 1 < ¢; < p;, then for every e > 0, there exists a constant k; = k;(¢) > 0 such that
el&lP + ki < ail&|% for all & € AM

We set

m
k= ) kit Y ni(v).
i i=r+1
1<p;<oco

Now we define,

fe(z,8) = f(z,6) + B(z) +¢ Z |€|PF + k.

%
1<p;<oco

Since f satisfies (Cg), f= satisfies Cgl for every € > 0. Also it is clear that f. is also a Carathéodory
function and & — f-(z, &) is vectorially ext. quasiconvex for a.e z € Q, for every € > 0. Letting
€ — 0, the semicontinuity result for f follows from the semicontinuity results for f.. Hence, we

. "
can assume f satisfies Cp .

Step 2 Now we show that we can assume that f satisfies Cgl. Of course, the only thing to
show is that it is possible to replace the functions g;(z) with constants. We define, for every

natural number u,

1 if max g;(x) <p
1<p:<oo
oM (z) ==
S if otherwise .
max g;(x)
1<p:<oo

Defining
fu(xaé) = ¢H($)f(x7£)7

we see immediately that f, is a Carathéodory function satisfying Cg and & — fu(z,§) is

vectorially ext. quasiconvex for a.e x € €). Furthermore,
£(e,€) = sup fu(2,€) =l fu(e,€).

Thus, the theorem for f, implies,

hyH_l>loIéf/Qf(x,dw )Zhyn_l)g}f/gfu(a:,dw )
Z/fu(x,dw).
Q

Taking the supremum over p on the right hand side proves the result. This shows that we can

assume that f satisfies C;l.

Step 8 Now we show that we can assume () is an open cube with sides parallel to the axes.

Since we can treat each cube separately, it is enough to show that €2 can be taken to be a finite
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union of disjoint such cubes. To this end, we choose €2, C € to be a finite union of disjoint
open cubes, with sides parallel to the axes, of side length . Since for all ¢ such that p; = 1, we
have,

dw? — dw; in L'(Q, AR,

the sequences {|dw!|} are equiintegrable. Hence, for every e > 0, there exists a § = d(e) > 0
such that
meas A < ¢ = / Zaﬂdwﬂge.
Apz‘izl

Choosing p large enough, we can ensure
meas(§2\ ,) < 4.

. . 3?/
Thus, we obtain, using Cj ,

/ f(z,dw”) > f(z,dw") +/ f(z,dw"”)
0 Q.

Q\Q,

> f(z,dw” —/ a;ldwy
o, ( ) Q\Q#Z |dwy|

)
pi=1

> /Quf(x,dw")—e.

Since € > 0 is arbitrary, we deduce the semicontinuity result for € from the ones for , by

letting u — oc.

Step 4 All that remains to show is that we can restrict ourselves to sequences with the
additional property of {|dw|P'} being equiintegrable for each i such that 1 < p; < co. This is
done in a similar manner as in Step 1 of the proof of Theorem 4.22 above. This concludes the

reduction of the theorem to Theorem 4.24 and finishes the proof. m

Failure of semicontinuity in W%? for general functional

Vectorial ext. quasiconvexity of the map & — f(z,w, £), along with usual growth conditions, is
not sufficient for weak lower semicontinuity in WP of functionals with explicit dependence on

w, i.e for functionals of the form,

/ f(z,w,dw) dx.
Q

For example, even when m = 1, for n > 3,k > 2, theorem 3.62 gives a counter-example. How-
ever, if k; = 1 for all 1 <7 < m, the functional fQ f (z,w,dw) dx is weakly lower semicontinuous
in WP precisely because in this case W%P and WP are the same space. Indeed, it is possible
to show the more general result that the functional [, f (z,w, dw(x)) dx is always weakly lower

semicontinuous in WP with appropriate growth conditions on f.

Semicontinuity in WP for general functional

We first define the appropriate growth conditions in this setting.
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Definition 4.26 (Growth condition) Let k = (k1,...,kp) where 1 < k; <n for all1 <i <
m, p= (p1,...,pm) where 1 < p; < oo for all 1 <i < m and let @ C R™ be open, bounded. Let
f:Qx A1 x AF - R be o Carathéodory function.

f is said to be of growth (Cp™), if , for almost every x € Q and for every (u,€) € AF~1 x AF
f satisfies,

—B(z) = > Gilui, &) < fla,u,§) < Bx) + Y G (ui, &), (Cp™)

i=1 i=1
where B € L'(Q) is nonnegative and the functions Gs in the lower bound and the functions Gis
in the upper bound has the following form.:
o Ifp;, =1, then,

Gllui, &) = G (ui, &) = oyl&i for some constant o; > 0.
o [f1 < p; < o0, then,

Gl(uiy &) = ai (|&]T + |ui]™)
and

G?(u’h 52) = gl(xv ul) |§i|pi7

for some 1 < q; <pi, 1 <ri <npi/(n—pi)ifpi<nandl <r, <ooifp;, >mn, g isa

nonnegative Carathéodory function and for some constant a; > 0.

e [fp; =00, then,
Glui, &) = G (ui, &) = mi (i, &) -

for some nonnegative, continuous, increasing (in each argument) function n;.

With these growth conditions on f, we can show that the functional [, f (z,w,dw(x)) dz is
always weakly lower semicontinuous in W1P.

The proof is very similar to the proof of Theorem 4.25. In this case too, it is possible to
derive all the necessary estimates after freezing both x and w. Some modifications are required
to handle the explicit dependence on w, but these modifications essentially use the Sobolev
embedding and is quite standard (see theorem 8.8 and theorem 8.11 in [25] for the classical

case). We state the theorem below and omit the proof.

Theorem 4.27 Let k = (kyi,...,ky) where 1 < k; <n foralll <i<m, p=(p1,...,Pm)
where 1 < p; < oo for all 1 < i < m and let @ C R™ be open, bounded, smooth. Let f :
Q x AF=1 x Ak — R be a Carathéodory function, satisfying the growth condition (Cp™) and

€ — flx,u,&) is vectorially ext. quasiconvex for a.e x € Q and for every u € A*~1. Let
I:WhP (Q; A*=1) - R defined by

I(w) := / f(z,w,dw) d, for allw e WP (Q; Ak_1> .
Q
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Then I is weakly lower semicontinuous in WP (Q; Ak_l) (weakly * in i-th factor if p; = 00).

Corollary 4.28 Let p = (p1,...,pm) where 1 < p; < oo for all 1 < i <m and let Q@ C R"™ be
open, bounded, smooth. Let f : Q x R™ x R™*"™ — R be a Carathéodory function and satisfies,

for almost every x € Q and for every (u,§) € R™ x R™*" the growth condition,

m m
i=1 i=1
where u; is the i-th component of u = (uy,...,un) € R™ and & = (&1, ,&n) 18 the i-th row
&1
of the matriz £ = | : € R™<" 3¢ LY(Q) is nonnegative and the functions Gés in the
Em

lower bound and the functions Gi's in the upper bound has the following form:

e Ifp;, =1, then,

Gl(ui, &) = G¥(ui, &) = o€ for some constant c; > 0.

o If1 < p; <oo, then,

Gi(ui, &) = o (16| " + |wi] ™)
and

for some 1 < q; <pi, 1L <ri <npi/(n—p;) ifpi <nand1l <r; <ooifp;>n, g;is a

nonnegative Carathéodory function and for some constant a; > 0.

o [f p; = o0, then,
Gh(ui, &) = G (ui, &) = mi (Juil, &) -

for some nonnegative, continuous, increasing (in each argument) function n;.

Also let & — f(x,u,§) is quasiconvex for a.e x € Q and for every u € R™. Let {u”} be a

sequence such that for every 1 < i < m, we have,
uf —u; i WP (S f p = 00),
for some u; € WhPi(Q), then,

liminf/ f(z,u”, Vu”) de > / f(z,u,Vu) dz.
Q Q

V—00

Remark 4.29 The improvement from the classical results is that the p;s are allowed to be
different from one another. If we take, p; = p for every 1 < i < m, then we obtain the classical

results.
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4.5  Weak continuity

The aim of this section is to characterize all weakly continuous functions. We shall show that
the wedge products play the same role in this setting that determinants and adjugates play in
classical calculus of variations. Here we shall restrict our analysis to classical wedge products, i.e
when wedge products make sense as differential forms with L' components. However, distribu-
tional Jacobian and distributional adjugates are well studied in classical calculus of variations,
not only in usual setting, but even in fractional Sobolev spaces for mapping taking values
in manifolds (see for example Brezis-Bourgain-Mironescu[15], Brezis-Bourgain-Mironescu[16],
Brezis-Nguyen[17]). Also, weak wedge products has also been introduced and studied, most no-

table in connection to geometric function theory and quasiconformal mappings (see Iwaniec[38]).

Let us begin with the definition.

Definition 4.30 (Weak continuity) Let k = (k1,...,kp) where 1 < k; <n forall1 <i <
m, let Q C R™ be open and let f : A* — R be continuous. We say that f is weakly continuous
on WP (Q; Ak_1>, if for every sequence {w" Yo% | = {(w¥, ..., w%)}2, C WP <Q; Ak_1> and

m/Jy=1
every w = (wi, . ..,wp) € WP (Q; Ak_l) satisfying
W’ = w in WP (Q; Ak_1> (2 if ps = 00),

we have

f(dw”) — f(dw) in D'(Q).

4.5.1 Necessary condition

Theorem 4.31 (Necessary condition) Let k = (ki,...,ky) where 1 < k; < n for all 1 <
i <m, let Q C R™ be open, bounded and let f : A¥ — R be weakly continuous on W™ (Q; Ak).

Then, f is vectorially ext. one affine, and hence, is of the form

F& = Y (cai&®) foral& e A, (4.34)
o<k <n
where co € AFI(R™), for every a = (a, ..., am) such that 0 < a; < [k%] foralll <i<m

and 0 < |[ka| < n.

Remark 4.32 Since f being weakly continuous in W% (Q;Ak_l) is a necessary condition
for f to be weakly continuous in WP (Q;Ak_l) for any p = (p1,...,pm) where 1 < p; < o0
forall1 < i < m, f being vectorially ext. one affine is a necessary condition for weak continuity
in WP (Q;Ak_l) as well.

Proof Since f is weakly continuous on W% (Q;Ak), then for any ¢ € C°(2) and for any
sequence {w”}52 C WP (Q; AF~1) with

w’ — w in WP (Q;Ak_1> (2 if p; = o0),
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we have,

vV—00

lim inf /Q () f(dw") = /Q 6(2) f (dw) meas(Q).

Thus, defining
I(z,w) := / o(x) f(dw) for any w e W% (Q; Ak>
Q
and using Theorem 4.14, we obtain that

£ o(x)f(€)

must be vectorially ext. quasiaffine. Since ¢ € C2°(2) is arbitrary, this implies £ — f(&) must

be vectorially ext. quasiaffine. This finishes the proof. m

4.5.2 Sufficient condition

Now we shall present the results about sufficient conditions for weak continuity. First, we state

a theorem which was proved in Robin-Rogers-Temple [57], using Hodge decomposition.

Theorem 4.33 Let Q C R™ be open, bounded. Let k = (ki,...,ky) where 1 < k; < n for all
1<i<m, a=(a,...,ap) where 0 < o < [%} foralll1 <i<m and 0 < |ka| < n and let
p=(p1,...,pm) where 1 < p; < oo foralll <i<m.

m

Suppose 1 = E % ond v, = v in LP (Q; Ak> with
— Pi
=1

dv¥ € a compact set of W 1P (Q;Ak‘H) )

Then

[e%

v,

— p® in D' (; AR (R™)).

Theorem 4.34 Let Q C R™ be open, bounded. Let k = (ki,...,ky) where 1 < k; < n for all
1<i<m, a=(a1,...,ap) where 0 < a; < [ﬁ} forall1 <i<m and 0 < |ka| < n and let
p=(p1,...,pm) where 1 < p; < oo foralll <i<m.

1 Ko
Suppose 1 > — = Z Y ond dw, — dw in LP (Q; Ak> .
¢ =i

Then the following holds true.

(i) If ¢ > 1, then

dw® — dw® in LI(Q; A*I(R™) (& if g = o0).

(ii) if =1, but 1 < p; < oo for all 1 <i <m, then

dw® — dw® in D'(Q; AF(R™)).
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Remark 4.35 When q = 1, weak convergence in L' does not hold , in general, even when
1< p; < oo foralll < i< m. There ezist sequences w, — w in WP (Q;Ak_l) with ¢ = 1
such that w® 4 w® in L' (Q; ARN(R™). Bven when k; = 1 and p; = m for all 1 <i < m, such

counter-examples are known in classical vectorial calculus of variations.

Proof Since dod = 0, second conclusion follows directly from Theorem 4.33. So we only prove

the first conclusion.

Step 1 We first prove
dw® — dw® in D'(; AlRel (R™)).

If p; = oo for some 1 < i < m, we can suppose, by renaming the variables if necessary, that
1<pi<ooforall1§i<randpr:...:pm:oo,forsome1§7“§mNowsince1>%,for

every r < i < m, there exist numbers 1 < p; < oo, such that,
r—1 . m .
1>y 4> =
= P S P

Since weak convergence in L™ implies weak convergence in LP, this means that we can always
assume that 1 < p; < oo for all 1 <i < m, without loss of generality.

Now we can also choose numbers ¢;s such that 1 < ¢; < p; < oo for all 1 <47 <m and

m
&7}

=1 ¢

1=

Now let ¢ € C°(; AlFel(R™)). Define f: Q x A¥ = R as

f(z,8) = (o(x),€%).

Now we have, by Young’s inequality,

m m
, Q; ,
e < [Tlal < > lai.
i=1 i=1 **

Since ¢; < p; for all 1 < i < m, this implies that both f and — f satisfies the growth condition
(C;). Also, & — f(z,€) and & — —f(z, &) are both vectorially ext. quasiconvex for a.e x € Q.
Hence, applying Theorem 4.25 to both f and —f, we deduce,

lim [ (¢(x), dw,®) = /Q (6(x), dw®).

V—00 0

Since ¢ € C°(Q; Alk(R™)), this proves the convergence in the sense of distributions.
Step 2 The hypotheses imply easily that {dw®} is uniformly bounded in L7(Q2; Al*l(R™)). Since
q > 1, this implies,

dw® — ¢ in LI ARURY)) (2 if ¢ = 00).
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But by the convergence in distributions and uniqueness of the weak limit, we must have,
¢ = dw®.
This finishes the proof. m

Theorem 4.36 (Sufficient condition) Let k = (ki,...,ky,) wherel <k; <n foralll <i<
m, let Q@ C R™ be open, bounded and let f : A¥ — R is vectorially ext. one affine, and hence, is
of the form

€ = > (cai€®) forall§ € A*,

a7
0<|ka|<n

where cq € A|k°‘|(R"), for every o = (..., Q) such that 0 < a; < [k%] foralll <i<m
and 0 < |ka| < n.

Let p = (p1,...,pm) where 1 < p; < oo for all 1 <i <m, be such that,

max{i%:ca#O} =

i=1

<1

Q| =

Then for any sequence {w,} C WP (Q; A*=1) such that
dw, — dw in LP (Q; A’“) ,
for some w € WP (Q; Ak_l), we have,

(i) If ¢ > 1, then

f(dw,) — f(dw) in LY(Q) (> if ¢ = oc0).
(ii) if g =1, but 1 < p; < oo for all 1 <i <m, then

f(dw,) — f(dw) in D' ().

Proof This is an immediate corollary of Theorem 4.34. m
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Chapter 5

Other types of functionals

5.1 Introduction

In this chapter we are going to explore the scope of carrying out our program for more general

functionals. We work with functionals depending on both d and ¢ of a single unknown differential

| #aw.do.

We shall define the correct convexity notions, establish the characterization theorem for the

form, i.e functionals of the form,

corresponding affine functions and present a few simple properties and finally, existence theorems
for a few minimization problems. In contrast to the case with the last two chapters, we shall
show here that these functionals do not suffer from the lack of coercivity by virtue of Gaffney
inequality and hence existence can be obtained as soon as convexity conditions ensure weak
lower semicontinuity. Also, as we shall show in the characterization theorem (Theorem 5.11),
non-linear ‘quasiaffine’ functions in these case can be nonlinear either with respect to dw or dw,
but not with respect to both of them. This makes the situation considerably barren. Though
one would naturally anticipate a richer situation with respect to convexity than the case of ext.
convexity or int. convexity notions, this fact strips away much of that possibility. As we shall
show, at least at the level of affinity, ext-int. affinity notions are essentially the same as ext.

affinity or int. affinity notions.

Hence in terms of coercivity, the situation is considerably more simpler than the last two
chapters and in terms of convexity notions, not really any more complicated in any essential
way. Faced with these results, we see little reason to attempt to carry out our program in full.
So in this chapter, we are not really going a spend a lot of energy on these, but just prove the
basic results we already mentioned. However, the existence theorems can be useful in some

applications.
Further generalizations are also possible. Generalizations to functions which depend upon

exterior derivatives of some forms and codifferential of some forms and both exterior derivative

and codiffertial of some forms, e.g. convexity notions to treat functionals of the form

/ f(dwl, 5(4}2, dLUg, 5(.«)3),
Q
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can be defined easily, though at this point it is not clear if there is any new insight to be gained
from treating such generalities. At this point, such generalizations seem to be rather routine

exercises towards somewhat contrived and artificial generalizations.

5.2 Notions of Convexity
5.2.1 Definitions

We start with the different notions of convexity and affinity.

Definition 5.1 Let 1 <k <n—1 and f: A¥1 (R") x AF~1(R") — R.

(i) We say that f is ext-int. one convex, if the function

g:t—=gt)=fE+tanB,n+taif)

is convex for every € € AFT1 n e A*1 o € A and B € AF. If the function g is affine we say

that f is ext-int. one affine.

(i) A Borel measurable and locally bounded function f is said to be ext-int. quasiconvex, if

/f<£+dw,n+5w>zf<g,n>measg
Q

_ 1, .
for every bounded open set U, for every € € A¥T1 n e A1 and for every w € Wy ™ (Q, Ak) .
If equality holds, we say that f is ext-int. quasiaffine.

(iii) We say that f is ext-int. polyconvex, if there exists a convex function

n—k+1)

Fo ARFL o A2041) o Ly A[ﬁ](’fﬂ) o AR o A20n—kH1) oy A[W#ﬂ]( SR

such that
f (5777) =F (55527 e ag[%ﬂ]a *17, (*77)2) Ty (*n)[n%lﬂl]) .

If F' is affine, we say that f is ext-int. polyaffine.

We close this subsection with another notion of convexity, which will not be used much in the
sequel, but is , however, interesting. Unlike the notions discussed in the third chapter, in this
case there is the possibility of another related sets of notions of convexity. The classical notion
of a separately convex function ( see [25]) is easy. The function is required to be convex in each
variable separately. Since convexity is exactly the same as the classical convexity in both single
derivative and both derivative case of functions of differential forms, the notion of separately
convex functions are also the same in all these cases. But unlike the classical case or the case
of a single differential form with single derivative, it is now possible to talk of separately ext-
int. polyconvex, separately ext-int. quasiconvex and separately ext-int. one convex functions.
Though we will not be exploring these questions much further, for the sake of completeness we

define them below:

Definition 5.2 Let 1 <k <n—1 and f: A1 (R") x A¥"1(R") = R.
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(a) We say that f is separately ext-int. one convex, if ,

(i) The function g(€) = f(&,m) is ext. one convex for every n € AF~1 (R™).
(ii) The function h(n) = f(&,n) is int. one convex for every & € AF+1(R™).

(b) A Borel measurable and locally bounded function f is said to be separately ext-int. qua-
siconvex, if

(i) The function g(€) = f(&,n) is ext. quasiconvex for every n € A1 (R™).
(i) The function h(n) = f(&,n) is int. quasiconvex for every & € AF+1(R™).

(¢) We say that f is separately ext-int. polyconvex, if,

(i) The function g(€) = f(&,n) is ext. polyconvex for every n € AF~1 (R™).
)

(i) The function h(n) = f(&,n) is int. polyconvex for every & € AFFT1(R™).

5.2.2 Main properties

Several important properties can be deduced for these functions in an analogous way as was
done in chapter 3. However, we only prove the ones we shall use. We start with the most basic
one, the general relationship between the different notions of convexity. They are related as

follows.
Theorem 5.3 Let 1 <k <n—1 and f: AFT1(R?) x A¥=1(R") — R. Then
f convex = f ext-int. polyconver = f ext-int. quasiconvexr = f ext-int. one conver.

Moreover if f : AFT1(R™) x AF=1 (R™) — R. is ext. one convex, then f is locally Lipschitz. If,
in addition f is C2, thenfor every & € A*+1 ne AF1 a € Al and B € AF,

2 2
S D pyanss e S ZLED 6 ap),

I,JeTk+1 06198, I,jeTk-1 Onidng
0?
L ICYOYEY
IeTh ! %
JeTk-t

Proof (i) The first implication, i.e f convex = f ext-int. polyconvex is trivial. The sec-
ond implication, i.e f ext-int. polyconvex = f ext-int. quasiconvex follows from Jensen in-
equality in the same way as in the proof of Theorem 3.37. Also, the last implication, i.e
f ext-int. quasiconvex = f ext-int. one convex. can be proved directly in an analogous way.
However, using Theorem 5.17, the result follows from results in classical calculus of variations
(see Theorem 5.3 in [25]).

(ii) The fact that f is locally Lipschitz follows from the observation that any ext-int. one
convex function is in fact separately convex. Such functions are known to be locally Lipschitz
(cf. Theorem 2.31 in [25]).
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(iii) We next assume that f is C2. By definition the function

g:t—=gt)=f(E+tanp,n+taif)

is convex for every & € AFt1pe APl oo e Al and B € AF. Since f is C?, we get the claim from
the fact that ¢” (0) > 0. m

Theorem 5.4 Let 1 <k <n—1 and f: AFT1(R?) x A¥=1 (R") — R. Then
(i) If k and n are both even integer or n = 2k — 1,2k or 2k + 1, then

f conver < f ext-int. polyconvex .

Proof If both n and k are even, then since k + 1 and n — k + 1 are both odd integers, all the
terms £° and (*n)® in the definition of ext-int. polyconvexity are 0 for s > 2. If n = 2k — 1,2k

or 2k + 1, then also both [#1} and [#}m} is equal to 1, implying the result. m

5.3 The quasiaffine case

Now we move on to proving the characterization theorem for ext-int. quasiaffine functions.

5.3.1 Some preliminary results
We begin with a few lemmas.

Lemma 5.5 Let 1 < k < n—1 and let a € A'(R™), b € A*(R"™) be given. Then there exists
c € AYR™), d € A*(R™) such that cANd = a Ab and cad = 0.

1 1
Proof We choose ¢ = —a and d = —ai(a A b). Then clearly,

|al lal

1
cud = Wa_:(a_n(a Ab)) = 0.

Also,

c/\d:|a1|2a/\(a4(a/\b))—al|2{|a|2(a/\b)—a4(a/\(a/\b))}—a/\b.

Similarly, we have,

Lemma 5.6 Let 1 < k <n—1 and let a € AY(R"), b € A¥(R") be given. Then there exists
c € AY(R"), d € A¥(R™) such that cad = aJb and c Ad = 0.

1 1
Proof We choose ¢ = ﬂa and d = ﬂa A (asb). Then clearly,
a a

cNhd= A (a A (asb)) =0.

JaP*
Also,
1 1
cad = Wa_n(a A (asb)) = Tal? {lal*(asb) — a A (as(asb))} = ab.

la
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Lemma 5.7 Let 1 < k <n—1 and f : A*TL(R?) x A*¥"1(R") = R be ext-int. one convez.
Then the following holds true:

(i) The function g(€) = f(&,m) is ext. one convex for every n € AF~1 (R™).

(ii) The function h(n) = f(&,n) is int. one convex for every € € AF+1(R™).

Proof (i) We need to show that for any 7, the function G(t) = g(§ + ta A b) is convex in ¢ for

all a € AL(R™), b € A¥(R™). Now by lemma 5.5, for given a € AY(R™), b € A*(R™), we can find
c e A'(R™), d € A*F(R™) such that ¢ Ad = a A b and cud = 0. Hence,

Gt) =g +tanb) = f(E+tanbn) = f(E+teNd,n+ cad),

which is convex in ¢, since f is ext-int. one convex. This establishes the claim.
(11) We need to show that for any &, the function H(t) = h(n + taib) is convex in t for all

a € AY(R™), b € A*(R™). Now by lemma 5.6, for given a € A'(R"), b € AF(R"), we can find
c € AY(R"), d € A¥(R") such that cad = aib and ¢ A d = 0. Hence,

H(t) = h(n + tasb) = f(&,n +taib) = f(é+tcAd,n+ cad),

which is convex in ¢, since f is ext-int. one convex. This establishes the claim. =

Remark 5.8 The converse of this lemma fails miserably. An easy counter-example is provided
by the function f(&,n) = n(&, et Ae?) in the case k = 1,n = 2. In this case, where g(£¢) and h(n)
mentioned above are clearly affine, but f(ta A b,tasb) = t?(a1by — azb1)(a1by + azbs). Hence by
choosing by = 0 and a1 = —asg, we get f(ta A b,tasb) = —(agbs)*t?, which is concave in t. This

counter-example can be generalized much further.
Now we present a corollary which is an immediate consequence of theorem 5.7.

Corollary 5.9 Let 1 <k <n—1 and f : A1 (R") x AF=1(R?) — R be ext-int. one affine.
Then the following holds true:

(i) The function g(€) = f(&,n) is ext. one affine for every n € AF~1(R™).

(ii) The function h(n) = f(&,n) is int. one affine for every & € AFT1(R™),

Remark 5.10 The converse of this is the subject matter of the main theorem of this section,

presented in the next subsection, which characterizes all ext-int. quasiaffine functions.

5.3.2 The characterization theorem

Theorem 5.11 Let1 < k < n—1 and f : AF*1 (R?) x AF=1 (R?) — R. The following statements

are then equivalent.

(i) [ is ext-int. polyaffine.
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(ii) f is ext-int. quasiaffine.

(iit) [ is ext-int. one affine.
(iv) There exist ¢, € AFTDS(R™), 0 < s < [kiﬂ} and d, € A"=FHDT(R™) 0 < r < [L}
such that, for every & € A1 nc AF-1

n—k+1

(%]
f(&m) = (cs; &%) + (dr; (x0)") .

s

T
i
=3
+
=

Il
o

r=0

Remark 5.12 (i) The theorem is rather striking in the following respect: It says that there

(i)

are no ‘new’ nonlinear ext-int. quasiaffine functions (or ext-int. polyaffine or ext-int. one
affine) functions, i.e knowing all ext. one affine functions and int. one affine functions
are enough for knowing all the ext-int. one affine ones.

More precisely, every ext-int. polyaffine function is a sum of an ext. polyaffine function
in the ‘first” variable and an int. polyaffine function in the ‘second’ variable. In fact,
even more is true. Only one of these two functions can be nonaffine. Indeed, if the ext.
polyaffine function in the first variable is not affine, we must have s(k + 1) < n for some
integer s > 2, since otherwise £° is identically 0 for every integer s > 2. Similarly, if the
int. polyaffine function in the second variable is not affine, we must have r(n—k+1) <n
for some integer r > 2, since otherwise (xn)" is identically 0 for every integer r > 2. But
this implies,

1 1>l<:-|-1 n—k+1 n+2 2

,_|_7_ + g :1+*>1,
S r n n n n

but this is a contradiction since both s and r are integers and s,r > 2, we obtain,

<

Note also that this is only true at the level of affine functions, but not at the level of convex
ones. More precisely, every ext-int. polyconvex function need mot be a a sum of an ext.
polyconvex function in the ‘first’ variable and an int. polyconvex function in the ‘second’
variable. The following counter example makes this clear.

Take k =1 and n > 4 and consider the function f: A2 (R") x R — R, given by,

f(&n) =exp (|EAEP+1?) for every € € A%, n € R.

This function is clearly not a sum of an ext. polyconvexr function in the ‘first’ variable
and an int. polyconver function in the ‘second’ variable, but is ext-int. polyconvex, though
not conver. Also even if an ext-int. polyconvexr function is a sum of an ext. polyconvex
function in the ‘first’ variable and an int. polyconvexr function in the ‘second’ variable,
both can be nonlinear, as is evident in the following simple example of a function f :
A? (R") x R — R, given by,

f&n) = |ENEP+ 72 for every £ € A%,n € R.
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Proof (i) = (ii) = (i4i) follows from Theorem 5.3. (iv) = (i) is obvious from the definition
of ext-int. polyconvexity. So we only need to prove (iii) = (iv). We divide the proof in four

steps.

Step 1: By corollary 5.9, we obtain,

3

(%]
f(&mn) = (es(n); &%), (5.1)

s=0

where ¢,(n) € A®+Ds(R™) depends on 7 in such a way that the function n — f(£,n) is int.
one affine for every ¢ € AF1(R™). Defining f,(€,71) := (cs(n); £°), we see that due to different
degrees of homogeneity in £, for each s, f; must be ext-int. one affine. So it is enough to

consider f for a fixed, but arbitrary s, 0 < s < [#1}

Step 2: Now, we fix an s and write

fsl&m = > am(E)r, (5.2)

IeT(k+1)s

where c(n) and (£°); denotes the I-th component of cs(n) and £° respectively. Now we will
show that for each multiindex I € 7*+1)s, ¢! must be int. one affine. Clearly, there is nothing
n_

k+1] Let I =iyiz...i(441)s- Then we define,

to prove if s =0, so we assume 1 < s < [
£l =€l Ne AL AR el A LA R | @R DGR A LA elRDs,

Then (&1)* = (s!)e! and hence fy(&1,m) = (s!)ck(n). Since fs is ext-int. one affine, ¢! must be
int. one affine by corollary 5.9.
!

< must be int. one affine, we can write,

Step 3: Since ¢

[n—ﬁ—o—l]
c(n) = (df 5 Gem)") - (5.3)
r=0
and thus we can write,
[7im]
fs(&m) = (df.s; en)") | (€)1 (5.4)
IeT (kt1)s r=0
[+
= Yo {dls )Y (€] (5.5)
r=0 TeT (k+1)s

Once again, by different degree of homogeneity in *7, it is enough to consider fixed but arbitrary

r,0<r< [n%kﬂ} . To that effect, we define,

Frs€m =D {dr:(n)") (€.

TeT (k1)
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This can be written as,

frs@m) = > > d ()€ (5.6)

IET(k+1)5 JET(nfkﬁ»l)T

Step 4: To prove the claim, it is enough to prove that dﬁ’;] =0forall I € Tt J ¢
T (n=k+17 ynless rs = 0. We now proceed to show that.

Let 1 < s < [ﬁ},l <r< [n%kﬂ} First note that this implies, for any I € 7 #+Ds
J € T=k+Dr there is at least one common index between I and .J ( In fact, there must be at
least tWO) Let [ = {iliQ .. .'l:(k+1)5} and J = {j1j2 .. ‘j(n—k—i-l)r} and ip = jq for some p, q. To

keep the presentation cleaner, we need to adopt a few shorthands here.

Notation 5.13 We divide the multiindex I into s blocks of multiindices, each containing k + 1
indices as follows: 1%, a =1,2,... s, will denote the a-th block of k + 1 indices, starting from
the first, i.e starting from iy. For example, for o = 1, I' = {iyiy...ip41} and for a =2, I? =
{ik+2ik+3 . i2<k+1)} and so on. More precisely, I* = {i(a—l)(k+1)+1i(a—1)(k+1)+2 . ia(k+1)}
for all 1 < a < s integer. Similarly, we divide the multiindex J into v blocks of multiindices,
each containing n — k + 1 indices as follows: J?, B = 1,2,...,r, will denote the B-th block
of n — k + 1 indices, starting from the first, i.e starting from ji. For example, for = 1,
JV = {j1j2 - Jn-ks1} and for B =2, J? = {jn,k+2jn,k+3...jQ(n,kH)} and so on. More
precisely, J° = {j(p_1)(n—kt+1)410(8-1)(n—ks1)42 - - - Jo(n—k41) } for all 1 < B <7 integer.

Also, for the sake of clarity, let I, € T+ denote the block of (k + 1) indices of I which
contains i, and J, € 7" **! denote the block of (n—k+1) indices of J which contains j,. Note
p—1 —1 ,
that in our notation, this implies, I, = 1l and Jg = JlatEalrL, Also, let I, = I\ {i,}
and J, = Jg \ {jq} -

Now we choose,

1<a<s
ai==dal

1 ]B
*n:(r—l)! Z c-

1<p<r
e

Of course, if s = 1, we choose £ = 0 and if » = 1, we choose *n = 0.
Here we will disregard questions of signs, as it is unimportant for the argument and use +
to denote that either sign is possible. Clearly,

aAb=ce" Aelr 4 o A (*eJQ>

= +elv, (5.7)
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and

/

aA(xb) =a AN (*elp + x (*e‘]q>>
=aA <*eIP) +ane

. ’ . ’
=e'? A (*eIP) + e A ea

= tela, (5.8)

We also have,
(O =\, (5.9)
(o)™t = eV, (5.10)

Note that here we implicitly used the following facts: if s =1 or 2, the formula for (5)5_1 is
trivially true and if s > 2, then k+1 must be even, since otherwise terms containing £° are absent
from the expression for f. If £+ 1 is even, the formula for (5)5_1 holds for any 2 < s < [kLH]
Similarly, if 7 = 1 or 2, the formula for (*1)" " is trivially true and if 7 > 2, then n — k + 1
must be even, since otherwise terms containing ()" are absent from the expression for f. If
n —k+ 1 is even, the formula for ()" holds for any 2 < r < [n%kﬂ}
From 5.6, we have, for any t € [0, 1] ,

Fro(€Htanbn+tab) = ) Yo AR (n+taab) (€ + ta A b))k
KeT(k+l)s [ eT(n—k+1)r

= Z Z Al ((sm £ ta A (x0)))L((E+ ta A D)) k.
KeT(k+l)s [ e (n—k+1)r
(5.11)

The term which is quadratic in ¢ in the above expression on the right hand side is,

+t2(r!)(s!) Z Z df’(S’L ((*n)r_l ANa A (*b))L (& T Aan b) -

KGT(k+1)s LGT(n—k—O—l)r

Now with our choice of a, b, &, n, this becomes,

A CICID DI SR G ) M GO

KeTk+1)s [eT(n—k+1)r K
a2 S YD dE (), ()
KeT(k+1l)s [T (n—k+1)r
= £2(r!)(s)dl

Now, since f, s must be ext-int. one affine, f, (£ + ta A b,n + taib) must be affine in ¢, which

forces dfa;] = 0 and completes the proof. m
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5.4 The ext-int convexity properties and the classical notions of convexity.

5.4.1 The projection maps

As in the third chapter, it is also possible here to point out the relationship between the notions
introduced in this chapter and the classical notions of the calculus of variations namely rank
one convexity, quasiconvexity and polyconvexity (see [25]). We first introduce some notations.

n
As usual, by abuse of notations, we identify A* (R") with ]R(k)

n
Notation 5.14 Let 1 < k <n —1. To a matriz = € R(k) *" the upper indices being ordered

alphabetically, written, depending on the context, as

—1--(k) —1-(k)
‘:1 e =n
—=(n—k+1)--n —=(n—k+1)--n
= N
=1--(k)
_ (=I\I€TH — — (= =
( i)ze{l,‘ n} - ('—‘17 7'~n)

=(n—k+1)--n

) n
we associate a map I R(k)xn — AFFL(R™) x AF=1(R™) in the following way
Wezt—int,k (E) _ (Wezt,k-i-l (E) 7rim&,k—l (E))

ﬂ.ext,kJrl nt,k—1

where and are as defined in chapter 3.

We now list some useful properties of this map.

) n
Theorem 5.15 For any 1 < k < n — 1,The map w¢* "k . R(k)xn — AFFL(R™) x AR (R™)
as defined above is surjective.
Proof We need to show, given a € A¥*1(R") and 8 € A*¥=!(R"), there exist a matrix Z €

n

R(k) *™ such that 7tk (2) = (a, B).

ext,k+1 int,k—1

Observe first that by linearity of the maps 7 and 7 , we can assume, without
loss of generality that « is ext. one-decomposable and § is int. one-decomposable. Hence by
lemma 5.5, there exist a € A',b € A¥ such that & = a Ab and a_b = 0. Considering a as a
vector in R” and b as a vector in ]R(Z), we define 21 = a ® b. Again similarly, by lemma 5.5,
there exist ¢ € A, chl € A¥ such that 8 = cud and ¢ Ad = 0. Considering ¢ as a vector in R" and

d as a vector in R(k), we define Z9 = ¢ ® d. Finally, we set = = Z1 + Zo.

Now since 7*+1 (¢ ® b) = a A b and 7™ ! (¢ ® b) = a_b, we have,

7_‘_ext,lc—l-l (

[1]
(1]

int,k—1 (

1)=0
2) = 5.

1)

=a ;
ﬂ_ext,k—b—l (52) -0

b

int,k—1 (

[1]

N s

Hence, we have,
,ﬂ.ext,k-‘rl (E) — 7I_ext,k-i—l (El) + 7I_ext,k’-&-l (52> -«

)
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and
7_[_int,k—l (E) _ 7_‘_int,k—l (El) + 7_‘_int,lc—l (EQ) _ /8

This completes the proof. =

ext,k+1 int,k—1

The following properties are immediate from the properties of m and m

Proposition 5.16 Let 1 < k < n — 1 and n°*"tk . R(k) T AFFL(R™) x AFTH(R™) be as

above.
n

(i) If « € AV (R") ~ R" and 3 € AF (R") ~ R(k’) then,
ext-int,k _
reIE (0,60 ) = (o A B, 0B)
(ii) Let w € C! (Q; Ak) , then, by abuse of notations,

ext-int.k (VW) — (dw, 5(.0) .

Note that Proposition 5.16 immediately implies the following.
Theorem 5.17 Let 1 <k <n-—1,
. n
f: Ak+1 (Rn) « Ak—l (Rn) SR and 7_‘_ea:t-mt,lc . R(/ﬂ) xn _y Ak+1 (Rn) % Ak—l (Rn)

be the projection map. Then the following equivalences hold

ext-int,k

f ext-int. one conver < form rank one convex

ext-int,k

f ext-int. quasiconver < fom quasiconvex.

Proof With proposition 5.16 at our disposal, the proof is exactly like the proof of conclusion
(i) and (ii) of Theorem 3.54. m

We are however, at present, unable to prove the analogue of the third conclusion of Theorem
3.54. It appears that it would be possible to prove this by adapting the same strategy we
employed to prove statement (iii) of Theorem 3.54. We can also anticipate that the analogue
of Lemma 3.47 would be true in this setting too. However, the proof of the lemma was already
complicated in the ext. polyconvexity case, but in this case it is going to be even more, quite

possibly considerably more tedious to prove such a lemma. We leave this result as a conjecture.
Conjecture 5.18 Let 1 <k <n-—1,

FoA R x AT (RY SR and wet itk R xm S AR (RR) & AR (RY)
be the projection map. Then

ext-int,k

f ext-int. polyconver < form polyconvex
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5.5 FEuxistence theorems for minimization problems

We now conclude this chapter with a few existence theorems for minimization problems involving
such functionals. The main point, as we already remarked in the introduction to this chapter,

is that this type of functionals are actually coercive, due to Gaffney inequality.

5.5.1 Existence theorems without lower order terms

We start with two existence theorems for minimization problem for ext-int. quasiconvex func-

tions. The proof of both of them being very similar, we shall only prove the first one.

Theorem 5.19 Let 1 <k<n—1,1<p<oo, QCR" be a bounded smooth open contractible
set, wg € WhP (Q;Ak) and f : AFFL(R™) x A1 (R") — R be ext-int. quasiconvex verifying,
for every & € AFL e AFTL

cr ([§1° + " = 1) < f(§,m) < e (IE1° + In” + 1) (5.12)

for some c1,co > 0. Let
(Pr) inf {/ f(dw,dw) : w € wy + W%’p (Q;Ak>} =m.
Q

Then the problem (P;) has a minimizer.

Proof Let {ws} be a minimizing sequence. Then by the growth condition 5.12, we find that

there exists a constant ¢ > 0 such that,
lldews|[zr + |ows||zr < c. (5.13)
By corollary 2.41 , we see that there exists a constant ¢; > 0 such that,
lwsllwr < c1. (5.14)

Thus {ws} is uniformly bounded in W1? and hence there exists w € WP such that ws — w in
whe,
Since for every (£,7) € AM1(R™) x A*=1(R") the function (£,7) +— f(&n) is ext-int.

—_
—

quasiconvex implies that the function Z s f(7*"%*(Z)) is quasiconvex for every Z € R(;)X”,

we have by classical semicontinuity result ( see Theorem 8.11 in [25] ),

m = liminf / F (dws, dws) = lim inf / f<7re"t'i“t’k(VwS)> > / f(wext-i“t”“(w))
Q S5—00 Q

5—00

Q
= [ f(dw,dw) > m.
Q

1
Note that ws — w in WP implies v Aws, — v Aw in Wi P (09) . This completes the proof. m

Similarly we can prove the following.
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Theorem 5.20 Let 1 <k<n—1,1<p<oo, Q CR" be a bounded smooth open contractible
set, wg € Whp (Q; Ak) and f : AFHL(R?) x A1 (R") = R be ext-int. quasiconvex verifying,
for every € € AF*1 e AL,

cr ([§1° + " = 1) < f (§,m) < e (IE1° + Inf” + 1)

for some ¢1,c9 > 0. Let

(Py) inf{/ f (dw, dw) :wEwo—i—WJ{;p (Q;Ak>} =m.
Q
Then the problem (P ) has a minimizer.

5.5.2 Existence theorems with lower order terms

The case with lower order terms is essentially the same.

Theorem 5.21 Let 1 <k<n—1,1<p<oo, QCR" be a bounded smooth open contractible
set, wo € WP (Q;A%) and f: Q x AP (R™) x AFTL(R") x A¥"1(R") — R be a Carathéodory
function satisfying for almost every x € Q, for every (w,&,m) € A¥ (R™) x AR (R™) x AR~ (R™)

(&, n) — f(z,w,&,n) is ext-int. quasiconver,

oy ([E[° + nfP) + Br|w|? + 7(z) < f(z,w,8m) <o (€ + nf°) + Bo|w|” +y2(z)  (5.15)

where e > a1 > 0,01 €ER, B2 > 0,71,72 € LX(Q),p>qg>1and1 <r <np/(n—p)ifp<n
and 1 <r <ooifp>n.
Let

(Pr) inf {/ fz,w,dw,dw) : w € wy + W%’p (Q;Ak)} =m.
Q
Then the problem (P;) has a minimizer.

Proof Let {ws} be a minimizing sequence. Then by the growth condition 5.15, we have for s

sufficiently large,
m+1 > a (|ldwslf, + [16wsl7,) — [Bulllwsl| T — 7)o

Since by Hoélder inequality, we have |lw;||%, < |Q|pr%q|\ws||qm, we deduce that we can find con-

stants c1, co > 0 such that,

m+ 12> o ([dwsl|fy + 10wslZr) — exllwsllEy — 2

> o (Hdwsuip + H(;WSHZP) - ClHWSH%VLp — €2
By corollary 2.41 , we see that there exists constants cs, ¢4, c5 > 0 such that,

m+12 CBHWSHI;VM - C4||w0||€V1,p - CIHWSH?/VLp — G5
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and hence for some cg > 0,
mA 1> esllwllyn, - ellwslfn, — co. (5.16)

This implies that {w;} is uniformly bounded in WP | i.e there exists a constant ¢ > 0 such
that,
lwsllwr < c. (5.17)

To see that this is indeed the case, suppose {ws} is not uniformly bounded in WP then this
implies there exists a subsequence {ws,} such that |ws,|y1» > i for every i € N. But since

p > q, there exists an integer g € N such that
m+1<czaP — 129 — cq
for every real number x > ig. But this implies
m+1< C3||WS¢O H%/l,p - clHW&-O ||?/V1,p - €6,

which contradicts (5.16).

Hence {w;} is uniformly bounded in W' and thus there exists w € WP such that ws — w
in Whe.
Since for almost every z € Q, for every (w,&,1) € AF(R™) x AFL(R?) x AP (R?)

—_—
—
—

the function (§,7) — f(z,w,&,n) is ext-int. quasiconvex implies that the function
f(x7 w’ 77r

we have by classical semicontinuity result ( see Theorem 8.11 in [25] ),

—

ext-int.k (=) is quasiconvex for almost every x € €, for every (w,Z) € R(:) x R(Z)X",

§—00

m = lim inf/ f (z,ws, dws, dws)
Q
S—00
> / f (:c,w, ,n_ext-int,k(vw))
Q
= / f(z,w,dw, ow)
Q

> m.

= liminf/ f (m,ws,we"t'im’k(vg}s))
Q

1
This completes the proof since wy — w in WP implies v Aws — v Aw in WP (09), ensuring

VAwWw=VAwy N

Theorem 5.22 Let 1 <k<n—1,1<p<oo, QCR" be a bounded smooth open contractible
set, wo € WP (Q;A%) and f: Q x AP (R™) x AMTL(R") x AF"1(R™) — R be a Carathéodory
function satisfying for almost every x € Q, for every (w,&,m) € A¥ (R™) x AR (R™) x AR~ (R™)

&, n) — f(z,w,&,n) is ext-int. quasiconvet,

oy ([E[° + nf”) + Br|w|? + 7(z) < f(z,w,86,m) < o (IEF + nf°) + Ba|w|” +y2(z)  (5.18)
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where e > a1 > 0,51 €R, B2 > 0,71,72 € LY(Q),p>qg>1and1 <r <np/(n—p)ifp<n
and 1 <r <ooifp>n.
Let

(Py) inf {/ f(z,w,dw,dw) : w € wy + W]{,’p (Q;Ak>} =m.
Q
Then the problem (P ) has a minimizer.

Remark 5.23 It is clear that these theorems will continue to hold for non-contractible domains
if the spaces are replaced by wy + W%’p (Q;Ak) N %”TJ- (Q;Ak), instead of wy + W%’p (Q; A’“) n
theorem 5.21 and by wgy + Wﬁ,’p (Q; Ak) N jfj\% (Q; Ak), instead of wy + Wi,’p (Q; Ak) in theorem
5.22 .
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Part 11

Some Boundary value problems for

Differential Forms
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Foreword to part II

The equation
div(A(z)(Vu)) = f,

for an unknown function u has played a central role in the theory of elliptic partial differential

equations. In dimension 3, the equation
curl(A(z)(curl £)) = f,

for an unknown vector field E is called the time-harmonic Maxwell’s equation. Both these

equations can be seen as special cases of the following general equation
(A(x)(dw)) = f,

for a differential k-form w, where 0 < k < n — 1. We call this operator the linear Mazwell

equation for k-forms. In the same spirit, we call the equations

0(A(x,dw)) = f
and

0(A(z)(dw)) = f(w),

the quasilinear Mazwell equation for k-forms and semilinear Mazwell equation for k-forms

respectively.

We are going to study some boundary value problems for the linear, semilinear and quasilinear
Maxwell equations for k-forms in an open, smooth, bounded and contractible domain € C R".
Existence results, interior regularity results in WP and C™“ spaces and up to the boundary

regularity results in W2 spaces are obtained for full Dirichlet boundary data problem

{6<A<x><dw>> —finQ,

w = wqy on 012,

and the related second order elliptic system, when A € R,
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0(A(x)(dw)) = dw + f in Q,
dw =0 in Q,
v Aw =0 on 0.

These results yield the corresponding results for the dual problems

w = wq on 0f),

{ d(A(z)(0w)) = [ in €,

and
d(A(x)(dw)) = Aw + f in Q,
dw =0 in €,
vaw = 0 on 0N.
The up to the boundary regularity results in W2 spaces also enables us to solve the following
two first order systems with optimal regularity in W2

{d(A(x)w) =f and §(B(r)w)=g¢g inQ,
vANA([@)w=vAwy on 052,

and

d(A(z)w) = f and §(B(r)w)=g inQ,
viB(x)w = vawg on 0f).

For both these systems, under reasonable assumption on the coefficient A(x) and B(x), we can
show the existence of a solution w € W+22(Q, A¥), assuming wp to be W’+22 and f, g to be

W2, This also yields the optimal W2 regularity result for the Hodge-type system

d(A(z)(dw)) + ddw = Aw + f in Q,
v Aw =0 on 0f,
v A dw =0 on JN.

We show existence results for two types of semilinear problems. The sign of the semilinearity
is crucial for these problems. When the energy functional is coercive, we can solve the following

prototype problem

{ §(A(z)(dw)) = M + |w|P 2w + f in Q,

VAw=vAwyon Jf,

for any f € L¥' | where p' is the Holder conjugate exponent of p, and for any nonnegative A to

the right of the spectrum of the linear principal part.
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When the sign of the semilinearity makes the energy functional indefinite, we show the

existence for the eigenvalue problem

§(A(z) (dw)) + |w|P?w = dw in Q,
v Aw =0 on 09,

by using a Nehari-Pankov manifold technique.

The quasilinear case, in a sense, is very similar to the linear theory. We use monotone operator

theory to show the existence results for the full Dirichlet boundary data problem

w = wqy on 012,

{5(A(x,dw)) = finQ,

and the related quasilinear elliptic system

(A(z,dw)) = f in Q,
dw =0 in £,
v Aw =0 on 9.

The material in this part is divided into two chapters. In chapter 6, we are going to treat the
linear case. Existence results, regularity results and its consequences. Chapter 7 deals with the

existence theory for the semilinear and quasilinear cases.
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Chapter 6

Maxwell operator for k-forms: Linear theory

6.1 Introduction

We are interested in the boundary value problems involving the following Maxwell type operator

on k-forms:

S(A@)(dw) = f i

where 2 C R" is an open, smooth, bounded set. When k£ = 0, i.e w is a real valued function,

this equation is the familiar,
div(A(z)(Vw)) = f.

When A(z) =1, the n x n identity matrix, this is just the scalar Poisson equation,
Aw = f.

Also, when k£ = 1, i.e w is an 1-form and hence can be identified with a vector field, in three

dimensions (n = 3) this reduces to, up to a sign,
curl(A(z)(curlw)) = f,
which is the principal part of the time harmonic Maxwell equation.

In the forthcoming analysis 2 C R™ will always be assumed to be open, bounded, smooth and
contractible. We shall not concern ourselves with the question of optimal smoothness require-
ments on the boundary. Also, the contractibility hypothesis can be dropped with the obvious
modifications to the results presented, but we refrain from doing so to keep the presentation
simpler. Our primary concern is to deduce an existence theorem (cf. theorem 6.32) regarding

the solvability of the following boundary value problem:

(6.1)

w = wqy on 0f2,

{6<A<z><dw>> —finQ,

when A : Q — L(A*1 A1) is sufficiently smooth. This result is new and as far as we are
aware, the question of solvability of the boundary value problem with prescribed full Dirichlet

data has not been investigated so far, even for 1-forms. The remarkable feature of this problem

189



is that this boundary value problem is very far from being elliptic. In fact, it is quite clear
a priori, that the solution space, must be infinite dimensional if it is non-empty. Throughout
the first few sections of this chapter this lack of ellipticity and as a consequence, the lack of
Fredholm property will be of crucial importance.

The proof of this result can be approached in two essentially equivalent ways, up to a
slight sharpening or weakening of the hypotheses. When A is symmetric this problem has
a variational structure and under slightly stronger ellipticity hypothesis on A (the Legendre
condition, cf. Definition 6.2), existence can be deduced by using direct methods as developed
in part 1 (cf. theorem 3.64 ). However, we take the more direct route here which enables us
to drop the symmetry assumption and also permits us to use weaker ellipticity condition (the
Legendre-Hadamard condition, cf. Definition 6.1) on A.

To prove such a result, we need to investigate the following related boundary value problem:

0(A(z)(dw)) = dAw + f in Q,
dw =0 in €, (6.2)
v Aw =0 on 0.

We show that this problem is well-posed, elliptic and has the Fredholm property in the scale of

W2 spaces for any k and any n.

In kK =1 and n = 3, this problem is the prototype for the well-studied problem,

This is the time-harmonic Maxwell’s equation for an electric field inside a cavity of a perfectly
conducting material. Of course, interchanging the constants p and €, i.e the permeability and
permitivity of the medium inside the cavity leads to the time-harmonic Maxwell’s equation for
the magnetic field with impedance boundary conditions. There is a large amount of literature
in physics, engineering and mathematics regarding this problem. There are a number of articles
and even books where results concerning existence and regularity of solutions to the time-
harmonic Maxwell’s equation or some of its variants have been shown (cf. [42], [45], [51] and
references therein). For the particular case of 1-forms in 3 dimensions, the most general results
available in the literature seems to be concerning the corresponding equations for an anisotropic

inhomogeneous medium inside the cavity, for which the equation is of the form,

curl (p(z) 7 (cwrl@)) = k& + 7 in Q,
div(&) =0 in Q,

X w =0 on 0f.

The usual assumption in the literature is u(x) is symmetric and uniformly positive definite (see

e.g [44] and references therein).
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The result presented in this chapter for the equation (6.2) is a generalization to the case of k-
form in arbitrary space dimensions n, where we assumed neither the symmetry assumption nor
the uniform positive definiteness, which is replaced by Legendre-Hadamard type of ellipticity
assumption. The result, in this generality, as far as we are aware, has not been treated elsewhere.
Indeed, in theorem 6.11, we show that existence and spectral theory for (6.2) is possible under
reasonably minimal hypotheses. The existence result for (6.1) is derived from Theorem 6.11.
We also show in theorem 6.30 that a full elliptic regularity theory in the scale of W™? spaces
is true for this system. This up to the boundary regularity estimates in W72 spaces is also
new in this generality. The only cases where up to the boundary regularity estimates exist
in the literature are the case of the Hodge Laplacian, i.e when A(xz) = I, and the case of the
time-harmonic Maxwell’s equation, i.e when k = 1 and n = 3. The usual methods for regularity
estimates for the time-harmonic Maxwell’s equation can treat fairly general matrix A(x), but is
restricted to 1-forms in dimension 3 alone and can not be generalized neither to any dimension
nor to any k-form, although a recent argument by Dacorogna-Gangbo-Kneuss [27] seems to
work in any dimension as long as £ = 1. On the other hand, the regularity results for the Hodge
Laplacian holds for any k-forms in any dimension n, but these results crucially use the fact that
A(z) = I. Note also that Ch* regularity estimates of Hamburger [35] for the quasilinear case
can imply C1 boundary estimates for the case of Hodge Laplacian only, but not about the
more general linear system (6.2) if A is not a constant multiple of identity matrix, even when
f=0and A =0.

However, in this thesis we obtain only W"? estimates up to the boundary, leaving regularity
estimates in the scale of WP (p # 2) and C™® spaces to the future (see [60]).

6.2 Fuxistence of weak solutions

We shall start by collecting the ellipticity conditions that we shall use throughout the chapter

below.

Definition 6.1 A map A : Q — L(AFY A*1) s said to satisfy the Legendre-Hadamard
condition if A satisfies, for all x € (,

(A(x)(aAb) ; aAb) >~]a b, for every a € A, b € A*
for some constant v > 0.

Definition 6.2 A map A : Q — L(A*1 A*1) is said to satisfy the Legendre condition if
A satisfies, for all x € §,

(A@)E; & 276, for every € € A*
for some constant v > 0.

Along with the usual Sobolev spaces W1P(Q; A¥) and Wol’p(Q;Ak), we shall be using the
partial Sobolev spaces W%2(; AF) and the space Wg’Z(Q; AF) = W;E’Z(Q; AF), defined earlier,
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quite a lot. Also consider the following subspace Wg’%(g; A’“) - Wg’z(ﬂ; Ak) defined by,
W AF) = {w € W2 (Q; AF); 6w = 0},

where the condition dw = 0 is understood in the sense of distributions. Clearly W(;i :,%(Q, AF) is
a closed subspace of W;’Q(Q; AF). Also, dWOI’Z(Q; A¥) is a closed subspace of W;’Q(Q; A¥) and

WE2(Q: AF) = WE2(Q; AF) @ dW 2 (; AF).

(cf. theorem 2.52 for the proof of the above decomposition and section 2.5 for related results).
The direct sum decomposition is clearly also orthogonal with respect to the inner product. Also
note that ngf (€2; A*) embeds continuously in W12 and hence by Rellich’s theorem, ng’:,% (Q; AF)

embeds compactly in L?. Hence the norm o] P = ||dv|| ;2 is an equivalent norm on
5,

T(Q§Ak) -
Wi (Q; AF).

6.2.1 Existence in Wfﬁ
We start by proving a Garding type inequality,

Theorem 6.3 Let A : Q — L(AFTL ARFY) satisfy either the Legendre-Hadamard condition and
is uniformly continuous or the Legendre condition and is bounded and measurable. Also let
B € L>®(Q; L(A*, A*1Y and C € L>®(Q; L(A*, A¥). Then there exist constants \g > 0 and A\
such that,

a(u,u) = /Q [(A(x)du, du) + (B(x)u, du) + (C(x)u, u)] > Ao Hdu||%2 -\ ||u||2Lg ) (6.3)

for all u € W%Q(Q,Ak).

Remark 6.4 Note that we need the hypotheses of uniform continuity in the case of Legendre-
Hadamard condition. As is well known, even for the classical elliptic systems, the hypothesis
of uniform continuity is crucial to obtain Garding type inequality. Such an inequality, which is
essentially the factor responsible for the ellipticity, can fail for bounded, measurable coefficient
satisfying the algebraic condition formally (see [55], [T4] etc for such counterezamples in slightly
different, but intimately related settings).

Proof We shall only show the theorem under the assumption of Legendre-Hadamard condition

on A, the other case being similar and easier. We will proceed in three steps.

Step 1 First assume A(z) = constant and B = C = 0.
Since C°(£2; A*) are dense in Wf{’Q(Q, AF), it is enough to show the inequality for u € C°(Q; A).
Now we have, using Fourier transform and Parseval-Plancherel identity and the hypothesis on
A,

/Q<Adu,du):/n<Adu,du>:/n(A§/\ﬂ,§/\a)
>y [ enieniy = [ tdudu) = [ (dudu) =7 duls.
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Step 2 We now remove the hypothesis that A has constant coefficents but assume that
support of u is small. We still keep the assumption that B = C' = 0. By uniform continuity of
A, there exists § > 0 such that,

[A(z) = A(y)| <

o2

whenever |z — y| < 0.

We now claim that for any u € C2°(; A¥) with diam(supp u) < d, we have,

(A(x)du, du) > |du|2 (6.4)
Q

To show this, we choose a point zg in the support of u and write,

/Q<A(x)du, du) = /Q<A(x0)du,du> +/ ((A(z) — A(xo)du, du)

supp u

Y
>4 / du? 1 / duf? > ] / dul?.
Q Q Q

Step 3 Now we finally remove the hypotheses that B = C' = 0 and support of u is small.

We now cover  with finitely many open balls {Bs(z;)} with x; € Q, i = 1,2,...,N. We
4

are now going to construct a special type of partition of unity for this cover. To this end, let

Gi € CX(Bs(x;)) such that (;(z) =1 for all x € Bs(x;). We define,
2 4

¢z‘(l’)=¢1 for i =1,2,...,N.

(ZhiG@)”

Then we have 2 | ¢2(z) = 1 for all z € Q. Then we have,

N N
/Q<A<x>du,du> _;/Qw (82 () du), du) ;/ﬂw ) (1(2)du), i () du)

Since,

(A(z)d(di(z)u), d(@i(r)u)) = (A(z)(dp; A u), dp; Au) + (A(x)(dei A ), piu)
+ (A(z)(pidu), di A u) + (A(z)(pidu), pidu),

we have,

Zj) [ (4@ 6wy, )i
Z; [ 4@ ). o) Z / ) ), dss A )
_Z/ )(ddi A u), Z/ 2)(Gadut), ddrs A ).
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Since ¢;u € C°(2; AF) with diam(supp ¢;u) < diam(Bg () < g, we have, by Step 2,
N
> [ (@it deonton)
=178
N
Y
>33 [ e
N N N
2 2 2 7 2
= - 5 i idu, do;
2;/ﬂ¢,ldu| +2;/nld¢ A +'y;/ﬂ<¢ u, oy A )

N N
vy 2,7 2
=2 [ ldul? + < /dc/)i/\u + /@:du,dﬁbi/\u-
2/Q| | 2; [ds; ; K )

Now we also have the following estimates, where ¢ denotes a generic positive constant de-
pending on ¢; and L* norms of A, B, C, which may not represent the same constant in each

line,
N
= / (A()(dds A ), dés A ) > —clul s,
i=1 v
N
-3 /Q (A(2)(di A ), di) > —cllua,
N
= / (Ala)($idu), i Ay > —lful g2 |dull 2,
=1

N
g
23 [docnul? = ~clul,
=179
N
73 | (ududos nu) = ~clul o
i=1
[ Bl au) = ~cluladul
| @ >l
Combining all the above estimates we deduce,
/ [(A(z)du, du) + (B(z)u, du)+ (C(z)du, u) + (D(z)u, u)]
Q
b
>3 [l = Cululzz a2 — Colul.
Using Young’s inequality with €, we obtain,

1
—Cillul g2 lldull 2 > —Ct|dull72 — gClHUHiz.
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1
Choosing € such that \g = % —eC1 > 0 and setting \; = —C + C5 for such a choice of ¢, we
€
obtain,
a(u,u) > Ao [|dul| 72 — A1 [Jul72 -

This completes the proof. =

Remark 6.5 (7) the constant \1 can be chosen to be nonnegative, if one so desires. Since if
AL <0, then a(u,u) = Xolldulj2 — Au[|ul72 = Ao ||dul|7: -

(ii) As step 1 of the proof shows, if A(x) = constant and satisfies Legendre-Hadamard and
B,C,D =0, then the inequality holds with A\ = 0. Also, if B,C, D =0, then Ay =0 for any A
satisfying Legendre ellipticity.

Now we are ready to deduce existence of solutions in VV(SdT2 (; A%). We start with a few
propositions.

Proposition 6.6 Let A : Q — L(A*1 A*L) satisfy either the Legendre-Hadamard condition
and is uniformly continuous or the Legendre condition and is bounded and measurable. Let
B € L®(Q; L(Ak, A*1), C € L=®(Q; L(A**Y AF) and D € L>®(; L(A*, A¥). Then for any
f e L2(Q, AF) and F € L*(, AF+Y), there exists a constant \ such that for any constant A\ > X,
there exists unique w € W(?TQ(Q, AF) satisfying,

/ (A(x)dw, dB) + (B(x)w, dB) + (C(z)dw, 6) + (D(x)w, 6)] + A / (w,0)
Q Q

+ [0y = [ (pao) =0,

for all 0 € W2 (Q; AF).

Proof The plan is to use Lax-Milgram theorem. We recall that the norm ||’U||Wd,2(Q_Ak) = ||dv]| 2
5,7 (8%

is an equivalent norm on Wg 7% (; AF). For a given A € R, we define the bilinear operators
a: Wg’j%(Q,Ak’) X Wgﬁ(Q,Ak) — R and by : W(g’%(Q,Ak) X Wg’j%(Q,Ak’) — R by,
o) = [ [(A@)dusde) + (Bla)udo) + (C@)du, ) + (D),
Q

b(u,v) —a(u,v)—i—)\/gl(u,m.

Clearly, a(u,v) is continuous and so is by(u,v) for any A € R, so we need only check the
coercivity. Since W(gq%(ﬂ, AF) W;E’Z(Q, A¥), by theorem 6.3, there exists constants \g > 0 and
A1 such that,

a(v,v) > Ao [[dv]|72 = A1 [|v]72

Set A = A;. Then for any A > X, we have,

ba(v,v) = a(v,v) + A/ (v,0) = a(v,v) + M[oll72 = Ao lldv]| 72 = A [[oll72 + Aol
Q

= o [ldvllZ2 + (A = A1) [[vllz2 = Ao [ldv]Ze -
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Since A\g > 0, this shows coercivity and by Lax-Milgram theorem implies the existence of
BES Wg’ﬁ(Q; AF) satisfying

ba(w,0) = —/<f, 0) + / (F,do) for all § € WA (Q; AF).
Q Q ’
This completes the proof. =

Remark 6.7 This proposition above remains true even if the space Wg’:,%(Q; AF) is replaced by
the larger space W}i’Q(Q,Ak). The only change in the proof is that we need to take the lower
bound for X, i.e X\ > A1, where Ay is the constant in theorem 6.3, so that we can obtain, for any
>,

ba(v,v) > ¢ ||v|[yaz with ¢ > 0.

The proposition above furnishes us with a ‘solution operator’. If A

> 5\ then the operator
T5 : ( gﬁ(Q AF))* — ng%(ﬂ AF), which maps the functional F € ( gT2(

AF))*, given by,
F(0) := —/<f, 0) + / (F,dg)  for all @ € W2(Q; A),
Q 9) ’

for given (f, F) € L?(92, A¥) x L?(Q, A*+1) to the ‘solution’ «, i.e a € Wg%(Q; A¥) is the unique

solution to the problem,
bs(a,0) = —/(f, 0) +/<F, de) for all § € WEA(Q; AF),
Q Q ’

is a bounded linear operator. Also, let 7 : Wg’:,%(Q;Ak) — (Wg’%(Q;Ak))* be the embedding
defined by,

To(0) = /Q (v, 6). (6.5)

We start with a lemma.

Lemma 6.8 The operator K5 : Wg&%(Q;A’“) — W5T(Q AF), given by K5, = T oZ is a compact

operator.

Proof Since T5 is continuous, it is enough to prove that Z is compact. But we can write
T =T, 0Ty, where Iy : W;’%(Q; AF) — L%(Q, A¥) is the natural embedding and Z; : L?(, AF) —
(Wgﬁ(Q;Ak))* is given by (6.5). Since WéT(Q AF) compactly embeds in L2(Q, AF), T, is

compact. Continuity of Z; concludes the proof. =

Remark 6.9 Note that since W;E’Q(Q,Ak) does not embed compactly in L*(Q, A¥), this lemma
fails if Wg%(Q; AF) is replaced by the larger space W;EQ(Q, AF).

Theorem 6.10 Let A : Q — L(A*1 AKTY) satisfy either the Legendre-Hadamard condition
and is uniformly continuous or the Legendre condition and is bounded and measurable. Also let
B € L*®(Q; L(AF, AR, C € L=°(Q; LAY A¥) and D € L°°(Q; L(A*, AF). Then there erists

196



a constant p € R and an at most countable set o C (—o0, p) such that the integro-differential

equation,

/ [(A(z)dw, df) + (B(z)w, df) + (C(x)dw, 0) + (D(z)w, )] + )\/ (w, 0)
Q Q

+ [0 - [ (pao) =0,
(6.6)

for all 6 € Wg%(Q;Ak), has a unique solution w € Wg’:,%(ﬂ;Ak) for all f € L*(Q,AF), F €
L2(Q, A*+1) if and only if X ¢ o. Moreover, the set o does not have a limit point except possibly
—o00. If o is infinite, then it is a non-increasing sequence {\;} such that \; — —00 as i — oo.
Also, for every o; € o, there exists non-trivial solutions o € Wg’ﬁ(Q;Ak), a # 0 which solves

the following integro-differential equation,

/ (A(z)dw, d8) + (B(x)w, d8) + (C(x)dw, 0) + (D(x)w,0)] + 01 / (w,0) =0
Q Q

for all 6 € ng’ﬁ(Q; AF). Moreover, the subspace of such solutions is finite dimensional.

Proof Let g € (WSY%(Q,A’“))* be given by,

g9(6) —/Q<f,9> —/Q<F, do)  for all 0 € Wi (0 AF),

A simple calculation shows that solving (6.6) is equivalent to solving the following functional
equation on Wg’:,%(Q; AF),
(I — (A= N Ex]w = T3(9), (6.7)

where \, K %, I are as defined above with A > )\, where \ is the constant given by proposition
6.6 and 1 : Wgﬁ(Q; AF) = Wg&%(Q;Ak) is the identity operator.

Now by lemma 6.8 K7 is a compact operator, hence by Fredholm alternative theorem (cf.
Theorem 5.3 and 5.5 in [34]) the theorem follows. Note that Fredholm alternative theorem yields

the only possible limit point for the sequence { } is 0. Since we already know that
A€o

(A=)
we can solve (6.6) uniquely for all A > A, we immediately deduce that the only possible limit
point for o = {\;}?2, must be —oo and by setting p = A, 0 C (=00, p). Clearly, the set o can

be arranged in a non-increasing manner. ®

6.2.2 Existence in WZ‘%’Q

We shall now be interested in a solution of the integro-differential equation (6.6) on the larger

space W¥’2(Q, AF), i.e we want to solve,

/Q (A(z)dw, d) + (B(a)w, d) + (Cla)dw, 8) + (D(x)w, )] +) /Q (0, )
+/Q<f,¢>—/Q<F,d¢>:o (0)
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for all ¢ € Wj‘f’Z(Q, AF). By proposition 6.6 and remark 6.7, we can always solve (o) if A is large
enough. However, as we already mentioned in remark 6.9, since the lemma 6.8 is no longer
true, we can not use Fredholm alternative to infer about the solvability of (o) for any A € R.
In short, the lower order terms, in general, can not be treated as compact perturbations of the

principal order term on W;E’Q (Q, AF).
However if we assume additional conditions, it is possible to deduce some results.

6.2.3 Existence theorems

We are going to assume that the maps B, C, D = 0 and f is coclosed in the sense of distributions.
Since our domain {2 is assumed contractible, any coclosed form is actually also coexact and hence
we shall henceforth assume also f = 0. Under this assumption, it is possible to deduce existence
and spectral theory not only on W;’Q(Q,Ak) but actually in WTl’Q(Q,Ak). Moreover, we can
derive the existence of a solution of the integro-differential equation and also for a related
integro-differential equation on WTl’Q, which will be crucially important to deduce regularity.

This is the content of the following theorem.

Theorem 6.11 (Existence of weak solutions) Let1 <k <n—1 and Q2 C R" be a bounded
smooth open contractible set. Let A:Q — L(A*1 AM1) satisfy either the Legendre-Hadamard
condition and is uniformly continuous or the Legendre condition and is L. Also let ' €
L2(Q, Ak*Y). Then there exists a constant p € R and an at most countable set ¢ C (—oc, p),
with no limit points except possibly —oo, such that if X\ ¢ o, then there exists a unique weak

solution w € W%’Z(Q,Ak) to the following boundary value problem,

(A(z)dw) = Aw + 6F in Q,
Sw =0 in Q, (Po)
vAw=0 on 0N.

Moreover w € WTl’z(Q, AF) also satisfies all of the following integro-differential equations,

/(A(x)dw,d¢> + )\/ (w, P) — / (F,d¢) =0 for all ¢ € W;E’Q(Q,Ak). (6.8)

Q Q Q

/ (A(x)dw, dp) + X / (w, B) — / (Fydp) =0 for all g € Wp2(Q,AF). (6.9)
Q Q Q

— 1,2 k
/Q<A(w)dw,d¢> —|—/Q((5w,(5d>> —i—)\/ﬂ<w,¢> - /Q<F, d¢) =0 for all ¢ € W%(2, A7).
(6.10)

Also for each o; € o there exists non-trivial weak solutions o € W%’Q(Q,Ak) to the following

boundary value problem,

0(A(z)da) = oy in Q,
oo =0 in €, (EV)
vAa=0 on 09,

and the space of weak solutions to (EV) is finite-dimensional for any o; € o.
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Remark 6.12 (i) Note that w given by the preceding theorem is the unique solution to to
the boundary value problem (Pg), but it is not necessarily the unique solution to the integro-
differential equations (6.8), (6.9), (6.10). This would in general require additional hypotheses.
As a particular example of this non-uniqueness, if 0 ¢ o, then setting A = 0, we see that if w
solves (6.8) or (6.9), so does w + di) for any ¢ € W()I’Q(Q;Ak).

(ii) For much of the same reason, in the preceding theorem, the space of weak solutions of

the problem (EV) is finite dimensional for any o; € o, but the space of weak solutions to the

problem,
0(A(z)da) = o0 in
(EVP)
vAa=0 on df,
when o; € o need not be finite dimensional. If o = 0 € o, the space of weak solutions

corresponding to (EV) would be finite dimensional, but the space of weak solutions to (EVP) to

is clearly infinite-dimensional, as it contains dWol’Q(Q; AF).

Remark 6.13 Note that if A € L°°(Q; L(A*, AF1) is symmetric and satisfies the Legendre
condition, using techniques similar to theorem 3.69, we can deduce that there exists a minimizer

of the following problem,
m = inf {/ [(A(z)dw, dw) + Aw|? = (F, dw)] 1w € wo + W;E’Q (Q;Ak>} ,
Q

for any F € L? (Q;AkH) , for any wy € W2 (Q;Ak) when A > 0 s large enough. However,
the minimizer is only in W;’Q (Q; Ak), whereas theorem 6.11 gives a solution in W%’Q (Q; Ak) .

This additional gain in regularity is significant.

Proof We prove only the case of Legendre-Hadamard ellipticity, the other case is handled
exactly similarly.
The hypothesis of the theorem implies, by theorem 6.10, that there exists a constant p € R

and an at most countable set o C (—o00, p) such that the integro-differential equation,

/(A(x)dw,d@) +)\/<w,9) —/<F, d6) =0 forall f € WEAQAY)  (6.11)
Q Q Q

has a unique solution w € Wg’ﬁ(ﬁ; AF) for any F' € L?(Q, A¥+1) if and only if A ¢ 0. Moreover,
the set o does not have a limit point except possibly —oo. If ¢ is infinite, then it is a non-
increasing sequence {\;} such that \; — —oo as i — oo. Also, for every o; € o, there exists a
finite dimensional subspace of solutions, containing non-trivial solutions a € Wg 7%(Q, AF), o #0

solving the following integro-differential equation,

/Q<A(x)da,d9> +o; /Q<a,0> =0 forallfe Wg’%(Q;Ak). (6.12)

We first tackle the last half of the theorem. We recall that W%’Q(Q;Ak) is a subspace of
W;E’Q(Q;Ak) and the orthogonal decomposition W%’Z(Q;Ak) = Wg%(Q; AR @ dWOLZ(Q;Ak).
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Hence we can write every ¢ € W%’2(Q;Ak) as ¢ = 0 + di, for some 0 € Wgﬁ(Q;Ak),w €
Wol’Z(Q;Ak’). Now if 0, € 0 and a € Wg’%(Q;Ak) is a non-trivial solution of (6.12), then we
have, for all ¢ € W% (Q; A¥),

/Q (A(z)da, db) + o /Q (o, ¢) = /Q (A(z)de, d(8 + dib)) + o1 /Q (0,0 + df)
_ /Q (A(z)da, dO) + o /Q (,0) + o1 /ﬂ (o, dip)
-0,

where the last term on the left of the last equality is 0 since o € Wg rﬁ (€; A*) and hence 6o = 0
in the sense of distributions and the rest is 0 by (6.12). Also, since o € Wgﬁ(Q;Ak), clearly
o € W%’Q(Q;Ak), vAa=0ondf and da = 0 in 2, showing that such an « is indeed a weak
solution to (EV). This settles the last part of the theorem.

For the other part, for any A ¢ o, if w € Wadﬁ (€2; AF) is the unique solution of (6.11), then since
we can write any ¢ € Wﬁ’z(Q;Ak) as ¢ = 0 + dip, for some 6 € Wédﬁ(Q;Ak),w € WOI’Z(Q;A’I“)7
we deduce, for all ¢ € Wg’z(ﬂ, AF),

[ a@w e+ [ o) = [ (Pas)
_ / (A(z)dw, d(0 + dib)) + A/
Q

Q

_ /Q(A(x)dw,cw} +/\/Q<w,9) —/Q<F,d9>+A/Q<w,dw>
=0,

(w,0 + ) — /Q<F, d(0 + di))

where the last term on the left of the last equality vanishes since dw = 0 in the sense of
distributions and the rest is 0 by (6.11). This proves that w solves (6.8). Since W%’Z(Q; AF) is
a subspace of Wg,z(Q; AF), this immediately implies w solves (6.9). Clearly (6.9) implies that w
is a weak solution to the boundary value problem (Py). Since dw must be 0 for any solution of
(Po), uniqueness follows from uniqueness of w in ng 7%((2, AF). Again, since dw = 0 in the sense

of distributions, we have,
/Q<5w, 5¢) =0 for all p € W2(Q, AF).

This together with (6.9) implies w solves (6.10). This completes the proof. m

6.3 Interior reqularity of weak solutions

We now prove the interior regularity results. We deduce the interior regularity results for linear
Maxwell operator from the classical interior regularity results for a linear elliptic system. The
point is that for interior regularity results, the boundary conditions do not matter and hence
deducing interior regularity results follow from the classical ones as soon as we show that the

system we are dealing with is in fact elliptic. We start with the following theorem.
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Theorem 6.14 (Interior W22 regularity) Let 1 < k < n—1 and Q C R" be a bounded
smooth open set. Let A : Q — L(A*1 A*TY) be Lipschitz continuous and satisfies either
the Legendre-Hadamard or Legendre condition. Also let f € L?>(Q,AF) and A € R. Let w €
Wh2(Q, AF) be a weak solution of the following,

. 1,2
/Q<A(x)dw,d¢> +/Q<5w,5¢>+A/Q<w,¢> +/Q<f,¢> =0 forall g € W2(Q,A%). (6.13)

Then w € WZ’Q(Q, AF), and for any subdomain Q' cc Q, there is a constant C, depending only

loc

on Q,Q and Lipscitz norm of A, such that we have the estimate,

lwllyarary < € (Iwllza@ar + 11 z2@ian ) -

To show this, we shall first need to show that the system we are dealing with is in fact

elliptic. This is the content of the following lemma.

Lemma 6.15 (ellipticity lemma) Let A : Q — L(A*1 A*1) be a measurable map and
satisfies,
(A(x)(a AD) 5 aAb)>~|anbf, for every a € A',b € A*

for some constant v > 0 for all x € Q. We define the map A : Q — L(R(Z) X",]R(Z) ) by,

Av(m) _ (ﬂ_emt,k+1>T ° A(J?) o 7_‘_emt,k+1 + (ﬂ_int,k—l)T o ﬂ_int,k—l fOT’ a.ere Q,

ﬂ.e:tt,k—‘rl , int,k—1

where T are the projection maps defined in chapter 8 and (-)* denotes the trans-

pose. Then A satisfies,
~ n
(A(z)(a®b) ; a®b) > ~olal®[b]?, for every a € R",b € R(k)
for some constant v9 > 0 for a.e x € Q.

n
Remark 6.16 (1) As usual, we identify A' with R™ and A* with R(k).

(2) Observe that since m*H*+1 k=1 gre linear maps with constant coefficients, A always

enjoys the same regqularity as A.

(8) The conclusion of the lemma shows that A satisfies the Legendre-Hadamard ellipticity

condition or strong ellipticity condition in the sense of linear elliptic systems.

(4) The definition of A implies, for a.e x € Q and for every a € AL, b € AF,
(A(z)(a®b);a®b) = (A(z)(a Ab) ; aAb)+ (aib;ab).

We shall show this while proving the lemma.

(5) In the same manner, we have, for a.e x € Q and for every w, ¢ € WE2(Q, A¥),
(A(2)(Vw); Vo) = (A(z)dw; de) + (0w; 66).
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This observation is the crucial one by virtue of which we can deduce all the regularity

results from the classical results.

(6) Note however that, if A satisfies the Legendre condition, i.e if there is a constant v > 0
such that,

(AN 5 A >y |\, for every X € AFTL for a.e x € Q,
this still would not imply that there is a constant vy > 0 such that,
(A2)e s & >wleP,  for every € eRGDN foraeneq.

The conclusion of the lemma would still hold though, since Legendre condition on A implies

the Legendre-Hadamard condition for A.

Proof For any a € A',b € A*, we have, by abuse of notations,

(A(z)(a ®b);a @ b)

(ﬂ,emt,k+1)T o A(LL‘) o ﬂ_emt,k—l-l + (ﬂ_int,k—l)T o ﬂ_int,k—l} (a ® b)7 a® b>

|:(7Tert,k+1)T ° A(ZE) o 7_‘_e:z:if,k-‘rl (CL ® b);a ® b> + <[(ﬂ_mt,k—1>T o ﬂ_mt,k—l (a ® b), a® b>

(
(
= ((A(x) o T 1) (¢ @ b); 1M (0 @ b)) + (7ML (a @ b); 71 (@ @ b))
(A(z) (7 ) (@ @ b)); ™ (a @ b)) + (77 (a @ b); 7 (@ @ b))
(A(z)(a Ab);a Ab) + (asb; ab).

But, using the hypothesis on A, this implies,
(A(#)(a®b);a®b) > ~|a b+ |aib]*.
We now claim that this implies there exists a constant v > 0 such that,

Yla A+ labf? > 5 laf? b

Clearly the claim establishes the lemma, so all that remains is to prove the claim. But if the

claim is false, then there exist sequences {a,}, {b,} such that for every n € N, we have,
2 2 _ 1 :
v lan A bp|” + |anab,|” < - with |a,| = |b,| = 1.

But since {a,},{b,} are bounded sequences, passing to a subsequence if necessary, we can
assume that,
ap, —a and b, > b asn— oo with |a| = [b] = 1.

Then, passing to the limit as n — co, we obtain,

vla Ab? + Jasb]® =0,
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which implies a Ab = 0 and aub = 0. Plugging this in the identity (cf. Proposition 2.16 in [21]),
a A (ab) +as(aAb) = |a|*b, we obtain b = 0, which contradicts the fact that |b| = 1 and finishes
the proof. m

Incidentally, such a lemma holds true even in more general circumstances. The proof is

completely analogous to the lemma 6.15 with obvious changes and is omitted.

Lemma 6.17 (general ellipticity lemma) Let A : Q — L(A*1 A1) be a measurable map

and satisfies,
(A(z)(aADb) 5 aAb) >~1|aAbf, for every a € A',b € AF

for some constant yo > 0 for all x € Q. Also let B : Q — L(A*=1 A*¥=1) be a measurable map

and satisfies,

(B(x)(alb) ; asb) > o |ab|?, for every a € AY,b e AF
for some constant vo > 0 for all x € Q. We define the map A:Q— L(R(Z) X",R(Z)X”) by,
Alz) = (x9N o A(z) o ph+L 4 (rintk=I\T o Bz) o pih=1  for qcx € Q)

ext,k+1 _int,k—1
)

where s are the projection maps defined in chapter 2 and ()T denotes the trans-

pose. Then A satisfies,
(A(x)(a®b) ; a®b) > ~olal®[b]?, for every a € R",b € R(k)
for some constant vog > 0 for a.e x € €.

This lemma is enough to prove theorem 6.14. Let us show that this indeed is the case.

~ n n
Proof (of theorem 6.14) We define the measurable map A : Q — L(R(k) o R(k) “™) by,
Av(l') _ (Wext,k+1)T o A(:E) o 7reamf,k+1 + (,/Tinthfl)T o 7rimﬁ,kfl for a.e € Q.

~ n n
Note that the hypothesis of the theorem implies that A € W1 (€); L(R(k)xn, R(k) ™).
Now for all ¢ € W%’2(Q, AF), we have.

| A@w).v60) 42 [ o)+ [ (.0
:/<A($)(7Temt’k+1(VW)),Wewt’k+1(v¢)>+/<7Tint’k_1(VW),Wint’k_l(v¢)>
Q Q
a [+ [

:/Q<A(:c)dw,d¢) +/Q<6w,5¢) +A/Q<w,d>>+/9<f, )
=0.
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Since W(}’2(Q,Ak) C W%’Z(Q,Ak), we see that w € W1H2(Q, A¥) satisfies,
[, 90) 42 [ @o)+ [ (£.6) =0 torall g e WiHQ AR, (010
Q Q Q

Since by lemma 6.15 A satisfies the classical Legendre-Hadamard condition, the classical results
( for example cf. Theorem 4.9 in [33] ) immediately imply w € W22(Q, AF). m

loc
In exactly the same way, we can deduce the higher interior regularity result from the classical
results (cf. Theorem 4.11 in [33]). We state the theorem below and omit the proof.

Theorem 6.18 (Interior W"+22 regularity) Let 1 <k <n—1,7 >0 and Q C R" be a
bounded smooth open set. Let A € C™1(Q; L(A*1, A*+1)) satisfy either the Legendre-Hadamard
or Legendre ellipticity condition. Also let f € W™2(Q,AF) and X\ € R. Let w € W12(Q, AF) be

a weak solution of the following,

[ a@o.do) + [ 50.50) 47 [ .00+ [ (0 =0, (6.15)

for all ¢ € W%’Z(Q,Ak). Then w € W, T22(Q, A¥), and for any subdomain Q' CC Q, there is a

loc
constant C, depending only on Q,Q and C™' norm of A, such that we have the estimate,

lwllyrraariasy < € (Iollz2uary + 1 llweeuas) -

The argument outlined at the end of the last subsection is also enough to derive the interior
regularity results in Holder and WP spaces from the classical ones for linear elliptic systems
(cf. e.g Theorem 5.20 and Theorem 7.2 in [33] for Schauder and LP estimates respectively).

Here we record the results.

Theorem 6.19 (Interior "2 regularity) Let 1 < k < n — 1, » > 0 be integers nd
Q C R™ be a bounded smooth open set. Let 0 < o < 1 be a real number and Let A €
CrHhe(Q; L(ARTL ARY)) satisfy either the Legendre-Hadamard or Legendre ellipticity condi-
tion. Also f € C™(Q, AF) and A € R. Let w € W12(Q, A¥) be a weak solution of the following,

[ @ ds)+ [ 0,00+ [ o)+ [ (5.0 =0, (6.16)

for all ¢ € W%’Q(Q, AF). Then w € C’Z:;Q’Q(Q, AR, and for any subdomain Q' CC Q, there is a

constant C, depending only on €, Q' and C™H norm of A, such that we have the estimate,

[l sty < € {1l omaia + I llcra@ine)}-

Theorem 6.20 (Interior Wrt2p regularity) Let 1 < k < n —1, r > 0 be integers and
Q C R™ be a bounded smooth open set. Let 1 < p < oo be a real number and let A €
C™HH(Q; L(AFTY AFTY)) satisfy either the Legendre-Hadamard or Legendre ellipticity condition.
Also f € WP(Q, A*) and X € R. Let w € WH2(Q, AF) be a weak solution of the following,

/Q<A(:r)dw,d¢> +/Q<5w,5¢> +/\/Q<w,gz5>+/9<f, é) =0, (6.17)
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for all ¢ € W%’Q(Q,Ak). Then w € I/VIZJCFQ’I’(Q,A’“), and for any subdomain Q' CC Q, there is a

constant C, depending only on Q,Q and C™! norm of A, such that we have the estimate,

HWHWT+2,p Q' Ak <C HWHLP(Q;M) + HfHWnp(Q;Ak) .
( )

Remark 6.21 Note that the terms containing the L?, C%* and LP norm of w, on the right
hand side of the estimates in theorem 6.18, theorem 6.19 and theorem 6.20 respectively, can
not in general be dropped because of possible nonuniqueness. Indeed, even when A satisfies the
Legendre condition or satisfies only Legendre-Hadamard but has contant coefficents and A\ = 0,

uniqueness of solution is true only modulo harmonic fields.

6.4 Regularity up to the boundary

However, for deducing regularity up to the boundary we need something more. The reason is
the special nature of the boundary conditions. In general, regularity results up to the boundary
is not standard in the classical literature for such boundary conditions. Hence we would have

to prove it for ourselves. First we need a few lemmas. We begin by recalling our framework.

Let 1 <k <n-—1and Q C R" be a bounded smooth open contractible set. Let A : Q —
L(A*+1 A*+1) be a measurable map that satisfies,

(A(z)(a Ab) ; a by >~laAD?, for every a € A, b € A*

for some constant o > 0 for all x € Q. Also let f € L*(Q; AF), F € L?(; A¥+1) and )\ € R. Let
w € W%’Q (92, A*) be a weak solution of the following,

| a@aondo) + [ o500 47 [ o)+ [ o= [(Ras 0. (©13)

for all ¢ € W2(€; AF).
Now we derive the integral equation satisfied by w in a neighbourhood of the boundary,

multiplied by a local cut off.

Lemma 6.22 If zo € 09, W be a neighbourhood of o in R™ and § € C° (W) . Let V.= QNW.
Assume A € CO1 (Q; L(AM AR Ifw e W2 (Q, A%) is a weak solution of (6.18), then fw

satisfies the following equation,

/V (A()d(0w), dg) + /V (5(60), 56)+ /V (0F —d0F, ¢)— /V (OF, de)+ /

\%

(9.0)= [ (@00,50) =0,
(6.19)
for all ¢ € W%’Q(Q; AF), where g is given by,

g =MNw+ 6 (A(x)(dO ANw)) + dOs(A(z)(dw)) 4+ db A dw. (6.20)
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Proof This lemma is just a straight forward calculation. We have, for any ¢ € W%’2(Q; AF),

/ (A(2)d(0w), do) + / (5(0w), 56)
Vv Vv
- / (A(2)(d6 A w + 0dw), o) + / ((d0.w + 06w), 56)

Vv Vv
—/V<A(x)(d9/\w),d¢>+/V<A(:c)(dw),9d¢>+/V(d94w,6¢>+/v(5w),9(5¢)
- / (A(2)(d6 A w), dd) + / (A(2)(dw), (d(66) — dB A )+ / (d6 .10, 59)

1% 1% 1%

+ / (60, (5(06) — db6))
%4

_ /V (A(x)(dw), d(00)) + /V (6w), 5(06)) + / (A(2)(d0 A w), do) + /V (df 0, 56)

%4

- / (A(z)(dw), d6 A ¢) — / (6w, dO¢).
14 v

But since 6¢ can be taken as a test function in (6.18), we can substitute the first two terms and

obtain,

/ (A(2)d(0), d) + / (6(0), 56)
1% Vv
~ /V (, (06)) — /V (f, (06)) + /V (F,d(09)) + /V (A(2)(d6 A w), do)

4 /V (d0w, 06) — /V (A(2)(dw), dO A 6) — /V (6w, d05)
.Y /V (w, (06)) — /V (f, (06)) + /V (F,0d6) + /V (F,do A g) + /V (A(2)(d8 A w), dg)

4 /V (d0.w, 68) — /V (A()(dw), dO A 6) — /V (0w, d0 )
== [ (w0 [0r0)+ [ 0P+ [ (@0or0) = [ a0 nw).0

4 /V (d6 0, 56) — /V (d0(A(z)(dw)), 8) — / (d6 A 5w, 6).

v

This, after transposing proves the result. =

Flattening the boundary Now we flatten the boundary and derive the equation satisfied
by the pullback of fw in half balls in the half space R} = {z € R" : 2;,, > 0}. Here we shall be
a bit more precise about the smoothness of the boundary.

Let By denote the half-ball centered around 0 in the half space R, = {x € R" : z,, > 0}, i.e

Bf, = {z € R" : [z < R,z > 0}.
Let I'r, denote the flat part of the boundary of the half ball B+0, i.e

I'r, ={z € R" : |z| < Ry, x,, = 0},
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and let C'r, denote the curved part of the boundary of the half ball B*07 ie
Cr, ={z € R": |z| = Ry, z, > 0}.

Also let us denote the space of Sobolev functions with vanishing tangential component on the

flat part of the boundary by,
Wi e (Bl A%) i= { € WH(B s AF) - b = —e, Ay = 0 on T, }.
We also define,
,2 1,2 T, .
W;,flat(BE& AF) = WTﬂat(BEO;Ak) nNw Z(BEO, AR, for every r > 1.

Now let 7 > 0 be an integer and 0 < v < 1. If 9Q is of class C"*2 (respectively, CTT27),
then for every xg € 0, we know there exists a neighbourhood W of zp in R™ such that
there is an admissible boundary coordinate system & &€ Diﬁ””(BiRO; W) (respectively, ® €
Diff" ™27 (Bg,; W)) for some Ry > 0 such that ®(0) = z¢ and @(BEO) = QN W. We now derive
the equation satisfied by u = ®*(fw) in a half ball centered around 0 in BEO.

Lemma 6.23 Let r > 0 be an integer and 0 < v < 1. Also let O is of class C" 2, respectively
Cr27. Let xg € 0Q, W be a neighbourhood of xo in R™. Let ® € Diff *2(Br,; W), respec-
tively ® € Diﬂ:r"'Q”Y(BiRO; W), be an admissible boundary coordinate system, for some Ry > 0,
such that ®(0) = z¢ and @(BEO) = QNW. Let A € C™ (Q L(AM, AFTY)) | respectively
CTL7 (Q; L(ARTY ARTLY) | satisfy,

(A(z)(aADb) ;5 aAb) >~glanbl, for every a € AY,b € AF

for some constant v > 0 for all x € Q. Also let f € W2(Q; A¥) and F € W-2(Q; AF1) for

some integers r+1>1ry > rg > 1.

If w € W2 (9, AF) n W7 +12(Q, AF) satisfy

| a@aodo) + [ 5o50) 47 [ @)+ [ o= [(Ras 0. ©2)

for all ¢ € W%’Q(Q;Ak), then for every given € > 0, there exist § € CX* (W), R > 0,
A € L(AFL ARFYY f ¢ Wr2(Bh; A¥) and functions a, € W™2(BE), b, € Wrth2(Bh),
pag,qfw,réﬁ € CT(FE), respectively CT’V(FE), SZB € C"H(Big), respectively C"17(B}), such
that u = ®*(Qw) € W;}}az(BE, AF) wanishes in a neighbourhood of the curved part of the bound-

207



ary of BE and satisfies, for all ¢ € W%’fclat(BE; AF),

[ s+ [ oo [ G- [ (Fao s 2/ ot

= ou
a, B B
Do IRE D ol RTINS o oy (SR

i=1 qeTk R o,BETk a,BeTk
ou” 01/)5
ij
+ Z Z /+ %8 Bz D =0
ﬂ.] 1aﬂ€Tk

(6.22)

where the functions pag, qéﬁ,réﬁ, sgﬁ depend only on A and ® and satisfies,

Hs HC7 &%) (respectively ”SgﬁHCT«W(BT*;)’) <e, forali,j=1,...,n and for alla,f € T"
(6.23)
and a, € WH2(B},) and bi, € WT12(B}) depend on w, A and ® and satisfies,
HaaHan(Bg), HbQHWMLQ(B;) < collwllyrir2@ary,  foralli=1,...,n and for all o € T*,
(6.24)

where ¢g > 0 is a constant, depending only on ® and A. Moreover, A satisfies the Legendre-

Hadamard condition,i.e there exists a constant 5o > 0 such that,

(A(a AD);a AD) > Fola A b2 for all a € A*,b e AR, (6.25)
and f € Wro2(B; AF) and Fe Wre2(Bf; AR satisfies,

1P llwroqstnny < e {Iflwron@ary + IFlwna@an | (6.26)

and

VFllgrsz st sy < el Fllwrauns) (6.27)
where ¢y > 0 is a constant, depending only on ® and A.

Remark 6.24 Note that it follows from the statement of the lemma that it is possible to absorb

the terms
S IRGETD ol ol NN -

a,BeTk a,BeTk

in the terms Z / oo and the terms
a€Tk

>3 [t

=1 o,BeTk
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n

. O« ) ] ) )

in the terms g g / b, Gw . We write this way just to make it easier to keep track of

. Bt €T
=1 qeThk" 7R

which terms are coming from where in the calculations in the proof.
Remark 6.25 The lemma essentially says that once we have flattened the boundary and froze
the leading order coefficients at 0, we obtain a system which has the same form as (6.21), i.e of

the form

A+ [ oo+ [ (Fo = [ (Fa

where A satisfies Legendre-Hadamard condition and f € L2(Bf; A, Fe L2(B}; AFY), with
L? norm off and F being controlled by the L? norm of f and F and L? norm of F respectively,
for everyy € Wleilat(BE; AF), up to lower order terms and a second order term whose coefficient
can be made arbitrarily small in C or C%, respectively. This is crucial for the boundary
estimates since the boundary condition is well adapted to the operator 5(/_ldu) + dou, but not

with the operator — div(ﬁVu), which we used to derive the interior estimates.

Proof We start by noting that since ® € Diff"*?(Bgr,; W), respectively Diff" "7 (Bg,; W),
we can assume that D®!(0) € SO(n). By choosing 0 < R < Ry sufficiently small, we can
always make the differences D®~!(z) — D®~1(0) as small as we wish in C"T27™  respectively
Cr+27m7 porm for all 1 < m < r. Also, since A € C™ (Q; L(AM, AFT1)) | respectively
CT17 (Q; L(AMTY, AFF1)) | by choosing 0 < R < Ry small enough, we can make the difference
A(xp) — A(x) as small as we wish in C"T17™ respectively C"T1=™7 norm for all 0 < m < 7.
Now choosing 6 € C°(®(Bg)), since w € W%’Q(Q,Ak) N Wr+h2(Q, AF) is a weak solution of
(6.21), we obtain, by lemma 6.22, that fw satisfies (6.19).

Now for any ¢ € W%’fclat(BE; AF), extending v to a W%’?lat(R" : A¥) map and taking the pullback
by @71, we obtain (®@71) ¢ € WTl’Q(Q, AF). Hence, substituting in (6.19), we obtain that
u = ®*(fw) satisfies,

/V<A(x) (d((q)—l)*u);d((@-l)*w>>+/v<5 <(¢_1)*u);5((@_1)*w>>
+/V<9f—d9JFs (<I>1)*w>—/v<9F;d((<I>1)*¢)>

+ [ @) ) = [ anws (@) w)) =0
(6.28)

for every 1 € Wzl“:?”lat(BE?Ak)v where V = QN (®(Bg)) = ®(B}) and g is given by (6.20).

Now we handle the terms one at a time. The last term, i.e
/ (0056 ((@71)"w)),
1%

can be rewritten, after substituting the expression for § ((@_1)* ¢) and using the change of
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variable formula as,

/\/(d&w;é((@ ) ZZ/+aam+Z/awa,

acTk a€Tk

where the functions b’ , a! depends on w, ®~! and its first derivatives and first derivatives of 6.

) a

Indeed, these terms are components of w multiplied with derivatives of # and ®~!. Since @ is
smooth, ®~1 is O"*2, respectively C™+27, bi, € W'+12 for every i = 1,...,n and every a € T*

with the estimates
||bg||Wr+1,2(B;) < cflwllywri20,a8) foralli=1,...,n and for all & € T*,

for some constant ¢ > 0, depending only on ® and 6. But the choice of # depends only on the
choice of R, which is determined by ® and A. So the constant depends on ® and A.

Similarly, after substituting the expression for (@’1)* 1 and the expression for g from (6.20)

and using change of variables formula, we can write

/V<g, Z/ g ta,

a€eTk

2

where the functions a are components of w and its first derivatives (coming from the expression

for g), multiplied with components of A and their first derivatives and first derivatives of 6 and

&1, Taking a, = al, + a2, this implies the estimate
laallyragzg) < cllwllwrrz@an, for all v € T*,

for some constant ¢ > 0, depending only on A, ® and 6.

Once again, by similar argument as above, we can write,
[ 01 -aosri @) vy = [ (Fu,
1% B

where components of f are components of f and F', multiplied with first derivatives of 6 and
®~1. Thus the estimate

[ llwro2spiam) < {Hf”WTOvQ(Q;Ak) + HFHWTLQ(Q;A’GH)} ;

also holds with a constant ¢; > 0 which depends only on ® and A.

/V<9F;d((<1>‘1)*w)>=/B$<ﬁ;dw>,

where components of f~ are components of I, multiplied with first derivatives of § and ®~!.
Thus the estimate

Similarly, we can write,

”FHW”’Q(B;;A’V) < CQHF”W’"LQ(Q;A’H-l)a

also holds.
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Now it only remains to show that we can write
| @) (@) u)sa (@) w)+ [ 6 (<<I>-1>*u) o (@) w))
= /B+ (A(du); dy) +/B (6u;60) + > / Papu®y

R’ a,BeTk

ij Ou” oyP
DD M O N T R D ol

=1 o,B€TFk 4,j=1 a,eTFk

Once again substituting the expressions for ( _1) * and using change of variable formula, we note
that for any constant coefficient matrix A, we can always write it this form where the functions
pag,qaﬂ, ag € C" ( ), respectively C’“’(B*), since their components are multiplication of
components of A, up to first order derivatives of # and up to second order derivatives of ®~1,
and sgﬁ € C’TH(BiE), respectively C”H’”/(Big), since their components are multiplication of
components of A, up to first order derivatives of § and ®~!. But C”, repesctively C™ norm
of sgﬁ need not be small. So to prove the lemma, we just need to show that it is possible to
choose a constant coefficent matrix A, which satisfies Legendre-Hadamard condition such that
as small as we wish.

we can make [|s;/|| respectively [|s /||

cr(B})’ cr(BE)

To show this, set
D(y) = (D@_I(O)) Yy for every y € Bp.

Now note that the coeffcient of the term with derivatives of both u and 1, after using the change

of variable formula for the difference

Jpae (a@ sy o) = [t (a(@) )0 () 0)),

can be made arbitrarily small in the C", repesctively C™7 norm, since they contain the differences
D&~ (z) — D®1(0) and A(zg) — A(x). The same is true for the difference

JoaCayapsa (@)= [ 6 (@) 0)((3) )

Since det (DEIB) = det (D<I>_1(0)) =1, by change of variable formula, we have,

fry 0 (@) )8 () 0= [ o)
We denote T'= D®~1(0) and set
A= (T_l)* o A(zg) o (T)*.

Then, for any ¢ € A¥, we obtain,

T (A€) = A(xo) (T7€) - (6.29)
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Now, we have,

/€>(B§)<A(xo) (d((%)*u) .d ((&3)*1/,)) _ [f)(BE)<A(xO> (5*(@)) & (d)).

But ®* is the same as T*. Hence, we obtain, using (6.29) and change of variable formula,

/5 (B§)<A(330) (a((®) w);a((8) w)) = [D (B;><(‘$* Aldu)) 18 (d0) = /B X A(du); dv).

Thus, it only remains to show that A satisfies a Legendre-Hadamard condition. Now, for any

a € A, be A*, we have

*

(Alanb);and)y = ((T7Y) o A(xg) o (T)* (a Ab);a Ab)

(77)

((T 1)*oA(x0) (T)* (a/\b);(T_l)*o(T)* (a A D))
= (T7) ) o (T)" (aAb);(T)" (a ND)))

= (77! xo) (T*a ANT*b); (T*a A T*D))).

Since (T~1)", T* are both bijective and (A(zo) (T*a AT*b); (T*a AT*b)) > o |T*a A T*b?,
there exists a 79 > 0 such that,
(A(a Ab);a ADY > Fgla A b2 for all a € AL, b e AF. (6.30)

This completes the proof. =

Theorem 6.26 (17?2 regularity up to the boundary) Let 1 <k <n —1 and Q C R" be
a bounded smooth open set. Let A € C1(Q; L(AF AF+1)) satisfy,

(A(z)(aADb) ;5 a Ab) >~glaAbl?, for every a € A',b € AF

for some constant vo > 0 for all x € Q. Also let f € L?(;A*) and A € R. Let w € W%’z(Q,Ak)

be a weak solution of the following,

[ tw)do.as)+ [ 00,0042 [ wo)+ [ o) =0 (6.31)
Q Q Q Q
for all ¢ € W%’Q(Q; AF). Then w € W22(Q; A¥) and satisfies the estimate
lwllwea@nry < e {lllzagasy + 171l ac@ns | s
where the constant ¢ > 0 depends only on A, \,vy and 2.

Proof We only need to prove the boundary estimate, since we have already shown the interior
regularity results. Also, using a partition of unity for the boundary, it is enough to prove the

result in a neighbourhood of a boundary point zg € 9. But using lemma 6.23 with ro =7 =0
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and F = 0, it is enough to prove that u € WQ’Z(BE; AF), where R is chosen as in lemma 6.23
and u € W%?cl at(BE; AF) vanishes in a neighbourhood of the curved part of the boundary of BE
and satisfies (6.22) for all ¢ € W%:?clat(BE; AF).

We use Nirenberg’s difference quotients method. We recall the difference quotient operator
1
Thsu(x) = 7 {u(z + hes) —u(x)}.

Fix1<s<n-—1 Forvy ¢ WT t(BE;Ak), we define

fla

(zx) = Y(x — hey), for all z € B},

where eg is the unit vector in the s-th coordinate direction and h € R. Then we have {bv €
WT Y at(BJr AF). Plugging this as a test function in (6.22) and using the change of variables

formula, we deduce,

[ e+ heydv) + [ (Gute+ heso) + [ (T hea)sv)
B B

R BR R

+h4+DL+I3+14+ 15+ 1=0, (6.32)

where

Z/ ao(z + hes)®,

aeTk
I = ZZ/ b (z + hes) %w ;
=1 aeTk .
-y / P + hesJu® (@ + he,)?,
aﬁET’“
L;-Z Z / qaﬁ(m+hes) B(az+hes)
=1 a,BeTF
-y Z/ rhglo =+ heg) G+ e,
1= 1aﬂ€Tk
ou® wﬁ
IG—Z Z/ (a:—i—hes)a (oc—i—hes) .
4,j=1 o,BeTk

Subtracting the (6.22) from (6.32) and dividing by h, we obtain,

[ Az + [ susn+ [ mefi)

R R

L+ I+ I+ I+ I+ I =0, (6.33)
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where

Z / 7—h saa 7

aeTk

= zz/ (rhath)
=1 qeTk

IZ; = Z {/+paﬁ(x + hes) (Th,sua) wﬂ + /+ (Tfhspaﬁ) uaqzjﬁ} ’
a,BETk kR Br

Y i H* 8 iy 0U* s
I = Z;T ] st a3 () [ () S,
5u0‘ B i 3u0‘
ox; ) L /BE (7hs73) 5,

-3 3 {
EE e () L )85

=1 o,BeTk
4,j=1 a,BeTk

T -+ hes) (Th,s

R

Since 1 <s<n—1, 7 5u € W%’?lat(BE; AF) and hence can be used as a test function in (6.33).
Plugging this and by Gaffney inequality and Garding inequality (6.3) and noting that A has
constant coefficients, we deduce,

|1 ) < e { |l + [ R+ +|6<msu>|2}

R R R R
< 001/ \(Th7su)]2 +C()2/ (Ad(Thﬁu);d(Th,su)) —I—/ (0 (Th,su) ;0 (Th,su))
B, Bf, Bf,

< 001/+|(7'h,5;U)|2 — Co2 {/+<Th7s]?§ Thst) +J1+ Jo+ I3+ Jo+ J5 + JG}
BR BR

§CE)1/+|VU|2—CO2 {/+<Th,s:fv§7—h,su>+J1+J2+J3+J4+J5+J6},
B B

R R

214



where

J1 = Z/ Thsaa) Thsu) )

ocETk
Thst)”

Jy = Z Z/ 7'hsbZ (;")’

i=1 qeTk Ly
J3 = Z {/+p0¢ﬁ(x + hes) (Th,sua) (Th,su)ﬁ + /7L (Th’spag) u® (Th,su)ﬂ} ,

a,BeTF R Bf

8(Th,su)a 8 i 8(Th’su)a 8

Ja= Z Z {/ qaﬁ(x + heS)T (Th,su ) + /B+ (Th,sqaﬁ) Tu )

=1 a,BeTFk R
5 :zn: Z / rop(@ + hes) (7 Ou (Th u)’6—|—/ (7h,s7" )6ua

4 . af s ,5 axi \5 ot sTap 8@ , ,

=1 ﬁeTk R pa

. 9u\ 0 ()’ 9u® 9 (7 51)”
s = / S9_(z + he, <Ts ) +/ -
’ ljzl(L%Tk{ Bf; aﬁ( ) 0x; Ox; B (h 5) or; O

Now we want to estimate the terms fB+ <’Th’5]?; Thsw) and Ji, Jo, J3, Jy, J5 and Jg. We start with
R

estimating fB§ <Th,sf; Th,su>‘

< <

| i < | [ Fronemead| < [ (e (ma)

R R R

2
§€/ |7‘ hs(Ths’LL| +003/ ’N‘ <€/ |v(7_h,sU)|2_|_CO3/ ‘ﬂ .
Bf; Bf; B

/ N <Th,s.]?; 7-h,su>
B

R

Estimate of Jy

Z / Th saoc) Thsu Z / aT—h,s Th sU ) Z / ’aoﬂ-—hs Th,sU )‘

aeTk aeTk aeTk
/ |T hs(Thsu)| +CO4/ Z ‘aa‘Q
Br aeTr
<c [ V@l + ullolfyaan:
BR
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Estimate of J

7 0 (Th,sua)
(Th,sbh) 83:,‘

iz/}glg(m,sb@w <i2/31g

i=1 aeTh i=1 aeTh

2 - iy|2
SE/Bg |V(7’h7su)] +6052 Z /Bg |(Th,sba)|

i=1 qeTk

2 - i|2
Sﬁ/B IV (rhst)* +cos Y > /BE A

+ :
R =1 aeTk

< 5/ IV (mh,s0)|* + corl|wllfyr,z 0, a0y-
B}, 7

R

Estimate of J3

> { [ posta - hes) () (et + [ (cpas) u® m,su)ﬂ}

a,BeTk R R
/+ (Th,spaﬁ) u® (Th,suﬁ)
B

x| R

a,BeTk

/B+ Pap(x + hes) (Th su®) (Th75uﬁ> +

R

}

< Z /BE ‘pag(x + heg) (h,su”) (Thysu6>’

a,BETk

Now,

2

a,BETk

@ B
/+pa5(x + heg) (th,su”) (ThVSU )

R

SCOSMp/+ \(Th,su)’2+cos/+ ‘(Th,su)F
BR BR
SCOQ/ Vul?,

Bf;

and

>

a,BeTF

/bJr (Th,spaﬁ) u® (Th,su6>

Br

< > @,

a2 B 2
‘(Th,spaﬁ) Uu | + N ’Th,su ‘
a,BETk R Br

2
2
<> C?oﬁ{/B+ [Pag (T-p,su®)] +/B+ ‘Th,suﬁ‘ }

a,BeTk R R

< ClOMp/+ [Vaul® + 011/+ V|

< 612/ ’VU\Q,
B+

R

where M, = max ||pasl| Hence, combining the last two estimates, we obtain,
P a,BeTk g

C(Bh)

|J3] < (co9 + 012)/ [Vul®.
Bf;
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Estimate of Jy

0 (Th7su)a 8 PN, (Th,su)a B
TR g

=1 o,BeTk

9 (7h,su”) iy 9 (7h,sut)
<Z Z {/ @op(@ + hes) 8;- (Thﬁuﬁ) —F/+ (Th,sths) 8;‘ u
1=1 a,B€TF Br ¢ Br ¢
Now,
0 (1, su
3 S [ fota st s >(hsuﬂ)'<e/ ¥ )+ ersMy [Vl
=1 o,BeTk Br
and
, 8 Th u 2
3 Z/ (rhatig) 2 W‘g [ 19 s Z/ (i) v
=1 a,peTk By, i=1 o, BTk
<e ’V (Thsu)‘2+015M |Vu|2,
b q
By, Bf;

where M, = max Hq&ﬂH since
i=1,...,n,

a,BeT*

2
i Jc] —
A;g ‘(Th,SQOc,B)u ’ _/BE

Combining the last two estimates, we obtain,

C(BE)’

? k
(T_h7su6>‘ foralli=1,...n, forall a,8 € T".

| < 25/ |V(7‘h7su)2—i—(013+015)Mq/ Vul?.
B} B

R

Estimate of Js

>y { / rig(@ + hey) (rhs?;f)(rhsu)ﬁ /B ; (Th,sréﬂ)?;(%ﬁu)ﬁ}

i=1 a,8eT* (VB

= ;aﬁgﬂ {/R (z + hes) <Th,s ZZ?) (Th,suﬁ>‘ + /BE (Th,s"”éﬁ) (?;Z (Th,suﬁ)‘} .
Now,

a B 2 2

;a%:ﬂ/ ag T+ heg) (Thsa Z> (Th,su )‘ Sé—/B; |V (1h,su)|” + c16 M, /BE |Vu|®,
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and

>y [

=1 o,8eTk

ua
Thsraﬁ <Th5u6>’<£ Z / Ths’l"aﬁ) (Th5u5>’ +cl7/ IVul?

i=1,.
,BGTk

B 2
<e Z / |Taﬁ| T_h5<7'h5u >‘ +017/$]Vu]

i=1,...,n

a,BeTH

< ecigM, / (Th,su \ +cl7/+\Vu\2,
R

where M, = max HTZagH Combining the last two estimates, we deduce,
i

=1,...n, C(BR)’

a,BeTF
|J5| < 5(1+018MT)/+ |V(Th78u)|2—|—(016MT—|—617)/+ Vul?.
BR BR

Estimate of Jg This one is trickier. As before, we deduce,

ou® 8(Th7$u)5 5\ ou” 0 (mh, su)B
(x + hes) <Th,s 8xi> oz, + /Bg (Th,ssa6> T

PO SRV

1,j=1 ,BeTk Br
ou*\ 0 (Th’su'g) i\ Ou” 0 (Th Suﬁ)
< | Z {/B aﬁ(x-f— hes) (Th,s c’)xi) oz, + /B+ (Th,ssaﬁ) or o |(
4,9=1,...,n R R
a,BETH
Now for any i,7 =1,...,n, any o, 8 € T*, we have,
; ou*\ 0 (ThVSUﬁ)
/+ Sag(x + hes) <Th,s 8@) Er
B}, J
o\ 3 5y |2 3
< ‘3” H / Ou® / 9 (7h,s0”)
o T\ Ths™ )
- of Lo (B;) BE hys 33:1 B;; ax]

L)
< ‘sa

j 2
BHLoo(Bg) /BE IV (T su)l”
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We also have,

2
7 du® 0 (1h,su”) - 9 (p,su?) ij \ ou® .
h,s5q43 — 5 | S¢€ ——| +ci9 ThsSag | A
B} Ox; Oz, B Ox;j B 0x;
2
8 (1, su” y u\ |
< €c20 0 () +019/ SelgT—hys ==
B;; aIJ B; « ’ (‘3@
2
8(Thsuﬂ) ij ou\ |?
S I LTl N A T
< eco /Bg o, €19 ||Sap v S hs \ o,

ij
Sap

< 8020/ v (Th,su)|2 + c19 ‘
Bf

‘ / . ou®
Loo(Bf) B hs o0x;

2
iy Jy IV (et

can be made arbitrarily small, these

ij
503

<con [ IV (mha)l? + cuo|
5;

ij
503

f ,j=1,...,n, any a, ETk.SinCB‘ ‘
or any 1, j y a, 3 L(BE)

two estimates imply,

|J6| S 6021/ |V (Th75u)|2 .
B+

R

Plugging in all these estimates, we deduce,

2
[ V@t e [ Wl [ (T e [ 1908+ eslolfgn,
B B BY BY ’

R

Choosing € small enough such that 1 — ecg2 > 0, we obtain, after transposing,

2
/+|V (Th,sU)‘Q §C26/+ ‘ﬂ +C27/+|vu2+C28”w||[2/[/1~,2(Q;Ak)‘
BR BR BR

Since
/ VU < x|l

BR

and
2 _ )

/BE 7] < esnll 712y

we obtain,
/B+|V (Th.su)|* < C{HWH%/VL?(Q;M) + Hf”%?(Q;A’V)} forall s=1,...,n—1. (6.34)
R

This implies, for all s =1,...,n—1,l=1,...,n, and for all I € T*,
0 (out
Ozxs \ Oz

Since weak derivatives commute, this implies that for any I € 7% and for all p,q = 1,...,n,

< C{HUJH%/VLQ(Q;AIC) + Hf”%Q(Q’Ak)} .

L2(B)

219



(p,q) # (n,n), there exists a constant ¢ such that,

Now to prove u € W2’2(B§; A¥), it only remains to show that there is a constant ¢ such that
for all I € T,

0?(ul)

2 2
o5 < c{llolBynz e + 15132 0ne) } - (6.35)

L2(B})

02 (ul)
0xn0xy,

= v : : 6.36
(55 C{HwHWl,Q(Q;Ak) + HfHL?(Q;Ak)} ( )

To show this, we define the linear map A : AF1 — AF by,

;{ _ (ﬂ_ezt,k—s—l)T oAo ﬂ_ezt,k—i—l + (ﬂ_int,k—l)T ° ﬂ_int,k—l’

ext,k+1 _int,k—1

where 7 , T are the projection maps defined in chapter 3 and ()T denotes the trans-

pose. By lemma 6.15, A satisfies,
~ n
(A(a®Db);a @b) > y1]al?|b]*  for every a € R™,b € ]R(k),

~ n n
for some constant v, > 0. We also define the maps AP? : R(k) — R(k> for every p,g=1,...,n,
by the identities,

Z g’;‘éi“iﬁ =(A (ep ®&);eq®&)  for every € € R(Z)

o,BETk

Also, note that this in particular implies,

(Ammgg) = > Ampee’ = (A(en ® £)sen @ &) > mlEP,

a,BeTk

n ~
for every € € R(k) Thus, A™ is invertible.

Now we start with equation (6.22) and rewritting, we obtain,

/ Z ~m OU™ o L ou® P
B, Oy, Sap 0z, Oz,

a,BETF
ou® P
Apq
[ ¥ g [ G- ¥ [en-2 T [ 6
----- aeTk acTk
(pq)#nn)
o,BeTk

.0
Z / paﬁu Z Z / Qa,ﬁ w ﬁ a,@
+ Ox; 8
a,BETF a,BETF
B Z Z / §i ou® (‘MJﬁ _ 0
Sap O, z; ’
1,j=1,....,n «,BETk
(i) #(nom)

)
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This implies,

O ( ~pg DU " b .
S R e st
BETk (1; (51):;’(}}.72) a€eTk a€eTk

;i Ou”
+ZZ(ax o't )raﬁauxi)+ 2 Zax](aﬁm) v =0,

=1 aETk A:]A 1’ - aGTk
(6,4)#(n.m)

By definition of the weak derivatives, this means,

a a «
9 Z < Zgg —|—saﬁau ) € L*(B}) for every 5 € T*,

Ozn aEeTk
with the estimate
0 ~m OU® n Ou®
37 Z ( aﬂ% + s a,@a ) < C{HWH%/VI,Z(Q;AI@) + ||f”%2(Q7Ak)} s (6.37)
" \aer ! 12(B,)

for every 5 € T*. For every h > 0, let us denote by BE’h the set
B ={x e Bi" : dist(x,T) > h}.

Fix any 3 € T*. Then (6.37) implies, for every h > 0,

Ann ou” nn du” 2 2
Th,n Z By, + SaﬁT% < C{”wHWL?(Q;Ak) + ||f||L2(Q;Ak)} :
a€eTk " LZ(B;JL)

By discrete Leibniz rule, we have,
(0%

o Ou® , Ou® ~nm OTh pu® i OU 0 OTh nu
Th,n Z ( QBT%+ aﬁa ) = Z ( af Oy, +Th,n(3a,8)67mn+ aﬁ oy, )

a€Tk

for every h > 0. Since s3js € CI(FE), Thon(s aﬁ)ax € L*(B}). Thus, we obtain, after summing
over all B € T*,

~ 87’h7 ua aTh u
5 (% it O ) < {1z + 17 Bagaunn )
,BeTk " L2(Bi™)
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for every h > 0. Now since A" is invertible and |sasllLe can be made arbitrarily small, we get,

/ au[*_ / ou
1 Bhn Th,n oz, € i Th,n oz,

for every h > 0. Thus,
ou \ |2 9 9
im — < W .
f h_f:)lp /Bgyh Thon (al‘n) B C{HWH 172(Q;Ak) * ||f||L2(Q’Ak)}

9%u
01,01,

2
< e {llBiagauany + 1122000 b

This implies

< c{IlolBynzoney + 1732 0une) } -
L2(Bf;Ak)

This shows u € W2(B}; AF) with the estimate

D% 2 ey < € {Iolragaunsy + 1 aune) | - (6.38)

Since we also have the easy estimate that

[ullwrasgiary < CHWH%/VL?(Q;Ak)?

combining we obtain,

lallwzqsany < ¢ {IolBisnn + 152 } - (6.39)

Since u € WQ’Z(BE; AF), by Gagliardo-Nirenberg inequality and Young’s inequality, we obtain,

”UHWLQ(BI;;AIC) = Hu”m(B;t;;Ak) + HVU||L2(B§;AI€)
1 1

9 1
S C1 ||UHL2(BE;A’€) +c H‘D u||[2/2(BE;Ak) ||u||z2(B§,Ak)

< e || D%ul| g ney + (o 1) el paqgon -

Choosing ¢ small enough to absord the norm of D?u on the left side of (6.39) and estimating

L? norm of u by L? norm of w, we obtain the desired estimate for u. This finishes the proof. m

Remark 6.27 The trick of using Galiardo-Nirenberg inequality and Young’s inequality can be
applied to (6.38) as well to obtain the estimate,

|’D2uHL2(B§;Ak) S C{”wHi2(Q7Ak) + HfH%2(Q7Ak)} .

Higher regularity

For any integer r > 0, ¢ € W"T22(Bf; A%) N W%Z?‘lat(BE; AF) implies g%; € Wrtb2(Bh AR N
W%’?lat(BE; AF) for every s = 1,...,n—1 ( but not for s = n ). Indeed, since vA¢ = e, Ap =0
on I', we have, ¢ = 0 on I' for all I € T* n ¢ I. This implies g% = 0 on I', for every

29 /\%—OonTforeverys:l,...,n—l.Using

s=1,...,n— 1. But this means v\ 7= = ep A g~ =
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this fact and using lemma 6.23 we can iterate the same procedure to prove the higher regularity

results, which we state below and omit the proof.

Theorem 6.28 (W22 regularity up to the boundary) Let 1 <k <n—1 and Q C R
be a bounded smooth open set. Let v > 0 be an integer and A € C™H1(Q; L(A*L, AF+1)) satisfy,

(A(z)(@Ab) ; aAb) >~|aAb?, for every a € AY,b e A*

for some constant v > 0 for all x € Q. Also let f € W"2(Q;AF) and let A € R. Let w €
W%’z(Q,Ak) be a weak solution of the following,

[ Aw)dw,dé) + [ w00+ [ @)+ [ (1.0 =0,
Q Q Q Q
for all ¢ € W%’Q(Q; AF). Then w € WT+22(Q; A¥) and satisfies the estimate

wllwrs2a@unry < o { Il zaunsy + I lwac@un |

where the constant ¢ > 0 depends only on A, X\, vy and 2.

Before commenting on up to the boundary regularity in the scale of WP and C™® spaces,
we first want to show a consequence of Theorem 6.26.
Theorem 6.29 Let 1 <k <n—1 and Q CR"™ be a bounded smooth open contractible set. Let
A € CH(; LAY ARFY)) satisfy,

(A(z)(aAb) ;5 aAb) >~]a b, for every a € A, b e A*

for some constanty > 0 for allz € Q. Also let f € L*>(Q; AF) and let A € R. Let w € WTl’z(Q,Ak)

be a weak solution of the following,

[ a@ondo) + [ 50.50) 47 [ i)+ [ (0 =0, (6.40)

for all ¢ € W%’Z(Q;Ak). Then w € W22(Q; A¥) is also a solution to the following boundary
value problem for the Hodge-type system.:

I(A(z)dw) + ddw = dw + f in Q,
vAw=0 on . (H)
v Adw =0 on ON.

Proof The fact that w € W22(Q; A¥) is immediately implied by theorem 6.26. Integrating by

parts, we obtain,

[ tate)o) + dswio) — |

o0

<<dw;uA¢>+<uA5w;¢>>=/Q<Aw+f;¢>,
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for all ¢ € W72(2, AF). Thus taking ¢ € C2°(Q, AF) we have,
d(A(x)dw) + dow = dw + [+ 0F in Q.

But this implies that the integral on the boundary vanish separately. But since ¢ € W%’Z(Q, AR,

v A ¢ = 0. Hence we obtain,

/ (v A dw;¢) =0
o0

for any ¢ € W%’Q(Q;Ak). We now show that this identity is valid for any u € W12(Q; A*) as

well. Extending v as a C! function inside © and using the identity
u=vA (vou)+vivAu),

we deduce, for any u € WH2(Q; AF),
/ (v A dw;u) —/ (v A odw;v A (vou)) —|—/ (v A dwsva(v Au)) —/ (v A odw;v A (vau)) =0,
o0 o0 o0 o0

since v A (vau) € W%’Q(Q,Ak). Since u € W12(Q; A¥) is arbitrary, this implies v A dw = 0 on
0f2 and finishes the proof. m

Now up to the boundary regularity in the scale of W"™P(p # 2) and C™® spaces can be
obtained straight away once it can be shown that the boundary conditions satisfy the so-called
‘Agmon-Douglis-Nirenberg’s complementing condition’ (cf. [2]), also called the ‘L-condition’ or
‘Lopatinski-Shapiro condition’, with respect to the system of partial differential operators, which
in our case is strongly elliptic. However, the verification of these conditions seems extremely

tedious in this generality.

However, there are two important special cases where the regularity up to the boundary
results in W"P and C™® spaces are long-known. One of them is when &k =1 and n = 3. In this

case, by virtue of the vector calculus identity
divocurl =0,

the regularity result follows from the regularity result for the scalar elliptic equation. This trick
does not generalize to n # 3 or k # 1. Although a recent argument by Dacorogna-Gangbo-
Kneuss [27] seems to work in any dimension as long as k = 1, once again by reducing the
problem to a single scalar elliptic equation. The other one is the case when A is the identity
matrix. In this case, the regularity result for this system follows from then regularity theory
of the Hodge Laplacian, which is classical. Below we briefly sketch the arguments for proving

regularity in this case.
Comments on regularity results for the Hodge Laplacian The regularity theory of the

Hodge Laplacian with relative or absolute boundary condition is well-known and classical (see

chapter 7 in Morrey [53]). The crucial point is, when A = I, the system essentially decouples
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into a number of scalar Laplace operators. We use admissible coordinate systems to flatten
the boundary. Although the transformed system in a boundary neighbourhood of a point xg in
the boundary of the half-space need not have constant coeflicients and is of the same general
form as (#), the essential difference is that in this case it can be ensured that A(zg) = I. But
od + dé, i.e the Hodge Laplacian is precisely the componentwise scalar Laplacian. Also, the
boundary condition e, A w = 0 implies that w; = 0 on flat part of the boundary for every
I € T* such that n ¢ I. But this implies g—‘;’i = 0 for every s = 1,...,n — 1 and for every
I € T* such that n ¢ I. This together with the boundary condition e, A dw = 0 implies that
gT“i = 0 for every I € T" such that n € I. So the whole system decouples and gets reduced
to (Z) scalar Poisson problem with lower order terms, out of which (";1) number of equations,
corresponding the components w; where n ¢ I, has zero Dirichlet boundary conditions and
the other (Zj) number of equations, corresponding the components w; where n € I, has zero
Neumann boundary conditions. Also note that the lower order terms need not necessarily
decouple, but that does not affect the regularity results. Regularity theory thus follows from
the results about scalar Poisson equations. In chapter 7 of [53], Morrey proves the regularity
results by using explicitly writing a representation formula for each component of the solution

using the Green and Neumann function for the Laplacian.

So the methods in both these cases, i.e the case of time-harmonic Maxwell’s equation and
the Hodge Laplacian case, ultimately relies on the reduction of the system to one or more
scalar elliptic equations and thus are inapplicable to deduce the regularity for our case, which
is truely a system and not reducible to the scalar case. Also, the Agmon-Douglis-Nirenberg
complementing conditions are hard to verify. However, it seems possible to obtain the regularity
estimates directly by deriving a Cacciopoli type inequality and estimtes in Campanato spaces,

which we shall not discuss in this thesis. (see [60]).

6.5 Main theorems

Now we are in a position to prove the central theorems of this chapter.

Theorem 6.30 (Maxwell type system with tangential data) Let 1 <k <n-—1andr >
0 be integers. Also let  C R™ be a bounded smooth open contractible set and let v be the
outward unit normal to the boundary 0. Let A € C"HY(Q; L(AML AFY)) satisfy either the
Legendre-Hadamard condition or the Legendre condition. Then there exists a constant p € R
and an at most countable set o C (—o0,p), with no limit points except possibly —oo, such
that if X\ ¢ o, then for any f € W"2(Q, A¥) satisfying 6f = 0, there exists a unique solution
w e Wr22(Q AF) N W%’Q(Q,Ak) to the following boundary value problem,

I(A(z)dw) = dw + [ in Q,
Sw =0 in Q, (P)
vAw=0 on 0N.

Also for each o; € o there exist non-trivial weak solutions o € C>®(Q, A*) to the following
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boundary value problem,

0(A(x)da) = o in Q,
Sar =0 in €, (&V)
vAa=0 on oS,

and the space of solutions to (EV) is finite-dimensional for any o; € o.

Proof Since f € W"2(Q, A¥) satisfies 6 f = 0, we can find F' € W"+L2(Q, A¥*1) such that

dF =0 and J0F =f 1inQ,
vANF =0 on ).

Thus we replace f by 6F and then existence of weak solution part is exactly Theorem 6.11.
Now since, by once again replacing 0 F' by f, any weak solution to (P) satisfies (6.10), applying
Theorem 6.28, we obtain the W"22 regularity. Also, in the same way, Theorem 6.28 implies
that any solution to (£V) is in W2 for any integer m > 0, which by Sobolev embedding implies
the C'°° regularity and establishes the theorem. m

Remark 6.31 Note that if A has constant coefficients and satisfies Legendre-Hadamard con-
dition or if A satisfies the Legendre condition, then p can be taken as zero. In other words, in

these two cases, for every A > 0, EV has only trivial solution and P can always be solved for

any [ € W2(Q, A¥) satisfying 0 f = 0.
Now we present an important consequence of the theorem above.

Theorem 6.32 (Maxwell type operator with full Dirichlet data) Let1 <k <n—1 and
r > 0 be integers. Also let Q C R™ be a bounded smooth open contractible set and let v be the
outward unit normal to the boundary 0Q. Let A € C™1(Q; L(AFT1, A*1)) be such that any
one of the following two conditions (H1) (H2) holds.

(H1) A satisfy the Legendre-Hadamard condition and there is no non-trivial solutions o €

W%’2(Q,Ak) to the following boundary value problem,

d(A(z)da) = 0 in Q,
da =0 in Q, (EVO0)
vAa=0 on o,

(H2) A satisfy the Legendre condition.

Then for any wo € W'H22(Q, A¥) and any f € W™2(Q, A¥) such that §f = 0 in the sense of

distributions, there exists a solution w € WTT22(Q, Ak) to the following boundary value problem,

(Pp)
w = wp on ON.

{5(A(x)dw) = fin Q,
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Remark 6.33 Once again, if A(x) is a constant matriz satisfying the Legendre-Hadamard

ellipticity condition then we can have,

/Q<Adv,dv> > 'y/<dv,dv),

Q

forcing every solution to (EVO) to be trivial. Hence in that case we can always solve (Pp).

Proof With the Legendre-Hadamard condition , if (EV0) does not admit a non-trivial solution,
then this implies the problem,

0(A(z)dw) = f — 0(A(z)dwp) in Q,
§w=01n Q, (Pv)
v Aw =0 on 0,

has an unique solution w € W7 +22(Q, Ak)ﬂW%’Q(Q, A¥) by theorem 6.30. Now since vA(—w) = 0
on 09, we can find v € W"T32(Q, A¥-1) (cf. lemma 8.11 in [21]) such that dv = —@ on 0.

Then setting w = wg + w + dv, we have,
0(A(x)dw) = 0(A(x)(dwo + dw + ddv)) = 6(A(z)dwo) + 6(A(z)dw) = f in Q.

Also, since dv = —@ on 99, we have w = wg on Q. Hence w € W22(Q, A¥) is a solution to

(Pp). This proves the result.
With the Legendre ellipticity assumption, the only modification to the above proof is to

note is that because of the stronger ellipticity assumption, we have,

/(Adv,dv> 27/!dv2.
Q Q

Hence the (EV0) can not admit a non-trivial solution. This establishes the theorem. m

The last two theorems immediately yield the corresponding dual versions.

Theorem 6.34 (Maxwell type system with normal data) Let 1 <k <n-—1andr >0
be integers. Also let @ C R"™ be a bounded smooth open contractible set and let v be the outward
unit normal to the boundary 0. Let A € C"1(Q; L(AF=1, A¥=1)) satisfy either the Legendre

condition or there exists a constant vo such that for every x € Q, A satisfies,
(A(z)(asb); asb) > yolasb|?  for every a € A',b € A",

Then there exists a constant p € R and an at most countable set o C (—o0, p), with no limit
points except possibly —oo, such that if X & o, then for any f € W"2(Q, A¥) satisfying df = 0,
there exists a unique solution w € WT+22(Q, A¥)N WZ{;Q(Q, AF) to the following boundary value

problem,

d(A(z)ow) = Aw + f in Q,
dw =0 in €, (Pwn)
vaw =0 on ON.

227



Also for each o; € o there exists non-trivial weak solutions o € C™(Q, A¥) to the following

boundary value problem,

d(A(x)da) = o0 in Q,
doc =0 in Q, (EVN)
vaa =0 on 0,

and the space of solutions to (EV) is finite-dimensional for any o; € o.

Proof The proof is just a matter of Hodge duality. Define

A= (—1)(k71)(”7k+1) * 0A o x*,

where * is the Hodge star operator. Now, we have, for any a € A',b e A" ¥,

Hence, we have, for any a € A, b e A" ¥,

(A(x)(a Ab);a Ab) 2 yolas(xb) |
2
=% ‘(—1)"(]“*1) * (@ A (% b))’

= ‘(_1)n(k—1)+(k)(n—k) * (a A b)‘z

>lanb?,
for some positive constant v > 0, by invertibility of the Hodge star operator. But this proves
that the linear map A : A" F1 — An=*+1 gatisfies the Legendre-Hadamard condition. Also,
it is clear that A € C™t1(Q; L(A"*+1 An=k+1)) Also, the hypotheses on f clearly imply
xf € Wr2(Q, A"~%). Also, we have,

5(xf) = (=1)"" TV w (d(xx ) = (1) RO 4 (df) = 0.

Now we claim that w € W22(Q, AF) N WZ{,’Q(Q,A’“) is a solution to (Py) if and only if
*w € Wr22(Q, A"=F) N W%’Q(Q, A"F) satisfies

§(A(z)d(xw)) = A(+w) + *f in £,
d(*w) =0 in £,
v A (xw) =0 on Q.

Indeed, taking Hodge star on both sides, we obtain,
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s (6(A(x)d(+w))) = AN(x % w) + % * f
which implies

(~)EDOED 5 (G((—1)" D x (A(2) (6w)) = (=DM (w + )

= (—)EDEED (= DEROR s d (e (A(2) (00)) = (=DM P (Aw + )

= (~)EDEED (=D ()RR () DO (A (2) (6w) = (=DM P w + f)
= ()M Pd(A(z)(6w) = (=1 P dw + f)

-

0= *5(*&)) _ (_1)n(n—k—1) % *d(* N w) — (_1)n(n—k—1)+k(n—k)+(k+1)(n—k:—l)dw,

and
0=xvA(xw) = (—=1)"*V(vw).

The previous calculation also shows that the same goes true for the eigenvalue problem
(EVN). Hence, theorem 6.30 implies the result and finishes the proof. m

The same Hodge duality argument proves

Theorem 6.35 (Dual Maxwell operator with full Dirichlet data) Let 1 < k < n —1
and r > 0 be integers. Also let Q C R™ be a bounded smooth open contractible set and let v be
the outward unit normal to the boundary 0. Let A € C™H1(Q; L(A*=1, A*¥=1)) be such that any
one of the following two conditions (H1) (H2) holds.

(H1) For every x € ), A satisfies,
(A(z)(asb); asb) > yolasb|?  for every a € Al b e AF.

and there is mo non-trivial solutions o € W]{,’Z(Q,Ak’) to the following boundary value

problem,

d(A(z)da) = 0 in €,
do =0 in Q, (EVD)
vaa =0 on 09,
(H2) A satisfy the Legendre condition.

Then for any wy € W+22(Q, A¥) and any f € W2(Q, A¥) such that df = 0 in the sense of

distributions, there exists a solution w € WT+22(Q, AF) to the following boundary value problem,

(Pp,duat)
w = wgy on L.

{d(A(:c)éw) = fin Q,
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6.6 Applications of Linear theory

As a consequence of the existence and regularity theory, we also deduce an existence theorem

(cf. theorem 6.36 ) for the following first order linear boundary value problem,

(6.41)

JA@) @) =/ and §(BE)w) =g o,
vAA(r)w=rvAuw on 0N).

This existence result for (6.41) is also new and generalizes the existing results on the well-studied

special case (cf. [21]),

{dw:f and dw=g inQ,

VAWw=VAuwy on 0f).

6.6.1 Div-Curl type first order linear system

Theorem 6.36 Let Q) C R"™ be open, bounded, smooth and contractible and let v be the outward
unit normal to the boundary 0. Let 1 < k < n—1 and r > 0 be integers. Given two maps
A, B € C™H(Q; L(A*, A%)) such that A is invertible, A~' € C™T1(Q; L(A*, A%)) and BA™! be
such that any one of the following two conditions (H1) (H2) holds.

(H1) BA™' : Q — L(A* AF) satisfy the Legendre-Hadamard condition and there is no non-

trivial weak solutions o € W:,IJQ(Q, AF=1Y to the following boundary value problem,
S(BA Y (z)da) =0 in Q,

dac =0 in Q, (EV0)
vAa=0 on oS,

(H2) BA™': Q — L(AF, AF) satisfy the Legendre condition.

Then for any wo € WH22(Q, A¥), for any two forms f € W2(Q, A1) and g € W2(Q, AF—1)
such that, df = 0, 6g = 0 in Q and v Adwy = v A f on 08, there exists an unique solution
w € WL2(Q, AF) to the following boundary value problem,

{d(A(x)w) =f and §(B(r)w)=g inQ, (P)

vAA(z)w=rvAuw on 0.

Proof We prove only the case 2 < k < n — 1. The case k = 1 is much easier. The hypotheses
on f imply ( cf. theorem 8.16 in [21] ) that there exists F' € W +12(Q, A¥) such that

dF = f in Q,
F =uwy on 0f).
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Now, now since BA™! € C"+1(Q; L(A*, A¥)), we can use theorem 6.26 to find a solution
a € Wrt22(Q, AF1) such that

§(BA™'da) = g — §(BAT'F) in Q,
da=0 in ,
vAa=0 on Jf.

Now we define,
w=A"Yda+F).

Note that, since A~ € C™1(Q; L(A*, AF)), w € WTTL2(Q; L(A*, A*)). Then,
Aw = da + F,
and
Bw = BA 'Aw = BA Y(da + F)
Hence, we have,
d(A(z)w) =d(da+ F) =dF = f in Q,

§(B(z)w) = §(BA  (z)(da+ F)) =g in Q,
vANAw=v A (da+F)=v Auwp on 02,

as v Ada =0 (since v ANa=0)and F =wy on 0. m
Again we also have the dual version.

Theorem 6.37 Let 2 C R™ be open, bounded, smooth and contractible and let v be the outward
unit normal to the boundary 0. Let 1 < k < n—1 and r > 0 be integers. Given two maps
A, B € C"T1(Q; L(A*, AF)) such that B is invertible, B~ € C™1(Q; L(A*, A*)) and AB~" be
such that any one of the following two conditions (H1) (H2) holds.

(H1) AB~':Q — L(A*, AF) satisfies, for every z € Q,
(AB™Y(z)(aib); ab) > yolasb|?  for every a € AY,b e AF,

for some ~vg > 0 and there is no non-trivial weak solution o € W%’Q(Q,Ak“) to the

following boundary value problem,

d(AB™ (2)da) = 0 in 9,
doa=0 in Q, (EV1)

vaa =0 on 01,

(H2) AB~':Q — L(A¥F, A¥) satisfy the Legendre condition.

Then for any wy € WH22(Q, AF), for any two forms f € W2(Q, A1) and g € W2(Q, AF—1)

such that, df = 0, g = 0 in Q and vog = vidwy on OS), there exists an unique solution
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w € Wrth2(Q, A¥) to the following boundary value problem,

{d<A<x>w>=f and §(B@)w) =g in (P2)

vaB(x)w = viwg on OS.

6.6.2 Hodge Laplacian type elliptic system

The regularity theory also enables us to solve a second order elliptic system.

Theorem 6.38 Let 2 C R™ be open, bounded, smooth and contractible and let v be the out-
ward unit normal to the boundary 0. Let 1 < k < n —1 and r > 0 be integers. Let
A€ OTTHQ; L(ARL, AR satisfy,

(A(z)(a AD) ;5 aAb)>~|anbf?, for every a € AY,b € A*) for all x € Q,

for some constant v > 0. Then there exists a constant p € R and an at most countable set
o C (—o0,p), with no limit points except possibly —oo, such that if X ¢ o, then for any wy €
Wr+22(Q, A*) and any f € W2(Q,A¥), there exists a solution w € W'F22(Q A¥) to the

following boundary value problem:

I(A(z)dw) + ddw = dw + f in Q,
vAw=rvAwy on ON. (H)
v Adw = v Adwy on ON.

Also for each o; € o there exists non-trivial weak solutions o € C™(Q, A¥) to the following

boundary value problem,

0(A(x)da) + doaw = ojx in €,
vAa=0 on 0, (EVrH)
v Ada=0 on Of.

and the space of solutions to (EVy) is finite-dimensional for any o; € o.

Proof We divide the proof in two steps.

Step 1 (Existence): The proof of existence of weak solutions is very similar to the arguments in
Section 6.2, so we just sketch the arguments. We start by showing existence of weak solution

for sufficiently large positive values of .

For a given A € R, we define the bilinear operators a; : W%’Q(Q; AF) x W%Q(Q;Ak) — R,
ag : W2 (9Q; AF) x W2 (Q; AF) — R and by : W2 (Q; AF) x W2 (Q; AF) — R by,

ay(u,v) = /g)(A(:c)du, dv),
as(u,v) = /Q(du, vy,

ba(u,v) = ar(u,v) + az(u,v) + /\/Q<u,v>.
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Clearly, a1 (u,v),as(u,v) is continuous and so is by (u,v) for any A € R, so we need only check
the coercivity. Since W%’Z(Q; AF) C Wg’z(Q, AF), by theorem 6.3, there exists constants A\g > 0
and Ay such that,

a1(v,0) = Ao [[dv[72 — Ar [|o]f72 -

Then for any A > A1, we have, by Gaffney inequality,

br(v,v) = a1 (v,v) + az(v,v) + )\/Q<’U,’U>

=ai(v,v) + az(v,v) + A ||UH%2

> o lldv]|72 = M lloll7z + [16v]72 + A o] 72
= o ldv]|7z + [|80]|72 + (A = A1) [lo]l7:

> o (Ildell3e + 19v]72)

> o vz s

where \g = min{\g, 1} > 0. Now Lax-Milgram theorem implies the existence of w € W%’2(Q; AF)
satisfying
ba(@,0) = — / (g,0) for all 6 € W%’Q(Q;Ak),
Q

for any g € L?(Q, AF).

Now as in section 6.2, we can define a ‘solution operator’ T : (W%’Q(Q;Ak))* — W%’Q(Q;Ak)
which is a bounded linear operator. Since W%’Q(Q;Ak) embeds compactly in L?(€; A¥), an
analogue of lemma 6.8 holds and arguing as in theorem 6.10, we prove that there exists a
constant p € R and an at most countable set ¢ C (—o0, p) such that if A ¢ o, the integro-

differential equation,

/Q (A(x)de, d6) + (53, 56) + A /

Q

<%@+L@%=Q

for all 0 € ‘/I/'Tlu’z(Q;Ak)7 has a unique solution w € WTl’Q(Q;Ak). Moreover, the set o does not
have a limit point except possibly —oo. If ¢ is infinite, then it is a non-increasing sequence
{Ai} such that \; = —o0 as i — oo. Also, for every o; € o, there exists non-trivial solutions

a € W%’Q(Q; AF), o # 0 which solves the following integro-differential equation,

/ (A(x)da, d6) + (5o, 56) + o / (0, 0) = 0
Q

Q

for all 6 € W;ﬂ(ﬂ; AF). Moreover, the subspace of such solutions is finite dimensional.

Step 2 (Regularity): Now theorem 6.28 gives us the desired regularity, i.e it shows that a €
C>®(Q,A*) and @ € Wr22(Q, AF) N W%’Q (Q; A%) if g € W2(Q, A¥). Integrating by parts, we
immediately obtain that « is a solution to (€Vp). Also, arguing as in theorem 6.29 we obtain
that @ € WT+22(Q, AF) N W%’Q (Q; Ak) satisfies,

0(A(x)dw) + dow = A\w + g in Q,
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and
vAw=0 and vAdw=0 in ON.

Taking g = f+ Awo — 0(A(x)dwg) — ddwy € W™2(Q, A¥) and setting w = @+ wy, we immediately
see that w € WT22(Q, AF) N W (Q; A*) is a solution to (). This finishes the proof. m
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Chapter 7

Maxwell operator for k-forms: Nonlinear

Case

7.1  Introduction

Semilinear theory The prototype of the semilinear problems for the Maxwell type operator
concerns a power type nonlinearity. However, as the principal linear part of the operator controls
only the exterior derivative, but not the full gradient of the solution, the natural space to derive
existence results are various partial Sobolev spaces rather than the usual ones. Since these
partial spaces do not embed into LP spaces, in general the problem is considerably harder than
the semilinear problems for scalar elliptic equations. For much of the same reason, sign of the
nonlinearity plays a very crucial role. In section 7.2, the main example of the problems we shall

treat is the following boundary value problem,

= \w + |w|P 2w in
{5(A(x)(dW))>\ + |w| + f in €, (7.1)

VAw=vAwyon Jf,

with 2 < p < oo. The crucial point here is that in this case, the operator is monotone and coercive
( if the problem has a variational structure, the energy functional is convex and coercive ) as
long as A € R is at a positive distance away from the spectrum of the linear operator in (6.2). In
theorem 7.1, we shall show how standard monotone operator theory yields an existence theorem
for (7.1) and slightly more general problems. However, it is important to note that the problem
completely changes its character if A € R is not at a positive distance away from the spectrum

of the linear operator in (6.2).

In section 7.3, we investigate the case when the sign of the nonlinearity is such that the energy
functional is neither coercive nor convex. The prototype of the problem we are interested in is

the following boundary value problem,

P2 = \w in
{5(A(x)(dw))+w\ Aw in £, (7.2)

v Aw =0 on 0f).

Note also that it is crucial for our analysis that there is no source term on the right hand side

( f =0) and the boundary value is also identically 0.
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For the scalar case, i.e k = 0, the analogue to this problem is the well-known

Au + |ulP2u = \u in Q,
u =0 on 0f.

This one is extremely well-studied and for 2 < p < 2%, i.e the so-called subcritical semilinear
problem, existence can be obtained for all values of A\. In general, these problems can not
be approached by minimization techniques as it is a priori clear that the energy functional
attains neither a global minimum nor a global maximum. Even for the scalar case, the relevant
techniques are provided by critical point theory. In other words, to derive existence for these
problems, we look for a non-trivial critical point of the energy functional. However, for the
problem (7.2), every non-trivial critical point is a degenerate critical point and must have
an infinite Morse index, due to the huge, infinite dimensional kernel of the linear operator
d(A(x)(d(+))). This is an additional difficulty which is not present in the scalar case.

Due to these difficulties, we can resolve the problem only in the case where A <0, i. e in the
real half line in the direction of the spectrum of the linear operator in (6.2). We develop the ab-
stract critical point theory needed to analyze the problem, which uses the method of generalized
Nehari manifold or ‘Nehari-Pankov’ manifold, essentially due to Pankov ( see Szulkin-Weth [66]
for a nice presentation). However, some modification of the method presented there is needed
to handle our case, due to the additional obstacle that W%2P(Q; AF) (cf. Definition 2.19 for
definition of these spaces) does not embed compactly into LP(2; A¥). These modifications were

essentially worked out in Bartsch-Mederski [13], where they resolve the following prototype

problem:
curl curl i@ + \ii = |@|P~ 24 in Q,
U xu=0 on 0L,
in 3 dimensions. Note that since ddu = — curlcurl u, so the nonlinearity has the sign of the

noncoercive case. We resolve the general case ((7.2) with slightly more general hypothesis on
the nonlinearity) in theorem 7.5. The result in the generality we state here is new. Though the
hypotheses on the nonlinearity and as such, the basic techniques do not differ much from the ones
in [13], modifications are necessary to treat the case of the operator with Legendre-Hadamard

type of ellipticity assumption.

Quasilinear theory The prototype problem for the quasilinear version of the Maxwell type

operators for k-forms is the system

{(5(A(J:,dw)) = fin Q,

w = wg on 0.

We prove existence of a weak solution to this system. When the system has a variational
structure, existence can be deduced simply by using minimization techniques. In particular,

theorem 3.64 can be applied. Here instead we prove this result by showing first the existence
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of solutions to the related system

(A(z,dw)) = f in Q,
ow =0 in Q, (7.3)
v Aw =0 on 0f).

Both these results seem to be new. However, a related problem have received some attention

in the past. The solutions of the system

§(o(Jw|*)w) =0 and dw =0 in Q,

5(o(Jw]?)w) =0 and dw =0 in Q,
v Aw =0 on 0,

and

§(o(Jw]*)w) =0 and dw =0 in Q,
v (g(\w|2)w) =0 on 01,

are called o-harmonic k-forms, o-harmonic Dirichlet k-forms and p-harmonic Neumann k-
forms respectively. In a well-known paper ([70]) Uhlenbeck obtained interior C'1® regularity
results for p-harmonic k-forms. Later in another widely known paper([35]), Hamburger showed
the existence and up to the boundary C1® regularity for p-harmonic Dirichlet and Neumann
k-forms. To compare these result with the one presented here, it is useful to consider exact
forms w = da so that the condition dw = 0 is automatically satisfied and we can rewrite the

system for a p-harmonic Dirichlet k-form w as the following system for «,

5(o(|da)?)da) = 0 in Q,
v Adoa =0 on 0f.

Now since v A @ = 0 on 9f) implies v A da = 0 on 012, it is clear that for any solution « to the
system (7.3) in the special case when A(z, da) = o(|da|?)da and f = 0, w = da is a p-harmonic
Dirichlet k-form. However, there is no such obvious connections of our results to the g-harmonic

Neumann k-forms.

7.2 Semilinear theory: Coercive case

There are two distinct classes of semilinear problems that are of interest. In this section, we
shall deal with the coercive case. This is the easier case of semilinear equations, where the

bilinear form associated with the problem , i.e the ‘energy functional’ is not indefinite.

7.2.1 Existence of weak solutions

Theorem 7.1 Let1 <k <n—1,2<p<ooand ) CR" be a bounded smooth open set. Let A :
Q — L(AML ALY satisfy either the Legendre-Hadamard condition and is uniformly continuous
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or the Legendre condition and is bounded and measurable. Also let B € L (Q; L(A*, AF+1),
C € L®(Q; L(A*1 AF) and D € L>=(Q; L(A*, A*) and let wg € WE2P(Q, AF), F € L2(Q, AF*1)
and f € LP (Q, A*) with % + ]% =1.

Let p: Q x A¥ — A* be a map such that,

(N1) There exists a constant c; > 0 such that for every & € A,

lp(z,&)| < cr (IEP71+1) for a.e x € Q.
(N2) There exists a constant co > 0 such that for every &€ € A,

(p(x,8),8) > c2 ([€F — 1) for a.e x € Q.
(N3) For every u,v € WP (Q, A¥),

(p(z,u(x)) — p(z,v(x)),u(r) —v(x)) >0 for a.e x € Q.

Then there exists a constant X such that for any constant X > X, there exists a solution w €
wo + Wg’Q’p (Q, A*) to the following integro-differential equation,

/Q [(A(z)dw,db) + (B(z)w,dd) — (C(z)dw,0) — (D(z)w, 0)]

a [+ [ w0+ [ (1.0~ [ an=o

for all 0 € W;f’z’p(Q,Ak). In other words, there exists a weak solution w € WP (Q, A*) to the

following boundary value problem,

(Po)

d(A(z)dw) + §(B(x)w) + C(z)dw + D(x)w = Mw + p(z,w) + f + 0F in Q,
vAw=vAwy on .

Remark 7.2 (1) In particular, the theorem is true for p(z,w) = |w[P~2w.

(2) The hypotheses (N1), (N2) and (N3) on the nonlinearity are satisfied if there exists a
function W : Q x A¥ — R such that p(x,&) = VW (2,€) for a.e z € Q and € —
W (x, &) is convex for all ¢ € A¥ for a.e x € Q and there are constants 0 < ¢; < ¢z such
that ¢y (|€P —1) < W(x,&) < e (|€]P + 1) for all € € A* for a.e z € Q. In particular,

W(x,§) = %\ﬁ\p satisfies the requirements.

(3) As the proof will show, if B,C,D = 0 and A either satisfies Legendre condition or is a
constant matriz satisfying Legendre-Hadamard condition, then the constant X can be taken
to be 0. Combined with the previous remark, this means, in particular, that the following

boundary value problem,

§(A(z)(dw)) = M + |w|P2w + f + 0F in Q,
vAw=vAuwy on 0,
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admits a weak solution w € WAP(Q, A*) for all X > 0 and all boundary values wy €
Wd2p(Q, AF).

(4) If Ve L>=(Q) is positive and bounded away from zero, i.e there exists a constant o > 0
such that V(xz) > a > 0 for a.e x € €, then p(x,§) = V()€ satisfies all the hypothesis
of the theorem with p = 2. This implies, if A either satisfies Legendre condition or is a
constant matriz satisfying Legendre-Hadamard condition and V € L>(Q) be positive and

bounded away from zero, then the linear boundary value problem,

{ I(A(z)(dw)) = Aw + V(z)w + [+ 0F in Q,

vVAw=vAwy on 0,

admits a weak solution w € Wo2(Q,AF) for all X > 0 and all boundary values wy €
W2(Q, A*). It is important to note that, as we have already remarked, though this problem
18 linear, it is not possible to handle this problem by the methods presented in the section
for linear theory for sign-changing V' or for negative values of \ since the term linear in

w is not a compact perturbation to the Maxwell operator.

Proof For a given A € R and a given wy € W%>P(Q, A¥), we start by defining the bilin-
ear operator a : W®2P(Q, A*) x We2P(Q, A¥) — R and the operator ay, : Wjdw’Q’p(Q,Ak) X
WEHP(Q, AF) = R by,

a(u,v) = /Q [(A(z)du, dv) + (B(z)u, dv) — (C(z)du,v) — (D(z)u,v)],
axp(u,v) = a(u,v) + )\/Q(u,v> + /Q<p(:c,u + wp), V).

Clearly, ay p : W%ZP(Q, AF) x W¥’2’p(ﬂ, AF) — R is linear in the second variable but nonlinear
in the first. Our plan is to use Minty-Browder theory of monotone operators ( cf. theorem 3 in
[18]). First note that both the operators are separately continuous in both variables in view of

the following estimates,

|axp(w; 0)| < [|Allee | dul[ 2 ldv]| L2 + | Bl Lo [[u]| 2]l dv] 2 + [|Cll oo [l dul| 2 [[0]] 2
+ (I1Dllze +A) llull g2 [[vllz2 + llex (Ju + wol? ™ + 1) | o [0l e,
< [|Allzeelldull 2 l|dvl 2 + esl| Bl zos [lull e |dv] 2 + cal| Cll oo | dul| 2] o] o

+c(IDllzee + M) lullzelvllze + (esllullzr + csllwollr = co) [[0]l e,

since € is bounded, i.e |©2| < co. So we need to check coercivity and monotonicity.
Coercivity

We begin by showing that there exists constants ¢, ¢; > 0 such that for all u € wa’Z’p (Q, AF),

we have,

/ (ol + wo),u) = &, — éi.
Q
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By (N2), we have,
/(p(:c,u + wo), u 4+ wo) > callu + wolh, — c2|Q.
Q

But this implies,
/(p(x,u +wo), u) > callu+ wollh, — c2|Q| — / (p(x,u+ wo),wo).
Q Q
Using Young’s inequality with € for the last term on the right, we deduce,
P P 1 P
(o, -+ o), ) 2 eallu+ wollfy — ol = ere | [p(a,u+wo)l? — Zesllwnlly
Q Q
> calu + woll7, — cocllu+ woll, — cio,

where we have used (N1) in the last line again and cj¢ is a constant depending on wyp, 2 and ¢.

Choosing € small enough so that co — cge > 0 yields,

/<P(-’Eau + wo), u) > cil|u + wollf, — cro.
Q

This easily yields,
[ (oot o)) 2 2l - 6.
0

On the other hand, since €2 is bounded, and p > 2, W%’ZP(Q, AF) C Wg’Z(Q, AF). By Garding’s
inequality, i.e by theorem 6.3, we know that their exists constants A\g > 0 and A; such that,

a(u,u) > Ao [|dul7z = M ||ull7:
for all u € W%’Q’p(Q, AF). Hence for A > )1, we have,

axp () = DolldulF2 = M llulFz + A flull 72 + & Jull, - &
= o lldullz2 + (A = Av) [lulF2 + Eullf, — &
> Xo l[dul| 7z + & Jullz, — é
= 2o (lldulls + lfull7 ) + &llully, — é = dollul?
= Do lJulffpazn +Ellullt, =X ullf, - .

for all u € Wg’Q’p(Q, AF). This means, we have, for all A > Ay,

arp(u,u) = c([ullyazp) lullyazn
for all u € Wg’2’p(Q, AF), where

Au2<,+6UP—A u2_c"
lullyasy) = 20 hweze +2llly = o iy = &1

[ullazp
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Now we need to show c(||u||ya2,) — 00 when [Jul|yya.2, — 00. But we have,

- 2 -
c ||U||12p — Ao ||U'HLP —C

cllullyazs) = Ao [ullyazs +
[ellyazp

This implies c(||u|yya2,) — 00 when || yya.2, — 00, since the second term on the right above

is bounded below as p > 2. This proves coercivity.

Monotonicity

To prove monotonicity of the of the operator ay;, we need to show,
axp(u,u —v) —ay,(v,u—v) >0 for all u,v € Wg’Q’p(Q,Ak).
But

a)p(u,u—v) —ayp(v,u—v)

:a(u—v,u—v)+)\/

<u—v,u—v>+/ ({p(z,u + wp),u —v) — {p(z,v + wp), u — v))
Q Q

= a(u—v,u—v) + Nu—2|3, +/ ((p(x,u+ wo),u —v) — (p(x,v +wp), u —v))
Q
> o lld(u = )[|Z2 + (A = Ar) [lu = v||Z2 + /Q<p(:v,u +wo) = p(a, v+ wo), (u+wo) = (v +wo)),

where we have used theorem 6.3 in the last inequality.

Combining (N3) and the last inequality above yields, for A > Ay,
ap(u,u—v) —ay,(v,u—v) >0.

This proves monotonicity.

Existence Setting A = A1, we have shown that for A > X, the function ayp : WYdJQ’p(Q,Ak) X
Wg,z,p (92, A*) — R is monotone and coercive on the reflexive Banach space W%’Z’p (92, A¥). Since
for any F' € L?(Q,A*1) and any f € LV (Q, A¥), where p' is the Holder conjugate exponent
of p, the map 0 — — [(f,0) + [(F,df) — a(wo, ) — X [(wo,0) defines a continuous linear
functional on W%’Z’p (€2, A*), by theorem 3 in [18], we obtain the existence of & € Wg’lp (Q, AF)
such that,

axp(@,0) = — / (f,0) + / (F,df) — a(wo, ) — )\/ (wo,6),0) for all 6 € WP (Q, AF).
Q Q Q
But this implies, for all § € WE>P(Q, A¥),

a(@—f—wo,ﬁ)—1—/\/Q<@—|—w0,0>—|—/Q<p(x,®—|—w0),9>+/ﬂ<f,9>—/Q<F,d0>:0.

Setting w = W + wy completes the proof. m
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7.8 Semilinear theory: Strongly Indefinite case

For the class of semilinear equations we are going to discuss below, the energy functional is
neither bounded above nor below. So we are going to look for the critical points of the energy
functional instead. The strong indefiniteness of the functional will prevent direct use of standard
critical point theory. We start with some abstract critical point theory that we can apply to
such cases. We more or less follow Bartsch-Mederski [13] and Szulkin-Weth [66] with some
modifications. The only real modification is basically to allow for a more general form of the
linear operator. In Bartsch-Mederski, the term depending on derivatives of u of the functional
J(u) was 3 [, |du|?* , whereas our modification allows for the term 3 Jo (B(z)du; du) , where B

is a bounded symmetric matrix field satisfying the Legendre-Hadamard condition in §2.

7.3.1 Abstract critical point theory for indefinite functionals

Let X be a reflexive Banach space with a topological direct sum decomposition X = X+ & X.
We also assume that the norm square is a C! map on X1, i.e the map which sends every
u € X' to [Jul|? € Ris C*(XT;R) and hence, the intersection of the unit sphere with X is a
C'-submanifold of X . Apart from the strong (norm) topology on X, we shall be using another
topology on X. Let 7 be the topology on X which is product of norm topology on X and
weak topology on )Z', i.e

T

Up, —> U, if and only if ul —ut

and wu, — u,

where u,, = u,} +, and u = v+, with the obvious meanings of the notations. For u € X \)~( ,

we define,

X(u) =Ru® X and )A((u) =Rtud X, where RT = [0, 00).

Let J € C1(X;R) be of the form,
J(u) =TI (ut) — I(u).
The following assumptions will be used throughout this section:
(A1) I € CY(X;R) and I(u) > 1(0) =0 for all u € X.
(A2) I is 7-sequentially lower semicontinuous.
(A3) If u, = u and I(u,) — I(u), then u, — u.

(A4) There exists 7 > 0 such that a := inf  J(u) > 0.
uweX t:||lul|=r

(A5) For all u € X \ X, there exists an unique critical point 0 # m(u) € X (u) of J|x () and

m(u) is the unique global maximum of J| R

(A6) There exists § > 0 such that || (u)*| > & for all w € X \ X and 7 is bounded on compact
subsets of X \ X.
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We now define the Nehari-Pankov manifold N as the set
N = {i(u) :ue X\ X}

Theorem 7.3 Let J € C1(X;R) be of the form J(u) = IT(u") — I(u) and satisfy (A1)-(A6)
and let It € C1(X;R) satisfy I7(0) = 0. Let o := infpr J. Then the following holds:

(a) N is homeomorphic to ST :={u € X* : ||u|]| = 1} through the map m := m|g+.
(b) Jom € CH(SH;R).

(c) If {un} C ST is a Palais-Smale sequence for J om, then {m(uy,)} C N is a Palais-Smale
sequence for J|n. Conversely, if {m(u,)} C N is a bounded Palais-Smale sequence for
J| s then {un} C ST is a Palais-Smale sequence for Jom on ST.

(d) uw € ST is a critical point of J om|g+ if and only if m(u) € N is a critical point of J|x .
(e) J has a (PS)., sequence in N.

(f) If J satisfies (PS)], condition in N, then co is achieved by a critical point of J.

Proof (a) We shall show that the map m is a homeomorphism. Clearly, m is a bijection since

by (A5), m(u) is unique. The inverse m~! : A" — ST is given by,

—1/~ _ m(lﬁ) +
S04
Note that since m(u™) € Rtu, TLJF) =y for all u € ST.
[ (ut)]]

Now we shall show that m is continuous. Suppose {w;} € X \ X, w; — w ¢ X. Since

_ _ [ wh
m(w) = m (H+H>, without loss of generality we can assume w; € ST for all ¢ > 1. It is
w

enough to show that m(w;) — m(w) along a subsequence.
Let
m(w;) = s;w; + vy, s; €ERT,w; € ST, v; € X for all i > 1.

Now since m is bounded on compact subsets, {m(w;)} is bounded. Hence, |/s;w;|| < ¢ and
|lvil| < ¢ for some constant ¢ > 0. But ||s;w;|]| = s; since w; € S*. This implies, along a

subsequence,

S5 — 5 and v; = v,

for some 5 € RT and some v* € X.
This implies,

m(w;) = s;w; + v; — sw + v~ and s;w; — 5w,

i.e m(w;) = sjw; +v; = 5w+ v*. Let m(w) = sw + v.

So,
J(m(w;)) = J(siw; +v;) > J(sw; +v), since m(w;) is the unique maximum of J|)A((u).
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Hence,
lim J(sw; +v) < liminf J(m(w;)).

1—00 1—>00

But since w; — w and J € CY(X;R), lim J(sw; +v) = J(sw + v) = J(Mm(w)). Hence,
1— 00

J(m(w)) < liminf J(m(w;))

1—00

= liminf {I+(siwi) — I(sjw; + vl)}

i—00

< lim I (s;w;) — liminf I(s;w; + v;)
1— 00 1— 00

< It(3w) — I(3w +v*) ( by continuity of I and 7-lower semicontinuity of I)
= J(s5w+v")
< J(m(w)) (by maximality of m(w)).

Hence every inequality above must in fact, be equalities. Thus, J(m(w)) = J(sw + v*). But

then, by uniqueness of the maxima, we deduce,
vt = and 5 = s.

Hence,

m(w;) = m(w).
We also have,

J(m(w)) = I't(5w) — liminf I (s;w; + v;)

1—00

= I(m(w)) = liminf I(s;w; + v;).

1—00

This implies I(m(w;)) — I(m(w)) along a subsequence. This together with the fact that
m(w;) = m(w) implies, by (A3),

1

Hence, m, and thus m also, is continuous. It is easy to see that m ™" is continuous. So,

m : ST — N is a homeomorphism. This proves (a).

(b) We shall show that Jom : ST — R is a C! map. Moreover, we shall also show that

(J om) (u) = ||m(u)™||J (m(u) :T,ST = Rforalluc ST, (7.4)

.5+

where T, ST is the tangent space of ST at the point u € ST. Note however that our hypothe-
ses need not imply that m is a C' diffeomorphism. In the same vein, A" need not be a C!
submanifold.
We define,

Y(w) = J(@w))  and =P,
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Let w € X\ {0}, z € X, then, since s,w + v,, is the unique maximum of J\;{(w),

12)\(111 + tz) - YZJ\(U}) - J(3w+tz (w + tz) + Uw+tz) - J(Sww + Uw)
< J(Switz(W + 12) + Vyptz) — J (SwtzW + Vitez),

!
= J (SwitzW + Vwttz + TeSwitzt2) Switzl2,

by mean value theorem, for all |¢| small enough and for some 7 € (0,1). Hence,

P(w + t2) — d(w)
t

/
<J (3w+tzw + Vwtz + Tt3w+tztz)3w+tzz-

Since m is continuous, the map w + s, is continuous since this is just the map w > ||m(w) ™|

for w € S*. J' is also continuous since J is C'. This yields,

o sup 20 £ 12) = B(w)

< J (8w + V) Sz
t—0 t

Also, by similar arguments, since Sy, (w + tz) + vy4¢- is the unique maximum of J| R(wtiz)’

(W + t2) = P(w) = T (Swpz (W + £2) + vur2) — J (s + v4)
> J(sw(w+12) + vy) — J(S0w + vy)
= J' (80w + vy + MSwtz)sutz,

by mean value theorem, for all |¢| small enough and for some 7; € (0,1). The same continuity

arguments as above yields,

lim inf Ylw +t2) — Y(w)

m i1 ; > J (8w + V) w2

P(w + t2) — d(w)
t

exists and

Hence, lim
t—0
V' (w)z = [|m(w)t||J (m(w))z  for every w € ST and for every z € T,S*.

This proves (b) and also establishes (7.4).

(c) Tt is easy to see that we have the following decomposition,

X =T,5"® X (u).
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Now, for all u € ST, we have,

I(J om) ()| = sup (Jom) (u)z
= [m(u)"| sup J'(m(u))z

= [[m(u) "1 (m(u))|-
In the last line above, we have used the fact that

17" (m(u))|| = sup J'(m(u))v = sup J'(m(u))z,
X 2T, St

S
llv]=1 lzll=1

since J'(m(u))w = 0 for all w € X (u), as m(u) is a critical point of J|x ).
Since ||m(u)*|| is uniformly bounded away from 0 for all m(u) € N/, we deduce that there

exists a constant § > 0 such that,
1(J om) (u)]] = ol|J" (m(u))].

Hence,
(Jom) (u;) = 0= J (m(u;)) — 0.

This proves that for every Palais-Smale sequence {u;} C ST for Jom, {m(u;)} C N is a

Palais-Smale sequence for J.

Again, if {m(u;)} C N is a bounded Palais-Smale sequence for J, there exists a constant ¢ > 0
such that ||m(u)™| < c. Hence,

1( o m) ()| < cllJ(m(u))].

This yields,
J' (m(u;)) = 0= (Jom)'(u;) — 0.

This completes the proof of (c).
(d) We showed already in the proof of (c) above that,

10T 0 m) ()]l = [lm(u) ||/ (m(u)]-

As N is bounded away from 0, ||m(u)™| is always nonzero and (d) follows immediately. More-

over, the critical values are the same and 1§1+f Jom = i/I\l[f J. Also,

co = inf J(u) = inf max J(u)= inf max J(u).
ue weX\X ueX (w) wEST ye X (w)

This last observation clearly shows that cg is actually a min-max value.

(e) Since ¢y = infarJ = infg+ J o m, there exists a minimizing sequence {v;} for J o m.
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Also, since Jom : ST — R is O, we can apply Ekeland’s variational principle to {v;} to obtain
a sequence {w;} C ST such that,

(Jom)(w;) — ¢ and (Jom) (w;) — 0.

In other words, {w;} C ST a (PS),,-sequence for J o m and thus also a Palais-Smale sequence
for J om. Hence by (c), {m(w;)} C N is a Palais-Smale sequence for J. But (J om)(w;) — co
also implies that {m(w;)} is (PS)e,-sequence for J on N. This proves (e).

(f) We prove this in two steps.

Step 1 We first show that if J satisfies (P.S)7-condition in N for some ¢ > 0, then J om satisfies
(PS).-condition on ST,

Consider a (PS).-sequence {u;} C ST for Jom. Then, by (¢), {m(u;)} is a (PS).-sequence for
J on N. If J satisfies the (PS)7-condition in N, this implies that there exists v € X such that
, along a subsequence,

m(u;) = v.

Note that we can not conclude yet that v € N as N need not be closed in T-topology.
However, N is closed in the strong topology since it is homeomorphic to ST, which is closed
under strong topology. Indeed, since X, being a topologically complemented subspace, is closed

and the norm is continuous on X+, ST is closed.
In particular, m(u;)™ — v* and

0<c= lim J(m(u;))

= Hm (1 (m(ui) ™) — I(m(u;))]

< lim I (m(u;) ") — liminf I(m(u;))

i—00 i—00

< I+(U+) - I(U)7

by continuity of I and 7-lower semicontinuity of I. Now since I(v) > 0, IT(vt) — I(v) > 0
implies It (v") > 0, which in turn implies v # 0, since I1(0) = 0. Hence m(u;)* # 0 for i

N+
sufficiently large. Since u; = m, we have,
m(u;
N+ +
U; () Y _est.

= —
lm(u)* [ ol

This proves that J o m satisfies (PS).-condition on S7.
Step 2 Now we complete the proof of (f).

By the proof of (e), we know there exists a (P.S),,-sequence for J om in S*. Let {u;} be such
a sequence. Since by step 1, J o m satisfies (PS).-condition on ST, there exist u € X such that

u; — u along a subsequence. Observe that u € St since ST is closed. Also, since J om is C!,
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this implies,
(Jom)(u;) — (J om)(u) and (Jom) (u;) — (Jom) (u).
But {u;} is a (PS)¢,-sequence which implies,
(J om)(u;) — co and (Jom) (u;) — 0.
Hence, we must have,
(Jom)(u) = co and (Jom)'(u) = 0.

Thus u is a critical point for Jom on S*. This implies, by (d), that m(u) is a critical point for
J in N and J(m(u)) = co. This proves (f). =

For verification of the hypothesis of the previous theorem, we introduce the following conditions:
(B1) I'"(u™) + I(u) — oo as ||ul| — oco.
(B2) I(tju;)/t? — oo if t; — 0o and u;” — u™ for some u™ # 0, as i — o0.

(B3) ﬁ%[’(u)[ul—l— tI'(u)[v] + I(u) — I(tu + v) < 0 for every u € X, for every ¢ > 0 and for
every v € X with u # tu + v.

Proposition 7.4 Let J € C1(X;R) be of the form J(u) = I (u") — I(u) and satisfy (A1)-
(A2), (A4) and (B1)-(B3). Let I'T € C*(X;R) be of the form I (u") := $B(u™,u") where
B: X" x Xt = R is a symmetric continuous bilinear form. Then J satisfies (A5) and (AG).

Proof Let u € X \ X and let t;u + 14; — tou + ug, where 4; € X and t; > 0 for every ¢ > 0.

Then t; — to and by 7—sequentially lower semicontinuity of I and continuity of I, we obtain,

liminf {—J(t;u + 4;)} = liminf {I(t;u + @;) — I (tu)} > I(tou+uo) — I (tou) = —J (tou-+up).
1—00 1—00
This shows —J is sequentially weakly lower semicontinuous on X (u).
Now we are going to show that —.J is coercive on X (u), i.e for any {v;} C X (u) such that
l|vg|| = oo, —J(v;) — co. Suppose there exist a sequence {v;} C X (u) such that ||jv;]| — occ.
Now if there exists a subsequence of this sequence (not relabeled) such that vj' = 0 for all 7,

then this implies,
—J(v;) = I(v;) = I (v]") = I(v;) = o0,

since by (B1), I7(v;") + I(v;) — oo. This shows we can assume v; # 0. But then, since
{vi} C X’(u), we can write, for each 7, v; = t;u-+t;w;, for some w; € X and for some t; > 0. Now
if there is a subsequence such that ¢; — oo along that subsequence, then, setting u; = u + w;

and using (B2), we have,

I(tiui)

- I*(u)) — o0.
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This leaves open only the possibility that ¢; < C for all i. But then, (B1) implies, t2I(u) +

I(tju;) — oo, which in turn implies I(t;u;) — oo and we have,
—J(v;) = I(tsu;) — 217 (u) > I(tju;) — C*IT(u) — oo.

Thus —J is coercive and lower semicontinuous on X (u) and hence there exists a global
maximum m(u) € X(u) of J\)A((u). By (A4), J(m(u)) > a > 0, since m(u) is the maximum on
X (u). Hence, m(u) ¢ X. Hence m(u) is a critical point of J|)A((u). Now we prove the uniqueness.
Let u € X \ X be any critical point of J‘)A((u)‘ Note that for ant ¢ > 0 and v € X such that

tu + v # u, we have,

J(tu+v) — J(u) = I (tu+v) — I (u) + I(u) — I(tu +v)
21

B(u,u) + I(u) — I(tu + v).

Now since u is a critical point of J])A((u), we have,

J (u)z =0,
for every z € X(u). Choosing z = tZT*lu + tv, we obtain,
, 2 —1 , 2 —1
0=B(u,z) —I'(u)z = 5 B(u,u) — I'(u) 5 u+to .

This implies,

2 _
T(tu +v) — J(u) = . L B, w) + T(w) — I(tu + )
2 _
=1'(u) <t 5 1u+tv> + I(u) — I(tu + v)
- t° 2_ 1[’(u)[u] + tI'(uw)[v] + I(u) — I(tu +v)
<0 by (B3).

This proves uniqueness.

To show that (A6) holds, note that, for any u € X \ X,
0<a< J(m(w)=TI"(mu)") —I(M(u),

1
by (A4) and by maximality of m(u). Now since I (m(u)™) = §B(ﬁz(u)+,ﬁ1(u)+) and B is a

continuous, there exists a positive constant ¢ > 0 such that,

I (m(u)) = %B(m(u)ﬁm(u)ﬂ < cfl(u)* .
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Since I(m(u)) < 0, this yields,
a < It (m(u)™) < cflm(u)*|?.

This inequality proves the first part of (A6) with § = \/E > 0.
c

For the second part, let K C X\ X be a compact subset such that m is not bounded on
K. This implies there exists a sequence {u;} C K such that ||[m(u;)|| — oo. Let us write
m(u;) = tiu; + v;, where v; € X for all i. Note that compactness of K implies, passing to a
subsequence if necessary, u;" — uar = 0 for some ug. Then, J (tlugIr +v;) > 0 for all i. But this
implies,
It () > It + v;).

This together with (B1) implies,
I (u)f) = I (tu]) — .

Since K is compact and I is continuous, I (u;") is uniformly bounded, which implies, by

virtue of the last inequality, that ¢; — oo. But then (B2) implies,

I(t: + It
J(tif +v) = I (uh) — T(tuf +v;) =7 (I*(uj) _ Ity t;L vi/ z))) — —00,
7

which is impossible. This completes the proof of the proposition. =

7.3.2 Existence of weak solutions

Theorem 7.5 (Ground state for semilinear Maxwell equation) Let n > 2, 1 < k <
n—12<p< % ifn>2and2 <p<ooifn=2and Q) CR" be a bounded smooth open
contractible set. Let A : Q — L(A*1 AM1) be symmetric for a.e. x© € Q and satisfy either
the Legendre-Hadamard condition and is uniformly continuous or satisfy the Legendre ellipticity
condition and is bounded and measurable. Let A < 0. Let W : Q x A¥ — R be a map such that,

(N1) W : Qx A* = R is differentiable with respect to & € AF and the map p(x,€) := VW (x, )

1s a Carathéodory function.
(N2) |p(z,£)] = o(|¢]) as & — 0 uniformly in x € .

(N3) There exists a constant ¢y > 0 such that,

lp(z,&)| < e (L+]€P71) for a.e x € Q, for all € € A*.
(N4) There exists a constant ca > 0 such that,

S0(.6.6 > W &) > aldP foracwen, forall e AF

(N5) & — W(x,§) is convex for a.e x € Q. Also, if \ is an eigenvalue of the linear operator
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Lw = §(A(z)dw) on V = {w € Wg’z(Q;Ak’) : dw = 0 in the sense of distributions}, then
&= Wi, &) is strictly conver and if A =0, & — W(x,§) is uniformly strictly convex.

(N6) If (p(x,&1),82) = (p(2,§2),&1) # 0, then

W(z,&1) — W(z,&) < <p($,§1)2,<§;zi —glgngfl),&)z for a.e x € Q, for all &1,& € AR,

If W(x, &) # W(x, &), then strict inequality holds.

Then there exists a nontrivial solution w € Wg’z’p(Q,Ak) to the following integro-differential

equation,

[ a@ao. ity +7 [ .0 [ (a0 =0,

forall 6 € W;f’z’p(ﬂ, AF). In other words, w € W2P(Q, A¥) is a nontrivial weak solution to the

following boundary value problem,

0(A(x)dw r,w) = Aw in €,
{(()d)+p( ) = Aw in £ (Po)

vAw=0 on 0f.

Remark 7.6 (i) As the proof will show, we actually prove the existence of a non-trivial ground

state solution, i.e the existence of a montrivial solution with minimum energy.

(ii) Note that here the sign of \ implies that we can solve the problem for X in the direction
of the spectrum of the linear operator L.

(iii) The hypotheses on the nonlinearity are satisfied, in particular, if W(x,&) = V(xz)|B(£)?,
with V€ L>®(Q) and there is a constant o > 0 such that V(z) > a > 0 for a.e x € Q, and
B : A* — A* is an invertible linear map.

(iv) The hypotheses on the nonlinearity are obviously satisfied, in the special but somewhat
prototypical case, when W(x,§) = %|§|p, i.e p(z,w) = |w|P~2w.

(iv) The above remark implies that the following boundary value problem,

§(A(z)dw) + |w|P%w = dw in Q,
vAw=0 on 0L,

admits a ground-state solution w € W2P(Q, A*) for every X < 0.

Before proceeding with the proof of the theorem, we need several lemmas. We start by recalling
the decomposition WP (; AF) = V @ dW,P(Q; A¥1), where V = Wg’%(Q;Ak). Also, since
A . Q — L(AM1 AR satisfies either the Legendre-Hadamard condition and is uniformly
continuous or the Legendre ellipticity condition and is bounded and measurable, the linear
operator Lw = 0(A(z)dw) has a discrete non-increasing sequence of eigenvalues {o;}3°,, each
with finite multiplicity and each with a finite dimensional eigenspace in V' by theorem 6.10.
Let v; € V be the eigenfunction corresponding to the eigenvalue o;, chosen such a way that
{v;}$°, is an orthonormal basis of V', which are orthogonal with respect to the inner products

on L2(9, A¥) and W2(Q, A¥).
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We define,
no:=min{i e N: A — 0,41 > 0} =max{i e N: A —g; <0},

the dimension of the semi-negative eigenspace of the quadratic form,

Q) = 5 | (Al)dv,du) + / o]2

Let
VT = span{v; : i > ng} and V := span{vy, ..., vn, }.

For any v € V, we write v = v 4+ 7, where v € V' and v € V. Note that for any v € V1, there

exists a constant ¢ > 0 such that,

1
2/<A( )dv, dv) /]v\Q > c/]dv\z for allv € V. (7.5)
Q
Also,
;/(A( )dv, dv) /\v|2 <0  forallveV. (7.6)
Q

Let us set X =V x WyP(Q; A*~1) and also,
Xt ={(v,0):veVTicVtx{0}cX

and

X = {(v,w) :v e V,we WyP(Q;AF 1} cV x WyP(Q; AF ) ¢ X.

We consider the functional J : X — R defined by,
1
J(v,w):2/<A( Ydv, dv) + /|v—|—dw|2 /va—i—dw)
Q
Note that this functional has the form J((v,w)) = I't(v) — I((v,w)) with
+ 1 +ogdy o A +12
I"(v) == [ (A(x)dv",dv") + = [ |[vT]
2 Ja 2 Ja
and

(v, w)) = — <;/Q<A( \dF, dv) /\ y?) - ;/ﬂ\dw12+/QW(x,v+dw).

Lemma 7.7 The hypothesis on the nonlinearity implies, for every ¢ > 0, there is a constant
C. such that,

|o(a,€)| < elé] + CeléefP™ for any € € A*, for a.e. x € Q, (7.7)
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and
/ W (z,u) < ellul|2s + Cellul?, for any u € LP(Q; AF. (7.8)
Q

Proof Indeed if the estimate (7.7) is false, this implies for every n € N, there exists x,, € €,
&, € A¥ such that,
|p(n, €n)| > elénl +nléalP~".

But, then (N3) implies,

C1 (1 + |§|p71) > ‘p(xmgn” > €|§n| + n|§n|p71
= C1 > 5|£n| =+ (n - Cl)|£n|p_1'

This implies, {&,} is bounded. Passing to a subsequence if necessary, we may assume, &, —
€ € A If ¢ # 0, then this means, |£,| is bounded away from 0 for large n. This implies
p(Zn, &) — o0, but this is a contradiction since ¢y (1 + [&,[P~1) > |p(zn, &,)| and the left hand
side is bounded. But if £ = 0, then by (N2), there exists an integer N such that

M<5 for all n > N.
[6nl
This implies,
0> |p($,§N)| > N|5N‘p_27
(34

which is impossible since the last term on the right is clearly nonnegative. This proves (7.7).

Using this and integrating, we obtain the estimate (7.8). m

Lemma 7.8 The hypothesis on the nonlinearity implies,

(a) I is of class C1, I((v,w)) >0 for any (v,w) € V x Wol’p(Q; A*=1Y) and I is T-sequentially

lower semicontinuous.

(b) There exists r > 0 such that 0 < inf J(v,0).
vevt
l[olly=r

(c) IT(v") 4+ I((v,w)) —= oo as ||(v,w)]| — cc.

(d) I(ti(vi,w;))/t? — o0 if t; — 00 and v;” — v for some vy # 0, as i — oo.

Proof (a) By (7.6) and since A < 0, we see,

(v, w)) = — (;/Q(A(x)dﬁ,dﬁ) +;/Qa|2> - /Q\/de|2+/QW(;U,v+dw) >0,

Now if (v;,w;) — (vo,wp), then we can assume v; — g in V, since V is finite-dimensional.
Then, since & — W (x, &) is convex and hence [, W(z, v+ dw) is sequentially weakly lower semi

continuous, we deduce the the sequential 7-lower semicontinuity of I.
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(b) For every v € V*, by (7.8) and (7.5), the embedding of V in L? and LP and choosing e

small enough, we have, for some constant C; > 0,

1
J(,0) = 2/Q<A( 2)dv, dv) + /|v|2 /W 2.v)
> [ af? = elols = ol

Cc
> Lol - Cullel-

This implies (b), since p > 2.
(c) Note that by (7.5), IT(v") > cllo*||}. Hence if |[voT ||y — oo, then I (v) +I((v,w)) —
oo, since I((v,w)) > 0. Thus we suppose now that ||(vi,w;)|| — oo with |[v;"[|y; uniformly

bounded. This means that ||v; + dw;||L» — co. This implies,

(03, w5)) = — (;/ﬁm( VB, d) + /|vz|2> - /|dwz|2 /W 2, vi + duw;)
>/QW($an+dwi)

> colvi + dw;llf, — o0,

where we have used (N4) in the penultimate step.
(d) We have,

t2

(o)) = - (§ [ @i +
z%jw@um+dm»

> cot] [|vi + duwi[7,.

2 )‘tz 2
,\ |dw,\ W (x,ti(v; + dw;))

This implies,
I(ti(vi, wi)) /12 > cot?|lv; + dwi[},.

Since p > 2, this implies (d). Indeed, this conclusion can only fail if ||v; + dw;| L — 0, which
implies ||v; + dw;|| 2 — 0, which in turn implies, by orthogonality, ||v;|| 2 — 0, an impossibility

+

since v;” — var 2 0. This completes the proof. m

Next we show that condition (B3) holds, which is the content of the next lemma.

Lemma 7.9 For every (v,w) € V x Wol’p(Q;Ak_l), Jor every t > 0 and for every & € V.1 €
Wol,p(Q; Ak—l)_ such that v+ dw # t(v + dw) + ¢ + dip,

t2

2_ 11/((v7w))[(v,w)] +tI'((v,w))[(¢, )] + I((v,w)) = I(t(v,w) + (¢,%)) < 0.
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Proof We have, by a simple calculation,

! 2_11/((?1 w))[(v, w)] + tI'((v, w))[(¢, ¥)] + I((v,w)) = I(t(v, w) + (6, ¢))
1

— 5 [A@aodo)+5 [P +35 [ vk + [ at.a),

where

2 —
O(t,x) :== (p(z,v+dw),

(v+dw) +t(p+dy)) + W (x,v+dw) — W (x,t(v+dw) + ¢+ dip).

We shall show,

1

5 | (A@do.ae)+ 3 [0 +3 [0k + [ ata) <o (7.9)

Note that by (N4), we have, ®(0,z) < 0. Note also that since among the terms containing ¢

the one with W grows like p-th power whereas the terms involving p grows at most quadratically,
we have,

tlggo ot 2) = -

Hence, t — ®(t,z) achieves a maximum on [0, 00) for some ¢ > 0. Let ¢ty > 0 be such that

O(tg,z) = max O(t,x). If tog = 0, then ®(¢t,z) < 0 for all ¢ > 0. So we can assume tg > 0. Then
oo(t,x)| 0
ot e

t=to
This implies,

(p(x,v + dw), to(v + dw) + ¢ + dip) — (p(x, to(v + dw) + ¢ + dip), v + dw) = 0.

If (p(z,v + dw), to(v + dw) + ¢ + dip) = 0, then by (N4),

(I)(t07 $)

2 —
= (p(x, v + dw), 2

! (v + dw) + t(¢p + dy)) + W(z, v + dw) — W (z, to(v 4+ w) + ¢ + dv)
2

= (p(z,v + dw), _tOT_(v + dw) + (¢ + dp))+to(p(x, v + dw), to(v + dw) + ¢ + di))

+ W(z,v+ dw) — Wz, to(v+w) + ¢+ di))
42
= (pla, v+ dw), ~ O (0 -+ dw) + (6 + b)) + W, 0 + )

< —t2W (z,v + dw) — W(z, to(v + dw) + ¢ + dib)
<0.

— W (x, to(v +w) + ¢+ di)
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q)(to,.%‘)

12
= —%(p(x,v + dw), v + dw) + to(p(z,v + dw), to(v + dw) + ¢ + dip)
—to({p(z, v+ dw),v + dw) + W (z,v + dw) — W (z, to(v + dw) + ¢ + dv))
(p(z,v + dw), ¢ + dip)*
2(p(z,v + dw),v + dw)

<0.

If W(x,v+ dw) # W(z,to(v + dw) + ¢ + dip), then ®(tp,z) < 0 and if W(x,v + dw) =
Wz, to(v + dw) + ¢ + dip), then again (N6) implies,

(p(z,v + dw), to(v + dw) + ¢ + dp) < (p(z,v + dw), v + dw).

This implies, as above,

(to — 1)

‘I)(to,x) S — B

(p(x, v+ dw),v + dw) <0,

and the inequality is strict if £y # 1. Finally, if tg = 1 and there exists 0 < ¢t # ty such that
O (tg,x) = @(t,x), then the above discussion yields ®(¢t,z) < 0 for all £ > 0. Thus we have
shown that ®(¢,z) < 0 for all ¢ > 0,¢ # 1. This implies (7.9) if ¢ # 1. Now for the case t = 1, if

A # 0 and A is not an eigenvalue of linear operator Lw = §(A(z)dw) on V, then we have,

1 A A
- A - 2 - 2

proving the result. Otherwise, by (N5), & — W (x,§) is strictly convex and this implies,
O(1,z) = (p(z,v+ dw),d + d) + W(z,v + dw) — W(z,v + dw + ¢ + dip) < 0.

This proves the result. m

Next we define the Nehari-Pankov manifold N for J as,

N = { (v,w) € V x Wy P (4 A1)\ V x Wy P(Q; AFH | J (v, w)[v, w] =0

and J'(v,w)[¢, ] = 0 for any (¢,v) € V x Wy P (; AR }

We now show that J satisfies the (PS)? condition on N for any ¢ > 0.

Lemma 7.10 If {(vi,w;)} C N is a (PS). sequence for J on N for some ¢ > 0, i.e if
J(vi, w;) — ¢ and J' (v, w;) — 0,
then, passing to a a subsequence which we do not relabel, we have,

(vi, w;) = (vo, wp) for some (vg,wo) € V x WyP(Q; AF1).

256



Proof First we show that such a sequence {(v;, w;)} must be bounded. We argue by contra-
diction. Suppose |[|(v;, w;)|| — oo and we set,
Wi

I (vi, wa) ||

(%
v; -

= and w; 1=
| (v, w;) | '

Since {||T;||v} is bounded, we can suppose, passing to a subsequence if necessary, that,
v — Vg in V.
By compact embedding of V' into LP(£2; A¥), this implies,
U; — T in LP(€; AF).
This in turn implies,

vi(z) — To(x) for a.e. x € Q.

We first show that Ty # 0. Let VI denote the closure of V in LP(Q; AF). Also dWOLP(Q; AR
is a closed subspace of LP(;A¥) and yller dWOLP(Q;Ak’l) = {0}. Hence by using the
continuity of the projection map from yillze g dVVOl’p(Q; AF=1) onto viler and dWOLP(Q; AR
in LP(Q; A¥), we deduce there exists a constant Co > 0 such that,

lv]|rr < Callv + dw|| e for any v € V, (7.10)

and
|dw||zr < Collv + dw||z for any w € Wy (Q; A¥1), (7.11)

Now, assumptions on A and (N4) implies, for some C3 > 0, we have,

1
Calloly > 5 [ (AGo)dvi do)

A

= J(vj,w;) — = / vi + dw;|? +/ W (z,v; + dw;)
2 Jo Q
A

2 J(vi,wi) — 5 / |Uz' + dw2~|2 + CQ”'UZ' + dwiHIzp

Q
> J(Ui,w,-) + CQHUZ' + dwiHﬁp.
As J(v;,w;) — ¢ > 0, this implies, for i large enough, we can have,
c
203 |vill3 > Csllvilf5 + 5 +eallvi + dwillL,

C2

(Ca)P
> Cs|lvill{ + Csl|dwil| 2

> Cy|(vi, wi) ||

> Cslluilli, + | dwi 7

This implies that ||7;]|y is uniformly bounded away from 0. But by lemma 7.8, lemma 7.9 and
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proposition 7.4, we have that J satisfies the condition (A5) and hence, we have,

1
Tvs,wi) = J(TF,0) > £ /(A(x)dv;“,dv;“>+)\/|v;r|2 > c0t2/|duj|2,
2 Ja 2 Jo Q

for any t > 0. That is,
J(vi,w) > cot® |07 |3

Hence, we have,

> 2 Vi infllmt 12
¢ > cot hgr_l)gf”vz I3

Letting ¢ — +00, we obtain, lim inf||7;"||} = 0. But if 7y = 0, then since V is finite dimensional,
n—oo

this implies 7 — Ty = 0, which means lim inf||7;||?, = lim inf|[7;||} = 0. This contradicts the
n—oo n—oo
fact that ||7;||y is uniformly bounded away from 0 and proves vy # 0.

Again, as before, we have,
I (vi,w;i) < Callvilir = eallvi + dwil7,-

This implies, by (7.10),
C2

J(vi, w;) < Csllvgfy — o

vl

Dividing by || (v;, w;)||?, we obtain,

J (i, w;) — 2 C2 / —2,— 2
———= < G|l — = [ |vilP” 4 vi]* = —o0
||(Ui>wi)||2 = 3H ZHV CQ Q’ Z’ ’ Z’ )

as /|vi|p2|vi2 — 00, by Fatou’s lemma, as v; = ;|| (v;, w;)||*> — co. But this contradicts the
Q

fact that % — 0 as J(vi, w;) — ¢ > 0 and ||(v;, w;)|| = oo. Hence, {(v;, w;)} is a bounded

sequence.

So we can assume that up to subsequence which we do not relabel, we have,
v; — vg in V, v; — vo in LP(Q; AF), w; — wp in Wol’p(Q; AR,
for some (vg, wp) € V x dW[Jl’p(Q; AF=1). Now, by Garding inequality (cf. theorem 6.3), we have,
J' (vg, w;)[v; — o, 0]
= /Q<A(m)dvi, dv; — dvg) + /Q<’UZ + dw;, v; — vg) — /Q<p(a;,vi + dw;), v; — vo)
= /Q<A(a:)dvi — dvg, dv; — dvg) + /Q<A(x)dvo, dv; — dvg) + /Q@Z + dw;, v; — vg)
— /Q<p(x,vi + dw;),v; — vg)

> 2)oljvi — vol|Z — Ailjvi — UOH%Z + /Q(A(az)dvg,dvi — dvy) + / (v; + dw;, v; — vp)

Q
— / (p(x,v; + dw;),v; — vo).
Q
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Since J'(vi,w;) — 0, v; — v in V, which implies dv; — dvg in L% v; — wvo in L? and
{p(x,v; +dw;)}; is uniformly bounded in Lppj, we obtain ||v; — vo||y; — 0. This yields (v;, w;) —
(v, wp) and finishes the proof. m

We need just one more lemma, which shows that the condition (A3) is satisfied.

Lemma 7.11 Let {(v;,w;)} C V X Wol’p(Q;Ak_l) be a sequence such that (vi,w;) — (vo,wo)
and I((vi,w;)) — I((vo,wp)). Then, (v, w;) — (vo,wo) in V X Wol’p(Q; AR,

Proof It is enough to prove the result up to passing to a subsequence. Now, (v;, w;) — (vo, wo)

implies, since V is finite dimensional,

. ~ ~ . . 1 —
v;r—>va“ nV, v;,—0vinV, w — wyin Wo’p(Q;Ak 1)

and v; 4+ dw; — vy + dwg in LP(; AF).

Hence, I((vi,w;)) — I((vo,wo)) implies,

A A
—/dwi]2—|—/ W(x,vi+dwi)—>—/]dwo\2—|—/ W (x, v + dwy).
2 Ja Q 2 Ja Q

Now if A < 0, then we have, by sequential weak lower semicontinuity,

A A
—/|dw0|2—|—/W(m,vo+dwg):—_lim /|dwi|2+ lim [ W (i + duwy)
2 Q Q 2 i—o0 QO i—00 J

A
> " lim | |dw]?® + liminf/ W(x,v; + dw;)
Q

i—0o0 JO 1—00

Hence, we have,

/|dw0|2 > lim /|dwi|2.
¢} 1—00 JO)

But, again by sequential weak lower semicontinuity,

lim [ |dw;|? zliminf/|dwi\2 > /|dw0]2.
QO 1—00 0 Q

1—00

This shows, dw; — dwg in L?, which yields, dw; — dwq a.e in €.

If X =0, then firstly, I((vi, w;)) = I((vo,wp)) implies,
/ W(z,v; + dw;) — / W (z, vy + dwy).
Q Q

Now by (N5), i.e by uniform strict convexity of W, we have, for any 0 < r < R,

: 1 +
m = inf { W(x, &) + W(z, &) — W, & 52)} > 0.
2EQ,E1,E2ENF, 2 2
[&1—=E&21>7,|€1],|62| <R
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Again, by convexity and sequential weak lower semicontinuity,

OglimSUP{Q[W(w,vi+dwi)+W(x,vo+dw0)] -W (x, Ui+ dw; + Yo + wO)}

1—00 2
1 d d
< B (W (x,vo + dwo) + W(z,vo + dwo)] — W (:v, Yo+ dwo ervo i wo)
=0.
We set,
Q= {x € Q| v + dw; — (vo + dwo)| > 7, |v; + dw;|, |vg + dwo| > R} .

Then we have,

1 i i
m|E| g/ {2[W(x,vi—kdwi)+W(:1:,vo+dwg)] —w <x,” - dw +”°+dw°>}.
Q

2

This implies, |Q§’R| — 0. Since 0 < r < R is arbitrary, we obtain, in this case also, dw; — dwg

a.e in Q.

Now we finish the proof of the lemma. We have, by what we have shown so far,
dw; — dwg a.e. in ()

and we want to show,
dw; — dwy in LP(Q; AF).

By (N4), it will be enough to show,

/ W (x,v; + dw; — (vo + dwg)) — 0.

Q

But since / W(z,v; + dw;) — / W (z, vy + dwy), this is equivalent to showing,
Q Q

/ {W(x,v; + dw;) = W (z,v; + dw; — (vo + dwp))} — / W (x, v + dwy).
Q Q
Now, we have,
/ {W(x,v; + dw;) — W (z,v; + dw; — (vo + dwp))} dz
Q
td
= / / — [W (x,v; + dw; + (t — 1)(vo + dwyp))] dtdx
aJo dt
1
= / /(p (2, v; + dw; + (t — 1)(vo + dwy)) , vo + dwo)dzdt.
0o Jo
and

1
/ W (x,vp + dwy) = / / (p (x,t(vy + dwy)) ,vo + dwg)dazdt.
9) 0 Jo
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Since v; — v in V, L? and LP, we have v; — vg a.e in Q up to a subsequence. Now dw; — dwy
a.e in € implies v; + dw; — vo+dwyp a.e in Q. This implies p (z,v; + dw; + (t — 1)(vy + dwy)) —
p(x,t(vg + dwy)) a.e in Q, as p is Carathéodory, by Vitali convergence theorem, the lemma
will be proved once we show that {(p (z,v; + dw; + (¢t — 1)(vo + dwy)) , vo + dwo) }5=; is equiin-
tegrable.

Therefore, we need to show, for every ¢ > 0, there exists a § > 0 such that,
/ (p (x,v; + dw; + (t — 1)(vo + dwy)) , vo + dwp) < €,
E

for all i and for any E C Q with |E| < 0.
But by (N3) and using Holder inequality, we have,

/E<p (x,v; + dw; + (t — 1)(vo + dwy)) , vo + dwo)

< (/ ‘Uo + dwo| + / ]vi + dw; + (t — 1)(1)0 + dwo)‘p_lhjo + dw0|>
E E

p=1 1
< </ ’Uoer’wo’Jr </ ]vi+dwi+(t1)(vo+dwo)p> ' </ ’U0+dw0’p)p>
E E E

1
P

< </ lvo + dwo| + [|v; + dw; + (t — 1) (v + dwo)||’£;1 </ lvo + dw0|p> ) )
E E

Since ||v; + dw;||r» is uniformly bounded, as it is weakly convergent, we can rewrite the above

inequalities as,

1
/ (p (2, v; + dw; + (t — 1)(vg + dwy)) , vo + dwo) < C </ lvo +dwolp> "
FE FE

for some constant C' > 0.

Since vg + dwgy € LP(; A¥), we can find § > 0 such that,
/|vo + dwo|P < (e/é)p whenever |E| < 6.
E

This shows equiintegrability and finishes the proof of the lemma. m

Now we are ready to finish the proof the theorem, which has been reduced to just a matter

of stitching together the pieces by now.

Proof (Theorem 7.5) By the help of lemma 7.11, 7.8, 7.9 and proposition 7.4, we deduce
that all the hypothesis of theorem 7.3 is satisfied. Hence by theorem 7.3 and lemma 7.10, we
deduce that there exists a nontrivial critical point (v,w) € V' x Wol’p(Q; A*=1) of J such that
J((v,w)) = infpr J. Setting w =v +dw € V& dWOLP(Q; AR = W;Q’p(Q, A¥), we obtain the

theorem. m
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7.4 Quasilinear theory

7.4.1 Existence of weak solutions

Let © C R™ be open, bounded, smooth and contractible. Let 1 < p < oo and consider the
following subspace Wéd P AR) C W;f’p (€2; A*) defined by,

Wi (5 A7) = {w € WP (Q: AF); 6w = 0},

where the condition dw = 0 is understood in the sense of distributions. Clearly W(g (9 AF) is
a closed subspace of WP (Q; A%). Also, dWy P (; A¥) is a closed subspace of Wi(€; A¥) and

WP (; AF) = WL (Q; A%) @ dIWy P (Q; AF).

(cf. theorem 2.52 for the proof of the above decomposition and section 2.5 for related results).
The direct sum decomposition is clearly also orthogonal with respect to the inner product. Also
note that ng’%’ (€2; A¥) embeds continuously in W and hence by Rellich’s theorem, Wg’%’ (€ AF)

embeds compactly in LP. Hence the norm |jv

WP AF).

HW(?’}’(Q;Ak) = ||dv||;» is an equivalent norm on

. . d
Existence in W ’773

Theorem 7.12 Let 1 <k <n—1 be an integer and 1 < p < co. Let 2 C R"™ be open, bounded,
smooth and contractible. Let A : Q x ATt — A*1 be o measurable map such that

(N1) There exists a constant ¢y > 0 such that for every & € AF+1,

|A(z, &) < e (K771 +1) for a.e z € Q.

(N2) There exists a constant co > 0 such that for every & € AF+1,
(A(2,6),6) > ca (IEJF — 1) for a.e x € Q.
(N3) For every u,v € WP(Q, A¥),
(A(z,du(x)) — A(z, dv(z)), du(x) — dv(z)) >0 for a.e x € Q.
Let F e LPI(Q;A’““) and f € LPI(Q;A’“). Then there exists a solution w € ng’j’f(Q; AF) satisfy-

ing,

/Q (A(z, dw), d6) + /Q (f.0) — /Q (F,d) =0, (7.12)
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for all 6 € ng’%’(Q;Ak). In other words, w € Wg’%’(Q;Ak) is a weak solution to the following

boundary value problem

0(A(z,dw)) = f+0F in Q,
ow =0 1in Q,
vAw =0 on 0.

Proof We start by defining the operator a : ngﬁ(ﬂ; AF) x Wéd’ff(Q; AF) = R by,
a(u,v) = /(A(;C,du), dv).
Q
Clearly, a : ng’%’ (; AF) x Wf 2(€; AF) — R is linear in the second variable but nonlinear in the

first. Our plan is to use Minty-Browder theory of monotone operators ( cf. theorem 3 in [18]).

First note that the operator a is separately continuous in both variables in view of the following

< ([Ja@.aop)’

since € is bounded, i.e |2] < co. So we need to check coercivity and monotonicity.

estimates,

=

1
la(u, v)] = ldollze < (eslldull, +ca) 7 [ldv] o

/Q<A(:E,du),dv>

Coercivity We have,

> colldull, — cs.

la(u,u)] = ‘ /Q (A(z, du), du)

This proves coercivity since p > 1.

Monotonicity

To prove monotonicity of the of the operator a we need to show,
a(u,u —v) —a(v,u—v) >0 for all u,UEWg’Zﬁ(Q,Ak}.

But this follows from (N3). This proves monotonicity.
Existence We have shown that the function a : Wg’%’(Q; AF)x Wg’ff(ﬂ; AF) — R is monotone and

coercive on the reflexive Banach space ng’%’(Q, AF). Since for any F € Lp/ (2, A¥*1) and any f €
L7 (9, AF), where p/ is the Holder conjugate exponent of p, the map 6 — — Jo(f,0) + [o(F.d)
defines a continuous linear functional on Wg’%’(Q,Ak), by theorem 3 in [18], we obtain the
existence of w € ngﬁ(ﬂ, AF) such that,

a(w,@):—/ﬂ<f,0>+/g(F,d9) for all@EWg%’(Q,Ak).

But this implies,

a(w, ) + / (f,0) — / (F,df) =0 for all 6 € W%’Z’p(Q,Ak).
Q Q
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This completes the proof. =

. . d
Existence in WT’p

Theorem 7.13 Let 1 < k <n—1 be an integer and 1 < p < co. Let 2 C R"™ be open, bounded,
smooth and contractible. Let A : Q x ATt — A*1 be o measurable map such that

(N1) There exists a constant ¢; > 0 such that for every & € AF+1,

|A(z, &) < e (JEP1+1) for a.e x € Q.

(N2) There exists a constant co > 0 such that for every & € AF+1,

(A(x,8),8) > 2 (|€]P — 1) for a.e x € Q.

(N3) For every u,v € WP(Q, A¥),

(A(z,du(z)) — A(z, dv(z)), du(x) — dv(z)) >0 for a.e x € Q.
Let F € LPI(Q;A’““). Then there exists a solution w € Wg’ff(Q; AF) satisfying,

/ (A(z, dw), do) — / (F,dg) =0, (7.13)
Q Q

for all ¢ € Wg’p(Q;Ak). In other words, w € Wg’ff(Q;Ak) is a weak solution to the following

boundary value problem

d(A(z,dw)) = dF in Q,
ow =0 1in Q,
vAw=0 on 0.

Proof By theorem 7.12, there exists a solution w € ng (S AF) which satisfies

/ (A(z, dw); df) — / (F; d6) = 0, (7.14)
Q

Q

for all & € WP (Q; A¥). Now, by the decomposition Wi (Q; AF) = WEP(Q; AF) @ dW, P (; AF),
for any ¢ € Wj‘f’p(Q; AF), there exist 6 € Wéd’%’(Q; AF) and ¢ € WP (Q; A¥) such that

¢ =0+ dy.

Thus, we have,

/Q (Az, dw), d¢) — /Q (F,d¢) = /Q (A(z, dw), df) — / (F,d) = 0.

Q

This proves the theorem. m

264



7.4.2 Main theorems

Theorem 7.14 Let 1 < k < n — 1 be an integer and let Q@ C R™ be a bounded smooth open
contractible set and let v be the outward unit normal to the boundary 2. Let A : Q x AF+1 —

AL be a measurable map such that

(N1) There exists a constant c; > 0 such that for every & € AF+1,

Az, )| < a1 (|§’p71 +1) for a.ex € Q.

(N2) There exists a constant ca > 0 such that for every & € AFT1,

(A(x,8),&) > 2 (|€]P — 1) for a.e x € Q.

(N3) For every u,v € WP(Q, AF),

(A(x,du(z)) — A(z, dv(z)), du(x) — dv(x)) >0 for a.e x € Q.

Then for any wg € WP(Q, AF) and any F € Lp/(Q;AkH), there exists a weak solution w €
WLP(Q, A¥) to the following boundary value problem,

(Pp)

d(A(x,dw)) = 6F in Q,
w = wqy on L.

Proof The idea of the proof is very similar to what we did above. We define the map a :
WL AF) x W2 (95 AF) — R by,

a(u,v) = /ﬂ(A(x,du + dwyp), dv).

Proceeding exactly as in theorem 7.12; we can show that this map satisfies all the hypothesis
of the monotone operator theory. Hence, we can deduce, using the same line of argument as
in theorem 7.12 and theorem 7.13 that there exists a weak solution w € Wg’;(ﬂ;Ak) to the

following boundary value problem

0(A(x,dw + dwp)) = F in Q,
6w =0 in Q,
v Aw =0 on 0.

The rest of the proof is very similar to the linear case. Note that @ € WP(Q; A*) because
of the embedding. Now since v A (—@) = 0 on 99, we can find v € W2P(Q, A*~1) (cf. lemma
8.11 in [21]) such that dv = —@ on 9. Then setting w = wy + @ + dv € WHP(Q, A¥), we have,

I(A(z, dw) = 6(A(z, dwy + dw + ddv)) = 6(A(z, dwy) + dw) = 0F in Q.
Also, since dv = —w on €2, we have w = wy on J). This finishes the proof. m
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Starting with the space Wj%(Q; AF) and using the dual decomposition
WP (2 AF) = W% (9 AF) @ oWy P (; AF),

we obtain, in the same way, the corresponding dual theorems. We state the theorems below

and omit the proof.

Theorem 7.15 Let 1 <k <n—1 be an integer and 1 < p < co. Let Q& C R"™ be open, bounded,
smooth and contractible. Let A : Q x A*=1 — AF=1 be a measurable map such that

(N1) There exists a constant ¢; > 0 such that for every & € AF~1,

|A(z, &) < e (KPP +1) for a.e x € Q.

(N2) There exists a constant cy > 0 such that for every & € AF~1,

(A6 2 2 (P = 1) foraczeQ.
(N3) For every u,v € WoP(Q, A¥),

(A(z, du(x)) — Az, dv(x)), du(x) — dv(x)) >0 for a.e x € Q.
Let F € LPI(Q;Ak_l). Then there exists a solution w € Wi’%(Q;Ak) satisfying,

/ (A(z, 6w), 66) — / (F,60) =0, (7.15)
Q Q

for all ¢ € Wﬁ,’p(Q;Ak). In other words, w € W;’%(Q;Ak) is a weak solution to the following

boundary value problem

d(A(x,dw)) = dF in €,
dw =10 in €,
vaw =0 on 0N.

Theorem 7.16 Let 1 < k < n —1 be an integer and 1 < p < co. Let Q C R™ be a bounded
smooth open contractible set and let v be the outward unit normal to the boundary 2. Q@ C R™
be open, bounded, smooth and contractible. Let A : Q x A1 — A*=1 be a measurable map such
that

(N1) There exists a constant c; > 0 such that for every & € AF=1,

| Az, )| < er (JE[P~ +1) for a.e z € Q.

(N2) There exists a constant co > 0 such that for every & € AF~1,
(A(x,8),8) > 2 (|€]P = 1) for a.e x € Q.
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(N3) For every u,v € WOP(Q, A¥),

(A(z, ou(z)) — Az, dv(x)), du(x) — dv(z)) >0 for a.e x € Q.

Then for any wo € WOP(Q,A*) and any F € Lp,(Q; AF=1Y there exists a weak solution w €
WLP(Q, A*) to the following boundary value problem,

Az, dw)) = m
{d( (z,0w)) = dF in Q, Pos)

w = wqy on 0L

7.4.3 Remark about regularity

We end this thesis with a few remarks about the regularity of weak solutions to an important
special case of the quasilinear boundary value problems discussed above. This is the case when
A(z,€) = o(|€|)¢ with the function g : R — R satisfying some structural hypothesis. A typical
and the most important example of such a g, of course, is given by o(|¢|?) = |¢ \%, when the
system generalizes the p-Laplace operator to differential forms. In this case, if F'is 0, i.e the
homogeneous case, interior C'1® regularity of the solution is implicitly contained in [70]. Again

when F is 0, the O regularity results up tot he boundary for the system

8(o(|dw|?)dw) = 0 in Q,
dw =0 in Q,
v Aw =0 on 0f.
can also be deduced from the results obtained by Hamburger in [35] for g-harmonic Dirichlet
k-forms with the same assumptions on p (see also Beck-Stroffolini [14] for a partial regularity

result). However, there is so far no regularity results for non-zero F', though it seems possible

to obtain some regularity results even in this case.
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Appendix A

Notations

We gather here the notations which we will use throughout this thesis. For more details on
exterior algebra and differential forms see [21] and for the notions of convexity used in the

calculus of variations see [25] .

1. Let k be a nonegative integer and n be a positive integer.

e We write A¥ (R") (or simply A¥) to denote the vector space of all alternating k—linear
maps f : R" x --- x R” — R. For k = 0, we set A’ (R") = R. Note that A* (R") = {0}
——————
k—times
for k > n and, for k < n, dim (Ak (R™) = (3)-
e A, u, {; ) and, respectively, * denote the exterior product, the interior product, the

scalar product and, respectively, the Hodge star operator.

o If {el, e ,e"} is a basis of R™, then, identifying A! with R",
{e“/\--~/\ei’€:1§i1 <"'<ik§n}

is a basis of A¥. An element & € A¥ (R") will therefore be written as

&= Z £i1i2'“ik A VAN e = Z ér €I

1<iy<-<ip<n IeTk

where
Tk:{lz(il,-‘-,ik)ENk:1§i1<~-<ik§n}.

We shall identify exterior 1-forms with vectors freely and shall refrain from using the
musical notation to denote these identifications, in order not to burden our notations
further. Also, we shall often write an exterior k-form as a vector in R(Z), when the
alternating structure is not important for our concern. In a similar vein, we shall

identify m x n matrices with the space R"*".

We adopt the alphabetical order for comparing two multiindices and we do not reserve
a specific symbol for this ordering. The usual ordering symbols, when written in the

context of multiindices will denote alphabetical ordering. For example, I = (1,4) <

J=(2,3).
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We write

—

ETAANels A Nek = et A AT AT A ek,

Similarly, — placed over a string of indices (or multiindices ) will signify the omission

of the string under the ~ sign.

2. Let £ € RNVX™ be written as

N & - & ¢!
£: (Elj)ze{l,,n} - = = (fla 7571)
&gy gy

Let 2 < s <min{n, N}. We define the adjugate matrix of index s

ETW) p(M)x(2)

S S

adj, € = ((adj, €)])

IeTs(n)
whose elements are given, for I = (i1, -+ ,i5) € T° with 1 <4 < ... < iy < n and
‘]:(j17“' 7j8) €T WlthlSJI <<]SSN7 by
T
i1 is
. oenNd . i1 s
(adjs &)7 = (adjs €)717° = det
Jso. gds
i1 is

3. Notation for indices: The following system of notations will be employed throughout.

(i)

(vi)

Single indices will be written as lower case english letters, multiindices will be written

as upper case english letters.

Multiindices will always be indexed by superscripts. The use of a subscript while

writing a multiindex is reserved for a special purpose. See (vii) below.

{iyig...4,} and {i1,42,...,4,} will both represent the string of indices i1, 2, ..., .
Similarly, {I*1%... 1"} and {I', I?, ..., I"} will both represent the string of indices ob-
tained by writing out the indices in the indicated order. Unless explicitly mentioned
as representing a set, curly braces will represent the string of indices represented by

objects inside the braces, rather than the set of such indices.

(i1i2...1,) and (i1,...,4,) will stand for the permutation of the indices i1, is, ..., ir,

i.e of the indices contained in the string of indices inside the brackets.

[i1i2 .. .1, will stand for the increasingly ordered string of indices consisting of the
indices i1, 12, . ..,1,. However, [Il, %, ... , I"] will represent the corresponding string

of multiindices I',I%,...,I", arranged in the increasing alphabetical order.

In the spirit of (iii) above the usual setminus sign will be used to denote dele-
tion of the string of indices. For example, the symbol {{i1,2,... 4} \ {im}} will

be used to represent the string of indices {i1%2...%m—1%m+1...%,} and similarly,
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the symbol ({i1,i2,...,4,} \ {im}) will stand for the permutation of » — 1 indices

(4192 « . - im—1@m+1 - - - 3). The same principle will apply for square brackets too.

(vii) As a rule, multiindices will be indexed by superscripts only and a single index as a
subscript in a multiindex will stand for the multiindex obtained from the multiindex,
denoted by the same symbol without the subscript by removing the index in the
subscript. For example, I} will represent [I*\ {j}].

(viii) The symbol (J;I), where J = {jija2...Js} is a string of s single indices, not nec-
essarily ordered and I = {Ilf2 ... I?} is a string of s multiindices, Y12, 1% €
715 not necessarily alphabetically ordered, will be reserved to denote the string
{j1I1j2I2 .. .jSIS}. Note that the case k = 2, when these I',I%,... I° are single

indices rather than multiindices is also included !.

(ix) In the same spirit, {.}, (.) and [.] will always represent respectively the string,
the permutation and the ordered string of indices corresponding to the string of
indices represented by the objects inside the curly braces, the brackets and the square

brackets respectively.

(x) The abovementioned system of notations will be in force even when representing

indices as subscripts of superscripts of different objects.
4. Notation for sum: We shall also be employing some convention for abbreviation of sums.

e Let I € 7" be a multiindex, where 1 < k <nand 1 < s < [%] are both integers.
Then we shall employ the shorthand Zﬁ to stand for

>

J={j1j2.-ds}=l1j2--Js],
I={I' 2. 15} =[I",I2,...,I"]

JUI=I

In other words, the symbol Zi will stand for the sum running over all possible
choices of s single indices and s k& — 1-multiindices such that their union is /. Note
that it is only the choice that matters, not the order. Since once we have chosen s
single indices, our ordering fixes the unique way of naming them and similarly for
the multiindices. Writing in a more detailed and explicit manner, we can also write

this sum as,

2.

giel, I'eT*=1 and I'CI for all 1<I<s,
GiNGm=0, I'NI"™=) for all 1<l<m<s,
J1<j2<...<Js, IT<I?<...<I°.

e The symbols like Zg\l , SV ang S! are to be interpreted in the same spirit as

s

above.

5. Multiindex notation: We shall use multiindices quite frequently.

!This is a rather non-standard notation, but nonetheless is extremely useful for our analysis.
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Let k = (k1,...,kp) where 1 < k; < n for all 1 <i < m. We denote
AF =TT A% R,
i=1

Likewise, for any integer r,
m

Ak+r - H Akﬁ—r (Rn)
i=1

for any r € Z \ {0}.

We shall denote elements of A¥ by boldface greek letters. For example, we shall write,

E=(&,.-,&m) €A* and [¢] = <Z|€il2> :
=1

Let a = (aq,...,am,) € {NU{0}}"™ be a multiindex, in the usual multiindex notations,
with 0 < oy < [k%} for all 1 <1i < m. We denote |a| = Zai and |ka| = Zkiai.
i=1 i=1
We define, for |ka| < n,
E* =" AL NG,

m

where the powers on the right hand side represent wedge powers (e.g £ = & A &y). and ,

(%€)% = (€)™ AL A (6m) ™,

where the x represents the Hodge star operator. *£ is also defined similarly, i.e *€ =

Also, for any integer 1 < s < n, Ts(&) stands for the vector with components €%, where

a varies over all possible choices such that |a| = s.
. Flip: We shall be employing some particular permutations often.

Definition A.1 (1-flip) Let s > 1, let J € T*, I € T* be written as, J = {j1...Js},
I={iy...is} with JNT =0. Let J € T, I € T'. We say that (J,I) is obtained from
(J,I) by a 1-flip interchanging j, with iy, for some 1 <p <s, 1 <m <I, if

J =11 Jptimips1---51) and I =iy ... im 1ipims1---is).

Definition A.2 (k-flip) Let s > 2, k > 2 and I = {I'...I°} = [I',...,I°], where
N eTh Im={if,...,i%} for all1 <r < s. We say that I is obtained from I by
a k-flip if there exist integers 1 < q1 < qo < s and 1 < 711,79 < k such that,

F 7l -1 7 +1 —1 7 1
I=1[I.. [0 [0 o . ]% ,IqZI‘”JF,...,IS]
where
T [N -q1
I =1 ..,

g2 ;41 -q1 Tq2 _ [;92 -q2 [q1 ;42 -2
RSP & R P ol IR YO Al U P P X K P ¥ B
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Definition A.3 (alternating k-flip) Let s > 1, k > 2. Let J € T*, J = {j1...7s},
I={I"...I°}y = [I,...,I°], where I',...,I° € T*, I" = {if,...,i%} forall 1 <71 < s
and JNI =0. We say that (J, ) is obtained from (J,I) by an alternating k-flip if there
exist integers 1 < m,p < s and 1 < q < k such that,

J = []1 .. ~jp—1i;njp+1 .. -js]a

and

T=1[I" Il il iy i) I TR

Note that a k-flip can be seen as a permutation in an obvious way.
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Appendix B

Function Spaces of Differential Forms

Definition B.1 (Differential form) Let 0 < k < n and let @ C R™ be open, bounded and
smooth. A differential k-form w is a measurable function w : Q@ — A*. We write w € M (Q; Ak) .

B.1  Usual Function Spaces

Definition B.2 (Lebesgue spaces) Let0 < k < n—1, let Q@ C R"™ be open and let 1 < p < 0.
We denote by LP (Q;Ak) the space of all (measurable) differential k-forms w € M (Q;Ak) for
which

1
p .
lwll o (@,ar) = (/Q\w!p) < 00, if1<p<oo

]l 2o (.a) = ess suplw| < oo, if p= oo,

with the abovementioned norms.

Definition B.3 (C" spaces) Let 0 < k < n— 1, let Q C R™ be open and let r > 0 be an

integer.

1. We denote by C” (Q; Ak) the space of all differential k-forms for which all partial deriva-
tives D! for every I € T* and every 0 < |a| < r are continuous. When r = 0, we often
employ the notation C(Q) := C%(Q).

2. C" (ﬁ; Ak) denotes the space of C” (Q;Ak) forms whose derivatives up to order r can be

extended continuously to Q. It is endowed with the norm

. I
[wller@ary = o itelgllD“w (@)]-
IeTk

3. C.(Q; AF) = {w € C (% A*) : suppw C Q is relatively compact}.

4. Cr(Q;AF) := C" (4 AF) N Co(Q; AF).

5. C°(Q;; AF) = m CT(Q;; A%) and C(Q;; AF) == C.(Q;; AF) N C®(Q;; AF).
r=0
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6. Aff(Q;RYN) stands for the set of affine functions, i.e if u € AfF(Q;RN) means there exists
€ € RNX™ sych that Vu(z) = & for every x € Q.

7. We say u € O, (RN if u € C""H(RYN) and Vu is piecewise continuous, meaning

piece
that there exists a partition of ) into a countable union of disjoint open sets , C €,

e QN =0 if hyk € Nyh # k and [Q\ U, Q| = 0 so that Vu € C(Qp; RV,

Affpicce (G RY) stands for the subset of C’; (Q;R™) such that Vu is piecewise constant.

iece

Definition B.4 (Holder spaces) Let 0 < k <n—1, let Q CR"™ be open and let r > 0 be an
integer and 0 < a < 1. For u: D C R"™ — R ,we define the a-Hélder seminorm as,

[u]a,p == sup {W_“(y)}

2,yeQ, |z — y|*
T#Y

Now we define the different Hélder spaces in the following way:

1. We denote by C™® (Q;Ak) the space of all w € C” (Q;Ak) for which [DPw!]q 1 < 0o for
every I € T and every 0 < |B| < r for every compact K C Q. When r = 0, we often
employ the notation CO*(; A¥) := C*(Q; AF).

2. We denote by C™® (ﬁ; Ak) the space of all w € C” (ﬁ; Ak) for which [Dﬁwl]a@ < oo for
every I € T* and every 0 < |B| < r. It is endowed with the norm

L 1
Hw”cr,a(ﬁ;/\k) = Hchr@Ak) + Oéﬁlﬁiiér’[l)ﬁw ]a,ﬁ'

IeTk

3. By abuse of notation, we often write C" (Q; Ak) =m0 (Q; Ak) .
4. O™ (Q;A%) s identified with all w € C™~1 (Q; A¥) such that DPw’ is Lipscitz continuous

for every I € T* and every |8 = r.

Definition B.5 (Sobolev spaces) Let 0 < k <n—1, let @ C R™ be open and let 1 < p < 0.
Let r > 0 be an integer.

1. We define WP (Q;Ak) to be the spaces of differential k-forms such that w € LP(Q; AF)
and D°w! € LP(Q) for every I € T and every 0 < |a| < r, where D® is the weak

derivative in the usual multiindex notation. It is endowed with the norm

lwllwro@ary = Y. > 1D e ifl1<p<o0
0<|a|<r IeTk

o I e
[wllyr.oo @;ary == oéﬁlﬁﬁr,”m“’ | oo () if p= oc.
IeT*

2. If 1 < p < oo, the space Wy (Q; AF) is defined as the closure of C2°(Q; A¥) in WTP(Q; AF).
3. We define W™ (4 AF) := W (Q; AF) n W (Q; AF).
4. Forr =0, the spaces WP (2; AF) coincide with LP (Q; Ak) with equivalent norms.
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We now list the a few well-known results about these spaces.

Proposition B.6 (Sobolev Embeddings) Let Q C R™ be an open set with Lipscitz bound-
ary.
o If1 <p<mn, then
whe (Q; A’“) Ny¥ (Q; A’“)
for every 1 < q < p*, where p* is the Sobolev conjugate exponent of p, defined by

1 1 o np
— =———, lep =

P p on n—p

More precisely, for every 1 < q < p* there exists a constant ¢ = ¢(2, p,q) such that
wllze < cllwllwre

for every w € WP (Q;Ak) .

e Ifp=n, then
win (Q;Ak) < L1 (Q;Ak)

for every 1 < q < oo. More precisely, for every 1 < q < oo there exists a constant
c=¢(Q,p,q) such that
[wllze < cllwl[wrn

for every w € W (Q; Ak) )

o Ifp>n, then
WP (03 AF) < CO (04F)

for every0 <a<1-— %. In particular, there exists a constant ¢ = c¢(§2, p, q) such that

lwl[Loe < cllwllwrp.

Proposition B.7 (Rellich-Kondrachov) Let Q C R™ be an open set with Lipscitz boundary.

o If1 < p < n, then the embedding
WP (0 AF) < L9 (0;A%)

18 compact for every 1 < q < p*, where p* is the Sobolev conjugate exponent of p, defined

by
1 1 1 . N np
—=—-——, Lep = .
p* p n n—p

o If p=mn, then the embedding
W (Q5AF) < L7 (9;A%)
s compact for every 1 < q < oo.
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e If p > n, then the embedding
WP (03 AF) < CO (0F)
is compact for every 0 < o <1 — %.
In particular, the embedding
WP (0 AF) < 17 (0: AF)
18 compact for every 1 < p < oo.

B.2  Special function spaces

Apart from the usual function spaces defined above, we shall be using several function spaces
which are particularly well suited for working with differential forms. First, we define the

differential operators we are concerned with.

Definition B.8 (Exterior derivative) Let 0 < k < n —1, let @ C R™ be open, bounded and
smooth and let w € Li (5 A¥). A differential (k + 1)-form ¢ € Ll (Q; A1) is called the

loc loc
exterior derivative of w, denoted by dw, if

/nAwZ(l)"_k/dn/\w,
Q Q

for alln € C§° (Q; An~F1) .
The formal adjoint of this operator is also very important for our purposes.

Definition B.9 (Hodge codifferential) Let 1 < k < n, let Q C R™ be open and let w €
LllOC (Q;Ak) be such that dw exists. Then, the Hodge codifferential of w is a (k — 1)-form
dwe Ll (Q; Ak_l) defined as

dw = (=1)" s dxw.

Since differentiation on forms occurs only via operators d and 4, the following spaces are of

crucial importance. See [40] for more detail.

Definition B.10 (Partial Sobolev spaces) Let 0 < k < n— 1, let @ C R™ be open and
let 1 < p < oo. We define WP (Q;Ak) to be the space of differential k-forms such that w €
LP (S AF) and dw € LP(Q; AFY). It is endowed with the norm

o]

dp = |lwllp + | dwllp, for all w € WP (Q;Ak) .

Similarly, for 1 < k < n, we define WP (Q; Ak) as the space of differential k-forms such that
w € LP(Q; AF) and 6w € LP(2; AR~Y), equipped with the norm

]

5 = lwllp + [10wlly, for all w € WOP (Q; A"") :
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Definition B.11 (Partial Sobolev spaces of (p,q) type) Let 0 < k <n—1, let Q C R" be
open and let 1 < p,q < co. We define WP4 (Q; Ak) to be the space of differential k-forms such
that w € L1 (Q; Ak) and dw € LP (Q; AkH) , endowed with the norm

1
[llagg = (ol + dwl2)®, for allw € Wore (; %),

Similarly, for 1 < k < n, we define WP (Q;Ak) to be the space of differential k-forms such
that w € L4 (Q; Ak) and dw € LP (Q; Ak_l) , equipped with the norm

1
lwllsp = (loll2 + [1w]2)? . for all w € WP (0; AF).

Definition B.12 (Total Sobolev spaces) Let 1 < k < n — 1, let & C R™ be open and let
1 < p < co. We define L1P (Q;Ak) to be the space of k-forms such thatw € LP (Q;Ak),dw €
LP (Q; Ak+1) and dw € LP (Q; Ak_l) , equipped with the norm

[l 21 = eollp + ldwlly + 18wl for all w € 27 (54%).

For the spaces mentioned above, although the usual notion of trace does not always make sense,
one can define partial traces on these spaces. We denote by v A w and v_w as the tangential
and normal trace, respectively, of a function w, when they are defined. The subspaces with zero

tangential and normal traces are important too.

Definition B.13 Let 0 < k < n, let Q C R™ be an open, bounded set and let 1 < p < oco. We
define

WP (230%) = {w e W (0 AF) : (dw; 9) = (w309), for all ¢ € C (A1) ],

WP (2 AF) = {w e WP (@ AF) 2 (0w;6) = (widg), for all ¢ € O (HAF) ]
Definition B.14 We set

oo (Q;Ak) — W (Q; Ak> N Wit (Q;Ak) .

We shall also be needing spaces suited to working with several differential forms.

Definition B.15 Let p = (p1,...,pm) where 1 < p; < oo for all 1 < i < m. We define the
spaces LP(Q2, A®) and WIP(Q, A*), WEP(Q, AF) to be the corresponding product spaces. E.g.
WEP(Q, AF) = [ WoPi(Q, A™).
i=1
They are obviously also endowed with the corresponding product norms. When p; = oo for all

1 < i < m, we denote the corresponding spaces by L™ , W1 etc.

Definition B.16 In the same manner, w’ — w in WP (Q; Ak_1> will stand for a shorthand

of
Wl — wy in WP (Q; Aki_l) ,
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for all1 <i<m, and f(dw”) = f(dw) in D' (Q) will mean

fdw, ... dwt) = f(dwy,...,dwy) in D' ().
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