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ABSTRACT: Applying time-resolved electroabsorption spectroscopy for the first time to
methylammonium lead triiodide perovskite (MAPbL;) thin films under reverse bias, we
monitored optically the ultrafast evolution of the local counter-electric field produced by
the drift of photogenerated electrons and holes in opposite directions. Under an externally
applied electric field of [El < 10° V cm™, the carriers were found to reach a separation of 40
nm within ~1 ps. This distance corresponds to the average dimensions of crystalline grains
in the active film, at the boundaries of which charges were trapped. An intragrain average
carrier drift mobility of . = 23 cm®* V™! s™! was inferred. Subsequent charge detrapping,
migration through the entire film, and accumulation at its insulated surfaces caused a blue
shift of the perovskite absorption edge that arose within tens of picoseconds, owing to a
trap-limited electron drift mobility s, = 6 cm* V™' s!. Charge recombination was entirely
suppressed between field-separated photocarriers generated at initial densities of ny < 2 X
10 cm™. Accumulation of electrons at the interface between a mesoporous TiO,
electron-transport layer and a multigrain MAPbI; film was also observed, which was
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indicative of delayed charge injection through a poor contact junction.

B INTRODUCTION

Since their initial demonstration, hybrid organic—inorganic lead
trihalide perovskites (APbX,), such as methylammonium lead
triiodide (MAPbIL;), have proven to be extraordinary materials
for photovoltaic and electronic applications.'~* Record power
conversion efficiencies now exceeding 22% have been achieved
with single-junction perovskite solar cells,” and devices with a
range of architectures and material compositions have been
reported.”””” Spectrally broad, direct-band-gap absorption
enables perovskite semiconductor thin films to efficiently
harness the solar spectrum. In addition, long carrier diffusion
distances and ambipolar charge transport allow for the effective
extraction of photogenerated electrons and holes prior to
carrier recombination.'’~"? Recent substantial improvements in
the stability of perovskite solar cells through various strategies
show that this type of photovoltaic converter is becoming close
to practical use.”'*~'¢

Despite this very rapid progress, much remains to be
understood regarding the intrinsic properties of the materials
and the basic mechanisms of solar cell operation. Typical
photovoltaic device characterization protocols rely on current—
voltage scans to measure power conversion efficiencies. For a
number of photovoltaic cell architectures, however, accurate
device characterization has proven to be difficult, because of the
apparent huge dielectric constant of the perovskite at low
frequencies and an anomalous photocurrent hysteresis
observed under typical measurement conditions.'” *° The
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latter properties reflect a polarization of the active material
subjected to an electric field and is believed to be primarily
caused by the slow migration of halide ions and halide vacancies
within the material and charge accumulation at ion-blocking
interfaces.”" >’

Ionic disorder in iodoplumbate perovskites at room temper-
ature implies the presence of interstitial iodide anions and
iodide vacancies within the crystal that are likely to act as hole
and electron traps, respectively.”*">° Photophysical stud-
ies,”” 7" photoluminescence nanoimaging,‘?’1 and transient
absorption microscopy’>>* have also evidenced trap and
midgap states in the material, which are located predominantly
at grain boundaries and interfaces. The size of the crystalline
grains in perovskite films and the quality of the electronic
contact at the interfaces between the active layer and the
electron-donor and -acceptor materials appear, therefore, to
play a crucial role in determining the photovoltaic perform-
ances of devices."”*>™"” The design of new possibilities for
improving these characteristics call for a deeper insight into the
details of the trapping of photogenerated carriers at grain
boundaries and of the accumulation of charges at the perovskite
interfaces. The determination of carrier mobilities has been
achieved so far by the application of various techniques, among
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which contactless time-domain terahertz spectroscopy has been
one of the favorites. This technique, however, probes the
oscillation of carriers over very short distances and hardly
allows for the characterization of drift mobilities on the order of
200—400 nm, corresponding to typical thicknesses of perov-
skite films in a solar cell. Apart from Hall effect measurements,
a number of electrical methods, such as time-of-flight (TOF)
techniques, have been employed to determine dc mobilities
within large crystals and in complete photovoltaic devices.”**
The nanosecond time resolution of photocurrent probing
constitutes a serious limitation in these cases and prevents the
observation of ultrafast stages of the carrier separation
dynamics.

Time-resolved electroabsorption spectroscopy (TREAS) has
been designed to probe optically the perturbation of an
externally applied electric field experienced by an absorber
semiconductor, a donor—acceptor bilayer, or a solid blend with
femtosecond time resolution.”” This recently established
experimental technique relies on the electric-field-dependent
optical response of a material (electroabsorption: Stark or
Franz—Keldysh effects). Photogeneration of charge pairs,
splitting of these pairs, and subsequent drift of the carriers
perturb the electric field exerted locally on the material, causing
changes in its absorption or reflectivity. Monitoring the
temporal evolution of these optical properties in an ultrafast
pump—probe spectroscopy scheme allows for the reconstruc-
tion of the electric field and, hence, the dynamics of charge
motion. TREAS based on the transient Stark effect has been
successfully applied to scrutinize the charge generation and
separation dynamics in bilayer and bulk heterojunction organic
photovoltaic cells.* ~* This powerful technique was applied in
this work for the first time to investigate the dynamics of charge
carrier separation and trapping in MAPbI; perovskite thin films
subjected to an external quasistatic electric field.

B RESULTS AND DISCUSSION

Thin films of vapor-deposited MAPbI; were studied using
ultrafast time-resolved electroabsorption spectroscopy. This
technique involves subjecting the material to a modulated
external electric field generated by applying a square-pulse
voltage between two electrodes situated on the two sides of the
perovskite film. The samples used in this work had a multilayer
structure of the form ITOIALO;MAPbLlpoly(methyl meth-
acrylate) (PMMA)IAu, where the active material was
sandwiched between two insulating layers acting as barriers
against carrier injection and collection at the electrodes.
Samples were prepared by coating an ITO/glass conductive
transparent substrate with an insulating, 30-nm-thick Al,O;
layer, on top of which a 280-nm-thick film of MAPbI; was
deposited by coevaporation of methylammonium iodide
(CH;NH,]I) and lead iodide (PbL,).”** An insulating layer of
poly(methyl methacrylate) (PMMA) was deposited by spin-
coating a solution of the polymer onto the perovskite, allowing
the active film to be encapsulated and protected against
possible degradation by moisture and oxygen. An 80-nm-thick
gold (Au) film was finally vacuum-coated on the PMMA
surface. The overall thickness of the sample between the two
conductive electrodes was determined by scanning electron
microscopy to be 340 + 20 nm (Figure 1).

After a monochromatic pump pulse (45-fs pulse duration)
had photoexcited the MAPBDI; perovskite absorber, the time
evolution of the electric field experienced by the material was
measured by monitoring its transient absorption spectra near
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Figure 1. Cross-sectional scanning electron microscopy (SEM) image
of an insulated, vapor-deposited MAPDI; film sandwiched between two
conductive electrodes. From bottom to top, the micrograph shows
ITO conductive glass coated with an insulating layer of alumina, the
perovskite film, a second insulating layer made of spin-coated PMMA,
and an evaporated gold layer constituting the second electrode. The
polycrystalline morphology of the vapor-deposited MAPDI; film is
clearly visible, with grain size varying between 20 and 150 nm.

the absorption edge using white-light continuum probe pulses
delayed by up to 1200 ps with respect to the pump excitation.
Figure 2 shows the static electroabsorption (EA) spectrum of
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Figure 2. Differential absorption spectra of insulated MAPbI; films.
Yellow line: Transient absorbance (TA) spectrum (U = 0, Apump = 545
nm, probed 300 ps after pump excitation). Red line: Electroabsorption
(EA) spectrum (U = 6.0 V, no pump pulse). Black line:
Electromodulated differential absorbance (EDA) spectrum (U = 6.0
V, Apump = 545 nm, probed 300 ps after pump excitation). Inset:
Dependence of the differential electroabsorption (EA) signal measured
at Ayope = 762 nm upon the applied voltage (forward and reverse bias).
The red curve drawn through the experimental points is the best fit to
a parabolic function.

MAPbI,, its transient absorption (TA) spectrum, and its
electromodulated differential absorption (EDA) spectrum. The
absorbance changes, AA, determined in each case are defined
by the following differences

EA spectrum

AA(L) = Ax(4) — A(2) O]
TA spectrum
AA(t) j') = Apump(t) /1) - A(t) A) 2)

EDA spectrum
AA(tr ﬂ') = AE+pump(tr ﬂ') - APumP(f, ﬂ') 3)
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where A(4) is the absorbance spectrum measured in the
absence of a field and with no pump excitation, Ag(4) is the
spectrum of the sample subjected to the electric field E, A, (t,
A) is the transient spectrum obtained upon laser-pulsed
excitation, and AE+PumP(t, 1) is the transient spectrum of the
sample subjected to both the external electric field and the
optical pump.

To generate the EA and EDA spectra, a square-pulse voltage
was applied between the ITO and Au electrodes with a pulse
duration of 100 ys and a repetition rate of 1 kHz. Taking into
account the permittivity of the MAPbI, film as well as those of
the two insulating layers, the magnitude of the electric field
experienced by the perovskite material was calculated to be [El,
= 0.437U/d, where U is the voltage applied between the ITO
and gold electrodes and d = 280 + 20 nm is the perovskite film
thickness. A voltage of U = 6.0 V applied across the whole
device hence corresponds to an electric field intensity of [El, =
9.4 + 0.8 X 10" V cm™ [see the Supporting Information (SI)
for details and additional references].

The change in the absorption band shape, AA(v), of
molecular and excitonic species subjected to an electric field E
can be described as the sum of first and second derivatives of
the absorption spectrum A(v)**°
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where [El is the modulus of the electric field exerted on the
sample, Ap is the change in permanent dipole moment, and A
is the difference in polarizability between the ground and
excited electronic states connected by the optical transition that
is being probed. The first term in eq 4 is linear in [El and
reaches zero for isotropic samples, because the transient dipole
moment, Ap, is averaged over all possible orientations. The
second term shows that changes in the dipole moment are
associated with the second derivative of the absorption
spectrum, and the last term includes the product of the change
in polarizability, Aa, and the first derivative of the absorption
spectrum. The last two terms are quadratic in the field.

The linear and quadratic terms in eq 4 can be distinguished
by measuring the electroabsorption as a function of the applied
bias voltage. The inset of Figure 2 shows the field dependence
of the change in electroabsorption amplitude at the wavelength
Aprobe = 762 nm. A parabolic dependence of the EA signal on
the applied voltage is observed. In our case, EA measured at the
absorption edge seems to be primarily due to a shift and
broadening of the Gaussian excitonic band component of the
perovskite absorbance spectrum (Figure S1), which is expected
to produce a quadratic Stark effect if no permanent dipole
moment is effective and the polarizability of the material is
reasonably isotropic.**® Electroabsorption spectra of insulated
MAPDbI, films were recently shown to also be compatible with a
third-order nonlinear optical response and the low-field Franz—
Keldysh—Aspnes (FKA) model, according to which relative
transmittance or reflectance changes also scale quadratically
with the electric field."”

The symmetrical responses of the EA signals observed at
both forward and reverse applied biases confirm that the
insulating layers effectively prevent carrier injection at the
electrodes. Any interfacial charge transfer occurring at a
particular junction would, indeed, produce a decrease of the

effective electric field exerted on the material and dramatically
reduce the observed electroabsorption upon reaching a critical
voltage value under normal bias. It also indicates that, if ion
migration is induced by the applied electric field, causing a
change in the absorption of the material, this must take place
on a time scale that exceeds the 100-ys period during which the
electric field is applied to the sample.

The EA spectrum in Figure 2 shows a negative absorbance
change at A,,,pe = 745—775 nm, with a maximum at 762 nm
along with a weaker positive AA feature at A, = 718—745
nm. An additional positive band above 775 nm cannot be
completely resolved because of its overlap with the fundamental
emission of the laser. The shape of the EA spectrum is
indicative of a blue shift of the excitonic band of MAPbI; upon
application of the external electric field and is typical of
quadratic Stark or FKA effects, where the differential
absorbance appears as a mixture of the first and second
derivatives of the absorption spectrum. The TA spectrum
recorded at a delay time of 300 ps after the pump excitation
shows a negative band between 720 and 780 nm with a peak at
757 nm. This feature is associated with the ground-state
bleaching of the perovskite, whereas the broad positive
absorption band spanning 550—720 nm is due to charge
carriers generated in the photoexcited material.** ™" A shift of 6
nm is observed between the negative peaks of the EA and TA
spectra with full width at half-maximum (fwhm) values of 20
and 30 nm, respectively. The EDA spectrum recorded 300 ps
after pump excitation is also shown in Figure 2. The negative
band at 751 nm is slightly blue-shifted relative to the ground-
state bleaching observed in the TA spectrum. Whereas a
positive band at 680—720 nm is observed, the transient
absorption feature due to photogenerated carriers appearing in
the TA spectrum at shorter wavelengths (ﬁpmbe < 660 nm) is
absent here, because it was subtracted in the calculation of the
differential spectrum (eq 3).

The EDA spectra at selected times after pump excitation are
shown in Figure 3. At a delay time of <0 ps, the pump pulse has
not yet generated charge carriers, and therefore, the EDA and
steady-state EA spectra are identical. After pump excitation, the
photogenerated electrons and holes in the perovskite layer drift
toward the oppositely biased electrodes. The carrier separation
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Figure 3. Time evolution of the electromodulated differential
absorption (EDA) spectra of insulated MAPbI, films excited at Apump
= 545 nm and subjected to an external electric field [El, = 9.4 X 10* V
cm™ (U = 6 V). Inset: Time dependence of the differential absorbance
change recorded under the same conditions at 4,5 = 762 nm.
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produces a space charge and a transient electric field E, that
opposes the steady field E; applied between the electrodes. It
reduces the effective field strength, |E. | = [Ely — |E{, exerted
on the MAPDI; film and consequently decreases the amplitude
of the electroabsorption. The EDA signal dynamics depends on
the carriers’ drift velocity and, hence, on their mobility. EDA
dynamics monitored at the peak of the negative band associated
with the Stark shift (see the inset of Figure 3 and Si Figure S4)
shows a decrease of the signal amplitude by approximately one-
half at early times that can be attributed to the field-induced
charge separation and the ensuing screening of the applied
electric field exerted on the perovskite film. This initial carrier
motion step is completed within 3 ps, at which point the EDA
signal flattens out, indicating that there is no further rapid
change in the effective field experienced by the material.

On a longer time scale, we observe that, after the initial
decrease on the picosecond range, the amplitude of the
transient negative signal increases with a half-reaction time of
ca. 0.4 ns. The ingrowth in the bleaching band extends far
beyond the initial amplitude at time zero resulting from the
initially observed Stark effect and is accompanied by a 7—9-nm
blue shift. This indicates that the slowly growing negative signal
peaking at A,.p. = 755 nm is unrelated to the field-induced
Stark shift of the absorption spectrum. This phenomenon,
however, is observed only when the external electric field is
applied and will be discussed in the following section.

Figure 4 compares TA and EDA signals obtained under
similar conditions. Because no charge extraction from the
insulated perovskite film is possible, the time evolution of the
TA dynamics must result from carrier recombination. In the
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Figure 4. Subnanosecond time evolution of the transient absorption
(TA) and electromodulated differential absorption (EDA) signals
recorded for increasing values of the energy fluences at Ay, = 545
nm. (A) TA dynamics of carrier recombination in the absence of a
field. (B) EDA dynamics obtained upon application of an external field
of [Ely = 62 x 10* V.em™ (U = 4.0 V). (C) EDA dynamics after
subtraction of the carrier recombination contribution (eq S). The
vertical positioning of the traces is arbitrary. All measured absorbance
changes (TA and EDA) were averaged on the probe wavelength
interval 749 nm < A, < 757 nm.

absence of an applied electric field, a decay of the ground-state
bleaching is indeed observed, whose kinetics depends on the
excitation pulse energy fluence and the resulting initial
photogenerated carrier density (Figure 4A). Single-exponential
fitting of the recombination dynamics yields time constants of
7,=15.2,4.8, 34, and 3.4 & 0.2 ns for pump energy fluences of
¥ = 0.12, 0.24, 0.36, and 0.48 yJ cm™” per pulse, respectively.
The observed pseudo-first-order rate constant k., = 1/7, does
not scale linearly with the initial photocarrier density n,y, which
is proportional to the energy fluence W. Because the
recombination between carriers, where at least one is free,
should be characterized by a second-order rate law
(“bimolecular” recombination mechanism), this result suggests
that charge recombination in this case proceeds mainly between
correlated electron—hole pairs localized in Wannier—Mott
excitons or in neighboring trap sites (Shockley—Read—Hall
mechanism). The energy fluence per excitation pulse used in
our experiments was kept at low values corresponding at most
(¥ = 0.48 pJ-cm™) to 1 Sun (AM1.5G) X 200 ns and an initial
impulsive photocarrier density of ny = 4.2 X 10'® cm™. This
value is likely to be comparable to or less than the trap density
within the material, which has been estimated for solution-
processed polycrystalline MAPbI, films to range between 10'
and 10'® cm™*

Rather than decaying, the EDA ground-state bleaching signal
increases markedly after the initial S-ps period with apparent
biphasic dynamics (Figure 4B). Fitting of the slower kinetic
component yields time constants quite similar to those
extracted from the TA signals for carrier recombination.
When the external electric field is applied, charge migration
in opposite directions indeed prevents electron—hole recombi-
nation to a large extent. The suppression of the carrier
recombination and subsequent ground-state absorption recov-
ery must result in a growing negative differential absorption in
the EDA response that mirrors the decay of the TA, in terms of
both kinetics and amplitude. This slow contribution is
subtracted in Figure 4C by plotting

EDA — (-TA)
AA(t, 2) = Agypump(ts 4) — A(R) (5)

The results reveal a fast kinetic component with a first-order
time constant of 7 = 24 + 4 ps that is decoupled from both the
initial signal growth assigned to the screening of the Stark effect
at time delays shorter than S ps and the slow decay due to
carrier recombination on the nanosecond time scale. This 24-ps
component is attributed to the migration of carriers and
accumulation at the two opposite film surfaces. Further charge
separation should screen the electroabsorption more and thus
produce an upward absorbance change signal. This
contribution, however, is apparently overcompensated here by
an increase of the bleaching of the material at the probe
wavelengths, which credibly results from a Burstein—Moss blue
shift of the absorption threshold.”””" Because the two
phenomena are characterized by the same time evolution, the
combination of their respective signals yields the same kinetic
parameter.

A closer look at the sum of the TA and EDA signals (see
Figure S6) shows that the recombination dynamics is indeed
completely suppressed for initial photocarrier densities of n, <
2 X 106 cm™. At higher pump energy fluences (ny > 3 X 10'
cm™3), however, a residual slow recovery of the ground-state
absorption is still observed. This suggests that a portion of the
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more deeply trapped carriers were not separated by the electric
field within the first tens of picoseconds and eventually
recombined on a nanosecond time scale.

The interpretation of these results is schematized in Figure
SA. Band-gap irradiation of undoped MAPDI; perovskite at a
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Figure 5. (A) Schematic showing how photogenerated charge carriers
can accumulate at both surfaces of an insulated perovskite thin film
within an externally applied electric field. Populated electronic states
appear in dark blue for the conduction band (cb) and electron traps
and dark pink for the valence band (vb) and hole traps. F,* and E*
are quasi-Fermi levels for electrons and holes, respectively, in the
material under illumination. Accumulation of carriers causes a blue
shift (he’ > hv) of the absorption threshold of the material. (B) In the
absence of an electric field, free carriers are produced upon irradiation
at high irradiation intensity and subsequent filling of trap states.
Curved arrows represent electron—hole recombination in trap sites
and between free carriers.

pump wavelength of 545 nm generates out-of-equilibrium
charge carriers. The application of an external field |El, quickly
separates charges over an initial distance corresponding to the
size of crystal grains. Typical dimensions of such domains (see
Figure 1) range from 10 to 100 nm. An average value of the
grain length in the transverse direction was determined from
several cross-sectional SEM images to be d = 40 nm. The initial
decay of the electric field exerted on the material, as probed
optically by the screening of the electroabsorption response,
shows that the initial charge separation takes place with a time
constant of 7, = 0.94 + 0.1 ps (see Figure S4). Assuming an
average transit time of carriers in individual grains of I, = d/2 =
20 nm, a value of y, = I./(7,|Ely) = 22.6 + 4 cm®* V"' s7' is
inferred for the intragrain carrier drift mobility averaged over
electrons and holes (see SI for calculation details).

As the photogenerated charge carriers further migrate toward
the oppositely biased electrodes, they accumulate at the
interface with insulating layers, forming n- and p-doped regions
at the surface of the perovskite film. A Burstein—Moss blue shift
of the MAPDI; absorption spectrum owing to the carriers’
accumulation was observed to build up with a time constant 7,
=24 + 4 ps under a bias voltage of 4.0 V. Because the observed
Burstein—Moss shift of the absorption edge of the semi-
conductor can result from the accumulation of only one specific
type of carrier (see Figure SA), the transit time measured in this
case must be related to the type of carrier that is the first to
reach an interface. Assuming that the accumulation of electrons
in MAPbI; at the proximity of the alumina layer is responsible
for the growing in of the bleaching signal, a value for the
mobility of the negative charge carriers of y, = 5.5 + 1 cm* V™!
s7! is calculated. Alternatively, if holes are the first to
accumulate at the interface between the perovskite film and
PMMA, their mobility would be determined as p, = 13.3 + 2

ecm® V7! s7' (see SI for calculation details). In the latter
hypothesis, the mobility of the electrons, p,, < 5.5 em? VisTh
would be ca. 3 times smaller than that of the holes. Retention of
negative carriers in deeper traps could provide a rationale for
this difference. However, if the first assumption is true, namely,
that electrons are the first to accumulate and cause the
bleaching signal, a value of u, < 13 cm? V7! 57! would be
implied, which is compatible with an electron-to-hole mobility
ratio of ~2 (/,tp ~ 3 cm? V7! s7') determined by terahertz and
microwave photoconductivity measurements®>>” and predicted
by computational calculations.””>> In both cases, or if a
mobility averaged over electrons and holes of y, = 9.4 + 2 cm®
V™' s7! is considered, one observes that the drift mobility of
carriers along their path across the multigrain film is reduced at
least by a factor of 2—4 compared to the intragrain, averaged
mobility. This indicates the significant limitation of the drift
velocity of carriers across the polycrystalline film by scattering
at grain boundaries.””*’

In the absence of a field (Figure 5B), there is no driving force
for charge separation, and photogenerated carriers are
annihilated through electron—hole recombination. When the
irradiation intensity is low and the trap density is rather
significant, a majority of carriers get trapped. Their recombi-
nation, then, proceeds mostly through a trap-assisted, geminate
mechanism on the nanosecond time scale. In contrast, large
carrier densities would be obtained upon strong irradiation.
Trap filling occurs in that case, allowing free carriers to
recombine with faster, bimolecular dynamics.

In an attempt to discriminate between the respective
contributions of electrons and holes, we carried out preliminary
EDA measurements of thin films of evaporated MAPbI; in an
architecture that would allow charge extraction at both
electrodes. The investigated sample had the alumina insulator
replaced by a thin mesoporous nanocrystalline TiO, layer
between the ITO conductive glass substrate and the perovskite.
On the cathode side, the PMMA insulating layer was omitted,
and gold was evaporated directly on top of the MAPbI; film.
The U = 4.0 V reverse bias applied in this case was expected to
make the TiO, act as an effective electron-transport layer,
whereas holes would be readily extracted at the gold electrode.
Similarly to the case of the insulated perovskite film, screening
of the externally applied electric field by intragrain carrier
separation was observed to take place within a few picoseconds
(see Figure S9). Following this early decrease of the
electroabsorption response, a growing bleaching signal with
time constant of ~20—50 ps was monitored again, which was
indicative of carrier accumulation at one or both interfaces. A
slow recovery of the ground-state absorption of the perovskite
was finally observed with a half-reaction time of t,,, & 300 ps.
The latter kinetic component was absent in insulated devices
and is therefore assigned to the slow injection of accumulated
carriers through one of the interfaces. A poor junction between
the mesoporous titania and the polycrystalline vapor-deposited
perovskite is expected, owing to rather sparse punctual contacts
between the TiO, spherical particles and the nanometer-sized
angular grains of the perovskite. On the contrary, the
evaporated gold film forms a conformal junction with the
active layer. It is, therefore, very likely that the observed carrier
accumulation and delayed extraction concerns electrons at the
MAPDL|TiO, interface.
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B CONCLUSIONS

The time-resolved electroabsorption spectroscopy (TREAS)
technique was successfully applied for the first time to a
methylammonium lead triiodide perovskite film. The active
material was prepared by vapor deposition and appeared to be
polycrystalline with an average grain size of 40 nm. MAPDI,
subjected to an externally applied electric field on the order of
10 MV m™" displayed a blue shift of its excitonic absorption
edge at 780 nm, corresponding to a quadratic electroabsorption
response compatible with both Stark and Franz—Keldysh—
Aspnes models. The electroabsorption signal was exploited to
probe optically the time evolution of the local electric field
experienced by the perovskite.

Upon band-gap irradiation, electron—hole pairs were formed.
Their initial spatial separation was observed from the EDA
signal dynamics to take place with a time constant of 0.94 + 0.1
ps, until charges were trapped at grain boundaries. An average
intragrain dc mobility of the carriers of y, =23 + 4 cm* V™' 57!
was extracted from this result, in good agreement with terahertz
spectroscopy measurements.””>>>" A second charge separa-
tion step was observed optically with a time constant of 24 + 4
ps. This kinetic component was assigned to the detrapping of
carriers and their migration to the opposite insulated film
surfaces, where they accumulated, producing a Burstein—Moss
blue shift of the absorption spectrum of the MAPbI; material. A
value of the mobility, limited by trapping—detrapping processes
at grain boundaries, of 4, = 5.5 + 1 cm® V™' s™" was estimated
for electrons drifting across the entire film thickness.
Importantly, charge recombination was observed to be entirely
suppressed between field-separated carriers generated at initial
densities of ny, < 2 X 10* cm™,

The TREAS technique also proved quite powerful in
characterizing the kinetics of the charge transmission between
the perovskite absorber material and the carrier-extracting
layers in fully operational photovoltaic devices. In particular,
electron accumulation at the junction between the vapor-
deposited MAPDI; film and a mesoporous nanocrystalline TiO,
layer was observed before the charge extraction could take place
at the subnanosecond time scale.

B EXPERIMENTAL SECTION

Sample Preparation. An ITO conductive glass substrate
was covered by atomic layer deposition (ALD) with a 30-nm-
thick film of insulating alumina. Al,O; was deposited from
pulses of Al(CH;); precursor and water vapor at 114 °C.>* A
280-nm-thick film of MAPbI; was then coated on top of the
alumina layer by thermally coevaporating methylammonium
iodide (CH3;NH,I) and lead iodide (Pbl,) in a vacuum.
Methylammonium iodide was synthesized and purified
following a reported recipe.”” Pbl, (99%, Aldrich) was used
as received. Substrates and chemicals were loaded in an
evaporator chamber (custom-built, Lesker). The chamber was
pumped down to a base pressure of 9 X 107° mbar. The
methylammonium iodide source was contained in a molybde-
num boat covered by a perforated lid (Omnicore). The
CH;NHjI evaporation rate was adjusted with a proportional—
integral—derivative (PID) controller conditioning the heating
power supply with a pressure set point of 1.23 X 10™* mbar.
Pbl, was placed in a quartz crucible heated by a tungsten wire
coil (EVBY9, EVC2, Lesker), and its evaporation rate was
controlled with a quartz microbalance placed inside the
chamber. The rate of MAPbI; deposition onto the substrate

was 0.03 nm s™'. Details on the evaporation setup and
procedure are provided in ref 43. An insulating poly(methyl
methacrylate) (PMMA) layer (25—30 nm thick) was deposited
by spin-coating on top of the evaporated perovskite. PMMA
beads (MW 120000, Sigma-Aldrich) were dissolved in
chlorobenzene (1S mg/mL), and the solution was spin-coated
(5000 rpm for 2 min) in a glovebox under a dry and oxygen-
free atmosphere. Gold was finally thermally evaporated on the
polymer (BenchTop Turbo evaporator, Denton), yielding an
80-nm-thick film of metal. Samples were kept in the glovebox
until they were used for laser experiments. The aforementioned
vacuum deposition techniques were employed to prepare
complete solar cell devices with an ITO conductive glassl
mesoporous nanocrystalline TiO,lvapor-deposited MAPbI;|Au
architecture. Deposition of the 2-um-thick mesoporous titania
layer was carried out by spin-coating a colloidal solution of
TiO, with a particle diameter of 20 nm at 5000 rpm for 20 s.
The film was then gradually heated to 500 °C and sintered at
that temperature for 15 min.

Ultrafast Transient Absorption Spectroscopy Setup.
Similar pump—probe schemes were used for ultrafast transient
absorption spectroscopy and TREAS measurements. Both
experiments were based on a common amplified Ti:sapphire
femtosecond laser system (CPA-2001, Clark-MXR), with an
output wavelength of 780 nm at a repetition rate of 1 kHz. The
pump beam at 545 nm was generated by a two-stage
noncollinear optical parametric amplifier (NOPA-Plus, Clark-
MXR), with a typical pulse duration of 50—60 fs. The probe
beam consisted of a white-light continuum, generated by
passing part of the 780-nm laser output through a 5-mm-thick
moving CaF, plate (for TA, 400—1050 nm) or through a 3-
mm-thick sapphire disk (for EDA, 400—750 nm). The
remaining fundamental was removed with appropriate filters.
The pump and probe pulses were time-delayed with respect to
one another using a computerized translation stage, and they
were crossed in the sample. The relative polarization of the two
beams was at the magic angle. After being transmitted through
the TA sample or being reflected off the gold electrode of the
EDA sample (which was entered through the transparent ITO
layer), the probe beam was dispersed in a grating spectrograph
(SpectraPro 2500i, Princeton Instruments or SR163, Andor
Technology) and finally detected shot by shot at a 1 kHz rate
with a 512 X 58 pixel back-thinned CCD detector (S07030-
0906, Hamamatsu). Part of the probe beam was split before the
sample into a reference beam reaching a second detector, which
allowed for corrections for shot-to-shot fluctuations. For TA
spectroscopy, the pump beam was chopped at one-half the
amplifier repetition rate (500 Hz). In EDA experiments, each
probe pulse was crossed with the pump at the full 1 kHz
repetition rate. The voltage applied to the electrodes was
modulated at 500 Hz using a function generator (AFG 2021,
Tektronix), which provided square voltage pulses (up to 6-V
reverse bias, 100-us pulse duration). Multiple samples were
measured under the same conditions, yielding consistent
results.
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text: Absorption spectrum of the perovskite film,
calculation of the modulus of the effective external
electric field exerted on the MAPDI; film, details of
intragrain charge dynamics, dependence of the differ-
ential electroabsorption signal on the electric field
magnitude and pump energy fluence, evaluation of the
carrier mobility, and accumulation of electrons at the
MAPDL,|TiO, junction (PDF)
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S1. Absorption spectrum of insulated, coevaporated, multigrain MAPbI; films
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Figure S1. Absorbance spectrum near the absorption edge of a 280-nm-thick vapor-
deposited MAPbDI; film sandwiched between alumina and PMMA insulating layers
(before thermal evaporation of gold on PMMA). Absorbance between 750 and 790 nm
is due primarily to an excitonic absorption band.'

S2. Calculation of the effective external electric field exerted on the MAPbDI; film

The three-layered insulated perovskite film Al,O; (30 nm) | MAPbI; (280 nm) | PMMA
(30 nm) can be modelled as three capacitors in series.
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Figure S2. Equivalent circuit of the MAPbI; film in the dark (C), sandwiched between
alumina (C;) and PMMA (C;) dielectric layers.
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Capacitance in a parallel plate capacitor is governed by the following equation:

C=¢g,-€-S/d (S1)

where € is the vacuum permittivity constant, € the real part of the relative permittivity of the
dielectric medium, S the area of the parallel plates and d the distance between them.

The voltage drop AU across each capacitor depends on the values of the individual
capacitances. By applying Kirchoff’s voltage law to the above circuit, it comes :

U,, =AU, +AU,+AU, (S2)
av, =2  av,=2 av=2 (S3)
Cl CZ C3

where Q is the charge stored in each capacitor. Since the total charge stored in the group of three
capacitors in series is also Q , one gets :

0=C, U,=C-AU, (54)
1 U 1,11 (S5)
tot Q CI CZ CS
C d.
AU, =U ,- tot:UAB.L L:UAB._I.L (S6)
' C C 1 € d.
i i Zii i 2[71
C €

i i

The thickness of each layer was measured by taking several cross-sectional SEM images
(see Figure 1), yielding on the average d; = d3; = 30 nm and d> = 280 nm. The relative
permittivity of each of the three dielectric materials was more difficult to assess, as a rather
broad distribution of values can be found in the literature. MAPbI; was shown to be
characterized by a large (or even ‘giant’) static relative permittivity, due in particular to ionic
movement and molecular dipole contributions from the organic cation.”” In our case, though, the
field is applied in the form of a square pulse voltage for only 100 us, preventing the slow
polarization of the material by ion migration. A moderate isotropic average dielectric constant in
the range of 20-30 at a frequency of 10*-10° Hz is believed to better describe the material in
conditions prevailing in our experiments. In the following, we will then assume a relative
permittivity & = 25.> For ALD-coated alumina, & = 9 measured at a frequency of 1 MHz was
taken from reference.* PMMA, like numerous organic solids, has a relative permittivity ranging
between 2.5 and 3. A value & = 2.7, measured at a frequency of 1 MHz, was used for our
calculation.’
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Inserting the above numerical values in equation S6, the voltage drop across the respective
AL O3, perovskite, and PMMA films was calculated as being AU; = 0.13-Uyp, AU, = 0.44- Uy,
and AU; = 0.43-Uyp (see Figure S3). Hence, for voltage biases U= 6.0 V and U = 4.0 V applied
onto the triple-layer system, the effective external electric field exerted onto the perovskite film
in the dark was :

|Elp=0.44-U/d,=0.44-6.0 V/280x10" cm=9.4 x10*Vem™' and
|Elo=10.44-U/d>=0.45-4.0 V/280x10 7 cm = 6.2 x10*V em ™', respectively.

Al>O3 MAPDI3 PMMA
1.0 - I 1
u ' Lo
HEA
08 LS
= ! E o)
: C o
— 0.6 |- : Hie)
. : ¢, , <
N ' U :
S : S04y
S 04 |2
3 S
B I
o
02 [ I
S
- (3
oL ’ -
30 280 nm 30
< ‘l‘ :l‘ >

Figure S3. Voltage drop A U;/ U in each dielectric layer, calculated from eq S6
with €, =9, d; =30 nm, & = 25, d> =280 nm, & = 2.7, and d; = 30 nm.

It must be noted that the insulating layers, although quite thin, are responsible for the
attenuation of more than half of the magnitude of the externally applied electric field, due in
particular to the low dielectric permittivity of the PMMA film.

S3. Intragrain charge separation dynamics

The time-evolution of the magnitude of the electric field exerted on the perovskite film, as
probed optically by the decay of the electroabsorption response, is shown by the inset of
Figure 3. A blow-up of the recorded signal at short time scale is displayed here in Figure S4.
Experimental points are found to be fitted quite well by a single exponential function, yielding a
time constant 7= 0.94 + 0.1 ps.
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Figure S4. Time-evolution of the electromodulated differential absorbance (EDA)
signal recorded at Ayrobe = 765 nm for a MAPbI; perovskite film submitted to an external
electric field |E|o = 9.4x10* V cm ™' upon ultrashort pulse irradiation at Apump = 545 nm.
The red line drawn through the experimental points is the result of an exponential fit.

Excitation of MAPbI, at A = 545 nm, far from the excitonic band at the absorption edge of
the material, ensures that free carriers are generated during the pump pulse. Screening of the
electroabsorption within the first picoseconds, therefore, cannot be assigned to the dissociation of
an exciton but results from the drift of electrons and holes in opposite directions until they get
trapped at the grain boundaries.

S4. EDA dependence upon the electric field magnitude and the pump energy fluence

The dynamics of the electromodulated differential absorption (EDA) signals on a long time
scale were measured under increasing electric field magnitudes (Figure S5). A double
exponential fitting of the experimental points yielded time constants 7, = 24 + 4 ps and 7, = 500 +
12 ps, independent of the applied bias voltage. The faster part is due to the Burstein-Moss shift
of the material upon carrier accumulation at the surfaces, while the slower component,
characterized by the time constant 7,, is a consequence of the prevention of carrier recombination
by the application of the external electric field.
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Figure S5. Time-evolution of EDA recorded for increasing values of the applied voltage
U,. Measured absorbance changes were averaged on a probe wavelength interval
749 nm < A, < 757 nm. The pump excitation was at A, =545 nm, with a constant
energy fluence 0.48 uJ cm™. Continuous curves drawn through experimental points are

robe

the result of the fit of a double exponential function.

Figure S6 displays the dependence of the summation of the electromodulated differential
absorption (EDA) and transient absorption (TA) signals AA = AA (EDA) — { -AA (TA) } upon
the pump energy fluence. The slow dynamics observed in Figure S5 with 7, = 500 ps is only
partially perceptible at high fluences, showing that the carrier recombination is entirely
suppressed for n, < 2x10'"* cm™.
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Figure S6. Summation of the electromodulated differential absorption (EDA, U,=4.0 V)
and transient absorption (TA) signals recorded for increasing values of the pump energy
fluences. Labels above the traces correspond to the initial photocarrier densities n,
achieved by each pump pulse. All measured absorbance changes (TA and EDA) were

averaged on a probe wavelength interval 749 nm < A, < 757 nm.

S5. Evaluation of the carrier drift mobility

The mobility u of a charged particle migrating in an electric field is defined by:
u=vl/|E|, (S7)

where v is the drift velocity of the particle and |El, the electric field modulus. The drift velocity
v =1/t could in principle be estimated directly from the average transit distance / and time 7.

Absorbance changes resulting from the screening of the quadratic Stark effect by drifting
charges or from the Burstein-Moss shift induced by the accumulation of carriers at the interfaces
were shown to scale linearly with the pump energy fluence (see Figure S6). The time evolution
of AA signals should then reflect the rate at which carriers reach the boundaries of the grain or of
the entire film they moved across. The carrier transit time is spread by the initial spatial
distribution of the carriers, as well as by possible dispersive transport and charge trapping
processes. Figures S4 and 4C showed that the transient absorbance signal could be fitted in both
cases by a single exponential of the form AA = b-exp(—k#) + ¢, from which an average carrier
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transit time 7, = 1 / k was estimated. Assuming that the drift velocity is constant, v =1[/7 can be
calculated, provided a reasonnably accurate average transit distance / is evaluated.

Evaluation of the average transit distance of carriers

Contrary to the conventional time-of-flight method, where the penetration depth of the
pump light is generally small compared to the thickness of the sample and the initial photocarrier
distribution can be considered as a quasi-two-dimensional sheet, the extended absorption profile
within the perovskite material results in an initial gradient of carrier concentration in the depth of
the irradiated film.The average transit distance for electrons and holes can be estimated from the
coordinate of the center of mass of carriers generated by the excitation laser pulse.

Let us consider a film of perovskite of thickness L, irradiated through the ITO glass
substrate and the Al,O; insulating layer from the left (Figure S7 A). The light transmittance
profile across the material is given by the Lambert’s law :

I(x) =1, exp(—owx) (S8)

where I(x) is the light intensity transmitted at a depth x and o the absorption constant of the
material. The density of carriers dn(x) photogenerated within a slice of infinitesimal thickness dx
between the coordinates x and x + dx can be written :

dn(x)=1(x)— I(x+dx) = I(x)-[ 1-exp(-o-dx) ] (S9)
The latter expression can be simplified by using the first two terms of the Maclaurin series
expansion :

exp(—o-dx)=1-o-dx = dn(x)=I(x)-o-dx (S10)

Applying again the Lambert’s law, the carrier density at the coordinate x can be expressed by :
dn(x)= oI -exp(—owx) dx (S11)

The abscissa X of the center of mass of photogenerated carriers is finally provided by the
expression :

L

J-x -exp(—ox)dx 1_ (L + lj -exp(—oL)
) o o

X= = (S12)
JL. 1—exp(—ol)
0

exp(—ow)dx

An absorption constant oo = 6.4x10* cm™ at A = 545 nm was obtained from the measured
transmittance spectrum of a film of MAPDI; of known thickness deposited on a quartz substrate.
Using the latter value and L = 280 nm, the abscissa of the center of mass of the carriers initially
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generated by light in the perovskite is determined from eq S12 as being X = 82 nm. The average
transit distance of electrons to the interface with Al,O,, therefore, is [, = X — 0 = 82 nm, while
that of holes to the interface with PMMA is [, = L — X =198 nm (Figure S7 B).

N\ B
08 X X+dx X
B S
S e ® \ :
~ — ~ _ _
R o4l R /n-82nr2 Ib=198 nm
B — /= IO. e L < \
0.2+ -
0 B | ] | | | | | | | | |
0 100 200 300 0 100 200 300
X/ nm X/ nm

Figure S7. A) Calculated light transmittance profile of a 280 nm-thick MAPDbI, film
with o = 6.4x10* cm™ at A = 545 nm. B) The abscissa of the center of mass of
photogenerated carriers yielded by eq S12 is X =82 nm.
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Figure S8. Carrier density profile within a 40-nm MAPDbI; crystal grain irradiated from
the left with oo = 6.4x10* cm™. The calculated average transit distance of electrons to the
grain’s surface is /, = 18 nm, while that of holes is /, = 22 nm.
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The initial drift of charge carriers upon ultrafast pulsed photogeneration takes place within
individual crystal grains of the perovskite film, whose average length in the transverse direction
is 40 nm. Using again o = 6.4x10* cm™ at A = 545 nm, the light transmittance of one grain is
found to be 0.77. Equation S12 returns an average transit distance for electrons and holes to the
grain boundaries of 18 nm and 22 nm, respectively (Figure S8).

Evaluation of the carrier drift mobility

A time constant 7 = 0.94 ps was determined for intragrain carrier separation under a
reverse bias U = 6.0 V. On the average, this corresponds to the time necessary for
photogenerated carriers to reach the grain boundaries from a position corresponding to their
center of mass. Since there is no way to distinguish between electrons and holes, the transit
distance to be used in the calculation of the drift velocity must be averaged over negative and
positive charge carriers: [, = ([, +1,) /2 =20 nm, leading to a drift velocity v, =1,/ 7= 2.13x10°
cm s and an intragrain average mobility 1, = v,/ |El,=22.6 cm> V"' cm™. A relative uncertainty
of the order of 10 % is estimated for the magnitude of the electric field and at most of 20% for
the drift velocity. Consequently, the determined value of y, is marred by a maximum absolute
error of +4 cm> V' cm™.

The increase of the signal owing to the accumulation of carriers at the surface of the
perovskite film was characterized by a time constant 7 = 24 + 4 ps under a bias voltage
U =40 V. Since the Burstein-Moss shift of the absorption edge of the semiconductor can result
from the accumulation of only one specific type of carrier, the transit time measured in this case
must be related to the type of carrier being first to reach an interface. Assuming that the
accumulation of electrons at the interface between MAPbI; and alumina is responsible for the
bleaching signal, a value of the mobility ¢, = I, / (7 |El)) = 5.5 cm® V™' s™' is calculated. In the
hypothesis of holes being first to accumulate at the interface between the perovskite film and
PMMA, their mobility would be u, = [, / (T |El)) = 13.3 cm® V™' s™'. Alternatively, a value of the
carrier drift mobility averaged over electrons and holes could be considered: u, = (i, + u,) / 2 =
L/ (27IEl) =94 cm® V' s'. Again, a maximum relative uncertainty of 20% should be taken
into account for the latter values.

S6.  Accumulation of electrons at the MAPbI, | mp TiO, junction

Here, the investigated sample had the alumina insulator replaced by a thin mesoporous
nanocrystalline TiO, layer between the ITO conductive glass substrate and the perovskite. On the
cathode side, the PMMA layer was omitted and gold evaporated directly on top of the MAPbI,
film. The reverse bias U = 4.0 V applied in this case is expected to make the TiO, act as an
effective electron transport layer, while holes are readily extracted at the gold electrode.
Following the early decay of the Stark effect, a growing bleaching signal with ~20-50 ps time-
constant is monitored, which is indicative of carrier accumulation of electrons at the
perovskite | TiO, interface (Figure S9).
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Figure S9. Sub-nanosecond time-evolution of the -electromodulated differential
absorption (EDA) dynamics obtained upon application of an external electric field
IEl, = 6.2x 10* V- cm™ (U =4.0 V, reverse bias) on an insulated MAPbI, perovskite film
(red trace) and a solar cell constituted of the same material in contact with a mesoporous
TiO, layer on one side and evaporated gold on the other side (black trace).
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