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Introduction

Setup

Sensorized containers for recyclables periodically send waste level data
to a central database.

Level data is used for container selection and route planning.

Vehicles are dispatched to carry out the daily schedules produced by
the routing algorithm.

Efficient waste collection thus depends on the ability to:

- forecast container levels,

- select the containers to collect each day,

- and route the vehicles in an (near-)optimal way.
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Introduction

Problem Definition

The setup falls within the framework of the Stochastic Inventory
Routing Problem (SIRP) with:

- stochastic demands,

- Order-Up-to level (OU) policy,

- no allowed expected overflows,

- single-day backorder limit (i.e. if a container overflows on a given day,
it must be collected on that day).

The routing component includes:

- intermediate facility visits (recycling plants),

- heterogeneous capacitated vehicles,

- site dependencies,

- vehicle-to-period availabilities,

- time windows,

- maximum tour duration.
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Introduction

Routing Component

Figure 1: Example of a Collection Tour
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Related Literature

Related VRP Literature

VRP with Intermediate Facilities (VRP-IF):

- Bard et al. (1998a), Kim et al. (2006), Crevier et al. (2007).
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- Conrad and Figliozzi (2011), Erdoğan and Miller-Hooks (2012),
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Related Literature

Motivation and Contribution

We use an approach with dynamic probabilistic information on
container overflows and route failures:

- scenario-based approaches are computationally expensive,

- we can frequently revisit the states of random variables unlike in robust
optimization,

- we have a monetary value associated with the realization of undesirable
events.

Rich routing features rarely considered in the IRP literature.

Methodology has excellent performance on benchmark instances.

Probabilistic approach very competitive wrt alternative practical
policies.

We derive empirical lower and upper bounds for the solution cost of a
rolling horizon approach.
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Formulation and Solution

Nomenclature

Sets

o origin d destination

D set of dumps P set of containers

N = {o} ∪ {d} ∪ D ∪ P K set of vehicles

T = {0, ..., u} T + = {1, ..., u + 1}

Parameters

ρit demand of container i on day t (random variable)

ς forecasting model error (st. dev. of the fit’s residuals)

πij travel distance of arc (i , j)

τijk travel time of vehicle k on arc (i , j)

λi , µi lower and upper time window bound at point i

δi service duration at point i

ωi capacity of container i

χ container overflow cost (monetary)

ζ emergency collection cost (monetary)
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o origin d destination

D set of dumps P set of containers

N = {o} ∪ {d} ∪ D ∪ P K set of vehicles

T = {0, ..., u} T + = {1, ..., u + 1}

Parameters

σit = 1 if container i is in a state of full and overflowing on day t, 0 otherwise

ϕk daily deployment cost of vehicle k (monetary)

βk unit-distance running cost of vehicle k (monetary)

θk unit-time running cost of vehicle k (monetary)

αkt = 1 if vehicle k is available on day t, 0 otherwise

αik = 1 if point i is accessible by vehicle k, 0 otherwise

Ωk capacity of vehicle k

H maximum tour duration

ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1]
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Formulation and Solution

Nomenclature

Decision variables: binary

xijkt =

{
1 if vehicle k traverses arc (i , j) on day t
0 otherwise

yikt =

{
1 if vehicle k visits point i on day t
0 otherwise

zkt =

{
1 if vehicle k is used on day t
0 otherwise

Decision variables: continuous

qikt expected pickup quantity by vehicle k from container i on day t

Qikt expected cumulative quantity on vehicle k at point i on day t

Iit expected inventory in container i at the start of day t

Sikt start-of-service time of vehicle k at point i on day t
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Formulation and Solution

Forecasting Model

Demand is the amount deposited in a container on each day, and is
random and non-stationary.

We can use any forecasting model that gives us:

- the expected container demands E(ρit) on each day,

- a consistent estimate of the forecasting error ς.

The forecasting error is the standard deviation of the residuals based
on a historical fit.

Its distribution can be approximated as a normal, and is used to
calculate probabilities of container overflows and route failures.

The probabilities are dynamic and conditional, and depend on:

- the evolution of container states over the planning horizon,

- and the vehicle visits on each day.
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Formulation and Solution

Objective Function

Routing cost
Expected overflow

and emergency
collection cost

Expected route
failure cost

+ +

Lower routing cost is counterbalanced by more overflows and route
failures, and vice versa.

Our goal is to minimize the expected monetary value of all
components.
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Formulation and Solution

Objective Function: Main Concepts

Two container states:

- σit = 0: not full,

- σit = 1: full and overflowing.

Two types of container collection:

- regular collection of container i on day t: ∃k ∈ K : yikt = 1,

- emergency collection of container i on day t: σit = 1 and
yikt = 0,∀k ∈ K.

Related costs:

- overflow cost χ: paid in state σit = 1,

- emergency collection cost ζ: paid in state σit = 1 when
yikt = 0,∀k ∈ K.
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Formulation and Solution

Figure 2: Container State Probability Tree
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Formulation and Solution

Objective Function: Formulation

Routing Cost (RC):

∑
t∈T

∑
k∈K

(
ϕkzkt + βk

∑
i∈N

∑
j∈N

πijxijkt + θk (Sdkt − Sokt)

)
(1)

Expected Overflow and Emergency Collection Cost (EOECC):

∑
t∈T ∪T +

∑
i∈P

(
P (σit = 1 | max (0, g < t : ∃k ∈ K : yikg = 1))

(
χ+ ζ − ζ

∑
k∈K

yikt

))
(2)
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Formulation and Solution

Objective Function: Formulation

Expected Route Failure Cost (ERFC):∑
t∈T \0

∑
k∈K

∑
S∈Skt

(
ψCS P

(∑
s∈S

(Ist > Ωk |max(0, g < t : yskg = 1))

))
, (3)

where
- Skt is the set of depot-to-dump or dump-to-dump trips for vehicle k

on day t,
- S is the set of containers in a particular trip,
- CS is the average routing cost of going from S to the nearest dump

and back to S,
- ψ is the Route Failure Cost Multiplier (RFCM), controlling the degree

of conservatism wrt this component.

The objective function becomes

min z = RC + EOECC + ERFC (4)

and is non-linear, thus resulting in an MINLP.
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Formulation and Solution

Constraints: Basic routing

∑
j∈N

xojkt = αktzkt , ∀t ∈ T , k ∈ K (5)∑
i∈D

xidkt = αktzkt , ∀t ∈ T , k ∈ K (6)

yikt =
∑

j∈N
xijkt =

∑
j∈N

xjikt , ∀t ∈ T , k ∈ K, i ∈ P (7)∑
k∈K

yikt 6 1, ∀t ∈ T , i ∈ P (8)

yikt 6 αik , ∀t ∈ T , k ∈ K, i ∈ P (9)∑
i∈N

xijkt =
∑

i∈N
xjikt , ∀t ∈ T , k ∈ K, j ∈ D ∪ P (10)

Iit = Ii(t−1) −
∑

k∈K
qik(t−1) + E(ρi(t−1)), ∀t ∈ T +, i ∈ P (11)

Iit 6 ωi , ∀t ∈ T +, i ∈ P (12)

Ii0 − ωi 6 ωi

∑
k∈K

yik0, ∀i ∈ P (13)

qikt 6 Myikt , ∀t ∈ T , k ∈ K, i ∈ P (14)

qikt 6 Iit , ∀t ∈ T , k ∈ K, i ∈ P (15)

qikt > Iit −M(1− yikt), ∀t ∈ T , k ∈ K, i ∈ P (16)
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Formulation and Solution

Constraints: Capacity related

qikt 6 Qikt 6 Ωk , ∀t ∈ T , k ∈ K, i ∈ P (17)

Qikt = 0, ∀t ∈ T , k ∈ K, i ∈ N \ P (18)

Qikt + qjkt 6 Qjkt + Ωk (1− xijkt) , ∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ P (19)

Sikt + δi + τijk 6 Sjkt + (µi + δi + τijk) (1− xijkt) ,

∀t ∈ T , k ∈ K, i ∈ N \ {d}, j ∈ N \ {o} (20)

λi

∑
j∈N

xijkt 6 Sikt , ∀t ∈ T , k ∈ K, i ∈ N \ {d} (21)

Sjkt 6 µj

∑
i∈N

xijkt , ∀t ∈ T , k ∈ K, j ∈ N \ {o} (22)

0 6 Sdkt − Sokt 6 H ∀t ∈ T , k ∈ K (23)

xijkt , yikt , zkt ∈ {0, 1}, ∀t ∈ T , k ∈ K, i , j ∈ N (24)
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Formulation and Solution

Solution Methodology

The resulting problem is NP-hard and has a non-linear objective
function.

To solve it, we develop an Adaptive Large Neighborhood Search
(ALNS) algorithm with solution acceptance by Simulated Annealing
(SA).

The ALNS accepts infeasible intermediate solutions with dynamic
penalty management for various types of infeasibilities.
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Numerical Experiments
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Numerical Experiments

Benchmarking: Archetti et al. (2007) Instances

First classical IRP testbed.

160 instances in total.

5 to 50 customers.

3 or 6 periods in the planning horizon.

Single vehicle.

Low and high inventory holding costs.

Optimal solutions (branch-and-cut) by Archetti et al. (2007).

Heuristic solutions by Archetti et al. (2012), Coelho et al. (2012a),
Coelho et al. (2012b), etc...

We solve each instance 10 times and report best and average results.
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Numerical Experiments

Benchmarking: Archetti et al. (2007) Instances

Table 1: Results on Instances with High Inventory Holding Cost

ALNS Fast Version ALNS Slow Version

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 8 0.00 0.00 32 0.00 0.00
3 10 14 0.00 0.00 59 0.00 0.00
3 15 22 0.00 0.00 93 0.00 0.00
3 20 36 0.00 0.01 149 0.00 0.00
3 25 53 0.00 0.06 221 0.00 0.01
3 30 77 0.00 0.27 318 0.00 0.06
3 35 108 0.01 0.15 440 0.00 0.04
3 40 149 0.12 0.48 602 0.01 0.23
3 45 199 0.17 0.47 808 0.10 0.25
3 50 276 0.15 0.52 1074 0.07 0.25

6 5 14 0.00 0.00 55 0.00 0.00
6 10 28 0.00 0.01 113 0.00 0.00
6 15 53 0.00 0.07 198 0.00 0.01
6 20 81 0.04 0.14 331 0.01 0.08
6 25 128 0.19 0.64 513 0.10 0.38
6 30 189 0.08 0.70 772 0.07 0.38

Average 90 0.05 0.22 361 0.02 0.11
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Numerical Experiments

Benchmarking: Archetti et al. (2007) Instances

Table 2: Results on Instances with Low Inventory Holding Cost

ALNS Fast Version ALNS Slow Version

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%)

3 5 7 0.00 0.00 30 0.00 0.00
3 10 14 0.00 0.00 55 0.00 0.00
3 15 22 0.00 0.00 89 0.00 0.00
3 20 34 0.00 0.04 141 0.00 0.01
3 25 52 0.00 0.17 210 0.00 0.04
3 30 71 0.02 0.56 295 0.00 0.14
3 35 101 0.01 0.53 423 0.00 0.18
3 40 140 0.37 1.20 567 0.12 0.48
3 45 191 0.59 1.71 751 0.26 1.03
3 50 247 0.30 1.52 1009 0.25 1.00

6 5 13 0.00 0.00 54 0.00 0.00
6 10 28 0.00 0.02 109 0.00 0.01
6 15 49 0.00 0.03 188 0.00 0.00
6 20 77 0.08 0.26 315 0.05 0.15
6 25 121 0.25 1.29 493 0.24 0.65
6 30 182 0.67 1.90 726 0.07 1.06

Average 84 0.14 0.58 341 0.06 0.30
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Numerical Experiments

Case Study: Instances

63 instances, each covering a week of white glass collections in
Geneva, Switzerland in 2014, 2015, or 2016.

Maximum tour duration of 4 hours.

Time windows from 8h00 to 12h00.

Planning horizon of 7 days.

Up to 2 heterogeneous vehicles.

Up to 53 containers (41 on average).

2 dumps located far apart from each other.

10 runs for each instance.

Simulation of the forecasting error realizations for each solution.

Evaluation of the relevance of the probability information captured by
the objective function.
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Numerical Experiments

Case Study: Probabilistic Policies

We consider two types of objective function:

- Complete: minimizes the full probabilistic objective defined by
expression (4).

- Routing-only: minimizes the routing cost only, as defined by expression
(1), disregarding all probability information.

Probability-related costs:

- overflow cost χ: 100 CHF (fixed by municipality),

- emergency collection cost ζ: 100 CHF, 50 CHF, 25 CHF (does not
apply to routing-only = 0 CHF),

- Route Failure Cost Multiplier (RFCM) ψ: 1.00, 0.50, 0.25 (does not
apply to routing-only = 0 CHF).
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Numerical Experiments

Case Study: Probabilistic Policies

Table 3: Basic Results for Cost Analysis

Avg Num Avg Num Avg Num Best Cost Avg Cost Gap Avg-
Objective ECC RFCM Runtime(s.) Tours Containers Dump Visits (CHF) (CHF) Best(%)

Complete 100.00 1.00 781.71 1.96 43.44 2.31 664.76 679.54 2.22
Complete 100.00 0.50 862.13 1.96 43.43 2.30 664.82 678.84 2.11
Complete 100.00 0.25 806.52 1.95 43.52 2.28 664.34 677.81 2.03
Complete 100.00 0.00 715.82 1.95 43.80 2.28 664.00 677.11 1.97
Complete 50.00 1.00 915.61 1.92 41.08 2.20 650.86 662.18 1.74
Complete 50.00 0.50 812.67 1.91 41.22 2.21 650.55 662.28 1.80
Complete 50.00 0.25 809.76 1.91 41.19 2.19 650.72 661.88 1.71
Complete 50.00 0.00 790.21 1.91 41.07 2.19 651.09 661.93 1.66
Complete 25.00 1.00 814.44 1.90 39.56 2.13 641.43 651.24 1.53
Complete 25.00 0.50 789.00 1.90 39.56 2.14 641.79 652.04 1.60
Complete 25.00 0.25 789.40 1.90 39.57 2.15 641.42 651.85 1.63
Complete 25.00 0.00 783.33 1.89 39.59 2.13 642.71 651.71 1.40
Routing-only 0.00 0.00 725.46 1.83 16.77 1.87 422.64 425.08 0.58
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Numerical Experiments

Case Study: Probabilistic Policies

Table 4: Key Performance Indicators for Cost Analysis

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective ECC RFCM Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Complete 100.00 1.00 579.78 99.73 0.03 47,234.59 69.51 81.47
Complete 100.00 0.50 579.46 99.33 0.05 47,225.62 69.57 81.50
Complete 100.00 0.25 577.84 99.93 0.04 47,455.19 70.01 82.13
Complete 100.00 0.00 578.83 98.28 0.00 47,662.90 70.39 82.34
Complete 50.00 1.00 559.44 102.72 0.02 45,646.48 68.93 81.59
Complete 50.00 0.50 558.37 103.82 0.09 45,852.89 69.24 82.12
Complete 50.00 0.25 558.47 103.35 0.07 45,949.94 69.42 82.28
Complete 50.00 0.00 557.16 104.77 0.00 45,788.15 69.17 82.18
Complete 25.00 1.00 547.74 103.46 0.04 44,682.00 68.61 81.57
Complete 25.00 0.50 548.10 103.83 0.11 44,653.66 68.48 81.47
Complete 25.00 0.25 547.75 104.05 0.06 44,678.38 68.54 81.57
Complete 25.00 0.00 546.34 105.37 0.00 44,773.34 68.70 81.95
Routing-only 0.00 0.00 425.08 0.00 0.00 25,286.94 59.49 59.49
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Numerical Experiments

Case Study: Probabilistic Policies

Table 5: Container Overflows and Route Failures

Avg Num Overflows Avg Num Route Failures

Objective ECC RFCM 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Complete 100.00 1.00 0.98 1.78 2.40 3.58 0.03 0.03 0.04 0.05
Complete 100.00 0.50 0.99 1.78 2.39 3.55 0.04 0.05 0.05 0.07
Complete 100.00 0.25 0.97 1.80 2.38 3.56 0.04 0.05 0.06 0.10
Complete 100.00 0.00 0.94 1.77 2.33 3.54 0.08 0.10 0.12 0.16
Complete 50.00 1.00 1.26 2.19 2.82 4.14 0.05 0.05 0.05 0.05
Complete 50.00 0.50 1.28 2.19 2.84 4.16 0.06 0.07 0.08 0.09
Complete 50.00 0.25 1.28 2.18 2.83 4.15 0.04 0.06 0.07 0.10
Complete 50.00 0.00 1.31 2.23 2.85 4.18 0.07 0.09 0.10 0.12
Complete 25.00 1.00 1.48 2.46 3.14 4.58 0.05 0.05 0.05 0.07
Complete 25.00 0.50 1.48 2.46 3.14 4.58 0.05 0.07 0.07 0.10
Complete 25.00 0.25 1.51 2.50 3.18 4.61 0.04 0.07 0.07 0.09
Complete 25.00 0.00 1.54 2.51 3.19 4.64 0.08 0.10 0.10 0.12
Routing-only 0.00 0.00 16.97 20.45 22.56 26.70 0.01 0.03 0.04 0.05
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Numerical Experiments

Case Study: Probabilistic Policies

Figure 3: Average Number of Overflows for All Instances
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Numerical Experiments

Case Study: Probabilistic Policies

Table 6: Average Number of Collections by Day

Type EC RFCM day t = 0 day t = 1 day t = 2 day t = 3 day t = 4 day t = 5 day t = 6 day t = 7

Complete 100.00 1.00 60 4 15 53 49 — — —
Complete 100.00 0.50 60 6 17 54 56 — — —
Complete 100.00 0.25 60 5 16 56 52 — — —
Complete 100.00 0.00 60 4 14 53 53 — — —
Complete 50.00 1.00 59 6 25 56 44 — — —
Complete 50.00 0.50 59 7 18 57 44 — — —
Complete 50.00 0.25 59 6 20 54 37 — — —
Complete 50.00 0.00 59 6 23 55 43 — — —
Complete 25.00 1.00 57 8 27 54 31 — — —
Complete 25.00 0.50 57 8 24 56 26 — — —
Complete 25.00 0.25 57 8 24 55 29 — — —
Complete 25.00 0.00 57 9 28 54 34 — — —
Routing-only 0.00 0.00 53 60 45 7 3 — — —
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Numerical Experiments

Case Study: Alternative Policies

An alternative practical policy is the use of artificially low capacities
in the solution process:

- Container Effective Capacity (CEC): the fraction of the usable
container capacity,

- Truck Effective Capacity (TEC): the fraction of the usable truck
capacity,

- tests for values of 1.00, 0.90 and 0.75.

The simulation experiments are wrt the original capacities.

The objective is always routing-only.
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Numerical Experiments

Case Study: Alternative Policies

Table 7: Basic Results for Cost Analysis

Avg Num Avg Num Avg Num Best Cost Avg Cost Gap Avg-
Objective CEC TEC Runtime(s.) Tours Containers Dump Visits (CHF) (CHF) Best(%)

Routing-only 1.00 1.00 812.43 1.83 16.77 1.87 422.72 425.48 0.65
Routing-only 1.00 0.90 845.99 1.84 16.72 1.88 422.73 426.94 0.99
Routing-only 1.00 0.75 865.26 1.83 16.81 1.93 424.29 428.02 0.88
Routing-only 0.90 1.00 882.96 2.00 22.69 2.04 486.88 488.76 0.39
Routing-only 0.90 0.90 853.53 2.00 22.69 2.06 487.38 489.20 0.37
Routing-only 0.90 0.75 860.20 2.00 22.71 2.17 489.55 491.91 0.48
Routing-only 0.75 1.00 1003.83 2.10 33.80 2.57 547.48 564.83 3.17
Routing-only 0.75 0.90 1010.03 2.11 33.87 2.73 553.27 570.32 3.08
Routing-only 0.75 0.75 1010.74 2.11 33.89 2.97 558.16 575.98 3.19
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Numerical Experiments

Case Study: Alternative Policies

Table 8: Key Performance Indicators for Cost Analysis

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective CEC TEC Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Routing-only 1.00 1.00 425.48 0.00 0.00 25,311.81 59.49 59.49
Routing-only 1.00 0.90 426.94 0.00 0.00 25,233.43 59.10 59.10
Routing-only 1.00 0.75 428.02 0.00 0.00 25,371.43 59.28 59.28
Routing-only 0.90 1.00 488.76 0.00 0.00 31,532.12 64.51 64.51
Routing-only 0.90 0.90 489.20 0.00 0.00 31,611.40 64.62 64.62
Routing-only 0.90 0.75 491.91 0.00 0.00 31,732.72 64.51 64.51
Routing-only 0.75 1.00 564.83 0.00 0.00 44,134.12 78.14 78.14
Routing-only 0.75 0.90 570.32 0.00 0.00 44,084.86 77.30 77.30
Routing-only 0.75 0.75 575.98 0.00 0.00 44,079.24 76.53 76.53
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Numerical Experiments

Case Study: Alternative Policies

Table 9: Container Overflows and Route Failures

Avg Num Overflows Avg Num Route Failures

Objective CEC TEC 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Routing-only 1.00 1.00 16.97 20.45 22.58 26.72 0.01 0.03 0.03 0.04
Routing-only 1.00 0.90 17.02 20.51 22.65 26.80 0.00 0.00 0.00 0.00
Routing-only 1.00 0.75 16.91 20.40 22.54 26.65 0.00 0.00 0.00 0.00
Routing-only 0.90 1.00 10.32 13.14 14.85 18.29 0.02 0.02 0.02 0.02
Routing-only 0.90 0.90 10.30 13.09 14.81 18.24 0.00 0.00 0.00 0.00
Routing-only 0.90 0.75 10.32 13.09 14.85 18.28 0.00 0.00 0.00 0.00
Routing-only 0.75 1.00 4.24 6.08 7.27 9.68 0.03 0.03 0.03 0.03
Routing-only 0.75 0.90 4.24 6.06 7.26 9.68 0.00 0.00 0.00 0.00
Routing-only 0.75 0.75 4.22 6.04 7.26 9.67 0.00 0.00 0.00 0.00
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Numerical Experiments

Case Study: Policy Comparison

Figure 4: Comparison of Routing Cost for Probabilistic and Alternative Policies
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Numerical Experiments

Case Study: Policy Comparison

Figure 5: Comparison of Container Overflows and Route Failures
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Numerical Experiments

Case Study: Rolling Horizon Approach

In practice, our SIRP will be solved on a rolling horizon basis:

- container information is dynamically revealed each day,

- the problem is solved for a planning horizon T ,

- the tours planned for day t = 0 are executed,

- the horizon is rolled over by a day and the procedure is repeated.

The problem described above is referred to as a Dynamic and
Stochastic Inventory Routing Problem (DSIRP).

We hypothesize that the solution cost of a DSIRP is bounded:

- below by the solution of a static IRP with true demands,

- above by the solution of a static SIRP with forecast demands.

Tests on 41 instances, each covering two weeks of white glass
collections in the canton of Geneva, Switzerland in 2014, 2015, or
2016.
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Numerical Experiments

Case Study: Rolling Horizon Approach

Table 10: Analysis of Rolling Horizon DSIRP Bounds

Static IRP with Rolling DSIRP with Static SIRP with Static IRP with Rolling DSIRP with Static SIRP with
Instance True Demand Forecast Demand Forecast Demand Instance True Demand Forecast Demand Forecast Demand

Inst 1 276.44 582.89 665.19 Inst 22 429.20 531.04 607.63
Inst 2 448.67 784.55 854.49 Inst 23 241.44 551.58 690.62
Inst 3 307.95 653.60 819.79 Inst 24 547.92 758.84 748.71
Inst 4 266.15 574.23 700.36 Inst 25 446.31 618.80 696.75
Inst 5 454.61 682.24 824.57 Inst 26 442.38 589.53 695.11
Inst 6 485.30 677.92 764.86 Inst 27 441.36 589.07 707.30
Inst 7 268.65 569.11 649.57 Inst 28 468.46 616.53 738.58
Inst 8 429.56 585.42 681.23 Inst 29 436.25 575.25 701.73
Inst 9 442.34 599.24 659.30 Inst 30 414.41 677.65 690.37
Inst 10 448.70 564.04 650.88 Inst 31 442.87 544.75 668.51
Inst 11 467.88 549.61 670.36 Inst 32 255.32 612.44 694.35
Inst 12 449.20 674.53 626.18 Inst 33 460.04 677.54 808.74
Inst 13 254.66 556.94 629.93 Inst 34 505.55 682.90 711.62
Inst 14 276.60 585.77 683.65 Inst 35 490.37 989.21 785.51
Inst 15 431.08 548.56 790.39 Inst 36 454.60 646.95 805.95
Inst 16 529.60 635.37 701.64 Inst 37 465.31 607.52 746.64
Inst 17 423.07 578.84 662.76 Inst 38 520.38 721.23 815.21
Inst 18 458.18 595.36 680.75 Inst 39 243.94 613.96 705.10
Inst 19 448.66 524.63 611.56 Inst 40 450.94 624.76 759.97
Inst 20 418.12 520.30 653.18 Inst 41 403.01 575.80 688.24
Inst 21 276.32 791.63 626.29

Note: The four instances for which the hypothesized bounds do not hold are shown in bold.
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Conclusion

Conclusions

A rich stochastic IRP with the relevant dynamic uncertainty
components in the objective.

An ALNS that produces excellent results on IRP benchmarks.

Computational experiments on real-data instances demonstrate:

- the relevance of the probabilistic information captured in the objective,

- the superiority of the probabilistic approach in comparison to
alternative policies.

Empirical bounds on the solution cost of a rolling horizon approach.

Future research directions:

- decomposition methods,

- chance constraints,

- value of stochastic information.
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Conclusion

Thank you.

Questions?
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