

Vessel Extents for Chemical Reaction Systems – Concepts and Applications

Dominique Bonvin

with S. Srinivasan, D. Rodrigues, J. Billeter and M. Amrhein

Laboratoire d'Automatique EPFL, Lausanne, Switzerland

January 15, 2017

Outline

- Generic models of reaction systems
- Modeling issues
 - Minimal dimensionality, redundant states, invariant relationships
 - Decoupled states, individual extents
 - Concept of vessel extents

• Application areas

- A1. Data reconciliation
- A2. Rate estimation
- A3. Kinetic identification
- A4. State reconstruction
- A5. State estimation
- A6. Others

Conclusions

Models of chemical reaction systems

• A large variety of reactions

- Liquid-phase, gas-phase, surface
- Catalytic, inhibition
- Fast, slow, equilibrium, etc.

• A large variety of reactors

- Lumped vs. distributed
- Continuous vs. discontinuous (batch, semi-batch)
- Homogeneous vs. heterogeneous (multiphase)
- Isothermal vs. non-isothermal, etc.

• Common model elements

- Balance equations: state variables c(t), p(t), T(t) (partial) differential equations, additive rate terms → exploit structure
- Rate processes: for reactions, mass transfers, heat transfers algebraic relationships, often poorly known \rightarrow **investigate** rates

• Minimal dimensionality

- Redundant states?
- Invariant relationships?
- Are these relationships reaction system dependent?

Decoupled states

- Is it possible to decouple the rate processes?
- Properties of decoupled states?

• Answer: state transformation

- From concentrations and temperatures to decoupled extents
- Systematic generation of invariant relationships

Balance equations

<u>Nonisothermal</u> homogeneous reaction system consisting of S species, R independent reactions, p inlet streams, and 1 outlet stream

Mole balances for S species

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{r}_{v}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{n}_{0}$$

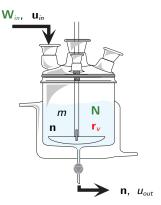
(S)
$$(S \times R) (R)$$
 $(S \times p) (p)$ $\mathbf{r}_{v}(t) := V(t) \mathbf{r}(t), \ \omega(t) := \frac{u_{out}(t)}{m(t)}$

Mass m , volume V and molar concentrations c			
$m(t) = 1_{S}^{\mathrm{T}} \mathbf{M}_{w} \mathbf{n}(t),$	$V(t) = rac{m(t)}{ ho(t)},$	$\mathbf{c}(t) = rac{\mathbf{n}(t)}{V(t)}$	
$\dot{m}(t) = 1_{-}^{\mathrm{T}} \mathbf{u}_{in}(t) - u_{out}$	(t), m(0)	$= m_0$	

Global macroscopic view

Valid regardless of temperature, catalyst, solvent Redundant information m(t)

Laboratoire d'Automatique - EPFL



Objective: Decoupled reaction system in terms of vessel extents

• S-dimensional model equations

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{r}_{\mathbf{v}}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \omega(t) \mathbf{n}(t), \quad \mathbf{n}(0) = \mathbf{n}_{0}$$

• Decoupled reaction model in terms of vessel extents

$$\begin{aligned} \dot{x}_{r,i}(t) &= r_{v,i}(t) - \omega(t) \, x_{r,i}(t) & x_{r,i}(0) = 0 & i = 1, \dots, R \\ \dot{x}_{in,j}(t) &= u_{in,j}(t) - \omega(t) \, x_{in,j}(t) & x_{in,j}(0) = 0 & j = 1, \dots, p \\ \dot{x}_{ic}(t) &= -\omega(t) \, x_{ic}(t) & x_{ic}(0) = 1 \end{aligned}$$

- Vessel extents are extents discounted by the amount of material that has left the reactor
- (R + p + 1)-dimensional system
- Very useful although only apparent decoupling as $r_{\nu,i}(t)$ is an endogenous input and not an independent input!

Procedure: Four-way decomposition into extents and invariants ¹

Model with zero initial conditions

$$\dot{\mathsf{n}}(t) = \mathsf{N}^{\mathrm{T}} \mathsf{r}_{\mathsf{v}}(t) + \mathsf{W}_{\mathsf{in}} \mathsf{u}_{\mathsf{in}}(t) + \mathsf{n}_0 \, \delta(t) - \omega(t) \, \mathsf{n}(t), \qquad \mathsf{n}(0) = \mathbf{0}_{\mathcal{S}}$$

• Assumption: rank $([N^T W_{in} n_0]) = R + p + 1$. Linear transformation

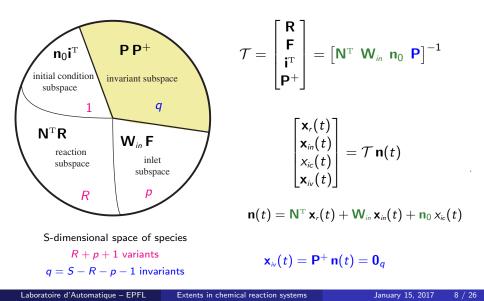
$$\begin{bmatrix} \mathbf{x}_{r}(t) \\ \mathbf{x}_{in}(t) \\ \mathbf{x}_{ic}(t) \\ \mathbf{x}_{iv}(t) \end{bmatrix} = \mathcal{T} \mathbf{n}(t) \qquad \qquad \mathcal{T} = \begin{bmatrix} \mathbf{N}^{\mathrm{T}} \ \mathbf{W}_{in} \ \mathbf{n}_{0} \ \mathbf{P} \end{bmatrix}^{-1}$$

• Vessel extents of reaction \mathbf{x}_r , inlet \mathbf{x}_{in} , initial conditions x_{ic} , and invariants \mathbf{x}_{iv}

$$\begin{aligned} \dot{\mathbf{x}}_{r}(t) &= \mathbf{r}_{v}(t) - \omega(t) \, \mathbf{x}_{r}(t) & \mathbf{x}_{r}(0) = \mathbf{0}_{R} \\ \dot{\mathbf{x}}_{in}(t) &= \mathbf{u}_{in}(t) - \omega(t) \, \mathbf{x}_{in}(t) & \mathbf{x}_{in}(0) = \mathbf{0}_{p} \\ \dot{\mathbf{x}}_{ic}(t) &= -\omega(t) \, \mathbf{x}_{ic}(t) & \mathbf{x}_{ic}(0) = 1 \\ \mathbf{x}_{iv}(t) &= \mathbf{0}_{q} \end{aligned}$$

¹ D. Rodrigues et al., Comput. Chem. Engng, 73, 23-33 (2015).

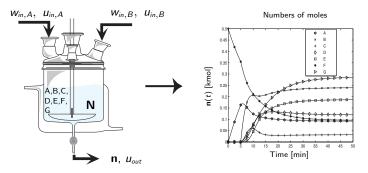
Four subspaces, transformation possible if $S \ge d$



Example 1: Ethanolysis reaction in an homogeneous CSTR

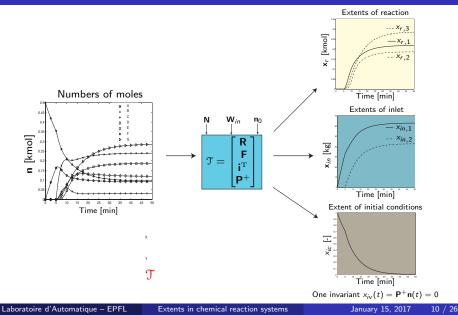
- Seven species (S = 7), three reactions (R = 3), two inlets (p = 2) and one outlet
- Stoichiometric matrix N, inlet-composition matrix W_{in} and initial conditions n_0 :

$$\mathbf{N} = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{W}_{in} = \begin{bmatrix} w_{in,A} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_{in,B} & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{\mathrm{T}} \qquad \mathbf{n}_{0}$$



Reaction extents?

Computation of extents



Generalization to other reaction systems

- Homogeneous reaction systems with heat balance ²
 - Additional heat balance equation
 - Additional decoupled extent of heat exchange
- Gas-liquid reaction systems ³
 - Balance equation for both the gas and liquid phases
 - Additional decoupled extents of mass transfer
- Distributed reaction systems ⁴
 - One- and two-dimensional tubular reactors, reactive distillation and absorption columns
 - Additional decoupled extents of diffusion and mass transfer

- ³ N. Bhatt et al., Ind. Eng. Chem. Res., 49, 7704-7717 (2010).
- ⁴ D. Rodrigues et al., Chem. Eng. Sci. (submitted).

² D. Rodrigues et al., Comput. Chem. Engng, 73, 23-33 (2015).

Outline

- Models of chemical reaction systems
 - Generic elements
- Modeling issues
 - True dimensionality, redundant states, invariant relationships
 - Decoupled states, individual extents
 - Concept of vessel extents, generalization to several reactor types

• Application areas

- A1. Data reconciliation
- A2. Rate estimation
- A3. Kinetic identification
- A4. State reconstruction
- A5. State estimation
- A6. Others

• Conclusions

A1. Data reconciliation ⁵

- Constraints valid at current time instant
 - q invariant relationships that exploit redundancies in balance equations:

 $\mathbf{P}^+ \mathbf{n}(t) = \mathbf{0}_q$

- Positivity, $\mathbf{n}(t) \geq \mathbf{0}_S$
- Shape constraints valid over time
 - Monotonicity
 - Convexity/concavity
- Sources of shape constraints
 - Prior knowledge, from reaction scheme and reactor operation
 - Prior measurements, if necessary via differentiation
- ⁵ S. Srinivasan et al., Comput. Chem. Engng (submitted).

• Use shape constraints as algebraic constraints

$$\hat{\mathbf{x}}(t_{1:H}) = \arg\min_{\mathbf{x}(t_{1:H})} \qquad \sum_{h=1}^{H} \left(\tilde{\mathbf{n}}(t_h) - \mathbf{n}(t_h) \right)^{\mathrm{T}} \mathbf{W}(t_h) \left(\tilde{\mathbf{n}}(t_h) - \mathbf{n}(t_h) \right)$$

s.t. $\mathbf{n}(t_{1:H}) = [\mathbf{N}^T \mathbf{W}_{in} \mathbf{n}_0] \mathbf{x}(t_{1:H})$ (Reconstruction) $\mathbf{n}(t_{1:H}) \ge \mathbf{0}_{5 \times H}$ (Positivity constraints on **n**) $\mathbf{x}(t_{1:H}) \ge \mathbf{0}_{d \times H}$ (Positivity constraints on **x**) $\mathcal{K}_{\mathbf{x}}(\mathbf{x}(t_{1:H})) \le \mathbf{0}_{k_{\mathbf{x}} \times H}$ (Knowledge-based constraints on **x**) $\mathcal{M}_{\mathbf{x}}(\mathbf{x}(\mathbf{x}(t_{1:H})) \le \mathbf{0}_{m_{\mathbf{x}} \times H}$ (Measurement-based constraints on **x**) • CSTR with S = 7, R = 4, p = 1, and one outlet

R1: $A + B \rightarrow C$ $r_1 = k_1 c_A c_B c_K$ R2: $2 B \rightarrow D$ $r_2 = k_2 c_B^2 c_K$ R3: $B \rightarrow E$ $r_3 = k_3 c_B$ R4: $C + B \rightarrow F$ $r_4 = k_4 c_C c_B c_K$

• The reaction system has two invariant relationships:

$$n_{K}(t) - 0.05 n_{A}(t) - 0.08 n_{B}(t) - 0.13 n_{C}(t) - 0.16 n_{D}(t) - 0.08 n_{E}(t) - 0.21 n_{F}(t) = 0$$
$$\mathbf{1}_{S}^{T} \mathbf{M}_{w} \mathbf{n}_{0} - \mathbf{1}_{S}^{T} \mathbf{M}_{w} \mathbf{n}(t) = 0$$

Table: Measurement-based constraints for species and constraints. (\smile) denotes convex shape and (\frown) denotes concave shape.

Species	Monotonicity	Until	Shape	Until
A	-	15.0 min)	15.0 min
В	_	16.5 min	\smile	14.5 min
С	+	22.0 min		22.0 min
D	+	13.5 min		13.5 min
E	+	23.0 min		30.0 min
F	+	27.0 min		30.0 min
K	none	-	none	-
$x_{r,1}$	+	30.0 min		30.0 min
Xr,2	+	30.0 min		30.0 min
x _{r,3}	+	30.0 min		30.0 min
<i>x</i> _{r,4}	+	30.0 min		30.0 min

Data reconciliation Strart up of CSTR

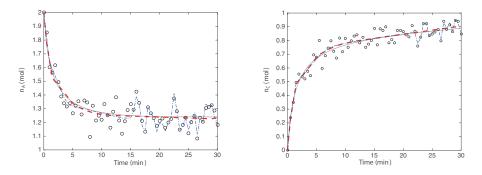


Figure: Numbers of moles of species A and C: True (—), measured (o) and reconciled via n (-.-) and x (--).

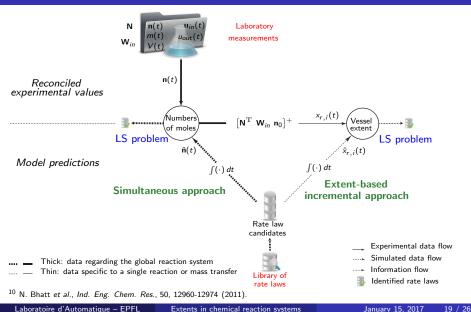
A2. Rate estimation ⁶

Without kinetic model, via numerical differentiation of measured concentrations

- Online computation of reaction rates $\hat{\mathbf{r}}_{v}(t)$
 - Computation of $\tilde{\mathbf{x}}_r(t) = \mathbf{R} \, \tilde{\mathbf{n}}(t)$
 - Reconciliation of $\tilde{\mathbf{x}}_r(t)$ to obtain $\hat{\mathbf{x}}_r(t)$
 - Numerical differentiation of $\hat{\bf x}_r(t)$ via e.g. first-order differentiation Savitzky-Golay filter 7
 - Computation of $\hat{\mathbf{r}}_{v}(t) = \dot{\hat{\mathbf{x}}}_{r}(t) + \tilde{\omega}(t) \hat{\mathbf{x}}_{r}(t)$
- Application of estimated rates
 - To implement feedback linearization and online control ⁸
 - To speed up estimation of steady state of slow states in static RTO ⁹
- ⁶ S. Srinivasan et al., IFAC Dycops, Trondheim (2016).
- ⁷ A. Savitzky and M. J. E. Golay, Anal. Chem., 36, 1627-1639 (1964).
- ⁸ D. Rodrigues et al., PSE 2015/Escape-25, Copenhagen, Denmark (2015).
- ⁹ D. Rodrigues et al., AIChE Annual Meeting, San Francisco, CA (2016).

A3. Kinetic identification

Simultaneous and incremental approaches ¹⁰



Incremental kinetic identification

Example 3: Chlorination of Butanoic Acid (gas-liquid reaction system)

- Identification of rate expression for the main reaction R1
- Rate expression candidates

Reaction R1

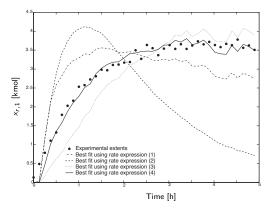
$$r_{1}^{(1)} = k_{1} c_{BA} c_{Cl_{2}}$$

$$r_{1}^{(2)} = k_{1} c_{Cl_{2}}$$

$$r_{1}^{(3)} = k_{1} c_{BA} c_{Cl_{2}} c_{MBA}$$

$$r_{1}^{(4)} = k_{1} c_{BA} c_{Cl_{2}} \sqrt{c_{MBA}}$$

• Identified rate expression for R1 $r_1^{(4)} = 1.3543 c_{BA} c_{Cl_2} \sqrt{c_{MBA}}$



Incremental kinetic identification

Estimation of kinetic and mass-transfer parameters

Identified rate expressions

Rate expressions
$r_1 = \frac{k_1 c_{BA} c_{Cl_2} \sqrt{c_{MBA}}}{\sqrt{c_{MBA}}}$
$r_2 = \frac{k_2 r_1 c_{Cl_2}}{c_{l_2}}$
$\zeta_{gl,Cl_{2}} = \frac{k_{Cl_{2}}}{k_{s}} A_{s} V_{l} M_{w,Cl_{2}} (c_{Cl_{2}}^{\star} - c_{Cl_{2}})$
$\zeta_{lg,HCl} = \frac{k_{HCl}}{k_{HCl}} A_s V_l M_{w,HCl} (c_{HCl} - c_{HCl}^{\star})$

• Results of curve fitting (with 2% measurement noise)

Parameters	True simulated values	Initial values	Estimated values	99% Confidence intervals
$k_1 [(m^3 \text{ kmol}^{-1})^{\frac{3}{2}}]$	1.3577	0.8000	1.3543	[1.3207, 1.3879]
$k_2 \; [m^3 \; kmol^{-1}]$	0.1	0.0200	0.105	[0.0884, 0.1216]
$k_{Cl_2} [{ m m s}^{-1}]$	0.666×10^{-4}	0.0002	0.594×10^{-4}	$[0.514 \times 10^{-4}, 0.674 \times 10^{-4}]$
$k_{HCl} \ [{\rm m \ s}^{-1}]$	0.845×10^{-4}	0.0002	0.813×10 ⁻⁴	[0.763×10 ⁻⁴ , 0.863×10 ⁻⁴]

A4. State reconstruction

Various ways

Motivation

- Reconstruct the state $\mathbf{n}(t)$ from a limited number of measurements, $\mathbf{n}_a(t)$
- Whenever possible, without the use of a kinetic model

• If $S_a \geq d$, use $\mathbf{n}_a(t)$ directly

- Compute $\mathbf{x}_r(t)$, $\mathbf{x}_{in}(t)$ and $x_{ic}(t)$ via linear transformation
- Reconstruct $\mathbf{n}(t)$ from $\mathbf{x}_r(t)$, $\mathbf{x}_{in}(t)$ and $x_{ic}(t)$
- If $S_a \ge R$, use $\mathbf{u}_{in}(t)$, $u_{out}(t)$, and $\mathbf{n}_a(t)$
 - Compute $\mathbf{x}_{in}(t)$ and $x_{ic}(t)$ via numerical integration of $\mathbf{u}_{in}(t)$ and $u_{out}(t)$
 - Compute $\mathbf{x}_r(t)$ via linear transformation

• If $S_a < R$, use a kinetic model

- Knowledge of
 - $\bullet\,$ stoichiometry $\bm{N},$ inlet concentrations $\bm{W}_{\mbox{\tiny in}}$ and initial conditions \bm{n}_0
 - kinetic model $\mathbf{r}(\mathbf{c}, \boldsymbol{\theta})$
 - $\mathbf{u}_{\scriptscriptstyle in}(au),\;\omega(au),\;V(au)$ and measured outputs $\mathbf{y}(au),\;0\leq au\leq t$
- Estimate the state vector $\mathbf{n}(t)$ or $\mathbf{x}(t)$
 - Prediction step of EKF
 - Update step of RNK (receding-horizon nonlinear Kalman filter) formulated as an optimization problem, with incorporation of shape constraints
- ¹¹ S. Srinivasan et al., IFAC Dycops, Trondheim (2016).

• Consider the following reaction system in a semi-batch reactor:

$$R1: A + B \rightarrow C \qquad r_1 = 0.5 c_A c_B$$
$$R2: A + C \rightarrow D \qquad r_2 = 0.3 c_A c_C$$

- Species B is fed to the reactor with the mass flowrate 5 g min $^{-1}$
- The concentration of C is measured (5% measurement noise)
- The RNK estimator uses the correct model structure but incorrect parameter values, $\bar{k}_1 = 0.75$ and $\bar{k}_2 = 0.5$
- The measurement and process noise matrices are assumed to be known

State estimation

Estimated numbers of moles

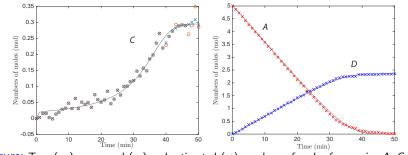


Figure: True (—), measured (\circ) and estimated (\times) numbers of moles for species A, C and D

Table: RMSE for the estimated numbers of moles.

Species	Unconstrained EKF		Knowledge-based (\mathcal{K}) constraints	
	via n	via n	via x	
A	0.375	0.283	0.052	
В	0.115	0.055	0.027	
С	0.016	0.014	0.013	
D	0.486	0.140	0.027	

Laboratoire d'Automatique – EPFL

Extents in chemical reaction systems

Conclusions

• Linear transformation of the numbers of moles to extents

- Decoupled states for reactions, mass and heat transfers
- \bullet Invariant states that can be discarded $\, \rightarrow \,$ model reduction
- Invariant relationships that can be used to reconcile noisy data
- Useful for the investigation of reaction systems with respect to
 - Data reconciliation, kinetic identification, state estimation
 - Model reduction via singular perturbation
 - Control using rate estimation
 - Static RTO via rate estimation

• Applicable to

- Most reaction systems and reactor types
- In principle, systems with more balance equations than rates