Incorporating advanced behavioral models in integer optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
September 13, 2016

Outline

(1) Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities
- Regret minimization
(3) A simple example
- Example: one theater
- Example: two theaters
- Example: two theaters with capa

4 Conclusion FEDIRALE DE LAUSANNE

Operations research

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: $P=f(Q)$
- Inverse demand: $Q=f^{-1}(P)$ FEDIRALE DE LAUSANNE

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
- Attributes: price, travel time, reliability, frequency, etc.
- Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- predict the demand

```
Johnson City Enterprise.
    Published Every Satarday,
    \$1. per year- \(\Delta\) drance Payment.
    Saturday, April 7, 1823.
            TIME TABLE
    E. T., V. \& G. R. R.
```


Demand-supply interactions

Multi-objective optimization

Minimize costs

TRANSP-OR

Maximize satisfaction

Disaggregate demand in optimization

Issues

- Highly non linear
- Highly non convex
- Literature contains some successful instances
- Relatively easy when decision variables = availability
- Difficult when decision variables in utility (e.g. pricing)

Outline

(1) Demand in optimization
(2) Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities
- Regret minimization
(3) A simple example
- Example: one theater
- Example: two theaters
- Example: two theaters with capa

The main idea

$\zeta_{\text {TRANSP-OR }}$

The main idea

```
Linearization
Hopeless to linearize the logit formula (we tried...)
```

First principles
Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$
U_{i n}=V_{i n}+\varepsilon_{i n}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\varepsilon_{i n} .
$$

Simulation

- Assume a distribution for $\varepsilon_{\text {in }}$
- E.g. logit: i.i.d. extreme value
- Draw R realizations $\xi_{i n r}$,

$$
r=1, \ldots, R
$$

- The choice problem becomes deterministic

fedirale de lausanne

Scenarios

Draws

- Draw R realizations $\xi_{i n r}, r=1, \ldots, R$
- We obtain R scenarios

$$
U_{i n r}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\xi_{i n r}
$$

- We define lower and upper bounds

$$
\ell_{i n r} \leq U_{i n r} \leq m_{i n r}, \forall i, n, r .
$$

and

$$
M_{i n r}=m_{i n r}-\ell_{i n r} .
$$

Availability

Decision variable (supply)

$$
y_{\text {in }}=1 \text { if } i \in \mathcal{C}_{n}, 0 \text { otherwise }
$$

Capacity reached (demand)

$$
y_{i n r}=1 \text { if } i \text { is full for scenario } r, 0 \text { otherwise }
$$

Relation

$$
y_{i n r} \leq y_{i n}, \forall i, n, r
$$

Utility and availability

New variable

$$
\bar{U}_{i n r}= \begin{cases}U_{i n r} & \text { if } y_{i n r}=1 \\ \ell_{i n r} & \text { if } y_{i n r}=0\end{cases}
$$

Modeling

$$
\begin{aligned}
\ell_{i n r} & \leq \bar{U}_{i n r} \\
\bar{U}_{i n r} & \leq \ell_{i n r}+M_{i n r} y_{i n r} \\
U_{i n r}-M_{i n r}\left(1-y_{i n r}\right) & \leq \bar{U}_{i n r} \\
\bar{U}_{i n r} & \leq U_{i n r} .
\end{aligned}
$$

Utility and availability

Modeling

$$
\begin{aligned}
\ell_{i n r} & \leq \bar{U}_{i n r} \\
\bar{U}_{i n r} & \leq \ell_{i n r}+M_{i n r} y_{i n r} \\
U_{i n r}-M_{i n r}\left(1-y_{i n r}\right) & \leq \bar{U}_{i n r} \\
\bar{U}_{i n r} & \leq U_{i n r} .
\end{aligned}
$$

$$
\begin{aligned}
& y_{i n r}=1 \\
& \qquad \\
& \qquad \begin{array}{l}
\bar{U}_{i n r} \leq \ell_{i n r}+M_{i n r}=m_{i n r} \\
U_{i n r} \leq \bar{U}_{i n r} \\
U_{i n r}
\end{array}=\bar{U}_{i n r}
\end{aligned}
$$

$$
\begin{aligned}
\bar{U}_{i n r} & \leq \ell_{i n r} \\
U_{i n r}-M_{i n r} & \leq \bar{U}_{i n r} \\
\bar{U}_{i n r} & =\ell_{i n r}
\end{aligned}
$$

Choice

Maximum utility

$$
U_{n r}^{*}=\max _{i \in \mathcal{C}_{n}} \bar{U}_{i n r} .
$$

Choice

$$
w_{i n r}= \begin{cases}1 & \text { if } U_{n r}^{*}=\bar{U}_{i n r} \\ 0 & \text { otherwise }\end{cases}
$$

Choice

Modeling

$$
\begin{aligned}
M_{n r}^{*} & =\max _{i} M_{i n r} \\
\bar{U}_{i n r} & \leq U_{n r}^{*} \\
U_{n r}^{*} & \leq \bar{U}_{i n r}+M_{n r}^{*}\left(1-w_{i n r}\right) \\
\sum_{i} w_{i n r} & =1
\end{aligned}
$$

$$
\begin{aligned}
& w_{i n r}=1 \\
& U_{n r}^{*} \leq \bar{U}_{i n r} \\
& U_{n r}^{*}=\bar{U}_{i n r}
\end{aligned}
$$

$$
U_{n r}^{*} \leq \bar{U}_{i n r}+M_{n r}^{*}
$$

Demand and revenues

Demand

$$
D_{i}=\frac{1}{R} \sum_{n=1}^{n} \sum_{r=1}^{R} w_{i n r}
$$

Revenues

$$
R_{i}=\frac{1}{R} \sum_{n=1}^{N} p_{i n} \sum_{r=1}^{R} w_{i n r}
$$

Revenues

Non linear specification

$$
R_{i}=\frac{1}{R} \sum_{n=1}^{N} p_{i n} \sum_{r=1}^{R} w_{i n r} .
$$

Predetermined price levels
Price levels: $p_{i n}^{\ell}, \ell=1, \ldots, L_{i n}$

$$
p_{i n}=\sum_{\ell=1}^{L_{i n}} \lambda_{i n \ell} p_{i n}^{\ell} .
$$

New decision variables
$\lambda_{\text {in } \ell} \in\{0,1\}$

Revenues

Non linear function

$$
R_{i}=\frac{1}{R} \sum_{n=1}^{N} \sum_{\ell=1}^{L_{i n}} \lambda_{i n \ell} p_{i n}^{\ell} \sum_{r=1}^{R} w_{i n r} .
$$

Linearization

$$
\alpha_{i n r \ell}=\lambda_{i n \ell} w_{i n r}
$$

Linear specification of revenues

$$
R_{i}=\frac{1}{R} \sum_{n=1}^{N} \sum_{r=1}^{R} \sum_{\ell=1}^{L_{i n}} \alpha_{i n r \ell} p_{i n}^{\ell}
$$

with

$$
\begin{aligned}
\lambda_{i n \ell}+w_{i n r} & \leq 1+\alpha_{i n r \ell}, \forall i, n, r, \ell \\
\alpha_{i n r \ell} & \leq \lambda_{i n \ell}, \forall i, n, r, \ell \\
\alpha_{i n r \ell} & \leq w_{i n r}, \forall i, n, r, \ell
\end{aligned}
$$

Dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework
The list of customers must be sorted

Dealing with capacities

Variables

- $y_{i n}:$ decision of the operator
- $y_{i n r}$: availability

Constraints

$$
\begin{aligned}
\sum_{n=1}^{N} w_{i n r} & \leq c_{i} \\
y_{i n r} & \leq y_{i n} \\
y_{i(n+1) r} & \leq y_{i n r}
\end{aligned}
$$

Dealing with capacities

Modeling

$$
\begin{aligned}
c_{i}\left(1-y_{i n r}\right) & \leq \sum_{m=1}^{n-1} w_{i m r}+c_{i}\left(1-y_{i n}\right) \\
\sum_{m=1}^{n-1} w_{i m r} & \leq\left(c_{i}-1\right) y_{i n r}+(n-1)\left(1-y_{i n r}\right)
\end{aligned}
$$

$y_{i n}=0$ so that $y_{i n r}=0$

$$
\begin{aligned}
c_{i} & \leq \sum_{m=1}^{n-1} w_{i m r}+c_{i} \\
\sum_{m=1}^{n-1} w_{i m r} & \leq(n-1)
\end{aligned}
$$

Dealing with capacities

Modeling

$$
\begin{aligned}
c_{i}\left(1-y_{i n r}\right) & \leq \sum_{m=1}^{n-1} w_{i m r}+c_{i}\left(1-y_{i n}\right) \\
\sum_{m=1}^{n-1} w_{i m r} & \leq\left(c_{i}-1\right) y_{i n r}+(n-1)\left(1-y_{i n r}\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
y_{i n}=1, y_{i n r}=1 & y_{i n}=1, y_{i n r}=0 \\
0 & \leq \sum_{m=1}^{n-1} w_{i m r} & c_{i} \leq \sum_{m=1}^{n-1} w_{i m r} \\
\sum_{m=1}^{n-1} w_{i m r} \leq c_{i}-1 & -\sum_{m=1}^{n-1} w_{i m r} \leq n-1
\end{array}
$$

General framework

Choice models

- logit
- MEV
- mixtures
- hybrid
- panel effects
- random regret
- etc.

Regret minimization

Model specification

$$
\begin{aligned}
R_{i j}^{m} & =\max \left\{0+\nu_{0 m}, \beta_{m}\left(x_{j m}-x_{i m}\right)+\nu_{x m}\right\} \\
R_{i j} & =\sum_{m} R_{i j}^{m} \\
R_{i} & =\sum_{j \neq i}^{m} R_{i j} \\
i^{*} & =\operatorname{argmin}_{i} R_{i}-\varepsilon_{i}=\operatorname{argmax}_{i}-R_{i}+\varepsilon_{i}
\end{aligned}
$$

Regret minimization

$$
R_{i j}^{m}=\max \left\{0+\nu_{0 m}, \beta_{m}\left(x_{j m}-x_{i m}\right)+\nu_{x m}\right\}
$$

Modeling

$$
\begin{aligned}
& R_{i j}^{m} \geq \nu_{0 m} \\
& R_{i j}^{m} \geq \beta_{m}\left(x_{j m}-x_{i m}\right)+\nu_{x m} \\
& R_{i j}^{m} \leq \nu_{0 m}+\delta_{i j}^{m} M_{i j}^{m} \\
& R_{i j}^{m} \leq \beta_{m}\left(x_{j m}-x_{i m}\right)+\nu_{x m}+\left(1-\delta_{i j}^{m}\right) M_{i j}^{m}
\end{aligned}
$$

Regret minimization

Generalization of the framework

- The linear formulation of maximum utility is easily extended
- The generalization is still linear
- Increase in complexity (more variables and constraints).

Outline

(1) Demand in optimization

Linear representation of demand

- Availability
- Choice
- Aggregate indicators
- Capacities
- Regret minimization
(3) A simple example
- Example: one theater
- Example: two theaters
- Example: two theaters with capa

4) Conclusion

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

$$
U_{i n}=\beta_{i n} p_{i n}+f\left(z_{i n}\right)+\varepsilon_{i n}
$$

Decision variables

- What movies to propose? y_{i}
- What price? $p_{\text {in }}$

Back to the example: pricing

Data

- Two alternatives: my theater (m) and
 the competition (c)
- We assume an homogeneous population of N individuals

$$
\begin{aligned}
U_{c} & =0+\varepsilon_{c} \\
U_{m} & =\beta_{c} p_{m}+\varepsilon_{m}
\end{aligned}
$$

- $\beta_{c}<0$
- Logit model: ε_{m} i.i.d. EV

Demand and revenues

Optimization (with GLPK)

Data

- $N=1$
- $R=100$
- $U_{m}=-10 p_{m}+3$
- Prices: $0.10,0.20,0.30,0.40$, 0.50

Results

- Optimum price: 0.3
- Demand: 56\%
- Revenues: 0.168

Heterogeneous population

Two groups in the population

$$
U_{i n}=-\beta_{n} p_{i}+c_{n}
$$

Young fans: $2 / 3$	Others: $1 / 3$
$\beta_{1}=-10, c_{1}=3$	$\beta_{1}=-0.9, c_{1}=0$

Demand and revenues

Optimization

Results

- Optimum price: 0.3
- Customer 1 (fan): 60\% [theory: 50 \%]
- Customer 2 (fan): 49\% [theory: 50 \%]
- Customer 3 (other) : 45\% [theory: 43 \%]
- Demand: 1.54 (51\%)
- Revenues: 0.48

Data

- $N=3$
- $R=100$
- $U_{m 1}=-10 p_{m}+3$
- $U_{m 2}=-0.9 p_{m}$
- Prices: $0.3,0.7,1.1,1.5,1.9$

Two theaters, different types of films

Two theaters, different types of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, different types of films

Theater m

Data

- Theaters m and k
- $N=6$
- $R=10$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price
- Optimum price m: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3\%)
- Revenues: 0.8

Theater k

- Optimum price m: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38\%)
- Revenues: 1.15

Two theaters, same type of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, same type of films

Data

- Theaters m and k
- $N=6$
- $R=10$
- $U_{m n}=-10 p_{m}+4$,
$n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+4$,
$n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7\%)
- Revenues: 3.42

Theater k
Closed

Two theaters with capacity, different types of films

Data

- Theaters m and k
- Capacity: 2
- $N=6$
- $R=5$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Demand: 0.2 (3.3\%)
- Revenues: 0.36

Theater k

- Optimum price m: 0.5
- Demand: 2 (33.3\%)
- Revenues: 1.15

Example of two scenarios

Customer Choice Capacity m Capacity k

1	0	2	2
2	0	2	2
3	k	2	1
4	0	2	1
5	0	2	1
6	k	2	0

Customer	Choice	Capacity m	Capacity k
1	0	2	2

2	k	2	1
3	0	2	1
4	k	2	0
5	0	2	0
6	0	2	0

Outline

(1) Demand in optimization
(2) Linear representation of demand

- Availability
- Choice
- Aggregate indicators - Capacities
- Regret minimization
(3) A simple example
- Example: one theater
- Example: two theaters
- Example: two theaters with capa

4. Conclusion FEDIRALE DE LAUSANNE

Choice models in integer optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- Linear in the decision variables
- Large scale
- Fairly general
- Easily extended for regret minimization

