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Abstract— This paper proposes a generalized method for
tracking of multiple objects from moving, cooperative vehicles
– bringing together an Unscented Kalman Filter for vehicle
localization and extending a Sequential Monte Carlo Probabil-
ity Hypothesis Density filter with a novel cooperative fusion
algorithm for tracking. The latter ensures that the fusion
of information from cooperating vehicles is not limited to a
fully overlapping Field Of View (FOV), as usually assumed
in popular distributed fusion literature, but also allows for
a perceptual extension corresponding to the union of the
vehicles’ FOV. Our method hence allows for an overall extended
perception range for all cooperative vehicles involved, while
preserving same or improving the accuracy in the overlapping
FOV. This method also successfully mitigates noisy sensor
measurement and clutter, as well as localization inaccuracies
of tracking vehicles using Global Navigation Satellite Systems
(GNSS). Finally, we extensively evaluate our method using
a high-fidelity simulator for vehicles of varying speed and
trajectories.

I. INTRODUCTION

The recent advent of commercial highly automated ve-
hicles driven by advancements in autonomous vehicles re-
search and the rise of trends in information technology such
as big data and the “internet of things” have pushed auto-
mobile companies as well as supranational organizations to
explore options for allowing these highly automated vehicles
to cooperate with one another as well as with the surrounding
infrastructure [1]. The goal of such a cooperation is to
eventually increase road traffic safety and efficiency [2].
Despite the presence of advanced sensors on board, such
measures are welcome because perceptual capabilities of a
single highly automated vehicle often suffer from a limited
FOV, occlusion, and an inherent sensor inaccuracy.

When considering vehicle-to-vehicle cooperation, the pos-
sible communication bottlenecks and the richness in data
from advanced sensors imply that the naive communication
of raw sensor data would not be favorable for such a
task. Instead, processed and filtered data representing other
vehicles or objects is preferred.

The effective and robust tracking of these targets also relies
on the accurate localization of the tracking vehicle for a
reliable representation of targets in a global reference frame.
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II. RELATED WORK

A solution that has gained attraction in the recent years in
addressing the robust tracking of multiple targets is based
on Random Finite Set (RFS) models, in which a set of
objects of variable cardinality is modeled as a random finite
set. Specifically, we focus on Probability Hypothesis Density
(PHD) and Cardinalized PHD (CPHD) filters – both based on
RFS models – as they deal with the target-measurement asso-
ciation implicitly. Prior approaches using explicit association
[3], [4] are faced with the issues of clutter, where multiple
measurements for a single target appear, as well as false
associations. PHD filters are furthermore able to robustly
and accurately track targets without having prior knowledge
over the number of targets, unlike the Joint Probabilistic Data
Association (JPDA) filter [4].

Common implementations of the PHD filter include the
Gaussian Mixture (GM) and Sequential Monte Carlo (SMC)
PHD filter. Vasic et al. [5], for example, extended the GM-
PHD filter introduced in [6] to involve cooperation and fusion
of information between two agents each running an instance
of the GM-PHD filter.

While the case for the feasibility of a collaborative GM-
PHD filter (C-GM-PHD) in tracking multiple targets was
presented in [5], the C-GM-PHD approach has limitations in
the fact that single-target transitional densities and likelihood
functions must be Gaussian [7]. Transitional densities also
have to be linear or approximately linear in order for the
GM-PHD and approaches based on it to work.

As previously mentioned, SMC methods represent an
alternative in approximating the PHD filter as shown in
[8] and are able to handle nonlinear targets with relatively
low complexity. Ristic et al. proposed an improved SMC
approach in [9] that is able to reliably extract state estimates
without the use of an explicit clustering algorithm. Clustering
algorithms such as K-means or based on the Expectation-
Maximization (EM) principle require a Gaussian assumption
or an a priori knowledge of the number of targets, and hence
are counterproductive to the advantages of the nonlinear
SMC-PHD filter.

The distributed fusion of information from multiple in-
stances of the SMC-PHD filter was explored in [10] by using
Exponential Mixture Densities (EMD). However, it assumes
that all agents share a common FOV in which targets are
detected. This is a highly limiting assumption especially in
the automotive domain where cooperation between vehicles
should aim to increase the amount of information each
vehicle has of its surroundings. Furthermore, applications



of the SMC-PHD filter and its distributed variation have
been only experimentally verified with stationary sensors,
emulating its application largely in the field of defense.

The global localization of moving vehicles, on the other
hand, is often obtained by onboard consumer GNSS receivers
which are characterized by significant uncertainty of a few
meters on average, varying with atmospheric factors and
surrounding environment [11]. An accurate localization of
the tracking vehicle must be ensured in order for a feasible
cooperation between vehicles to be possible.

One of the most common approaches for an accurate
localization of targets with nonlinear models despite noisy
sensor measurements is the Unscented Kalman Filter (UKF)
[12], which resolves the main issue of the Extended Kalman
Filter (EKF) being difficult to tune and yielding a large
uncertainty [13]. The UKF has also been used for state
estimation of land-based vehicles [14], [15].

We propose an integrated approach of localization with
multiple target tracking, factoring uncertainties from the
localization itself into tracking. Furthermore, we also propose
an improvement to the distributed fusion of SMC-PHD filters
by generalizing it for non-overlapping fields of views and
hence increase the applicability of cooperative multi-target
tracking. We refer to our generalized approach, from this
point forth, as the Cooperative SMC-PHD filter. The goal
of our approach is to improve tracking accuracy as well
as provide each tracking vehicle with additional information
beyond its own FOV.

The remainder of this paper is organized as follows. We
start off with a brief overview of the SMC-PHD filter and
the distributed fusion of multiple SMC-PHD filter instances
as proposed in [10] and proceed to introduce our extension
to the current approach. A short understanding of the UKF is
also provided as well as an explanation as to how uncertain-
ties from the UKF are factored into tracking. We conclude
the paper with experimental results and their discussion.

III. COOPERATIVE SMC-PHD FILTER

In addressing the problem of multiple object tracking, we
propose the use of a Cooperative SMC-PHD (C-SMC-PHD)
filter that builds upon the SMC-PHD filter introduced in [9]
and extends it with fusion of SMC-PHD densities. Our novel
fusion approach generalizes the EMD method introduced in
[10] by dealing with information acquired by a cooperating
vehicle outside of the tracking vehicle’s FOV.

The PHD overcomes the impracticability of the implemen-
tation of a multi-target Bayes nonlinear filter by propagating
only the first-order moment of the multi-object posterior
densities [16]. Like any recursive Bayesian filter, the PHD
filter contains the prediction and update steps, both of which
are carried out by a random sample approximation using an
SMC implementation, such that the posterior of the PHD at
time t given observations up to and including at time t is
approximated by a random sample set as follows:

Dt|t(x) ≈
N∑
n=1

wnt|tδxn
t|t

(x) (1)
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extraction Resampling

Prediction Update Target	
extraction Resampling

Fusion Resampling

Particles,	
no.	measurements

SMC-PHD	filter

Cooperative	SMC-PHD	filter

Fig. 1. The C-SMC-PHD filter illustrated. Fusion of intensities from
cooperating agents is carried out only if information is available. Otherwise,
the filter of the tracking agent continues without cooperation. The blocks
in green represent our contributions while the other blocks represent the
state-of-the-art approach.

where δ(x) is the Dirac delta function and {(wnt|t,x
n
t|t)}

N
n=1

a weighted particle set comprising of N random samples xn
t|t

and its corresponding weights wnt|t. Furthermore, the number
of targets can be extracted from the particle set by summing
up the importance weights for large values of N . Ristic et al.
also proposed in [9] that particles should be spawned around
the measurement set Zt at every time step to avoid inefficient
use of particles in estimating the posterior. The distinction
between newborn and persistent particles is evident through
the recursive implementation of the filter.

The general concept of the C-SMC-PHD is hence a five-
step process illustrated in Fig. 1, where the prediction,
update and target extraction steps are taken from [9] and
are summarized below for completeness.

A. Prediction

In the prediction step, ρ newborn particles of states
xnt|t−1,b are generated around each measurement z ∈ Zt with
a uniform weight

wnt|t−1,b =
νbt|t−1

ρmt
(2)

where mt is the cardinality of measurements and νbt|t−1 is the
expected number of newborn targets between time t− 1 and
t. Additionally, the states of persistent particles xnt|t−1,p are
propagated according to the dynamics defined by the single-
object transition density. Weights of persistent particles are
also revised according to the survival probability pS given
by:

wnt|t−1,p = pS(xnt−1)wnt−1,p. (3)

B. Update

In this step, the weights of the persistent (wnt|t−1,p) and
newborn (wnt|t−1,b) particles representing both their respec-
tive PHDs are updated as such

wnt|t,p =
[
1− pD(xnt|t−1,p)

]
wnt|t−1,p+∑

z∈Zt

pD(xnt|t−1,p)gt(z|xt|t−1,p)w
n
t|t−1,p

L(z)
(4)

for persistent particles and

wnt|t,b =
∑
z∈Zt

wnt|t−1,b

L(z)
(5)



for newborn particles where

L(z) = κt(z) +

ρmt∑
n=1

wnt|t−1,b+

Nt−1∑
n=1

pD(xnt|t−1,p)gt(z|x
n
t|t−1,p)w

n
t|t−1,p. (6)

pD(x) furthermore represents the detection probability of a
target with state x while gt(z|x) represents the single-target
measurement likelihood at time t. Measurement-associated
clutter is also factored in with the term κt(z).

C. State estimation extraction

It is noted that the second term in (4) can essentially be
viewed as a sum of weights corresponding to each mea-
surement z ∈ Zt. If each measurement in the measurement
set is indexed Zt = {zt,j | j = 1, 2, ...,mt}, an additional
weight metric for each measurement of index j where j =
{0, 1, ...,mt} can be defined. The index j = 0 represents the
measurement-independent first term of (4).

wn,jt|t,p =
[
1− pD

(
xnt|t−1,p

)]
wnt|t−1,p j = 0

pD(xn
t|t−1,p)gt(z|xt|t−1,p)w

n
t|t−1,p

L(z) j = 1, ...,mt

. (7)

Therefore, each measurement index j can be given an
associated weight W j

t,p =
∑Nt−1

n=1 wn,jt|t,p with 0 ≤W j
t,p ≤ 1.

Intuitively, W j
t,p would be high for a certain measurement

if zt,j resulted in non-zero likelihood for some particles,
indicating that the measurement originated from a target,
and close to zero otherwise. The state estimate to each
measurement index is then only reported if the weight W j

t,p

above a given reporting threshold cR.
Correspondingly, the state estimate x̂t,j and its associated

covariance matrix Pt,j can be obtained as:

x̂t,j =

Nt−1∑
n=1

wn,jt|t,px
n
t|t−1,p

Pt,j =

Nt−1∑
n=1

wn,jt|t,p

(
xnt|t−1,p − x̂t,j

)(
xnt|t−1,p − x̂t,j

)T
.

(8)

D. Resampling

The resampling step represents a core component of SMC
methods and ensures that the filter contains more particles of
higher weight and fewer of those with lower weights. In our
implementation, we use the low variance resampling [17] (or
more recently known as the resampling wheel). At the end
of this step, the importance weights of all persisting particles
are set to 1/Nt−1 since weight-based likelihoods are replaced
by frequencies when samples are drawn by weights.

Fig. 2. The logistic function with k = ±8 with θsup being the extreme
angles of the field of view of the LIDAR sensor.

E. Fusion

Given that each agent runs an instance of the SMC-PHD
filter as shown in Fig. 1, the goal of fusion to is to obtain the
fused PHD posterior intensities of both PHD posteriors. In
this case, our contribution involves providing a generalized
approach to fuse PHD posterior intensities where FOVs of
the cooperating agents are not completely overlapping. This
is achieved by using the EMD approach introduced in [10]
for completely overlapping segments of the field of view
and a novel method for incorporating information from the
cooperating agent that is outside of the tracking agent’s FOV.

Upon receiving particles from the cooperating agent and
transforming them to the global reference frame, we cluster
particles over the whole state space using the DBSCAN
algorithm [18] to obtain a set of R particle clusters {rl|l =
1, 2, ..., R} and obtain the mean of each cluster p̄l. Instead
of a binary assignment p̄l ∈ FOVown or p̄l /∈ FOVown, we
employ the logistic function defined as:

fp(x) =
1

1 + exp(−k · angθsup
(x))

(9)

to obtain a continuous probability weighting in the immedi-
ate vicinity of FOVown. angθsup

(x) represents the angular
difference from particle x to the extreme angles θsup of
the field of view. The logistic function is hence calculated
with respect to the angle of the FOV as better visualized
in Fig. 2. A simple heuristic is used to decide whether
to consider received particles as external to the tracking
vehicle’s FOV or as common to both FOVs is given in lines
1 – 14 of Algorithm 1. This non-binary classification of
particles ensures that transitions between fields of view occur
smoothly and target estimates are not lost.



Algorithm 1 Procedure for classifying received particles.
1: ξext ← [] . ext. particle set
2: ξcm ← [] . common particle set
3: for rl ∈ {rl|l = 1, 2, .., R} do
4: p← fp(p̄l)
5: if p = 0 then
6: Insert rl into ξext.
7: else
8: Penalize rl by p.
9: Insert rl into ξcm.

10: if p < 1 then
11: Insert rl into ξext.
12: end if
13: end if
14: end for
15: ξintersect ← []
16: Pown ← Polygon(FOVown) . Create polygon from

FOV
17: Pother ← Polygon(FOVother)
18: Pintersect ← Pown ∩ Pother
19: for (wn,xn) ∈ {(wn,xn)}Nn=1 do . own particle set
20: if xn ∈ Pintersect then
21: Insert (wn,xn) into ξintersect
22: end if
23: end for
24: ξcm ← ξcm ∪ ξintersect
25: return ξext, ξcm

Bearing in mind that the fusion proposed in [10] re-
quire that two fields of view intersect, we are still left
with removing particles that might be in FOVinternal :=
FOVown\FOVother. This is achieved by determining the
area defined by the intersection of two fields of view
FOVown and FOVother by representing them as convex
polygons. The intersection set of two convex polygons can
be obtained in linear time [19] and is also a convex polygon
itself. Lines 15 – 24 elaborate on the procedure for finding
particles that belong to the common FOV.

1) Fusion within the Common FOV: Given two PHD
posterior intensities of two i.i.d. cluster distributions fi and
fj , the EMD of these two cluster distributions is also an i.i.d.
cluster distribution defined as

f(·)(X) = n! · µ(·)(n)
∏
x∈X

s(·)(x) (10)

where

sω(x) =
s
(1−ω)
i (x)sωj (x)

Zω (si, sj)
, (11)

µω = µ
(1−ω)
i · µωj · Zω(si, sj) (12)

Zω (si, sj) =

∫
si(x)(1−ω)sj(x)ωdx. (13)

In our case, we assume a Poisson distributed cardinality from
both nodes given by the means µ(·). The resulting cardinality
is hence also Poisson distributed.

The parameter ω ∈ [0, 1] determines the relative weight
assigned to each distribution and needs to be extrinsically
chosen. An optimal ω can be obtained by minimizing a cost
function defined by the Renyi Divergence (RD) given its
relevance in sensor management [20] and is given by

ω∗ = arg min
ω∈[0,1]

(Rα(fω||fi)−Rα(fω||fj))2 (14)

where

Rα (fω||fi) =

1

α− 1
log

kmax∑
n=0

[
µαω(n)µ

(1−α)
i (n)

(
Zαω (si, sj)

Zω (si, sj)
α

)n]
(15)

Rα (fω||fj) =

1

α− 1
log

kmax∑
n=0

[
µαω(n)µ

(1−α)
j (n)

(
Zα(1−ω) (si, sj)

Zω (si, sj)
α

)n]
(16)

and kmax representing the maximum number of targets that
would be tracked by the filter at any time. µx(n) represents
the probability mass function of the Poisson distribution over
n with a mean λx being the cardinality of node x.

Bearing in mind that both PHD posteriors are implemented
with SMC methods, the continuous approximations of the
distributions have to be reconstructed from the particle sets of
both distributions. This is achieved with the Kernel Density
Estimation (KDE) method [21], in which the estimated den-
sity is obtained from the sum of kernel functions at particle
points. An explicit particle to measurement association is
also created by clustering particles using the DBSCAN [18]
algorithm to construct separate KDEs over each cluster to
ensure the closest approximation of the true posterior density
instead of an oversmoothed density function.

For each cluster k ∈ K = {k1, ..., kK}, the covariance Ck

is computed to find the density estimate as such

ŝ (x|Z1:t) =
1

M

M∑
m=1

Kh

(
x, x(m);Ckm

)
(17)

where the bandwidth h = n−1/(d+4) is calculated according
to Scott’s Rule [22], with n the number of data points and
d the number of dimensions.

The union of particle sets PU from both nodes with Mω =
Mi + Mj particles is obtained to sample from the fused
localization density (11) in order to obtain estimates ŝi(x)
and ŝj(x). Thereafter, the estimate of (13) is given as

Ẑω(si, sj) :=
∑
x∈PU

ŝ
(1−ω)
i (x)ŝ

(ω)
j (x)

Miŝi(x) +Mj ŝj(x)
. (18)

The weight of the m′-th particle in PU is also estimated as

ζ̂(m
′) ∝

ŝ
(1−ω)
i

(
x(m

′)
)
ŝ
(ω)
j

(
x(m

′)
)

Miŝi
(
x(m′)

)
+Mj ŝj

(
x(m′)

) , (19)

resulting in the union particle set {(ζ(m′), x(m′))}Mω

m′=1.



Having obtained (18), (14) can be computed for a dif-
ferent values of ω using exhaustive search in equidistantly
distributed points over the interval [0, 1]. Finally, the weights
in (19) can be obtained for the optimal ω∗.

Thereafter, the particle set PU and the set of particles in
FOVinternal are resampled separately. The union of PU and
the particles in FOVinternal is created to be used in the
prediction and update steps of the next iteration.1

2) Incorporating External Information: Unlike particles
in the common FOV that can be predicted and updated
according to measurements, external particles can only be
predicted by the transitional densities since the tracking agent
receives no associated measurement. Algorithm 2 briefly
explains the handling and propagation of external particles.

Algorithm 2 Procedure for handling particles representing
external targets at a timestep t

1: if New information from cooperating agent available
then

2: Replace external particle set with incoming informa-
tion from cooperating agent.

3: end if
4: External particles are propagated according to their

dynamics and their weights reduced by the survival
probability pSext , analog to (3).

5: In the target extraction step, an external target corre-
sponding to an external measurement j is only reported
if W j

t,p ≥ cR.
6: Sampling of external particles is carried out over each

target estimate x̂t,j and its covariance Pt,j according to
(8).

IV. CASCADING UKF AND C-SMC-PHD FILTERS

For the particular context of multiple target tracking on
a moving vehicle, we propose a cascading of an UKF filter
dedicated to the vehicle state estimation with a C-SMC-PHD
filter as an approach to solve the full problem of localization
of the tracking vehicle and the tracking of multiple objects.
The UKF introduces a deterministic method for choosing a
set of weighted sigma points approximating the distribution
with a priori mean x̄ and covariance P̄xx which are subjected
to a nonlinear transform. Thereafter, the a posteriori mean
ȳ and covariance P̄yy of the distribution can be obtained
by the weighted average and weighted outer product of the
transformed points respectively.

The state and measurement are both defined by the po-
sition (x, y), orientation (ϕ)x = z = [x, y, ϕ, V ], emulating
GNSS data with a onboard compass with the following state

1It should be noted that the number of particles chosen in the resampling
step has to be identical in both agents when carrying out the fusion step.
Otherwise, this might result in a problem due to unequal weights.
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Fig. 3. An illustration of the cascading of an UKF and a C-SMC-PHD
filter at time t.

transition function

xt = xt−1 + V · sin(ϕt−1) (20)
yt = yt−1 + V · cos(ϕt−1) (21)
ϕt = ϕt−1 (22)
Vt = Vt−1. (23)

The a posteriori state estimate x̄lt|t along with its error
covariance P̄lt|t (where superscript l denotes variables used
in the localization filter) of the UKF is then used as input in
the C-SMC-PHD filter in order to transform tracked targets
from the local coordinate frame of the tracking vehicle into
the global coordinate frame. The representation of tracked
targets in global coordinate frame is necessary as cooperating
vehicles might not possess relative positional information.

As the objects tracked by the C-SMC-PHD filter are
assumed to be vehicles in this context, they are modeled
in the same way as the state of the tracking vehicle. Hence,
their single state transition model is also defined by (20) –
(23). As such, we also assume that the measurement obtained
contains the positional information as well as orientation of
tracked targets by preprocessing data from the laser range
sensor, as described in [5]. The likelihood model is given as
a multivariate Gaussian distribution:

gt(zt|xt|t−1) =

1√
(2π)3|Σ|

exp
(
−0.5(zt − xt|t−1)TΣ−1(zt − xt|t−1)

)
(24)

where Σ represents the measurement uncertainty.
Bearing in mind that the preprocessing of data from

LIDAR sensors to extract the pose of tracked vehicles
generally result in inaccuracies, especially at larger distances,
the model provided in (24) has to take into account both the
uncertainty in localization of the tracking vehicle as well as
uncertainty of the tracked vehicles. We hence reconsider (24)
such that

Σ = P̄lt|t + diag(σ2
x, σ

2
y, σ

2
ϕ, σ

2
V ), (25)

where σ(·), (·) = {x, y, ϕ, V } represent the standard devi-
ation for x-y coordinates, the vehicle orientation in global
coordinates and speed, respectively.

An illustration of this procedure is reported in Fig. 3.



Fig. 4. The Citron C-ZERO (left) car fitted with a Ibeo LUX LIDAR
sensor simulated in the Webots environment (right).

V. EXPERIMENTAL RESULTS

Experiments were carried out in Webots [23], a high-
fidelity robot simulator, with the RO2IVSim extension2

which allows for simulation of real world vehicles with state-
of-the-art sensors found on modern cars. Simulated Citroën
C-ZERO cars were equipped with front-facing Ibeo LUX
LIDAR sensors, a GNSS device, a wireless communication
device and a compass. Sensor properties were calibrated
from their respective data sheet. The simulation environment,
along with the simulated car is provided in Fig. 4.

A. Scenario

A scenario involving two moving cars (T1, T2), each
running an instance of the state estimation – C-SMC-PHD
filter tracking up to four moving cars (N1, N2, N3, N4) in an
open space is presented. Both T1 and T2 travel at constant
velocity of 10 km/h. The LIDAR sensors in this scenario
have an effective range of 160 meters, a horizontal field of
view of 90 degrees, and operate at a scanning frequency of
25 Hz. The trajectories of the cars are shown in Fig. 5 with an
initial speed of 20 km/h for Ni, i = {1, 2, 3, 4} with varying
speed following the given function

v(t) =


20 0 ≤ t ≤ 4

20− 4 · (t− 4) 4 < t ≤ 8

4 + 4 · (t− 8) 8 < t ≤ 18

(26)

where v(t) is measured in km/h and t in seconds. This
scenario aims to model a typical slow-speed traffic scenario
as close as possible while showing the general case where
two vehicles running tracking algorithms do not perceive the
exact same scene: in the beginning only cars N1 and N2 are
found in the overlapped zone; towards the middle of the
scenario, they leave the union of the two FOVs, about the
same time the cars N3 and N4 enter the common FOV.

B. Parameters

The UKF used for localization of the tracking vehicles was
initialized with the following parameters intrinsic to typical
Kalman filter with the usual notations used here.

P0 = R = diag(4.02, 4.02, 0.012, 0.012) (27)
Q = diag(0.005, 0.005, 0.01, 0.01). (28)

P0 represents the initial estimate covariance while the mean
of the initial distribution was chosen as the first measurement

2See http://disal.epfl.ch/research/RO2IVSim for more details.
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Fig. 5. The vehicle trajectories of the experimental scenario. The grey and
red lines denote the field of views of T1 and T2 respectively.

of the simulation for each tracking vehicle while Q repre-
sents the covariance of the process noise. The first two entries
of the observation model covariance matrix R correspond to
the variance in GPS measurement while the orientation of
the vehicle was assumed to be determined by a compass
with insignificant inaccuracy. An insignificant inaccuracy in
determining the speed of the vehicle was also assumed in
this case. Furthermore, the choice of sigma points was taken
from [24] as the state of the art for research and industry.

For the C-SMC-PHD filter, 100 particles per persisting
measurement were used while ρ = 40 particles were
birthed around each new measurement at every iteration.
The “spawning” of newborn particles at time t around a
measurement follows a Gaussian distribution with the stan-
dard deviation of the position corresponding to the first two
diagonal entries of Pt. A Poisson distribution with λclutter =
1 was used to simulate the occurrence of clutter resulting
from multiple measurements from the LIDAR sensor at each
iteration. The cooperation step of the C-SMC-PHD was
carried out every third sensing step to realistically model
real world conditions where network communications often
occur at a lower rate than sensor readouts.

Additionally, we chose the second term of (25) to be
diag(1.32, 1.32, 0.12, 0.12). The standard deviation for the
estimated position of tracked vehicles were experimentally
obtained from a scenario where the tracking vehicles are
stationary.

C. Results

We present the results of the scenario with the given
parameters along with a discussion of certain noteworthy
observations. The dataset collected in this experiment con-
tains 30 distinct simulation runs where each vehicle starts
at the same positions and runs an open-loop controller. We
note that the fusion of data for the cooperative component
of the C-SMC-PHD filter is done only on the vehicle T1



unless otherwise mentioned. The following results are also
discussed with respect to this vehicle.

The Optimal Sub-Pattern Assignment (OSPA) metric [25]
was used for multi-object performance evaluation. It com-
prises of two components – one considering localization
errors while the other considers the mismatch in cardinality.
For our case, an important consideration here is the relative
performance of the C-SMC-PHD filter to the non-cooperative
variant. As no significant improvements in cardinality is
expected through cooperation, we only focus on the compar-
ison of localization errors. For computing the OSPA error,
the sensitivity of the metric in penalizing estimated position
p = 1 was chosen.

A comparison of the cooperative and non-cooperative
filter’s OSPA localization errors averaged over 30 runs is
provided in Fig. 6 and Fig. 7. The right diagram of Fig. 7
furthermore provides a comparison of the average difference
in OSPA error between the cooperative and non-cooperative
variant of the multiple vehicle tracking filter. To ensure a
fair comparison, only targets in the FOV of the vehicle T1
are considered when computing the OSPA error, since no
targets outside of this area can be observed when the non-
cooperative filter is used.

No statistically significant difference is observed in this
comparison. We believe the absence of significant improve-
ments could be attributed to the localization uncertainty
of tracking vehicles, which correspondingly results in an
uncertain transformation of the tracked vehicles from vehicle
local frame to global coordinates. Furthermore, the fact that
the two vehicles observe targets from a similar position could
also contribute to this result. However, it is important to
note that cooperation with a vehicle that tracks poorly due
to localization error or other factors does not degrade the
tracking vehicle’s tracking accuracy.

A comparison of the cooperative and non-cooperative
filter’s tracking errors per tracked vehicle is shown in Table I,
as observed from both tracking vehicles. Values here are
averaged over all state estimates of a simulation run and over
all simulation runs. Once again, only targets in the internal
FOV of the corresponding tracking vehicle are considered.
The C-SMC-PHD filter showed on average a slightly better
accuracy than its non-cooperative counterpart.

It is furthermore worth noting that the significant tracking
errors even at short distances (for vehicles N3 and N4

especially) could be partially attributed to the preprocessing
of raw LIDAR data and the limited angular resolution of the
LIDAR sensor, since a point cloud relating to a vehicle can
vary significantly with vehicle’s pose in the sensing FOV.

An important aspect of our approach is also to provide
a reliable estimate of external tracked vehicles (vehicles
not in the tracking vehicle’s FOV), of which we have no
additionally information except from that of cooperating
vehicles. In the case of our scenario, T1 and T2 track N3

and N4 exclusively for a certain amount of time and provide
this information to each other as described in Section III-
E.2. The tracking accuracy of external vehicles for each
T(·) is shown in Table II. Although it is observed that

TABLE I
A COMPARISON OF TRACKING ACCURACY OF COMMON VEHICLES

BETWEEN COOPERATIVE AND NON-COOPERATIVE TRACKING.

Tracked
vehicles

Tracking accuracy as perceived from vehicle
(in meters):

T1 T2
Coop No-coop Coop No-coop

N1 2.001 2.133 1.854 1.842
N2 1.920 2.060 1.776 1.832
N3 0.994 1.042 1.467 1.499
N4 1.377 1.392 1.048 1.116

TABLE II
A COMPARISON OF TRACKING ACCURACY OF EXTERNAL VEHICLES

BETWEEN DIRECT AND COOPERATIVE TRACKING. THE ENTRIES IN

BOLD CORRESPOND TO THE EXTERNAL VEHICLE OF Ti .

Tracked vehicles Tracking accuracy as perceived from vehicle:
T1 T2

N3 2.374 1.499
N4 1.392 3.123
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Fig. 6. Comparison of OSPA localization errors between non-cooperative
tracking (left column) and the C-SMC-PHD filter (right column) as viewed
from T1. The corresponding standard deviation is also plotted as error bars.

external vehicles are tracked worse compared to the tracking
done with corresponding measurements, this is only to be
expected owing to the reduced frequency of cooperation
(once every three sensing steps, as noted in Section V-B) and
localization uncertainty of the two tracking vehicles. When
viewed in relation to the range and FOV of LIDAR sensors,
the disparity observed is not very significant considering that
information on external vehicles could be easily more than
tens of meters away from the tracking vehicle itself.

VI. CONCLUSION AND FUTURE WORK

We presented an integrated approach for reliably tracking
multiple mobile targets from a moving vehicle incorporating
information from a neighboring vehicle partially perceiving
the same scene. Our method takes into account vehicles’
localization inaccuracies and sensor noise. The localization
of the tracking vehicle was based on an UKF while the
tracking of multiple vehicles was accomplished with our
proposed C-SMC-PHD filter. A simulation scenario aimed
at closely emulating real-world low-speed driving conditions
but including variable speeds and nonlinear trajectories was
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Fig. 7. Comparison of the statistics (left) of the total OSPA localization
errors between non-cooperative tracking and the C-SMC-PHD filter as well
as difference in OSPA error (right) between non-cooperative and the C-
SMC-PHD filter as observed from T1.

used as a proof-of-concept of our approach cascading an
UKF with a C-SMC-PHD filter.

While we have shown that our approach does accomplish
the goal of provided extended visibility’ for tracking vehi-
cles, further work remains to be done in order for significant
tracking accuracy improvements in the overlapping FOV to
be observed. This work also provides a basis for many more
issues to be addressed. For one, the reduction in the number
of particles to be communicated to cooperating vehicles
could be necessary if such a concept were to be scalable for
use in a larger networks. Whiteley et al. [26] for example,
propose the use of an auxiliary SMC-PHD filter to reduce
the number of particles propagated in time.

Another aspect for future developments could deal with
the increasing of the scale and complexity of the scenarios as
well as introducing non-vehicle objects in the environment.
In cases where one tracking vehicle also tracks another
(cooperative) tracking vehicle, positional information from
GNSS data and measurements from LIDAR data could be
fused to provide a more reliable estimate of vehicles.

Needless to say, the real-world applicability of these pro-
posed methods should be validated with real-world scenarios.
We also aim to conduct real-world experiments involving
real Citroën C-ZERO cars equipped with the real sensor
counterparts currently reproduced only in our high-fidelity
simulation environment.
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