Multi-class speed-density relationship for pedestrian traffic

Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

June 14, 2016
Outline

1. Introduction
2. Methodology
3. Case study
 - Empirical analysis
 - Model specification and estimation
4. Conclusion and future work
Outline

1 Introduction

2 Methodology

3 Case study
 - Empirical analysis
 - Model specification and estimation

4 Conclusion and future work
Fundamental relationships

- Play an important role in the field: design and planning; model input or calibration criterion
- Modeling assumption: the traffic system is at equilibrium - homogenous and stationary
Speed-density relationships for pedestrian traffic

Deterministic approach

- **Empirically derived models** [Older, 1968; Tregenza, 1976; Weidmann, 1993; Rastogi et al., 2013]
- **Simulation-based models** [Blue and Adler, 1998]
- **Theory-based models** [Flötteröd and Lämmel, 2015]

Empirical observations

- Scatter: violation of the equilibrium assumptions

Probabilistic approach

- **Data-driven PedProb-vk** [Nikolić et al., 2016]
- Superior compared to deterministic approaches from the literature
Outline

1 Introduction

2 Methodology

3 Case study
 - Empirical analysis
 - Model specification and estimation

4 Conclusion and future work
Behavioral approach

Assumptions

• Pedestrian population is heterogeneous (e.g. trip purpose, age, gender, etc.)
• Heterogeneity leads to the existence of multiple pedestrian classes
• Classes are characterized by different types of behavior
• Latent class modeling approach to capture unobserved heterogeneity
Multi-class speed-density relationship (MC-vk)

Model structure

\[P(v_i|k_i) = \sum_{c=1}^{C} P(v_i|k_i, c)P(c|X_i) \]

- \(P(v_i|k_i, c) \): class-specific model
- \(P(c|X_i) \): class membership model

- \(i \): pedestrian identifier, \(i = 1, ..., N \)
- \(v_i \): speed of pedestrian \(i \)
- \(k_i \): density for pedestrian \(i \)
- \(c \): class identifier, \(C \) - number of classes
- \(X_i \): characteristics associated to pedestrian \(i \)
Class-specific speed-density relationship

Social Force Model

\[
\ddot{a}_i = \frac{\vec{v}_i^f - \vec{v}_i}{\tau_i} - C_i \sum_j \exp\left(-\frac{R_{ij}}{B_i}\right)\vec{n}_{ij}(\lambda_i + (1 - \lambda_i)\frac{1 + \cos(\phi_{ij})}{2})
\]

[Helbing and Molnár, 1995]
Class-specific speed-density relationship

Isotropy \((\lambda_i = 1)\)

\[
a_i = \frac{v_i^f - v_i}{\tau_i} - C_i \sum_j \exp\left(-\frac{R_{ij}}{B_i}\right) = \frac{v_i^f - v_i}{\tau_i} - C_i k_i
\]

Stationarity \((a_i = 0)\)

\[
v_i = v_i^f - \gamma_i k_i
\]

Homogeneity (all pedestrians have the same movement parameters)

\[
v_i = v = v_f - \gamma k_i
\]
Class membership model

- It cannot be deterministically identified to which class a pedestrian belongs
- Probability that a pedestrian i, associated with characteristics X_i (e.g. trip purpose, age, gender, etc.), belong to a latent class c: for each pedestrian there is a utility associated to each class c

Specification of utilities

$$U_i^c = ASC^c + \beta^c X_i + \xi_i^c$$

V_i^c: deterministic part of utilities
ξ_i^c: error term
Multi-class speed-density relationship (MC-vk)

Class-specific model: \(P(v_i|k_i, c) \)

\[
v_i^c = v_f^c - \gamma^c k_i + \epsilon_i^c
\]

\(P(v_i|k_i, c) \) is determined by \(\epsilon_i^c \)

Class membership model: \(P(c|X_i) \)

\[
U_i^c = ASC^c + \beta^c X_i + \xi_i^c
\]

\(P(c|X_i) \) is determined by \(\xi_i^c \)

Likelihood of the sample

\[
\mathcal{L} = \prod_{i=1}^{N} P(v_i|k_i) = \prod_{i=1}^{N} \sum_{c=1}^{C} P(v_i|k_i, c)P(c|X_i)
\]
Outline

1. Introduction
2. Methodology
3. Case study
 - Empirical analysis
 - Model specification and estimation
4. Conclusion and future work
Lausanne railway station
Data set

Pedestrian underpass

- A large-scale network of smart sensors: a sparsity driven tracking framework [Alahi et al., 2014]
- Dataset: 25,603 trajectories, collected between 07:00 and 08:00 on February 12, 13, 14, 15 and 18, 2013
- The average length of the trajectories: 78 meters
- The duration of a pedestrians’ stay: from 15 seconds to 2.2 minutes
Outline

1. Introduction

2. Methodology

3. Case study
 - Empirical analysis
 - Model specification and estimation

4. Conclusion and future work
Speed-density relationship
Pedestrian types

Classification based on origins and destinations

1: Arriving passenger - pedestrians originating from a platform and exiting the station
2: Departing passenger - pedestrians walking to a platform to embark on their trains
3: Transferring passenger - pedestrians whose origin and destination are different platforms
4: Non-passenger - pedestrians whose origin and destination are different from a platform (e.g. pedestrians that go shopping in the station)
Pedestrian types

Number of pedestrians per pedestrian type

![Bar chart showing the number of pedestrians per type (arriving, departing, transferring, non-passenger) for different months (Feb 12 to Feb 18).]
Pedestrian types

Speed distribution per pedestrian type
Train timetable

Time to departure

![Graph showing distribution of time to departure]
Outline

1 Introduction

2 Methodology

3 Case study
 - Empirical analysis
 - Model specification and estimation

4 Conclusion and future work
Specification issues

Panel data
- Data collected over multiple time periods for the same sample of individuals

Serial correlation
- The observations across time for a single pedestrian are likely to be correlated, due to the unobserved factors related to a pedestrian that exist over time
- \(\epsilon_{i(t-1)}^c \) cannot be assumed independent from \(\epsilon_{it}^c \)
- If ignored - consistent but not efficient estimators
Multi-class speed-density relationship (MC-vk)

Class-specific model: \(P(v_i|k_i, c) \)

\[
v^c_{it} = v^c_f - \gamma^c k_{it} + \alpha_i^c + \epsilon^c_{it}
\]

\(P(v_i|k_i, c) \) is determined by \(\epsilon^c_{it} \), \(\alpha_i^c \) is an agent effect

Class membership model: \(P(c|X_i) \)

\[
U^c_i = ASC^c + \beta^c X_i + \xi^c_i
\]

\(P(c|X_i) \) is determined by \(\xi^c_i \)

Likelihood of the sample

\[
\mathcal{L} = \prod_{i=1}^{N} \sum_{c=1}^{C} \left\{ \frac{1}{R} \sum_{r} \exp \left(\sum_{t=1}^{T} \log P(v_i|k_i, c, \alpha^c_r) \right) \right\} P(c|X_i)
\]
Assumptions

Number of classes

1. Pedestrians sensitive to congestion
2. Rushing pedestrians
3. Pedestrians non-sensitive to congestion

Class membership model

• Explanatory variables: time to diparture, type of pedestrian
• Logit model

Class specific model

• The same functional form of v-k for each class
• $\epsilon'_{it} \sim N(\mu, \sigma^c)$
• $\alpha'_{i} \sim N(\mu, \eta^c)$
Estimation results

Class membership model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASC<sup>S</sup></td>
<td>2.37</td>
<td>5.18e<sup>-06</sup></td>
</tr>
<tr>
<td>β<sub>TTD</sub><sup>S</sup></td>
<td>5.12e<sup>-06</sup></td>
<td>7.54e<sup>-06</sup></td>
</tr>
<tr>
<td>β<sub>AP</sub><sup>S</sup></td>
<td>0.445</td>
<td>1.03e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>DP</sub><sup>S</sup></td>
<td>0.820</td>
<td>2.11e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>TP</sub><sup>S</sup></td>
<td>-0.466</td>
<td>1.73e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>TTD</sub><sup>R</sup></td>
<td>-0.0159</td>
<td>1.57e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>AP</sub><sup>R</sup></td>
<td>-0.575</td>
<td>1.54e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>DP</sub><sup>R</sup></td>
<td>0.701</td>
<td>1.93e<sup>-05</sup></td>
</tr>
<tr>
<td>β<sub>TP</sub><sup>R</sup></td>
<td>-0.790</td>
<td>1.20e<sup>-05</sup></td>
</tr>
<tr>
<td>ASC<sup>NS</sup></td>
<td>0.402</td>
<td>1.84e<sup>-05</sup></td>
</tr>
</tbody>
</table>

S - Pedestrians sensitive to congestion
R - Rushing pedestrians
NS - Pedestrians non-sensitive to congestion

Class specific model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std.err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>v<sub>f</sub><sup>S</sup></td>
<td>0.991</td>
<td>1.32e<sup>-05</sup></td>
</tr>
<tr>
<td>γ<sub>S</sub></td>
<td>0.197</td>
<td>1.73e<sup>-05</sup></td>
</tr>
<tr>
<td>v<sub>f</sub><sup>R</sup></td>
<td>1.797</td>
<td>9.37e<sup>-06</sup></td>
</tr>
<tr>
<td>γ<sub>R</sub></td>
<td>0.0549</td>
<td>1.28e<sup>-05</sup></td>
</tr>
<tr>
<td>v<sub>f</sub><sup>NS</sup></td>
<td>1.298</td>
<td>1.21e<sup>-05</sup></td>
</tr>
<tr>
<td>α<sub>S</sub></td>
<td>0.421</td>
<td>2.67e<sup>-06</sup></td>
</tr>
<tr>
<td>α<sub>R</sub></td>
<td>0.811</td>
<td>1.40e<sup>-05</sup></td>
</tr>
<tr>
<td>α<sub>NS</sub></td>
<td>0.139</td>
<td>1.66e<sup>-05</sup></td>
</tr>
<tr>
<td>σ<sub>S</sub></td>
<td>0.439</td>
<td>1.94e<sup>-05</sup></td>
</tr>
<tr>
<td>σ<sub>R</sub></td>
<td>0.745</td>
<td>2.72e<sup>-05</sup></td>
</tr>
<tr>
<td>σ<sub>NS</sub></td>
<td>0.0401</td>
<td>1.38e<sup>-05</sup></td>
</tr>
</tbody>
</table>
How many classes?

Bayesian information criterion - BIC

<table>
<thead>
<tr>
<th>Model</th>
<th>1 class</th>
<th>2 classes</th>
<th>3 classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>log \mathcal{L}</td>
<td>588534.224</td>
<td>562655.524</td>
<td>534569.219</td>
</tr>
<tr>
<td>#observations</td>
<td>828018</td>
<td>828018</td>
<td>828018</td>
</tr>
<tr>
<td>#parameters</td>
<td>3</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>BIC</td>
<td>1177109.329</td>
<td>1125488.196</td>
<td>1069424.602</td>
</tr>
</tbody>
</table>
Class profiling

Shares

- Sensitive to congestion: 86%
- Rushing: 9%
- Non-sensitive to congestion: 5%

Bar charts for Non-passerger, Transferring, Departing, Arriving categories.
Class profiling

Average time to departure

![Diagram showing average time to departure for different classes: sensitive to congestion, Rushing, and non-sensitive to congestion. The chart illustrates the average time in seconds for each category, with varying data points for each class.]

- **Sensitive to congestion**
- **Rushing**
- **Non-sensitive to congestion**
Model comparison

Average behavior

\[\bar{v}_{MC-vk} = \sum_{c=1}^{C} \left\{ \frac{1}{N} \sum_{i=1}^{N} P(c|X_i; \beta^c) v^c(k; \theta^c) \right\} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Weidmann</th>
<th>Tregenza</th>
<th>Rastogi</th>
<th>Linear</th>
<th>PedProb-vk</th>
<th>MC-vk</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M SE)</td>
<td>(5.34 \times 10^{-3})</td>
<td>(4.82 \times 10^{-3})</td>
<td>(4.42 \times 10^{-3})</td>
<td>(5.59 \times 10^{-3})</td>
<td>(4.02 \times 10^{-3})</td>
<td>(1.72 \times 10^{-3})</td>
</tr>
<tr>
<td>(R^2)</td>
<td>(2.38 \times 10^{-1})</td>
<td>(3.12 \times 10^{-1})</td>
<td>(3.69 \times 10^{-1})</td>
<td>(2.02 \times 10^{-1})</td>
<td>(4.29 \times 10^{-1})</td>
<td>(7.54 \times 10^{-1})</td>
</tr>
</tbody>
</table>
Outline

1 Introduction

2 Methodology

3 Case study
 - Empirical analysis
 - Model specification and estimation

4 Conclusion and future work
Conclusion and future work

Conclusion

• MC-vk: latent class modeling approach to capture heterogeneity in pedestrian population
• Satisfying behavioral interpretation
• Good performance at the aggregate level

Future work

• Additional factors
 – Walking in groups
 – Peak intervals
 – Attractiveness of origins/destinations
Thank you

9th TRIENNIAL SYMPOSIUM ON TRANSPORTATION ANALYSIS (TRISTAN IX), Aruba:
Multi-class speed-density relationship for pedestrian traffic
Marija Nikolić, Michel Bierlaire, Matthieu de Lapparent, Riccardo Scarinci

- marija.nikolic@epfl.ch
Pedestrian underpass West

1: South entrance
2 - 4: Stairs (resp. ramp) to platform 9
3: Coop Pronto Supermarket
5 - 6: Stairs (resp. ramp) to platform 7 and 8
7 - 8: Stairs (resp. ramp) to platform 5 and 6
9 - 10: Stairs (resp. ramp) to platform 3 and 4
11: Stairs to platform 1 and out of the station
12: Access ramp
13: Stairs to or out of the train station and to buses
14: Pathway leading to buses and metro (M2)
Group behavior

A group of pedestrians walking together

Given spatial threshold ε, speed threshold θ, directional threshold φ and temporal threshold k a group of at least 2 pedestrians that are density-connected w.r.t. ε, θ, φ during at least k time periods (not necessarily consecutive time periods) represent a group of pedestrians walking together.

Spatial clustering

Density-based clustering - grouping of data into categories based on ε (2.1336m), θ (0.1524m/s), φ (3°)

Temporal clustering

Frequent pattern analysis - finds sets of density-based clusters that are frequently observed together (w.r.t k - temporal threshold, relative to the total time a pedestrian travels in the corridor)
Peak periods during morning rush hour

Number of pedestrians over time
Peak periods per day

February 12
07:10 - 07:15, 07:25 - 07:30, 07:50 - 07:55

February 13
07:15 - 07:20, 07:40 - 07:45

February 14
07:10 - 07:15, 07:40 - 07:45

February 15
07:10 - 07:15, 07:25 - 07:30, 07:40 - 07:45

February 18
07:10 - 07:15, 07:40 - 07:45
Peak/off-peak analysis
Weather

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
<th>Rain/Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 February</td>
<td>0.4°C</td>
<td>Sun</td>
</tr>
<tr>
<td>13 February</td>
<td>-1.6°C</td>
<td>Rain</td>
</tr>
<tr>
<td>14 February</td>
<td>-3.2°C</td>
<td>Rain</td>
</tr>
<tr>
<td>15 February</td>
<td>0.5°C</td>
<td>Sun</td>
</tr>
<tr>
<td>18 February</td>
<td>-0.3°C</td>
<td>Sun</td>
</tr>
</tbody>
</table>
OD pattern
Number of pedestrians per origin

![Graph showing time series of pedestrian counts per origin from February 2012 to 2018.](image-url)
Number of pedestrians per destination
OD distances
OD distances analysis
Indicators

Trajectory - a finite collection of triples

\[p_{is} = (x_{is}, y_{is}, t_s), t_s = (t_0, t_1, \ldots, t_f) \]

Density

\[k_{is} = \frac{n_{is}^{\text{real}} + n_{is}^{\text{imputed}}}{|V_{is}|} \]
Indicators

Trajectory - a finite collection of triples

\[p_{is} = (x_{is}, y_{is}, t_s), t_s = (t_0, t_1, \ldots, t_f) \]

Speed

\[v_{is} = \sqrt{\left(\frac{\Delta x_{is}}{\Delta t} \right)^2 + \left(\frac{\Delta y_{is}}{\Delta t} \right)^2} \]

\[\Delta x_{is} = x_{i,s+1} - x_{i,s-1}, \quad \Delta y_{is} = y_{i,s+1} - y_{i,s-1} \]

\[\Delta t = t_{s+1} - t_{s-1} \]