
The Function Passing Model: Types, Proofs, and

Semantics

Philipp Haller, Normen Müller, Heather Miller

May 2016

1 Overview

We formalize our programming model in the context of a typed lambda calculus
with records. Figure 1 shows the abstract syntax of our core language. Besides
standard terms, the language includes terms related to (a) spores, (b) silos, and
(c) futures. The spore term creates a new spore. It contains a list of variable
definitions, the spore header, and a closure which may only refer to its parameter
and variables in the spore header. The spawn term creates a new host capable
of hosting silos. The populate term initializes a new silo on a given host with
a given data value. The map, flatMap, and persist terms create lineages of
silo transformations represented as silo references. The send term forces the
materialization of the silo corresponding to its argument silo reference; send
returns a future which is asynchronously completed with the silo’s value. The
await term waits for the completion of its argument future and returns the
future’s value. Locations ι are used to refer to futures and hosts, both of which
can be created dynamically using the above terms.

Values in our language are as expected: besides abstractions and record val-
ues they include spore values, locations, and silo references. Locations and silo
references are not part of the “surface syntax” of our language; they are only
introduced by evaluation (see Section 1.1). Silo reference values are values of
a simple datatype with constructors Mat, Mapped, FMapped, and Persist. The
constructors include all information required for materializing a silo with the re-
sult of applying the described transformations. Therefore, a silo reference value
is also called the lineage of its corresponding silo. We defer a detailed explana-
tion of the transformations described by a lineage to the following Section 1.1.

In addition to standard function and record types, the language has types for
spores, hosts, silo references, and futures. A spore type T ⇒ T ′ { type C = T }
includes the types T of the variables declared in the header of the spore.

1.1 Operational Semantics

In the following we present a small-step operational semantics of the introduced
core language. The semantics is clearly stratified into a deterministic layer and a
non-deterministic (concurrent) layer. Importantly, this means our programming
model can benefit from existing reasoning techniques for sequential programs.
Program transformations that are correct for sequential programs are also cor-

1

t ::= terms:
x variable

| (x : T) ⇒ t abstraction
| t t application

| {l = t} record construction
| t.l selection
| spore { x : T = t ; (x : T) ⇒ t } spore
| spawn(t) spawn host
| populate(t, t) populate silo
| map(t, t) map
| flatMap(t, t) flatMap
| persist(t) persist
| send(t) send
| await(t) await future
| ι location
| r silo reference

v ::= values:
(x : T) ⇒ t abstraction value

| {l = v} record value
| p spore value
| ι location
| r silo reference

p ::= spore { x : T = v ; (x : T) ⇒ t }

r ::= silo reference values:
Mat(ω) materialized

| Mapped(ω, r, p) lineage with map

| FMapped(ω, r, p) lineage with flatMap

| Persist(ω, r, v) lineage with persist

ω ::= (h, i) where i ∈ N decentralized identifier

T ::= types:
T ⇒ T abstraction type

| {l : T} record type
| T ⇒ T { type C = T } spore type
| Host host type
| SiloRef[T] silo reference type
| Future[T] future type

Figure 1: Abstract syntax of core language.

rect for distributed programs. Our programming model shares this property
with some existing approaches [?].

The semantics is based on three reduction relations for (a) sequential reduc-
tion of terms, (b) deterministic reduction of hosts, and (c) non-deterministic
reduction of sets of hosts. The reduction relations use the definition of evalua-

2

E ::= evaluation contexts:
[] hole

| E t application (fun)
| v E application (arg)

| {l = v; li = E; l′ = t} record
| E.l selection
| spore { x : T = v;xi : Ti = E;x′ : T = t; (x : T) ⇒ t } spore
| spawn(E) spawn
| populate(E, t) populate (host)
| populate(v,E) populate (spore)
| map(E, t) map (ref)
| map(v,E) map (fun)
| flatMap(E, t) flatMap (ref)
| flatMap(v,E) flatMap (fun)
| persist(E) persist
| send(E) send
| await(E) await

Figure 2: Evaluation context.

tion contexts shown in Figure 2. Evaluation contexts capture the notion of the
“next subterm to be evaluated.” Following a standard approach [?], we write
E[t] for the term obtained by replacing the hole in evaluation context E with
term t.

Figure 3 shows the rules for sequential reduction. The sequential reduction
relation has the form E[t] | µ →h E[t′] | µ′ with stores µ and µ′. Stores are
required for the dynamic allocation of futures and hosts. A store µ is a partial
function mapping locations ι to values v. The annotation with host h is used for
creating decentralized identifiers ω = (h, i) for silo references. Rules R-AppAbs
and R-ProjRcd are completely standard. Analogous to rule R-AppAbs, rule
R-AppSpore describes the application of a spore value to an argument value.
Rule R-Await reduces await(ι) to v if future ι is already completed with v in
µ.

Rules R-Map, R-FMap, R-Persist and R-Unpersist describe the cre-
ation of lineages. Rules R-Map and R-FMap create silo reference values using
the constructors Mapped and FMapped, respectively. The new silo reference has
a fresh identifier (h, i) which uniquely identifies the corresponding (logical) silo.
In each case, the spore value p is stored in the new silo reference; this enables
a materialization of the silo identified by (h, i) using parent silo reference r and
spore p. Rules R-Persist and R-Unpersist create silo reference values using
the Persist constructor. Persist contains a function enabling host h to persist
(· ∪ ·) or unpersist (· \ ·) silo r, respectively.

The deterministic reduction relation has the form (E[t], µ,Q, S)h −→ (E[t′], µ′, Q′, S′)h

where Q is a message queue and S is a silo store. Figure 4 shows the definition
of message queues. A message queue Q may contain three kinds of messages.
A message of the form Reqs(h, r, ω) requests the value of silo r to be sent to
host h for materialization of identifier ω. A message of the form Ress(ω, v, P)
represents the corresponding response, containing the identifier ω to be mate-
rialized, value v, and persist set P (the set of hosts which have persisted the

3

R-AppAbs

E[((x : T) ⇒ t) v′] | µ →h E[[x 7→ v′]t] | µ

R-ProjRcd

E[{li = vi∈1..n
i }.lj] | µ →h E[vj] | µ

R-AppSpore

E[(spore { x : T = v ; (x : T) ⇒ t }) v′] | µ →h E[[x 7→ v][x 7→ v′]t] | µ

R-Await
µ(ι) = Some(v)

E[await(ι)] | µ →h E[v] | µ

R-Map
r′ = Mapped((h, i), r, p) i fresh

E[map(r, p)] | µ →h E[r′] | µ′

R-FMap
r′ = FMapped((h, i), r, p) i fresh

E[flatMap(r, p)] | µ →h E[r′] | µ′

R-Persist
r′ = Persist((h, i), r, · ∪ ·) i fresh

E[persist(r)] | µ →h E[r′] | µ′

R-Unpersist
r′ = Persist((h, i), r, · \ ·) i fresh

E[unpersist(r)] | µ →h E[r′] | µ′

Figure 3: Sequential reduction.

Q ::= message queue values:
ϵ empty queue

| Reqs(h, r, ω) :: Q request (silo)
| Ress(ω, v, P) :: Q response (silo)
| Reqι(ι, ω) :: Q request (future)

Figure 4: Message queues.

4

silo identified by ω). A message of the form Reqι(ι, ω) requests future ι to be
completed with the value of silo ω. A silo store S is a partial function mapping
identifiers ω to values of the form (Val(v), P) or (Fwd(r), P) where P is a set
of hosts which have persisted the silo (the persist set). The former represents a
materialized silo with value v. The latter represents a proxy forwarding to the
silo specified by lineage r.

The deterministic reduction rules use helper functions host, id, parent, and
consume, which are defined as follows:

Definition 1.1 (Host). The host of a silo reference.

host(r) :=


h if r = Mat((h, i))
host(r′) if r = Mapped(, r′,)
host(r′) if r = FMapped(, r′,)
host(r′) if r = Persist(, r′,)

Definition 1.2 (Silo reference identifier). The identifier of a silo reference.

id(r) :=


ω if r = Mat(ω)
ω if r = Mapped(ω, r′,)
ω if r = FMapped(ω, r′,)
ω if r = Persist(ω, r′,)

Definition 1.3 (Silo reference parent). The parent of a silo reference.

parent(r) :=


None if r = Mat()
Some(r′) if r = Mapped(, r′,)
Some(r′) if r = FMapped(, r′,)
Some(r′) if r = Persist(, r′,)

Definition 1.4 (Consume silo). Consume silo ω with persist set P in silo store
S.

consume(ω, P, S) :=

{
S − ω if P = ∅
S otherwise

We discuss the deterministic reduction rules in two steps. First, we dis-
cuss the rules shown in Figure 5. Rule R-Seq reduces host (E[t], µ,Q, S)h in
case E[t] reduces in µ. Rule R-Send1Local reduces send(r) to a completed
future ι if the corresponding silo is already materialized in silo store S. Rule
R-Send2Local covers the case where the requested silo is not yet material-
ized. In this case, two request messages are added to the queue: a first message
Reqs(h, r, id(r)) requesting the materialization of silo id(r), and a second mes-
sage requesting the value of silo id(r) for completing future ι. Rule R-ReqF1
processes a message Reqι(ι, ω) by completing future ι with the value of the ma-
terialized silo ω. Rule R-ReqF2 delays such a request in case silo ω is not yet
materialized by moving the request to the back of the queue.

Figure 6 shows the remaining deterministic reduction rules. Rule R-Res
processes a message Ress(ω, v, P) by materializing silo ω with value v, yield-
ing silo store S′. Rules R-Req1Local and R-Req2Local process a message
Reqs(h, r, ω) where silo store S forwards id(r) to another silo id(r′). Rules R-
ReqMapLocal and R-ReqFMapLocal evaluate a silo reference containing
Mapped or FMapped, respectively, in case the parent silo reference is materi-
alized. In both cases, spore value p, stored in r, is applied to the value of
the parent silo. In case of R-ReqMapLocal, the silo store is updated with
the materialization result v′. In case of R-ReqFMapLocal, the silo store

5

R-Seq

E[t] | µ →h E[t′] | µ′

(E[t], µ,Q, S)h −→ (E[t′], µ′, Q, S)h

R-Send1Local
host(r) = h S(id(r)) = (Val(v), P) ι fresh µ′ = [ι 7→ Some(v)]µ

(E[send(r)], µ,Q, S)h −→ (E[ι], µ′, Q, S)h

R-Send2Local
host(r) = h id(r) /∈ dom(S) ι fresh µ′ = [ι 7→ None]µ

(E[send(r)], µ,Q, S)h −→ (E[ι], µ′, Q · Reqs(h, r, id(r)) · Reqι(ι, id(r)), S)h

R-ReqF1

Q = Reqι(ι, ω) :: Q
′ S(ω) = (Val(v), P)

S′ = consume(ω, P, S) µ′ = [ι 7→ Some(v)]µ

(E[await(ι′)], µ,Q, S)h −→ (E[await(ι′)], µ′, Q′, S′)h

R-ReqF2

Q = Reqι(ι, ω) :: Q
′ ω /∈ dom(S)

(E[await(ι′)], µ,Q, S)h −→ (E[await(ι′)], µ,Q′ · Reqι(ι, ω), S)h

Figure 5: Deterministic reduction (future).

is updated with a forwarding reference to r′′, the result of the spore applica-
tion. Finally, the parent silo id(r′) is consumed (removed from silo store S′′)
in case the persist set P is empty, which means that id(r′) was not persisted.
Rule R-ReqPersistLocal materializes silo ω′ under a persist set P ′ which is
obtained by modifying the persist set P of parent silo id(r′) according to the
operator ⋆ stored in r. Rule R-ReqParentLocal enqueues a materialization
request Reqs(h, r

′, id(r′)) in case the parent id(r′) of a requested silo id(r) is
not materialized yet.

Figure 7 shows the non-deterministic reduction rules. The non-deterministic
reduction relation has the form H ↠ H ′ where H and H ′ are sets of hosts of the
form (t, µ,Q, S)h. RuleR-Schedule reduces a host chosen non-deterministically
from the set of hosts. Rule R-Spawn creates a new host whose initial term is
given by the application of the provided spore to the unit value {}. The new
host has an empty store, an empty queue, and an empty silo store. Rule R-
Populate materializes a silo with a fresh identifier ω on host h′ using value v.
Rules R-Req1-3 and R-Send are analogous to the corresponding deterministic
reduction rules. The main difference is that messages are exchanged between
different hosts in the case of non-deterministic reduction.

1.2 Type Assignment

Type assignment is based on a judgment of the form Γ;Σ;∆ ⊢ t : T which
assigns term t type T . Γ is a standard type environment; Σ is a standard store
typing; ∆ is a silo store typing which is new. ∆ maps identifiers ω to types,

6

R-Res
Q = Ress(ω, v, P) :: Q′ S′ = [ω 7→ (Val(v), P)]S

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′, S′)h

R-Req1Local

Q = Reqs(h, r, ω) :: Q
′ S(id(r)) = (Fwd(r′), P) S(id(r′)) = (Val(v), P ′)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Ress(ω, v, P), S)h

R-Req2Local

Q = Reqs(h, r, ω) :: Q
′ S(id(r)) = (Fwd(r′), P) id(r′) /∈ dom(S)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Reqs(h, r′, ω), S)h

R-ReqMapLocal

Q = Reqs(h
′, r, ω) :: Q′ r = Mapped(ω′, r′, p) S(id(r′)) = (Val(v), P)

v′ = p(v) S′ = [ω′ 7→ (Val(v′), ∅)]S S′′ = consume(id(r′), P, S′)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Reqs(h′, r, ω), S′′)h

R-ReqFMapLocal

Q = Reqs(h
′, r, ω) :: Q′ r = FMapped(ω′, r′, p) S(id(r′)) = (Val(v), P)

r′′ = p(v) S′ = [ω′ 7→ (Fwd(r′′), ∅)]S S′′ = consume(id(r′), P, S′)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Reqs(h′, r′′, ω), S′′)h

R-ReqPersistLocal

Q = Reqs(h
′, r, ω) :: Q′ r = Persist(ω′, r′, ⋆) ω′ = (h′′, i) S(id(r′)) = (Val(v), P)

P ′ = P ⋆ {h′′} S′ = [ω′ 7→ (Val(v), P ′)]S S′′ = consume(id(r′), P, S′)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Ress(ω, v, P ′), S′′)h

R-ReqParentLocal

Q = Reqs(h
′, r, ω) :: Q′ Some(r′) = parent(r) id(r′) /∈ dom(S)

(E[await(ι)], µ,Q, S)h −→ (E[await(ι)], µ,Q′ · Reqs(h, r′, id(r′)) · Reqs(h′, r, ω), S)h

Figure 6: Deterministic reduction (silo).

7

R-Schedule
(t, µ,Q, S)h → (t′, µ′, Q′, S′)h

{(t, µ,Q, S)h} ∪H ↠ {(t′, µ′, Q′, S′)h} ∪H

R-Spawn
h′ fresh ι fresh µ′ = [ι 7→ h′]µ

{(E[spawn(spore { x : T = v ; (x : T) ⇒ t })], µ,Q, S)h} ∪H

↠ {(E[ι], µ′, Q, S)h, ((spore { x : T = v ; (x : T) ⇒ t }) {}, ϵ, ϵ, ϵ)h
′
} ∪H

R-Populate
µ(ι) = h′ S′′ = [ω 7→ (Val(v), ∅)]S′ ω = (h′, i) i fresh

{(E[populate(ι, v)], µ,Q, S)h, (t′, µ′, Q′, S′)h
′
} ∪H ↠ {(E[Mat(ω)], µ,Q, S)h, (t′, µ′, Q′, S′′)h

′
} ∪H

R-Req1

Q = Reqs(h
′, r, ω) :: Q′′ S(id(r)) = (Val(v), P) m = Ress(ω, v, P)

{(E[await(ι)], µ,Q, S)h, (t′, µ′, Q′, S′)h
′
} ∪H ↠ {(E[await(ι)], µ,Q′′, S)h, (t′, µ′, Q′ ·m,S′)h

′
} ∪H

R-Req2

Q = Reqs(h
′, r, ω) :: Q′′ S(id(r)) = (Fwd(r′), P)

S(id(r′)) = (Val(v), P ′) m = Ress(ω, v, P)

{(E[await(ι)], µ,Q, S)h, (t′, µ′, Q′, S′)h
′
} ∪H ↠ {(E[await(ι)], µ,Q′′, S)h, (t′, µ′, Q′ ·m,S′)h

′
} ∪H

R-Req3

Q = Reqs(h
′′, r, ω) :: Q′′ S(id(r)) = (Fwd(r′), P)

id(r′) /∈ dom(S) h′ = host(r′) m = Reqs(h
′′, r′, ω)

{(E[await(ι)], µ,Q, S)h, (t′, µ′, Q′, S′)h
′
} ∪H ↠ {(E[await(ι)], µ,Q′′, S)h, (t′, µ′, Q′ ·m,S′)h

′
} ∪H

R-Send
host(r) = h′ h′ ̸= h m = Reqs(h, r, id(r)) ι fresh µ′′ = [ι 7→ None]µ

{(E[send(r)], µ,Q, S)h, (t′, µ′, Q′, S′)h
′
} ∪H ↠ {(E[ι], µ′′, Q, S)h, (t′, µ′, Q′ ·m,S′)h

′
} ∪H

Figure 7: Non-deterministic reduction.

8

T-Var
x : T ∈ Γ

Γ;Σ;∆ ⊢ x : T

T-Loc
Σ(ι) : T

Γ;Σ;∆ ⊢ ι : T

T-Abs
Γ, x : T ; Σ;∆ ⊢ t : T ′

Γ;Σ;∆ ⊢ ((x : T) ⇒ t) : T ⇒ T ′

T-App
Γ;Σ;∆ ⊢ t : T ⇒ T ′ Γ;Σ;∆ ⊢ t′ : T

Γ;Σ;∆ ⊢ (t t′) : T ′

T-Record
Γ;Σ;∆ ⊢ t : T

Γ;Σ;∆ ⊢ {l = t} : {l : T}

T-Select
Γ;Σ;∆ ⊢ t : {l : T}
Γ;Σ;∆ ⊢ t.li : Ti

T-Spore
Γ;Σ;∆ ⊢ t : T x : T , x : T ; ∅;∆ ⊢ t : T ′ ∀Ti ∈ T . serializable(Ti)

Γ;Σ;∆ ⊢ (spore { x : T = t ; (x : T) ⇒ t }) : T ⇒ T ′ { type C = T }

T-AppSpore
Γ;Σ;∆ ⊢ t : T ⇒ T ′ { type C = T } Γ;Σ;∆ ⊢ t′ : T

Γ;Σ;∆ ⊢ (t t′) : T ′

T-Spawn
Γ;Σ;∆ ⊢ t : ({} ⇒ T { type C = T })

Γ;Σ;∆ ⊢ spawn(t) : Host

T-Populate
Γ;Σ;∆ ⊢ t : Host Γ;Σ;∆ ⊢ t′ : T serializable(T)

Γ;Σ;∆ ⊢ populate(t, t′) : SiloRef[T]

T-Map
Γ;Σ;∆ ⊢ t : SiloRef[T] Γ; Σ;∆ ⊢ t′ : (T ⇒ T ′ { type C = T })

Γ;Σ;∆ ⊢ map(t, t′) : SiloRef[T ′]

T-FMap
Γ;Σ;∆ ⊢ t : SiloRef[T] Γ; Σ;∆ ⊢ t′ : (T ⇒ SiloRef[T ′] { type C = T })

Γ;Σ;∆ ⊢ flatMap(t, t′) : SiloRef[T ′]

T-Persist
Γ;Σ;∆ ⊢ t : SiloRef[T]

Γ; Σ;∆ ⊢ persist(t) : SiloRef[T]

T-Send
Γ;Σ;∆ ⊢ t : SiloRef[T]

Γ; Σ;∆ ⊢ send(t) : Future[T]

T-SiloRef
∆(id(r)) = T ∆ ⊢ r

Γ;Σ;∆ ⊢ r : SiloRef[T]

T-Await
Γ;Σ;∆ ⊢ t : Future[T]

Γ; Σ;∆ ⊢ await(t) : T

Figure 8: Type assignment.

9

S-Record
∀Ti ∈ T . serializable(Ti)

serializable({l : T})

S-Spore
∀Ti ∈ T . serializable(Ti)

serializable(T ⇒ T ′ { type C = T })

S-SiloRef

serializable(SiloRef[T])

Figure 9: Serializable types.

thereby providing a typing for silo stores S. Figure 8 shows the rules for type
assignment. Rules T-Var, T-Loc, T-Abs, T-App, T-Record, and T-Select
are unchanged compared to a standard typed lambda calculus with records [?].

Rule T-Spore assigns a type to spore literals. Importantly, the body of the
spore’s closure, t, must be well-typed in a type environment containing only
the closure parameter x and the variables x in the spore’s header, as well as
an empty store typing. Furthermore, the types of captured variables must be
serializable. The predicate serializable is defined in Figure 9. These constraints
ensure that spore values are always independent of the environment and store
of the creating host. This independence is expressed by the following theorem:

Theorem 1.1. (Serializable Values) If Γ;Σ;∆ ⊢ v : T and serializable(T) then
∅; ∅;∆ ⊢ v : T .

Proof. By induction on the derivation of Γ;Σ;∆ ⊢ v : T . See Appendix ??.

Rule T-AppSpore is analogous to rule T-App. Rule T-Spawn requires
argument t to be a spore with domain type unit; the result has type Host. Rule
T-Populate leverages the serializable predicate to ensure the value of the silo
to be populated is independent of its source context. Rules T-Map, T-FMap,
andT-Persist are straightforward; note that map and flatMap are polymorphic
in the types of the captured variables of their spore argument types. Rules T-
Send and T-Await are entirely unsurprising. Rule T-SiloRef is the only rule
that uses the silo store typing ∆. Analogous to rule T-Loc, the type of silo
id(r) is looked up in ∆. Furthermore, T-SiloRef requires r to be well-formed
in ∆, written ∆ ⊢ r (see below).

1.3 Well-Formed Configurations

Figure 10 shows the rules for well-formed configurations. These rules are essen-
tial for establishing subject reduction (see Section 2). Rules WF-Store1 and
WF-Store2 are standard. Rules WF-Ref1-2 require the types given by the
silo store typing ∆ to be consistent with the corresponding type of spore p. Rule
WF-Ref3 requires the type of silo ω to be equal to the type of its parent silo
id(r) in silo store typing ∆. Rule WF-Ref4 requires ∆ to be defined for the
identifier of a materialized silo. Finally, rules WF-Ref1-3 require parent silo
references to be well-formed. Rules WF-SiloStore1-3 require a well-formed
silo store to be consistent with silo store typing ∆. Rules WF-Q1-4 specify
well-formedness of message queues in ∆ and Σ. Rules WF-HostConfig, WF-
Host1, and WF-Host2 combine the previous rules in the expected way.

10

WF-Store1

∅ ⊢ ∅

WF-Store2
Σ ⊢ µ

[ι 7→ T]Σ ⊢ [ι 7→ v]µ

WF-Ref1
∆(ω) = T ∆(id(r)) = T ′ ∃Γ,Σ. Γ;Σ;∆ ⊢ p : T ′ ⇒ T {. . .} ∆ ⊢ r

∆ ⊢ Mapped(ω, r, p)

WF-Ref2
∆(ω) = T ∆(id(r)) = T ′ ∃Γ,Σ. Γ;Σ;∆ ⊢ p : T ′ ⇒ SiloRef[T] {. . .} ∆ ⊢ r

∆ ⊢ FMapped(ω, r, p)

WF-Ref3
∆(ω) = T ∆(id(r)) = T ∆ ⊢ r

∆ ⊢ Persist(ω, r, ⋆)

WF-Ref4
ω ∈ dom(∆)

∆ ⊢ Mat(ω)

WF-SiloStore1

∆ ⊢ ∅

WF-SiloStore2
∆(ω) = T ∅; ∅;∆ ⊢ v : T ∆ ⊢ S

∆ ⊢ [ω 7→ (Val(v), P)]S

WF-SiloStore3
∆(id(r)) = ∆(ω) ∆ ⊢ r ∆ ⊢ S

∆ ⊢ [ω 7→ (Fwd(r), P)]S

WF-Q1

∆;Σ ⊢ ϵ

WF-Q2

∆(ω) = T Σ(ι) = Future[T] ∆;Σ ⊢ Q

∆;Σ ⊢ Reqι(ι, ω) :: Q

WF-Q3

∆(ω) = T ∅; ∅;∆ ⊢ v : T ∆;Σ ⊢ Q

∆;Σ ⊢ Ress(ω, v, P) :: Q

WF-Q4

∆(id(r)) = ∆(ω) ∆ ⊢ r ∆;Σ ⊢ Q

∆;Σ ⊢ Reqs(h, r, ω) :: Q

WF-HostConfig
Σ ⊢ µ ∆ ⊢ S ∆;Σ ⊢ Q Γ;Σ;∆ ⊢ t : T

∆;Σ ⊢ (t, µ,Q, S)h

WF-Host1

∆ ⊢ ∅

WF-Host2
∃Σ. ∆;Σ ⊢ (t, µ,Q, S)h ∆ ⊢ H

∆ ⊢ {(t, µ,Q, S)h} ∪H

Figure 10: Well-formedness.

11

2 Subject Reduction

This section establishes a subject reduction theorem for the presented core lan-
guage. The complete proof is provided in the appendix; here, we restrict our-
selves to summarizing the main results.

Lemma 2.1. (Substitution) If Γ, x : T ′; Σ;∆ ⊢ t : T and Γ;Σ;∆ ⊢ v : T ′ then
Γ;Σ;∆ ⊢ [x 7→ v]t : T .

Proof. By induction on the derivation of Γ, x : T ′; Σ;∆ ⊢ t : T .

Lemma 2.2. (Queue Concatenation) If ∆;Σ ⊢ Q and ∆;Σ ⊢ Q′ then ∆;Σ ⊢
Q ::: Q′.

Proof. By induction on the length of Q. See Appendix ??.

Theorem 2.1. (Subject Reduction)

1. If Γ;Σ;∆ ⊢ t : T , Σ ⊢ µ, and t | µ →h t′ | µ′ then Γ;Σ′;∆′ ⊢ t′ : T , and
Σ′ ⊢ µ′ for some Σ′ ⊇ Σ and ∆′ ⊇ ∆.

2. If ∆;Σ ⊢ (t, µ,Q, S)h and (t, µ,Q, S)h −→ (t′, µ′, Q′, S′)h then ∆′; Σ′ ⊢
(t′, µ′, Q′, S′)h for some ∆′ ⊇ ∆ and Σ′ ⊇ Σ.

3. If ∆ ⊢ H and H ↠ H ′ then ∆′ ⊢ H ′ for some ∆′ ⊇ ∆.

Proof. Part 1: by induction on the derivation of t | µ →h t′ | µ′. Part 2:
by induction on the derivation of (t, µ,Q, S)h −→ (t′, µ′, Q′, S′)h. Part 3: by
induction on the derivation of H ↠ H ′. See Appendix ?? for the complete
proof.

12

