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Abstract

This thesis explores two aspects of the renormalization group (RG) in quantum field theory
(QFT).
In the first part we study the structure of RG flows in general Poincaré-invariant, unitary
QFTs, and in particular the irreversibility properties and the relation between scale and
conformal invariance. Within the formalism of the local Callan–Symanzik equation, we derive
a series of results in four and six-dimensional QFTs. Specifically, in the four dimensional case
we revisit and complete existing proofs of the a-theorem and of the equivalence between scale
and conformal invariance in perturbation theory. We then present an original derivation of
similar results in six-dimensional QFTs.
In the second part we present the Hamiltonian Truncation method and study its applicability
to the numerical solution of non-perturbative RG flows. We test the method in the λφ4 model
in two dimensions and show how it can be used to make quantitative predictions for the
low-energy observables. In particular, we calculate the numerical spectrum and estimate the
critical coupling at which the theory becomes conformal. We also compare our results to
previous estimates. The main original ingredient of our analysis is an analytic renormalization
procedure used to improve the numerical convergence.
We then adapt the method in order to treat the strongly-coupled regime of the model where
the Z2 symmetry is spontaneously broken. We reproduce perturbative and non-perturbative
observables and compare our results with analytical predictions.
This thesis is based on the results presented in Refs. [1, 2, 3, 4].

Keywords: Quantum field theory, Renormalization group, a-theorem, Weyl anomaly, local
Callan–Symanzik equation, Hamiltonian truncation
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Riassunto

In questa tesi si esaminano due aspetti del gruppo di rinormalizzazione in teoria quantistica
di campo (QFT).
Nella prima parte si studia la struttura dei flussi di rinormalizzazione in generiche teorie
di campo unitarie e invarianti di Poincaré, e nello specifico le proprietà di irreversibilità
e la relazione tra invarianza di scala e conforme. Usando il formalismo dell’equazione di
Callan–Symanzik locale, si derivano una serie di risultati sulle teorie quantistiche di campo
in quattro e in sei dimensioni. In particolare, nel caso quadridimensionale si riesaminano e
completano delle dimostrazioni esistenti del teorema “a” e dell’equivalenza tra invarianza di
scala e conforme. Infine, viene presentata una dimostrazione originale di risultati analoghi in
teorie di campo quantistiche in sei dimensioni.
Nella seconda parte viene introdotto il metodo di Troncamento Hamiltoniano, e si studia la
sua applicabilità alla soluzione numerica di flussi di rinormalizzazione fortemente accoppiati.
Il metodo viene testato sul modello λφ4 in due dimensioni e si dimostra la sua capacità di
fare predizioni accurate per le osservabili di bassa energia. In particolare, si calcola lo spettro
numerico e viene stimato l’accoppiamento critico tale che la teoria diventa conforme. Inoltre,
i risultati numerici ottenuti vengono confrontati con stime precedenti. La novità principale
della nostra analisi consiste in una procedura di rinormalizzazione analitica, che permette di
migliorare la convergenza numerica.
Infine, si adatta il metodo allo studio del regime fortemente accoppiato dello modello λφ4,
dove la simmetria Z2 è rotta spontaneamente. Vengono riprodotte osservabili perturbative e
non perturbative, che si confrontano con predizioni analitiche.
Questa tesi si basa sui risultati ottenuti in [1, 2, 3, 4].

Parole chiavi: Teoria quantistica di campo, Gruppo di rinormalizzazione, teorema “a”,
anomalia di Weyl, equazione di Callan–Symanzik locale, Troncamento Hamiltoniano
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Introduction

Quantum field theory (QFT) is a framework describing a plethora of physical systems, ranging
from statistical mechanics and condensed matter physics to particle physics.

Typically, these contain an infinite or very large number of degrees of freedom. A simple
example is provided by the scalar theory with Z2 symmetry in d dimensions, whose dynamics
is described by a Lagrangian for a field φ,

L =
1
2

∂μφ∂μφ + λ2φ2 + λ4φ4 + λ6φ6 + . . . , (1)

where the dots denote an infinite series of terms with increasing powers of φ and/or its
derivatives ∂μφ. This theory is used to model, among others, ferromagnets near the Curie
temperature and fluctuations of the Higgs field in the Standard Model (SM) of particle physics.
The field φ can fluctuate over a wide range of energy scales, from the ultraviolet (UV) cutoff
Λ (such as the Planck mass in the SM) down to the infrared (IR) observable scales. Therefore,
it would seem not feasible to make predictions using QFT, as there are an infinite number of
coupled degrees of freedom.

This difficulty can be tackled via the renormalization group (RG) approach.1 The RG
originates from the fact that the effect of high-energy degrees of freedom on low-energy
observables can be accounted for by an effective theory. Concretely, from (1) one can write
an effective Lagrangian only for the field modes φ′ with momenta k ≤ Λ′, after the modes
with momenta Λ′ < k < Λ are integrated out in the path integral,

Leff =
1
2

∂μφ′∂μφ′ + λ2(Λ′)φ′2 + λ4(Λ′)φ′4 + λ6(Λ′)φ′6 + . . . ,

where the “running” couplings λn depend on the cutoff Λ′. The evolution of the running
couplings with the cutoff is called RG flow.

A particularly interesting case is encountered when d
dΛλn(Λ) = 0, i.e. when the running

couplings are constant. In this case, the theory sits at a scale-invariant fixed point, where
the observables are independent of the momentum scale and fluctuations are correlated at
any distance.2 This scenario is relevant for systems close to phase transitions, such as water

1See [5] for a classic review on the renormalization group.
2See [6] for a pedagogic exposition on the renormalization group approach to critical phenomena.
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Introduction

Figure 1: Example of RG flows in the abstract space of coupling constants λI . The solid
trajectory starts close the original fixed point and ends towards another infrared fixed point.
The dashed trajectory instead goes to a gapped phase.

at the liquid-vapor critical point. As it turns out, in most cases of interest, scale invariance
at the fixed points is enhanced to a larger symmetry represented by the conformal group.3

We will henceforth assume that the fixed points are described by conformally invariant field
theories (CFTs). [7]

In this thesis we will be concerned with deformations of CFTs. The general problem we are
interested in is the following. What can we say about the RG flow and the low-energy phase
of a QFT, based on its microscopic description? As an example, in the UV, QCD is a theory
of weakly-interacting quarks and gluons, whose parameters are known from measurements
performed at high-energy experiments. However, at energies of order ΛQCD ∼ 1GeV the
physics changes completely and in the IR we have an effective description in terms of pions and
hadrons. Is it possible to match quantitatively the low-energy and high-energy observables?

Formally, the general framework we will be working with entails a UV CFT, whose dynamics
is usually encoded in a conformally invariant action SCFT, deformed by a set of local scalar
operators OI ,

S = SCFT +
∫

ddxλIOI(x) ,

which at large distances can drive the system away from the original fixed point, towards
another fixed point or to a gapped phase. This situation is illustrated pictorially in figure 1.

We would like to stress that in this setup, the UV CFT need not necessarily be a fundamental
description of the system under study up to arbitrarily high energy. Whenever there is a large
separation of mass scales in a theory, say Λ1 � Λ2, at intermediate energies Λ1 � E � Λ2

the system is approximately scale-invariant. For instance, in a model of particle physics, Λ2

can be the mass of a weakly-interacting heavy particle, while Λ1 can represent the mass of
another light particle or a non-perturbatively generated scale, such as ΛQCD.

It is in general difficult to solve renormalization group flows exactly. However, when the
3This important aspect will be discussed in more depth in Part I of this thesis.
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dynamics is weakly-coupled, it is possible to solve perturbatively for the running couplings,

Λ
d

dΛ
λI = βI ,

where the βI are expressed as a power expansion in the λI . This is the situation we will
mostly consider in Part I of this thesis.

On the contrary, if the interactions are strong, a perturbative approach is not available and it
is sometimes necessary to resort to non-analytic, numerical methods to predict the IR physics
from the UV data. The lattice Monte Carlo method [8] has set the standard for numerical
approaches to QFT in the last decades. However, it has some drawbacks as it is affected by
statistical errors and requires a significant amount of computational resources. In Part II of
this thesis we will explore an alternative approach to solve the RG flow of QFTs numerically.

I. The structure of RG flows

In the first part we study model-independent properties of RG flows which apply to a broad
class of theories, given by Poincaré-invariant QFTs in even space-time dimensions. One of the
questions we want to address is under what conditions the scale invariance at the fixed point is
enhanced to full conformal invariance. Additionally, we are interested in studying monotonicity
constraints on the RG flow. In particular an important results, named “a-theorem”, states
that there exists a function of the energy scale which decreases monotonically along the RG
flow from the UV to the IR, and which is unambiguously defined at the fixed points.

We refer the reader to Chapter 1 for a more detailed and technical introduction to the subject.
There, we also review a series of exact results in two space-time dimensions.

In Chapters 2,3,4 we will discuss renormalization in curved space time, using the formalism
of the local Callan–Symanzik equation, with the goal to derive constraints on RG flows in
higher dimensions.

Some important definitions and auxiliary results are contained in appendices A, B.

II. Exact diagonalization methods

In Part II we explore the Hamiltonian Truncation (HT) method, a representative of exact
diagonalization techniques in QFT, which can be used to solve numerically strongly-coupled
RG flows in any dimensions.

The HT method can be considered as a generalization of the Rayleigh–Ritz method in quantum
mechanics. Take for instance the simple anharmonic oscillator.

H = H0 + V , H0 =
1
2

p2 +
1
2

ω2x2 , V = λx4 .

3



Introduction

We can choose as a basis of the Hilbert space the set of eigenstates of the free part of the
Hamiltonian H0,

H0|n〉 = ω
(
n + 1

2

)
|n〉 , n = 0, 1, . . . .

We can then compute the matrix element of H over a finite subspace of states |0〉, |1〉, . . . , |nmax〉
and diagonalize the full, non-perturbative Hamiltonian over this subspace. The low-energy
spectrum of eigenvalues will converge as the cutoff nmax is taken to infinity.

The procedure used in the HT method is similar. The QFT is regulated both in the IR and in
the UV, by putting it in finite volume and by imposing a cutoff on the space of states. This
prescription results in a finite-dimensional, discrete Hamiltonian which can be diagonalized
exactly on a computer to find the low-energy spectrum of excitations. In this way, the
non-perturbative IR dynamics is solved numerically, while the high-energy degrees of freedom
decouple from the low-energy spectrum as the UV cutoff is taken to infinity. The main original
ingredient of our study will be an analytic renormalization procedure used to “integrate out”
the high-energy states and improve the predictions of the low-energy Hamiltonian.

In Chapter 5, after a more detailed introduction on the HT method, we will apply it to the
study of the φ4 theory in two dimensions, focusing on the region where the Z2 symmetry of
the model, φ → −φ, is preserved. Furthermore, we will discuss the renormalization procedure
and show how it improves the numerical convergence.

In Chapter 6, we will adapt the method to analyze the regime where the Z2 symmetry of
the model is spontaneously broken, and study both the topologically-trivial and non-trivial
spectra of excitations.

Technical details are relegated to appendices C, D, E.

4
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The structure of RG flows
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Chapter 1

Preliminaries

In the first part of this thesis we discuss the physical consequences of Poincaré invariance,
unitarity and locality1 for general even-dimensional QFTs, without reference to the UV details
of the theory.

One of the most prominent results is concerned with the irreversibility of RG flows. According
to the Wilsonian picture of renormalization, which involves a coarse-graining of degrees of
freedom, it is expected that at low energies there should be less excitations with respect to
high energies. Let us provide a simple perturbative example.

Suppose we have a U(1)-invariant theory for a complex scalar field Φ in d = 3 dimensions,
with a negative mass squared term and a small quartic interaction,

L = ∂μΦ∗∂μΦ − m2Φ∗Φ + λ (Φ∗Φ)2 , λ2 � m2 . (1.1)

Since both the quadratic and quartic operators in (1.1) are relevant,2 in the UV the spectrum
is composed by two weakly-interacting scalar degrees of freedom (the real and imaginary parts
of Φ).

Below energy scales of order v = m2

λ , the U(1) symmetry is spontaneously broken, and we
end up with an effective theory for the U(1) Goldstone boson π,

Leff =
1
2

∂μπ∂μπ +
c4

v4 (∂μπ∂μπ)2 + . . . , (1.2)

where the omitted terms are suppressed by increasing powers of E/v.

We just showed a perturbative example of a UV-complete QFT where the number of degrees of
freedom decreases along the RG flow. This picture was borne out in general two-dimensional
QFTs in the seminal paper by Zamolodchikov [9], who specified a positive-definite function

1By locality we mean the existence of the energy-momentum tensor Tμν , i.e. a local primary spin-2 tensor
generating the space-time symmetries.

2CFT operators are classified into relevant, marginal or irrelevant according to whether their scaling
dimension is smaller, equal to or larger than d respectively.

7



Chapter 1. Preliminaries

of the energy scale which monotonically decreases along the RG flow, thereby providing an
effective “counting” of degrees of freedom.

Let us review Zamolodchikov’s argument.3 Working in the Euclidean signature, we define the
functions

F (|x|2) ≡ z4〈T (z, z̄)T (0)〉 ,

G(|x|2) ≡ z3z̄〈Θ(z, z̄)T (0)〉 ,

H(|x|2) ≡ z2z̄2〈Θ(z, z̄)Θ(0)〉 ,

where z,z̄ are the complex coordinates z = x1 + ix2, z̄ = x1 − ix2, while T and Θ are defined
as the components of the energy-momentum (EM) tensor: T ≡ Tzz and Θ ≡ T μ

μ. The
conservation of the EM tensor reads

∂z̄T + 4∂zΘ = 0 . (1.3)

Next, let us define the C-function,

C = 2
(

F − 1
2

G − 3
16

H

)
, (1.4)

which depends explicitly on the length scale |x| via log(μ|x|), where μ is a typical mass scale
of the problem.4 By using the conservation equation (1.3) it is possible to prove that

dC

d log|x|2 = −3
4

H ≤ 0 , (1.5)

where the positivity of H in Euclidean signature is enforced by unitarity. This is the celebrated
c-theorem.

Now, suppose that the UV and IR fixed points are described by CFTs, in which Θ = 0.
When log|x| → ±∞, corresponding to the IR and UV asymptotics respectively, C is simply
proportional to the central charge c, as in a two-dimensional CFT5

〈T (z, z̄)T (0)〉 =
1

2(2π)2
c

z4 . (1.6)

Therefore, a straightforward corollary of (1.5) is that cUV > cIR for any two CFTs connected
by an RG flow.

Another very important issue regards the nature of the fixed points at the ends of RG flows.
By construction, fixed points are scale invariant (or trivial) theories, and it is usually assumed
their space-time symmetry group is enhanced to the full conformal group. This assumption is
crucial in many physical applications, as conformal invariance imposes many more constraints

3Here we follow the exposition given in [10].
4For instance, μ can correspond to the mass M in the Lagrangian (1.1). At this energy scale the heavy field

decouples from the spectrum.
5See [7] for a comprehensive review on two-dimensional conformal field theory

8



on the dynamics of the fixed points. For instance, the conformal bootstrap approach, which
has recently been used to determine the critical exponents of the three-dimensional critical
Ising model to unprecedented precision [11, 12, 13], heavily relies on the conformal symmetry
of the correlators of the theory.

In two space-time dimensions, the equivalence SFT=CFT was proved by Polchinsky [14]
by extending Zamolodchikov’s proof. Let us sketch the argument. Suppose that Tμν has
canonical scaling, i.e.

i [S, Tμν ] = xα∂αTμν + dTμν , (1.7)

where d is the space-time dimension and S is the generator of scale transformations. In
this case the C function defined in (1.4) does not depend on |x|. Therefore, from (1.5),
the two-point function of Θ vanishes. In d ≥ 2 this implies that the theory is conformally
invariant [14]. Thus, the only step to complete the argument is to prove (1.7). In general, in
a scale-invariant field theory, Tμν obeys the following scaling law

i [S, Tμν ] = xα∂αTμν + dTμν + ∂ρ∂σỸμρνσ , (1.8)

where Ỹ is an operator with the symmetries of the Riemann tensor.6 It is then possible to
show that the additional term in (1.8) can be eliminated by improving the EM tensor, under
the assumption that the spectrum of operators above the identity is discrete and their scaling
dimensions are strictly greater than 0.

Given the importance of the c-theorem and of the relation between scale and conformal
invariance for quantum field theories, it is of great interest to generalize these studies to higher
dimensions. In Part I of this thesis we discuss constraints on the RG flows in even dimensions
greater than two, in particular four and six.7

What prevents a simple generalization of Zamolodchikov’s argument to higher dimensions is
that in d > 2 there are multiple tensor structures in the two-point function of Tμν , and it is
impossible to directly derive an equation like (1.5). Nevertheless, Cardy [20] conjectured that
a version of the c-theorem should hold in four dimensions as well. Let us review his proposal.
In d = 2, the central charge c appears in the Weyl anomaly [21], which represents the Weyl
variation of the effective action of the CFT in curved background:

2gμν ∂

∂gμν
W[gμν ] = − c

12
R , (1.9)

6It corresponds to an additive logarithmic renormalization of the EM tensor, which can be seen as adding a
counterterm of the form RαβμνYαβμν to the effective action in curved background.

7In odd dimensions d there is evidence for the “F -theorem”, stating that the logarithm of the Euclidean
partition function on the sphere Sd is monotonically decreasing [15, 16, 17]. In [18] it was shown that this
quantity is proportional to the universal term of the entanglement entropy across the sphere Sd−2, for which
independent arguments for its monotonicity exist [19]. We won’t have anything more to say about constraints
on odd-dimensional RG flows in this thesis.
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Chapter 1. Preliminaries

where R is the Ricci scalar. In four dimensions, the Weyl anomaly reads

2gμν ∂

∂gμν
W[gμν ] = −aE4 + cW 2 , (1.10)

where W 2 is the Weyl tensor squared and E4 is the Euler density, whose integral is a topological
invariant (like R in two dimensions). We are going to introduce and discuss the Weyl anomaly
extensively in Chapter 2.

Cardy’s conjecture (named a-theorem) states that a decreases monotonically along the RG
flow.

It is instructive to give an example application of the a-theorem, as presented in [20]. Consider
an asymptotically-free SU(Nc) gauge theory with Nf flavors. The degrees of freedom of this
theory in the UV are represented by Nf × Nc free fermions and N2

c − 1 free bosons. Rescaling
the anomaly so that a = 1 for a massless scalar, we find a = 62 for a massless boson and
a = 11 for a free fermion. We then have

lim
g→0

a(g) ∼ 62
(
N2

c − 1
)

+ 11NcNf . (1.11)

Conversely, in the IR we have a strongly-coupled theory and we expect the chiral symmetry
to be spontaneously broken, resulting in N2

f − 1 Goldstone bosons. Therefore

lim
g→∞ a(g) = N2

f − 1 . (1.12)

Thus, the a-theorem corresponds to the following constraint in this class of theories

62
(
N2

c − 1
)

+ 11NcNf > N2
f − 1 , (1.13)

which is violated for Nf sufficiently large. However, in this particular example there is no
contradiction because asymptotic freedom is lost for Nf smaller than the bound given by
(1.13) [22]. Nevertheless, a similar logic could be used to constrain scenarios of dynamical
symmetry breaking in strongly coupled theories beyond the Standard Model.

Recently, a non-perturbative proof of the a-theorem in d = 4 has been presented by Ko-
margodski and Schwimmer in [23], using dispersion relations for certain dilaton scattering
amplitudes, which are related to correlators of the trace of the EM tensor T . The technique
behind this proof is reminiscent of the ’t Hooft anomaly matching condition [24], stating that
the anomaly of an internal symmetry should be the same both at low and high energy. Even
though the Weyl symmetry is explicitly broken by the RG flow, the change in the anomaly
can be accounted for by the introduction of a spurion (the dilaton) restoring the symmetry.
The ideas presented in [23] laid the foundation for demonstrating the equivalence SFT=CFT
in four dimensions [25] within perturbation theory.

In Part I of this thesis we employ instead the approach pioneered by Osborn [26] to discuss
constraints on RG flows in even-dimensional QFTs. This approach, named local Callan–
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Symanzik (CS) equation, treats the couplings and background metric as sources for the
local operators of the theory and generalizes the CS equation in the presence of space-time
dependent sources. It will be discussed extensively in Chapter 2.

In Chapter 3, we use the local CS equation to calculate systematically the dilaton effective
action around a fixed point. This will be used to fill in some gaps in the proof of the equivalence
SFT=CFT of [25]. Also, we will show the connection between the proof of the a-theorem
using the dilaton scattering amplitudes and the constraints on the RG flow derived from the
local CS equation.

In Chapter 4, we apply the local CS equation to study constraints on RG flows in six-
dimensional unitary QFTs. Under some assumptions, we establish the a-theorem in this class
of theories and prove the equivalence SFT=CFT.
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Chapter 2

The local Callan–Symanzik
equation

2.1 Introduction

The source method is a well established tool for probing the structure of Quantum Field
Theory (QFT). The basic idea is to promote the Lagrangian parameters (coupling constants
and masses) to local background fields and to exploit the resulting (possibly local) symmetries
to constrain the form of the effective action. Moreover, the use of local sources allows to control
the correlators of the associated composite operators, and, in particular, allows to map the
behavior of some operators across strongly coupled regimes. Prominent examples of the use of
the source method are given by the chiral Lagrangian of low-energy hadrodynamics [27] and
by exact results for holomorphic quantities in supersymmetric gauge theories [28]. Another
playground where to usefully apply the method is given by softly broken supersymmetry, in
perturbation theory [29] and beyond [30].

A crucial aspect of any given QFT is its behavior under renormalization group (RG) evolution.
Technically, RG evolution corresponds to the change of the dynamics under a dilation. In view
of that, it seems natural, in order to try and explore the structure of the RG flow, to formally
promote the explicitly broken dilation invariance to an exact Weyl symmetry. Of course, in
order to be able to do that, one must promote the Lagrangian parameters to local fields with
definite transformation property under Weyl symmetry. In particular the flat Minkowski
metric ημν must be upgraded to a generic curved metric gμν . This program was carried out to
a very significant extent about two decades ago in a series of interesting papers by Jack and
Osborn [31, 32, 26]. One first basic result is that the Weyl variation of the quantum effective
action W in the presence of sources is given by an anomaly equation1

(
2gμν δ

δgμν(x)
− βI(λ)

δ

δλI(x)
+ . . .

)
W[g, λ, . . .] = A(x) (2.1)

1An earlier version of this equation was introduced already in 1979 by Drummond and Shore [33].
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Chapter 2. The local Callan–Symanzik equation

where λI are the external sources, and A is a local scalar function of these sources and the
metric. In the case of a conformal field theory (CFT), by turning off all the sources apart
from the metric, A reduces to the well known expression for the Weyl anomaly [34]. On
the other hand, away from criticality, where β �= 0, this equation can be interpreted as a
local generalization of the Callan-Symanzik (CS) equation. Now, a second, perhaps more
interesting set of results follows from the request of integrability of A. This request can be
enforced along two equivalent routes. One is to directly derive A from the bare Lagrangian
in a given renormalization scheme, for instance dimensional regularization [32]. The other is
to require A satisfies a Wess-Zumino consistency condition, regardless of details concerning
the renormalization scheme [26]. The result is a set of non-trivial constraints involving the
β-functions and the anomaly coefficients. The latter can also be interpreted as the short
distance singularities in different correlators involving the energy momentum tensor and
composite scalars and vectors. It is indeed according to that interpretation that some of
these results had earlier been derived in works by Brown and Collins [35] and by Hathrell
[36]. However, concerning 4D QFT, the most remarkable result of refs. [32, 26] is a relation
involving the β-function and a quantity ã that coincides with the anomaly coefficient a at
critical points2

∂ã

∂λI
= (χIJ + ξIJ)βJ (2.2)

where χ and ξ are respectively symmetric and antisymmetric covariant tensors over the space
of couplings. Indeed, in the ’70’s, a relation of this form had been proved at finite loop order,
and for specific models, through a laborious diagrammatic analysis [37]. However the use
of the local CS equation offers both a deeper viewpoint and a more systematic approach.
Moreover, as ã only depends on the RG scale via its dependence on the running couplings, a
corollary of the Eq. (2.2) is

μ
dã

dμ
= βI ∂ã

∂λI
= χIJβJβI . (2.3)

This equation is fully analogous to the perturbative incarnation of Zamolodchikov’s c-theorem
[9] for 2D QFT, with χIJ interpreted as a metric in the space of couplings. Indeed the c-
theorem itself can be shown to coincide with the Wess-Zumino consistency condition associated
with the 2D anomaly off-criticality. More precisely, in the 2D case, as proved in ref. [26],
there exists a choice of scheme where a quantity c̃, coinciding with c at criticality, evolves
according to the analogue of Eq. (2.3), with a positive definite metric. Concerning the 4D
case, although in ref. [32, 26] the positivity of χIJ could be established at leading order in
perturbation theory, a robust non perturbative picture was missing. Perhaps because of this
obstacle, no attempt to draw conclusions on the structure of 4D flows, in particular on their
irreversibility, was made in those works.

Even in the absence of a proof, Eq. (2.3), Cardy’s conjecture [20] and direct evidence from
exact results in supersymmetric gauge theories [38] had led to the belief that an irreversibility

2a is the coefficient of the Euler density term in the Weyl anomaly in 4 dimensions.

14



2.1. Introduction

argument for a, an a-theorem, should have existed in the 4D case as well. But a complete
proof only arrived in 2011, in the work of Komargodski and Schwimmer (KS) [23, 39], who
showed that, in any flow between two CFTs, the end points of the flow satisfy the inequality
aUV > aIR, where aUV (aIR) is the value of the a coefficient in the UV (IR) fixed point. With
the wisdom of hindsight, it is now rather clear why the 4D proof took so much longer: while for
the c-theorem in 2D it suffices to study the 2-point function of Tμν , the 4D analogue requires
a study of higher point correlators. This necessity had already been noticed by Osborn [26],
but within the local CS methodology there was no concrete guideline onto how to proceed. KS
instead found a guideline in the form of an external background dilaton field, the component
of the background metric that couples to the trace T of the energy momentum tensor. The
on-shell dilaton scattering amplitude just happens to package the right combination of 2-, 3-
and 4-point functions of T that is directly sensitive to the RG flow of the anomaly coefficient
a. Using a dispersion relation for the scattering amplitude and using unitarity, KS could then
compare the value of a at the UV and IR asymptotics and prove aUV > aIR.

The a-theorem represents a non-perturbative constraints on the RG flow under the assumption
that the end points are described by conformal field theories. However the same methodology
introduced by KS gives a guideline to obtain further constraints on the structure of the
flow, very much like it happens in 2D. A further step in this direction was given in ref. [25],
where the finiteness of the amplitude was used to exclude anomalous asymptotic behaviors
for perturbative RG flows.3 In a sense, the ingredients for this proof already existed in
[32, 26], but the usage of the dilaton amplitude and dispersion relations made the connection
to the asymptotics of the theory more transparent. Ref. [25] provided a synthetic derivation
relying on the minimal set of ingredients needed in a perturbative computation. In particular,
no detailed discussion of the structure and the role of multiple insertions of T was given.
Moreover, issues like scheme dependence, operator mixing and the role of explicitly broken
global symmetries were not analyzed in full detail. Similarly the connection between the
dilaton amplitude trick and Eq. (2.3) was not fully explored.

In this and in the following Chapter we illustrate all these details and we present a systematic
method for computing correlation functions of T off-criticality, by studying and applying the
local Callan-Symanzik equation. A by-product of this study is a new understanding of the
structure of the Weyl anomaly. In practice we have shown that the anomaly can be written
in a manifestly consistent manner up to the very few terms related to the a coefficient.

This Chapter consists of a detailed analysis of the local Callan-Symanzik equation and is
largely based on the original work by Osborn [26]. In particular, in section 2.2.1 we present
the equation and give a simple description of its derivation (a more detailed discussion based
on dimensional regularization is given in appendix A.2). Section 2.2.2 focuses on the generator
of Weyl transformations, and subtle issues involving its dependence on the scheme, choice of
improvement and ambiguities in the presence of global symmetries. We also introduce new

3That result was confirmed by an explicit study in weakly coupled gauge theories in ref. [40]. As concerns
ruling out anomalous asymptotics beyond perturbation theory, the specific case of scale invariant field theory
without conformal invariance was cornered in ref. [25] and even more significantly so in ref. [41, 42].
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Chapter 2. The local Callan–Symanzik equation

terminology and notations which are essential for the discussion in the following sections.
Next, in section 2.2.3 we study the anomaly, which is parameterized by 25 unknown tensor
coefficients related by ∼ 10 differential consistency conditions. We show that most of these
conditions can be explicitly solved and that the anomaly can be reformulated in a manifestly
consistent form, with only 3 non-trivial consistency conditions remaining. One combination
of these is the famous equation (2.2), while two others, involve anomalies related to external
gauge fields. We then apply these results to the study of gradient flow formulas for the
β-functions in section 2.3.

2.2 The local Callan–Symanzik equation

2.2.1 General set-up

Our main goal is to study the properties of the RG flow in the neighborhood of a conformally
invariant fixed point. The basic idea, as sketched in fig. 2.1, is to turn on all the possible
marginal deformations of the CFT, which we describe by a set of independent couplings λI ,
I = 1, . . . , N , such that λI = 0 corresponds to the unperturbed CFT. These couplings are
associated with scalar operators OI , corresponding, at the fixed point, to primaries with
dimension equal to 4. We shall moreover assume the original fixed point is endowed with
an exact flavor symmetry GF , which is in general explicitly broken at λI �= 0. One relevant

Figure 2.1: Our discussion concerns RG flows in the vicinity of a conformal fixed point, where
the β-function and the anomalous dimensions can be treated as small perturbations.

question, originally addressed in ref. [25], is to ask which flows are possible and which are not,
under the assumption that the asymptotics lie perturbatively close to the original fixed point.
An example to which our assumption applies is given by weakly coupled renormalizable gauge
theories with scalars and fermions. In that case the original fixed point corresponds to free
field theory. In particular it can be applied to the study of the flows in large N theories where
one plays Banks-Zaks tricks [43, 44] to obtain novel fixed points or, possibly anomalous flows,
such as SFTs (theories with scale but not conformal invariance) or limit cycles4. However,
our analysis also applies to the case where the original CFT represents a strongly coupled
non-perturbative fixed point endowed with its own marginal deformations, like they are known

4As we already mentioned these exotic possibilities are now ruled out by the analysis in ref. [25], which,
among other things, we will here reproduce with extra details.
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2.2. The local Callan–Symanzik equation

to exist in supersymmetry. Indeed, as we shall be able argue later on, our discussion applies
to the more general case in which there exists an extended region of λ space, where, even
though the λI may not be treated as small perturbations, the β-function can still be treated
as small. Examples of this more general case can be found in QFTs with manifolds of fixed
points (see for instance [45]). While we do not know of any explicit examples in theories
without supersymmetry, we believe consideration of this possibility, even if merely conceptual,
better illustrates what are the necessary ingredients in our study.

In QFT the trace of the energy momentum tensor T ≡ T μ
μ is known to correspond to the

divergence of the naive dilation current. The change of the dynamics under (naive) dilations is
thus controlled by correlators involving T . In order to make the properties of these correlators
more explicit, we need to expand T in a complete basis of scalar operators of dimension 4.
This basis surely includes the scalar deformations OI that generate the flow, but in principle
there could also appear divergences of the flavor currents ∂μJμ

A and operators of the form
∇2Oa where, at the fixed point, Oa, are primary scalars of dimension 2. It is therefore crucial
to have a convenient method to control the properties of these operators. Now, the standard
methodology to define composite operators and their correlators is to introduce the associated
space-time dependent sources. For instance, the energy momentum tensor T μν will have as
its source a local background metric gμν(x), while OI will have as its source a space-time
dependent coupling λI(x). Along the same line, in order to source the currents Jμ

A, we shall
turn on background vector fields AA

μ (x) gauging the flavor group GF , while the dimension
2 operators Oa will be sourced by scalar fields ma(x). We shall collectively indicate the set
of local sources by J ≡ (gμν , λI , AA

μ , ma). The renormalized partition function in the source
background

Z[J ] ≡ eiW[J ] =
∫

DΦeiS[Φ,J ] (2.4)

acts as the generator of the correlators for the associated renormalized composite operators.
The same information is more efficiently encapsulated in the quantum effective action W,
which generates the connected correlators. When acting on W the functional derivative with
respect to a source coincides with the insertion of the corresponding operator in a connected
correlator

2√−g

δ

δgμν(x)
≡ [Tμν(x)]

1√−g

δ

δλI(x)
≡ [OI(x)]

1√−g

δ

δAA
μ (x)

≡
[
JA

μ (x)
] 1√−g

δ

δma(x)
≡ [Oa(x)] . (2.5)

Time ordered n-point correlators are obtained by first taking n derivatives of W and then
setting the sources to “zero”,

gμν(x) → ημν , λI(x) → λI = const , AA
μ = 0 , ma(x) → ma = const . (2.6)
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Chapter 2. The local Callan–Symanzik equation

We will use the following convention:

〈T {OI1(x1) . . . OIn(xn)}〉 =
(−i)n−1√−g(x1) . . .

√−g(xn)
δ

δλIn(xn)
. . .

δ

δλI1(x1)
W

∣∣∣∣
〈T {T (x1) . . . T (xn)}〉 =

(−i)n−12n√−g(x1) . . .
√−g(xn)

gμnνn
δ

δgμnνn(xn)
. . . gμ1ν1 δ

δgμ1ν1(x1)
W

∣∣∣∣ .

(2.7)

where the symbol
∣∣∣∣ denotes that the functional derivatives are evaluated in the background

(2.6). Notice that our definition of the n-point correlator of T coincides with the standard
one

〈T {T (x1) . . . T (xn)}〉S =
(−i)n−12n√−g(x1) . . .

√−g(xn)
gμnνn . . . gμ1ν1 δ

δgμnνn(xn)
. . .

δ

δgμ1ν1(x1)
W

∣∣∣∣
(2.8)

up to contact terms.

A standard property of effective actions for sources is to formally respect extended symmetries,
up to anomalies. As concerns diffeomorphisms and GF transformations, in this work we
shall make the simplifying assumptions that they are anomaly free. Indeed most of our
discussion shall focus on the case of parity invariant theories, for which diff × GF are not
anomalous.5 The other crucial symmetry is given by Weyl transformations under which the
metric transforms as

gμν(x) → e2σ(x)gμν(x) δσgμν(x) = 2σ(x)gμν(x) (2.9)

and whose anomaly is the centerpiece of our study. The origin of the Weyl anomaly is
discussed in more detail in the appendix, focusing on dimensional regularization. Here we
shall limit ourselves to the basic story, which goes as follows. As a function of the sources
J ≡ (gμν , λI , AA

μ , ma) and of the dynamical fields the bare action can be in general split as

S = S(1)[Φ, J ] + S(2)[J ] (2.10)

where S(1) involves only terms that non-trivially depend on the dynamical fields, while S(2)

contains, instead, purely source dependent terms such as (∇2λ)2, R(∇λ)2, RμνRμν , etc..
The addition of S(2) is necessary in order to obtain a finite quantum effective action after
renormalization. In dimensional regularization S(2) can be chosen to be a series of pure poles
in 1/ε. Now, given that J represent the complete set of sources for the operators that can
appear in the expansion of T , it is basically by definition that there must exist a choice of
Weyl transformation δσJ such that S(1) is invariant. Once again, as we show in the appendix,
in dimensionally regulated weakly coupled gauge theories, this fact is pretty obvious. On the
other end, once δσJ is picked that way, it is clear that S(2) will in general not be invariant.6

Since S(2) has no dependence on the dynamical fields, its variation will directly control the
5The effect of anomalies has been studied in Ref. [46].
6Unless new sources, coupling to pure functions of J are introduced, in such such a way that their variation

compensates for δσS(2).
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variation of the quantum effective action. We thus have∫
d4x δσJ δ

δJ W =
∫

d4x δσJ δ

δJ S(2) ≡
∫

d4x Aσ (2.11)

where the locality of S(2) dictates Aσ must be a local function of the sources. Notice moreover
that, even though S(2) is a series of counterterms that diverge with the cut-off, by Eq. (2.11), its
variation

∫ Aσ equals the variation of the renormalized action with respect to the renormalized
sources, and must therefore be finite. Aσ represents an anomaly for the Weyl symmetry.
Eq. (2.11) is the local Callan-Symanzik equation we sketched in Eq. (2.1).

2.2.2 The structure of Weyl symmetry

In this section we analyze in detail the Weyl transformation of the sources. The discussion is
based mainly on [26], but we shall highlight properties which we repute relevant to the study
of the anomaly and to the computation of the dilaton effective action.7

Let us recall once more the role of our sources. The dimensionless sources λI(x), associated
with quasi marginal operators OI(x), are local versions of the couplings λI that produce the
RG flow we want to study. The CFT fixed point we are expanding around corresponds to
λI = 0. This fixed point respects a flavor symmetry GF , which is in general explicitly broken
at λI �= 0. The vectors AA

μ , with the index A running in the adjoint of GF , are background
fields gauging GF . They act as sources for the currents Jμ

A. By the scalars ma(x), we indicate
the sources of scalar operators Oa with dimension equaling 2 at the fixed point. Notice that
ma have mass dimension two, in spite of the perhaps misleading notation (which we adopted
from ref. [26]). The CFT may also possess relevant scalar deformations of dimension �= 2.
For instance, in weakly coupled gauge theories these are given by fermion masses and scalar
trilinears, that are associated with dimension 3 operators. In the limit where the corresponding
mass deformations vanish the appearance of these operators in the expansion of T is forbidden
by Lorentz invariance. We shall thus neglect them in the course of our discussion. Finally
notice that, although we do not indicate it, the sources and the corresponding composite
operators in Eq. (2.5) are defined at some renormalization scale μ.

The discussion in this section is not affected by the assumption of parity conservation. As
it will be clear from Eq. (2.14), that is simply because, by dimensional analysis, the Levi-
Civita tensor εμνρσ cannot appear in the Weyl transformation of the sources. The situation
is however different for the Weyl anomaly discussed in section 2.3. Notice that for parity
invariant theories, GF should be thought as a (maximal) vector subgroup of the full flavor
group.

The Weyl symmetry generator is the sum of the variations of the complete set of sources
J = (gμν , λI , AA

μ , ma)

δσJ δ

δJ ≡ Δσ = Δg
σ − Δβ

σ (2.12)

7As further reading material we recommend [47, 48].
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where

Δg
σ =

∫
d4x 2σgμν δ

δgμν

Δβ
σ = −

∫
d4x

(
δσλ · δ

δλ
+ δσAμ · δ

δAμ
+ δσm · δ

δm

)
. (2.13)

The Weyl variation of the sources will have the most general form compatible with dimensional
analysis (power counting) and symmetry (diffeomorphisms and GF ). That is:

δσλI = −σβI

δσAA
μ = −σρA

I ∇μλI + ∂μσSA

δσma = σ

(
mb (2δa

b − γa
b ) + CaR + Da

I ∇2λI +
1
2

Ea
IJ∇μλI∇μλJ

)
− ∂μσθa

I ∇μλI + ∇2σηa

(2.14)

where ∇ denotes the GF covariant derivative

∇μλI = ∂μλI + AA
μ (TAλ)I (2.15)

and TA is a generator of GF . By dimensional analysis, the various coefficients βI , ρA
I , . . . , ηa

in Eq. (2.14) are functions of the marginal couplings λI . Moreover, as the Weyl symmetry
commutes with GF , these coefficients should be covariant functions. It would be straightfor-
ward to add to this setup the sources m̃α of relevant scalar deformations having dimension
�= 2 at the original fixed point. By dimensional analysis the transformation would simply
reduce to

δσm̃α = σDα
β m̃β (2.16)

with Dα
β a λ-dependent matrix whose eigenvalues differ from 2 in the whole neighborhood

of the fixed point we are studying. Notice that unlike for the case of ma in Eq. (2.14), the
dimensionality of m̃α forbids the presence of terms involving R(g) or derivatives of σ and λ.

The local Callan-Symanzik can thus be written as

ΔσW = (Δg
σ − Δβ

σ)W =
∫

d4xAσ . (2.17)

We shall now study the Weyl generator Δσ in detail, focusing on properties that will help
clarify the structure of the anomaly and also help compute the matrix elements of T .

The global CS equation, dilations and conformal transformations

It is important to relate the Weyl symmetry generator Δσ to the other incarnations of dilations.
First we must relate it to RG transformations, which are obtained as follows. Consider first
all the classically dimensionful parameters appearing in W. In our case these are just the
renormalization scale μ and the dimension two sources ma. Accounting for the fact that
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2.2. The local Callan–Symanzik equation

lengths are purely controlled by gμν , we have then the obvious identity

Δμ W ≡
[
μ

∂

∂μ
+

∫
d4x

(
2ma(x)

δ

δma(x)
+ 2gμν(x)

δ

δgμν(x)

)]
W = 0 . (2.18)

By combining the above operator with a Weyl generator with constant parameter σ = −1, in
such a way as to eliminate the derivative with respect to the metric, we obtain

ΔRG ≡ Δμ + Δσ=−1 = μ
∂

∂μ
+

∫
d4x

(
βI δ

δλI(x)
+ γ̄a

b mb(x)
δ

δma(x)
+ . . .

)
(2.19)

which corresponds to the ordinary Callan-Symanzik operator generalized to the case of local
sources. The RG transformation of the effective action, ΔRGW, is simply the integral of the
Weyl anomaly for constant σ. This result establishes a direct connection between the terms
in the anomaly and the explicit dependence on ln μ of W . This dependence is associated with
logarithmic UV divergences. We shall further discuss this connection in section 2.2.3.

The other important incarnations are global dilations and special conformal transformations.
They correspond to those particular combinations of a diffeomorphism and a Weyl transforma-
tion that leave the flat metric ημν invariant. The generator of infinitesimal diffeomorphisms is
defined by

ΔDiff
ξ =

∫
d4x

(
(∇ρξμgρν + ∇ρξνgμρ)

δ

δgμν
− ∇μξνAA

ν

δ

δAA
μ

)

−
∫

d4xξρ
(

∇ρλI δ

δλI
+ ∇ρAA

ν

δ

δAA
ν

+ ∇ρma δ

δma

)
. (2.20)

Our assumption that diffeomorphism are non-anomalous corresponds to ΔDiff
ξ W = 0 for any

ξ. An infinitesimal dilation is given by the following combination of a diffeomorphism and a
Weyl transformation

ξμ = cxμ σ = −c (2.21)

The corresponding generator is

ΔD
c ≡ ΔDiff

ξ=cx + Δσ=−c

= c

∫
d4x

(
βI δ

δλI
+

(
ρA

I ∇μλI − AA
μ

) δ

δAA
μ

)

−c

∫
d4x

(
mb (2δa

b − γa
b ) + CaR + Da

I ∇2λI +
1
2

Ea
IJ∇μλI∇μλJ

)
δ

δma

−c

∫
d4x xρ

(
∇ρλI δ

δλI
+ ∇ρAA

ν

δ

δAA
ν

+ ∇ρma δ

δma

)
(2.22)

Infinitesimal special conformal transformations are instead given by

ξμ = 2(b · x)xμ − x2bμ σ = −2b · x (2.23)
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Chapter 2. The local Callan–Symanzik equation

so that the corresponding generator is

ΔK
b ≡ ΔDiff

ξ=(2(b·x)xμ−x2bμ) + Δσ=−2b·x

= 2bμ

∫
d4x

(
xμβI δ

δλI
+

(
xμ

(
ρA

I ∇νλI − AA
ν

)
− δμ

ν SA
) δ

δAA
ν

)
−2bμ

∫
d4x

(
xμ

(
mb (2δa

b − γa
b ) + CaR + Da

I ∇2λI +
1
2

Ea
IJ∇μλI∇μλJ

)
− θa

I ∇μλI
)

δ

δma

−
∫

d4x
(
2(b · x)xρ − x2bρ

)(
∇ρλI δ

δλI
+ ∇ρAA

ν

δ

δAA
ν

+ ∇ρma δ

δma

)
. (2.24)

QFTs that are invariant under dilations (and conformal transformations) correspond to points
in source space that are left invariant by the action of ΔD (and ΔK). As expected, a point
λI = λI∗ = const, such that βI = 0, with also gμν = ημν , AA

μ = ma = 0 satisfies dilation
invariance. On the other hand, from the explicit form of ΔK , one sees that the condition for
conformal invariance is a different one. In particular, if β = 0 while SA �= 0 we have an SFT,
that is a QFT with scale invariance but without conformal invariance.

The local CS equation and the operator algebra

Equation (2.17) encapsulates the relation between T and the other composite operators. By
iterating the equation we find this relation for any number of insertions of T . We can consider
the following distinct cases:

• When none of the points in the time ordered correlator coincide, then by Eq. (2.17) we
can write

〈T {T (x) . . .}〉 ⊃ βI〈T {OI(x) . . .}〉 + SA〈T {∂μJμ
A(x) . . .}〉 − ηa〈T {�Oa(x) . . .}〉

(2.25)

This can be understood as an operator equation for T :

T = βI [OI ] + SA∂μ [Jμ
A] − ηa� [Oa] . (2.26)

The coefficients βI , SA and −ηa are the coordinates of T in the space of dimension 4
composite operators.

• When two, or more, points coincide, we find contact terms proportional to variations of
the coefficients in the Weyl generator, e.g.

〈T {T (x)OI(y) . . .}〉 ⊃ −iδ(x − y)
(

∂IβJ〈T {OJ(x) . . .}〉 − ρA
I 〈T {∂μJμ

A(x) . . .}〉

−Da
I 〈T {�Oa(x) . . .}〉

)
〈T {T (x)OI(y)OJ(z) . . .}〉 ⊃ −δ(x − y)δ(x − z)Ea

IJ〈T {Oa(x) . . .}〉 (2.27)

• When all points coincide, there are additional ultra-local contributions encoded by the
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2.2. The local Callan–Symanzik equation

Weyl anomaly. These will be discussed in section 2.2.3.

It is also interesting to consider the field operator interpretation of the commutators of the
source differential operators with ΔRG, ΔD and ΔK defined in the previous section. In
particular the commutators with ΔRG control the renormalization scale dependence of the
corresponding renormalized composite operators. For instance we have[

ΔRG,
δ

δλI(x)

]
= −∂IβJ δ

δλJ(x)
+ . . . → μ

d

dμ
OI = −∂IβJOJ + . . . (2.28)

The commutators with ΔD and ΔK control the transformation of the composite operators
in the Ward identities for the corresponding (generally explicitly broken) symmetries. At
the special symmetry preserving points in parameter space these can be interpreted as the
commutator with the corresponding conserved charges D and Kμ. The explicit computation
of the commutators among the various functional differential operators leads to the following
results

μ
d

dμ

⎛⎜⎜⎜⎜⎜⎝
T

Oa

Jμ
A

OI

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0 6Cb� 0 0
0 −γ̄ b

a 0 0
0 Db

K(TAλ)K∂μ −ρB
K(TAλ)K 0

0 Db
I� ρB

I ∂μ −∂IβJ

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T

Ob

Jμ
B

OJ

⎞⎟⎟⎟⎟⎟⎠ (2.29)

D

⎛⎜⎜⎜⎜⎜⎝
T

Oa

Jμ
A

OI

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
4 −6Cb� 0 0
0 2δ b

a + γ̄ b
a 0 0

0 −Db
K(TAλ)K∂μ 3δ B

A + ρB
K(TAλ)K 0

0 −Db
I� −ρB

I ∂μ 4δJ
I + ∂IβJ

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T

Ob

Jμ
B

OJ

⎞⎟⎟⎟⎟⎟⎠ (2.30)

Kμ

⎛⎜⎜⎜⎜⎜⎝
T

Oa

Jν
A

OI

⎞⎟⎟⎟⎟⎟⎠ = 2

⎛⎜⎜⎜⎜⎜⎝
0 6Cb∂μ 0 0
0 0 0 0
0 −(Db

K + θb
K)(TAλ)Kgμν 0 0

0 (2Db
I + θb

I)∂μ ρB
I + ∂ISB 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T

Ob

Jμ
B

OJ

⎞⎟⎟⎟⎟⎟⎠ (2.31)

Focusing on fixed points, we shall later comment on the consistency of the above results with
the algebra of unitary conformal field theory.

Ward identities and ambiguities

The basis of renormalized operators used to write T in Eq. (2.26) is redundant in the presence
of symmetries. Indeed, by the equations of motion, ∇μJμ

A equals the GF variation of the
Lagrangian and can thus be expressed in terms of a combination of OI and Oa. In the
background source approach this is viewed by considering the GF Ward identity (αA(x) are
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Chapter 2. The local Callan–Symanzik equation

the Lie parameters of GF )

ΔF
α W ≡

∫
d4x

⎡⎣αA
(

(TAλ)I δ

δλI(x)
+ (TAm)a δ

δma(x)

)
− ∇μαA

(
δ

δAA
μ (x)

)⎤⎦W = 0

(2.32)

which simply translates into the operator equation

(TAλ)IOI + (TAm)aOa + ∇μJμ
A = 0 . (2.33)

An alternative procedure is to define a new Weyl generator by combining the original Δσ with
an infinitesimal GF transformation with Lie parameter αA(x) = −σ(x)ωA(λ)

Δσ → Δ′
σ ≡ Δσ + ΔF

−σω (2.34)

Provided ωA(λ) is chosen to be a covariant (but otherwise arbitrary) function of the λ’s, the
redefined Weyl symmetry still commutes with GF . Eq. (2.34) corresponds to the following
redefinition of the coefficients of the local CS operator:

βI → βI +
(
ωATAλ

)I
γa

b → γa
b +

(
ωATA

)a

b

SA → SA + ωA ρA
I → ρA

I − ∂IωA .
(2.35)

Notice that this is an ambiguity inherent in the definition of the β-function and of the
anomalous dimensions [26, 49]. When carrying out the renormalization procedure this
ambiguity corresponds to the freedom in defining the wave function renormalization matrix
relating bare and renormalized fields [25].

The redundancy in the definition of Δσ is quite analogous to a gauge symmetry. Like for
gauge symmetry, unambiguous physical information is carried by the invariants, which in our
case are given by

BI = βI −
(
SATAλ

)I

P A
I = ρA

I + ∂ISA

γa
b = γa

b −
(
SATA

)a

b
. (2.36)

These are the quantities that unambiguously describe the RG flow. Indeed they correspond
to fixing the “gauge” by choosing ωA = −SA in Eq. (2.35) so that the redefined SA vanishes.
Correspondingly, by solving for ∇μJμ

A in Eq. (2.33), at ma = 0, T in Eq. (2.26) reads

T = BI [OI ] − ηa� [Oa] . (2.37)

Notice that by the change in Eq. (2.34) also the ΔRG acquires an extra flavor rotation term.
Making the choice ωA = −SA and using Eq. (2.33), the RG transformation of the renormalized
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operators becomes then (disregarding the contribution from Oa)

μ
d

dμ

(
Jμ

A

OI

)
=

⎛⎝−P B
K (TAλ)K 0

0 −
(
∂IBJ + P C

I (TCλ)J
)⎞⎠(

Jμ
B

OJ .

)
(2.38)

With this definition, we can identify the following matrices as the anomalous dimensions of
the composite operators

γJ
I = ∂IBJ + P A

I (TAλ)J

γB
A = P B

K (TAλ)K . (2.39)

Lie derivatives

A recurrent object that will appear in the analysis is a variant of the Lie derivative, which
describes the Weyl transformation of covariant tensors

L[Y JBb...
IAa... ] = BK∂KY JBb

IAa + γK
I Y JBb...

KAa... + γC
A Y JBb...

ICa... + γc
aY JBb...

IAc...

−γJ
KY KBb...

IAa... − γB
C Y JCb...

IAa... − γb
cY JBc...

IAa... + . . . (2.40)

where the different γ matrices were defined in (2.36) and (2.39). The operator L so defined
satisfies the distributive property of derivatives when considering products of tensors, including
contractions of covariant and contravariant indices. Schematically one has

L[Y · Z] = Y · L[Z] + L[Y ] · Z . (2.41)

For instance one has L[Y I
A · ZA] = Y I

AL[ZA] + L[Y I
A]ZA. Moreover one can easily check that

the tensor vI
A ≡ (TAλ)I satisfies L[vI

A] = 0 and can thus be carried freely in and out of the
L symbol. The latter property depends crucially on Eq. (2.39) which relates the anomalous
dimensions for scalars and currents. The Lie derivative appears, for example, in the Weyl
variation of space-time derivatives of the sources

Δσ

(
YI∇μλI

)
= σ

(
−L[YI ]∇μλI

)
+ ∂μσ

(
−BIYI

)
Δσ

(
YI∇2λI

)
= σ

(
2YI∇2λI − L[YI ]∇2λI − YIU I

J γJ
KL∇μλK∇μλL

)
+∂μσ

(
−2YIU I

J ∇μλJ
)

+ ∇2σ
(
−BIYI

)
(2.42)

where YI is an arbitrary covariant function, and where we also defined the following tensors

UJ
I = δJ

I + ∂IBJ +
1
2

P A
I (TAλ)J

γI
JK = (U−1)I

L

(
∂(JγL

K) + P A
(J(TA)L

K)

)
. (2.43)

Notice that in the specific example of Eq. (2.42) the Weyl operator acts on GF singlets.
Therefore the result is automatically dependent only on the invariant coefficient functions B

and P . In the case of the Weyl variation of tensors of GF there would appear an additional
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Chapter 2. The local Callan–Symanzik equation

GF rotation with Lie parameter SA. In the course of our study we shall however mostly
encounter the action on GF singlets.

Source reparametrization and the form of Δσ

The choice of parametrization of the sources is of course subject to some freedom. A change
of parametrization leads to a change in the definition of the renormalized composite operators
and in the form of the Weyl operator Δσ. Compatibly with dimensionality, one can consider
the reparametrization

λI ′ = λI + f I

AA
μ

′ = AA
μ + fA

I ∇μλI

ma′ = ma + fa
b mb +

1
6

faR + fa
I ∇2λI +

1
2

fa
IJ∇μλI∇μλJ . (2.44)

Provided the various coefficients fI , fA
I , . . . respect GF covariance, the new parameters

λI ′
, AA

μ
′
, ma′ transform as the corresponding original ones under GF . The effective action

changes form but its value is unaffected:

W ′[g, λ′, A′, m′] ≡ W[g, λ, A, m] . (2.45)

The form of the Weyl operator in the new coordinates is straightforwardly derived by applying
the chain rule. One finds the following relation for the coefficients in the new coordinate
system:

βI ′ = βI + βJ∂Jf I

ρA
I

′ = ρA
I + L[fA

I ]

SA′ = SA − BIfA
I

Ca′ = Ca − 1
6

L[fa]

Da
I

′ = Da
I − L[fa

I ]

Ea
IJ

′ = Ea
IJ − L[fa

IJ ] − 2UK
L γL

IJfa
K

θa
I

′ = θa
I + BJfa

JI + 2UJ
I fa

J

ηa′ = ηa + fa − BIfa
I (2.46)

where we used the Lie derivative and the matrix UJ
I introduced in the previous section.

The most important remark concerning the above equation is that by a suitable choice of fa

and fa
I , the tensor coefficients ηa and θa

I can both be set to zero. As suggested by Eq. (2.37),
and as further clarified in section 2.2.2, the choice ηa = 0 corresponds to an “improved” energy
momentum tensor.

As we said, the change of coordinates corresponds to a redefinition of the renormalized operators.
It is possible, however to find linear combinations of operators that are invariant under the
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change of basis. Consider, for example, the change of coordinates ma → ma′ = ma + fa
I ∇2λI .

Focusing on the scalars for simplicity, the operators in the new basis are related to the original
ones via

[OI ] = [OI ]′ + fa
I � [Oa]′

[Oa] = [Oa]′ (2.47)

Combining this with Eq. (2.46) we find that the operator

[ÕI ] = [OI ] +
1
2

(U−1)J
I θa

J� [Oa] (2.48)

is scheme independent. This definition will be useful in section 3.1.4.

Consistency conditions

The abelian nature of the Weyl symmetry imposes constraints on the form of the generator
Δσ. The vanishing of the commutator

[Δσ2 , Δσ1 ] = 0 (2.49)

leads to a set of equations relating the different coefficients appearing in (2.14):

BIP A
I = 0

BIDa
I = L[ηa] + 6Ca

BJEa
JI = −L[θa

I ] − 2UJ
I Da

J . (2.50)

Notice that these consistency conditions are independent of the choice of gauge discussed in
section 2.2.2. Alternatively, as shown in appendix A.2, these conditions can be derived by
directly computing the coefficients of Δσ from a dimensionally regulated action. According
to that derivation the abelian nature of Weyl invariance, as realized on the bare sources in
Eq. (A.13), is just an explicit fact, which need not be imposed.

One can easily check that the consistency condition P A
I BI = 0 implies L[BI ] = 0. Together

with L[(TAλ)I ] = 0 we thus have

BIL[YIJ...] = L[BIYIJ...]

(TBλ)IL[YAI...] = L[(TBλ)IYAI...] (2.51)

What role is played by Eq. (2.50)? For instance, at a point where B = 0, the second equation
ensures that, once the choice ηa = 0 is made, Ca must also vanish. Eq. (2.29) then implies
that if T is improved so as to vanish at a given RG scale then it automatically vanishes at
all scales. The first equation, as we shall see in section 3, ensures the absence of currents in
the short distance singularities of correlators with multiple insertions of T . This significantly
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simplifies the derivations of constraints on the structure of RG flows.

Dimension 2 covariant functions

In general, the Weyl transformation of dimensionful functions of the sources contains derivatives
of σ (see Eq. (2.42)). However, it is possible to find linear combinations of dimension 2
functions which transform “covariantly” under this symmetry:

ΠIJ = ∇μλI∇μλJ − B(IΛJ)

Πa = ma − ηa R

6
− 1

2
θa

I ΛI (2.52)

where we defined the function

ΛI =
(
U−1

)I

J

(
∇2λJ +

1
6

BJR

)
. (2.53)

The variations of ΠIJ and Πa contain no derivatives of σ. In the “gauge” SA = 0 they are

ΔσΠIJ = σ
(
2ΠIJ − γI

KΠKJ − γJ
KΠIK + γIJ

KLΠKL
)

ΔσΠa = σ
(
2Πa − γa

b Πb + γa
IJΠIJ

)
(2.54)

where we defined the tensors

γIJ
KL = B(Iγ

J)
KL

γ a
IJ =

1
2

(
Ea

IJ + θa
KγK

IJ

)
. (2.55)

In computing the transformation property of Πa we imposed the consistency conditions (2.50).
ΠIJ and Πa will play an important role in the rest of this Chapter.

Limiting cases

It is interesting to consider various limiting ‘fixed points’. Focusing on T in Eq. (2.26), we can
basically consider three cases:

1. When both ηa and BI ≡ βI −SA(TAλ)I are zero the operator T vanishes, corresponding
to a conformal fixed point. Notice that conformality is signaled by the vanishing of
BI and not of any other choice of β-function. Conformal theories with non-vanishing
β-functions were discovered in [40].

It is interesting to consider the conformal transformations in Eq. (2.31) in this limit.
Choosing a parametrization where θa

I = 0, the consistency conditions Eq. (2.50) imply
Da

I = Ca = 0, so that all entries in Eq. (2.31) vanish, apart from one. In particular
one finds KμOa = KμJν

A = 0, consistent with these operators being primaries, but also
KμOI = −P A

I Jμ
A, indicating that some of the OI are descendants of the currents. This
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result is indeed expected because of Eq. (2.33). In appendix A.3 we study this in detail
showing there exists an operator basis where each broken symmetry current is associated
to a unique scalar descendant. In this basis all the remaining scalar operators are
annihilated by the generator of special conformal transformations and all the remaining
currents are conserved and have vanishing anomalous dimension.

2. The case BI = 0 and ηa �= 0 corresponds to a fixed point whose energy-momentum
tensor is not improved

T (x) = −ηa� [Oa] . (2.56)

This possibility is relevant when considering a QFT flowing to different CFTs in the UV
and in the IR. Adjusting the coupling to the background metric such that the energy
momentum tensor is improved at one asymptotic does not imply improvement at the
other.

3. Another type of conceivable fixed point is an SFT, corresponding to the existence of a
scheme where βI = 0 but SA �= 0 so that BI �= 0. As noticed below (2.24), such point
in coupling space is invariant under dilation but not under conformal transformations.
In this case (2.26) becomes

T = −∂μ [V μ] (2.57)

where V μ = SAJμ
A + ηa∂μOa is referred to as the virial current. By Eq. (2.37), since

BI �= 0 and since OI and Oa are independent operators, we have also that T = −∂μV μ �=
0, with no possibility of improvement to make T = 0. The fact that T vanishes only
up to a total derivative is another way to see that the theory is endowed with global
scale invariance, but not with conformal invariance (local scale invariance). Perturbative
unitary SFTs are ruled out by the argument in ref. [25], which we shall revisit in section
3.1.4.

Notice that in the case of an SFT, one can consistently consider a reduced set of sources
by freezing λI = λI∗ = const such that βI = 0 and by reducing AA

μ to a one dimensional
subspace: AA

μ ≡ SACμ. One can then easily check that the Weyl transformation of AA
μ

in Eq. (2.14), simply reduces to δσCμ = ∂μσ. The relation BIP A
I = 0 is essential to

obtain this result. The source Cμ so defined thus corresponds to the virial current gauge
field of ref. [25]. Notice also that the inhomogeneous terms in δσma, at ηa = θa

I = 0,
package into a term proportional to R̃ ≡ R + 6∂μCμ − 6CμCμ. Similarly the quantities
ΠIJ reduce to constant coefficients times R̃. The quantity R̃ on the reduced set of
sources gμν , Cμ satisfies δσR̃ = 2σR̃ and plays an important role in the structure of the
anomaly in a SFT, as we shall comment later.
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2.2.3 The structure of the Weyl anomaly

We will now discuss the structure of the anomaly appearing in the local CS equation

ΔσW[g, λ, m, A] =
∫

d4xAσ (2.58)

First, let us review the anomaly at an improved conformal fixed point (BI = ηa = 0). This
case corresponds to freezing all the sources apart from the metric (λI = λI∗ = const, such
that BI(λ∗) = 0 and AA

μ = ma = 0). The Weyl generator Δσ thus reduces to the metric
variation Δg

σ. The anomaly Aσ is a linear combination of all the dimension 4 scalars that can
be constructed from the metric and its derivatives [34, 50]

1√−g
Aσ = σ

(
aE4 − bR2 − cW 2

)
− ∇2σdR . (2.59)

where R is the scalar curvature, W 2 is the Weyl tensor squared, and E4 is the 4-dimensional
Euler density.

The anomaly is constrained by a Wess-Zumino integrability condition [51]: since the Weyl
symmetry is abelian, one must have

Δg
σ2

(∫
dx1Aσ1

)
− Δg

σ1

(∫
dx2Aσ2

)
=

[
Δg

σ2 , Δg
σ1

]W = 0 . (2.60)

This condition is satisfied by all terms in Eq. (2.59) apart from R2. At a CFT fixed point,
the anomaly coefficient b must therefore vanish.

Deser and Schwimmer classified the conformal anomalies into three types [52]:

• Contributions that equal the variation of a local functional. Such contributions can be
eliminated by adding to the action a suitable local functional. They must, therefore,
not be considered as genuine anomalies. In the present case, ∇2σR corresponds to such
a removable term, as it equals the Weyl variation of √

gR2.

• Type “A”: Anomalies that vanish when integrated over space-time with a constant σ.
An equivalent characterization of these anomalies is that they do not contribute to

μ
d

dμ
W ≡ ΔRGW . (2.61)

Therefore type “A” anomalies are not associated with additional (logarithmic) UV
divergences arising in the presence of space-time dependent sources. The Euler density
anomaly is such an anomaly because its integral vanishes on topologically trivial spaces,
such as Minkowski space. In practice this is because √

gE4 can be locally written as a
total derivative (of a non covariant quantity).

• Type “B”: Anomalies that do not vanish when integrated over space-time. Equivalently,
by the previous argument involving ΔRG, these anomalies are associated with an explicit
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2.2. The local Callan–Symanzik equation

ln μ dependence in the effective action. In 4D CFTs the corresponding anomaly is W 2.
An example of the associated ln μ dependence is given by the two point function of Tμν

which in Fourier space reads

〈TμνTρσ〉 = cΠ(2)
μνρσp4 ln p2/μ2 , (2.62)

where Π(2)
μνρσ is the projector on transverse traceless 2-index tensors.

Strictly speaking, also the E4 can give rise to a ln μ dependence, but only when the CFT is
embedded in a space with non trivial topology, like for instance the sphere S4. In any case, the
logarithmic divergences associated with E4 do not affect local quantities, such as correlators.

Let us now consider the anomaly in the presence of all the external sources, and see what
becomes of the properties we just discussed. Up to terms involving εμνρσ, the most general
form, first given in [26], is

1√−g
Aσ = σ

(
βaW 2 + βbE4 +

1
9

βcR
2
)

− ∇2σ

(1
3

dR

)
+σ

(1
3

χe
I∇μλI∇μR +

1
6

χf
IJ∇μλI∇μλJR +

1
2

χg
IJGμν∇μλI∇νλJ

+
1
2

χa
IJ∇2λI∇2λJ +

1
2

χb
IJK∇μλI∇μλJ∇2λK +

1
4

χc
IJKL∇μλI∇μλJ∇νλK∇νλL

+∂μσ

(
GμνwI∇νλI +

1
3

RYI∇μλI + S̃IJ∇μλI(U−1)J
K∇2λK +

1
2

TIJK∇νλI∇νλJ∇μλK
)

−∇2σ

(
UI∇2λI +

1
2

VIJ∇νλI∇νλJ
)

+σ

(1
2

pabm̂
am̂b + m̂a

(1
3

qaR + raI∇2λI +
1
2

saIJ∇μλI∇μλJ
))

+∂μσ
(
m̂ajaI∇μλI

)
− ∇2σ (m̂aka)

+σ

(1
4

κABF A
μνF Bμν +

1
2

ζAIJF A
μν∇μλI∇νλJ

)
+ ∂μσ

(
ηAIF A

μν∇νλI
)

(2.63)

where Gμν is the Einstein tensor, F A
μν is the field strength associated with the background

field AA
μ and m̂a = ma − 1

6ηaR. As in the CFT limit, Aσ is redundant, in that it is only
defined modulo the variation of a local functional F of the sources: Aσ ∼ Aσ + ΔσF . This
redundancy corresponds to the freedom in choosing a renormalization procedure. At the same
time Aσ is subject to the Wess-Zumino consistency condition, now given by the analogue of
Eq. (2.60) with Δσ instead of Δg

σ,

Δσ2

(∫
dx1Aσ1

)
− Δσ1

(∫
dx2Aσ2

)
= [Δσ2 , Δσ1 ] W = 0 . (2.64)

This condition translates [26] into ∼ 10 differential equations involving the 25 tensor coefficients
appearing in Aσ.

A new result, which we present here, is a reformulation of the anomaly, in which most of the
consistency equations are explicitly solved, leaving only three non-trivial constraints. One
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Chapter 2. The local Callan–Symanzik equation

of these is the equation discovered in [32, 26] and describing the flow of the coefficient a.
The other two equations involve instead the anomaly coefficients associated with the flavor
gauge fields. One key observation in our analysis is that, by eliminating a suitable set of
scheme dependent terms, most of the consistency equations become algebraic. They can thus
be readily solved and substituted back into the anomaly. The consistency equations in this
suitable scheme choice appear in appendix A.4.

According to our analysis the general anomaly in Eq. (2.63) can be written as a sum of five
terms which we indicate using an analogy with the Weyl anomaly of a CFT (Eq. (2.59)):

Aσ = A∇2R
σ + AR2

σ + AW 2
σ + AE4

σ + AF 2
σ . (2.65)

The different parts of the anomaly are:

1. Generalized ∇2R anomaly

The generalized ∇2R anomaly represents the terms that can be written as ΔσF and
can thus be eliminated by a choice of scheme. By a proper choice of local terms, that
is specified in the appendix, the coefficients d, UI , VIJ , S̃(IJ), TIJK , ka, jaI can be set to
zero.

2. Generalized R2 anomaly

The terms associated with βc, YI , χe
I , χf

IJ , χa
IJ , χb

IJK , qa, raI can be rewritten using the
consistency equations in the following compact form:

1√−g
AR2

σ = σ

(1
2

babΠaΠb +
1
2

baIJΠaΠIJ +
1
4

bIJKLΠIJΠKL
)

(2.66)

This part of the anomaly is simply the most general bilinear scalar constructed from
the covariant objects ΠIJ and Πa which were defined in (2.52). Since the variation of
the Π’s does not contain derivatives of σ, the above term is manifestly consistent.

We refer to this anomaly as the generalized R2 anomaly because in the limit where
∇λ = m = 0 the only term remaining from this anomaly is proportional to R2. The
definitions of the coefficients appearing here, in terms of the original parameterization
of the anomaly, are given in the appendix.

3. Generalized W 2 anomaly

1√−g
AW 2

σ = −σc W 2 (2.67)

The form of the W 2 anomaly is unchanged off criticality. The only difference is that
the c coefficient is replaced by a function of the sources λI , but the anomaly remains
manifestly consistent.

4. Generalized E4 anomaly
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2.2. The local Callan–Symanzik equation

As in the case of the W 2 anomaly, away from the fixed point, the coefficient of the E4

anomaly is a function of the λ’s, and is thus space-time dependent. However, since the
Weyl variation of E4 contains two derivatives of σ, the consistency condition involves
(after integration by parts) terms proportional to ∇μa, which are not present at the
fixed point where a(λ) is a numerical constant. The result is that the E4 anomaly is
no longer automatically consistent away from criticality: additional terms must exist
in order to restore consistency. We find that a consistent anomaly containing E4 must
have the following structure:

1√−g
AE4

σ = σ

(
aE4 + χg

IJ

(1
2

Γμν∇μλI∇νλJ − 1
4

U I
KΛKΛJ

)
+

1
2

χg
IJKΩIJK

)
+∂μσ

(
wIGμν∇νλI

)
− 1

2
∂[JwI]ΞIJ

σ (2.68)

where χg
IJ and wI are functions of λ, introduced in Eq. (2.63), and where we used the

notations defined in sec. 2.2.2 plus the definitions

Γμν = Gμν +
R

6
gμν

ΩIJK =
(

ΠIJ +
1
2

B(IΛJ)
)

ΛK

ΞIJ
σ = ΛI

(
2∂μσ∇μλJ − σγJ

KLΠKL
)

. (2.69)

and

χg
IJK = −∂(Jχg

KI) +
1
2

∂Kχg
IJ . (2.70)

Notice that, even though it involves several terms, this anomaly is described by just three
tensor functions a, wI , χg

IJ . Moreover, Wess-Zumino consistency implies the following
constraint

L[wI ] = −8∂Ia + χg
IJBJ (2.71)

5. Generalized F 2 anomaly

The generalized F 2 anomaly depends on three coefficients, κAB, ζAIJ and ηAI , and takes
the form

1√−g
σAF 2

σ = σ

(1
4

κABF A
μνF Bμν +

1
2

ζAIJF A
μν∇μλI∇νλJ

+
(1

2
P A

I ζAJK + ηAI∂[JP A
K]

)
ΩIJK

)
+∂μσ

(
ηAIF A

μν∇νλI
)

− 1
2

ηA[IP A
J ]Ξ

IJ
σ (2.72)

The three coefficients appearing in this anomaly are related to one another and to the
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Chapter 2. The local Callan–Symanzik equation

coefficients of the generalized E4 anomaly via 2 consistency conditions8

L[ηAI ] = κABP B
I + ζAIJBJ − χg

IJ(TAλ)J

0 = ηAIBI + wI(TAλ)I (2.73)

In the end we find that the anomaly can be described by 10 physical scheme independent
tensorial coefficients, constrained by the 3 consistency conditions in Eqs.(2.71,2.73). Note
however that the second constraint in (2.73) is not fully independent from the other two.
Indeed, the vanishing of the Lie derivative of this constraint is automatic once the other two
constraints are enforced.

Comments on the R2 anomaly

Some comment on the AR2
σ anomaly are in order, as it represents a novelty compared to the

well known CFT limit. We will show that it is associated with logarithmic divergences in
CFTs that can be “unimproved” when scalar operators of dimension exactly equal to two
are present. We will also show that the components associated with operators with non-zero
anomalous dimensions can be eliminated by a choice of scheme.

The coefficients bab, baIJ and bIJKL are associated with the short distance singularities in
respectively 〈OaOb〉, 〈OaOIOJ〉 and 〈OIOJOKOL〉. To see this, let us perform analytic
continuation to work with Euclidean signature, and follow an argument similar to the one
presented, for instance, in [53]. Consider the action of the RG flow operator ΔRG on the
correlator Gab(x) ≡ 〈Oa(x)Ob(0)〉,

μ
d

dμ
Gab(x) = ΔRG δ

δma(x)
δ

δmb(0)
W (2.74)

=
[
ΔRG,

δ

δma(x)
δ

δmb(0)

]
W +

δ

δma(x)
δ

δmb(0)
A−1 (2.75)

= −γc
aGcb(x) − γc

bGac(x) − babδ
4(x) . (2.76)

At the fixed point, where γb
a, BI = 0 and bab = b

(0)
ab = const, by conformal invariance Gab(x)

takes the form
Gab(x) = CabR 1

(x2)2 = −Cab
1
4
� log x2μ2

x2 , (2.77)

where the function 1/(x2)2 is regulated (via differential regularization [54]) due to the presence
of the non-integrable singularity in x = 0, and Cab is positive-definite by unitarity. Taking
the RG derivative of (2.77),

μ
d

dμ
Gab(x) = 2π3Cabδ

4(x) . (2.78)

8Indeed the E4 anomaly is not fully consistent on its own in the presence of a non-vanishing field strength
background F A

μν . Terms involving the field strength in the Weyl variation of the E4 anomaly go along with
similar terms from the F 2 anomaly, and thus appear in the F 2 consistency condition in Eq. (2.73).
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2.3. Weyl consistency conditions and gradient flows

By comparing equations (2.78) and (2.76), we conclude that b
(0)
ab must be negative definite.

Considering the expression for Πa in Eq. (2.52) at the original fixed point λI = 0, the anomaly
associated with b

(0)
ab reduces to

b
(0)
ab

(
ma − ηa

6
R

)(
mb − ηb

6
R

)
. (2.79)

By Eq. (2.78) this result is readily interpreted as due to a deformation of the CFT by the
coupling (ma − ηaR/6)Oa. This is also consistent with the interpretation of ηa as a parameter
describing the “unimprovement” of the CFT. We stress, although it is obvious, that compared
to the standard CFT anomaly in Eq. (2.59), where R2 is inconsistent, Eq. (2.79) is made
consistent by the Weyl transformation of an extra source, ma. A related discussion of this
issue is found in sect. 2.3 in ref. [25].

Notice that the coefficients bab, baIJ and bIJKL can be modified by the addition of local
counterterms of the same form:

δW =
∫

d4x
√−g

(1
2

cabΠaΠb +
1
2

caIJΠaΠIJ +
1
4

cIJKLΠIJΠKL
)

δbab = −L [cab]

δbaIJ = −L [caIJ ] + γKL
IJ caKL + 2γb

IJcab

δbIJKL = −L [cIJKL] + γMN
IJ cMNKL + γMN

KL cIJMN + γa
KLcaIJ + γa

IJcaKL . (2.80)

In particular, at a CFT fixed point δbab = γc
accb + γc

bcac, so that all the entries in bab can be
eliminated apart from those associated with operators of dimension exactly equal to 2. This
makes sense because only for those entries does Gab(p2) involve a logarithm, corresponding to
an ineliminable ln μ dependence in W. The same remark applies to baIJ and bIJKL: around
a CFT fixed point the only genuine anomalies, the ones that cannot be removed by local
counterterms, correspond to 3- and 4-point functions of fields, such that the sum of their
anomalous dimensions vanishes.

It is also interesting to consider what would become of these anomalies in the limit of an SFT.
Limiting the set of sources to just gμν and the virial gauge field AA

μ = SACμ, and improving
the theory by the choice ηa = 0, the anomaly reduces to a term proportional to R̃2 (see sec.
2.2.2). This is the SFT anomaly discussed in ref. [25]. As this anomaly coefficient controls
the J = 0 component of the energy momentum 2-point function, one easily deduces that the
coefficient must be positive in a unitary theory.

2.3 Weyl consistency conditions and gradient flows

If one considers the quantity [32, 26]

ã = a +
1
8

wIBI (2.81)
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Chapter 2. The local Callan–Symanzik equation

then Eq. (2.71) together with the second constraint in Eq. (2.73) implies the famous gradient
flow equation

8∂I ã =
(
χg

IJ + ∂IwJ − ∂JwI + P A
I ηAJ

)
BJ . (2.82)

The gradient flow equation is one major result in the work of Jack and Osborn [32]. To our
knowledge, however, in the general case involving global symmetries, it was not cast in the
form of Eq. (2.82) until recently in [55] (see for instance section 3.6 of ref.[25]). Notice indeed
that, in order to obtain Eq. (2.82), Eq. (2.73) is crucial, in that it implies that a seemingly
spurious term P A

I wJ(TAλ)J is indeed proportional to the BI ’s. Eq. (2.82) gives rather non-
trivial relations among perturbative expansion coefficients of the β-function and of the other
quantities in the right hand side. Indeed, as pointed out in [32] and further demonstrated in
[55], there arise relations purely involving the β-functions of different couplings at different
perturbative orders. For instance, in weakly coupled gauge theories with scalars, one can
relate the leading contribution of the scalar quartic coupling to the gauge β-function, which
comes at 3-loops, to the 1-loop β-function for the scalar quartic itself.

Another implication of Eq. (2.82) is that ã is stationary at a conformally invariant fixed
point, where BI = 0. Notice that at a CFT ã and a have the same value, though a is in
general not stationary. However, since at a CFT ∂Ia = −wJ∂IBJ/8, we have that a is still
stationary with respect to marginal perturbations, that is perturbations associated with
vanishing eigenvalues of ∂IBJ . A corollary of this result is that a must be constant on any
manifold of fixed points. Moreover, since in a CFT a is the coefficient of one of the three
structures describing the 3-point function of Tμν [56], our result implies the vanishing of the
tensor structure corresponding to a in∫

d4x〈O(x)Tμν(y)Tρσ(z)Tτχ(w)〉 . (2.83)

Although we have not studied that, this result should also be obtained by using the constraints
imposed by conformal symmetry on the correlators. A corresponding result applies in 2D
CFTs for the correlator

∫
d2x〈O(x)Tμν(y)Tρσ(z)〉. Though in that case it trivially follows

from the vanishing of correlators involving n insertions of T and one insertion of another
primary, which is a consequence of the Virasoro algebra.

However, the most interesting consequence of Eq. (2.82) is obtained by contracting it with BI

8μ
dã

dμ
≡ 8BI∂I ã = χg

IJBIBJ , (2.84)

where the relation BIP A
I = 0 was used. The relevance of this result lies in the positivity

property of the matrix χg
IJ , as for χg

IJ > 0 it implies ã is a monotonically evolving function of
the couplings. Moreover, in an SFT, one would have that BI∂I = −SA(TAλ)I∂I is just a GF

rotation. Then the GF covariance of ã would imply χg
IJBIBJ = 0. For a positive definite χg

IJ

one would conclude that BI = 0, and that therefore the theory must be a CFT.

Indeed, as noted already in [32], unitarity guarantees the positivity of χg
IJ in a neighborhood
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2.3. Weyl consistency conditions and gradient flows

of the original CFT where all β-functions and anomalous dimensions remain small. This
proof is based on the following relation between χg

IJ and the anomaly coefficient χa
IJ (see Eq.

(2.63)):
χg

IJ = −2χa
IJ + O(B, ∂B, P ) (2.85)

This relation can be derived from the Wess-Zumino consistency condition of the original
anomaly. When B, ∂B, P can be treated as perturbations, then all anomalous dimensions
are small and the positivity of χg

IJ coincides with negativity of χa
IJ . We will now describe a

proof for the negativity of this matrix in unitary theories. In section 3.1.4 we will present an
alternative argument for the positivity of χg

IJ based on the dilaton scattering amplitude.

The negativity of χa
IJ can be established as follows: by the same considerations used in the

discussion around Eq. (2.76) and by the use of Eq. (2.63), we have that the Euclidean two
point function GIJ ≡ 〈OI(x)OJ(0)〉 satisfies the RG equation

μ
d

dμ
GIJ + γK

I GKJ + γK
J GIK = −χa

IJ��δ4(x) . (2.86)

At the conformal fixed point in differential regularization GIJ takes the form [53]:

GIJ(x) = CIJR 1
(x2)4 = − 1

3 × 44 CIJ�3 log x2μ2

x2 (2.87)

where CIJ is Zamolodchikov metric, which is positive definite in unitary theories. From the
above equations it follows that, up to corrections controlled by the anomalous dimensions
and β-functions, unitarity implies χa

IJ < 0 and thus, by the previous discussion, χg
IJ must

be positive. Notice that this conclusion is not affected by changes of scheme generated
by the addition of local counterterms to the action. Indeed under these additions one has
χa

IJ → χa
IJ + L[cIJ ], with cIJ a covariant function of the couplings: the change in χa

IJ is again
controlled by anomalous dimensions and β-functions, which are small under our hypothesis.
Let us stress again our conclusion: in a neighborhood of the original fixed point (see fig. 1)
where the β-function and the anomalous dimensions of OI , Oa, Jμ

A can be treated as small
perturbations, unitarity implies the positivity of χg

IJ . We should also emphasize that this
result does not rely on the perturbativity of λI . Indeed χg

IJ may differ significantly by its value
at the fixed point, but under our assumptions of small β and small anomalous dimensions,
unitarity nails χg

IJ to be positive. Nonetheless, we understand that the generic situation is
one where the smallness of β and of the anomalous dimensions is controlled by the size of the
couplings λI themselves.

Now, the integral of Eq. (2.84)

ã(λ(μ2)) − ã(λ(μ1)) =
1
8

∫ μ2

μ1
χg

IJ(λ(μ))BI(λ(μ))BJ(λ(μ)) d ln μ (2.88)

gives a straightforward bound on the asymptotics of the RG flow. As long as the RG trajectory
is in the neighborhood of the original fixed point, the left-hand side of Eq. (2.88) is finite, since
as ã is a finite function of the renormalized couplings. Then, if the RG trajectory remains in
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Chapter 2. The local Callan–Symanzik equation

this neighborhood asymptotically, ln μ → ±∞, the positive integrand at the right hand side
must vanish in the corresponding asymptotics

lim
ln μ→±∞

χg
IJ(λ(μ))BI(λ(μ))BJ(λ(μ)) = 0 . (2.89)

This can only happen if either BI → 0 or if χg
IJ asymptotes a matrix with null eigenvalues. In

the latter case, the operators corresponding to such eigenvalues would vanish in the limit where
β-functions and anomalous dimensions are neglected: so they must vanish for real otherwise
our hypothesis of negligible β-functions and anomalous dimensions is violated. We conclude
that within our hypothesis, one must have BI → 0 asymptotically for all non-null operators.
The asymptotics must therefore be CFTs. A particular case satisfying our hypothesis is that
of Banks-Zaks type theories: the only possible asymptotics in a neighborhood of the original
free field theory must as well be CFTs.
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Chapter 3

Constraining RG flows in four
dimensions

In section 2.3 we reviewed the consistency condition approach of [26] to derive a gradient flow
equation.

In this Chapter we present a method for computing the n-point correlators of T , which we
package in terms of an effective dilaton action. We show how to express these correlators as
the sum of a local term related to the anomaly (section 3.1.2) and correlators of composite
scalar operators (section 3.1.3). Finally, in section 3.1.4 we use this machinery to revisit the
results of ref. [25]. We also connect the dilaton based approach of ref. [25] to the consistency
condition approach of ref. [26]. As a by-product we show that there exists a scheme where
the metric χg

IJ essentially coincides with a manifestly positive definite metric constructed in
terms of combinations of matrix elements of composite operators. That is the analogue of
what done in ref. [26] for the 2D case. In section 3.2 we draw our conclusions.

3.1 Correlation functions of T off-criticality

3.1.1 The dilaton effective action

In this section we shall use the local Callan-Symanzik equation to write the correlators of T

in terms of the correlators of the other composite operators, plus local terms associated with
the anomaly. For this purpose we will introduce the dilaton field τ(x), and define the dilaton
effective action Γ[ḡ, τ ] as the quantum effective action W evaluated in the background1

J1(ḡ, τ) ≡ (gμν = e2τ ḡμν , λI = λI(μ) = const, AA
μ = 0, ma = 0) . (3.1)

1We keep a non-trivial background metric in order to allow in principle to control matrix elements of Tμν .
But we shall eventually focus on the flat case ḡμν = ημν .
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This effective action can be written as an expansion in powers of τ

Γ[g, τ ] = W[J1] = exp {Δg
τ } W[J ]

∣∣∣∣J =J0

=
∞∑

n=0

1
n!

Δg
τ . . . Δg

τ︸ ︷︷ ︸
n

W[J ]
∣∣∣∣J =J0

(3.2)

where we used the operator Δg
τ defined in (2.13), and defined the background J0 as

J0(ḡ) ≡ (gμν = ḡμν , λI = λI(μ) = const, AA
μ = 0, ma = 0) . (3.3)

Using the definition (2.7), we see that the coefficient of the τ(x1) . . . τ(xn) term in Γ[g, τ ],
evaluated with a flat metric ḡμν = ημν , corresponds to the n-point correlator for T

Γ[η, τ ] =
∞∑

n=0

in−1

n!

∫
d4xn . . .

∫
d4x1 τ(xn) . . . τ(x1)〈T {T (x1) . . . T (xn)}〉 . (3.4)

In order to write the correlators of T in terms of those of the other composite operators we
need to consider the quantum action for the Weyl transformed sources

J2(ḡ, τ) ≡ exp {−Δτ } J
∣∣∣∣J =J1

= (ḡμν , λI [τ ], AA
μ [τ ], ma[τ ]) , (3.5)

for which the τ dependence is transferred to λI , AA
μ , ma. We shall discuss below the form

of the Weyl transformed sources λI [τ ], AA
μ [τ ], ma[τ ]. The effective action for τ can then be

conveniently written as the sum of two contributions

Γ[ḡ, τ ] =
{

W[J1] − W[J2]
}

+ W[J2] ≡ Γlocal[τ ] + Γnon−local[τ ] (3.6)

where the term in curly brackets ≡ Γlocal is clearly local, as it corresponds to a finite Weyl
variation of the action. The second term Γnon−local is a functional where λI [τ ], AA

μ [τ ], ma[τ ]
act as sources for respectively OI , Jμ

A, Oa. When focusing on an order by order expansion in
τ , it is also convenient to write Eq. (3.6) as

Γ[ḡ, τ ] = exp{Δg
τ } (1 − exp {−Δτ }) W

∣∣∣∣J0

+ exp {Δg
τ } exp

{
Δβ

τ − Δg
τ

}
W

∣∣∣∣J0

= exp {Δg
τ } (1 − exp {−Δτ }) W

∣∣∣∣J0

+ exp
{

Δβ
τ +

1
2

[
Δg

τ , Δβ
τ − Δg

τ

]
+ . . .

}
W

∣∣∣∣J0

≡ Γlocal[τ ] + Γnon−local[τ ] . (3.7)

where in the second term we made use of −Δτ = Δβ
τ − Δg

τ . In principle, the dots in the second
line can be completed using the Baker-Campbell-Hausdorff (BCH) formula. Again, the first
term is manifestly local because all the terms in it involve at least one power of Δτ acting on
W , which gives the anomaly A. The second expression is a series of terms involving derivatives
of W with respect to the sources, that is a series of correlation functions of composite operators.
Notice that in the absence of dimension 2 operators, all the commutators in the BCH formula
vanish, and the computation simplifies significantly.
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In principle, the effective action can be obtained by working out the exponentials in Eq. (3.7)
order by order in τ . A perhaps more direct way to get a hold of the result is to consider the
source

J1+y(ḡ, τ) ≡ exp {−yΔτ } J
∣∣∣∣J =J1

= (ḡμνe2(1−y)τ , λI [τ, y], AA
μ [τ, y], ma[τ, y]) , (3.8)

which interpolates between J1 at y = 0 and J2 at y = 1. The advantage of using this
interpolating source is readily seen when considering Γlocal[τ ]. One can indeed write

Γlocal[τ ] = W[J1] − W[J2] = −
∫ 1

0
dy

d

dy
W[J1+y] =

∫
d4x

∫ 1

0
dyAτ (J1+y) (3.9)

where Aτ (J1+y) is just the Weyl anomaly of Eq. (2.63) computed for Lie parameter σ = τ on
the background J1+y. To compute both pieces in Γ[ḡ, τ ] we must then first find J1+y. This is
done by solving a set of differential equations. Indeed, by its definition, J1+y satisfies

d

dy
J1+y = −Δτ J1+y (3.10)

which corresponds to a set of first order differential equations for its components. Given
Eq. (2.14) the solution is found by considering λI first, AA

μ second and ma third. We have

d

dy
λI [τ, y] = τBI(λ[τ, y]) (3.11)

which, with initial condition λI [τ, 0] = λI(μ), has solution

λI [τ, y] = λI(μeyτ ) (3.12)

This result is obvious given the definition of λI [τ, y] in Eq. (3.8), but for the other sources the
result will be less obvious. Consider now the vector field. One has

d

dy
AA

μ [τ, y] = τyBIP A
I ∂μτ − τP A

I (TBλ)IAB
μ [τ, y] (3.13)

where λI ≡ λI(μeyτ ) is understood everywhere. Notice moreover that by the relation BIP A
I = 0

only the homogeneous term survives. Thus, given the initial condition AA
μ [τ, 0] = 0, the unique

solution is Aμ[τ, y] = 0. This is an interesting and non-trivial result. It implies that Γlocal is
not affected by anomaly terms involving the field strength of the external gauge fields, while
Γnon−local is independent of the correlation functions of the Noether currents JA

μ . We stress
that this result depends on the choice SA = 0 and would not hold otherwise. As we saw in
section 2.2.2, setting SA = 0 amounts to using the Ward identity Eq. (2.33) to eliminate
∂μJμ

A in the expansion of T in Eq. (2.26). What our present argument shows, is that Jμ
A is

eliminated altogether, including the general case where operators are inserted at coinciding
points and contact terms must be taken into consideration.

Consider finally ma. Its Weyl transformation is somewhat intricate, and so is the differential
equation for ma[τ, y]. The computation is considerably simplified by focusing instead on
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Chapter 3. Constraining RG flows in four dimensions

the “covariant” quantity Πa[τ, y]. This is simply related to ma[τ, y] (see Eq. (2.52)) via the
sources we already computed, the metric gμν [τ, y] ≡ ḡμνe2(1−y)τ and λI [τ, y]. By Eq. (2.54)
the equation it satisfies is

δ

δy
Πa[τ, y] = −τ

{
(2 − γ)a

b Πb[τ, y] + γa
IJΠIJ [τ, y]

}
(3.14)

= −τ

{
(2 − γ)a

b Πb[τ, y] + e2τy (6Ca + L[η̃a])
(1

6
R + ∇2τ − (∇τ)2

)}
(3.15)

where η̃a = ηa + 1
2θa

I (U−1)I
JBJ and where, as before, λI ≡ λI(μeyτ ) is understood everywhere.

In the second line we have used the explicit expression for γa
IJΠIJ [τ, y], which is readily

computed as this quantity purely depends on λI and on the metric. Furthermore we have used
its definition and the consistency conditions to rewrite the coefficient γa

IJ . This is a standard
differential equation whose solution is formally written in terms of integrals involving the
known functions on the right-hand side. The dependence on τ can then be made explicit by
expanding the formal solution in a Taylor series in τ .

The structure of Πa is the main source of complication in the computation of Γ[ḡ, τ ] for general
τ . Here we shall focus on the specific dilaton field configurations respecting the “on-shell
condition”2

R(ḡμνe2τ ) = e2τ
(
R + 6

[
∇2τ − (∇τ)2

])
= e2τ

(
R − 6eτ ∇2e−τ

)
= 0 (3.16)

which for the flat background ḡμν = ημν reduces to the massless Klein-Gordon equation
for the “canonical” dilaton 1 + φ ≡ e−τ . The effective action for a dilaton satisfying the
on-shell condition very roughly generates the correlators of T for light-like external momenta,
though the relation is more involved because of contact terms. These configurations are
interesting because they are precisely those that help constraining the structure of the RG
flow [25]. Now, in the case of an on-shell dilaton, a remarkable simplification takes place:
Πa[τ, y] = ΠIJ [τ, y] = 0. Indeed one readily checks that for on-shell configurations the
boundary condition is Πa[τ, 0] = ΠIJ [τ, 0] = 0. Then, since the system of Π[τ, y]’s satisfies a
homogeneous differential equation (see Eq.(2.54)), the solution vanishes identically. By the
explicit form of Πa we thus have that on-shell and for a flat metric

Πa[τ, y] = 0 −→ ma[τ, y] = e2(1−y)τ
[
y(1 − y)ηa + y2 θa

I

2
BI

]
∇2τ (3.17)

where again all coefficients implicitly depend on τ and y via λI ≡ λI(μeyτ ). Notice that for
y = 1, relevant for the computation of Γnon−local, the above result further simplifies to (all τ

dependence now explicit)

ma[τ, 1] =
θa

I (λ(μeτ ))
2

BI(λ(μeτ ))∇2τ . (3.18)

We have now all the ingredients to quickly evaluate the dilaton effective action in the on-shell
2In the Appendix of [1] we give more details about the general case.
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case. We shall consider the local and non-local contributions separately.

3.1.2 Computation of Γlocal

From Eq. (3.9) we see that Γlocal is linear in the anomaly. It thus consist of the addition of 5
terms, one for each of the contributions in Eq. (2.65).

Γlocal = Γ∇2R + ΓR2
+ ΓW 2

+ ΓE4 + ΓF 2
(3.19)

1. Γ∇2R

This local contribution can be obtained by dividing the generating functional into two
pieces

W = W ′ − F∇2R (3.20)

where

−ΔσF∇2R =
∫

d4xA∇2R
σ . (3.21)

while W ′ is a modified action whose anomaly has the canonical form AR2 + AW 2 +
AE4 + AF 2 . The explicit expression for F∇2R is given in (A.47). By the definition Eq.
(3.2), and by using Eq. (A.47) we then simply have

Γ∇2R[ḡ, τ ] = −F∇2R[J1] = −
∫

d4x
√−ḡ d̃

(
R[g]

6
+ ∇2τ − (∇τ)2

)2
(3.22)

where d̃ is given by

d̃ = d +
1
2

BIUI +
1
4

S̃(IJ)B
IB̃J − ηaka − 1

2
ηajaIB̃I (3.23)

and we introduced the notation B̃I = (U−1)I
JBJ . It is important that once we have

extracted this piece from the generating functional, the remaining terms must be
evaluated using W ′, namely in a scheme where the generalized ∇2R anomaly vanishes.

The main result here is that Γ∇2R vanishes for dilaton configurations satisfying Eq. (3.16).
As such this contribution does not affect the discussion on the RG flow structure: that
makes sense, since the local functional F∇2R is arbitrary.

2. ΓR2

This contribution is given by the integral of a quadratic form in the Π′s. It is therefore
proportional to the square of R + 6

[∇2τ − (∇τ)2], and therefore trivially vanishes for
on-shell dilaton configurations.

3. ΓW 2
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Chapter 3. Constraining RG flows in four dimensions

The contribution from AW 2 is easily integrated: √
gW 2 is Weyl invariant, so that the

only dependence on τ and y comes from the coefficient function c(λ). We find

ΓW 2
[ḡ, τ ] = −

∫
dx

√−ḡ C(λ(μ), τ)W 2[ḡ] (3.24)

where C(λ(μ), τ) =
∫ μeτ

μ c(λ(μ̄))d ln μ̄. This contribution vanishes in a flat metric
background.

4. ΓE4 + ΓF 2

We group these two contributions, since AE4 and AF 2 are related by the Wess-Zumino
consistency condition. Notice however that since AA

μ [τ, y] = 0, the gauge field strength
vanishes and AF 2 reduces to the terms proportional to P A

I . We find

ΓE4 [ḡ, τ ] =
∫

d4x
√−ḡ

⎛⎝A(λ(μ), τ)E4[ḡ]

+ã(λ(eτ μ))
(
4Gμν [ḡ]∂μτ∂ντ − 4∇2τ∂μτ∂μτ + 2 (∂μτ∂μτ)2

)
−L[ã](λ(eτ μ)) (∂μτ∂μτ)2 + . . .

⎞⎠ (3.25)

where A(λ(μ), τ) =
∫ μeτ

μ a(λ(μ̄))d ln μ̄, while the dots stand for additional terms of
order O(B)2 and proportional to R + 6

[∇2τ − (∇τ)2]. These additional terms therefore
vanish on-shell.

Notice that Eq. (2.84) implies 8L[ã] = χg
IJBIBJ = O(B2). Therefore, close to the fixed

point, where we can use BI as a small expansion parameter, and focusing on a flat
metric, the above formula reduces to

ΓE4 [η, τ ] = ã

∫
d4x

(
−4∇2τ∂μτ∂μτ + 2 (∂μτ∂μτ)2

)
+ O(B2) (3.26)

This has precisely the form of the Wess-Zumino term at the fixed point [23]: the
non-trivial result is that the corrections begin only at order (BI)2.

Let us summarize: for flat background metric ḡμν = ημν and for τ satisfying the on-shell
condition ∇2e−τ = 0, the local contribution to the effective action is controlled by the anomaly
coefficient ã and reduces to the second and third lines of Eq. (3.25).

3.1.3 Computation of Γnon−local

As long as we are not interested in correlators involving Tμν we can set ḡμν = ημν . Using the
results in section 3.1.1, we have

Γnon−local = W[J2] = W[λ[τ, 1], m[τ, 1]] (3.27)
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3.1. Correlation functions of T off-criticality

where, with a slight abuse of notation, we have dropped the metric and gauge field as one is
flat and the other vanishes. By writing

W[λ[τ, 1], m[τ, 1]] =

exp
{∫

d4x

[
(λ[τ, 1] − λI(μ))

δ

δλ̄I(x)
+ ma[τ, 1]

δ

δm̄a(x)

]}
W[λ̄, m̄]

∣∣∣∣
λ̄=λ(μ),m̄=0

(3.28)

and by using the functional correspondence between derivatives and operators, the have that
the τ dependence of Γnon−local is effectively generated by adding to the Lagrangian of the
QFT an effective interaction (we use [λ[τ, 1] = λ(μeτ ))

Leff = (λI(μeτ ) − λI(μ))OI + (ma[τ, 1])Oa . (3.29)

In the case of an on-shell dilaton the explicit result is

Leff = (λI(μeτ ) − λI(μ))OI +
θa

I (λ(μeτ ))
2

BI(λ(μeτ ))∇2τOa . (3.30)

where of course the composite operators are also renormalized at the scale μ. Because of the
piece proportional to θa

I , this result corrects the naive expectation according to which in a
QFT with purely marginal deformations the effective coupling to a background dilaton is
simply obtained by promoting λ(μ) to λ(μeτ ). That would for instance be automatically true
in the absence of dimension 2 scalars. However, we have seen before that even in the presence
of dimension 2 operators a scheme to define composite operators exists where θa

I = 0. In such
a scheme the form of the effective dilaton interaction would respect the naive expectation.
Notice that the operator redefinition generated by the source reparametrization in Eq. (2.44),
reduces to a simple operator shift, as described in Eq. (2.47), only when operators are inserted
at separated points. When considering insertions at coinciding points the operator mapping
is made more involved by the presence of contact terms. In view of that, one should not be
worried if the second term in Eq. (3.30) cannot be naively absorbed by the first through a
simple operator shift.

We should however stress that the simple result in Eq. (3.30) relies on two other ingredients.
First, it relies on the choice SA = 0 to fix the freedom in defining the RG flow. This choice
is equivalent to using the Ward identity to rewrite ∂μJμ

A in terms of OI and Oa. Secondly,
and more importantly, Eq. (3.30) is only valid for on-shell dilatons. Without that assumption
there would be new genuine contributions basically related to the existence of the additional
non-minimal operators √

gR(g)Oa coupling the QFT to gravity.

For the purpose of the discussion in the next section, it is useful to write the lowest order
contributions to Γnon−local in an expansion in the canonical dilaton φ

e−τ = 1 + φ . (3.31)

for which the on-shell condition is ∇2φ = 0. Using the expansions τ = −φ + 1
2φ2 − . . . and
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Chapter 3. Constraining RG flows in four dimensions

∇2τ = −(1 − φ)∇2φ + (∇φ)2 + . . . we find

Γnon−local[η, φ] = : exp

⎧⎨⎩
∫

d4x

⎛⎝ − φ BI δ

δλI(x)

+
φ2

2

(
BJ

(
δI

J + ∂JBI
) δ

δλI(x)
+

1
2

BJθa
J∇2 δ

δma(x)

)
+ O(φ3)

⎞⎠⎫⎬⎭ : W
∣∣∣∣

(3.32)

where by the : : we mean that the functional derivatives do not act on their coefficients. As a
check of the consistency of our result notice that the term proportional to φ2 is given by

∫
d4x

φ2

2
BJ

(
δI

J + ∂JBI
) [

ÕI

]
(3.33)

where ÕI is the scheme independent dimension 4 operator defined in Eq. (2.48). Also
consistently with that: thanks to ∇2φ = 0, OI and ÕI make no difference in the term linear
in φ.

3.1.4 Correlators of T and the constraints on the RG flow

The constraint on the RG flow asymptotics discussed in section (2.3) can be alternatively
derived by studying the specific combination of correlators of T that corresponds to the 2 → 2
scattering amplitude of a background on-shell dilaton. This approach is at the basis of the
proof of the a-theorem in ref [23] and was already followed in ref. [25] to constrain the RG
flow asymptotics. This section has a twofold aim. On one hand we would like to use the
results of the previous section to fill in some details that where not fully developed in ref. [25].
These concern the role of multiple insertions of T , and the issues of scheme dependence and
operator mixing. In the end these issues affect only subleading contributions and so they do
not alter the proof in ref. [25] as, under the assumption of perturbativity, that only relies on
the leading order scattering amplitude. However, with a complete control of the scattering
amplitude, the relation with the consistency condition approach of refs.[31, 32, 26] will be
more clear. That is our second aim.

The idea is to study specific combinations of correlators of T that can be directly interpreted
as the 2 → 2 scattering amplitude of the background dilaton field φ defined in Eq. (3.31)

(2π)4δ(p1 + · · · + p4)A(p1, p2, p3, p4) =
δ

δφ(p1)
δ

δφ(p2)
δ

δφ(p3)
δ

δφ(p4)
W[J1]

∣∣∣∣
ḡ=η,φ=0

(3.34)

Notice that since
δ

δφ
= −eτ δ

δτ
(3.35)
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the amplitude is a combination of 4-, 3- and 2-point functions

A(p1, . . . , p4) = −i〈T {T (p1)T (p2)T (p3)T (p4)}〉
− (〈T {T (p1 + p2)T (p3)T (p4)}〉 + permutations)

+i (〈T {T (p1 + p2)T (p3 + p4)}〉 + permutations)

+i (〈T {T (p1 + p2 + p3)T (p4)}〉 + permutations) . (3.36)

Notice that, for generic kinematics, the correlators of T require renormalization. As a result
of that, these correlators are generically μ dependent. An equivalent statement is that the
dilaton effective action for a generic φ is μ dependent. As discussed in section 2.2.1 this
dependence is fully controlled by the integral of the anomaly for a constant variation parameter
σ = const. Now, it turns out that, for a pure dilaton background gμν = ημν(1 + φ)2 satisfying
the “on-shell” condition

R(e−2τ ημν) = e3τ ∇2e−τ = (1 + φ)−3∇2φ = 0 (3.37)

the anomaly of Eq. (2.63) integrates to zero. Indeed, in a pure dilaton background (λI = const,
AA

μ = ma = 0) the only terms to consider are those involving just the metric: E4 integrates
to zero over asymptotically flat space,

√−gW 2(g) vanishes for conformally flat metrics, while
the on-shell condition (3.37) eliminates the R2 term. The scattering amplitudes for on-shell
dilatons are thus automatically finite, that is they are RG independent.

The same conclusion can be obtained from the power counting analysis in ref. [25], from
which one deduces that for an on-shell dilaton background all counterterms vanish except for a
cosmological constant term Λ

4!(1+φ)4. For ma �= 0 the cosmological term would logarithmically
depend on μ. This dependence is associated with the ΠaΠb terms in the anomaly. However,
for the case ma = 0 we are interested in there is just a quartic divergence: Λ is a μ independent
constant, that we may in principle even set to zero. Indeed Eq. (2.63) corresponds to the
choice Λ = 0.

As a consequence of the above discussion, on dimensional grounds, the scattering amplitude,
takes the form

A(s, t) = s2F (s/μ2, t/μ2, λ(μ)) + Λ (3.38)

with F an RG invariant function(
μ

∂

∂μ
+ BI ∂

∂λI

)
F (s/μ2, t/μ2, λ(μ)) = 0 . (3.39)

Notice that, since the dilaton is a flavor singlet source, F must be invariant under the
background GF : in Eq. (3.39) we can equally well use BI or βI .

The constraint on the flow is obtained by considering a dispersion relation for the forward
scattering amplitude A(s, t = 0) [23, 25]. In principle, given the kinematics (p2

i = 0, t = 0),
one may be concerned about the IR finiteness of the amplitude. While we believe it should
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Chapter 3. Constraining RG flows in four dimensions

be possible to carefully study the conditions for IR finiteness by performing an operator
expansion analysis, in the present study we shall content ourselves by assuming the amplitude
is finite. There are different reasons to believe that must be the case. One is that, as it will
become clear below, A(s, t = 0) appears to provide a concrete “on-shell” scheme to define
the quantity ã that emerged from the study of the consistency conditions. It seems hard to
believe that happens just by chance. Another, maybe weaker, indication is associated with the
explicit form of A(s, t = 0), when expanded in powers of the β-function. As we shall discuss
below, at the leading β2 order, the amplitude is determined by the two point functions of
operators ÕI with dimension near 4, and is manifestly IR finite. The next-to-leading order
∼ β3 is determined by 3-point functions of such operators, which at lowest order in β can
be computed in the original unperturbed CFT. Here again, the explicit computations of
CFT 3-point in momentum space [57], allows to rule out IR singularities. According to this
reasoning IR singularities could only arise beyond the order β4. While this seems difficult to
believe, a dedicated analysis seems to be needed to rule out this possibility. We leave such
analysis for future work.

Let us now go back to the forward amplitude. It is useful to parametrize it as

A(s, 0) = s2F (s/μ2, 0, λ(μ)) + Λ ≡ −8s2α(s) + Λ (3.40)

such that the positivity constraint imposed by unitarity becomes

ImA(s, 0) ≥ 0 =⇒ Imα ≤ 0 (3.41)

Notice that, by the results of sections 3.1.2-3.1.3, Eq. (3.25) in particular, at a conformally
invariant fixed point, α coincides with the anomaly coefficient a. Away from criticality, using
the μ independence of A, we can also write

−8α(s) = F (1, 0, λ(
√

s)), (3.42)

a finite function of the running couplings. The dispersion relation corresponds to the Cauchy
integral relation ∮

C

A(s, 0)
s3 ds = 0 (3.43)

for the contour C shown in figure 3.1. By using crossing A(s, 0) = A(−s, 0) and “hermiticity”
A(s, 0)∗ = A(s∗, 0), and by defining the “average” amplitude

ᾱ(s) =
1
π

∫ π

0
α(seiθ)dθ (3.44)

Eq. (3.43) becomes [25]

ᾱ(s2) − ᾱ(s1) =
2
π

∫ s2

s1

ds

s
(−Imα(s)) ≥ 0 (3.45)

Notice that by crossing and hermiticity, ᾱ is a real quantity. Notice also that the cosmological
term, being analytic over the whole complex plane automatically gives no contribution to the
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dispersion relation.

Figure 3.1: The contour C in the complex s plane.

We can now use the results from our study of the local Callan-Symanzik equation to elucidate
both sides of Eq. (3.45). Consider the left-hand side first. The split of the dilaton effective
action into a local and non-local contribution corresponds to a similar splitting for the dilaton
amplitude α = αloc + αnon−loc. The results of the two previous sections imply

αloc = ã(λ(μ)) + O(B2) αnon−loc = O(B2) (3.46)

from which, using the μ independence of α, we deduce ᾱ satisfies

ᾱ(s) = ã(λ(
√

s)) + O(B2) (3.47)

This relation is sufficient to conclude that there exists a choice of scheme where ᾱ(s) = ã(λ(
√

s)).
Indeed adding to W the local term

cIJ

2
√

gGμν∇μλI∇νλJ (3.48)

does not affect the dilaton amplitude, as that is computed at ∇μλI = 0, but modifies ã and
χg

IJ according to
ã → ã + BIBJcIJ χg

IJ → χg
IJ + L(cIJ) . (3.49)

The first equation, together with Eq. (3.47), implies a cIJ with regular dependence on λI

can be chosen such that ᾱ(s) = ã(λ(
√

s)). Consider now the right-hand side of Eq. (3.45).

Figure 3.2: The 2-2 and 3-1 cuts of the on-shell dilaton scattering amplitude.

The imaginary part of the amplitude is obviously only affected by the non-local part of the
dilaton action. We must thus expand Γnon−loc to fourth order in φ. Notice first of all, as
it may also seem obvious, that only 2-2 cuts contribute3 if the amplitude is assumed to be

3Indeed this is necessary to establish Eq.(3.41), as 2-2 cuts are manifestly positive while 3-1 cuts are not
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finite for external momenta on the light cone: 3-1 cuts would expectedly be associated with
singularities at p2

i = 0. The absence of 3-1 cuts physically corresponds to the fact that a
background massless dilaton cannot decay to QFT states. This last statement can also be
checked by noticing that the contribution from Γnon−local to the dilaton 2-point function
vanishes on-shell.

Now, since only 2-2 cuts contribute to the imaginary part, we must consider terms where at
most two φ’s are at coinciding point, as shown in the fig. (3.3). The contributions with at

Figure 3.3: The different configurations for the diagrams with 2-2 cut.

most two coinciding φ’s are determined by the O(φ4) term in the expansion of Eq. (3.32).
These contributions can be written in terms of “Feynman rules” where the building blocks are
2- 3- and 4- point correlators of OI and Oa. Inserting a complete set of states |Ψ〉 in the cut,
the imaginary part is conveniently written as

−Im α(s) =
1

16s2

∑
Ψ

(2π)4δ4(pΨ − p1 − p2)BIBJMJ(Ψ)∗MI(Ψ) (3.50)

with the matrix elements defined as

BIMI(Ψ) ≡ BI〈Ψ|
[
(δK

I + ∂IBK)ÕK(0) + BKOIK(p1 − p2)
]

|0〉 (3.51)

where we used the “scheme independent” dimension 4 operator ÕI defined in Eq. (2.48), and
defined

OIK(p1 − p2) ≡
∫

d4ye−i(p1−p2)y/2T (OI(y)OK(−y)) . (3.52)

p1 and p2 are the momenta of the two incoming dilatons, so that (p1 + p2)2 = s. The
matrix element BIMI(Ψ) describes the probability amplitude for two incoming dilatons to
be converted into the state |Ψ〉. The first two terms in Eq. (3.51) correspond to two dilatons
absorbed at coinciding points (pure � = 0-wave) while the third corresponds to insertions at
non-coinciding points, and thus involves all higher partial waves � ≥ 0.

One can thus define a positive metric GIJ such that

−Im α(s) = BIBJGIJ (3.53)

GIJ =
1

16s2

∑
Ψ

(2π)4δ4(pΨ − p1 − p2)MJ(Ψ)∗MI(Ψ) (3.54)

manifestly positive.
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In the above equation, by the μ independence of the amplitude, the couplings and the composite
operators can be conveniently renormalized at μ =

√
s. Plugging this result into Eq. (3.45)

and comparing to Eq. (2.88) one concludes that, in the scheme where ã(λ(
√

s)) = ᾱ(s),

χg
IJ =

32
π

GIJ + ΔIJ (3.55)

where ΔIJ satisfies BIBJΔIJ = 0, while GIJ is manifestly positive definite. The positive
matrix GIJ can be viewed as the 4D analogue of Zamolodchikov’s metric for 2D RG flows

G2D
IJ ≡ 1

p2

∑
Ψ

(2π)2δ2(pΨ − p)〈0|OI(0)|Ψ〉〈Ψ|OJ(0)|0〉 . (3.56)

With the benefit of hindsight we can now better appreciate the difference between the 2D
and 4D cases. In the first case the RG flow is controlled by the 2-point correlator of T , while
in the second a specific combination of 2-, 3-, and 4-point correlators is the relevant object.
Without the dilaton scattering amplitude as a guideline it would not have been obvious how
to assemble these correlators in order to construct GIJ . Of course the approach we followed
in this Chapter is bound to the study of near marginal deformations where both BI and
∂IBJ are treated as small perturbations. In that case GIJ is dominated by the first term in
Eq. (3.51) and takes the same 2-point function structure for the 2D case. That is the result
discussed in ref. [25]. Ideally one could however conceive of extending Eq. (3.51) beyond
perturbation theory including all scalar operators in the theory [58]. Unitarity would then
dictate the evolution of ᾱ with energy is controlled by an infinite dimensional positive metric
constructed in analogy with GIJ .

We want to conclude with a comment concerning parity violation and εμνρσ terms in the
anomaly. In this Chapter we have disregarded them in order to simplify the discussion on the
structure of the anomaly. However it is rather clear that their presence does not affect the
derivation of the effective action for the dilaton, and the discussion about RG flow based on it.
This is readily seen by considering in turn Γlocal and Γnon−local. The former is a local action
involving 4 derivatives and any power of a scalar field τ : by Bose symmetry it is evident that
one cannot write down any term involving εμνρσ. The latter is totally determined by the Weyl
transformation properties of the sources, which as we noticed in section 2.2.2, is not affected
by parity violation. Therefore the discussion of RG flow asymptotics is not affected by parity
violation and, consequently, by mixed flavor-gravity anomalies.

3.2 Discussion

Osborn’s original paper [26] on the local RG outlined a beautiful formalism to shed light on
the structure of RG flows, independent of details of the underlying theory. Chapter 2 can be
largely considered as a corollary to that classic paper, where we obtained the following results:

• We introduced the “covariant” objects Πa and ΠIJ whose Weyl variations do not involve
derivatives of the Lie parameter. These objects are essential in all applications of
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Chapter 3. Constraining RG flows in four dimensions

the local RG, from the construction of manifestly consistent Weyl anomalies to the
computation of the effective action for a background dilaton.

• We showed that most of the consistency conditions for the Weyl anomaly can be explicitly
solved and that the anomaly can be reformulated in a manifestly consistent form, with
only 3 non-trivial consistency conditions remaining. A crucial step in that procedure
was the isolation of the scheme dependent terms in the anomaly, that is terms that
correspond to the variation of a local functional. That allowed to write most consistency
conditions as algebraic equations as opposed to differential equations. We believe this
new formulation of the Weyl anomaly represents a significant simplification over the
original discussion in ref. [26], providing focus on the genuinely non-trivial consistency
conditions.

• Using the full set of consistency conditions, in particular those involving the background
flavor gauge field strengths, we derived a general gradient flow formula for the β-
function, Eq. (2.82). This equation implies a certain combination of anomaly coefficients
ã = a + wIBI/8 is stationary at fixed points. It turns out this is precisely the quantity
that decreases monotonically when flowing towards the IR. Therefore maxima and
minima of ã respectively correspond to UV and IR attractive fixed points. Another
corollary of this result is that the E4 anomaly coefficient a is stationary on a manifold
of fixed point.

• We established the monotonicity of the RG flow of ã, under the condition that the
RG trajectory is bound to a neighborhood of a CFT, where the β-function and the
anomalous dimensions can be treated as small perturbations. These quantities are
indeed the expansion parameters in all our computations. Our result evidently does not
rely on the original CFT being free.

Then, in Chapter 3 we related the approach to gain insight on RG flows based on Weyl
consistency conditions to the approach based on the background dilaton trick of Komargodski
and Schwimmer [23, 25]. Our study consists of the following steps and results:

• We derived a formal expression for the generating functional of the correlators of the
energy momentum trace T : the effective action for a background dilaton τ . This action
consists of two contributions. The first is local and determined by the Weyl anomaly.
For on-shell dilaton configurations the result is fully determined by the E4 anomaly
term and shown in Eq. (3.25). A consequence of our result is that, up to O(B2) in the
β-function BI , the forward dilaton scattering amplitude at energy

√
s is controlled by

ã(λ(
√

s)), the same crucial quantity describing the gradient flow equation. This result
was essentially derived already in ref. [40], though, we think, without analyzing the
relevance of the on-shell condition.

The second contribution to the dilaton effective action is non-local and associated with
the expansion of T in terms of a complete basis of operators, also including the effects
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of multiple insertions at the same point. Here the main result is that, for an on-shell
dilaton, there exists a suitable “scheme” such that the action is simply generated by
making the formal substitution λ(μ)I → λI(μeτ ). On one hand the choice of scheme
concerns the mixing between dimension 4-scalars OI and operators of the form ∇2Oa,
with Oa dimension 2 scalars. On the other, it concerns the systematic use of flavor
Ward identities to substitute the divergence of currents ∂μJμ

A in the correlators. That
procedure corresponds to the freedom to define the Weyl operator such that SA = 0,
and such that the β-function is the “physical” one, BI . We stress that, aside these
technical scheme issues, the on-shellness of the background dilaton is the key to the
simple result. In practice the on-shell condition beautifully filters out interactions (and
related complications) associated with improvement terms. This property was already
the key to the analyses in refs. [23, 39, 25].

• We used the effective action to study the forward dilaton scattering amplitude. We
showed that there exists a scheme where the reduced forward amplitude ᾱ(s), defined
in Eqs. (3.40)(3.44), equals the quantity ã(

√
s) appearing in the study of Wess-Zumino

consistency conditions [32, 26]. That scheme freedom is associated with the possibility
to add to the action a local and finite functional of the sources. We then applied the
optical theorem to show that, within this scheme and for a unitary theory, the matrix
χg

IJ controlling the flow of ã, essentially4 coincides with a positive definite metric in
coupling space GIJ . The latter metric is explicitly written in terms of matrix elements
involving 2, 3- and 4-point correlators of the operators OI that drive the RG flow. In
practice the use of the dilaton scattering amplitude allows to identify the 4D analogue
of the Zamolodchikov metric of 2D-QFT.

4“Essentially” is here used in the sense specified by Eq. (3.55): a possible difference ΔIJ would necessarily
be “orthogonal” to the β-function vector BI and not play any role.

53





Chapter 4

Constraining RG flows in six
dimensions

4.1 Introduction

Due to the importance of the a-theorem and its consequences for the structure of QFTs, it is
of great interest to continue the exploration of these ideas to higher spacetime dimensions.

In this Chapter we focus on six dimensions, where there exist non-trivial local superconformal
unitary [59, 60] and non-unitary [61] CTFs. While it is believed that there are no unitary
CFTs in dimensions higher than six (which has been proven rigorously in the supersymmetric
case [62]), the local CS equation formalism could be applied to the local non-unitary CFTs in
dimensions greater than six [61].

Let us consider a six-dimensional QFT deformed by a set of quasi-marginal operators OI ,

S[Φ, λ] = SCFT[Φ] +
∫

d6x λIOI(x) , (4.1)

and we study its RG flows through the formalism developed in Chapter 2, which can be
almost straightforwardly generalized to the six-dimensional case.1 However, in six dimensions
the expansion of T in a set of operators takes the general form

T ∼ βIOI + SA ∂μJμ
A − ηa�Oa + dα��ϕα , (4.2)

where ϕα are scalar operators of dimension two, which by unitarity must satisfy the equation
∇2ϕα = 0 at the fixed point.

Correspondingly, one can introduce sources cα for φα, and the local CS equation is generalized

1Important results using other approaches have been obtained in [63, 64].
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to

ΔσW =
∫

d6x

(
2σgμν δ

δgμν
+ δσλ · δ

δλ
+ δσAμ · δ

δAμ
+ δσm · δ

δm
+ δσc · δ

δc

)
=

∫
d6xAσ ,

(4.3)
where the operators in (4.3) take the same form as in (2.14), apart from δσc which is a new
term with mass dimension four.

For simplicity, in the present study we shall assume that the lower-dimensional scalar operators
Oa and ϕα are absent. It would be interesting to include them in the future, also to further
test results in the perturbative φ3 theory, as initiated in [65].

By analyzing the Wess–Zumino consistency conditions, in section 4.2 we will identify a function
of the coupling constants, â, satisfying an equation analogous to (2.2), thereby proving the
a-theorem in perturbation theory. In fact, we find a one-parameter family of functions, â + λb̂,
satisfying an equation of the form

μ
d

dμ

(
â + λb̂

)
= χIJβIβJ + O(β3) . (4.4)

where χIJ is positive definite at leading order by unitarity. This result dispels the concerns on
the validity of the perturbative a-theorem in d = 6 raised by [66], where a different function
of the coupling constants was proposed as the monotonically decreasing quantity. As a direct
consequence of the a-theorem we prove the equivalence SFT = CFT in our setup.

4.2 Wess–Zumino consistency conditions

Consistency conditions that follow from the commutativity of Weyl transformations,

ΔσAσ′ − Δσ′Aσ = 0 (4.5)

impose constraints among the various terms that appear in the anomaly Aσ. In d = 2, 4 these
conditions have been considered in Chapter 2 and references therein. Holographically, they
have been studied in [67, 68], and in supersymmetric theories in [69, 70]. Here we derive the
consistency conditions from the variation of the anomaly, as obtained in [71], and perform a
detailed analysis of those. We find that some consistency conditions obtained in [71] were
incorrect.

For the moment, we will neglect the contributions to equation (4.3) related to the gauge
fields AA

μ sourcing the currents Jμ
A. However, as it will be shown later, this will not change

our conclusions. The explicit form of the anomaly functional can be found in Appendix B.2.
For illustrative purposes, let us report the form of the anomaly at the fixed point, with the
background couplings set to 0 [72],

Aσ = σ (−a E6 + c1I1 + c2I2 + c3I3) . (4.6)
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4.2. Wess–Zumino consistency conditions

There are other six contributions (trivial anomalies) that can be eliminated by adding local
counterterms to the effective action. In (4.6) E6 is the Euler term while I1, I2, I3 are Weyl
invariant tensors. Their explicit form can be found in Appendix B.2.

After decomposing (4.5) in a linearly-independent basis, it is possible to read off constraint
equations for the anomaly coefficients. This is technically challenging, particularly due to
difficulties related to integration by parts and Bianchi identities.2 The consistency conditions
obtained here were checked at two loops in the φ3 theory against the results of [65].3 We have
also checked that they are satisfied by the general form of the trace anomaly on the conformal
manifold as constructed in [53].

In this work we exploit all constraints imposed on anomaly coefficients with up to two
indices. This requires us to decompose the consistency conditions and isolate the ones that
stem from terms involving up to two couplings λ. For example, we are interested in the
consistency condition arising from contributions to the left-hand side of (2.64) proportional
to (σ∂μσ′ − σ′ ∂μσ)∇2λI ∂μ∇2λJ , but not in the one arising from contributions proportional
to (σ∂μσ′ − σ′ ∂μσ)∂μλI ∇2λJ ∇2λK .

A particularly important equation contained in (2.64) is obtained from terms proportional to
(σ∂μσ′ − σ′ ∂μσ)H1

μν∂νλI , where H1
μν is a generalization of the Einstein tensor in d = 6 [73]

(see (B.7) for its explicit form), namely

∂I ǎ = 1
6 HIJβJ + 1

6 HI , (4.7)

where4

ǎ = a + 1
6 b1 − 1

90 b3 + 1
6 b11 + 1

12 AJβJ + 1
6 H1

JβJ ,

HI = −H5
I − 1

2 H6
I − 1

2 I7
I , HIJ = 1

4 AJI + H1
IJ + ∂IAJ + ∂[IH1

J ] .
(4.8)

All the tensors appearing above are local functions of the couplings, and their definition can
be found in Appendix B.2. Use of the consistency condition arising from (σ∇μ∇ν∂ρσ′ −
σ′ ∇μ∇ν∂ρσ)∇μ∇ν∂ρλI allows us to put (4.7) in the simpler form

∂I ã = 1
6(H1

IJ − 1
4 Â′′

IJ)βJ + 1
6 ∂[IH1

J ]β
J − 1

12 I7
I , ã = a + 1

6 b1 − 1
90 b3 + 1

6 H1
IβI . (4.9)

Unlike in the two and four-dimensional cases, (4.9) does not present itself in the form of (2.2),
due to the presence of the vector anomaly I7

I . Notice that this contribution was missed in
[71], which led to consider ã as the candidate for a monotonically-decreasing function in [66].
However, ã cannot be such a candidate, even more so because it is scheme-dependent5 at

2All our computations were performed in Mathematica using the package xAct, and details on the derivation
of the consistency conditions can be found in Appendix B.1. Due to the large number of terms appearing in
(4.5) and related consistency conditions, we do not report most of them in the text. The interested reader can
find them in a separate Mathematica file [2].

3To extend the check to higher loops it will be necessary to include the effects of the operators of dimension
two and four.

4We use the notation X(IJ) = XIJ + XJI and X[IJ] = XIJ − XJI .
5In this Chapter, by “scheme-dependent” quantities we mean those which change under the addition of
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order β.6

Nevertheless, we considered all possible linear combinations of the consistency conditions, to
find all independent equations having the form of a gradient flow equation. Most importantly,
we found the equation7

∂I â = (χIJ + ξIJ)βJ , (4.10)

where

â = a − 5
6 b1 + 1

10 b2 + 1
45 b3 + 1

10 b4

+
(

1
10 BI + 1

24 CI + 1
20 EI + 1

24 FI + 1
6 H1

I + 1
20 H2

I + 1
12 H3

I + 1
8 H4

I − 1
40 H6

I

)
βI ,

χIJ = 1
20 ∂(IBJ) − 1

40 B̂′
IJ + 1

48 Ĉ′
IJ + 1

20 Ê(IJ) + 1
24 F(IJ) + 1

6 H1
IJ

+ 1
20 H2

IJ + 1
12 H3

IJ + 1
8 H4

IJ − 1
40 H6

IJ ,

ξIJ = 1
20 ∂[IBJ ] + 1

48 C[IJ ] + 1
40 Ê[IJ ] + 1

48 F[IJ ] + 1
48 F ′

[IJ ]

+ 1
6 ∂[IH1

J ] + 1
20 ∂[IH2

J ] + 1
12 ∂[IH3

J ] + 1
8 ∂[IH4

J ] − 1
40 ∂[IH6

J ] .

(4.11)

â equals a at the fixed point, as the anomalies b1,...,7 are all proportional to β. χIJ and ξIJ are
symmetric and antisymmetric tensors, respectively.8 Note that, by virtue of equation (4.10),
â is scheme independent at order β, while χIJ and ξIJ are scheme-independent at order β0,
i.e. they are not affected to that order by adding local counterterms to the effective action.

4.3 Irreversibility

Consider the RG derivative of the two-point correlator of the marginal operators GIJ(x) =
〈OI(x)OJ(0)〉. Analogously to the four dimensional case studied in section 2.3,

μ
d

dμ
GIJ + γK

I GKJ + γK
J GIK = gIJ��δ(6)(x) (4.12)

where δ(6)(x) is the six-dimensional delta function, and gIJ is evaluated via the anomaly in
Appendix B.2,

gIJ = −∂(IAJ) − Â(IJ) + Â′
IJ + Â′′

IJ . (4.13)

As in section, 2.3 it can be shown that gIJ is proportional to the Zamolodchikov metric and
is thus positive-definite by unitarity [53]. Furthermore, the consistency conditions relate the
tensors χIJ and gIJ via

χIJ = 1
6 gIJ + O(β) . (4.14)

purely background-dependent counterterms to the effective action.
6For example, the addition of a term

∫
d6x

√
γ XI ∂μλI ∇νHμν

4 in W[J ], with XI arbitrary, induces, among
others, the shifts I7

I → I7
I +LβXI , where Lβ is the Lie derivative along the beta function, and H1

I → H1
I − 1

2 XI .
The shift of H1

I affects ã at order β.
7The linear combination of the consistency conditions leading to this equation is explicitly reported in the

Mathematica file attached to the submission of [2].
8Using the consistency conditions we have checked that ξIJ cannot be written as ∂[IXJ] for some vector XJ .
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With this result, and upon contracting equation (4.10) with βI , we get the desired monotonicity
constraint in perturbation theory for â,

μ
d

dμ
â = βI∂I â = χIJβIβJ ≥ 0 , (4.15)

where the inequality is saturated only if βI = 0. This proves the a-theorem in perturbation
theory (in theories with no relevant scalar operators of dimension two and four).

Additionally, we find another independent equation of the form9

∂I b̂ = (χ′
IJ + ξ′

IJ)βJ (4.16)

where

b̂ = 4b1 − 4
5 b2 − 4

15 b3 − 4
5 b4 −

(
4
5 BI + 1

2 CI + 2
5 EI + 2

5 H2
I + 2

3 H3
I + 2

3 H4
I − 1

5 H6
I

)
βI ,

χ′
IJ = −2

5 ∂(IBJ) + 1
3 Â′′

IJ + 1
5 B̂′

IJ − 1
6 Ĉ′

IJ − 1
5 Ê(IJ) − 2

5 H2
IJ − 2

3 H3
IJ − 2

3 H4
IJ + 1

5 H6
IJ ,

ξ′
IJ = −2

5 ∂[IBJ ] − 1
5 Ê[IJ ] − 2

5 ∂[IH2
J ] − 2

3 ∂[IH3
J ] − 2

3 ∂[IH4
J ] + 1

5 ∂[IH6
J ] .

(4.17)

b̂ is of order β and so vanishes at fixed points, and χ′
IJ , ξ′

IJ are symmetric and antisymmetric
respectively. The existence of the metric χ′

IJ is related to the fact that in d = 6 there are
three rank-two conformally covariant operators one can define on the conformal manifold [53],
corresponding to just as many scheme-independent rank-two tensors at the fixed point. This
is in contrast with the two- and four-dimensional cases where there is only a unique rank-two
tensor related to the Zamolodchikov metric. Nevertheless, we found that the consistency
conditions impose an orthogonality constraint on χ′

IJ ,

χ′
IJβJ = O(β2, β∂β) , (4.18)

even though, in general, χ′
IJ does not vanish at fixed points. Equations (4.10), (4.16), (4.18)

imply that there exists a one-parameter family of monotonically decreasing functions at
leading order in perturbation theory,

μ
d

dμ

(
â + λb̂

)
= 1

6 gIJβIβJ + O(β3, β2∂β) . (4.19)

Let us now generalize equation (4.15) in the presence of global symmetries at the fixed point,
in the scheme where SA = 0. By covariance, as in four dimensions, equation (4.15) will read

∂I â = (χIJ + ξIJ)BJ + P A
I fA , (4.20)

where fA is a generic combination of anomaly coefficients. Upon contracting (4.20) with BI

9As for Eq.(4.10), in the Mathematica file attached to the submission of [2] we report the explicit expression
for the linear combination of consistency conditions resulting in this equation.
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and using the condition BIP A
I = 0 we get

BI∂I â = μ
d

dμ
â = 1

6 gIJBIBJ ≥ 0 . (4.21)

Therefore, we find the same monotonicity constraint as in (4.15). Furthermore, if we are in
a SFT so that BI = SA(TAλ)I , equation (4.21) implies that SA = 0 by GF -covariance of â.
Therefore, we proved that scale implies conformal invariance in our setup.

4.4 Discussion

In this Chapter we studied the properties of RG flows originating from marginal deformations
to unitary conformal field theories in six dimensions. For simplicity, we restricted the analysis
to a class of CFTs where relevant scalar operators of dimension two and four are absent. Even
though we work in perturbation theory, the UV CFT can in general be strongly coupled and
may not admit a Lagrangian description.

The results obtained here can be summarized as follows:

• We derived all the consistency conditions with up to two powers of the coupling outside
the fixed point. We solved those to find all the constraints among the anomaly coefficients
which can be put in the form of a flow equation.

• We identified a one-parameter family of scheme-independent functions of the coupling
constants of the theory, â + λb̂ with λ ∈ R, equal to the a-anomaly coefficient plus
O(β) corrections, which flow monotonically in the proximity of a fixed point thanks to
unitarity. There is no parameter λ for which the combination â + λb̂, agrees with the
quantity analyzed in [66] in the context of φ3 theory, therefore we dispel the doubts cast
on the perturbative a-theorem in six dimensions.

• As a direct consequence of the a-theorem we proved, using standard arguments, that
scale implies conformal invariance in our setup.

The dynamics of perturbative QFTs in six dimensions appears structurally different with
respect to the four-dimensional case, due to the presence of multiple scheme-independent
rank two tensors at the fixed point. Nevertheless, we were able to find a class of physical
quantities whose RG flow is governed uniquely by the positive definite Zamolodchikov metric.
We presume that extending our argument beyond perturbation theory would single out the
monotonically-decreasing function in the one-parameter family that we found.

In the future, it will be interesting to extend our results in the presence of scalar operators of
dimension two and four. First, that could highlight possible differences with the lower space-
time dimensional cases, where relevant operators do not affect the monotonicity constraints [26,
55, 1].10 Second, that will be necessary to test our results in the φ3 theory, which is the only

10In four dimensions that is made clear by the argument employing the on-shell dilaton amplitude, which is
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perturbatively calculable theory in six dimensions. It should be straightforward to generalize
our computations to include those contributions, with the only difficulties arising due to the
proliferation of terms in the anomaly functional and in the Weyl operator.

It would also be of interest to analyze â and b̂ to higher-loop orders in φ3 theory with the use
of the consistency conditions, along the lines of [74]. The effects of dimension two and four
operators as described in the previous paragraph may be necessary for such an analysis.

The question stands whether the a-theorem and the equivalence of scale and conformal
invariance is valid beyond perturbation theory in six dimensions. So far no counterexamples
are known. A first step towards solving this problem would be to define a physical quantity
corresponding to â close to the fixed point, such as the four-dilaton amplitude in four
dimensions, as discussed in Section 3.1.4.11 A fully non-perturbative argument using a six-
dilaton scattering amplitude has been proposed in six dimensions with partial results [63],
but it is not clear whether a different approach is needed.

manifestly insensitive to those effects, as explained in section 3.1.4.
11We attempted to derive a flow equation both a for four-dilaton scattering amplitude, and for the effective

action on the sphere in six dimensions (as proposed originally in [20]), and we checked whether theses quantities
correspond to â. We got incomplete results which we don’t report in this thesis, but it is worth exploring this
direction in the future.
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Exact diagonalization methods
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Chapter 5

Hamiltonian truncation

5.1 Introduction

How do we extract predictions about a strongly coupled quantum field theory (QFT) which is
not exactly solvable? The lattice would be one answer, but it’s not the only one. Hamiltonian
truncation techniques, which generalize the Rayleigh-Ritz method familiar from quantum
mechanics, are a viable deterministic alternative to the lattice Monte Carlo simulations, at
least for some theories. These techniques remain insufficiently explored, compared to the
lattice, and their true range of applicability may be much wider than what is currently believed.
There exist several incarnations of Hamiltonian truncation, some better known than others,
differing by the choice of basis and of the quantization frame. For example, Discrete Light
Cone Quantization (DLCQ) [75] and Truncated Conformal Space Approach (TCSA) [76] are
two representatives of this family of methods.

In Part II of this thesis we will be concerned with what is perhaps the simplest setting for
the Hamiltonian truncation—the φ4 theory in two space-time dimensions. Moreover, we will
consider the most straightforward realization of the method—we will quantize at fixed time
rather than on the light cone, and use the Fock space basis for the Hilbert space rather than
the abstruse conformal bases.1 We will expand the φ4 Hamiltonian into ladder operators, as on
the first page of every QFT textbook. We will however take this Hamiltonian more seriously
than in most textbooks. Namely, we will use it to extract non-perturbative predictions, rather
than as a mere starting point for the perturbative calculations. Concretely, we will (1) put the
theory into a (large) finite volume, to make the spectrum discrete, (2) truncate the Hilbert
space to a finite dimensional subspace of low-energy states, and (3) diagonalize the truncated
Hamiltonian numerically.

In spite or perhaps because of its extreme simplicity, this concrete idea had received before
our work even less attention than its more sophisticated cousins mentioned above. The only

1The use of a conformal basis in two dimensions requires compactifying the scalar field [77], see the discussion
in section 5.4.5.
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prior works known to us are [78, 79].2 Here, we will follow up on these early explorations with
our own detailed study. While the basic idea and the qualitative conclusions of our work will
be similar to [78, 79], our implementation contains several conceptual and technical novelties.
In particular, we will pay special attention to the convergence rate of the method, and will
develop analytical tools allowing to accelerate the convergence, improve the accuracy, and
better understand the involved systematic errors. The advances reported in this work and in
other papers [83, 84], as well as the ongoing progress in developing the other variants of the
Hamiltonian truncation [85, 86, 87, 88], [89, 90, 91] make us hopeful that in a not too distant
future these methods will turn into precision tools for studying strongly coupled QFTs.

Concretely, our model is parametrized by the bare squared mass m2 and by the quartic
coupling g = ḡm2 with ḡ = O(1). The physical particle mass is given by

mph = f(ḡ)m (5.1)

and the function f(ḡ) is determined numerically. We will observe that the physical mass
vanishes for ḡ = ḡc ≈ 3, signaling the presence of a second order phase transition.

In Chapter 5 we focus mainly on the region below and around the critical coupling ḡc. In section
5.2 we present the problem and the basic methodology used to study the spectrum numerically.
Section 5.3 elucidates the ideas behind the renormalization procedure, its implementations
adopted in the numerical study, and provides some tests of the analytical results. The reader
afraid of the technicalities may skip it. Yet it is precisely this section which is the theoretical
heart of Chapter 5. Section 5.4 contains the calculation of the spectrum of the two-dimensional
φ4 theory in the Z2-unbroken phase.3 The dependence of the numerical results on the physical
and unphysical parameters is analyzed carefully, and an estimate of the critical coupling is
provided. In section 5.5 we compare our method to the existing ones in the literature. Most
of these prior studies focused in particular on the critical coupling estimates.

In Chapter 6 we will instead be interested in the complementary region ḡ > ḡc. In this range
of couplings the theory is massive, but the Z2 symmetry, φ → −φ, is spontaneously broken.
In infinite volume, there are therefore two degenerate vacua, and two towers of massive
excitations around them. We will be able to determine the low energy spectrum as a function
of ḡ. In finite volume the exact degeneracy is lifted, and the energy eigenstates come in pairs
split by a small amount, exponentially small if the volume is large.

In the Z2-broken phase, there is also a topologically nontrivial sector of “kink” states corre-
sponding, in the semiclassical limit, to field configurations interpolating between the two vacua.
In this work we will probe the kink mass by studying the mass splittings in the topologically
trivial sector.4

2A more extensive description of this work can be found in [80] and [81]. Another paper [82] studied the
two-dimensional Yukawa model without scalar self-interaction.

3 Computations were performed using a python code, which can be found in the arXiv submission of [3]
4The kink sectors has been studied directly in [84].
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One interesting feature of the theory under study is that it enjoys a weak/strong coupling
duality first discussed by Chang [92]. The dual description exists for all ḡ ≥ ḡ∗ ≈ 2.26. As we
review in Chapter 6, the duality relates a description in which the theory is quantized around
the Z2-invariant vacuum state to an equivalent description in which it is quantized around a
Z2-breaking vacuum. For ḡ not much above ḡ∗ both descriptions are strongly coupled5 and
they can be equivalently employed as a starting point for the numerical computations. In
section 6.1 we present a comparison between the numerical spectra obtained using the two
descriptions, serving both as a non-trivial test of the method and as a check of the Chang
duality.

On the other hand, for ḡ � ḡ∗ the dual description becomes weakly coupled, and provides
the better starting point. In section 6.2, we will explain a modification of the method which
can be used, among other things, to study this regime (a weakly coupled φ4 theory with
negative m2) efficiently. It is based on a different treatment of the zero mode of the field. We
will compare the numerical results with the predictions from perturbation theory and from
semiclassical analyses.

We conclude in section 6.3. Appendix D.1 presents some technical details useful for the
practical implementation of the procedure. Appendix C provides the perturbative checks of
our method.

5.2 The problem and the method

5.2.1 Hamiltonian

We will be studying the two-dimensional φ4 theory, defined by the following Euclidean action,

S = S0 + g

∫
d2x Nm(φ4) , (5.2)

S0 =
1
2

∫
d2x Nm((∂φ)2 + m2φ2) . (5.3)

Here Nm denotes normal ordering with respect to the bare mass m. Normal ordering of the
free massive scalar action S0 simply means that we set to zero the ground state energy density
(in infinite flat space, and before adding the quartic perturbation). The quartic interaction
term is then also assumed normal-ordered. In perturbation theory this simply corresponds to
forbidding the diagrams with lines beginning and ending inside the same quartic vertex. In
terms of operators, this means that we are adding the counterterms [93]

Nm(φ4) = φ4 − 6Zφ2 + 3Z2 . (5.4)

Here
Z =

∫
d2k

(2π)2
1

k2 + m2 (5.5)

5This explains why ḡ∗ need not be equal, and in fact is not equal to the critical coupling ḡc mentioned
above.
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is a logarithmically UV-divergent quantity.

Although absent in (5.2), below we will also need to consider perturbations given by the
normal-ordered φ2 operator,

Nm(φ2) = φ2 − Z. (5.6)

The above equations specify what we mean by the theory in infinite flat space, and also define
the mass parameter m and the quartic coupling g in terms of which we will parametrize the
theory. All physical quantities (such as particles masses and S-matrix elements) are then finite
functions of m and g. Also the change of the ground state energy density due to turning on
the coupling g is finite and observable in this theory. This change can be thought of as the
contribution of the theory (5.2) to the cosmological constant.

Since both m and g are dimensionful, physics depends on their dimensionless ratio ḡ = g/m2,
while m (or g) sets the overall mass scale. We will assume g > 0 to have a stable vacuum.
Both signs of m2 are interesting, but in this Chapter we will only consider the case m2 > 0.
Notice that this does not mean that we will always be in the phase of preserved Z2 symmetry
φ → −φ, since the mass parameter undergoes renormalization. In fact, as we will see below,
for m2 > 0 and ḡ > ḡc = O(1) the theory finds itself in the phase where the Z2 symmetry is
spontaneously broken. This is a non-perturbative phenomenon. For ḡ � 1, the fate of the Z2

symmetry is of course determined by the sign of m2.

In this thesis we will study the above theory not in infinite space but on a cylinder of the form
S1

L × R, where S1
L is the circle of length L and R will be thought of as Euclidean time. We

will impose the periodic boundary conditions around the circle. We will describe the theory
on this geometry in the Hamiltonian formalism, taking advantage of the fact that the finite
volume spectrum is discrete.

Now, what is the Hamiltonian which describes the theory (5.2) on S1
L ×R? The correct answer

to this question involves a subtlety, so let us proceed pedagogically.

We first discuss the Hamiltonian which describes the free massive scalar. In canonical
quantization, the field operator is expanded into modes:

φ(x) =
∑

k

1√
2Lωk

(
akeikx + a†

ke−ikx
)

, (5.7)

where the momenta k take discrete values k = 2πn/L, n ∈ Z, ωk =
√

m2 + k2, and the ladder
operators satisfy the usual commutation relations:

[ak, ak′ ] = 0, [ak, a†
k′ ] = δnn′ . (5.8)

The Hilbert space H of the theory is the Fock space of these ladder operators, spanned by the
states

|ψ〉 = |k1, . . . , km〉 = Na†
k1

. . . a†
km

|0〉 , (5.9)
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where N is the normalization factor to get a unit-normalized state. The free scalar Hamiltonian
is then given by

Hfree = H0 + E0(L), H0 =
∑

k

ωka†
kak . (5.10)

The only subtlety here is the c-number term E0(L). The point is that we want the oscillator
part H0 of the finite volume Hamiltonian to be normal-ordered. However, the normal ordering
counterterm in infinite space and for finite L is slightly different, and E0(L) compensates for
this mismatch. It is nothing but the Casimir energy of the scalar field, and is given by (see
[94])

E0 = − 1
πL

∫ ∞

0
dx

x2
√

m2L2 + x2
1

e
√

m2L2+x2 − 1
. (5.11)

This expression can be derived in many equivalent ways. One method is to regulate the
difference of the zero-point energies,

∑
n

ωkn/2 − L

∫ +∞

−∞
dk

2π
ωk/2 . (5.12)

Another method is to compute the partition function of the theory on the torus S1
L1 × S1

L2 ,
which can be done from the path integral formulation of the theory. The partition function
defined in this way enjoys the property of modular invariance. This method naturally produces
a term in the free energy of the form (2πL2) × E0(L1).

We next discuss the finite-volume Hamiltonian for the interacting theory. It will have the form

H = E0(L) + H0 + gV4 + . . . , (5.13)

V4 =
∫ L

0
dx Nm,L(φ4) . (5.14)

The normal ordering here is defined on the circle of length L in the Hamiltonian sense, just
putting all creation operators to the left. Thus,

V4 = gL
∑

k1+k2+k3+k4=0

1∏√
2Lωi

[
ak1ak2ak3ak4 + 4a†

−k1
ak2ak3ak4

+ 6a†
−k1

a†
−k2

ak3ak4 + 4a†
−k1

a†
−k2

a†
−k3

ak4 + a†
−k1

a†
−k2

a†
−k3

a†
−k4

]
. (5.15)

The origin of the . . . terms in (5.13) lies again in the fact that the normal-ordering counterterms
added when defining V ,

Nm,L(φ4) = φ4 − 6ZLφ2 + 3Z2
L , ZL =

∑
n

1
2Lωkn

, (5.16)

are not exactly the same as in the infinite space definition (5.4). The difference is

Nm(φ4)−Nm,L(φ4) = −6(Z−ZL)φ2+3(Z2−Z2
L) = 6(ZL−Z)Nm,L(φ2)+3(ZL−Z)2 , (5.17)

where in the second equality we used φ2 = Nm,L(φ2) + ZL.
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To compute ZL − Z we rewrite Z in the form adapted to the Hamiltonian quantization,

Z =
∫

dk

4π

1√
k2 + m2

. (5.18)

The difference ZL − Z is finite and is readily calculated using the Abel-Plana formula,

ζ ≡ ZL − Z =
1
π

∫ ∞

0

dx√
m2L2 + x2

1
e

√
m2L2+x2 − 1

. (5.19)

This allows us to complete the . . . terms in (5.13). Thus, the Hamiltonian on a circle of finite
length L corresponding to the infinite space theory (5.4) is given by,

H = H0 + g[V4 + 6ζV2] + [E0 + 3ζ2gL], (5.20)

V2 =
∫ L

0
dx :φ2 :L =

∑
k

1
2ωk

(aka−k + a†
ka†

−k + 2a†
kak) . (5.21)

We see that the Hamiltonian (5.20) differs from the “naive” Hamiltonian

H = H0 + V , V = gV4 (5.22)

by a “correction term”, proportional to E0 and ζ. The presence of these terms is conceptually
important. They would be also straightforward to include into numerical analysis, for any
L. However, in this Chapter we will be focusing on the case Lm � 1. In this regime the
corrections due to E0 and ζ are exponentially suppressed, and their numerical impact is
negligible. For this reason, and to simplify the discussion, we will omit the exponentially
suppressed corrections in this Chapter. With this proviso, from now on we will use the “naive”
Hamiltonian (5.22).

5.2.2 Truncation

We next explain the truncation method. We will work in the Hilbert space H spanned by
the free massive scalar states. The Hamiltonian H acts in this space, and the problem is to
diagonalize it. We thus use the free massive scalar states as a basis into which we expand the
eigenstates of the interacting theory. Let us think of the Hamiltonian as an infinite matrix
Hij where i, j numbers the states in H,

Hij = 〈i|H|j〉 . (5.23)

Notice that the states |i〉 as introduced above form an orthonormal basis of H. To find
the spectrum of the theory in finite volume, we need to diagonalize the matrix Hij . This
diagonalization can be done separately in sectors having fixed quantum numbers corresponding
to the operators commuting with the Hamiltonian.

The first such quantum number is the momentum: [P, H] = 0. In this thesis we will be
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working in the sector of states of vanishing total momentum,

P = k1 + · · · + km = 0 . (5.24)

In a large volume, the states of nonzero momentum should correspond to boosted zero-
momentum states, and their energies should be related to zero-momentum energies by the
Lorentz-invariant dispersion relation. It would be interesting to check this in future work.

The second conserved quantum number is the spatial parity P, which acts x → −x. It maps
the state (5.9) into P|ψ〉 = |−k1, . . . , −km〉. In this thesis we will be working in the P-invariant
sector,6 whose orthonormal basis consists of the states

|ψsym〉 = β(ψ)
(
|ψ〉 + P|ψ〉

)
, (5.25)

where β(ψ) is the normalization factor,

β(ψ) = 1/
√

2 if P|ψ〉 �= |ψ〉, 1/2 otherwise. (5.26)

The restriction to the subspace P = 0,P = 1 will be tacitly assumed in all of the rest of this
thesis.

The final conserved quantum number is the already mentioned global Z2 symmetry φ → −φ

(the field parity). Its eigenvalue on the states (5.9) is (−1)m. Below we will be considering
both the Z2-even and Z2-odd sector.

Each of the two sectors Z2 = ±1 still contains infinitely many states. We will thus have to
truncate the Hilbert space. The truncation variable will be the H0-eigenvalue,

E = ωk1 + · · · + ωkm . (5.27)

We will truncate by considering all states of E ≤ Emax. The parameter Emax should be
thought of as a UV cutoff. The truncated Hilbert space is finite-dimensional, and the matrix
Hij restricted to this space can be diagonalized numerically. This is what we will do.

In principle, one could imagine alternative truncation schemes. For example, one can truncate
in the maximal wavenumber kmax. Such a truncation would be closer to the usual way one
implements the UV cutoff in field theory. By itself, however, it does not render the Hilbert
space finite-dimensional. One could also think of truncating in the total occupation number
of the state, or in the individual occupation numbers per oscillator, and so on. Our initial
exploration of such subsidiary cutoffs did not produce any dramatic gains in the performance
of the method. In the end we decided to stick to the cutoff in E. As we will see in the
next section, this cutoff allows for a natural implementation of the renormalization of the
Hamiltonian, necessary to improve the convergence of the method. In the future it may be

6The extension of our method to the P-odd sector is straightforward. We consider only the P-even sector,
because we do not expect bound states with P = −1.
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interesting to return to the other cutoffs, and explore them more systematically. One slightly
different possibility has already been considered in [84].

5.3 UV cutoff dependence and renormalization

5.3.1 General remarks

It is not difficult to write a code which computes the Hij matrix restricted to the E ≤ Emax

subspace7 and diagonalizes it. The results of these numerical calculations will be discussed
below. As we will see, as the UV cutoff Emax is increased, the energy levels computed using
the truncated Hilbert space (‘truncated energy levels’) tend to some finite limits. These limits
should be naturally identified with the exact energy levels. An interesting theoretical question
then arises: what is the convergence rate of the method? There is also a related practical
question: how can the convergence be improved? These questions will be discussed in this
section.

By calculating the truncated energy levels we are discarding the contribution to the low-energy
physics coming from the high energy states of the Hilbert space. Since the UV divergences
have been already taken care of, this contribution is power-suppressed and goes to 0 as the
cutoff is increased. In the standard Wilsonian approach to the renormalization group, by
integrating out high-momentum (or short-distance) degrees of freedom one gets a flow in the
space of Hamiltonians, along which the same physics is described in terms of low-momentum
degrees of freedom with renormalized couplings. We would like to apply the same philosophy
to our case, although we may expect some differences, because our cutoff prescription—cutting
off in E—is different from the ones normally used in field theory. First of all, it breaks the
Lorentz invariance. Second, the fact that we truncate in the total energy of the state, rather
than in that of its individual constituents, renders our cutoff effectively non-local. Thus, we
should be prepared to see non-local as well as Lorentz-violating operators generated by the
flow. We will see, however, that to leading order it will be sufficient to renormalize a few
local operators in the Hamiltonian. It will be possible to do this computation in perturbation
theory, since the potential we add to the free Hamiltonian is a relevant deformation and
becomes less important in the UV. The dimensionless parameter which sets the convergence
of the truncated energy levels and the asymptotic magnitude of the counterterms will be
g/E2

max. All these considerations will be made concrete in the following.

We start our analysis from the exact eigenvalue equation:

H.c = Ec , (5.28)

where c is an infinite-dimensional vector living in the full Hilbert space H. Here and below,
we use curly E to denote energy levels of the interacting theory, while E will be used to denote
free scalar energy levels.

7See appendix D.1 for some tricks speeding up this computation.
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In our methodology the Hilbert space is divided in two subspaces:

H = Hl ⊕ Hh , (5.29)

where Hl is the low-energy sector of the Hilbert space, treated numerically, while Hh is
spanned by an infinite number of discarded high-energy states. So we have c = (cl, ch)t, and
Eq. (5.28) takes the following form in components:

Hll.cl + Hlh.ch = Ecl , Hhl.cl + Hhh.ch = Ech . (5.30)

Here we denoted
Hαβ ≡ PαHPβ, (5.31)

where Pα (α = l, h) is the orthogonal projector on Hα.

Using the second equation in (5.30) to eliminate ch from the first one, we obtain:

[Hll − Hlh.(Hhh − E)−1.Hhl].cl = Ecl , (5.32)

or, equivalently,

[Htrunc + ΔH].cl = Ecl , (5.33)

ΔH = −Vlh.(H0 + Vhh − E)−1.Vhl . (5.34)

This equation is very important. Notice that Hll ≡ Htrunc is nothing but the Hamiltonian
truncated to the low-energy Hilbert space. Notice furthermore that the mixing between the
high and low-energy states is due only to V , since H0 is diagonal.

Eq. (5.33) is exact, yet it resembles the truncated eigenvalue equation, with a correction ΔH.
This equation will be a very convenient starting point to answer the two questions posed at
the beginning of this section.

We will now start making approximations. First, we expand ΔH in Vhh and keep only the
zeroth term

ΔH = −Vlh.(H0 − E)−1.Vhl + . . . (5.35)

By dimensional reasons, we expect that the next term in the expansion,

Vlh.(H0 − E)−1.Vhh.(H0 − E)−1.Vhl, (5.36)

will be suppressed with respect to the one we keep by g/E2
max. It will be very interesting to

include this term in future work, and we will comment below about how this can be done.

Equation (5.35) defines ΔH as an operator on Hl. The definition depends on the eigenvalue E
that we are trying to compute. This subtlety will be dealt with below, while for the moment
let us replace E by some reference energy E∗. Even then, the definition seems impractical
since it involves a sum over infinitely many states in Hh. Indeed, the matrix elements of ΔH
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according to this definition are given by:

(ΔH)ij = −
∑

k:Ek>Emax

VikVkj

Ek − E∗
. (5.37)

Fortunately, in the next section we will give a simplified approximate expression for ΔH not
involving infinite sums. As we will see, to leading order ΔH will be approximated by a sum
of local terms:

ΔH ≈
∑
N

κN VN , VN =
∫ L

0
dx :φ(x)N : . (5.38)

To this leading order, adding ΔH to Htrunc results in simply renormalizing the local couplings.
As we will see, a more accurate expression for ΔH contains subleading corrections, which in
general cannot be expressed as integrals of local operators. The appearance of these nonlocal
corrections is due to the above-mentioned fact that truncating in total energy is not a fully
local way of regulating the theory.

5.3.2 Computation of ΔH

Consider then the matrix elements (5.37) of ΔH for i, j in the truncated basis. We will write
them in the form

(ΔH)ij = −
∫ ∞

Emax
dE

M(E)ij

E − E∗
, (5.39)

M(E)ij dE ≡
∑

k:E≤Ek<E+dE

VikVkj . (5.40)

We are interested in the large-E asymptotics for M(E)ij . Of course, for finite L the energy
levels are discrete and this function should be properly thought of as a distribution (a sum of
delta-functions). However, since the high-energy spectrum is dense, the fluctuations due to
discreteness will tend to average out when integrating in E. Below we will find a continuous
approximation for M(E)ij , valid on average. Such an approximation will be good enough for
computing the integral in (5.39) with reasonable accuracy. A small loss of accuracy will occur
because of the sharp cutoff at E = Emax; this will be discussed below in sections 5.4.3 and
5.4.4.

Our calculation of M(E)ij will follow the method introduced in [91], section 5.3. It will be
based on the fact that the same quantity appears also in the following matrix element,

C(τ)ij = 〈i|V (τ/2)V (−τ/2)|j〉 =
∫ ∞

0
dE e−[E−(Ei+Ej)/2]τ M(E)ij , (5.41)

where we inserted a completeness relation in the second step. A word about notation:
the Euclidean time dependence of various operators is always meant in the interaction
representation, e.g.

V (τ) = eH0τ V e−H0τ . (5.42)

74



5.3. UV cutoff dependence and renormalization

If the time dependence is not shown, it means that the operator is taken at τ = 0.

Eq. (5.41) says that C(τ) is basically the Laplace transform of M(E). The leading non-analytic
part of C(τ) for τ → 0 will come from the leading piece of M(E) as E → ∞. Our method
will proceed by first extracting the leading non-analytic part of C(τ), and then taking its
inverse Laplace transform to get at M(E).

We will present the computation for a general case when the potential contains both : φ2 :
and : φ4 : terms:

V = g2V2 + g4V4 . (5.43)

Our Hamiltonian (5.22) has g2 = 0, g4 = g. Turning on g2 �= 0 corresponds to an extra
contribution to the mass. Having this coupling will be useful for a check of the formalism in
section 5.3.4 below.

We have
C(τ) =

∑
gngm

∫ L

0
dx

∫ L/2

−L/2
dz:φ(x + z, τ/2)n ::φ(x, −τ/2)m : , (5.44)

where we used periodicity and invariance under spatial translations. The non-analyticity of
C(τ) for τ → 0 comes from the integration region where the product of two local operators is
singular, i.e. when they are inserted at near-coinciding points. Let us focus on one term in
the sum, and rewrite it using Wick’s theorem as

gngm

∫ L

0
dx

∫ L/2

−L/2
dz

∑
0≤k≤min(n,m)

fnm,n+m−2k GL(z, τ)k:φ(x + z, τ/2)n−kφ(x, −τ/2)m−k : .

(5.45)
Here GL(z, τ) is the two-point function of φ in the free theory on the circle of length L. The
f ’s are integer combinatorial factors (operator product expansion coefficients),

fnm,n+m−2k =
(

n

k

)(
m

k

)
k! . (5.46)

In (5.45), the leading non-analytic behavior as τ → 0 will come from the propagator powers
GL(z, τ)k. The remaining normal-ordered operators can be Taylor expanded in z, τ ,

gngm

∫ L

0
dx

∫ L/2

−L/2
dz

∑
0≤k≤min(n,m)

fnm,n+m−2k GL(z, τ)k [:φ(x)n+m−2k : + O(τ2, z2)] . (5.47)

The terms O(z) are not shown because they will vanish upon integration. The terms O(τ2, z2)
will produce a subleading singularity as τ → 0. The corresponding contributions to M(E)
will be suppressed by m2/E2

max compared to the leading ones. In this work these subleading
contributions will be neglected, but it will be interesting and important to include them in
the future.8

8The subleading contributions will give rise to new, derivative, operators in the Hamiltonian. Since our
regulator breaks Lorentz invariance, the derivatives in τ and z are not going to enter symmetrically in these
subleading terms.
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Eq. (5.47) means that at leading order the correction Hamiltonian ΔH will contain terms
of the form (5.38) with N = n + m − 2k. To find the couplings κN , we need to evaluate the
non-analytic part of the following quantities,

Ik(τ) ≡
∫ L/2

−L/2
dz GL(z, τ)k, k = 0, 1, 2, 3, 4 . (5.48)

As we will see below, for k = 0, 1 the τ → 0 behavior will be analytic (for k = 0 this is a
triviality). This implies that only N = 0, 2, 4 terms will be generated in (5.38).

To evaluate (5.48), we will need a few well-known facts about GL(z, τ). In the infinite volume
limit L → ∞ the rotation invariance is restored, and the two-point function is a modified
Bessel function of the second kind, depending on the distance ρ =

√
z2 + τ2,

G(ρ) =
1

2π
K0(mρ) (L = ∞) . (5.49)

It has a logarithmic short distance behavior and decays exponentially at long distances:9

G(ρ) ≈
⎧⎪⎨⎪⎩

− 1
2π

log
(

eγ

2
mρ

)
[1 + O(m2ρ2)] , ρ � 1/m ,

exp(−mρ)/(2
√

2πmρ) , ρ � 1/m .
(5.50)

For a finite L, the two-point function is obtained from the L = ∞ case via periodization,

GL(z, τ) =
∑
n∈Z

G(
√

(z + nL)2 + τ2) . (5.51)

The periodization corrections are exponentially small for Lm � 1. In the present Chapter,
this condition will be always satisfied, and so we will use G in place of GL.10 This is consistent
with having neglected the exponentially suppressed E0(L) and ζ terms when passing from
(5.20) to (5.22).

So we will replace GL by G(ρ) in (5.48). The non-analytic behavior of the integral comes from
the small z region, where the short-distance logarithmic asymptotic (5.50) is applicable. To
regulate spurious IR divergences, it’s convenient to calculate the first derivative with respect
to τ ,

I ′
k(τ) = k

∫ ∞

−∞
dz (dG/dρ)G(ρ)k−1 τ

ρ
→ k

(
− 1

2π

)k ∫ ∞

−∞
dz

[
log

(
eγ

2
mρ

)]k−1 τ

ρ2 , (5.52)

where we also replaced G by its short-distance asymptotics. The resulting integrals are

9γ is Euler’s constant.
10The induced error can be estimated by approximating GL(z, τ) ≈ G(ρ) + 2G(L) for small ρ. This implies

a shift ΔIk(τ) ≈ αIk−1(τ), α = 2kG(L). For k = 4 and L = 4/m (L = 6/m) the coefficient α = 0.01(0.002).

76



5.3. UV cutoff dependence and renormalization

convergent and readily evaluated,11

I ′
1(τ) = const ,

I ′
2(τ) =

1
2π

log mτ + const ,

I ′
3(τ) = − 3

8π2 (log mτ)2 − 3γ

4π2 log mτ + const , (5.53)

I ′
4(τ) =

1
4π3 (log mτ)3 +

3γ

4π3 (log mτ)2 +
12γ2 + π2

16π3 log mτ + const ,

modulo errors induced by using the short-distance asymptotics of G. These errors are
suppressed by O(m2τ2). The corresponding corrections to M(E) are suppressed by m2/E2

max,
and will be omitted. Also, as mentioned above, we see that I ′

1(τ) is analytic.

We now have to pass from the small-τ behavior to the large-E asymptotics. Differentiating
Eq. (5.41) we have

C ′(τ) =
∫ ∞

0
dE e−Eijτ [−EijM(E)] , (5.54)

where we defined
Eij ≡ E − (Ei + Ej)/2 . (5.55)

Thus from the inverse Laplace transforms of I ′
k(τ) we should be able to determine the

asymptotics of −EijM(E). These inverse Laplace transforms are found from the following
table of direct transforms, ∫ ∞

ε
dE e−Eτ 1

E
= − log mτ + analytic ,∫ ∞

ε
dE e−Eτ log E/m

E
=

1
2

(log mτ)2 + γ log mτ + analytic , (5.56)∫ ∞

ε
dE e−Eτ (log E/m)2

E
= −1

3
(log mτ)3 − γ(log mτ)2 − (π2/6 + γ2) log mτ + analytic .

Since we are only interested in the large-E asymptotics, the IR cutoff ε is not important—its
value only influences the analytic parts.

Gathering everything, we obtain the following formula for the leading asymptotic behavior of
M(E),

M(E) ∼ [g2
4μ440 + g2

2μ220]V0 + [g2
4μ442 + g2g4μ422]V2 + g2

4μ444V4

∣∣∣∣
E→Eij

, (5.57)

where

μ440(E) =
1

E2

{18
π3 (log E/m)2 − 3

2π

}
, μ220(E) =

1
πE2 ,

μ442(E) =
72 log E/m

π2E2 , μ422 =
12

πE2 , μ444(E) =
36

πE2 . (5.58)

As the notation suggests, the μ-functions in (5.57) are evaluated at E = Eij . This equation

11Mathematica’s Integrate function sometimes gives wrong results for integrals of this type, so be careful.
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is the main result of this section. We subjected it to several tests, which we are going to
describe below.

Before proceeding, let us comment on the evaluation of the next-to-leading term (5.36) in the
renormalization procedure, which will be important in future developments of the method.
From this term we will extract the O(g3/E4

max) contribution to the coefficients κN . This
correction term is the most interesting of all 1/E4

max corrections, since it dominates in the
limit g � m2. Technically, we should generalize C(τ) and M(E) in Eq. (5.41) to functions of
two variables (τ1,2 and E1,2) and extract the leading non-analytic pieces for τ1,2 → 0. This
calculation will involve Wick contractions among the operators in C(τ1, τ2), the cyclic ones
being the only nontrivial part. An alternative way to calculate the higher-order corrections
has been devised in [83].

We shall now move on to the tests of Eq. (5.58).

Test 1

Let us plug (5.57) into (5.39), and do the integral neglecting the dependence on E∗ and
(Ei + Ej)/2.12 This gives ΔH of the form (5.38), i.e. as a sum of local counterterms with
coefficients which are functions of Emax. For example, the g2

4 part is given by (Log ≡
log Emax/m),

ΔH ≈ − g2
4

E2
max

{[
9
π3 (Log2 + Log) +

3(6 − π2)
4π3

]
V0 +

(36
π2 Log +

18
π

)
V2 +

18
π

V4

}
. (5.59)

This expression was checked as follows. Working in infinite volume, we computed the order g2

perturbative corrections to the vacuum energy, particle mass, and 2 → 2 scattering amplitude,
imposing the cutoff E ≤ Emax on the intermediate state energy (thus working in the ‘old-
fashioned’ Hamiltonian perturbation theory formalism, rather than in terms of Feynman
diagrams). We then checked that the leading Emax dependence of these results is precisely
the one implied by (5.59). This way of arriving at (5.59) is more laborious than the one given
above, and we do not report the details.

Test 2

A direct check of the asymptotics (5.57) can be done by comparing it with the actual value
of M(E) computed from its definition (5.40). One example is given in figure 5.1, where we
consider the diagonal matrix elements 〈i|M(E)|i〉, |i〉 the state of i particles at rest, i = 0, 1, 2.
We choose m = 1, L = 6, g2 = 0 and g4 = 1. The green smooth curves are the theoretical
asymptotics from (5.57). The blue irregular curves represent the moving average of 〈i|M(E)|i〉
over the interval [E − ΔE, E + ΔE) with ΔE = 1. To facilitate the comparison, both are
plotted multiplied by E2

ii. We see that the two curves agree quite well on average.

A third test, involving the g2 coupling, will be described in section 5.3.4.

12We stress that in numerical computations it will be important to retain these subleading corrections.
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Figure 5.1: A test of the M(E) asymptotics; see the text.

5.3.3 Renormalization procedures

By “renormalization”, in a broad sense, we mean adding to the truncated Hamiltonian Htrunc

extra terms designed to compensate for the truncation effects and reduce the Emax dependence
of the results. In this section we will describe in detail the three renormalization prescriptions
used in our numerical work.

Consider thus the Hamiltonian

H = H0 + V , V = g2V2 + g4V4 . (5.60)

In the main numerical studies in section 5.4 we will set g2 = 0. The opposite case g4 = 0,
g2 �= 0 will be considered in the check in section 5.3.4.

We are interested in the spectrum of H on a circle of length L. Three approximations to this
spectrum, in order of increasing accuracy, can be obtained as follows.

1. Raw truncation (marked ‘raw’ in plots)

In this simplest approach, we are not performing any renormalization. The truncated
Hamiltonian Htrunc is constructed by restricting H to the subspace Hl of the full Hilbert space,
spanned by the states of energy E ≤ Emax. The spectrum of Htrunc will be called the ‘raw
spectrum’. According to Eqs. (5.57), (5.59), we expect that the raw spectrum approximates
the exact spectrum with an error which scales as 1/E2

max (up to logarithms).

2. Local renormalization (marked ‘ren.’ in plots)
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In this approach, we construct a correction Hamiltonian ΔH by the formula (5.39). We use
the asymptotics (5.57) for M(E), in which we neglect (Ei + Ej)/2 with respect to Emax. This
gives a local ΔH of the form (5.38) with

κ0 = −
∫ ∞

Emax

dE

E − E∗
[g2

4μ440(E) + g2
2μ220(E)] ,

κ2 = −
∫ ∞

Emax

dE

E − E∗
[g2

4μ442(E) + g2g4μ422(E)] , (5.61)

κ4 = −
∫ ∞

Emax

dE

E − E∗
g2

4μ444(E) .

The choice of the reference energy E∗ will be discussed shortly. We then construct the
‘renormalized’ Hamiltonian

Hren = Htrunc + ΔHloc, ΔHloc ≡ κ0V0 + κ2V2 + κ4V4 . (5.62)

Thus κ2,4 correct the g2,4 couplings, while κ0 shifts the ground state energy density. Notice
that the κ’s scale as 1/E2

max (up to logarithmic terms).

The renormalized Hamiltonian acts in the same truncated Hilbert space Hl as the truncated
Hamiltonian Htrunc. Its energy levels will be called the ‘renormalized spectrum’. This
construction implements the first nontrivial approximation to the exact equation (5.33).
The local coupling renormalization accounts for the leading 1/E2

max error affecting the raw
spectrum. Further corrections, discussed below, are suppressed by one more power of Emax.
So we expect that the renormalized spectrum approximates the exact spectrum with an error
which scales as 1/E3

max.

Let us now discuss the reference energy E∗ in (5.61). Recall that E∗ was introduced as a
placeholder for the eigenstate energy E in the definition (5.33) of ΔH. Now, it’s important to
realize that the eigenstate energies do not remain O(1) in the limit of large L. The excitations
above the ground state, EI − E0,13 do stay O(1), but the ground state energy itself grows
linearly:

E0 ∼ ΛL, L → ∞ . (5.63)

Here Λ is the interacting vacuum energy density (the cosmological constant), which is finite
and observable in our theory.14

We will therefore use the following recipe. We will choose E∗ close to, although not necessarily
equal, the ground state energy of the theory. The precise choice will be specified when we
present the numerical results. With this choice we compute the coupling renormalization
(5.61) and the renormalized spectrum. The differences EI − E∗ will now be O(1), and the error
induced by this mismatch will truly be 1/E3

max suppressed. Moreover, even this error can be
further corrected, as we discuss below.

13We use small roman letters i, j, . . . to number states in the Fock space, which are eigenstates of H0, and
large letters I, J, . . . to number the eigenstates of the interacting Hamiltonian.

14Recall that the free vacuum energy density was set to zero by normal ordering the free scalar Hamiltonian.
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We briefly mention here an alternative approach. One can insist that E∗ be adjusted, e.g. it-
eratively, until it exactly equals the eigenvalue EI which comes out from diagonalizing Hren.
This has to be done separately for each eigenstate, and so is rather expensive. We tried
this method and found that it gives results in close agreement with those obtained from our
simpler recipe for E∗, combined with the correction procedure described below.

3. Local renormalization with a subleading correction (marked ‘subl.’ in plots)

We will now describe the third approach which improves on the previous one by taking into
account not only the renormalization of the local couplings, but also the first subleading
corrections due to the eigenstate energy and (Ei + Ej)/2. As explained above, these corrections
can be considered smaller than the local ones by a further O(1/Emax) factor. They will take
care of the mismatch between (5.39) and the local coupling renormalization. The corresponding
correction Hamiltonian has the following matrix elements between the truncated Hilbert space
states:

[ΔHsubl(E)]ij = (λ0)ij(V0)ij + (λ2)ij(V2)ij + (λ4)ij(V4)ij (5.64)

(no summation over the repeated indexes). The (λN )ij are the differences between the
renormalization coefficients fully dependent on (Ei + Ej)/2 and E and the local ones κN

defined in (5.61):

(λ0)ij = −
∫ ∞

Emax

dE

E − E [g2
4μ440(Eij) + g2

2μ220(Eij)] − κ0 ,

(λ2)ij = −
∫ ∞

Emax

dE

E − E [g2
4μ442(Eij) + g2g4μ422(Eij)] − κ2 , (5.65)

(λ4)ij = −
∫ ∞

Emax

dE

E − E g2
4μ444(Eij) − κ4 .

There is a small technical subtlety in using the given expressions. For (Ei + Ej)/2 close to
Emax, the argument Eij of the μ-functions is small in the part of the integration region close
to Emax. In this region it makes little sense to use (5.58), valid for large E. From figure
5.1 we see that the asymptotics sets in roughly at E ∼ 5m. We therefore use the following
prescription in evaluating (5.65): we use (5.58) for Eij ≥ 5m, while we set μ’s to zero below
this threshold.

The full procedure is then as follows. We compute the local renormalized Hamiltonian (5.62)
with the reference value E∗ fixed around the ground state energy. We diagonalize Hren,
determining the renormalized spectrum (in practice only a few lowest eigenvalues) and the
corresponding eigenstates:

Hren|cI〉 = Eren,I |cI〉 (5.66)

Every eigenvalue is then corrected by adding (5.64) at first order in perturbation theory:

Esubl,I = Eren,I + ΔEI , ΔEI = 〈cI |ΔHsubl(Eren,I)|cI〉 . (5.67)

From the computational point of view the evaluation of this correction can be considered
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inexpensive, since it scales as the square of the basis dimension, whereas the matrix diago-
nalization typically scales as its cube. The energy levels Esubl,I will be called ‘renormalized
subleading’ or simply ‘subleading’.

Second-order corrections can also be considered:

ΔE(2)
I =

∑
J 
=I

|〈cI |ΔHsubl(Eren,I)|cJ〉|2
Eren,I − Eren,J

. (5.68)

These turn out to be negligible, except when there are two almost-degenerate eigenvalues.

5.3.4 A test for the φ2 perturbation

We will now perform a test of our method in a controlled situation when the exact answers
are known.15 Consider the theory described by the action (cf. (5.2))

S = S0 + g2

∫
d2xNm(φ2) . (5.69)

The finite volume Hamiltonian corresponding to this problem has the form

H = H0 + g2V2 + C, C = E0(L) + g2Lζ(L) . (5.70)

Just as in section 5.2.1, the extra constant term C appears because of the difference in
the normal ordering counterterms in the infinite space and on the circle. These terms are
exponentially suppressed for Lm � 1, but for the time being it will be instructive to keep
them.

In full form, we have

H = C +
∑

k

ωka†
kak +

g2

2ωk
(aka−k + a†

ka†
−k + 2a†

kak) , ωk = ωk(m) . (5.71)

We expect, of course, that this Hamiltonian corresponds to a free scalar of a mass

μ2 = m2 + 2g2 . (5.72)

We will now use a Bogoliubov transformation to show this explicitly. The derivation is
standard and is given here only for completeness. The transformation has the form

bk = (cosh ηk)ak + (sinh ηk)a†
−k (5.73)

with ηk assumed real and depending only on |k|. The b’s then satisfy the same oscillator
commutation relations as the a’s. We want to map (5.71) onto

∑
k

Ωkb†
kbk + E0 , Ωk = ωk(μ) . (5.74)

15This test is analogous to the one in [91], section 6.
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The conditions that the two Hamiltonians match take the form

Ωk cosh(2ηk) = ωk + g2/ωk , Ωk sinh(2ηk) = g2/ωk . (5.75)

This is indeed satisfied provided that

Ω2
k = ω2

k + 2g2 , (5.76)

which proves the expression (5.72) for the new mass. The same derivation gives the value of
the vacuum energy,

E0 = C −
∑

Ωk(sinh ηk)2 = C +
1
2
∑

(Ωk − ωk − g2/ωk) . (5.77)

Up to the constant C, the last expression can be intuitively understood [91] by starting from
the zero-point energy 1

2
∑

Ωk and subtracting the terms zeroth and first order in g2.

The series in (5.77) is convergent and can be summed using the Abel-Plana formula. We find
that the final result is given by

E0 = E0(L, μ) + ΛL, Λ =
1

8π
[μ2(1 − log μ2/m2) − m2] , (5.78)

where E0(L, μ) is the Casimir energy of the free scalar field of mass μ, given by (5.11) with
m → μ.

The physical interpretation of (5.78) is clear. Apart from the usual Casimir energy term, we
have an induced extensive vacuum energy, corresponding to a finite vacuum energy density Λ.
Usually, when one studies the Casimir energy, the vacuum energy density in the infinite space
limit is assumed to vanish. However, our situation here is different. We already fine-tuned to
zero the vacuum energy density of the original, unperturbed, theory, i.e. the one described by
the action S0. Once this is done, the vacuum energy density of the perturbed theory becomes
finite and observable.

We will now compare the above exact results with the numerical results obtained by using the
Hamiltonian truncation. We will be considering the case Lm � 1, which means that we will
not be sensitive to the exponentially suppressed constant term C in the initial Hamiltonian.
We thus start directly from the Hamiltonian of the form (5.60) with g4 = 0, g2 �= 0. We
calculate its spectrum using the three procedures from section 5.3.3. In the shown plots we
chose m = 1, L = 10, and varied g2 from −0.4 to 0.8.16 For illustrative purposes numerics
were done with a rather low cutoff Emax = 12, for which the truncated Hilbert space contains
about 300 states. Figure 5.2 compares the ground state energy. In the left plot, the agreement
between the raw and the exact result is already pretty good. The right plot shows the
difference between the numerics and the exact value. We see that the renormalization greatly
reduces the discrepancy over the raw procedure, and the results are made slightly better by

16The reference energy E∗ in (5.61) was set to the value of the ground state energy given by the raw truncation
procedure.
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Figure 5.2: Exact and numerical ground state energy for the φ2 perturbation; see the text.
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Figure 5.3: Exact and numerical spectra of excitations for the φ2 perturbation; see the text.

including the subleading correction.

In figure 5.3 we do the same comparison for the spectrum of excitations above the vacuum,
EI − E0. In the left plot we pick the first two Z2-odd states (one and three particles at rest),
and the first two Z2-even states (two particles at rest, and with one unit of momentum in
the opposite directions). Already the raw spectrum agrees well with the exact values. In
the right plot we present the differences, focusing on the first two excited levels only (one
even and one odd). Notice that for g4 = 0 the difference between Hren and Htrunc is only
in the vacuum energy coefficient κ0, which shifts all eigenvalues in the same way. The first
non-trivial corrections for the spectrum of excitations are therefore the subleading ones. The
improvement over the raw results is significant.

5.4 Study of the φ4 theory

In the previous sections we have developed the method and tested it in the simple setting
of the φ2 perturbation. We will now move on to the main task of this part of the thesis—to
study the spectrum of the φ4 theory described by the Hamiltonian (5.22).

The main physical parameter varied in our study will be the quartic coupling g. The physics
depends on the dimensionless ratio ḡ = g/m2, and we will work in the units where the mass
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term m = 1.

The second parameter will be the size of the spatial circle L. This plays the role of the IR
cutoff, to render the spectrum discrete. In practice one is usually interested in the infinite
volume limit L → ∞, and we will try to approach this limit. However, even a finite L is
physical, in the sense that the energy levels on the circle are well-defined physical observables.

The third parameter we will vary is the cutoff on the size of the Hilbert space Emax (the
maximal energy of the free scalar Fock states included in the truncated Hilbert space). This
parameter plays the role of the UV cutoff. It is unphysical. The continuum limit is recovered
for Emax → ∞.

We will typically present the results derived using the renormalization procedures both without
(marked ‘ren.’ in the plots) and with (marked ‘subl.’) subleading corrections (see section 5.3.3).
These procedures are expected to converge to the exact spectrum at the rate which goes as
1/E3

max and 1/E4
max (modulo logarithms). We take the difference between them as a rough

idea of the current error of the method.

5.4.1 Varying g

In figure 5.4 we present the ground state energy and the low energy spectrum of excitations
for g ≤ 5. This extends well beyond the range g � 0.5 − 1 where perturbation theory is
accurate (see appendix C). In this plot we use a fixed value L = 10, and choose the UV cutoff
Emax = 20.17 We use the two renormalization procedures explained in section 5.3.3.
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Figure 5.4: Numerical spectra as a function of g for m = 1, L = 10; see the text.

The left plot shows the dependence of the ground state (≡ vacuum) energy on g. The vacuum
is simply the state of the lowest energy, and it resides in the Z2-even sector. There is not
much structure in this plot, except for the fact that the vacuum energy is negative and grows
in absolute value as g is increased, becoming of the same order of magnitude as Emax for the
largest g considered here. This has a consequence for the renormalization procedure used

17This corresponds to keeping 12870(12801) states in the even(odd) sector of the Hilbert space.
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in our study. Recall that in the local renormalization (the one marked ‘ren.’) the coupling
are renormalized using Eqs. (5.61) which involve the reference energy E∗. Everywhere in
this section we set E∗ to the value of the vacuum energy computed using raw truncation.
We already mentioned in section 5.3.3 that since the vacuum energy may become large, the
integrals in (5.61) have to be evaluated without expanding in E∗. We are fortunate here that
the vacuum energy becomes large and negative, and so the renormalization corrections become
smaller if nonzero E∗ is taken into account. A large and positive vacuum energy would be a
big problem for the performance of our method.18

The right plot shows the 5 lowest excitations above the vacuum, with the Z2 = ± excitations
colored in blue(resp. red). As we can see the first odd level becomes almost degenerate
with the vacuum for g � 3. This is a signal of the spontaneous Z2-symmetry breaking. We
therefore expect a second-order phase transition to occur at a critical point g = gc ≈ 3. For
g = gc, the theory should flow at large distances to a CFT. Since the φ4 theory is in the
same universality class as the Ising model, we expect this IR CFT to be the minimal model
M4,3. We will analyze the region around g = gc in more detail below. For g > gc we are in
the Z2-broken phase. In this phase, the higher excitations should also be doubly degenerate
in infinite volume. For a finite L the exact degeneracy is lifted and becomes approximate.
This degeneracy is not observed clearly in figure 5.4, probably because L = 10 is not large
enough.19

In the region of small g, it is possible to validate the numerical results by comparing them to
perturbation theory. In appendix C, we do this comparison for the ground state energy and
the mass of the lowest excitation. For small g, we find good agreement with the perturbative
predictions computed through O(g3).

It is interesting to understand the sensitivity of the spectrum plot in figure 5.4 to the chosen
value of L = 10. We therefore show in figure 5.5 similar plots for L equal to 6, 8, 10 and Emax

respectively equal to 34, 26 and 20.20 To avoid clutter, only the results for the subleading
renormalization (the third, most precise method in section 5.3.3) are presented.

In the left plot we show the vacuum energy density Λ = E0/L. For a sufficiently large L this is
supposed to become independent of L. We see that this constancy is verified with an excellent
accuracy for g � 2. In this region we are in the massive phase, and the finite L corrections are
expected to be exponentially small (see section 5.4.3 below). The dependence on L becomes
more pronounced around g = gc, which is as it should be because the mass gap goes to zero
here. However, in the Z2-broken phase the corrections remain significant, while theoretically
they should become again exponentially suppressed. Therefore, for g � 3, we are forced to
interpret the variation with L not as a physical effect but being due to finite Emax truncation

18In perturbation theory the vacuum energy is always negative. That it stays negative at strong coupling
both here and in section 5.3.4 is probably more than just a coincidence. See the discussion in [91], note 21.

19The discussed phase diagram is the same as for the φ4 model in d = 2.5 dimensions studied in [91] using
the TCSA. In that case it was possible to observe approximate degeneracy for the first and second excited
states.

20Emax is adjusted to have roughly the same size of the Hilbert space in all three cases. Smaller L give larger
energy spacings for the one-particle momentum excitations, and allow to go to larger Emax.
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Figure 5.5: The vacuum energy (left) and the first odd excitation (right) determined numerically
for L = 6, 8, 10. The blue dashed line in the right plot is the fit to determine the critical
coupling; see section 5.4.2.

effects. This is consistent with the significant difference between the results obtained with the
two renormalization procedures in figure 5.4.

In the right plot of figure 5.5 we show the physical particle mass mph = E1 − E0. Once again,
in the Z2 unbroken massive phase there is hardly any dependence on L, while around g = gc

there appears variation, which will be studied quantitatively in section 5.4.2 below. This plot
will also be used below to extract an estimate of gc.

Overall, the truncation effects seem to be too large for g � 3 to allow precise quantitative
claims about this range of couplings (apart from the fact that the Z2 symmetry appears
broken). Head-on treatment of that range would require a refinement of the method, by
improving the renormalization procedure. An alternative way to access this region is to use
the strong/weak coupling duality due to Chang [92]. In Chapter 6 we will both test this
duality, and use it to study the Z2-broken phase of the model.

5.4.2 The critical point

We will now try to determine with some precision the critical coupling gc, and study the
lowest operator dimensions of the CFT at the phase transition. According to the standard
renormalization group theory, for g close to gc the physical mass mph should behave as

mph ∼ C|g − gc|ν , (5.79)

where C is a theory-dependent constant,21 and ν is a critical exponent, common for all theories
in the Ising model universality class, and expressible via the dimension of the most relevant

21Which also depends on from which direction one approaches the fixed point.
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Figure 5.6: Comparison with the CFT spectrum; see the text.

Z2-even scalar operator, ε, of the CFT,

ν = (2 − Δε)−1 . (5.80)

We used our numerical results obtained for L = 10, Emax = 20 renormalized with subleading
corrections (see figure 5.5) to perform the fit of mph ≡ E1−E0 to the formula (5.79), replacing ∼
by =. Admittedly, our procedure is careless, since we do not take into account the corrections
to scaling. We view the results which we will now present as preliminary; they should be
validated by future studies as our method progresses. Another uncertainty concerns the range
of g chosen to do the fit. On the one hand, g should be close to gc, on the other hand right
close to gc the spectrum is modified by finite size corrections. Looking at the right plot in
figure 5.5, we subjectively picked the g-interval [1.4, 2.4], which by the eye seems to give a
nice power law close to a straight line. To introduce some way to estimate the systematic
error, we selected a few subintervals contained in the basic interval, and fitted the parameters
Δε, gc for each such subinterval.22 We obtained gc = 3.04(15) and Δε = 1.06(13). This value
of Δε is compatible with the two-dimensional Ising model value Δε = 1, giving us confidence
that the procedure is sensible. To improve the estimate of gc, we fix Δε to this theoretically
known value and redo the fit. We then get ḡc = 2.97(3).

The above error estimate may be too optimistic, because we completely ignored the error
in mph induced by truncation effects. We have also performed the fit taking the L = 10,
Emax = 20 ‘renormalized subleading’ results as central values, and the difference σ between
these central values and the ‘renormalized’ results without subleading correction as the error
(we consider the two-sided error ±σ). Following this procedure and doing the fit in the
[1.4, 2.4] interval we obtained ḡc = 2.97(14). This is our final, conservative, estimate.

We now perform another comparison with the theoretically known CFT operator dimensions.

22In the future, the fit procedure could be refined by taking into account the value of E2 − E0 at g = gc.
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Namely, for g = gc the excitations EI − E0 should go as

EI − E0 ∼ 2π

L
ΔI , (5.81)

where ΔI are the CFT dimensions. This asymptotics should be valid for L � 1 where the
theory has flown sufficiently close to the IR fixed point. To check this, in figure 5.6 we plot
the three lowest excitation energies multiplied by L/(2π).

In this figure, we consider L = 5 . . . 12 and vary the quartic coupling within our ‘optimistic’
uncertainty range around the fixed point, g = 2.94 . . . 3.0. We have to vary the UV cutoff
Emax as a function of L in order to have a manageable number of basis elements in the low
energy truncated Hilbert space Hl. So Emax decreases from 33 at L = 5 to 18 at L = 12,
while the truncated Hilbert space dimension stays for each L around 10000 - 15000 per Z2

sector. To avoid clutter, we show only the ‘renormalized subleading’ results (but see figure
5.8 below, where the results without subleading corrections are also shown).

As figure 5.6 demonstrates, (5.81) is approximately obeyed at large L, provided that we
use the 2D Ising operator dimensions Δσ = 1/8, Δε = 1, Δ∂2σ = 2 + 1/8, where this latter
operator is a scalar descendant of σ.

5.4.3 L dependence

We will now present several plots which show explicitly how the spectrum of the theory
varies for increasing L while keeping g fixed. These plots are analogous to figure 5.5, but the
information is presented somewhat differently.

Z2-unbroken phase

Let us look first at the Z2-unbroken phase. We fix g = 1, which is at the outer border or
the perturbativity range (see appendix C). Figure 5.7 shows then the vacuum energy density
E0/L and the spectrum, for L = 5 . . . 12.

In the left plot we see that the vacuum energy density tends to a constant value. We don’t
worry too much about the fluctuations around the limit which happen for some values of
L, like an upward fluctuation for L = 8.5 or a downward fluctuation for L = 11.5. These
fluctuations, which are present also in the “raw” data, are due to the sharpness of the cutoff
E ≤ Emax. In the future it will be important to find a way to work around these fluctuations.
One way would be to consider a cutoff which is not totally sharp, or to take into account the
discreteness of the sequence M(E), which in our work is calculated only on average, as figure
5.1 shows.23

Ignoring for the time being the fluctuations, let us discuss the approach of the vacuum energy

23Ref. [91], section 6.4 and appendix D, describes a method which for conformal bases used in that work
allowed to perform renormalization taking into account the discreteness of the sequence M(E). It’s not clear if
that method extends to the massive Fock space bases used here.
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Figure 5.7: The vacuum energy density and the excitation spectrum for g = 1, as a function
of L.

density to its infinite volume limit. As is well known, in a massive phase the rate of this
approach is exponentially fast and is given by:

E0(L)/L = Λ − mph

πL
K1(mphL) + O(e−2mphL)

≈ Λ −
(

mph

2πL3

)1/2
e−mphL (L � 1/mph) . (5.82)

This formula can be derived by considering the partition function of the theory on a torus
S1

L × S1
L′ where L and L′ are the lengths of the circles. The E0(L) is extracted by considering

the limit L′ � L, and so it’s natural to treat L′ as space and L as the inverse temperature.
The condition L � 1/mph means that we are interested in low temperatures. The deviation of
the free energy can then be described in terms of thermodynamics of a gas of particles of mass
mph. This type of arguments is standard in the thermodynamic Bethe ansatz calculations in
integrable theories, in which case also the subleading terms in (5.82) can be determined; see
e.g. [95], Eq. (3.13). However, the leading term that we show is more general. It does not
require integrability nor knowing anything about how the particles interact, since it depends
only on the energy of the one-particles states. In fact (5.82) can be also determined by taking
the large L limit of the free scalar Casimir energy (5.11) with m → mph.

The blue curve in the left plot is the fit of our numerical data by Eq. (5.82) with mph fixed to
the value determined from the numerical spectrum (see below). We see that the rate of the
approach to the infinite L limit is reasonably well described by the theoretically predicted
dependence.24

The accompanying right plot shows the spectrum of excitations above the vacuum. Observe
the remarkably small difference between the two renormalization procedures (we use this

24Since mph < m, the effect we are observing here is formally dominant with respect to the exponentially
suppressed E0(L) and ζ(L) corrections, which were omitted in section 5.2.1. Still, the hierarchy m/mph is not
very large, and a more careful comparison may be warranted in the future, taking also those corrections into
account.
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difference as an idea about the error of the method). The first excited state in the odd sector
should for large L approach the infinite-volume physical mass mph. It shows hardly any
variation with L in the shown range, which is consistent with the rate of approach being
exponentially fast in mphL [96]. We extract mph = 0.751(1).

The second excited state, which belongs to the even sector, for large L asymptotes to 1.47(4)
which within error bars coincides with 2mph. This state corresponds to having two particles
with opposite momentum on the circle. This momentum is non-zero due to particle interactions
in finite volume. 25 Notice that we do not observe any states in the energy range between mph

and 2mph. Such states would be interpreted as two-particle bound states. As is well known, the
φ4 interaction is perturbatively repulsive, so we do not expect bound states at weak coupling.
Moreover it is known rigorously that two-particle bound states are absent everywhere below
the phase transition; see [97], section 17.2. What we observe here is consistent with these
results.

Notice that the lowest two-particle state state approaching 2mph, as well as the three-particle
state going to 3mph, show a much larger variation with L compared to the one-particle
state. That this variation is not exponentially suppressed is a consequence of particle-particle
interactions. Since the interactions are short-ranged, their effect is expected to go like the
inverse volume, 1/L [98]. It is possible to use this effect to extract information about the
two-particle S-matrix.26

For small g, it is easy to calculate these corrections explicitly using the first-order perturbation
theory for the Hamiltonian (5.22). For the two-particle and three-particle states at rest we
get27

E2 = 2m +
3g

Lm2 + O(g2) , E3 = 3m +
9g

Lm2 + O(g2) . (5.83)

The positiveness of the O(g) corrections explains the “bumps” at small coupling in the
corresponding curves in figure 5.4 (the first Z2-even and the second Z2-odd states).

The even state just above the one asymptoting to 2mph should be identified as corresponding
to two particles moving in the opposite directions on the circle with approximately one unit of
momentum each. Using the one-particle dispersion relation, the energy of this state should be
roughly 2 × (m2

ph + (2π/L)2)1/2 plus the corrections due to the particle interactions in finite
volume. Because of the 2π prefactor, the dispersion relation corrections are significant even at
the maximal values of L that we are considering; they seem to explain most of the difference
between the first two even states. At larger L, we expect the particle interaction corrections
to take over, since their strength decreases only as 1/L.

Our final comment about the g = 1 spectrum plot concerns the pattern of level crossings. In

25This momentum is determined by the Bethe-Yang quantizazion condition, see [84].
26 This has been done in [84]. Such analyses are standard in the TCSA approach to d = 2 RG flows; see

[99, 90] for previous examples.
27These formulas are valid for a fixed finite L and g � π2m/L. In this limit the splittings between different

states with the same number of particles are sufficiently large so that we can neglect their mixing. In the
opposite limit one should apply quasi-degenerate perturbation theory.
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a non-integrable quantum field theory, we do not expect energy levels of the same symmetry
to cross when varying the volume. In fact, the absence or presence of level crossings can be
used as an empirical check of integrability (see [100] for a related recent discussion). Since
the φ4 theory is, for all we know, non-integrable, levels with the same Z2 quantum number
should not cross. Most levels in figure 5.7 do not cross trivially because they never come
close each other. However, there is one interesting “avoided” crossing: the third and fourth
Z2 = + levels head for a collision around L = 7 but then repel. Many more such avoidances
are present in the higher energy spectrum (not shown in figure 5.7).

The critical point

In figure 5.8 we show analogous plots for the neighborhood of the critical point. We fix
g = 2.97, i.e. the central value for our gc estimate. One drastic change compared to figure 5.7
is that the energy differences EI − E0 (plotted on the left) no longer tend to constants but
scale as 1/L, as expected for a CFT. This is the same plot as in figure 5.6, except that here
we do not multiply by L/2π, and we show results for both renormalization methods, to get
an idea of possible error bars. Evidently, even if g is not exactly equal to the critical coupling,
the mass gap is sufficiently small so that it is not visible for the values of L shown in this plot.

On the right we show the vacuum energy density, which, as expected, seems to approach a
constant. However, the uncertainty, measured by whether or not we include the subleading
corrections, remains significant. Theoretically, the asymptotics of approach to the limit should
be −πc/(6L2), where c = 1/2 is the central charge of the critical point. Instead, we see
something like a 1/L approach. Clearly, one should work to reduce the truncation errors
before the agreement is achieved.

It should be remarked that the vacuum energy is always subject to larger errors than
the spectrum of excitations. This is related to the fact that the unit operator, whose
coefficient shifts the vacuum energy, is the most relevant operator of the theory, and gets the
largest renormalization when the states above Emax are integrated out. However, whichever
uncertainty in the coefficient of the unit operator cancels when we compute the spectrum of
excitations.

5.4.4 Emax dependence

To get a better feel for the convergence of our method, and to demonstrate the difference
between the three procedures explained in section 5.3.3, we will present here plots of the
spectrum and vacuum energy as a function of Emax, while keeping the other parameters fixed.

So, figure 5.9 shows the results for g = 1, L = 10, with Emax varying from 10 to 20. On the
left we see that the renormalization dramatically improves the convergence of the vacuum
energy with respect to the raw results, while the subsequent subleading correction is very
small. The plot on the right refers to the first excited level (i = 1). In this case we see that
the further improvement due to the subleading correction is non-negligible. There are small
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Figure 5.8: Same as in figure 5.7, but for g = 2.97.

oscillations due to discretization effects, as already discussed in section 5.4.3. The higher
excitations, not shown in the plot, show a similar pattern of convergence.
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Figure 5.9: Variation with Emax and the effect of renormalization corrections for g = 1.
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Figure 5.10: Same as in figure 5.9 but for g = 3.

Figure 5.10 shows the same plots for g = 3. Once again the improvements due to renormaliza-
tion are evident. For a change, here we show more states in the spectrum of excitations.
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5.4.5 Comparison to the TCSA methods

As already mentioned, Ref. [91] studied the φ4 theory in d = 2.5 dimensions using the TCSA
method. The results of that study, and in particular the phase diagram of the theory, turned
out to be quite similar to the one we found here; see [91], section 7. The TCSA uses the basis
of conformal operators of the free massless scalar field theory, which via the state-operator
correspondence is the same as the basis of states of this theory put on the sphere Sd−1. In
the TCSA, both the φ2 and φ4 perturbations are included into the V part of the Hamiltonian.
This should be contrasted with our current method, where φ2 is included into H0. We will
mention here just one advantage and one complication of working with the conformal basis
and treating all potential terms as a perturbation. The advantage is that the Hamiltonian
matrix Hij for a general sphere radius R is related to the R = 1 matrix via a simple rescaling.
The complication is that the conformal basis is not orthonormal, requiring introduction of a
Gram matrix or dealing with an eigenvalue problem which is not symmetric.

Naively, the conformal basis does not work in d = 2, because the scalar field dimension
becomes zero, rendering the spectrum dense and numerical treatment impossible. In spite of
this basic difficulty, a recent paper [77] proposed a way to use the conformal basis in d = 2
dimensions. The idea of this work is to compactify the free scalar boson on a circle of a finite
length 2π/β. Compactification renders the CFT spectrum discrete, and the corresponding
conformal basis is orthonormal. One hopes that for a sufficiently small β compactification
effects will be negligible. It’s important to realize that the procedure of [77] modifies the
quantum mechanical dynamics only for the zero mode, while all higher oscillator modes don’t
feel it.28

On the conceptual level, the difference between our work and [77] lies in the choice of the trial
wavefunction basis for the oscillators modes. They choose periodic plane waves on a circle of
radius 2π/β for the zero mode, and harmonic oscillator wavefunctions of frequency 2π|n|/L

for the modes with |n| > 0. We instead choose harmonic oscillator wavefunctions of frequency√
m2 + (2πn/L)2 for all modes. Of course the technique for evaluating the matrix elements is

also different, since we use ladder operators, while they use the Kac-Moody algebra acting in
the free scalar boson CFT.

Ref. [77] parametrizes the theory by two couplings G2, G4 which they denote g2, g4; we
capitalized to avoid confusion with our notation in other parts of this thesis. Their couplings
are not identical to ours; because of the different field normalization g = 2πG4. More
importantly, their φ4 operator is normal-ordered differently, by subtracting the normal-
ordering constants for all nonzero massless modes in finite volume L(= their R). Going to
our normal ordering prescription (in infinite volume),

:φ4 :their → Nm(φ4)−C(mL)Nm(φ2)+const., C(mL) = −(3/π) log[eγmL/(4π)] , (5.84)

28For example, it would be wrong to think of their procedure as considering the scalar boson in a quartic
potential cut off at the boundaries of the interval [−π/β, π/β] and periodically extended to the whole real line.
Such a periodized potential would not even give a UV-complete theory, because of the spikes at the cutoff
points.
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where γ is the Euler-Mascheroni constant. We don’t pay attention to the ground state energy
renormalization here. To put their Hamiltonian into the canonical form (6.8) one has to solve
the equation

G2 − 2gC(mL) = m2 (5.85)

for m. Keeping G2,4 fixed and varying L thus induces a logarithmic variation of the infinite-
volume mass parameters. Although for the small quartic couplings considered in [77] this
variation is not huge (order 10%), it may be problematic for extracting the spectrum by
approaching the large L limit. It would seem more appropriate to vary G2 with L while
keeping m or M fixed.

In the Z2-preserving phase, their strongest coupled point had G2 = 0.01 and G4 = 8 × 10−5,
which gives ḡ = g/m2 ≈ 0.05. From our perspective, this is an extremely weakly coupled case,
where even ordinary perturbation theory would be largely adequate.

It appears that in the Z2-preserving phase our trial wavefunction basis for the zero mode
is more efficient than that of [77], since it consists of wavefunctions peaked at φ0 = 0, as
opposed to being evenly spread over a long interval. We hasten to add however that the main
goal of [77] was to study the Z2-broken phase in the regime of negative m2, something that
we postpone to Chapter 6, where a careful choice of the wavefunction basis for the zero mode
will play an important role.

5.5 Comparison with prior work

The φ4 theory in two dimensions has been previously studied, in the strongly coupled region,
with a variety of techniques. Table 5.1 summarizes the predictions for the critical coupling.
Here we only mention the methods which, at least in principle, allow for a systematic
improvement of the results, leaving out simple-minded variational studies. Many of these
papers normalize the quartic coupling as λ/4!; we translate all results to our normalization.

The clear trend in the table is that the critical coupling estimate seems to increase with
time. The first two studies are rather old and do not assign an uncertainty to their results.
The next result (DMRG) has the smallest claimed error, but as we will see below there are
strong reasons to believe that it is grossly underestimated. The stated uncertainty of the
two remaining predictions is also significantly smaller than ours. Their central values are
below our result, although consistent with it at a 2σ level if we use the conservative error
estimate. As we will discuss in section 5.5.4, this slight discrepancy may be due to a subtlety
in implementing the matching to a continuum limit in their procedures.

We will now review the methods in Table 5.1, following the chronological order.
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Method ḡc Year, ref.
DLCQ 1.38 1988 [101]
QSE diagonalization 2.5 2000 [78]
DMRG 2.4954(4) 2004 [102]
Lattice Monte Carlo 2.70+0.025

−0.013 2009 [103]
Uniform matrix product states 2.766(5) 2013 [104]
Renormalized Hamiltonian truncation 2.97(14) This work

Table 5.1: Estimates of ḡc from various techniques.

5.5.1 DLCQ

In [105, 101], the φ4 theory was studied using the Discretized Light Cone Quantization
(DLCQ). This is a Hamiltonian truncation method in which the theory is quantized in the
light-cone coordinates x± = t ± x, using x− as ‘space’ and x+ as ‘time’. The Hilbert space
consists of states of several particles all moving in the x+ direction, and having a fixed total
momentum P +. This method was much touted in the past because of the apparent reduction
in the number of states (since only particles moving in one direction are needed), and the
simplicity of the vacuum structure, which in perturbation theory coincides with the free theory
vacuum. In practical computations, one discretizes (hence Discretized LCQ) the momentum
fraction of constituent particles with a step 1/K. This is sometimes presented as a result of
compactifying the x− direction on a circle of length 2πK.

Refs. [105, 101] used DLCQ to compute the physical particle mass as a function of g, observing
that it goes to zero for a certain critical value of gc. They find ḡc ≈ 1.83 for K = 16 [105],
and later report an even smaller value ḡc ≈ 1.38 based on extrapolating the K ≤ 20 results to
K = ∞ [101]. These results are in a stark disagreement with the more recent calculations
by other techniques in Table 5.1. A careful repetition of these old studies is called for. It is
known that DLCQ calculations are subject to severe 1/K truncation effects [106], which may
be the source of the discrepancy.

We would like to mention here a recent proposal to avoid the P + discretization altogether,
and instead truncate the light-cone Hilbert space by using a carefully constructed orthonormal
basis of multi-particle wavefunctions. This alternative approach may be the future of the
light-cone quantization. It already proved very promising in the study of 2d gauge theories
[85, 86], and it has recently been applied to the φ4 theory in two [107] and three dimensions
[88].

As a final comment on the light-cone quantization, we note that the method is bound to
become more complicated in the Z2-broken phase, possibly requiring a scan of the zero mode
〈φ〉 to find the true vacuum.
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5.5.2 QSE diagonalization

Ref. [78] (see also [79, 80, 81]) studied the φ4 theory using the Hamiltonian truncation in the
same basic setup as ours, calling it “modal field theory”. However, the implementation details
are quite different. They use a quasi-sparse eigenvector (QSE) method, which reduces the
Hilbert space dimension by throwing out the Fock states whose contributions to the physical
eigenstate one is studying are small. In a later work [79] they developed a stochastic error
correction (SEC) method, which corrects for the resulting truncation. While the idea is similar
to our renormalization, there are some differences. One difference is that their method is
perturbative, unlike our basic equation (5.33) which is all-order in ΔH. Another difference is
that SEC computes infinite sums involved in the definition of ΔH via Monte Carlo sampling,
while we found an analytic approximation for this correction term.

In figure 5.11 we show their results for the finite volume spectrum [78]. These results are based
on QSE with 250 states (no SEC). Using this plot, Ref. [78] estimated the critical coupling
as ḡc ≈ 2.5. On the same plot we overlay our results for the lowest Z2-odd state from figure
5.4. Our predictions for the physical mass are in disagreement with [78] in the range ḡ � 2,
where the truncation errors due to finite Emax are small. Notice that even though our results
refer to a smaller value of L than [78], this cannot explain the differences, since the finite
volume effects for the one-particle state are negligible in this range of ḡ (see figure 5.7). One
possible explanation is that the momentum cutoff kmax = 4m used in [78] is not sufficiently
high to describe the continuum limit. In any case, it is this disagreement which is ultimately
responsible for the difference in our estimates of ḡc.

The QSE method of [79] looks somewhat similar in spirit to the Numerical RG (NRG) method
recently employed in the context of TCSA [108, 100]. At the same time, the latter method
seems to us more flexible and systematic. It would be interesting to apply the NRG method
to the φ4 theory and see if it can help resolve the above discrepancy.

5.5.3 DMRG

Ref. [102] studied the φ4 theory using the Density Matrix Renormalization Group (DMRG)
[109]. As a starting point of this approach, the x-direction is discretized with a spacing a,
while time is kept continuous. The Hamiltonian describing such a discretized theory is

H =
∑

x

1
2a

π2
x +

1
2a

(φx − φx+a)2 +
m2a

2
φ2

x + ga φ4
x , (5.86)

where φx are the field variables on each lattice site and πx are the corresponding canonical
momenta. The Hilbert space on each site is infinite, unlike in the more standard DMRG
applications. Ref. [102] truncates this Hilbert space to N = 10 first harmonic oscillator
states. The finite-system version of the DMRG algorithm [109] is used, truncating to M = 10
most dominant density matrix eigenstates. This corresponds to the superblock Hamiltonian
dimension M2N = 1000.
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Figure 5.11: Finite volume spectrum of the φ4 theory on a circle of length L = 10πm−1 (plot
taken from [78]). In our notation λ/4! = g, μ = m. Black solid lines with error bars—the
results of QSE with 250 states. Black dashed line—the results of a lattice Monte Carlo
simulation. On their plot we overlay our results for the lowest Z2-odd state on a circle of a
smaller length L = 10m−1 (red band). The central value and the width of the red band are
the same as in the conservative method of determining ḡc in section 5.4.2.

The critical value of the coupling is obtained approaching the critical point from inside of the
Z2-broken region, and studying how the vacuum expectation value 〈φ〉 approaches zero in this
limit. The quoted value has an extremely small uncertainty: ḡc = 2.4954(4). However, careful
reading of the paper leaves us unconvinced that all sources of systematic error were properly
taken into account. First, no attempt is made at extrapolating to M = ∞, while Figure 4 of
[102] shows clearly that convergence in M is slow and the results for M = 10 have not yet
stabilized. Second, the value of ḡc is determined in Figure 7 of [102] by fitting a straight line
through two points.

Finally, we believe that the matching to the continuum limit should have been done more
carefully. In the units m2 = 1, the smallest physical lattice spacing in [102] is a ≈ 0.1.29 This
is factor 3 larger than the spacing used in the lattice Monte Carlo study [103] discussed in
section 5.5.4 below. Since Ref. [102] used the simplest nearest-neighbor discretization of the
x-derivative, the matching procedure will likely be plagued by the same basic problem as the
one we will explain in section 5.5.4.

5.5.4 Lattice Monte Carlo

In [103] (see [110] for earlier work) the critical coupling of the φ4 theory was determined by
Monte Carlo (MC) simulations on the two-dimensional square lattice. They find ḡc = 2.7+0.025

−0.01 ,
somewhat below our prediction. This 2σ discrepancy is not necessarily a reason to worry, as
it may go away with further development of our method. In addition, it appears that the
MC computation is subject to a subtle systematic error which was not discussed in [103].

29This is found from ḡca2 = λ̃/4! where their smallest λ̃ = 0.6.
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This error is particularly troubling because similar errors likely affect, to varying degree, all
techniques involving the discretization of space, including also the DMRG and MPS methods
discussed in sections 5.5.3 and 5.5.5. Below we will review the lattice computation and explain
this potential error.

Ref. [103] simulated the lattice action (the subscript # stands for “lattice”)

S# = a2 ∑
x

1
2

∑
μ=1,2

a−2(φx+aeμ − φx)2 +
1
2

m2
#φ2

x + g#:φ4
x :. (5.87)

Here a is the lattice spacing. The normal ordering on the lattice is defined by subtracting a
loop of the lattice propagator (BZ = the Brillouin zone |pμ| ≤ π/a),

:φ4
x : = φ4

x − φ2
x

∫
BZ

dp

(2π)2 G#(p) , (5.88)

G#(p) =
{

4a−2[sin2(p1a/2) + sin2(p2a/2)] + m2
#

}−1
. (5.89)

So operationally, (5.88) is plugged into (5.87) and the resulting action is MC-simulated.

In the normalization in which m# = 1, Ref. [103] explored the range of lattice spacings a = 0.3
- 0.03.30 Their lattices had up to 1024×1024 sites, which corresponds to a sufficiently large
physical volume varying from L ≈ 300 for a = 0.3 to L ≈ 30 for a = 0.03. Depending on a,
the critical quartic coupling was found to vary from g# ≈ 2.55 to 2.7. Their final answer for
gc was obtained by fitting and extrapolating to a = 0.

The systematic error that we have in mind concerns the matching between the lattice and
the continuum. Naively, the lattice theory (5.87) seems to go to the continuum limit theory
as a → 0, with m# and g# turning into m and g. However, let us try to establish this
correspondence more carefully.

IR

cont.

m, g
m#, g#

#

Figure 5.12: The lattice and the continuum RG flows should agree in the IR. See the text.

In figure 5.12 we show, schematically, two RG flows: the lattice flow specified by the couplings
m#, g# and the continuum flow specified by m, g. The latter couplings have to be found so
that the flows become the same at large distances. We can check if this is the case computing
some observables at intermediate distances, when the flows are still perturbative.31 If a
sufficient number of observables agree at intermediate distances, the two flows have converged

30See their Table II. The value of a is computed from μ̂2
c = m2

#a2.
31We are focusing on the case when the coupling g is strong, which is relevant for the critical point. The

case of small g is simpler, as the matching can be performed at p � m.
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Chapter 5. Hamiltonian truncation

and will stay the same also at larger distances. In the language of effective field theory, this
would be an example of perturbative matching (see e.g. [111]).32

At what distance scale should we do the matching? First of all, to match the continuum
theory, the lattice theory should at the very least become approximately rotationally invariant.
The leading deviation from rotation invariance comes from the lattice propagator (5.89), which
at small momenta behaves as

G−1
# (p) = p2 + m2

# − 1
12

(p4
1 + p4

2)a2 + . . . (5.90)

To ensure that this is approximately rotationally invariant, we must have p2 � a−2.

On the other hand, the matching momentum cannot be too small since the theory is then
strongly coupled. The smallest allowed matching momentum can be computed by considering
the diagrams which give a correction to the quartic coupling. For momenta p � m these
diagrams are, omitting logarithmic factors,

+ permutations ∼ g2/p2, (5.91)

which becomes comparable to the coupling g itself for p2 = O(g). Putting the two constraints
together, we conclude that the matching must be done at momenta p such that

g � p2 � a−2 . (5.92)

Now, to match the mass, we have to consider the correction to the propagator, which in the
considered region of momenta behaves like

∼ g2/p2[1 + O(p2a2)] (5.93)

where the terms dependent on a2 indicate the schematic dependence of the correction on the
lattice spacing. This suggests that

m2 = m2
# + O(g2a2) . (5.94)

However, such a conclusion would be on shaky grounds. The problem is that at the lowest
allowed momenta p2 ∼ g the correction to the propagator due to the rotation invariance
breaking has the same parametric order of magnitude, g2a2, as the putative mass matching
correction.

The above discussion suggests that the chosen form of the lattice discretization prevents
performing a controlled matching between the lattice and the continuum theory, because the

32In this discussion we ignore another complication arising from the fact that the two-dimensional φ4 theory
has infinitely many additional relevant couplings beyond m2 and g, since all powers of φ are relevant. Strictly
speaking establishing correspondence between the lattice and the continuum may require turning on these
extra couplings.
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matching corrections from loop diagrams cannot be cleanly disentangled from the rotation
invariance breaking effects in the propagator. This may seem unusual to a lattice practitioner.
However, the theory we are considering is a bit unusual, having a coupling constant of
dimension exactly 2.

We consider it possible that this problem contributes to the mismatch between the lattice
determination of gc and our results. Our discussion also suggests the recipe to remedy the
problem: one should redo the lattice simulation using an improved actions, in which the
leading O(p2a2) effect of rotation symmetry breaking is absent due to judiciously chosen
next-to-nearest interaction terms [112]. In such a setup the matching can be done, and the
correspondence between m#, g# and m, g can be established rigorously.

5.5.5 Uniform matrix product states

This method was applied to the φ4 theory in [104]. The starting point of this approach is the
discretized Hamiltonian (5.86). The lowest energy states are searched for in a finite variational
subspace of the full Hilbert space, consisting of the so-called matrix product states (MPS),
whose precise definition can be found in [104]. The MPS states are parametrized by a 3-tensor
of size d × D × D. Here, d represents the size of the truncated Hilbert space per lattice site,
while D is a parameter which bounds the degree of entanglement of the ground state across
different lattice sites. The variational states are found by minimizing the energy through
an imaginary-time evolution algorithm. The physical predictions are recovered in the limit
d, D → ∞, a → 0.

As is well known, the MPS methods are essentially equivalent to DMRG (see e.g. [113]).
Comparing with the DMRG study in section 5.5.5, d and D should be identified with N

and M . Ref. [104] uses d = 16 and D up to 128, commenting that N = M = 10 used in
[102] are not sufficient. They observe that an insufficiently large D shifts the critical point to
lower ḡc, and provide a physical explanation for this effect. They do two measurements of ḡc,
both approaching the critical point from above, one using 〈φ〉 and another from the lowest
excitation energy. Since their two measurements differ at a 3σ level, the value cited in Table
5.1 was obtained by expanding the error bars to include both of them.

In the units m2 = 1, the minimal value of the lattice spacing in [104] is a ≈ 0.04, about the
same as in [103]. This study is thus subject to the same worries about the matching to the
continuum limit as the ones brought up in section 5.5.4.
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Chapter 6

Hamiltonian truncation in the
Z2-broken phase

6.1 The Chang duality

6.1.1 Formulation and consequences

According to Chang [92], the two-dimensional φ4 theory described by the (Euclidean) La-
grangian

L =
1
2

(∂φ)2 +
1
2

m2φ2 + g Nm(φ4) (6.1)

with m2 > 0, g > 0, admits a dual description in terms of a Lagrangian with a different, and
negative, value of the squared mass,

L′ =
1
2

(∂φ)2 − 1
4M2φ2 + g NM (φ4) . (6.2)

The actual value of the dual mass will be given below.

Note that the duality is between quantum theories in the continuum limit, and to specify this
limit one has to subtract the logarithmic divergence of the mass parameters. The divergence
is removed by normal-ordering the quartic interaction with respect to the mass indicated
in the subscript of the normal ordering sign N . The potential in L′ has two minima at
φ = c = ±M/

√
8g. After the shift φ → φ + c the dual Lagrangian becomes1

L′ → 1
2

(∂φ)2 +
1
2

M2φ2 +
√

2gM NM (φ3) + g NM (φ4) . (6.3)

In this way of writing, interactions of both L and L′ are normal ordered with respect to the
mass appearing in the quadratic part of the Lagrangian. In perturbation theory such normal
ordering means that we are simply forbidding diagrams with the lines starting and ending in
the same vertex.

1Notice that normal ordering is a linear operation, and thus commutes with the field shift.
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Chapter 6. Hamiltonian truncation in the Z2-broken phase

To find the dual mass M2, one is instructed to solve the equation

F (X) = f(x) , (6.4)

where x = g/m2, X = g/M2 are the dimensionless quartic couplings of the two descriptions
(x is given and X is an unknown) and

f(x) ≡ log x − π/(3x) , F (X) ≡ log X + π/(6X) . (6.5)

This equation is illustrated in Fig. 6.1. There is no solution for

x < x∗ =
π

3W (2/e)
≈ 2.26149 , (6.6)

where W (z) is the Lambert W function. For x ≥ x∗ there are two solution branches. We are
particularly interested in the lower branch X1(x), which for large x approaches zero,

X1(x) ≈ 6/(π log x), x → ∞ . (6.7)

The dual description corresponding to this branch becomes weakly coupled in the limit
in which the original description becomes stronger and stronger coupled. We thus have a
weak/strong coupling duality.

f (x)
F(x)

1 2 3 4 5 6
x

-1

1

2

3

X1(x)

X2(x)

2.0 2.5 3.0 3.5 4.0
x0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 6.1: Left panel: equation F (X) = f(x) has two solutions for x > x∗. Right panel: the
two solution branches X1,2(x). We are mostly interested in the lower branch X1(x) which
becomes weakly coupled as x → ∞.

Chang [92] used this duality to show that the φ4 theory undergoes a phase transition. Indeed,
for small x we can use perturbation theory to argue that the theory is in the symmetric phase,
with the Z2 symmetry φ → −φ unbroken. On the other hand, for large x we use the dual
description. Since in that description the potential is a double well, and moreover the dual
coupling is weak for x � 1, we conclude that for large x the Z2 symmetry is spontaneously
broken. By continuity, there must be a phase transition at an intermediate value of x.

This argument does not establish whether the transition is first or second order. However,
as explained in [92], a first order transition is excluded by rigorous theorems due to Simon
and Griffiths [114]. So the transition must be second order. This conclusion is supported by
Monte Carlo simulations [110, 103, 115, 116], as well as by computations using DLCQ [105],
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6.1. The Chang duality

density matrix renormalization group [102], matrix product states [104], and the Hamiltonian
truncation [78, 79].

Nor does the above argument predict the value of x at which the phase transition must happen.
In particular, the fact that the dual description exists at x ≥ x∗ does not mean that the phase
transition happens at x = x∗. Indeed, at x = x∗ both the direct and the dual descriptions are
strongly coupled, and the fate of the Z2 symmetry is not a priori clear. In fact, calculations
indicate a higher phase transition location at xc ≈ 2.75 − 3 [115, 104, 116, 117], as also seen
in section 5.4.2.

6.1.2 Review of the derivation

Here’s a quick derivation of the Chang duality, following [92]. We will work in the Hamiltonian
formalism, and consider the normal-ordered Hamiltonians corresponding to L and L′,

H =
∫

dx Nm

(1
2

φ̇2 +
1
2

φ′2 +
1
2

m2φ2 + g φ4
)

, (6.8)

H ′ =
∫

dx NM

(1
2

φ̇2 +
1
2

φ′2 − 1
4M2φ2 + g φ4 + Λ

)
. (6.9)

Notice that we are now normal ordering the full Hamiltonian, including the quadratic part.
This more careful procedure will allow us to establish the correspondence also for the ground
state energy. In the dual description it will receive an extra constant contribution, denoted Λ
in (6.9).

Recall Coleman [93] relations between normal orderings with respect to different masses,

Nm

(1
2

φ̇2 +
1
2

φ′2) = NM

(1
2

φ̇2 +
1
2

φ′2) + Y ,

Nm(φ2) = NM (φ2) + Z , (6.10)

Nm(φ4) = NM (φ4) + 6ZNM (φ2) + 3Z2 ,

where Y = Y (m, M) and Z = Z(m, M) are the differences of the normal-ordering constants,2

Y (m, M) =
∫

dk

8π

{
2k2 + M2
√

k2 + M2
− (M → m)

}
=

1
8π

(M2 − m2) ,

Z(m, M) =
∫

dk

4π

{ 1√
k2 + M2

− (M → m)
}

=
1

4π
log

m2

M2 . (6.11)

Using these relations, one can see that H maps on H ′ as long as

1
2

m2 + 6Zg = −1
4M2 , (6.12)

2The expression for Z can also be equivalently derived in the Lagrangian language as the difference of
one-loop massive diagrams Z =

∫
d2k

(2π)2

( 1
k2+M2 − 1

k2+m2

)
.
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Chapter 6. Hamiltonian truncation in the Z2-broken phase

written equivalently as (6.4). We also find a constant contribution to the ground state energy

Λ = Y +
1
2

m2Z + 3gZ2 . (6.13)

6.1.3 Numerical check of the duality

We will test the Chang duality by comparing the spectra of the direct and dual theories in
a finite volume—a circle of length L. The spectra will be computed using the Hamiltonian
truncation. We will first describe the setup for these computations, and then present the
results.

Direct theory

By the direct theory we mean (6.8) put on a circle of length L. This is precisely the theory
we studied in Chapter 5, and we will be following the same method.

In Chapter 5 we worked at circle sizes up to L = 10m−1, and it was justified to neglect the
exponentially small terms proportional to E0 and ζ in (5.20). Here, in some cases, we will
work at smaller circle sizes. In the subsequent analysis we will always keep these terms, which
is actually straightforward in our algorithm.

Regarding the renormalization of the couplings, we will use an identical procedure to the one
described in section 5.3.2, apart from a technicality that we now explain.

We remind that the leading renormalization coefficients are calculated by extracting the leading
non-analytic behavior for τ → 0 of the quantities (5.48). In section 5.3.2 we approximated
the two-point function (5.51) by its infinite-volume expression. However in the following we
will encounter also the situation mL = O(1). Our procedure will be to approximate

GL(z, τ) � G(ρ) + 2
∞∑

n=1
G(nL) , (6.14)

which simply adds a constant to the infinite-volume two point function. This approximation
is justified because the higher order Taylor expansion terms of G(ρ) around ρ = nL would
result in renormalization terms suppressed by powers of m2/E2

max � 1. The short-distance
asymptotics of GL used to calculate (5.48) is modified as

GL(z, τ) ≈ − 1
2π

log
(

eγ

2
m′ρ

)
, m′ ≡ m exp

[
−4π

∞∑
n=1

G(nL)
]

. (6.15)

It is then straightforward to generalize the renormalization procedure used in Chapter 5 to
the case mL = O(1). E.g. the Hamiltonian renormalized by local counterterms is given by

H(L)ren = Htrunc(L) +
∫

dx Nm(κ0 + κ2φ2 + κ4φ4) , (6.16)
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6.1. The Chang duality

where κi are given in (5.61) where one has to put g4 = g, g2 = 6ζg, and replace m → m′

in the expressions for the μ-functions in (5.58). This Hamiltonian allows to calculate the
spectrum with the convergence rate of 1/E3

max. In the numerical computations in section
6.1.3 we will also include subleading, non-local corrections improving the convergence rate up
to 1/E4

max, for which we refer the reader to section 5.3.3.

Dual theory

The Hamiltonian for the dual theory in finite volume is easiest derived as follows. Let us
rewrite H ′ in (6.9) by adding and subtracting 1

2M2φ2,

H ′ =
∫

dx NM

(1
2

φ̇2 +
1
2

φ′2 +
1
2

M2φ2
)

+ NM

(
−3

4M2φ2 + g φ4 + Λ
)

. (6.17)

This looks like the direct Hamiltonian with m → M and an extra negative mass squared
perturbation. The passage to a finite volume is then analogous to the direct theory. We get

H ′(L) = H0 +
[
−3

4M2 + 6ζg

]
V2 + gV4 + h , (6.18)

h = ΛL + E0 + 3ζ2gL − 3
4M2ζL. (6.19)

The building blocks have the same meaning as in section 6.1.3, except that we have to use M

instead of m in all expressions: H0 = H0(L, M), ζ = ζ(L, M), etc.
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Figure 6.2: The ground state energy (left) and the spectrum of excitations (right) for the
direct and the dual theory as a function of g for m = 1, L = 5. The excitation plot shows the
energies of the Z2 odd and Z2 even energy levels. See the text for the details.

Comparison

In figure 6.2 we show the ground state energy E0 and the spectrum of excitations EI − E0

for m = 1, L = 5. We plot them as a function of the direct coupling g = 0 - 3. The
results for the direct theory are given in the full range of g, whereas for the dual theory only
for g ≥ gc ≈ 2.26, where the dual description exists. As in Chapter 5, the error (shaded

107



Chapter 6. Hamiltonian truncation in the Z2-broken phase

region) is estimated as the variation of the results upon using the “local” and “subleading”
renormalization prescriptions.

We see that in the overlapping region the numerical predictions from the two descriptions
agree very well. This is an explicit check of the Chang duality. This check is non-trivial, as in
both descriptions the Hamiltonian is strongly coupled. To illustrate this, the black dashed
lines in the plots represent the tree-level prediction for the vacuum energy and the lightest
excitation in the dual description.

Computational details: The computation in the direct theory is carried out as described in
section 6.1.3. The dual mass M for a given g ≥ gc is determined by solving Eq. (6.4) numerically.
We use the solution with the smaller X (and thus the larger M). The computation in the
dual theory is then done using the Hamiltonian (6.18) with two couplings g2 = −3

4M2 + 6ζg

and g4 = g, i.e. by including −3
4M2 into the perturbation. The renormalization procedure

described in 5.3.3 is applicable for such a general perturbation. It’s not a problem for the
method that g2 is negative and comparable in size to the positive mass square term in H0.
There is in fact a great deal of arbitrariness in how to split the φ2 coefficient between the
zeroth-order Hamiltonian and the perturbation. What we do here is just the fastest possibility,
which turns out sufficient for the purposes of this section. More sophisticated ways of dealing
with the dual theory will be developed in section 6.2.

6.2 The Z2-broken phase

In section 6.1 we reviewed the Chang duality and tested it numerically in the strongly coupled
region by comparing the results obtained from the dual and the direct descriptions. We will
now focus on the region g/m2 � g∗/m2, where the theory is in the Z2-broken phase. In this
range of couplings the direct description is very strongly coupled and it’s difficult to achieve
good numerical accuracy. On the other hand, the dual Hamiltonian becomes weakly coupled
(g/M2 � 1). Therefore, we will use the dual Hamiltonian (6.9) as the starting point for the
numerical calculations. It will be convenient to replace the value of Λ given in (6.13) by
Λ = M2/(64g), which corresponds to having zero classical vacuum energy density of the dual
Hamiltonian.

6.2.1 Modified zero mode treatment

The method employed in 6.1.3 treats all field modes on equal footing. This method is adequate
in the Z2-unbroken phase and in the Z2-broken phase in moderate volumes, as in section 6.1.3.
However, it becomes inefficient in the Z2-broken phase in large volume. The physical reason
is that the zero mode has then very different dynamics from the rest of the modes, acquiring
a VEV. It makes sense to take this into account, and to treat the zero mode separately from
the rest. We will now explain how this can be done.

First of all we will rewrite (6.18) making explicit the dependence on the zero mode. We will
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6.2. The Z2-broken phase

revert for the zero mode from using the oscillators a0, a†
0 to the field variable

φ0 = (a0 + a†
0)/

√
2LM (6.20)

and the corresponding conjugate momentum π0,

π0 = i(a†
0 − a0)

√
LM/2 . (6.21)

Denoting by bar (resp. hat) all quantities involving only the nonzero (zero) modes, we have

H0 = H̄0 +
:π2

0 :
2L

+
LM2

2
:φ2

0 : , (6.22)

V2 = V̄2 + L:φ2
0 : , V4 = V̄4 + 4V̄3φ0 + 6V̄2:φ2

0 : + L:φ4
0 : . (6.23)

Gathering everything we get
H ′(L) = H̄0 + Ĥ + W , (6.24)

where Ĥ depends only on the zero mode,

Ĥ ≡ :π2
0 :

2L
+ L

[
−1

4M2 + 6ζg
]

:φ2
0 : + Lg :φ4

0 : + h , (6.25)

while W involves the interactions between the zero and the nonzero modes, and among the
latter,

W ≡
[
6g:φ2

0 : − 3
4M2 + 6ζg

]
V̄2 + 4gφ0V̄3 + gV̄4 . (6.26)

In a large volume and for g � M2, the quantum mechanics of (6.25) predicts that the
wavefunction of φ0 is peaked around the minima of the potential at φ2

0 ≈ M2/(8g), with a
width scaling asymptotically as 〈(Δφ0)2〉 ∼ 1/(LM). For this φ0 the coefficient of V̄2 in W

vanishes. Intuitively this implies that, up to small perturbative corrections induced by the V̄3

and V̄4 terms, the nonzero modes of the field will stay in their vacuum state. This is true in
a very large volume, and it provides a good starting point for a quantitative description in
finite volume.

The idea of the method will be therefore to first solve the quantum mechanics of the zero modes,
by neglecting its interaction with the nonzero modes. Having done so, the full Hamiltonian
will be diagonalized in a Hilbert space whose basis wavefunctions are products of the exact
zero mode wavefunctions and the harmonic oscillator wavefunctions for the nonzero modes.
This is expected to be more efficient than the original method which would use harmonic
oscillator wavefunctions also for the zero mode.

Concretely, the procedure goes as follows. The full Hilbert space can be written as a direct
product,

H = Ĥ ⊗ H̄ , (6.27)

where Ĥ and H̄ are the Hilbert spaces of the zero modes and nonzero modes, respectively.
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The truncated Hilbert space is then (l for low)

Hl = Ĥl ⊗ H̄l , (6.28)

where the basis of H̄l is formed by the harmonic oscillator states for the nonzero modes with
energy Ē ≤ Ēmax, while Ĥl is spanned by the first few low-lying eigenfunctions of Ĥ,

Ĥ|ψα〉 = Êα|ψα〉, α = 1 . . . s . (6.29)

In practice, it will be sufficient to fix s = 4 or 5.

A separate computation has to be done to find the |ψα〉. We do this using the standard
Rayleigh-Ritz method, working in the S-dimensional subspace of Ĥ spanned by the original
harmonic oscillator wavefunctions (a†

0)i|0〉, i = 0 . . . S − 1. The parameter S � s can be
chosen so large that the numerical error accumulated in this step is insignificant; in practice
we choose S = 500. The eigenstates |ψα〉 are thus found expanding them in the harmonic
oscillator wavefunctions. This facilitates the subsequent computations of the matrix elements
involving these states.

One can now compute the matrix elements of H ′(L) in the truncated Hilbert space and
diagonalize it, finding the “raw” spectrum. As usual, we will employ a renormalization
procedure to improve the precision. The necessary modifications are described in appendix
D.2.

Comparison with prior work: The Z2-broken phase of the φ4 model has been previously studied
via a Hamiltonian truncation method in Ref. [77]. There are many similarities between our
works, and some differences. The main difference lies in the treatment of the zero mode (see
also the discussion in Section 5.4.5). Ref. [77] compactifies the zero mode on a circle of large
radius, and uses plane waves on this target space circle as the basis of trial wavefunctions.
Instead, we resolve the zero mode dynamics and pick trial wavefunctions adapted to the
quartic potential. Another difference is that they use conformal, massless, basis for the nonzero
modes, while we use a massive basis. Matrix elements are easier to compute in the conformal
basis, while a massive basis gives, we believe, a better initial approximation.

Notice that Ref. [77] uses a different parametrization of the Hamiltonian, corresponding to a
different normal-ordering prescription. Translation to our parametrization will be given in
section 6.2.3.

6.2.2 Varying the normal-ordering mass

It turns out that in the regime we will be considering, the most important term inducing
the interactions between Ĥl and H̄l is the V̄2 term in (6.26). This is because for the volumes
that we will be able to consider, the localization of the φ0 wavefunctions near the potential
minimum is not very sharp, and the coefficient of V̄2, viewed as a matrix in the space of the
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φ0 eigenstates, has significant matrix elements. The V̄3 and V̄4 terms will be suppressed at
weak coupling.

Empirically, we concluded that the one-loop renormalization procedure, including the modifi-
cations to be described in appendix D.2, is insufficient to fully describe the truncation effects
arising from the big V̄2 term. Moreover, estimating the accuracy as the difference between
the “local” and “subleading” renormalized answers was found inadequate in such a situation.
Notice that the V2 term renormalizes at quadratic order only the unit operator coefficient (see
section 5.3.2) and this correction does not affect the spectrum of excitations (this statement
remains approximately true in the scheme with the separated zero mode discussed here).
Ideally, to estimate the error one would have to compute the renormalization effects of cubic
order in the problematic operator. Here we will resort to an interim alternative technique,
which we now describe.3

In the modified method as described in the previous section, the trial wavefunctions of the
nonzero modes are taken to be those of the free massive boson of mass M , i.e. the bare mass
appearing in the Lagrangian. We will now consider the formalism in which one can vary the
mass parameter μ of the trial wavefunctions. As in [78], this will then be used to control the
accuracy of our computations, since the exact spectrum should be independent of μ. Apart
from the accuracy issues, varying μ is also natural from the point of view of searching for an
optimal zeroth order approximation to the ground state, in the spirit of variational methods.

So we rewrite the infinite-volume Hamiltonian (6.17) by using the Coleman relations (6.10):

H ′ =
∫

dxNμ

(1
2

φ̇2 +
1
2

φ′2 + (−1
4M2 + 6gZ)φ2 + gφ4 + Λμ

)
, (6.30)

Λμ = Λ − 1
4M2Z + 3gZ2 + Y , (6.31)

where Z = Z(M, μ), Y = Y (M, μ) are defined in (6.11) with the replacement M → μ, m → M .
We then pass to finite volume as in section 6.1.3,

H ′(L) = H0 + [−1
4M2 − 1

2
μ2 + 6(Z + ζ)g]V2 + gV4 + hμ , (6.32)

hμ = ΛμL + E0 + 3ζ2gL + (−1
4M2 − 1

2
μ2 + 6gZ)ζL , (6.33)

where H0, V2, V4, E0, ζ are defined with respect to μ. Finally, we separate the zero mode as in
section 6.2.1. The final Hamiltonian has the form (6.24) where H̄0 = H̄0(L, μ) while Ĥ and
W are given by

Ĥ =
:π2

0 :
2L

+ L
[
−1

4M2 + 6(Z + ζ)g
]

:φ2
0 : + Lg :φ4

0 : + hμ , (6.34)

W =
[
6g:φ2

0 : − 1
4M2 − 1

2
μ2 + 6(Z + ζ)g

]
V̄2 + 4gφ0V̄3 + gV̄4 . (6.35)

This is the Hamiltonian which we use for numerical calculations, varying μ in the range 0.9 -

3Another interesting possibility is to incorporate the coefficient of V̄2 into the mass of nonzero modes,
making it φ0-dependent. This creates technical difficulties of its own and was not tried in this work.
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1.1M . This will give an idea of the systematic error due to the truncation.

6.2.3 Results

From the estimates in Section 5.4.2, we know that the critical point lies at g/m2 ≈ 2.97(14), 4

which by making use of the Chang duality corresponds to g/M2 ≈ 0.26. Here we will limit
ourselves to values g/M2 ≤ 0.2, as beyond this value it appears difficult to reach the limit
L → ∞ and get a stable spectrum. M will be set to 1 throughout this section, unless
stated otherwise.

We are now going to present the results for the two sectors of excitations of the theory. First,
we will discuss the perturbative sector, which in the L → ∞ consists of two decoupled towers of
excitations around the two vacua with the opposite-sign VEV for the field. We will then turn
to the non-perturbative sector of “kink” states which have topological charge, interpolating
between the two vacua. Given the periodic boundary conditions imposed in our method,
the kink sector will be studied here only indirectly, through the splitting of quasi-degenerate
perturbative states in finite volume.

Perturbative sector

In figure 6.3 we plot the ground state energy density and the low-energy excitation spectrum
for M = 1, L = 12. For the ground state energy density we show both the “raw” and
renormalized5 results, while for the spectrum only the renormalized results, because the
raw/renormalized difference is negligible. As explained above, we don’t think this difference
gives a fair idea of the truncation error in the situation at hand. Instead, we estimate the error
for the spectrum by varying the normal-ordering mass μ = 0.9 - 1.1. In making these plots we
fixed s = 4, while the cutoff Ēmax was chosen so that Hl has dimension around 10000 − 15000.
We checked that increasing s does not change the results significantly.

We see that the first excited level is almost degenerate with the ground state. The splittings
for the higher-energy levels are larger. This is because for the higher energy states it’s easier
to tunnel through the potential barrier separating the two infinite-volume vacua, which has a
finite height for a finite L.

In figure 6.4 we show the same plots for L = 20. One can see that the energy splitting reduces
but the truncation error increases (as one has to reduce Ēmax in order to keep the total
number of states the same).

Finally, in figure 6.5 we plot the vacuum energy density and the spectrum for g = 0.1 as a
function of L. One can see how the renormalization procedure is effective for the vacuum
energy density, as its renormalized value reaches a constant for sufficiently large L, while its

4For more precise estimates by different methods see [115, 104, 116, 117].
5In this section only local renormalization was used. Subleading nonlocal corrections were found to be

totally negligible.
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“raw” values does not. In the spectrum also the physical mass reaches a constant as expected.

Notice that for sufficiently small g/M2 the interaction in the considered model is attractive (the
cubic vertex squared attraction overcomes the quartic vertex repulsion) [118, 77]. Therefore the
second energy level pair in the spectrum in figure 6.5 is expected to asymptote to m2 < 2mph

(where mph is the single particle mass) as L → ∞, i.e. it represents a bound state. The
numerical results seem consistent with this expectation, although the precision is insufficient
to extract m2 accurately. In general, it is hard to extract the perturbative bound state mass
from the infinite-volume limit, as the asymptotic convergence sets in at L ≈ (m2

ph − m2
2/4)−1/2

[96], which diverges as g → 0.

In Appendix C we compare the numerical results for Λ and mph with the predictions from
perturbation theory, showing very good agreement at small couplings.

It is also interesting to analyze the higher-energy states in the spectrum. In figure 6.6 we redo
the previous plot for g = 0.05, including a few more eigenvalues. Above the stable particle
mass and the bound state, one can see the multiparticle states whose energy depends on
L according to the dispersion relations in finite volume.6 Furthermore, the horizontal line
with energy ≈ 2.5 < 3mph represents a resonance. Due to the non-integrability of the theory,
that state is not stable, as its energy is larger than 2mph. Indeed, the horizontal line does
not cross the multiparticle states as could seem at first glance, thanks to the phenomenon
of avoided crossing. See [119] for a discussion of how resonances should appear in the finite
volume spectrum.
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Figure 6.3: The ground state energy density and the low-energy excitation spectrum as a
function of g for L = 12; see the text. Results extracted from [77] are shown by crosses (whose
size does not reflect the uncertainty), see section 6.2.3.

Non-perturbative sector

As already mentioned, in finite volume non-perturbative effects lift the spectrum degeneracy
both for the ground state and for all the excited states. For small coupling, these effects can

6See e.g. the discussion in [77], appendix B.

113



Chapter 6. Hamiltonian truncation in the Z2-broken phase

0.00 0.05 0.10 0.15 0.20

g

−0.020

−0.015

−0.010

−0.005

0.000

E 0
/L

L =20.0, μ =0.9-1.1

ren.

raw

0.00 0.05 0.10 0.15 0.20

g

0.0

0.5

1.0

1.5

2.0

E I
−
E 0

L =20.0, μ =0.9-1.1

Z2 = −
Z2 = +

Figure 6.4: Same as in figure 6.4 but for L = 20.
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Figure 6.5: Results for g = 0.1 plotted as a function of L.
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Figure 6.6: Same as in the right-hand figure 6.5 but for g = 0.05.

be interpreted as tunneling due to the semiclassical field configurations interpolating between
the two vacua (“kinks”). The splitting depends on the mass of the kink. Here we will need
the semiclassical prediction for the splitting of the first two energy levels (the ground state,
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which lives in the Z2 even sector, and the Z2 odd state just above it). Including the leading
semiclassical results and the one-loop determinant fluctuations around it, the splitting for
small g/M2 is given by (see appendix E.1),

ΔE = E1 − E0 ≈
√

M3

6πgL
e−LMkink−f(ML) , Mkink =

M3

12g
+ M

( 1
4
√

3
− 3

2π

)
, (6.36)

where Mkink is the kink mass in the one-loop approximation, first computed in [120]. Cor-
rections are suppressed by g/M2 and by 1/(LMkink). The function f(x), given in (E.24),
approaches zero exponentially fast for LM � 1. This correction can be interpreted as coming
from loop corrections to the kink propagator, where virtual particles of the topologically
trivial sector travel around the cylinder.

Our numerical method allows to extract ΔE with high precision and to compare with this
formula. In figure 6.7 we present as an example the renormalized numerical results7 for
M = 1, g = 0.05. We used s = 5, checking that its increase does not change significantly the
numerics, while Ēmax was fixed such as to have a basis dimension ∼ 10000 for each L. We
plot

√
L ef(ML)ΔE as a function of L in logarithmic scale in order to observe a linear trend,

as expected from (6.36), and perform a fit in a region chosen by eye such that the data look
close to a straight line,

log
[√

L ef(ML)ΔE ] ≈ α − M∗L . (6.37)

The value of L must be not too low so that the exponential law decay sets in, and not too
high otherwise ΔE becomes smaller than the precision of our method. We then compare the
fitted values of α and M∗ with the expectations from (6.36).

We carried out this analysis for several values of the coupling between 0.01 and 0.1, finding
both α and M∗ very close to the expected values. The comparison of M∗ with Mkink is plotted
in figure 6.8 as a function of g. It turns out that in the range of points where the fit is made
f(ML) is very small and does not influence the fit, except a little for the smallest considered
values of g. On the other hand including

√
L is crucial for reaching the agreement. One can

see that the accord with the semiclassical prediction Mkink (black line) is very good.

Comparison to Ref. [77]

For comparison we included in figures 6.3,6.8 a few data points extracted from [77]. In section
5.4.5 we explained how to relate our mass and quartic coupling to their couplings g2, g4. In
particular, g = 2πG4 and, from Eq.(5.84),

G2 − 2gC(ML) = −M2/2 (6.38)

for M in the Hamiltonian (6.9).

The two data points (crosses) in figure 6.3 were extracted from figure 10(b,d) of [77], where

7The difference between “raw” and renormalized is negligible in the present analysis.

115



Chapter 6. Hamiltonian truncation in the Z2-broken phase

0 1 2 3 4 5 6 7 8
L

10−5

10−4

10−3

10−2

10−1

100

(E
1
−
E 0
)
×
√ L

×
ef

(M
L
)

g=0.05, μ =0.9-1.1

Figure 6.7: Ground state splitting as a function of L for g = 0.05; see the text.
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Figure 6.8: Comparison between the fitted and the theoretically predicted value of the kink
mass; see the text. The green cross represents, with error bars, a result from [77] as discussed
in section 6.2.3.

G2 = −0.1, G4 = 1.2 × 10−3. This corresponds to g/M2 ≈ 0.035 at ML = 12. The agreement
between their and our results is good. Their determination of the kink mass for the same G2,4

is shown in figure 6.8. Here g/M2 = 0.042(3), varying within the range of L used in their fit.
The large error bars on Mkink may be due to this variation. Also, they did not consider the
pre-exponential factor in (6.36).

6.3 Conclusions

In the last two chapters we revisited one of the simplest realizations of the “exact diagonal-
ization” methods, as opposed to standard lattice Monte Carlo methods, and shown that it
can be used effectively as a numerical tool to extract non-perturbative predictions about a
quantum field theory. The numerical setup is relatively simple, and the error coming from
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the UV regulator can be reduced by adding analytically computed correction terms to the
Hamiltonian.

Our choice of the model to study here—the two-dimensional φ4 theory—was dictated by
several considerations:

• the model is not supersymmetric nor integrable, hence not amenable to analytical
methods, apart from perturbation theory at small coupling ;

• the model has been studied in the past by a variety of numerical techniques, allowing
for a fair comparison of the results and of the implementation difficulties ;

• the model is literally the textbook example of a quantum field theory. In fact we
hope that our exercise also has a considerable pedagogical value, helping to bridge the
conceptual gap between perturbative and non-perturbative QFT questions.

However we stress that the idea of this work is completely general, and it should be possible
to apply similar techniques to any quantum field theory.

According to an exact duality, reviewed in section 6.1, the theory under consideration can
be expressed via two different Lagrangian formulations. We proved that, even at strong
coupling, the Hamiltonian truncation method correctly predicts the same low-energy spectrum
of excitations in the two cases, despite the fact that they look totally different at the zeroth
order. We regard this as a non-trivial check of the method.

The current state of the method allowed us to compute the low-energy spectrum in both the
Z2-invariant and Z2-broken phases with a reasonable accuracy, and to give an estimate for
the critical coupling corresponding to the phase transition. We found very good agreement
with the predictions from perturbation theory and semiclassics in the perturbative and
non-perturbative sectors.

We believe that the potential of “exact diagonalization” techniques, among which we have
implemented a particular realization in the present work, is very large and has to be explored
further. Some other representative applications to non-integrable theories to be found in the
literature are [119, 121, 122, 123, 77, 124, 125, 126, 127] in d = 2. In d > 2 the only works
are [91] and [88].

The present analysis has been recently extended by the direct study of the topological
spectrum of kink-states [84], and progress has been made towards the calculation of higher
order renormalization coefficients [83]. Advancement in this direction will be necessary in
order to solve higher dimensional theories, as the RG flow becomes less strongly relevant.

The hope is that exact diagonalization techniques can evolve into computationally efficient
tools to address difficult problems in quantum field theory.
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Chapter 7

Discussion and outlook

In this thesis we explored several aspects of the renormalization group in quantum field theory.

In Part I we set out to study the structure of RG flows in a large class of QFTs, namely those
that are unitary and Poincaré invariant, including most of the models in particle physics. Two
specific questions were addressed, which are found to be closely interrelated. Is it possible to
“order” conformal field theories connected by RG flows according to monotonicity constraints?
There exist (non-trivial) theories which are scale but not conformal invariant?

In our work we focused on even space-time dimensions, where the Weyl anomaly is relevant
for answering these questions. In Chapter 2 we reviewed the local Callan–Symanzik equation
formalism [26], which allows to treat systematically the renormalization of composite operators
in curved backgrounds.

We then reconsidered the consistency conditions for the Weyl symmetry, showing that they
result in only three independent non-algebraic constraints. We derived for the first time the
flow equation for the coefficient a of the Weyl anomaly in a form including all the contributions
from lower dimensional operators. This equation represents a formulation of the a-theorem in
perturbation theory.

This methodology was then related to the “effective field theory” approach of [23] in Chapter
3, thanks to our calculation of the dilaton effective action. Additionally, we filled in some
details in the proof of the equivalence SFT=CFT in perturbation theory.

In Chapter 4 we generalized the local Callan–Symanzik approach to six-dimensional QFTs.
Under certain assumptions for the spectrum of relevant operators (which will be relaxed in
future studies) we defined a family of functions that decrease monotonically along the RG
flow. This constitutes a proof of the a-theorem and implies the equivalence SFT=CFT in
perturbation theory. We would like to stress that, in general, the study of six-dimensional
QFTs is not only of theoretical interest, but it can help us understand the differences between
QFT in the physical four-dimensional space-time and other dimensions. Beyond perturbation

119



Chapter 7. Discussion and outlook

theory, ideas for a proof of the a theorem are still lacking. However, it is worth noting that in
all cases studied so far no counterexample has been found [64].

In Part II of the thesis we investigated the HT method, that can be employed to solve
numerically strongly-coupled RG flows in QFT. In Chapter 5 we applied the HT method to
the φ4 model in two dimensions, working in the Fock-space basis of states of the free UV
Hamiltonian, and we calculated the IR spectrum with good numerical accuracy. Due to the
perturbative control over the RG flow in the UV, we were able to improve the numerical
convergence by constructing a low energy effective Hamiltonian. In addition, we predicted
the value of the coupling where the theory flows to the critical Ising model, pointing out a
significant disagreement with previous lattice determinations, which has been later resolved
[116].

In Chapter 6 we studied the broken phase of the same model at strong coupling, which required
a modification of the Hilbert space basis. We were able to calculate purely non-perturbative
quantities, including the mass of the lightest topologically non-trivial state, which was found
in agreement with the semiclassical prediction.

One obvious advantage of the exact diagonalization over lattice Monte Carlo methods is that
the low-energy spectrum is found all at once by a direct diagonalization of the Hamiltonian,
without any statistical error. One drawback is that manifest locality of the original QFT is
lost after the truncation. Consequently, along the RG flow non-local operators are generated
and have to be taken into account in the renormalization procedure.

One of the next steps to advance exact diagonalization methods will consist in improving the
renormalization procedure, whose study has already started [83]. It is also worth exploring
other truncation prescriptions, such as those already employed in the light-cone quantization
schemes in two and three dimensions [107][88], where the wave-functional in the sectors with
fixed number of particles are approximated by polynomials.

Thanks to this research program, exact diagonalization methods will hopefully evolve into an
efficient tool to perform precision calculations in three and four-dimensional QFTs.
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Appendix A

Local CS equation in d = 4

A.1 Definitions and useful equations

A.1.1 Notations

The generator of the local CS symmetry:

Δσ = Δg
σ − Δβ

σ (A.1)

where

Δg
σ =

∫
d4x

⎡⎣ 2σ gμν δ

δgμν(x)

⎤⎦
Δβ

σ(x) =
∫

d4x

⎡⎣ σ

(
βI δ

δλI(x)
+ ρA

I ∇μλI δ

δAA
μ (x)

)
− ∇μσ

(
SA δ

δAA
μ (x)

)

−σ

(
mb (2δa

b − γa
b ) + CaR + Da

I ∇2λI +
1
2

Ea
IJ∇μλI∇μλJ

)
δ

δma(x)

+∇μσ

(
θa

I ∇μλI δ

δma(x)

)
− ∇2σ

(
ηa δ

δma(x)

)⎤⎦ (A.2)

Non-ambiguous functions in the local CS equation

BI = βI −
(
SAT Aλ

)I
γa

b = γa
b −

(
SAT A

)a

b
P A

I = ρA
I + ∂ISA (A.3)

Notations appearing in the dilaton effective action

B̃I = (U−1)I
JBJ η̃a = ηa +

1
2

θa
I B̃I (A.4)

123



Appendix A. Local CS equation in d = 4

Useful anomalous dimension matrices

γI
J = ∂JBI + P A

I (TAλJ)

γK
IJ =

(
U−1

)K

L

(
∂(IγL

J) + P A
(I (TA)L

J)

)
γ a

IJ =
1
2

(
Ea

IJ + θa
KγK

IJ

)
γKL

IJ = B(Kγ
L)
IJ

γB
A = P B

J (TAλ)J

U I
J = δI

J + ∂JBI +
1
2

P A
I (TAλJ) (A.5)

Useful functions of the sources

ΛI =
(
U−1

)I

J

(
∇2λJ +

1
6

BJR

)
ΠIJ = ∇μλI∇μλJ − B(IΛJ)

Πa = ma − ηa R

6
− 1

2
θa

I ΛI

Γμν = Gμν +
R

6
gμν

ΩIJK =
(

ΠIJ +
1
2

B(IΛJ)
)

ΛK

ΞIJ
σ = ΛI

(
2∇μσ∇μλJ − σγJ

KLΠKL
)

. (A.6)

A.1.2 Lie derivatives

We use L to denote a Lie derivative along a direction in parameter space defined by the RG
flow. This derivative satisfies the following definitions and relations:

L[Y ] = BI∂IY

L[Y J
I ] = BK∂KY J

I + γK
I Y J

K − γJ
KY K

I

L[YAI ] = BJ∂JYAI + γJ
I YAJ + γB

A YBI

BIL[YIJ...] = L[BIYIJ...]

(TBλ)IL[YAI...] = L[(TBλ)IYAI...]

L[U I
J ] = γI

KLBKUL
J

L[B̃I ] = −γI
JKBJ B̃K (A.7)

where Y... stands for an arbitrary covariant function of λI , and U I
J is defined in (A.5).
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A.1.3 Gravitational terms and their Weyl variations

W 2 = RμνρσRμνρσ − 2RμνRμν +
1
3

R2

E4 = RμνρσRμνρσ − 4RμνRμν + R2

Gμν = Rμν − 1
2

gμνR (A.8)

Δg
σgμν = 2σgμν

Δg
σ

√−g = −4σ
√−g

Δg
σ∇μ∇νf = 2∂(μσ∂ν)f − gμν∂ρσ∂ρf

Δg
σ∇2f = 2σ∇2f − 2∂μσ∂μf

Δg
σR = 2σR + 6∇2σ

Δg
σGμν = 2∇(μ∇ν)σ − 2gμν∇2σ

Δg
σ

√−gW 2 = 0

Δg
σ

√−gE4 = −8
√−gGμν∇μ∇νσ (A.9)

A.1.4 Weyl Variations of dimensionful functions of the sources

Δσ

(
YIΛI

)
= σ

(
2YIΛI − L[YI ]ΛI − YIγI

JKΠJK
)

− 2∇μσ
(
YI∇μλI

)
Δσ

(
YIJΠIJ

)
= σ

(
2YIJΠIJ − L[YIJ ]ΠIJ + YIJγIJ

KLΠKL
)

Δσ(YaΠa) = σ
(
2YaΠa − L[Ya]Πa + γ a

IJΠIJ
)

Δσ(YAF A
μν) = σ

(
−L[YA]F A

μν − 2YA∂[JP A
I] ∇μλJ∇νλI

)
− ∇[μσ

(
2YAP A

I ∇ν]λ
I
)

Δσ(YIJKΩIJK) = σ
(
4YIJKΩIJK − L[YIJK ]ΩIJK + YIJKγK

MN ΠIJΠMN
)

+∇μσ
(
−2YIJK∇νλI∇νλJ∇μλK

)
− BIYI[JK]ΞJK

σ (A.10)

where the Y ’s are arbitrary covariant functions of λI .

A.2 Weyl symmetry in a regulated theory

In this appendix we shall give more details concerning the local CS equation. In particular we
shall outline its derivation in dimensional regularization in weakly coupled 4D field theory and
explicitly derive the structure of the anomaly and its consistency condition in 2D field theory.

First of all we want to explain how to find the Weyl transformation for the sources J . An
explicit way to do that is by a variant of the dilaton trick [25]. In order to see how that works,
let us focus for the moment on a classical bare action S(1)[Φ, gμν , I0], where I0 indicates the
general set of bare sources, the metric excluded, that can couple to non-trivial local functions
of Φ and of its derivatives. In the case of a theory regulated with a momentum cut-off such as
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Pauli-Villars one should add to the set I0 also the regulator mass Λ. Now, the trick is to write
the metric in a redundant way by introducing a dilaton field τ : S(1) ≡ S(1)[Φ, e2τ gμν , I0]. The
action so written is trivially invariant under a Weyl transformation under which τ → τ + σ,
gμν → gμνe−2σ, while Φ, I0 (and the regulator mass) do not transform. Now, if, and only if,
I0 includes all the sources that can couple to the fields Φ, we can certainly absorb τ in the
fields and in the sources (and regulator if needed): S(1)[Φ, e2τ gμν , I0] = S(1)[Φτ , gμν , Iτ

0 ]. Now,
the redefined fields and sources, via their τ dependence, transform in a definite way under
Weyl so as to compensate the transformation of the metric, and ensure formal invariance of
the action. That is most easily understood by working around τ = 0 which gives

δσI0 ≡ Iσ
0 − I0 . (A.11)

The situation is particularly neat when dimensional regularization (DR) can be used. In DR,
the regulator itself is Weyl invariant and only the bare sources transform non-trivially. On
the other hand, in the case of a momentum regulator, such as Pauli-Villars, things are a bit
more involved as one must also consider a τ dependent, and consequent Weyl transforming,
regulator mass: δσΛ = σΛ. An obvious generalization of RG invariance then ensures that the
combination of the transformation in Eq. (A.11) together with δσΛ = σΛ has the same effect
on the partition function as a certain transformation δσI of the renormalized sources I. The
latter combined with δσgμν = −2σgμν , defines the transformation of renormalized sources J .
According to the discussion at the end of section 2.2.1, the local Callan Symanzik equation
then follows.

Consider now a 4D renormalizable field theory based on a gauge group G, and involving
scalars and fermion transforming in a representation of G. In addition to the metric gμν , the
set of sources J consists of

• the marginal couplings λI ≡ gauge, Yukawa and scalar quartic couplings

• the gauge fields AA
μ of the flavor symmetry group GF of the kinetic term; this symmetry

is in general broken by the Yukawa and quartic couplings1.

• mass terms ma for the scalar bilinears.

The general relation between the bare and the renormalized sources is obtained by considering
all the terms allowed by symmetry and power counting

λI
0(x) = μkIε

(
λI(x, μ) + LI

)
AA

0μ(x) = AA
μ (x, μ) + NA

I ∇μλI

ma
0(x) =

(
(δa

b + Za
b ) mb(x, μ) + ZaR(g) + Za

I ∇2λI + Za
IJ∇μλI∇μλJ

)
(A.12)

where LI , NA
I , Za

b , Za, Za
I , Za

IJ are series of poles in ε whose coefficients are polynomial series
in λ. The coefficients kI (understood not to be part of the summation convention) correspond

1As we assume our theory respects parity we just need to focus on the maximal vector-like subgroup of GF .
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to the dimensionality of the bare couplings in 4+ε. The kI equal −1, −1, −1/2 for respectively
gauge, scalar quartic and Yukawa couplings. Notice that the dimensionality of AA

0μ and ma
0

is not affected by dimensional continuation. Notice also that the bare and the renormalized
metric can be taken to coincide. The effective action is renormalized by adding the most
general set of diffeomorphism invariant counterterms: these can be absorbed in redefinitions
of the fields and sources in Eq. (A.12), with no need to redefine gμν . By inspection of the
most general dimensionally continued bare action S(1), the Weyl transformation of the bare
sources is simply given by

(gμν , λI
0, AA

0μ, ma
0) −→ (e2σgμν , ekIεσλI

0, AA
0μ, e2σma

0) (A.13)

By Eq. (A.12) this can be univocally translated into the, generally more involved, transforma-
tion law for the renormalized sources

δσJ ≡ (2σgμν , δσλI , δσAA
μ , δσma) . (A.14)

In practice, the first of Eqs. (A.12) fixes δσλI , and once that is fixed the second equation
fixes δσAA

μ . Finally, once all other transformations are fixed, the third equation can be used
to deduce δσma. By applying the logic described in section 2.2.1, we thus conclude the
renormalized action must satisfy an equation of the form∫

dDx

(
δσJ δ

δJ
)

W =
∫

dDxδσS(2)[J ] ≡
∫

dDxAσ (A.15)

By this equation, given the finiteness of gμν δ
δgμν W and the finiteness of derivatives with

respect to the renormalized sources, one deduces that (δσλI , δσAA
μ , δσma) and A(x) must

also be finite. In other words: given T is finite, then the coefficients of its expansion in
terms of renormalized operators must be finite, along with the contact terms associated with
the anomaly. The condition of T finiteness is at the basis of the derivation of consistency
conditions given in ref. [32]. Finiteness then allows us to safely take the n → 4 limit in the
above equation. This is the formal derivation of the local CS equation. In the following
sections we shall describe in detail the structure of (δσλI , δσAA

μ , δσma).

A.2.1 The variation of λI

δσλI can be found using the following manipulation

eσεkI
λI

0(x) = eσεkI
μkIε

(
λI(x, μ) + LI (λ(x, μ), ε)

)
= μkIε

(
λI(x, e−σμ) + LI (

λ(x, e−σμ), ε
))

(A.16)

where we used the μ independence of the bare sources. In other words, a Weyl transformation
for the bare sources is equivalent to a change in the renormalization scale:

λI
0 → eσεkI

λI
0 =⇒ λI(x, μ) → λI(x, e−σμ) (A.17)
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In assigning these transformation properties it was essential that the sources are x dependent
by definition. This can be translated into the following infinitesimal transformation law for
the renormalized sources

δσλI(x, μ) = −σ(x)
d

d log μ
λI(x, μ) ≡ −σβ̂I (A.18)

In agreement with the local CS equation.

The last step is to relate the β̂-function to the poles in the counterterm. This is done by using
the invariance of the bare parameters under change of renormalization scale:

μ
dλ0

dμ
= 0 ⇒

(
δI

J + ∂JLI
)

μ
dλJ

dμ
= −εkI

(
λI + LI

)
(A.19)

Using the finiteness of λI we find in the ε → 0 limit

β̂I → βI = −kILI
1 + kJλJ∂JLI

1 (A.20)

A.2.2 The variation of AA
μ

Unlike λI
0, AA

0μ is invariant under the local scale transformation. Using this in Eq. (A.12) we
find

(
δA

B +
(
NA

I (TB)I
JλJ

))
δσAB

μ = σ
(
β̂J∂JNA

I + NA
J ∂I β̂J

)
∇μλI + NA

I β̂I∇μσ (A.21)

and we can identify the functions ρ and S from the local CS equation:

(
δA

B +
(
NATBλ

))
ρA

I = −β̂J∂JNA
I − NA

J ∂I β̂J(
δA

B +
(
NATBλ

))
SB = NA

I β̂I . (A.22)

Focusing on the ε independent terms in these equations, and using the finiteness of the
renormalized sources, we find

SA = −kIλINA
I,1

ρA
I = kJ

(
λJ∂JNA

I,1 + NA
I,1

)
P A

I = kJλJ
(
∂JNA

I,1 − ∂INA
J,1

)
(A.23)

where LI
1 and NA

I,1 are the coefficients of the simple poles in LI and NA
I .

Let us now derive the consistency condition B · P = 0. First, we multiply the first line of
(A.22) by B̂I = β̂I − (SATAλ)I

(
δA

B +
(
NATBλ

))
B̂IρA

I = −β̂I∂I

(
NA

J β̂J
)

+ SBβ̂I∂I

(
δA

B + NATBλ
)

(A.24)

where we used the covariance of β̂, namely (Tλ)I ∂I β̂J = (T β̂)J . Next, we substitute the
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second line of Eq. (A.22) and find

(
δA

B +
(
NATBλ

)) (
B̂IρA

I + β̂I∂IS
)

= 0 . (A.25)

We conclude that

B̂IP A
I ≡ B̂I

(
ρA

I + ∂ISA
)

= 0 (A.26)

where we used the covariance of SA to show that (STλ)I ∂IS = 0 and hence B̂I∂ISA = β̂I∂ISA.

A.2.3 Dim 2 operators

Once the Weyl transformations of gμν , λI and AA
μ are fixed the expression for the bare source

ma
0 =

(
(δa

b + Za
b ) mb(μ) + ZaR + Za

I ∇2λI + Za
IJ∇μλI∇μλJ

)
, (A.27)

as well as its Weyl transformation equation ma
0 → e2σma

0, fix the coefficients functions in
δσma.

(2δa
c + Za

c )γc
b = L[Za

b ]

(2δa
b + Za

b )Cb = L[Za]

(2δa
b + Za

b )Db
I = L[Za

I ]

(2δa
b + Za

b )Eb
IJ = 2Za

K∂I∂J β̂K + 2L[Za
IJ ]

(2δa
b + Za

b )θb
I = −2Za

I − 2Za
J∂I β̂J − 2β̂JZa

IJ

(2δa
b + Za

b )ηb = β̂IZa
I − 6Za (A.28)

(for brevity we have ignored the contributions in the transformation related to global symme-
tries). From these expressions it is possible to derive the remaining consistency conditions
(2.50).

A.2.4 Consistency conditions for the anomaly coefficients

As an example for the derivation of the consistency conditions for the anomaly coefficients we
present the computation for the 2d case where the anomaly is given by (see [26]):

1√−g
Aσ = σ

(
−1

2
βΦR +

1
2

χIJ∇μλI∇μλJ
)

+ ∇μσ
(
wI∇μλI

)
(A.29)

For simplicity we will ignore the contributions from dimensionful sources. The coefficients in
this anomaly satisfy the consistency condition

∂IβΦ − χIJβJ + L[wI ] = 0 (A.30)
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In dimensional regularization this anomaly can be understood as the result of the non-invariance
of the following counterterms in the effective action

W ⊃
∫

dDy
√−gμε

(1
2

bR +
1
2

cIJ∇μλI∇μλJ
)

(A.31)

where b and cIJ are understood as a series of poles in ε = D − 2, where the finite part is
assumed to vanish.

Defining the symmetry generator of the regulated theory as

Δσ =
∫

dDx σ(x)
(

δ

δτ(x)
− β̂I δ

δλI(x)

)
(A.32)

where β̂I = −ελI + βI , we find

Δσ

∫
dDy

√−gμε
(1

2
bR +

1
2

cIJ∇μλI∇μλJ
)

=
∫ √−gdDx

(
σ

(
−1

2
β̂Φ +

1
2

χ̂IJ∇μλI∇μλJ
)

+ ∇μσ
(
ŵI∇μλI

))
(A.33)

where

β̂Φ = β̂K∂Kb − εb

χ̂IJ = −Lβ̂ [cIJ ] + εcIJ

ŵI = −(1 + ε)∂Ib − cIJ β̂J . (A.34)

The finiteness of T ensures that these specific combinations are necessarily finite. In other
words, in the ε = 0 limit we find β̂Φ → βΦ, χ̂IJ → χIJ and ŵI → wI . Moreover, these
coefficients satisfy the relation

∂I β̂Φ − χ̂IJ β̂J + Lβ̂ [ŵI ] = ε
(
−∂I β̂Φ + ŵI

)
(A.35)

which, in the ε = 0 limit, gives Eq. (A.30).

A.3 Unitarity and anomalous dimensions of currents

In this appendix we would like to study in more detail the scale and conformal transformations
of the operators, Eq. (2.31), at a conformal fixed point. In particular, we would like to
distinguish the primary scalars operators from the descendants of the non-conserved currents.
Let us suppose the background couplings λI break the flavor group GF down to a subgroup H.
Let us to parametrize the coset GF /H with indices A = 1, . . . , m, while the remaining indices
A = m + 1, . . . , dimGF

parametrize the generators of H. Using the notation vI
A ≡ (TAλI), we

thus have that for A = 1, . . . , m, vI
A �= 0 are m linearly independent vectors, while vI

A = 0 for
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A.3. Unitarity and anomalous dimensions of currents

A > m. In block matrix notation we can write

v =
(

v̂ a

0 0

)
(A.36)

where v̂ is a m × m matrix. The rows of v run over the indices A, while its columns run
over the indices I = 1, . . . , N : v is a rectangular dimGF

× N matrix. Since vI
A are m

linearly-independent vectors, v̂ can be taken invertible by a proper linear transformation in
I-space.

The anomalous dimension matrix for Jμ
A is:

γB
A = vI

AP B
I . (A.37)

By the properties of unitary representation of the conformal group it must vanish for the
conserved currents and take the form

γ =
(

γ̂ 0
0 0

)
(A.38)

with γ̂ a diagonal and strictly positive definite (thus invertible) matrix acting on the subspace
of broken generators. Now, using Eqs. (A.36-A.38) P is constrained to have the form

P =
(

v̂−1(γ̂ − ab) −v̂−1ap

b p

)
(A.39)

with b an (N − m) × m matrix and p is an (N − m) × (dimGF
− m) matrix. Notice that P is

a transposed rectangular matrix with respect to v: rows run over I and columns over A. We
can now go to a basis in I space such that v and P are block-diagonal:

v → v′ = vS−1 =
(

1 0
0 0

)
(A.40)

P → P ′ = SP =
(

γ̂ 0
0 p

)
(A.41)

S =
(

v̂ a

−bγ̂−1v̂
(
1 − bγ̂−1a

)) (A.42)

In the new basis, by Eq. (2.33) the operators OI , I = 1, . . . , m are the descendants of the
broken currents Jμ

A, A = 1, . . . , m. On the broken generator subspace P equals the anomalous
dimension matrix γ̂. Correspondingly Eq. (2.31) gives, as expected, KμOα = −γ̂β

αJμ
β for

α, β = 1, . . . , m. However, as long as p �= 0, Eq. (2.31) also implies KμOI =
∑

A>m pA
i Jμ

A �= 0
for the supposedly primary operators described by I > m (notice the sum is over the conserved
currents). We thus expect p should vanish. The proof comes by using unitarity as follows.
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Let us consider the 2-point correlator of a scalar field and an unbroken current:

〈Jμ
A(p)OI(−p)〉 = f(p2)pμ (A.43)

The conservation of the current pμJμ
A(p) implies f(p2)p2 = 0, thus f(p2) = 0.

〈Jμ
A(x)OI(0)〉 = 0 (A.44)

If we act with a conformal transformation:

0 = 〈[Kν , Jμ
A(x)]OI(0)〉 + 〈Jμ

A(x)[Kν , OI(0)]〉 = pB
I 〈Jμ

A(x)Jν
B(0)〉 (A.45)

where the B runs only over the non-conserved currents, since otherwise the 2-point function
vanishes. In a unitary theory 〈Jμ

A(x)Jν
B(0)〉 is invertible, thus pB

I = 0.

A.4 The consistency conditions for the Weyl anomaly

The most general parameterization of the Weyl anomaly given in Eq. (2.63) can be reduced
by a change of scheme. More specifically, the terms proportional to d, UI , VIJ , S̃(IJ), TIJK ,
ka, and jaI can be eliminated by adding to the generating functional W a local functional

F∇2R =
∫

d4x
√

gL∇2R (A.46)

with

L∇2R =
(

d +
1
2

BIUI

)
R2

36
+ UI

R

6
∇2λI +

1
2

VIJ
R

6
∇μλI∇μλJ + m̂aka

R

6

+
1
4

TIJKΠIJΛK +
1
2

jaIΠaΛI +
1
4

(
S̃(IJ) +

1
2

TIJKBK +
1
2

jaIθa
J

)
ΛIΛJ

(A.47)

In addition to eliminating the mentioned terms, this operation also changes the remaining
anomaly coefficients (the specific expression are not particularly illuminating). In the following
equations we assume that all the coefficients are given in the scheme where these terms are
indeed vanishing.

A key observation is that in this scheme the consistency conditions can be written as algebraic
constraints. Here we list the equations, and the terms in the l.h.s. of (2.60) to which they are
related:
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σ[1∇μσ2]∇μR : βc = −1
4

χe
IBI

σ[1∇μσ2]∇μ∇2λI : χe
I = −1

2
χa

IJBJ

∇2σ[1∇μσ2]∇μλI : YI − χe
I = −1

2
S̃[IJ ]B

J

σ[1∇2σ2]∇μλI∇μλJ : χf
IJ =

1
2

χg
IJ +

1
2

χb
IJKBK − ∂(J

(
χa

I)KBK
)

σ[1∇2σ2]m̂
a : qa =

1
2

raIBI

σ[1∇μσ2]∇μλIm̂a : raJUJ
I = −1

2
saIJBJ − 1

2
pabθ

b
I

σ[1∇μσ2]∇μλ(IΛJ) : χa
KLUK

I UL
J =

1
4

pabθ
a
I θb

J +
1
2

sa(JKθa
I)B

K

−1
2

BKχb
K(ILUL

J) − 1
2

χg
(IKUK

J)

σ[1∇μσ2]∇μλK∇νλI∇νλJ : χB
IJLUL

K = −1
2

saIJθa
K + χg

IJK − χc
IJKLBL + S̃[KM ]γ

M
IJ

−1
2

(
ζAJKP A

I + ζAIKP A
J

)
−

(
ηAJ∂[KP A

I] + ηAI∂[KP A
J ]

)
∇μσ[1∇νσ2]∇μλI∇νλJ : S̃[IJ ] = ∂[JwI] + ηA[JP A

I] (A.48)

The three non-trivial consistency conditions and the corresponding terms in the commutator
are

σ[1∇μσ2]G
μν∇νλI : L[wI ] = −8∂Iβb + χg

IJBJ

σ[1∇μσ2]F
A
μν∇νλI : L[ηAI ] = κABP B

I + ζAIJBJ − χg
IJ(TAλ)J

∇μσ[1∇νσ2]F
A
μν : ηAIBI = −wI(TAλ)I

The coefficient of the last term in the commutator, σ[1∇μσ2]∇μλ[IΛJ ], vanishes by imposing
the three unresolved consistency conditions, without introducing new constraints.

The anomaly coefficients appearing in 2.2.3 are related to the ones appearing in the original
formulation of the anomaly via

a = βb, c = −βa,

bab = pab

baIJ = saIJ − jaKγK
IJ ,

bIJKL = χc
IJKL − 1

2
TIJM γM

KL − 1
2

TKLM γM
IJ . (A.49)
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Appendix B

Local CS equation in d = 6

B.1 Derivation of the consistency conditions

In this work, in order to derive the consistency conditions it was necessary to write the
variation (2.64) in a linearly independent basis. This was technically nontrivial due to the
large number of terms (∼ O(100)) and redundancies related to integration by parts. Our
approach is outlined in this appendix. First, by integrating by parts, we took all the derivatives
off either σ or σ′. As a result, we ended up with terms such as

(σ∂μσ′ − σ′ ∂μσ) fI(λ)∂μλI R2 , (σ∇μ∂νσ′ − σ′ ∇μ∂νσ) f(λ)Hμν
1 . (B.1)

However, there are still redundancies related to anti-symmetrization with respect to σ, σ′. For
example, consider the trivial equation

(∂μσ∂νσ′ − ∂μσ′ ∂νσ) f(λ)Hμν
1 = 0 , (B.2)

where Hμν
1 is symmetric. Upon integrating by parts and writing this equation in the same

basis as (B.1), we get

(σ∇μ∂νσ′ − σ′ ∇μ∂νσ) f(λ)Hμν
1 + (σ∂νσ′ − σ′ ∂νσ) ∂If(λ)∂μλI Hμν

1 = 0 , (B.3)

since ∇μHμν
1 = 0 in this example. This allows to eliminate the second term in (B.1). Similarly

one can get rid of all the terms with an even number of derivatives on σ, σ′. This prescription
fixes unambiguously a complete basis for (2.64).

B.2 Conventions and basis for the anomaly

We define the Riemann tensor via

[∇μ, ∇ν ]Aρ = Rρ
σμνAσ , (B.4)

135



Appendix B. Local CS equation in d = 6

and the Ricci tensor and Ricci scalar as Rμν = Rρ
μρν and R = gμνRμν . The Einstein tensor is

defined in d ≥ 2 by
Gμν = 2

d−2(Rμν − 1
2 gμνR) , (B.5)

while the Weyl tensor is defined in d ≥ 3 by

Wμνρσ = Rμνρσ + 2
d−2(gμ[σRρ]ν + gν[ρRσ]μ) + 2

(d−1)(d−2)gμ[ρgσ]νR . (B.6)

At dimension four we consider the tensors

E4 = 2
(d−2)(d−3)(RμνρσRμνρσ − 4RμνRμν + R2) , I = W μνρσWμνρσ ,

H1μν = (d−2)(d−3)
2 E4 gμν − 4(d − 1)H2μν + 8H3μν + 8H4μν − 4Rρστ

μRρστν ,

H2μν = 1
d−1RRμν , H3μν = Rμ

ρRρν , H4μν = RρσRρμσν ,

H5μν = ∇2Rμν , H6μν = 1
d−1∇μ∂νR .

(B.7)

A complete basis of scalar dimension-six curvature terms consists of [72]

K1 = R3 , K2 = RRμνRμν , K3 = RRμνρσRμνρσ , K4 = RμνRνρRρ
μ ,

K5 = RμνRρσRμρσν , K6 = RμνRμρστ R ρστ
ν , K7 = RμνρσRρστωRτω

μν ,

K8 = RμνρσRτνρωRμ
τω

σ , K9 = R ∇2R , K10 = Rμν ∇2Rμν , K11 = Rμνρσ ∇2Rμνρσ ,

K12 = Rμν∇μ∂νR , K13 = ∇μRνρ ∇μRνρ , K14 = ∇μRνρ ∇νRμρ ,

K15 = ∇μRνρστ ∇μRνρστ , K16 = ∇2R2 , K17 = (∇2)2R .

(B.8)
In d = 6 a convenient basis is given by

I1 = 19
800 K1 − 57

160 K2 + 3
40 K3 + 7

16 K4 − 9
8 K5 − 3

4 K6 + K8 ,

I2 = 9
200 K1 − 27

40 K2 + 3
10 K3 + 5

4 K4 − 3
2 K5 − 3K6 + K7 ,

I3 = −11
50 K1 + 27

10 K2 − 6
5 K3 − K4 + 6K5 + 2K7 − 8K8

+ 3
5 K9 − 6K10 + 6K11 + 3K13 − 6K14 + 3K15 ,

E6 = K1 − 12K2 + 3K3 + 16K4 − 24K5 − 24K6 + 4K7 + 8K8 ,

J1 = 6K6 − 3K7 + 12K8 + K10 − 7K11 − 11K13 + 12K14 − 4K15 ,

J2 = −1
5 K9 + K10 + 2

5 K12 + K13 , J3 = K4 + K5 − 3
20 K9 + 4

5 K12 + K14 ,

J4 = −1
5 K9 + K11 + 2

5 K12 + K15 , J5 = K16 , J6 = K17 ,

L1 = − 1
30 K1 + 1

4 K2 − K6 , L2 = − 1
100 K1 + 1

20 K2 ,

L3 = − 37
6000 K1 + 7

150 K2 − 1
75 K3 + 1

10 K5 + 1
15 K6 , L4 = − 1

150 K1 + 1
20 K3 ,

L5 = 1
30 K1 , L6 = − 1

300 K1 + 1
20 K9 , L7 = K15 ,

(B.9)

where the first three transform covariantly under Weyl variations, and E6 is the Euler term in
d = 6. The J ’s are trivial anomalies in a six-dimensional CFT defined in curved space, and the
first six L’s are constructed based on the relation δσ

∫
d6x

√−g L1,...,6 =
∫

d6x
√−g σJ1,...,6.

In six space-time dimensions there are ninety four independent terms that can contribute to
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the anomaly [71]. In general, we can write

∫
d6x

√−g Aσ =
65∑

p=1

∫
d6x

√−g σTp +
30∑

q=1

∫
d6x

√−g ∂μσ Z μ
q , (B.10)

where Tp and Z μ
q are dimension-six and dimension-five terms respectively, that can involve

curvatures as well as derivatives on the couplings λI . In writing down the various terms below,
we neglect total derivatives.

If only curvatures are included, then we have the terms

T1 = −c1I1 , T2 = −c2I2 , T3 = −c3I3 , T4 = −aE6 , T5,...,11 = −b1,...,7L1,...,7 .

(B.11)
We also have the terms

Z μ
1 = −b8 ∂μE4 , Z μ

2 = −b9 ∂μI , Z μ
3 = − 1

25b10 R ∂μR ,

Z μ
4 = −1

5b11 ∂μ∇2R , Z μ
5,6,7 = −b12,13,14 ∇νHμν

2,3,4 .
(B.12)

Actually, the terms in (B.12) overcomplete the basis of trivial anomalies. This is because
there are six trivial anomalies, but seven terms in (B.12). If we integrate the (B.12) terms by
parts, then we may require that ∇μZ μ

1,...,7 do not affect the coefficients of L1,...,7. This forces
us to impose

b13 = − 24
d2 − 5d + 6

b8 +
4(d − 6)

d − 2
b9 − 5

d − 1
b12. (B.13)

With (B.13) it is guaranteed that L1,...,7 are vanishing anomalies1, and we also see that the
coefficients of E6, I1,2,3 are unaffected by ∇μZ μ

1,...,7. Thus, with the condition (B.13) the terms
Z μ

1,...,7 substitute exactly the trivial anomalies J1,...,6.

Next, we have

T12 = I1
I ∂μλI ∂μE4 , T13 = I2

I ∂μλI ∂μI , T14 = 1
25I3

I ∂μλI R ∂μR ,

T15 = 1
5I4

I ∂μλI ∂μ∇2R , T16,17,18 = I5,6,7
I ∂μλI ∇νHμν

2,3,4 ,
(B.14)

and
Z μ

8 = G1
I ∂μλI E4, Z μ

9 = G2
I ∂μλI I, Z μ

10 = 1
25G3

I ∂μλI R2,

Z μ
11 = 1

5G4
I ∂μλI ∇2R, Z μ

12,...,17 = H1,...,6
I ∂νλIHμν

1,...,6 ,

Z μ
18 = FI ∇κ∂λλI ∇μGκλ , Z μ

19 = 1
5EI ∇2λI ∂μR .

(B.15)

1By “vanishing” anomalies we mean those which are set to 0 at the fixed point by the consistency conditions.
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With more ∂λ’s we have

T19 = 1
2G1

IJ ∂μλI∂μλJ E4 , T20 = 1
2G2

IJ ∂μλI∂μλJ I , T21 = 1
50G3

IJ ∂μλI∂μλJ R2 ,

T22 = 1
10G4

IJ ∂μλI∂μλJ ∇2R , T23,...,28 = 1
2H1,...,6

IJ ∂μλI∂νλJ Hμν
1,...,6 ,

T29 = FIJ ∂κλI∇λ∂μλJ ∇κGλμ , T30 = F ′
IJ ∂κλI∇λ∂μλJ ∇λGκμ ,

(B.16)
and

Z μ
20 = 1

5EIJ ∂μλI∂νλJ ∂νR , Z μ
21 = DIJ ∂κλI∇λ∂νλJ Rμλκν ,

Z μ
22 = CI ∂ν∇2λI Gμν , Z μ

23 = CIJ ∂κλI∇ν∂κλJ Gμν , Z μ
24 = C′

IJ ∂νλI∇2λJ Gμν ,

Z μ
25 = 1

5BIJ ∂μλI∇2λJ R Z μ
26 = AIJ ∂ν∇2λI∇μ∂νλJ , Z μ

27 = A′
IJ ∂μλI(∇2)2λJ .

(B.17)
Furthermore, we have

T31 = 1
2FIJK ∂κλI∂λλJ∂μλK ∇κGλμ, T32 = 1

5 ÊIJ ∂μλI∇2λJ ∂μR ,

T33 = 1
10EIJK ∂μλI∂νλJ∂νλK ∂μR , T34 = DIJK ∂κλI∂μλJ∇λ∂νλK Rκλμν ,

T35 = 1
4DIJKL ∂κλI∂λλJ∂μλK∂νλL Rκλμν , T36 = ĈIJ ∇μ∂νλI∇2λJ Gμν ,

T37 = 1
2 Ĉ′

IJ ∇κ∂μλI∇κ∂νλJ Gμν , T38 = 1
2CIJK ∂μλI∂νλJ∇2λK Gμν ,

T39 = C′
IJK ∂μλI∂κλJ∇κ∂νλK Gμν , T40 = 1

2C′′
IJK ∂κλI∂κλJ∇μ∂νλK Gμν ,

T41 = 1
4CIJKL ∂μλI∂νλJ∂κλK∂κλL Gμν , T42 = 1

5BI (∇2)2λI R ,

T43 = 1
10 B̂IJ ∇2λI∇2λJ R , T44 = 1

10 B̂′
IJ ∇μ∂νλI∇μ∂νλJ R ,

T45 = 1
10BIJK ∂μλI∂μλJ∇2λK R , T46 = 1

10B′
IJK ∂μλI∂νλJ∇μ∂νλK R ,

T47 = 1
20BIJKL ∂μλI∂μλJ∂νλK∂νλL R ,

(B.18)

and

Z μ
28 = AIJK ∂νλI∇μ∂νλJ∇2λK , Z μ

29 = A′
IJK ∂κλI∇μ∂λλJ∇κ∂λλK ,

Z μ
30 = 1

2AIJKL ∂νλI∂νλJ∂μλK∇2λL.
(B.19)

Finally, we also have the terms

T48 = AI (∇2)3λI , T49 = ÂIJ (∇2)2λI∇2λJ , T50 = 1
2Â′

IJ ∂μ∇2λI∂μ∇2λJ ,

T51 = 1
2Â′′

IJ ∇κ∇λ∂μλI∇κ∇λ∂μλJ , T52 = 1
8ÂIJK ∇2λI∇2λJ∇2λK ,

T53 = 1
2Â′

IJK ∇κ∂μλI∇κ∂νλJ∇μ∂νλK , T54 = Â′′
IJK ∂μλI∇2λJ∂μ∇2λK ,

T55 = ǍIJK ∂μλI∇μ∂νλJ∂ν∇2λK , T56 = 1
2Ǎ′

IJK ∂μλI∂μλJ(∇2)2λK ,

T57 = 1
2Ǎ′′

IJK ∂μλI∂νλJ∇μ∂ν∇2λK , T58 = 1
4ÂIJKL ∂μλI∂μλJ∇2λK∇2λL,

T59 = 1
4Â′

IJKL ∂κλI∂κλJ∇μ∂νλK∇μ∂νλL, T60 = 1
2Â′′

IJKL ∂κλI∂λλJ∇κ∂μλK∇λ∂μλL,

T61 = 1
2ǍIJKL ∂μλI∂νλJ∇μ∂νλK∇2λL, T62 = 1

2Ǎ′
IJKL ∂κλI∂λλJ∂μλK∇κ∇λ∂μλL,

T63 = 1
4AIJKLM ∂μλI∂μλJ∂νλK∂νλL∇2λM , T64 = 1

4A′
IJKLM ∂κλI∂κλJ∂λλK∂μλL∇λ∂μλM ,

T65 = 1
8AIJKLMN ∂κλI∂κλJ∂λλK∂λλL∂μλM ∂μλN .

(B.20)
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Appendix C

Perturbative checks of Hamiltonian
truncation

C.1 Z2-unbroken phase

We computed the first two perturbative corrections to the ground state energy density Λ and
the physical particle mass for the φ4 theory defined by the action (5.2)

Λ/m2 = −21ζ(3)
16π3 ḡ2 + 0.0416485ḡ3 + . . . ,

Δm2/m2 ≡ (m2
ph − m2)/m2 = −3

2
ḡ2 + 2.86460(20)ḡ3 + . . . (C.1)

(ḡ ≡ g/m2). Recall that Λ at g = 0 is set to zero. Because the interaction is normal ordered
the O(ḡ) contributions are absent. The O(ḡ3) coefficients are numerical with a shown number
of significant digits and an error estimate if needed.1 The size of the coefficients suggests that
the series are perturbative for ḡ � 1.

The coefficients were obtained by numerical integration of Feynman diagrams. It is much easier
to perform this integration in the coordinate space, since the propagator (5.49) is exponentially
decreasing at large distances, and also because parallel lines in multi-loop diagrams correspond
in the x-space to trivially raising the propagator to a power. For example, the O(g3) correction
to Δm2 comes from the diagram

(C.2)

evaluated at the (Euclidean) external momentum p2 = −m2. In the x-space this gives the

1It’s likely that exact expressions for these coefficients can be found, but since this is not the focus of our
work, we have not invested the effort.
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Appendix C. Perturbative checks of Hamiltonian truncation

integral (we omit the combinatorial factors)∫
d2x

∫
d2y eip.x G(|x − y|)2 G(|y|)2 G(|x|) . (C.3)

We pick p = (im, 0), introduce the polar coordinates and evaluate the integral via Monte
Carlo.

In figure C.1 we compare the above perturbative results with the numerical spectra obtained
with our method for m = 1, L = 10. Perturbative computations refer to the infinite volume,
but L = 10 is sufficiently large so that the expected exponentially small corrections should
not disturb the comparison. We use the cutoff Emax = 20. Notice that mph is extracted as
E1 − E0, where E1 is the lowest Z2-odd eigenstate, while Λ is extracted as E0/L.
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Figure C.1: Comparing perturbative and numerical predictions; see the text.

To facilitate the comparison, we plot Λ and Δm2 divided by g2. The reasonably good match
in the region of small g � 0.1 shows that our numerical method agrees with both O(ḡ2) and
O(ḡ3) coefficients of the perturbative expansion. At the same time, higher order corrections
are clearly non-negligible—they would become comparable to the O(ḡ3) correction at ḡ ∼ 0.5.

C.2 Z2-broken phase

We repeated the perturbative computation performed in the previous chapter in the presence
of a cubic coupling, corresponding to the potential density

V =
1
2

M2NM (φ2) + g3NM (φ3) + g4NM (φ4) (C.4)

The symmetric double-well case of Eq. (6.3) can be recovered by setting g4 = g, g3 =
√

2g4M ,
but we will keep the couplings independent for the sake of generality.

For comparison with numerics, we will need results for Δm2 = m2
ph − M2 and Λ up to the

second order in g. In terms of g3, g4, we need to include all diagrams up to order O(g2
4), O(g2

3),
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C.2. Z2-broken phase

O(g2
3g4) and O(g4

3). The results are2 (ḡ3 ≡ g3/M2, ḡ4 ≡ g4/M2):

Λ/M2 = + + + + + . . . (C.5)

= −0.0445289ḡ2
3 − 21ζ(3)

16π3 ḡ2
4 (C.6)

− (0.0109030(51) + 0.026854(32))ḡ4
3 + 0.0799586(41)ḡ2

3 ḡ4 + . . .

and

Δm2/M2 = + + +

+ + + + . . .

= −√
3ḡ2

3 − 1.5ḡ2
4 − (2.2492(37) + 2.8020(70))ḡ4

3

+ (1.06864(15) + 1.9998(10) + 5.50025(91))ḡ2
3 ḡ4 + . . . (C.7)

In figure C.2 we compare the above predictions for g4 = g, g3 =
√

2g4M with the numerical
spectra obtained with our method for M = 1, L = 12. We use the zero-mode cutoff s = 4 and
adjust Ēmax so that the basis dimension is ∼ 10000 in each sector.

In the left plot we show the renormalized results for Δm2, computed both in the Z2-even
and Z2-odd spectra, with an error estimate given by variation of the normal ordering mass.
We observe a reasonably good agreement for g � 0.04.3 For larger g, the deviation may be
attributed to higher-order perturbative effects and to the finite-volume splitting affecting the
numerics.

In the right plot we show instead both the “raw” and renormalized results for the ground state
energy density, extracted from both Z2-even and Z2-odd spectra. Again, an error estimate
for the renormalized values is attributed by varying the normal ordering mass. We see a
perfect agreement with the perturbative prediction until the finite-volume splitting between
the eigenvalues kicks in.

2We do not report explicitly the symmetry factors for the diagrams. Most of them were evaluated numerically
by Monte Carlo integration using coordinate space propagators. We did not invest much effort in analytic
results.

3We haven’t investigated the reasons behind a small residual deviation visible in this region. One possible
reason is that we may be underestimating the renormalization corrections by including contributions only from
the Ĥl ⊗ H̄h part of the high energy Hilbert space. See appendix D.2.
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Figure C.2: Comparing perturbative and numerical predictions; see the text.
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Appendix D

Computational details for the
Hamiltonian truncation

D.1 Speeding up the Hamiltonian matrix computation

In our computations, most time is spent in matrix diagonalization. Still, matrix evaluation
should also be organized efficiently. Here we list some tricks useful to speed it up. These
tricks are realized in our python code, included with the arXiv submission.

Diagonal/offdiagonal decomposition

Let’s split H into three parts,

H = Hdiag + Hoffdiag + H†
offdiag (D.1)

where Hdiag/offdiag have only diagonal/off-diagonal matrix elements. Hdiag includes H0 and
the terms in V of the form1

a†
k1

a†
k2

ak3ak4 , {k1, k2} = {k3, k4}. (D.2)

The rest of the terms in V get assigned to Hoffdiag and H†
offdiag. Only the matrix elements

of Hoffdiag need to be evaluated, while those of H†
offdiag are obtained by transposition. We

include into Hoffdiag the a†a†a†a†, a†a†a†a terms in V , as well as the operators

a†
k1

a†
k2

ak3ak4 , {k1, k2} �= {k3, k4} , (D.3)

satisfying the following lexicographic ordering condition,2

sort(|k1|, |k2|) ≺ sort(|k3|, |k4|) (D.4)

1Here and below {x1, x2, . . .} denotes an unordered set.
2It’s not hard to see that sort(|k1|, |k2|) = sort(|k3|, |k4|) is impossible given {k1, k2} �= {k3, k4} and

k1 + k2 = k3 + k4. So any operator (D.3) gets assigned either to Hoffdiag or to H†
offdiag.
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Appendix D. Computational details for the Hamiltonian truncation

Notice that this condition depends only on the absolute values of momenta, hence it is
P-invariant. This ensures that all three terms in the decomposition (D.1) are separately
P-invariant. This will be important below, when we describe our method to evaluate the
matrix elements.

Keeping track of the energy

Each elementary operator O ∈ V , a product of ladder operators, increases/decreases energy
of any basis vector it acts upon by a fixed amount ΔEO. Since we will be working in the
space of low-energy states Hl of energies 0 ≤ E ≤ Emax, we can drop from V all operators for
which

|ΔEO| > Emax . (D.5)

Moreover, when acting on a basis state |ψ〉 the result is guaranteed to be zero in Hl unless

0 ≤ E(ψ) + ΔEO ≤ Emax . (D.6)

Combinatorial factors for oscillator ordering

To reduce the number of elementary operators in V , it’s worth ordering them. We have

∑
k1,k2,k3,k4

ak1ak2ak3ak4 =
∑

k1≤k2≤k3≤k4

f4(k1, k2, k3, k4)ak1ak2ak3ak4 (D.7)

where the symmetry factor

f4(a ≤ b ≤ c ≤ d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

24 a < b < c < d ,

12 a = b < c < d or a < b = c < d or a < b < c = d ,

6 a = b < c = d ,

4 a = b = c < d or a < b = c = d ,

1 a = b = c = d .

(D.8)

P-conservation

In this paper we work in the Hilbert space of P = 0 states of energies E ≤ Emax. Internally we
represent a state |ψ〉, see (5.9), as a sequence of occupation numbers Zn for each momentum
mode,

|ψ〉 ↔ [Zn : −nmax ≤ n ≤ nmax] , (D.9)

where nmax is the maximal possible mode number for the given L and Emax.

The matrix Hij is then computed as follows. The diagonal part from H0 is trivial so we do
not discuss it. For the rest, we take a particular state |ψj〉 and act on it with elementary
operators O ∈ V , one by one. Each operator gives one particular state |ψi〉 times a numerical
coefficient. We accumulate this coefficient in the matrix element Hij . Thus the matrix is
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D.2. Renormalization in the Z2-broken phase

generated column by column. As discussed above, we can do this computation for Hoffdiag

and get H†
offdiag by transposition. We generate the matrix separately in each of the Z2 = ±

sectors.

The computation we just discussed produces the matrix H in the full Hilbert space of P = 0,
E ≤ Emax states. However, in this paper we are interested in the P = +1 subspace of this
space. The basis of this subspace consists of symmetrized linear combinations (5.25) of the
basic P = 0 Fock states. In principle, the matrix in the P = +1 subspace could be obtained
once the full matrix is computed, but this is wasteful. We will now describe a method which
generates the matrix in the P = +1 subspace directly.

When we store the symmetrized state |ψsym〉 internally, we only store |ψ〉. If |ψ〉 �= P|ψ〉, then
we keep only one of these two vectors (no matter which one), since they give rise to the same
|ψsym〉.

We have to compute the matrix with respect to the symmetrized basis, which we will call Sij ,

H|ψsym
j 〉 = Sij |ψsym

i 〉 . (D.10)

Consider also the matrix Hij with respect to the Fock basis, whose computation was discussed
above. Let’s split it into three pieces,

H|ψi〉 = Ha
ji|ψj〉 + Hb

ki|ψk〉 + Hc
kiP|ψk〉 , (D.11)

where the index j runs over P-invariant |ψj〉, and the rest of the Fock basis is split into |ψk〉’s
and P|ψk〉’s. Since [P, H] = 0, we have

HP|ψi〉 = P(H|ψi〉) = Ha
ji|ψj〉 + Hb

kiP|ψk〉 + Hc
ki|ψk〉 , (D.12)

and finally

H|ψsym
i 〉 = β(ψi)(H|ψi〉 + HP|ψi〉) = β(ψi)[2Ha

ji|ψj〉 + (Hb
ki + Hc

ki)(|ψk〉 + P|ψk〉)]
= β(ψi)[2Ha

ji|ψsym
j 〉 +

√
2(Hb

ki + Hc
ki)|ψsym

k 〉] (D.13)

From here we obtain a recipe for an economic way to compute Sji. Namely, we compute
H|ψi〉 and accumulate the coefficients 2Ha

ji and
√

2(Hb
ki + Hc

ki), and then multiply by β(ψi).

Notice that we used the P-invariance of the Hamiltonian in the first step of (D.12). When
this method is combined with splitting H into the diagonal/off-diagonal parts, it’s important
that every part be P-invariant by itself. As mentioned above, condition (D.4) ensures this.

D.2 Renormalization in the Z2-broken phase

The following discussion extends the renormalization procedure introduced in Section 5.3 to
the basis presented in Section 6.2.1 for the Z2-broken phase.
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Appendix D. Computational details for the Hamiltonian truncation

Let us start from the full eigenvalue problem,

H.c = Ec . (D.14)

The full Hilbert space can be split into “low” energy and “high” energy subspaces,

Hl = Ĥl ⊗ H̄l , (D.15)

Hh = (Ĥh ⊗ H̄l) ⊕ (Ĥl ⊗ H̄h) ⊕ (Ĥh ⊗ H̄h) . (D.16)

Accordingly, (D.14) can be projected onto these subspaces,

Hll.cl + Hlh.ch = Ecl , (D.17)

Hhl.cl + Hhh.ch = Ech . (D.18)

“Integrating out” ch via the second equation, we get

(Hll + ΔH)cl = Ecl , (D.19)

ΔH = −Hlh
1

Hhh − E Hhl = −Wlh
1

Hhh − E Whl , (D.20)

where we used that in the Hamiltonian (6.24) only W will mix the low and high subspaces.
At leading order one can neglect W in the denominator, which gives

ΔH ≈ −Wlh
1

Ĥ + H̄0 − E Whl = −
∑

i∈Hh

1
Ei − E PlW |i〉〈i|WPl (D.21)

where a summation over all the states in Hh appears.

It turns out that the effect induced by the truncation of Ĥ is less significant than for H̄. It’s
also less expensive to control. We found that fixing the corresponding cutoff s to 4 or 5 basically
stabilizes the results. For this reason we will only take into account the renormalization effect
coming from the nonzero field modes. This means that we will restrict the sum in (D.21) to
go only over the Ĥl ⊗ H̄h part of Hh. Therefore, we approximate

ΔH ≈ −
∑

ψα∈Ĥl

∑
k∈H̄h

1
Êα + Ēk − E W |ψα, k〉〈ψα, k|W (D.22)

where we dropped the projectors Pl to avoid cluttering. The potential matrix W can be
schematically written as

W =
∑

a=2,3,4
m̂a ⊗ V̄a , (D.23)

where m̂a and V̄a are matrices in the Ĥ and H̄, respectively. Therefore,

ΔH ≈ −
∑
a,b

∑
ψα∈Ĥl

(
m̂a|ψα〉〈ψα|m̂b

)
⊗

⎛⎝ ∑
k∈H̄h

1
Êα + Ēk − E V̄a|k〉〈k|V̄b

⎞⎠ . (D.24)
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D.2. Renormalization in the Z2-broken phase

The matrix elements
(

m̂a|ψα〉〈ψα|m̂b

)
can be computed explicitly, while the second factor in

(D.24) is evaluated with the same technique developed in [3]:

∑
k∈H̄h

1
Êα + Ēk − E V̄a|k〉〈k|V̄b =

∫ ∞

Ēmax
dE

1
Êα + E − E Mab(E) , (D.25)

Mab(E)ij dE ≡
∑

k:E≤Ēk≤E+dE

(V̄a)ik(V̄b)kj , (D.26)

where the matrix elements Mab
ij can be related to the non-analytic behavior of two-point

functions of the potential operators,

Cab(τ)ij = 〈i|V̄a(τ/2)V̄b(−τ/2)|j〉 =
∫ ∞

0
e−[E−(Ei+Ej)/2]Mab

ij (E) , (D.27)

V̄a(τ) ≡ eH0τ V̄ae−H0τ . (D.28)

The quantities Cab(τ)ij are computed as in [3] using the Wick theorem. The only difference is
that the boson two point function Ḡ(ρ) in the present case does not include the contribution
from the zero mode,

Ḡ(ρ) = G(ρ) − 1
2LM

. (D.29)
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Appendix E

Semiclassical ground state splitting

E.1 Ground state splitting

We will review here the derivation of Eq. (6.36).1 We start from the Euclidean action

S =
∫

d2x

[1
2

(∂φ)2 + g
(
φ2 − c2

)2
]

, (E.1)

which entails the perturbative particle mass m2 = 8gc2. The normal ordering prescription for
renormalization adopted in this work is equivalent to the mass renormalization2

S → S − δm2

4

∫
d2x φ2 , δm2 =

6g

π

∫ ∞

−∞
dk

1√
k2 + m2

. (E.2)

We will compute the matrix elements

A± = 〈φ = ±c|e−Hτ0 |φ = c〉 = N
∫

Dφ e−S[φ] , (E.3)

where the path integral in the r.h.s. is defined with the boundary conditions φ(x, τ0/2) = ±c,
φ(x, −τ0/2) = c. The path integral measure normalization factor N will be fixed below. The
results for the matrix elements will then be translated into the energy splitting.

Consider first the transition amplitude from c to −c in the one-instanton approximation. The
instanton takes the form

φ0(x, τ) = c tanh
m(τ − τc)

2
, (E.4)

where the center τc is arbitrary. This solution has action

S0 + δS0 = L
m3

12g
− L δm2 c2

4

∫ ∞

−∞
dτ

(
tanh2 mτ

2
− 1

)
= L

m3

12g
+ L

δm2

8g
m , (E.5)

1See [128] for a pedagogical discussion in quantum mechanics, and [129] for an analogous computation for
the partition function at finite temperature, which can be interpreted as a computation of the coefficient κ in
(E.10).

2Let us neglect the cosmological constant renormalization as it does not affect the energy splitting.
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Appendix E. Semiclassical ground state splitting

where we included the contribution due to the mass counterterm. We need S0 � 1 for the
validity of the semiclassical approximation.

At the one-loop order, (E.3) can be approximated by

N
∫

Dφ e−S[φ] ≈ e−S0N
∫

Dη e
−
∫

η δ2S
δφ2 η

. (E.6)

Taking into account the presence of the zero mode of the quadratic fluctuation operator δ2S
δφ2

due to the invariance of S under a shift of τc, this results in√
S0

2π
e−S0N [

det′ (−� + V ′′)]−1/2
τ0 , (E.7)

where the prime indicates that the zero mode has been removed from the determinant, and
we replaced the integral over the zero mode with [128]

∫
dc0 =

√
S0

2π

∫ τ0/2

−τ0/2
dτ . (E.8)

To fix N , consider the 0 → 0 transition amplitude in the free massive theory, given simply by

A0 = 〈φ = 0|e−H0τ0 |φ = 0〉 = N
[
det

(
−� + m2

)]−1/2
. (E.9)

In the ratio of the two amplitudes the normalization factor cancels,

A−/A0 ≈ κτ0 , κ =

√
S0

2π
e−S0

[
det′ (−� + V ′′)

m−2 det (−� + m2)

]−1/2

m . (E.10)

Now, let us calculate the determinant ratio. We need to solve the eigenvalue equation(
− d2

dx2 − d2

dτ2 + 12gφ2
0 − 4gc2

)
ψ =

(
− d2

dx2 − d2

dτ2 + m2 − 3
2

m2 1
cosh2 mτ

2

)
ψ = εψ . (E.11)

The eigenstates are of the form ψ(x, τ) = e−iknxψn(τ), where kn = 2πn
L due to periodic

boundary condition on the cylinder, and(
− d2

dτ2 + ω2
n − 3

2
m2 1

cosh2 mτ
2

)
ψn = εnψn , (E.12)

where we defined ω2
n ≡ k2

n + m2. The eigenvalues of (E.12) comprise two bound states,

εn,0 = k2
n, εn,1 =

3
4

m2 + k2
n (E.13)

and a continuum (for infinite τ0) of states with εn ≥ ω2
n [130], which can be parametrized by
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E.1. Ground state splitting

the “momentum”
p =

√
εn − ωn ≥ 0 . (E.14)

We consider τ0 � m−1 large but finite (but not too large—see below). Imposing the boundary
conditions ψn(±τ0/2) = 0, the p’s take discrete values,

pτ0 − δp = πl = p̃lτ0 , l = 0, 1, . . . . (E.15)

where the p̃l represent the eigenvalues in the free theory, and the phase shift is [130]

δp = −2π + 2 arctan
2p

m
+ 2 arctan

p

m
(E.16)

Here the −2π term is added so that δp vanishes for p → ∞, corresponding to the fact that
the effects of the potential disappear at high energies. In fact only l ≥ 2 gives p ≥ 0, while
for p̃ we have l ≥ 0. Taking into account the two bound states, we have the same number of
eigenstates with and without the kink. The determinant ratio in (E.7) at large τ0 evaluates to

det′ (−� + V ′′)
m−2 det (−� + m2)

=
∞∏

n=−∞

⎧⎨⎩
(

k2
n

ω2
n

)1−δn0
k2

n + 3
4m2

ω2
n

∞∏
l=2

p2
l + ω2

n

p̃2
l + ω2

n

⎫⎬⎭ . (E.17)

We took into account that for n = 0 the first bound state of the kink theory is the zero mode
which has been already factored out.

Performing the product over n by means of the identity

sinh z

z
=

∞∏
n=1

(
1 +

z2

π2n2

)
, (E.18)

we can write the result in the form

det′ (−� + V ′′)
m−2 det (−� + m2)

= (mL)2e
mL

(√
3

2 −2
)

+LΣ+2b
, (E.19)

Σ =
∞∑

l=2
(p2

l + m2)1/2 − (p̃2
l + m2)1/2 , (E.20)

b = log
1 − e−

√
3

2 mL

(1 − e−mL)2 +
∞∑

l=2
log(1 − e−(p2

l +m2)1/2L) − log(1 − e−(p̃2
l +m2)1/2L) . (E.21)

For τ0m � 1 we can approximate the sums by integrals,

Σ =
∫ ∞

0

dp

π
δp

d

dp
(p2 + m2)1/2 = m(2 − 3/π − 1/

√
3) + log.div. , (E.22)

where the logarithmic UV divergence is canceled in the final answer by the counterterm in
(E.5).
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Analogously

b = log
1 − e−

√
3

2 mL

(1 − e−mL)2 +
∫ ∞

0

dp

π
δp

d

dp
log(1 − e−(p2+m2)1/2L) = f(mL) , (E.23)

f(x) = log(1 − e−
√

3
2 x) − 2

π

∫ ∞

0
dq

(
1

1 + q2 +
2

1 + 4q2

)
log(1 − e−(q2+1)1/2x) . (E.24)

The function f(x) tends to zero exponentially fast for x � 1, whereas for intermediate x it
has to be computed numerically, see figure E.1 .

2 4 6 8
x

-0.05

0.05

0.10

0.15

0.20

0.25
f(x)

Figure E.1: The function f(x) defined in Eq. (E.24).

Gathering everything, the coefficient κ in (E.10) is given by (cf. [129], (3.27))

κ =

√
m3

24πgL
e−LMkink−f(mL) , Mkink =

m3

12g
+ m

( 1
4
√

3
− 3

2π

)
. (E.25)

Not surprisingly, the leading exponential dependence of this result is governed by the kink
mass Mkink in the one-loop approximation, first computed in [120].

The one-instanton approximation for A− will break down for τ0 so large that κτ0 = O(1). In
this extreme τ0 → ∞ limit, both amplitudes A± receive contributions from multi-instanton
configurations in the path integral, which are approximate solutions of the equation of motion.
We can use the instanton-gas approximations, where the centers of the instantons are far
apart, and resum all these contributions, to give

A+ = A0 cosh κτ0, A− = A0 sinh κτ0 . (E.26)

We did not consider the purely perturbative corrections to these amplitudes, as they are the
same for the quasi-degenerate states and therefore do not interest us.

Taking the τ0 → ∞ limit in (E.26), one can infer the presence of two exchanged states split in
energy by ΔE = 2κ, which is our final result.
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