Incorporating advanced behavioral models in integer optimization

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

September 13, 2016

Outline

Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities

- Regret minimization
- A simple example
 - Example: one theater
 - Example: two theaters
 - Example: two theaters with capa

- 4 同 6 4 日 6 4 日 6

Conclusion

Bierlaire (EPFL)

September 13, 2016 2 / 48

Operations research

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: P = f(Q)
- Inverse demand: $Q = f^{-1}(P)$

E 6 4 E 6

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Johnson City	Enterprise.
Published Ever	v Saturday,
\$1. per year-Adva	nce Payment.
SATURDAY, AP	BIL 7, 1883.
TIME T	ABLE
E. T., V. &	G. R. R.
PAS: ENGER,	ARRIVES
No. 1, West,	6:37, a. m
No. 2, East,	9:45, p. m
No. 3, West,	11:51, p.m
No. 4, Past,	0.00, a. m
No. 5	7-90 n m
No. S	6:20 n m
JNO. W. EA	KIN, Agent.
E. T. & W. N	. C. R. R.
Passenger, leaves,	7, a. m
" arrives,	6, p. m
J. C. HARI	DIN, Agent.

Behavioral models

- Given the configuration of the system...
- predict the demand

< 4 →

Demand-supply interactions

Multi-objective optimization

Maximize satisfaction

< □ > < ---->

A B F A B F

Disaggregate demand in optimization

Issues

- Highly non linear
- Highly non convex
- Literature contains some successful instances
- Relatively easy when decision variables = availability
- Difficult when decision variables in utility (e.g. pricing)

Outline

Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities

Regret minimization

- A simple example
 - Example: one theater
 - Example: two theaters
 - Example: two theaters with capacity

Conclusion

(B)

The main idea

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- The choice problem becomes deterministic

< 一型 .

FEDERALE DE LAUSANNE

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

• We define lower and upper bounds

$$\ell_{inr} \leq U_{inr} \leq m_{inr}, \ \forall i, n, r.$$

and

$$M_{inr} = m_{inr} - \ell_{inr}.$$

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

13 / 48

→
 ⇒

September 13, 2016

< A

Bierlaire (EPFL)

TRANSP-OR

Availability

Availability

Decision variable (supply)

 $y_{in} = 1$ if $i \in C_n, 0$ otherwise

Capacity reached (demand)

 $y_{inr} = 1$ if *i* is full for scenario r, 0 otherwise

Relation

$$y_{inr} \leq y_{in}, \forall i, n, r.$$

Availability

Utility and availability

New variable

$$\bar{U}_{inr} = \begin{cases} U_{inr} & \text{if } y_{inr} = 1\\ \ell_{inr} & \text{if } y_{inr} = 0 \end{cases}$$

Modeling

$$\ell_{inr} \leq \bar{U}_{inr}$$

 $ar{U}_{inr} \leq \ell_{inr} + M_{inr}y_{inr}$
 $U_{inr} - M_{inr}(1 - y_{inr}) \leq ar{U}_{inr}$
 $ar{U}_{inr} \leq U_{inr}.$

TRANSP-OR

Bierlaire (EPFL)

Choice and optimization

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

15 / 48

- E - D

September 13, 2016

- 一司

Availability

Utility and availability

Modeling

$$\ell_{inr} \leq \bar{U}_{inr}$$

 $ar{U}_{inr} \leq \ell_{inr} + M_{inr}y_{inr}$
 $U_{inr} - M_{inr}(1 - y_{inr}) \leq ar{U}_{inr}$
 $ar{U}_{inr} \leq U_{inr}.$

 $y_{inr} = 1$ $y_{inr} = 0$ $\bar{U}_{inr} \leq \ell_{inr}$ $\bar{U}_{inr} < \ell_{inr} + M_{inr} = m_{inr}$ $U_{inr} - M_{inr} \leq \bar{U}_{inr}$ $U_{inr} < \overline{U}_{inr}$ $\bar{U}_{inr} = \ell_{inr}$ $U_{inr} = \overline{U}_{inr}$ Bierlaire (EPFL) Choice and optimization September 13, 2016 16 / 48

QUE

Choice

Maximum utility

$$U_{nr}^* = \max_{i \in \mathcal{C}_n} \bar{U}_{inr}.$$

Choice

$$w_{inr} = \left\{ egin{array}{cc} 1 & ext{if } U^*_{nr} = ar{U}_{inr} \ 0 & ext{otherwise} \end{array}
ight.$$

Choice

Modeling

$$egin{aligned} M_{nr}^{*} &= \max_{i} M_{inr} \ ar{U}_{inr} &\leq U_{nr}^{*} \ U_{nr}^{*} &\leq ar{U}_{inr} + M_{nr}^{*}(1-w_{inr}) \ \sum_{i} w_{inr} &= 1 \end{aligned}$$

$$w_{inr} = 1$$

$$U_{nr}^* \leq \overline{U}_{inr}$$

$$U_{nr}^* = \overline{U}_{inr}$$
Bierlaire (EPFL)
Choice and optimization
$$w_{inr} = 0$$

$$U_{nr}^* \leq \overline{U}_{inr} + M_{nr}^*$$

$$U_{nr}^* \leq \overline{U}_{inr} + M_{nr}^*$$

$$W_{inr} = 0$$

$$W_{inr} \leq \overline{U}_{inr} + M_{nr}^*$$

$$W_{inr} = 1$$

$$W_{inr} = 0$$

$$W_{inr} \leq \overline{U}_{inr} + M_{nr}^*$$

$$W_{inr} = 0$$

$$W_{inr} \leq \overline{U}_{inr} + M_{nr}^*$$

$$W_{inr} = 0$$

$$W_{inr} \leq \overline{U}_{inr} + M_{nr}^*$$

$$W_{inr} = 0$$

$$W$$

Demand and revenues

Demand

$$D_i = \frac{1}{R} \sum_{n=1}^n \sum_{r=1}^R w_{inr}.$$

Revenues

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}.$$

Revenues

Non linear specification

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_{in} \sum_{r=1}^{R} w_{inr}.$$

Revenues

Non linear function

$$R_i = \frac{1}{R} \sum_{n=1}^{N} \sum_{\ell=1}^{L_{in}} \lambda_{in\ell} p_{in}^{\ell} \sum_{r=1}^{R} w_{inr}.$$

Linearization

$$\alpha_{inr\ell} = \lambda_{in\ell} w_{inr}$$

Linear specification of revenues

$$R_i = \frac{1}{R} \sum_{n=1}^{N} \sum_{r=1}^{R} \sum_{\ell=1}^{L_{in}} \alpha_{inr\ell} p_{in}^{\ell},$$

$$\begin{split} \lambda_{in\ell} + w_{inr} &\leq 1 + \alpha_{inr\ell}, \forall i, n, r, \ell, \\ \alpha_{inr\ell} &\leq \lambda_{in\ell}, \forall i, n, r, \ell, \\ \alpha_{inr\ell} &\leq w_{inr}, \forall i, n, r, \ell. \end{split}$$

Dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

23 / 48

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework

The list of customers must be sorted

Dealing with capacities

Variables

- y_{in}: decision of the operator
- y_{inr}: availability

Constraints

$$\sum_{n=1}^{N} w_{inr} \leq c_i$$

 $y_{inr} \leq y_{in}$
 $y_{i(n+1)r} \leq y_{inr}$

Bierlaire (EPFL)

< A > < 3

Dealing with capacities

Modeling

$$egin{aligned} c_i(1-y_{inr}) &\leq \sum_{m=1}^{n-1} w_{imr} + c_i(1-y_{in}) \ &\sum_{m=1}^{n-1} w_{imr} &\leq (c_i-1)y_{inr} + (n-1)(1-y_{inr}) \end{aligned}$$

 $y_{in} = 0$ so that $y_{inr} = 0$

$$c_i \leq \sum_{m=1}^{n-1} w_{imr} + c_i$$
 $\sum_{n=1}^{n-1} w_{imr} \leq (n-1)$

Bierlaire (EPFL)

Choice and optimization

< ≣⇒ September 13, 2016 26 / 48

э

・ロト ・回ト ・ヨト

Dealing with capacities

Modeling

$$egin{aligned} c_i(1-y_{inr}) &\leq \sum_{m=1}^{n-1} w_{imr} + c_i(1-y_{in}) \ &\sum_{m=1}^{n-1} w_{imr} &\leq (c_i-1)y_{inr} + (n-1)(1-y_{inr}) \end{aligned}$$

$$y_{in} = 1, y_{inr} = 1$$

$$0 \le \sum_{m=1}^{n-1} w_{imr}$$

$$\sum_{m=1}^{n-1} w_{imr} \le c_i - 1$$

$$y_{in} = 1, y_{inr} = 0$$

$$c_i \le \sum_{m=1}^{n-1} w_{imr}$$

$$-\sum_{m=1}^{n-1} w_{imr} \le n-1$$

Bierlaire (EPFL)

Choice and optimization

September 13, 2016 27 / 48

General framework

Choice models

- Iogit
- MEV
- mixtures
- hybrid
- panel effects
- random regret
- etc.

Regret minimization

Model specification

$$R_{ij}^{m} = \max \{0 + \nu_{0m}, \beta_{m}(x_{jm} - x_{im}) + \nu_{xm}\}$$

$$R_{ij} = \sum_{m} R_{ij}^{m}$$

$$R_{i} = \sum_{j \neq i} R_{ij}$$

$$i^{*} = \operatorname{argmin}_{i} R_{i} - \varepsilon_{i} = \operatorname{argmax}_{i} - R_{i} + \varepsilon_{i}$$

Regret minimization

$$R_{ij}^m = \max\left\{0 + \nu_{0m}, \beta_m(x_{jm} - x_{im}) + \nu_{xm}\right\}$$

Modeling

$$\begin{split} R^m_{ij} &\geq \nu_{0m} \\ R^m_{ij} &\geq \beta_m (x_{jm} - x_{im}) + \nu_{xm} \\ R^m_{ij} &\leq \nu_{0m} + \delta^m_{ij} M^m_{ij} \\ R^m_{ij} &\leq \beta_m (x_{jm} - x_{im}) + \nu_{xm} + (1 - \delta^m_{ij}) M^m_{ij} \end{split}$$

TRANSP-OR

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Bierlaire (EPFL)

Choice and optimization

September 13, 2016 30 / 48

・ロト ・聞ト ・ヨト ・ヨト

Regret minimization

Generalization of the framework

- The linear formulation of maximum utility is easily extended
- The generalization is still linear
- Increase in complexity (more variables and constraints).

Outline

Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities

- Regret minimization
- 3 A simple example
 - Example: one theater
 - Example: two theaters
 - Example: two theaters with capae

Conclusion

Bierlaire (EPFL)

A B A A B A

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

 $U_{in} = \beta_{in} p_{in} + f(z_{in}) + \varepsilon_{in}$

Decision variables

- What movies to propose? *y_i*
- What price? pin

- 4 E

ÉCOLE POLYTECHNIQUI FÉDÉRALE DE LAUSANN

Back to the example: pricing

Data

- Two alternatives: my theater (m) and the competition (c)
- We assume an homogeneous population of *N* individuals

$$U_c = 0 + \varepsilon_c$$
$$U_m = \beta_c p_m + \varepsilon_m$$

• $\beta_c < 0$ • Logit model: ε_m i.i.d. EV

> ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Demand and revenues

Optimization (with GLPK)

Data

- *N* = 1
- *R* = 100
- $U_m = -10p_m + 3$
- Prices: 0.10, 0.20, 0.30, 0.40, 0.50

Results

- Optimum price: 0.3
- Demand: 56%
- Revenues: 0.168

Example: one theater

Heterogeneous population

Two groups in the population

$$U_{in} = -\beta_n p_i + c_n$$

Young fans: 2/3 $\beta_1 = -10$, $c_1 = 3$ Others: 1/3 $\beta_1 = -0.9$, $c_1 = 0$

A B A A B A

Demand and revenues

Optimization

Data

- *N* = 3
- *R* = 100
- $U_{m1} = -10p_m + 3$
- $U_{m2} = -0.9 p_m$
- Prices: 0.3, 0.7, 1.1, 1.5, 1.9

Results

- Optimum price: 0.3
- Customer 1 (fan): 60% [theory: 50 %]
- Customer 2 (fan) : 49% [theory: 50 %]
- Customer 3 (other) : 45% [theory: 43 %]
- Demand: 1.54 (51%)
- Revenues: 0.48

• • = • • = •

39 / 48

Two theaters, different types of films

(日) (同) (三) (三)

Bierlaire (EPFL)

Choice and optimization

September 13, 2016 4

40 / 48

Theater *k*

Cheap

Tinker Tailor Soldier Spy

Two theaters, different types of films

Theater *m*

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Bierlaire (EPFL)

Two theaters, different types of films

Data

- Theaters *m* and *k*
- *N* = 6
- *R* = 10

•
$$U_{mn} = -10p_m + (4), n = 1, 2, 4, 5$$

•
$$U_{mn} = -0.9p_m, n = 3, 6$$

•
$$U_{kn} = -10p_k + (0), n = 1, 2, 4, 5$$

•
$$U_{kn} = -0.9p_k$$
, $n = 3, 6$

- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price *m*: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3%)
- Revenues: 0.8

Theater k

- Optimum price m: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38%)
- Revenues: 1.15

Theater k

Cheap

Star Wars Episode VIII

Two theaters, same type of films

Theater *m*

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Bierlaire (EPFL)

Two theaters, same type of films

Data

- Theaters *m* and *k*
- *N* = 6
- *R* = 10
- $U_{mn} = -10p_m + (4),$ n = 1, 2, 4, 5

•
$$U_{mn} = -0.9p_m, n = 3, 6$$

• $U_{kn} = -10p_k + (4),$ n = 1, 2, 4, 5

•
$$U_{kn} = -0.9p_k$$
, $n = 3, 6$

- Prices *m*: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price m: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7%)
- Revenues: 3.42

Theater k

Closed

- 3

イロト 人間ト イヨト イヨト

Two theaters with capacity, different types of films

Data

- Theaters m and k
- Capacity: 2
- *N* = 6
- R = 5
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9 p_m, n = 3, 6$
- $U_{kn} = -10p_k + 0, \ n = 1, 2, 4, 5$
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater *m*

- Optimum price *m*: 1.8
- Demand: 0.2 (3.3%)
- Revenues: 0.36

Theater k

- Optimum price m: 0.5
- Demand: 2 (33.3%)
- Revenues: 1.15

イロト イポト イヨト イヨト 二日

Example of two scenarios

	Customer	Choice	Capacity <i>m</i>	Capacity k	
-	1	0	2	2	
	2	0	2	2	
	3	k	2	1	
	4	0	2	1	
	5	0	2	1	
	6	k	2	0	
-	Customer	Choice	Capacity <i>m</i>	Capacity k	
-	1	0	2	2	
	2	k	2	1	
	3	0	2	1	
	4	k	2	0	
	5	0	2	0	
TRAN	SP-OR 6	0	2	00	ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
D: 1 : (E		C I .	1		
Bieriaire (El	PFL)	Choice	and optimization	September	13, 2010 40 / 48

Outline

Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities

- Regret minimization
- A simple example
 - Example: one theater
 - Example: two theaters
 - Example: two theaters with capa

- 4 週 ト - 4 三 ト - 4 三 ト

September 13, 2016

47 / 48

Choice models in integer optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- Linear in the decision variables
- Large scale
- Fairly general
- Easily extended for regret minimization

