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Introduction

Setup

Sensorized containers for recyclables periodically send waste level data
to a central database.

Level data is used for container selection and route planning.

Vehicles are dispatched to carry out the daily schedules produced by
the routing algorithm.

Efficient waste collection thus depends on the ability to:

- forecast container levels,

- select the containers to collect each day,

- and route the vehicles in an (near-)optimal way.
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Introduction

Problem Definition

The setup falls within the framework of the IRP with:

- stochastic demands,

- order-up-to level (OU) policy,

- no allowed expected overflows,

- single-day backorder limit (i.e. if a container overflows on a given day,
it must be collected on that day).

The routing component includes:

- intermediate facility visits (recycling plants),

- heterogeneous capacitated vehicles,

- site dependencies,

- vehicle-to-period availabilities,

- time windows,

- maximum tour duration.
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Related Literature

Contributions

Dynamic probabilistic information on overflows and route failures.

Demand forecasting model tested and validated on real data (Markov
et al., 2015).

A rich IRP with features traditionally absent or rarely considered in
the IRP literature.

ALNS algorithm performs very well on IRP benchmarks from the
literature.

Benefit of considering uncertainty in the objective function evaluated
on instances derived from real data.
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Formulation

Nomenclature

Sets

o origin d destination

D set of dumps P set of containers

N = {o} ∪ {d} ∪ D ∪ P K set of vehicles

T = {0, ..., u} T + = {1, ..., u + 1}

Parameters

πij length of arc (i , j)

τijk travel time of vehicle k on arc (i , j)

λi , µi lower and upper time window bound at point i

δi service duration at point i

ρit demand of container i on day t (random variable)

ωi capacity of container i

χ container overflow cost (monetary)

ζ emergency collection cost (monetary)
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o origin d destination

D set of dumps P set of containers

N = {o} ∪ {d} ∪ D ∪ P K set of vehicles

T = {0, ..., u} T + = {1, ..., u + 1}

Parameters

σit = 1 if container i is in a state of full and overflowing on day t, 0 otherwise

Ωk capacity of vehicle k

ϕk daily deployment cost of vehicle k (monetary)

βk unit-distance running cost of vehicle k (monetary)

θk unit-time running cost of vehicle k (monetary)

αkt = 1 if vehicle k is available on day t, 0 otherwise

αik = 1 if point i is accessible by vehicle k, 0 otherwise

H maximum tour duration
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Formulation

Nomenclature

Decision variables: binary

xijkt =

{
1 if vehicle k traverses arc (i , j) on day t
0 otherwise

yikt =

{
1 if vehicle k visits point i on day t
0 otherwise

zkt =

{
1 if vehicle k is used on day t
0 otherwise

Decision variables: continuous

qikt expected pickup quantity by vehicle k at point i on day t

Qikt expected cumulative quantity on vehicle k at point i on day t

Iit expected inventory at point i at the start of day t

Sikt start-of-service time of vehicle k at point i on day t
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Formulation

Forecasting Model

Demand is the amount deposited in a container on each day, and is
random and non-stationary.

We can use any forecasting model that gives us:

- the expected container demands E(ρit) on each day,

- a consistent estimate of the forecasting error ς.

The forecasting error is the standard deviation of the residuals based
on a historical fit.

Its distribution can be approximated as a normal, and is used to
calculate probabilities of container overflows and route failures.

The probabilities are dynamic and conditional, and depend on:

- the evolution of container states over the planning horizon,

- and the vehicle visits on each day.
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Formulation

Objective Function

Routing cost
Expected overflow

and emergency
visit cost

Expected route
failure cost

+ +

Lower routing cost is counterbalanced by more overflows and route
failures, and vice versa.

Our goal is to minimize the expected monetary value of all
components.
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Formulation

Objective Function: Main Concepts

Two container states:

- σit = 0: not full,

- σit = 1: full and overflowing.

Two types of container collection:

- regular collection of container i on day t: ∃k ∈ K : yikt = 1,

- emergency collection of container i on day t: σit = 1 and
yikt = 0,∀k ∈ K.

Related costs:

- overflow cost χ: paid in state σit = 1,

- emergency collection cost ζ: paid in state σit = 1 when
yikt = 0,∀k ∈ K.
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Formulation

Figure 1: Container state probability tree
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Formulation

Objective Function: Formulation

Routing cost (RC):

∑
t∈T

∑
k∈K

(
ϕkzkt + βk

∑
i∈N

∑
j∈N

πijxijkt + θk (Sdkt − Sokt)

)
(1)

Expected overflow and emergency collection cost (EOECC):

∑
t∈T ∪T +

∑
i∈P

(
P (σit = 1 | max (0, g < t : ∃k ∈ K : yikg = 1))

(
χ+ ζ − ζ

∑
k∈K

yikt

))
(2)
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Formulation

Objective Function: Formulation

Expected route failure cost (ERFC):

∑
t∈T \0

∑
k∈K

∑
S∈Skt

(
CS P

(∑
s∈S

Ist > Ωk

∣∣∣∣∣max(0, g < t : yskg = 1)

))
, (3)

where

- Skt = Skt(yikt ,∀i ∈ D) is the set of depot-to-dump or dump-to-dump
trips for vehicle k on day t,

- S is the set of containers in a particular trip,
- CS is the average routing cost of going from this set to the nearest

dump and back.

The objective function becomes

z(·) = RC + EOECC + ERFC (4)

and is non-linear, thus resulting in an MINLP.
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Formulation

Constraints: Basic routing

∑
j∈N

xojkt = αktzkt , ∀t ∈ T , k ∈ K (5)∑
i∈D

xidkt = αktzkt , ∀t ∈ T , k ∈ K (6)

yikt =
∑

j∈N
xijkt =

∑
j∈N

xjikt , ∀t ∈ T , k ∈ K, i ∈ P (7)∑
k∈K

yikt 6 1, ∀t ∈ T , i ∈ P (8)

yikt 6 αik , ∀t ∈ T , k ∈ K, i ∈ P (9)∑
i∈N

xijkt =
∑

i∈N
xjikt , ∀t ∈ T , k ∈ K, j ∈ D ∪ P (10)

Iit = Ii(t−1) −
∑

k∈K
qik(t−1) + E(ρi(t−1)), ∀t ∈ T +, i ∈ P (11)

Iit 6 ωi , ∀t ∈ T +, i ∈ P (12)

Ii0 − ωi 6 ωi

∑
k∈K

yik0, ∀i ∈ P (13)

qikt 6 Myikt , ∀t ∈ T , k ∈ K, i ∈ P (14)

qikt 6 Iit , ∀t ∈ T , k ∈ K, i ∈ P (15)

qikt > Iit −M(1− yikt), ∀t ∈ T , k ∈ K, i ∈ P (16)
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Formulation
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Formulation

Constraints: Capacity related

qikt 6 Qikt 6 Ωk , ∀t ∈ T , k ∈ K, i ∈ P (17)

Qikt = 0, ∀t ∈ T , k ∈ K, i ∈ N \ P (18)

Qikt + qjkt 6 Qjkt + Ωk (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ P (19)

Sikt + δi + τijk 6 Sjkt + (µi + δi + τijk) (1− xijkt) ,

∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ N \ {o} (20)

λi

∑
j∈N

xijkt 6 Sikt , ∀t ∈ T , k ∈ K, i ∈ N \ {d} (21)

Sjkt 6 µj

∑
i∈N

xijkt , ∀t ∈ T , k ∈ K, j ∈ N \ {o} (22)

0 6 Sdkt − Sokt 6 H ∀t ∈ T , k ∈ K (23)

xijkt , yikt , zkt ∈ {0, 1}, ∀t ∈ T , k ∈ K, i , j ∈ N (24)

qikt ,Qikt , Iit ,Sikt > 0, ∀t ∈ T , k ∈ K, i ∈ N (25)
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Formulation

Constraints: Time related

qikt 6 Qikt 6 Ωk , ∀t ∈ T , k ∈ K, i ∈ P (17)
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qikt ,Qikt , Iit ,Sikt > 0, ∀t ∈ T , k ∈ K, i ∈ N (25)
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Formulation

Constraints: Domain
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Methodology

Adaptive Large Neighborhood Search (ALNS)

Solved by ALNS with the following operators:

Destroy operators:

- remove ρ containers randomly,

- remove ρ worst containers,

- Shaw removals (Shaw, 1997),

- empty a random day,

- empty a random vehicle,

- remove a random dump,

- remove the worst dump,

- remove consecutive visits.

Repair operators:

- insert ρ containers randomly,

- insert ρ containers in the best way,

- Shaw insertions (Shaw, 1997),

- swap ρ random containers,

- insert a dump randomly,

- swap random dumps,

- replace a random dump,

- reorder dumps DP operator.
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Methodology

Reorder dumps DP Operator (Hemmelmayr et al., 2013)

Figure 2: Feasibility graph of the reorder dumps DP operator
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Preserves/restores vehicle capacity feasibility.

Removes all dump visits and reinserts them in a locally optimal way
solving a shortest path problem using the Bellman-Ford algorithm.

Followed by local search improvement using 2-opt.
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Methodology

The Search Strategy

Accepting intermediate infeasible solutions facilitates the exploration
of the search space of tightly constrained problems.

We allow the following feasibility violations of the solution s:

- V Ω(s): vehicle capacity violation
- V µ(s): time window violation
- V H(s): duration violation
- V ω(s): container capacity violation
- V 0(s): backorder limit violation
- V α(s): accessibility violation

The solution representation during the search is:

f (s) = z(s) + LΩVΩ(s) + LµVµ + LHVH(s) + LωVω(s) + L0V 0(s) + LαVα(s) (26)

with the penalties LΩ through Lα dynamically adjusted during the
search to encourage or discourage infeasible solutions.
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Numerical Experiments

Archetti et al. (2007) Instances

First classical IRP testbed.

160 instances in total.

5 to 50 customers.

3 or 6 periods in the planning horizon.

Single vehicle.

Low and high inventory holding costs.

Optimal solutions (branch-and-cut) by Archetti et al. (2007).

Heuristic solutions by Archetti et al. (2012), Coelho et al. (2012a),
Coelho et al. (2012b), etc...

We solve each instance 10 times and report best and average results.
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Numerical Experiments

Archetti et al. (2007) Instances

Table 1: Results on instances with high inventory holding cost

ALNS fast version ALNS slow version

u n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 8 0.00 0.00 32 0.00 0.00
3 10 14 0.00 0.00 59 0.00 0.00
3 15 22 0.00 0.00 93 0.00 0.00
3 20 36 0.00 0.01 149 0.00 0.00
3 25 53 0.00 0.06 221 0.00 0.01
3 30 77 0.00 0.27 318 0.00 0.06
3 35 108 0.01 0.15 440 0.00 0.04
3 40 149 0.12 0.48 602 0.01 0.23
3 45 199 0.17 0.47 808 0.10 0.25
3 50 276 0.15 0.52 1074 0.07 0.25

6 5 14 0.00 0.00 55 0.00 0.00
6 10 28 0.00 0.01 113 0.00 0.00
6 15 53 0.00 0.07 198 0.00 0.01
6 20 81 0.04 0.14 331 0.01 0.08
6 25 128 0.19 0.64 513 0.10 0.38
6 30 189 0.08 0.70 772 0.07 0.38

Average 90 0.05 0.22 361 0.02 0.11
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Numerical Experiments

Archetti et al. (2007) Instances

Table 2: Results on instances with low inventory holding cost

ALNS fast version ALNS slow version

u n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 7 0.00 0.00 30 0.00 0.00
3 10 14 0.00 0.00 55 0.00 0.00
3 15 22 0.00 0.00 89 0.00 0.00
3 20 34 0.00 0.04 141 0.00 0.01
3 25 52 0.00 0.17 210 0.00 0.04
3 30 71 0.02 0.56 295 0.00 0.14
3 35 101 0.01 0.53 423 0.00 0.18
3 40 140 0.37 1.20 567 0.12 0.48
3 45 191 0.59 1.71 751 0.26 1.03
3 50 247 0.30 1.52 1009 0.25 1.00

6 5 13 0.00 0.00 54 0.00 0.00
6 10 28 0.00 0.02 109 0.00 0.01
6 15 49 0.00 0.03 188 0.00 0.00
6 20 77 0.08 0.26 315 0.05 0.15
6 25 121 0.25 1.29 493 0.24 0.65
6 30 182 0.67 1.90 726 0.07 1.06

Average 84 0.14 0.58 341 0.06 0.30
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Numerical Experiments

Archetti et al. (2012) Instances

60 instances in total.

50, 100 and 200 customers.

6 periods in the planning horizon.

Single vehicle.

Low and high inventory holding costs.

Solved by Archetti et al. (2012) using a hybrid heuristic algorithm.

For the moment we have solved the 50-customer instances 10 times
and provide best and average results.
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Numerical Experiments

Archetti et al. (2012) Instances

Table 3: Results on 50-customer instances with high inventory holding cost

ALNS

Instance Archetti et al. (2012) Runtime(s.) Best Cost Avg Cost Best Gap(%) Avg Gap(%)

abs1n50 31,147.82 670 30,708.05 30,809.31 -1.41 -1.09
abs2n50 30,192.51 676 30,226.23 30,271.07 0.11 0.26
abs3n50 30,420.96 667 30,388.68 30,515.79 -0.11 0.31
abs4n50 31,898.84 671 32,103.17 32,213.62 0.64 0.99
abs5n50 29,518.68 666 29,646.74 29,797.79 0.43 0.95
abs6n50 32,394.50 652 32,336.81 32,420.63 -0.18 0.08
abs7n50 30,165.00 661 30,222.28 30,269.23 0.19 0.35
abs8n50 26,416.46 652 26,409.83 26,537.19 -0.03 0.46
abs9n50 30,671.88 656 30,543.31 30,630.53 -0.42 -0.13
abs10n50 32,362.01 635 31,937.51 32,065.85 -1.31 -0.92

Average 30,518.87 661 30,452.26 30,553.10 -0.21 0.13
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Numerical Experiments

Archetti et al. (2012) Instances

Table 4: Results on 50-customer instances with low inventory holding cost

ALNS

Instance Archetti et al. (2012) Runtime(s.) Best Cost Avg Cost Best Gap(%) Avg Gap(%)

abs1n50 10,409.13 611 10,377.36 10,449.91 -0.31 0.39
abs2n50 10,881.35 643 10,927.83 11,014.20 0.43 1.22
abs3n50 10,767.39 622 10,702.05 10,924.09 -0.61 1.46
abs4n50 10,656.21 632 10,711.86 10,875.98 0.52 2.06
abs5n50 10,234.60 624 10,332.55 10,458.54 0.96 2.19
abs6n50 10,533.63 620 10,388.66 10,485.72 -1.38 -0.45
abs7n50 10,460.82 626 10,388.08 10,497.06 -0.70 0.35
abs8n50 10,411.20 623 10,683.31 10,771.40 2.61 3.46
abs9n50 10,305.69 610 10,416.97 10,472.96 1.08 1.62
abs10n50 10,470.63 598 10,047.06 10,153.50 -4.05 -3.03

Average 10,513.07 621 10,497.57 10,610.33 -0.14 0.93
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Numerical Experiments

Instances Based on Real Data

63 instances, each covering a week of white glass collections in
Geneva, Switzerland in 2014, 2015, or 2016.

Maximum tour duration of 4 hours.

Time windows from 8h00 to 12h00.

Planning horizon of 7 days.

Up to 2 heterogeneous vehicles.

Up to 53 containers (41 on average).

2 dumps located far apart from each other.

We solve each instance 10 times and provide best and average results.

We simulate the forecasting error realizations and evaluate the
relevance of the probability information captured by the objective
function.
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Numerical Experiments

Real Data: The Relevant Costs

Truck related:

- vehicle per day: 100 CHF,

- vehicle per km: 2.95 CHF,

- driver per hour: 40 CHF.

Container related:

- overflow cost χ: 100 CHF,

- emergency collection cost ζ: 100 CHF, 50 CHF, 25 CHF.

Route failure related:

- cost of visiting the nearest dump from a cluster CS , multiplied by a
route failure cost multiplier (RFCM): 1.00, 0.50, 0.25.
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Numerical Experiments

Two Problem Types

Routing-only:

- Optimizes the routing cost only in the objective function, disregarding
all probability information.

- In other words, it ignores the risk of container overflows and route
failures.

Complete:

- Optimizes the complete objective function as previously defined.
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Numerical Experiments

Real Data: Cost Comparison

Table 5: Basic results for real data instances

Emergency Runtime Avg Num Avg Num Avg Num Best Cost Avg Cost Gap Avg-
Type Cost RFCM (s.) Tours Containers Dump Visits (CHF) (CHF) Best (%)

Complete 100.00 1.00 781.71 1.96 43.44 2.31 664.76 679.54 2.22
Complete 100.00 0.50 862.13 1.96 43.43 2.30 664.82 678.84 2.11
Complete 100.00 0.25 806.52 1.95 43.52 2.28 664.34 677.81 2.03
Complete 50.00 0.50 812.67 1.91 41.22 2.21 650.55 662.28 1.80
Complete 50.00 0.25 809.76 1.91 41.19 2.19 650.72 661.88 1.71
Complete 25.00 0.50 789.00 1.90 39.56 2.14 641.79 652.04 1.60
Complete 25.00 0.25 789.40 1.90 39.57 2.15 641.42 651.85 1.63

Routing-only 0.00 0.00 725.46 1.83 16.77 1.87 422.64 425.08 0.58
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Numerical Experiments

Real Data: Cost Comparison

Table 6: Cost breakdown and KPI for real data instances

Emergency Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters per Liters per Unit
Type Cost RFCM Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Complete 100.00 1.00 579.78 99.73 0.03 47,234.59 69.51 81.47
Complete 100.00 0.50 579.46 99.33 0.05 47,225.62 69.57 81.50
Complete 100.00 0.25 577.84 99.93 0.04 47,455.19 70.01 82.13
Complete 50.00 0.50 558.37 103.82 0.09 45,852.89 69.24 82.12
Complete 50.00 0.25 558.47 103.35 0.07 45,949.94 69.42 82.28
Complete 25.00 0.50 548.10 103.83 0.11 44,653.66 68.48 81.47
Complete 25.00 0.25 547.75 104.05 0.06 44,678.38 68.54 81.57

Routing-only 0.00 0.00 425.08 0.00 0.00 25,286.94 59.49 59.49
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Numerical Experiments

Real Data: Occurrence of Rare Events

Table 7: Average number of overflows at various percentiles for real data
instances for 10,000 simulations

Emergency
Type Cost RFCM 75th perc. 90th perc. 95th perc. 99th perc.

Complete 100.00 1.00 0.98 1.78 2.40 3.58
Complete 100.00 0.50 0.99 1.78 2.39 3.55
Complete 100.00 0.25 0.97 1.80 2.38 3.56
Complete 50.00 0.50 1.28 2.19 2.84 4.16
Complete 50.00 0.25 1.28 2.18 2.83 4.15
Complete 25.00 0.50 1.48 2.46 3.14 4.58
Complete 25.00 0.25 1.51 2.50 3.18 4.61

Routing-only 0.00 0.00 16.97 20.45 22.56 26.70
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Numerical Experiments

Real Data: Occurrence of Rare Events

Table 8: Average number of route failures at various percentiles for real data
instances for 10,000 simulations

Emergency
Type Cost RFCM 75th perc. 90th perc. 95th perc. 99th perc.

Complete 100.00 1.00 0.03 0.03 0.04 0.05
Complete 100.00 0.50 0.04 0.05 0.05 0.07
Complete 100.00 0.25 0.04 0.05 0.06 0.10
Complete 50.00 0.50 0.06 0.07 0.08 0.09
Complete 50.00 0.25 0.04 0.06 0.07 0.10
Complete 25.00 0.50 0.05 0.07 0.07 0.10
Complete 25.00 0.25 0.04 0.07 0.07 0.09

Routing-only 0.00 0.00 0.01 0.03 0.04 0.05
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Numerical Experiments

Real Data: Taking Advantage of Probability Information

Figure 3: Average cost percentiles of container overflows
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Numerical Experiments

Real Data: Taking Advantage of Probability Information

Figure 4: Container overflow percentiles for routing-only objective
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Numerical Experiments

Real Data: Taking Advantage of Probability Information

Figure 5: Container overflow percentiles for complete objective, χ=100, RFCM=1
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Numerical Experiments

Real Data: Taking Advantage of Probability Information

Figure 6: Route failure percentiles for routing-only objective
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Numerical Experiments

Real Data: Taking Advantage of Probability Information

Figure 7: Route failure percentiles for complete objective, χ=100, RFCM=1
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Conclusion

Conclusions

A rich stochastic IRP with the relevant dynamic uncertainty
components in the objective.

An ALNS that produces very good results on IRP benchmarks.

Computational experiments on real-data instances demonstrate the
practical relevance of our approach.

Future research directions:

- decomposition methods,

- scenario generation,

- robust optimization,

- location-routing, open tours, online re-optimization, multiple flows...
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Conclusion

Thank you.

Questions?
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