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Demand in optimization

Operations research

Usually in OR:

optimization of the supply

for a given (fixed) demand
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Demand in optimization

Aggregate demand

Homogeneous population

Identical behavior

Price (P) and quantity (Q)

Demand functions: P = f (Q)

Inverse demand: Q = f −1(P)
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Demand in optimization

Disaggregate demand

Heterogeneous population

Different behaviors

Many variables:

Attributes: price, travel time,
reliability, frequency, etc.
Characteristics: age, income,
education, etc.

Complex demand/inverse
demand functions.
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Demand in optimization

Demand-supply interactions

Operations Research

Given the demand...

configure the system

Behavioral models

Given the configuration of
the system...

predict the demand
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Demand in optimization

Demand-supply interactions

Multi-objective optimization

Minimize costs Maximize satisfaction
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Demand in optimization

Disaggregate demand in optimization

Issues

Highly non linear

Highly non convex

Literature contains some successful instances

Relatively easy when decision variables = availability

Difficult when decision variables in utility (e.g. pricing)
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Linear representation of demand

The main idea
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Linear representation of demand

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability
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Linear representation of demand

A linear formulation

Utility function

Uin = Vin + εin =
∑

k

βkxink + f (zin) + εin.

Simulation

Assume a distribution for εin

E.g. logit: i.i.d. extreme value

Draw R realizations ξinr ,
r = 1, . . . ,R

The choice problem becomes
deterministic
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Linear representation of demand

Scenarios

Draws

Draw R realizations ξinr , r = 1, . . . ,R

We obtain R scenarios

Uinr =
∑

k

βkxink + f (zin) + ξinr .

We define lower and upper bounds

ℓinr ≤ Uinr ≤ minr , ∀i , n, r .

and
Minr = minr − ℓinr .
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Linear representation of demand Availability

Availability

Decision variable (supply)

yin = 1 if i ∈ Cn, 0 otherwise

Capacity reached (demand)

yinr = 1 if i is full for scenario r , 0 otherwise

Relation

yinr ≤ yin, ∀i , n, r .
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Linear representation of demand Availability

Utility and availability

New variable

Ūinr =

{

Uinr if yinr = 1
ℓinr if yinr = 0

Modeling

ℓinr ≤ Ūinr

Ūinr ≤ ℓinr +Minryinr

Uinr −Minr (1− yinr ) ≤ Ūinr

Ūinr ≤ Uinr .
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Linear representation of demand Availability

Utility and availability

Modeling

ℓinr ≤ Ūinr

Ūinr ≤ ℓinr +Minryinr

Uinr −Minr (1− yinr ) ≤ Ūinr

Ūinr ≤ Uinr .

yinr = 1

Ūinr ≤ ℓinr +Minr = minr

Uinr ≤ Ūinr

Uinr = Ūinr

yinr = 0

Ūinr ≤ ℓinr

Uinr −Minr ≤ Ūinr

Ūinr = ℓinr
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Linear representation of demand Choice

Choice

Maximum utility

U∗
nr = max

i∈Cn
Ūinr .

Choice

winr =

{

1 if U∗
nr = Ūinr

0 otherwise
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Linear representation of demand Choice

Choice

Modeling

M∗
nr = max

i
Minr

Ūinr ≤ U∗
nr

U∗
nr ≤ Ūinr +M∗

nr (1− winr )
∑

i

winr = 1

winr = 1

U∗
nr ≤ Ūinr

U∗
nr = Ūinr

winr = 0

U∗
nr ≤ Ūinr +M∗

nr
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Linear representation of demand Aggregate indicators

Demand and revenues

Demand

Di =
1

R

n
∑

n=1

R
∑

r=1

winr .

Revenues

Ri =
1

R

N
∑

n=1

pin

R
∑

r=1

winr .
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Linear representation of demand Aggregate indicators

Revenues

Non linear specification

Ri =
1

R

N
∑

n=1

pin

R
∑

r=1

winr .

Predetermined price levels

Price levels: pℓin, ℓ = 1, . . . , Lin

pin =

Lin
∑

ℓ=1

λinℓp
ℓ

in.

New decision variables

λinℓ ∈ {0, 1}

Lin
∑

ℓ=1

λinℓ = 1.

Bierlaire (EPFL) Choice and optimization September 13, 2016 20 / 48



Linear representation of demand Aggregate indicators

Revenues

Non linear function

Ri =
1

R

N
∑

n=1

Lin
∑

ℓ=1

λinℓp
ℓ

in

R
∑

r=1

winr .

Linearization

αinrℓ = λinℓwinr
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Linear representation of demand Aggregate indicators

Linear specification of revenues

Ri =
1

R

N
∑

n=1

R
∑

r=1

Lin
∑

ℓ=1

αinrℓp
ℓ

in,

with

λinℓ + winr ≤ 1 + αinrℓ, ∀i , n, r , ℓ,

αinrℓ ≤ λinℓ, ∀i , n, r , ℓ,

αinrℓ ≤ winr , ∀i , n, r , ℓ.
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Linear representation of demand Capacities

Dealing with capacities

Demand may exceed supply

Not every choice can be
accommodated

Difficulty: who has access?

Assumption: priority list is
exogenous
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Linear representation of demand Capacities

Priority list

Application dependent

First in, first out

Frequent travelers

Subscribers

...

In this framework

The list of customers must be sorted
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Linear representation of demand Capacities

Dealing with capacities

Variables

yin: decision of the operator

yinr : availability

Constraints

N
∑

n=1

winr ≤ ci

yinr ≤ yin

yi(n+1)r ≤ yinr
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Linear representation of demand Capacities

Dealing with capacities

Modeling
ci (1− yinr ) ≤

n−1
∑

m=1

wimr + ci (1− yin)

n−1
∑

m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1− yinr )

yin = 0 so that yinr = 0

ci ≤
n−1
∑

m=1

wimr + ci

n−1
∑

m=1

wimr ≤ (n − 1)
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Linear representation of demand Capacities

Dealing with capacities

Modeling
ci (1− yinr ) ≤

n−1
∑

m=1

wimr + ci (1− yin)

n−1
∑

m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1− yinr )

yin = 1, yinr = 1

0 ≤
n−1
∑

m=1

wimr

n−1
∑

m=1

wimr ≤ ci − 1

yin = 1, yinr = 0

ci ≤
n−1
∑

m=1

wimr

n−1
∑

m=1

wimr ≤ n − 1
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Linear representation of demand Regret minimization

General framework

Choice models

logit

MEV

mixtures

hybrid

panel effects

random regret

etc.
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Linear representation of demand Regret minimization

Regret minimization

Model specification

Rm
ij = max {0 + ν0m, βm(xjm − xim) + νxm}

Rij =
∑

m

Rm
ij

Ri =
∑

j 6=i

Rij

i∗ = argmini Ri − εi = argmaxi −Ri + εi
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Linear representation of demand Regret minimization

Regret minimization

Rm
ij = max {0 + ν0m, βm(xjm − xim) + νxm}

Modeling

Rm
ij ≥ ν0m

Rm
ij ≥ βm(xjm − xim) + νxm

Rm
ij ≤ ν0m + δmij M

m
ij

Rm
ij ≤ βm(xjm − xim) + νxm + (1− δmij )M

m
ij
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Linear representation of demand Regret minimization

Regret minimization

Generalization of the framework

The linear formulation of maximum utility is easily extended

The generalization is still linear

Increase in complexity (more variables and constraints).
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A simple example

A simple example

Data

C: set of movies

Population of N individuals

Utility function:
Uin = βinpin + f (zin) + εin

Decision variables

What movies to propose? yi

What price? pin
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A simple example Example: one theater

Back to the example: pricing

Data

Two alternatives: my theater (m) and
the competition (c)

We assume an homogeneous
population of N individuals

Uc = 0 + εc

Um = βcpm + εm

βc < 0

Logit model: εm i.i.d. EV

Bierlaire (EPFL) Choice and optimization September 13, 2016 34 / 48



A simple example Example: one theater

Demand and revenues
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A simple example Example: one theater

Optimization (with GLPK)

Data

N = 1

R = 100

Um = −10pm + 3

Prices: 0.10, 0.20, 0.30, 0.40,
0.50

Results

Optimum price: 0.3

Demand: 56%

Revenues: 0.168

Bierlaire (EPFL) Choice and optimization September 13, 2016 36 / 48



A simple example Example: one theater

Heterogeneous population

Two groups in the population

Uin = −βnpi + cn

Young fans: 2/3

β1 = −10, c1 = 3

Others: 1/3

β1 = −0.9, c1 = 0

Bierlaire (EPFL) Choice and optimization September 13, 2016 37 / 48



A simple example Example: one theater

Demand and revenues
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A simple example Example: one theater

Optimization

Data

N = 3

R = 100

Um1 = −10pm + 3

Um2 = −0.9pm

Prices: 0.3, 0.7, 1.1, 1.5, 1.9

Results

Optimum price: 0.3

Customer 1 (fan): 60% [theory:
50 %]

Customer 2 (fan) : 49%
[theory: 50 %]

Customer 3 (other) : 45%
[theory: 43 %]

Demand: 1.54 (51%)

Revenues: 0.48
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A simple example Example: two theaters

Two theaters, different types of films
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A simple example Example: two theaters

Two theaters, different types of films

Theater m

Expensive

Star Wars Episode VII

Theater k

Cheap

Tinker Tailor Soldier Spy

Heterogeneous demand

Two third of the population is young (price sensitive)

One third of the population is old (less price sensitive)
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A simple example Example: two theaters

Two theaters, different types of films

Data

Theaters m and k

N = 6

R = 10

Umn = −10pm + 4 , n = 1, 2, 4, 5

Umn = −0.9pm, n = 3, 6

Ukn = −10pk + 0 , n = 1, 2, 4, 5

Ukn = −0.9pk , n = 3, 6

Prices m: 1.0, 1.2, 1.4, 1.6, 1.8

Prices k: half price

Theater m

Optimum price m: 1.6

4 young customers: 0

2 old customers: 0.5

Demand: 0.5 (8.3%)

Revenues: 0.8

Theater k

Optimum price m: 0.5

Young customers: 0.8

Old customers: 1.5

Demand: 2.3 (38%)

Revenues: 1.15
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A simple example Example: two theaters

Two theaters, same type of films

Theater m

Expensive

Star Wars Episode VII

Theater k

Cheap

Star Wars Episode VIII

Heterogeneous demand

Two third of the population is young (price sensitive)

One third of the population is old (less price sensitive)
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A simple example Example: two theaters

Two theaters, same type of films

Data

Theaters m and k

N = 6

R = 10

Umn = −10pm + 4 ,
n = 1, 2, 4, 5

Umn = −0.9pm, n = 3, 6

Ukn = −10pk + 4 ,
n = 1, 2, 4, 5

Ukn = −0.9pk , n = 3, 6

Prices m: 1.0, 1.2, 1.4, 1.6, 1.8

Prices k : half price

Theater m

Optimum price m: 1.8

Young customers: 0

Old customers: 1.9

Demand: 1.9 (31.7%)

Revenues: 3.42

Theater k

Closed
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A simple example Example: two theaters with capacities

Two theaters with capacity, different types of films

Data

Theaters m and k

Capacity: 2

N = 6

R = 5

Umn = −10pm + 4, n = 1, 2, 4, 5

Umn = −0.9pm, n = 3, 6

Ukn = −10pk + 0, n = 1, 2, 4, 5

Ukn = −0.9pk , n = 3, 6

Prices m: 1.0, 1.2, 1.4, 1.6, 1.8

Prices k: half price

Theater m

Optimum price m: 1.8

Demand: 0.2 (3.3%)

Revenues: 0.36

Theater k

Optimum price m: 0.5

Demand: 2 (33.3%)

Revenues: 1.15
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A simple example Example: two theaters with capacities

Example of two scenarios

Customer Choice Capacity m Capacity k

1 0 2 2
2 0 2 2
3 k 2 1
4 0 2 1
5 0 2 1
6 k 2 0

Customer Choice Capacity m Capacity k

1 0 2 2
2 k 2 1
3 0 2 1
4 k 2 0
5 0 2 0
6 0 2 0
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Conclusion

Choice models in integer optimization

Discrete choice models

Non linear and non convex

Idea: use utility instead of probability

Rely on simulation to capture stochasticity

Proposed formulation

Linear in the decision variables

Large scale

Fairly general

Easily extended for regret minimization
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