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Abstract 

Genetic, physiological, and biochemical studies have successfully ascribed functions to genes in 

diverse processes. However, the majority of our knowledge in biology is qualitative in nature and is usually 

based on classical screens, where large effects on a qualitative phenotype are usually sought. While very 

essential to our mechanistic understanding, these methods can be inadequate when it comes to under-

standing inter-individual differences in complex quantitative traits. The intensive characterization of the 

Drosophila gut response to infection has led to the identification of many of its major players and canonical 

pathways. However, knowledge of what genes and pathways are relevant in determining inter-individual 

differences in a natural population is still lacking. This study addresses this question by using a systems ge-

netics approach where the effects of natural genomic perturbations on the outcome of enteric infection are 

explored, often revealing unexpected determinants of infection resistance. 

Keywords 

Systems Genetics – Genetics – Quantitative Trait – Complex Trait - Natural Variation – Drosophila melano-

gaster – Gut – Enteric infection – Gene Expression – Alternative Splicing 
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Résumé 

L’attribution de fonctions aux gènes, intervenant dans divers processus biologiques, a connu un 

large essor grâce aux nombreuses études en génétique, physiologie et biochimie. Cependant les connais-

sances actuelles en biologie sont principalement de nature qualitative et généralement basées sur des cri-

blages basiques où seuls des effets au niveau de l’expression qualitative d’un phénotype sont recherchés. 

Bien qu’essentielles à la compréhension des mécanismes, ces méthodes peuvent être insuffisantes lorsqu’il 

s’agit de comprendre les différences inter-individuelles concernant des caractéristiques quantitatives plus 

complexes. La caractérisation intensive de la réponse immunitaire et physiologique à l’infection du tractus 

intestinal chez Drosophila a conduit à l’identification de nombreux de ses acteurs principaux et voies de 

signalisation majeures. Cependant, les connaissances concernant l’importance des gènes et des voies de 

signalisation dans la détermination des différences inter-individuelles, au sein d’une population naturelle, 

fait encore défaut. Cette étude tente de répondre à cette problématique en utilisant une approche de Gé-

nétique des systèmes, où les effets de perturbations génomiques naturelles sur la réponse à l’infection 

entérique sont explorés, révélant souvent des facteurs déterminants inattendus concernant la résistance à 

l’infection. 

 

Mots-clés 

Génétique des systèmes – Génétique - Caractéristique quantitative - Caractéristique complexe - Variation 

naturelle - Drosophila melanogaster – Tractus intestinal - Infection entérique - Expression de gène - Épis-

sage alternatif 

 

 



 

v 

Contents 

Acknowledgements ....................................................................................................................... i 

Abstract ....................................................................................................................................... iii 

Keywords ..................................................................................................................................... iii 

Résumé ....................................................................................................................................... iv 

Mots-clés ..................................................................................................................................... iv 

List of Figures ............................................................................................................................... ix 

List of Supplementary Figures ........................................................................................................ x 

List of Supplementary Tables ....................................................................................................... 11 

 Introduction ............................................................................................................. 12 

1.1 Heredity and Quantitative Traits ...................................................................................... 12 

1.2 Nature versus Nurture ...................................................................................................... 14 

1.3 The Genetic Architecture of Quantitative Traits ............................................................... 16 

1.4 Systems Genetics: moving from Genetic to Molecular Architecture of Complex Traits .. 17 

1.5 Drosophila melanogaster: a brief background ................................................................. 19 

1.6 The Drosophila Genetic Reference Panel ......................................................................... 21 

1.7 The Immune System of Drosophila ................................................................................... 22 

1.7.1 The adult Drosophila Gut in the Normal and Infected State .................................. 23 

1.8 Objectives and Overview of the Thesis ............................................................................. 26 

 Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut 

Immunocompetence .......................................................................................................... 27 

Abstract ....................................................................................................................................... 27 



 

vi 

Author Contributions and Acknowledgements ......................................................................... 27 

2.1 Introduction ...................................................................................................................... 28 

2.2 Results ............................................................................................................................... 29 

2.2.1 Genetic variation in susceptibility to enteric infection........................................... 29 

2.2.2 Characterization of lines from the phenotypic extremes ....................................... 32 

2.2.3 Genetic architecture of susceptibility to enteric infection ..................................... 33 

2.2.4 Genome-wide association study for survival to infection ...................................... 34 

2.2.5 Transcriptomic analysis of phenotypic extremes ................................................... 37 

2.2.6 A role for ROS in variation in susceptibility ............................................................ 40 

2.3 Discussion .......................................................................................................................... 41 

2.4 Materials and Methods ..................................................................................................... 43 

2.4.1 Fly stocks ................................................................................................................. 43 

2.4.2 Infection, Paraquat treatment, and Survival experiments ..................................... 44 

2.4.3 RT-qPCR .................................................................................................................. 44 

2.4.4 Bacterial load measurement .................................................................................. 45 

2.4.5 Assessment of nascent protein synthesis ............................................................... 45 

2.4.6 PH3 staining ............................................................................................................ 45 

2.4.7 ROS measurement .................................................................................................. 45 

2.4.8 Genome wide association analysis ......................................................................... 46 

2.4.9 RNAseq analysis ...................................................................................................... 46 

2.4.10 Quantitative genetic and statistical analyses ......................................................... 47 

2.5 Supplementary Materials .................................................................................................. 48 

2.6 Supplementary Tables ...................................................................................................... 54 

 The impact of gene expression cis-regulatory variation on the outcome of enteric 

infection in Drosophila ....................................................................................................... 63 

Abstract ....................................................................................................................................... 63 

Author Contributions and Acknowledgements ......................................................................... 63 



 

vii 

3.1 Introduction ...................................................................................................................... 64 

3.2 Results ............................................................................................................................... 65 

3.2.1 Few or no genes are significantly different between resistance classes ................ 65 

3.2.2 Feature selection and prediction of treatment condition and susceptibility class from the 

gut transcriptome. .................................................................................................. 68 

3.2.3 Resistance class can be fully predicted based on specific gene signatures. ........... 70 

3.2.4 cis-eQTL analysis links natural variation to gene expression levels. ...................... 71 

3.2.5 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is involved in the gut 

response. ................................................................................................................ 74 

3.3 Discussion .......................................................................................................................... 76 

3.4 Materials and Methods ..................................................................................................... 77 

3.4.1 Fly Stocks and infection experiments ..................................................................... 77 

3.4.2 RNAseq ................................................................................................................... 78 

3.4.3 Machine learning and prediction............................................................................ 79 

3.4.4 cis-eQTL analysis ..................................................................................................... 79 

3.5 Supplementary Materials .................................................................................................. 80 

 The alternative splicing landscape of the Drosophila gut upon enteric infection ......... 83 

Abstract ....................................................................................................................................... 83 

Author Contributions and Acknowledgements ......................................................................... 84 

4.1 Introduction ...................................................................................................................... 84 

4.2 Results ............................................................................................................................... 85 

4.2.1 Enteric infection with different pathogens leads to widespread changes in intron 

retention ................................................................................................................. 85 

4.2.2 Enteric infection leads to extensive changes in transcript isoform ratios.............. 86 

4.2.3 The transcriptional response is characterized by higher isoform diversity ............ 89 

4.2.4 Post-infection transcripts tend to be longer, mainly due to the production of longer 5’ 

UTR.......................................................................................................................... 90 



 

viii 

4.2.5 The effect of natural variation on splicing is increased after infection. ................. 93 

4.2.6 Intron retention is increased following infection across a natural population ...... 96 

4.2.7 Retained introns have exon-like characteristics ..................................................... 96 

4.2.8 The RNA-binding protein lark/RBM4 is involved in the defense response ............ 99 

4.3 Discussion ........................................................................................................................ 101 

4.4 Materials and Methods ................................................................................................... 103 

4.4.1 Fly Stocks and infection experiments ................................................................... 103 

4.4.2 RNA extraction ...................................................................................................... 103 

4.4.3 RT-qPCR ................................................................................................................ 103 

4.4.4 RNA-seq ................................................................................................................ 103 

4.4.5 ChIP-seq ................................................................................................................ 104 

4.4.6 Statistical and Computational analyses ................................................................ 106 

4.5 Supplementary Materials ................................................................................................ 108 

 Conclusion ............................................................................................................. 115 

5.1 The Reductionist Approach versus Systems Genetics .................................................... 116 

5.2 Lessons from the Genetic Architecture of Resistance to Enteric Infection .................... 117 

5.3 Lessons from Gene Expression Profiling and Prospects ................................................. 119 

Bibliography ............................................................................................................................. 122 

Curriculum Vitae – Maroun Bou Sleiman .................................................................................... 139 

 



 

ix 

List of Figures 

Figure 2:1 Susceptibility to infection is highly variable among DGRP lines and multifactorial. ................ 31 

Figure 2:2 Gut immunocompetence is a largely additive, complex trait. ................................................... 33 

Figure 2:3 GWAS reveals genetic loci underlying susceptibility to infection. ............................................. 36 

Figure 2:4 Specific gene expression signatures define susceptibility to bacterial enteric infection. ......... 39 

Figure 2:5 Diversity in ROS metabolism is a feature of variable susceptibility. ......................................... 41 

Figure 3:1 Few or no genes are consistently different between fly resistance classes .............................. 67 

Figure 3:2 Feature selection and prediction of treatment condition from the gut transcriptome. ........... 69 

Figure 3:3 Resistance class can be fully predicted based on specific gene signatures. .............................. 71 

Figure 3:4 cis-eQTL analysis links natural variation to gene expression levels. ......................................... 73 

Figure 3:5 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is involved in the gut 

response. ....................................................................................................................................................... 75 

Figure 4:1 Enteric infection with different pathogens leads to widespread changes in intron retention. 86 

Figure 4:2 Enteric infection leads to extensive changes in transcript isoform ratios ................................. 88 

Figure 4:3 The gut transcriptional response to infection is characterized by higher isoform diversity..... 90 

Figure 4:4 Post-infection transcripts tend to be longer, mainly due to the production of longer 5’ UTR. 92 

Figure 4:5 The effect of natural variation on splicing is increased after infection. .................................... 95 

Figure 4:6 Retained introns have exon-like characteristics ......................................................................... 98 

Figure 4:7 The RNA-binding protein lark/RBM4 is involved in the defence response ............................. 100 

 



 

x 

List of Supplementary Figures 

Supplementary Figure 2:1 Feeding behaviour, Wolbachia, and microbiota do not have a major influence 

on susceptibility to enteric infection. ....................................................................................................... 48 

Supplementary Figure 2:2 Identification of a loss of function mutation in the dredd locus in one DGRP line.

 .................................................................................................................................................................... 49 

Supplementary Figure 2:3 Lines resistant to P. entomophila are also resistant to a clinical isolate of 

Pseudomonas aeruginosa. ........................................................................................................................ 50 

Supplementary Figure 2:4 Different statistical approaches yield highly similar GWAS top hits. ............ 50 

Supplementary Figure 2:5 Illustration of the Beavis effect. ..................................................................... 51 

Supplementary Figure 2:6 Validation of candidate genes. ....................................................................... 51 

Supplementary Figure 2:7 Permutations of random sampling followed by PCA of the RNA-seq data. . 52 

Supplementary Figure 2:8 Principal component analysis of modules ...................................................... 53 

Supplementary Figure 3:1 Reproducibility of line-specific transcriptomes ............................................. 80 

Supplementary Figure 3:2 Feature selection and prediction of resistance class ..................................... 81 

Supplementary Figure 3:3 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is in-volved 

in the gut response. ................................................................................................................................... 82 

Supplementary Figure 4:1 Enteric infection with different pathogens leads to widespread changes in 

intron retention ....................................................................................................................................... 108 

Supplementary Figure 4:2 Enteric infection leads to extensive changes in transcript isoform ratios .. 109 

Supplementary Figure 4:3 The transcriptional response is characterized by higher isoform diversity 110 

Supplementary Figure 4:4 Post-infection transcripts tend to be longer, mainly due to the production of 

longer 5’ UTRs .......................................................................................................................................... 111 

Supplementary Figure 4:5 Predicted Exonic and Intronic Splicing Enhancers (ESE and ISE) are enriched for 

sQTLs. ....................................................................................................................................................... 112 

Supplementary Figure 4:6 Retained introns have exon-like characteristics .......................................... 113 



 

11 

List of Supplementary Tables 

Supplementary Table 2:1 Percentage death of tested DGRP lines 3 days post-infection with Pseudomonas 

entomophila .................................................................................................................................................. 54 

Supplementary Table 2:2 Analyses of variance for diallel survival data (after angular transformation). . 57 

Supplementary Table 2:3 Summary of top QTLs obtained in common between parametric and non-

parametric association studies. .................................................................................................................... 58 

Supplementary Table 2:4 Additive multiple-SNP model results .................................................................. 59 

Supplementary Table 2:5 Multiple-SNP regression for SNPs in module #96 .............................................. 60 

Supplementary Table 2:6 List of primer sequences used in the study ........................................................ 61 

Supplementary Table 2:7 Differential expression analysis between all challenged and all unchallenged 

samples ......................................................................................................................................................... 61 

Supplementary Table 2:8 Analysis of genes differentially expressed in resistant versus susceptible lines.61 

Supplementary Table 2:9 Modulated modularity clustering modules. ....................................................... 61 



Introduction 

12 

 Introduction 

 

1.1 Heredity and Quantitative Traits 

Organisms share very similar features, or a theme, yet each is a distinct variation on that theme. 

Even at the level of a single species, there exist infinite variations on the main theme.  In his seminal book, 

On the Origin of Species, Charles Darwin proposed a theory that connected all life forms and provided a 

rational explanation for the presence of intra- and interspecific diversity  (Darwin 1871). This paradigm shift 

laid the grounds for other scientists to uncover the determinants of this diversity, starting from the laws of 

genetic inheritance, to the discovery of the genetic code, to the current age of genomics (Mayr 1982). 

 

It was clear that the mode of inheritance of some traits, like the those of Gregor Mendel’s peas (Mendel 

1965), were relatively easy to understand, since they are determined by a single genetic factor. However, 

most traits are quantitative in nature rather than discrete. The concept of Mendelian inheritance, which is 

based on the discrete inheritance of genetic loci, seemingly failed to explain continuous or quantitative 

traits and was initially shunned by a part of the scientific community (Franklin, Edwards et al. 2008). Bio-

metricians, including Karl Pearson, believed that only statistics and mathematics could lead to answers, yet 

their approaches were only based on phenotypic observations and offered little biological explanation to 

the underlying mechanisms. Mendelians, on the other hand, claimed to have a better understanding of the 

laws of heredity, yet they were mathematically inept and incapable of performing rigorous statistical 

treatment of biological data. Each camp was actively looking for natural examples to support its theory. The 

Biometricians focused on small, continuous variations as proposed by Darwin’s theory while the Mendeli-

ans believed large discontinuous variations are the major driving force in determining variation in a pheno-

type, and consequently in natural selection (Rushton 2000). 
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During this rather unproductive struggle between the two camps, the gap in our understanding of the gen-

otype-phenotype relationship was not getting narrower. The breakthrough came when Sir Ronald Fisher 

effectively combined the two schools to help create the modern synthesis of evolution (Fisher 1918). Fisher 

proposed that what we perceive as quantitative variation could in fact be the result of the combined con-

tribution of many factors with small effects, each having a Mendelian basis of inheritance. If a gene affects 

a trait, then the individuals carrying different alleles should deviate from a certain central value. Hence, the 

concepts of mean and variance could be directly applied to problems in genetics while respecting the laws 

that Mendel proposed and others confirmed. The next major milestone was the discovery of genetic link-

age (Bateson, Mendel et al. 1902, Morgan 1911, Punnett 1911, Morgan 1915) and construction of the first 

linkage maps (Morgan 1911, Sturtevant 1913). By calculating frequencies of crossing over, the physical lo-

cation of the so-called ‘factors’ leading to visible phenotypes could now be mapped to chromosomes, giv-

ing us the first coarse understanding of how hereditary information is organized. This allowed the analysis 

of quantitative traits from a new perspective that integrates the physical location of the genetic factors and 

their modes of inheritance. Segregating alleles that are physically close are expected to have higher linkage 

than those that are farther away, and alleles on different chromosomes are completely unlinked. 

Knowledge of the physical maps of alleles, as well as the relationship between individuals, could therefore 

inform geneticists about the possible effects of those alleles. 

 

Subsequent experimental studies on quantitative traits (Castle and Little 1910, Altenburg and Muller 1920) 

led to the realization that multiple factors affect the levels of those traits, a concept termed the “polygene” 

(Thoday 1961). The polygene was defined as a set of loci underlying quantitative variation that share with 

Mendelian characters the same laws of inheritance. It was therefore crucial to identify the locations and 

contributions of those loci using Quantitative Trait Locus mapping, or QTL mapping. The first example of 

QTL mapping was performed by Sax in 1923 on the pigmentation and size of common beans, where he 

crossed beans of different sizes or colors and examined the F2 segregates and found that size, unlike pig-

mentation, is affected by the cumulative contributions of independently inherited linkage groups (Sax 

1923). 

 

Advances in molecular biology provided the first mechanistic understanding of biological processes and 

heredity, and led to the formulation of the ‘central dogma of molecular biology’ (Crick 1958). This was fol-

lowed by rapid technological advances that nowadays give researchers unprecedented ability to acquire 

large-scale biological data. In what is now called systems genetics, extensive genomic as well as tran-
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scriptomic and other data from many individuals is integrated to study the genetic architecture of quantita-

tive traits as well as the basic biology underlying organismal function (Mackay, Stone et al. 2009, Civelek 

and Lusis 2014). In this thesis, I attempted to understand one complex trait where quantitative variation is 

very relevant: the inter-individual variation in resistance to enteric infection. Why and do different, immu-

nocompetent, individuals succumb differently to a bacterial infection in the intestinal tract? Over the next 

chapters, I shall describe what I, along with colleagues, have uncovered. 

 

1.2 Nature versus Nurture 

A major question in genetics is the extent to which traits are determined at the genetic level, or in 

quantitative genetics terms, heritability. Fisher’s pioneering work in analysis of variance (ANOVA) has been 

motivated by this question, and paved the way for the estimation of this central property (Fisher 1918, 

Wright 1921). According to Wright and Fisher, the observed variance in a certain trait can be partitioned 

into different sources of variation. In its most basic form, the total variance observed, or the phenotypic 

variance VP, is the sum of the genotypic variance VG and the environmental variance VE. The ratio of geno-

typic variance to environmental variance reflects the degree of genetic determination, and is termed 

broad-sense heritability. Broad-sense heritability, however, does not estimate the extent to which genetic 

information passed from the parents affects the phenotype, since not all genetic effects are additive in 

nature. Therefore,  VG could be further subdivided into additive genetic variance VA, the dominance vari-

ance VD, and the interaction variance VI, (Falconer and Mackay 1996). The narrow-sense heritability h2 (re-

ferred to as heritability), is defined as the ratio of additive genetic variance to phenotypic variance. What h2 

essentially reflects is the proportion of observed variation that is attributable to genetic polymorphism in 

an additive manner and, more importantly, the degree of resemblance between relatives (Falconer and 

Mackay 1996). 

 

Studies on many human and non-human complex traits have shown that many are highly heritable. Height, 

for instance, has a heritability ranging from 51-80% (Silventoinen, Magnusson et al. 2008, Zaitlen, Pasaniuc 

et al. 2014). Initial attempts to identify the genetic factors explaining this heritability were not successful. 

Genome wide association studies on human height have identified 54 genetic variants influencing the trait, 

yet they only explain 5% of the phenotypic variance (Visscher 2008). This observation and others have 

prompted scientists to call this problem “the missing heritability” (Manolio, Collins et al. 2009). Those at-

tempts were mainly based on the premise that few loci in the genome should explain a large fraction of the 

observed phenotypic variation. While this can be true in some cases, it is in fact highly dependent on the 
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genetic architecture of  the trait in question (Swami 2010, Zhang 2015). For instance, when considering all 

variants in the human genome simultaneously, up to 45% of the phenotypic variance can be explained 

(Yang, Benyamin et al. 2010). Interestingly, when the contribution to the heritability in height was broken 

down by chromosome, longer chromosomes were found to contribute more than shorter ones (Visscher, 

Macgregor et al. 2007). This supports the notion that height and possibly many other traits are highly poly-

genic and are affected by many loci with small effect sizes. 

 

One should also be aware that the heritability estimate might be inflated by non-additive genetic interac-

tions such as epistasis (Zuk, Hechter et al. 2012). Genetic interactions can exist between two alleles at the 

same locus, called dominance interactions, and at different loci, called epistatic interactions (Falconer and 

Mackay 1996). In other words, certain combinations of alleles affect the measured phenotype in a non-

additive manner, which could lead to inaccurate estimates of the narrow-sense heritability (which is a top-

down estimation from the phenotypes of the population), and therefore an inability to account for it using 

additive models with identified genetic loci. Also, as mentioned earlier, a proportion of the phenotypic var-

iance can be attributed to variations imposed by the environment. For example, in human monozygotic 

twins, some traits are largely affected by either shared or unique environmental factors (Boomsma, 

Busjahn et al. 2002). It is important to acknowledge that some traits are more affected by environmental 

factors than others. Also, while a change in environmental conditions can cause the same phenotypic 

change in different genotypes, some genetic effects might be manifested differently in different conditions, 

a phenomenon called Genotype-by-Environment (GxE) interactions. These interactions are specifically im-

portant, for instance during disease and infection, and could be determining the prognosis (Baye, Abebe et 

al. 2011). Furthermore, some variations seem to be neutral in a range of conditions, and only manifest 

themselves when the environment is perturbed. These cryptic genetic variations can be especially pertinent 

in determining the penetrance of common diseases as well as the efficiency of plant and livestock breeding 

programs (Gibson and Dworkin 2004).  

 

It is therefore imperative that any genetic or breeding study takes into account for or eliminates environ-

mental factors (Falconer 1952). Ideally, by measuring the traits of individuals of the same genotype under 

different conditions, one could analyse these interactions and uncover cryptic variation. In most cases, like 

in human studies, controlling the environmental factors is impossible, and researchers must incorporate as 

many of those variables in their models as possible. Model systems could allow for a more precise control 
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of the environment, and thus prove to be more convenient to carefully dissect the relationship between 

genotype and phenotype (Lehner 2013).  

 

 

1.3 The Genetic Architecture of Quantitative Traits 

The number of loci affecting a trait, the distribution of their effect sizes, and their interactions 

with each other (dominance and epistasis) and with the environment constitute the mapping between the 

genotype and the phenotype. This mapping and its variational properties is referred to as the genetic archi-

tecture of a trait (Hansen 2006). Characterizing the genetic architecture is a major aim in biology for many 

important reasons: understanding and treating disease, animal and plant breeding, and understanding evo-

lutionary processes such as speciation and adaptation. 

 

Almost a century has passed since the concepts and approaches devised by Fisher and others have been 

proposed, yet they are still widely used today, and specifically in this thesis. What has changed is the scale 

at which we now perform our analyses. Advances in molecular biology, sequencing and computation have 

allowed us to acquire genetic information at an unprecedented pace, and now the main challenge is sifting 

through large datasets to identify the most relevant factors. A Genome Wide Association Study (GWAS) is 

one powerful strategy that attempts to understand the genotype-phenotype relationship. In its simplest 

form, a GWAS calculates the effect size of a certain polymorphism and the significance of its association 

with the phenotype (Bush and Moore 2012). It is worthy to note that an associated locus does not have to 

contain the causal variant, but might be linked to it. The result is a table with a number of rows equal to the 

number of tests, or variants, indicating their statistical significance and effect sizes. The distribution of 

those values is dependent on the genetic architecture of the trait. For instance, a trait with a simple archi-

tecture would have one or few very significant loci with large effect sizes. In contrast, a highly polygenic 

trait is expected to have very few significant loci with large effects, indicating that its levels are not imposed 

by a single or few major factors. 

 

Due to its reliance on statistical testing at every segregating locus, the statistical power of each GWAS test 

is dependent on the allele frequencies of this locus. Consequently, it is impossible to perform associations 

for loci with rare variants. This is why GWAS is only well suited to uncover the effects of common variants, 
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which is also contributes to the inability to completely account for heritability. These effects can be esti-

mated rather indirectly through region-based associations, where rare variants are aggregated by gene or 

region (Lee, Abecasis et al. 2014). Another limitation of GWAS is that it is limited to segregating variation in 

the selected population. Hence, conserved loci or loci that are not variable within the studied population 

cannot be interrogated. This undermines the reproducibility of many studies, especially when there is 

population stratification (Nebert, Zhang et al. 2008).  

 

An intimate knowledge of genetic architecture at the highest resolution is of great scientific and practical 

interest. For instance, knowledge of heritability could be used to predict the response to selection in plant 

and animal breeding programs where a certain quantitative trait is sought to be optimized (Falconer and 

Mackay 1996, Lynch and Walsh 1998). The breeder’s equation (Response = h2 x Selection differential) pre-

dicts the change in the trait mean, or response, after one generation of selection based on the heritability 

and the selection differential, which is the difference in the mean value of the selected individuals and the 

population. The power of this equation is that there is no need to know all allelic effects and frequencies in 

the population. As selection leads to changes in allele frequencies in the subsequent generations, the ge-

netic variance VG would be changed, and hence heritability would be altered. This is why a good under-

standing the genetic architecture of a trait could help in streamlining breeding programs. By performing 

‘genomic selection’ using high-resolution genotyping data, more informed breeding schemes could be de-

vised (Goddard and Hayes 2007). For example, in dairy cattle, the rate of genetic improvement could be 

doubled by using information from 50,000 single nucleotide polymorphisms (Seidel 2009). In addition to 

that, the cost of the breeding programs in dairy cattle could be reduced by 92% (Schaeffer 2006). 

 

1.4 Systems Genetics: moving from Genetic to Molecular Architecture of 

Complex Traits 

One of the aims of quantitative genetics is to identify and estimate the effect sizes of polymorphic 

genomic loci (Quantitative Trait Loci or QTLs) that are possibly affecting a complex trait. This is achieved by 

testing for statistical association between alleles at a certain locus and a quantitative phenotype. However, 

it is neither able to single out the causal loci, nor the molecular mechanisms underlying their effects. In 

addition, most of the genome consists of non-protein-coding regions that include the majority of the genet-

ic variation. This makes it very hard to generate hypotheses on the function of a putative causal locus. 

Therefore, any real molecular understanding of a complex biological trait requires the simultaneous and 
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comprehensive analysis of the organism at various levels. Systems genetics is the approach where different 

layers of information, or intermediate phenotypes, are integrated in populations whose individuals have a 

variable trait of interest. 

 

Intermediate phenotypes such as gene expression and proteomics data could provide valuable insights into 

the biological networks affecting the measured phenotype (Ayroles, Carbone et al. 2009, Civelek and Lusis 

2014). Intuitively speaking, genetic variation might have more direct and detectable effects on the inter-

mediate phenotypes. For example, variations in transcription factor binding sites could lead to measurable 

differences in gene expression. We are only starting to appreciate the impact of variation in non-coding 

regions on tissue-, stage-, and environment-specific gene regulation (Cubillos, Coustham et al. 2012, 

Kilpinen, Waszak et al. 2013, Francesconi and Lehner 2014, Lee, Ye et al. 2014, Albert and Kruglyak 2015). 

In order to study this phenomenon, approaches very similar to GWAS can be used, but this time substitut-

ing the main phenotype with gene expression levels, or any other intermediate phenotype. When applied 

for gene expression data, cis- or trans-expression Quantitative Trait Loci (eQTLs) can be identified (Doss, 

Schadt et al. 2005, Nica and Dermitzakis 2013, Huang, Carbone et al. 2015). Indeed, eQTLs are highly en-

riched in transcription factor binding sites and gene promoters, indicating that natural variation that affects 

gene regulation is more likely to be in functional elements (Gaffney, Veyrieras et al. 2012, Massouras, 

Waszak et al. 2012).  

 

The transcript or protein abundance, as well as that of any other intermediate phenotype, could itself be 

significantly associated with the quantitative trait. For example, a complementary approach would be to 

associate transcript data with the quantitative phenotype in order to identify Quantitative Trait Transcripts 

or QTTs (Passador-Gurgel, Hsieh et al. 2007). In this paradigm, the flow of information from genotype to 

intermediate phenotype to the main phenotype is modeled, and meaningful patterns can be deduced. In 

addition to the genetic architecture, the discipline of systems genetics could therefore provide unprece-

dented insights into the molecular architecture of complex traits and the flow of information in biological 

systems. 

 

Variation is a ubiquitous and necessary concept in systems genetics. The phenotype, the genotype, and the 

intermediate phenotypes are all sources of variation. In addition to that, a system’s response to stimulus or 

environmental perturbation constitutes another interesting source of variation. Studies on mammalian 



Introduction 

19 

primary immune cell lines show that hidden eQTLs are detected after stimulation with immunogens 

(Orozco, Bennett et al. , Fairfax, Humburg et al. 2014, Lee, Ye et al. 2014). Therefore, experiments in prima-

ry cell lines or model systems such as mice, flies, plants, and worms subjected to different environments 

could help understand which pathways and networks underly complex traits. Furthermore, overlapping 

eQTLs, as well as protein QTLs, and other intermediate-phenotype QTLs could help annotate the results of 

the growing body of GWAS results. 

 

Another, often less studied source of variation is alternative splicing. Eukaryotic genes often produce a mix-

ture of several isoforms to generate protein diversity as well as to fine tune the transcriptome. By produc-

ing multiple isoforms, different protein sequences could be generated from the same locus and/or distinct 

regulatory elements could be included in the transcript. This phenomenon is heritable and could be affect-

ed by genetic variation (Kwan, Benovoy et al. 2007). sQTL analysis is the systematic analysis of the effect of 

genetic variation on transcript isoform variation (The GTEx Consortium 2013, Monlong, Calvo et al. 2014, 

Zhang, Joehanes et al. 2015). In their study on whole blood from 5,257 Framingham Heart Study partici-

pants, Zhang and colleagues detect more than 500,000 cis-sQTLs corresponding to 2,650 genes. Interesting-

ly, 395 sQTLs had a GWAS signal yet no eQTL signal. These findings further support the utility of intermedi-

ate phenotype associations such as sQTL analysis in providing mechanistic insight into GWAS results. 

 

In some cases, the information gained in model systems could shed light on the basis of human common 

diseases (Flint and Mackay 2009). While the exact molecular variants might not be conserved across spe-

cies, some commonalities in how the system functions could exist. Moreover, analytical tools that are test-

ed and optimized in model systems could be applied on human data. One advantage of using model sys-

tems is that experiments can be done in vivo rather than on derived cell lines. In a following section, I shall 

introduce Drosophila as a powerful model system and the Drosophila Genetic Reference Panel, a very at-

tractive resource that allows researchers to perform economically feasible in vivo quantitative and systems 

genetics studies. 

 

1.5 Drosophila melanogaster: a brief background 

Drosophila melanogaster, commonly referred to as the fruitfly, is an attractive choice for genetic 

studies (Jennings 2011, Hales, Korey et al. 2015). This genetically tractable species has been used for over a 

century by a large community of researchers who have amassed considerable information on its develop-
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ment, physiology, and genome structure and sequence. Summarizing the vast knowledge on this organism 

is impossible, but I will outline the major motivations for its relevance in current biology and specifically 

quantitative genetics. 

 

One very important reason why Drosophila is popular is purely technical in nature. Rearing flies is both in-

expensive and easy (Greenspan 2004). Little space is required and few equipment are needed to manipu-

late it. It has a short generation time, around 10 days at room temperature, which means that performing 

crosses and studying multiple generations typically takes few weeks. Flies have high fecundity and females 

are able to lay up to 100 eggs a day. Another reason is the relative simplicity of the fly as a system com-

pared to humans. At the level of the genome, it only has four chromosomes. Its complete genome was se-

quenced in 2000 (Adams, Celniker et al. 2000) and at the moment of writing this thesis, it contains 13,907 

protein coding genes in contrast to humans, who have 20000-25000 genes. In addition, there is a high de-

gree of conservation between basic developmental Drosophila and humangenes. 75% of human disease 

genes have related sequences in D. melanogaster (Reiter, Potocki et al. 2001). As a consequence, the fly is 

used as a genetically tractable disease model for many human disorders. The ease of inducing and tracking 

mutations in the fly have made large genetic screens possible, leading to the discovery of the function of a 

plethora of genes and pathways (St Johnston 2002). All these factors have contributed, over the last centu-

ry, to the creation of genetic tools to manipulate the fly genome (Hales, Korey et al. 2015). The yeast 

GAL4/UAS system along with the GAL80 protein are of particular interest in this thesis (Ma and Ptashne 

1987, Brand and Perrimon 1993). This system allows spatiotemporally-controlled transgene expression, 

allowing high-resolution manipulations of gene expression (Rodríguez, Didiano et al. 2011). Last but not 

least, the large Drosophila scientific community has generated several databases and online resources. The 

most widely used resource is Flybase, a very rich database that aims to integrate all knowledge accumulat-

ed in fly research (McQuilton, St Pierre et al. 2012, St Pierre, Ponting et al. 2014). 

 

In addition to classical genetics, fruit flies have been extensively used in the fields of population and quanti-

tative genetics (Flori and Mousseau 1987, Coyne and Orr 1989, Falconer and Mackay 1996, Lynch and 

Walsh 1998). Phenotypes, whether discrete or quantitative, can easily be measured for large samples, of-

ten collected from the wild (Klepsatel, Gáliková et al. 2013). Additionally, there are some classical pheno-

types that have been studied for decades. For example, bristle number has been used extensively as a sys-

tem to understand the genetic basis of quantitative variation as well as response to selection (Mackay and 

Lyman 2005). Finally, the availability of genome sequences of other related Drosophila species have al-
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lowed in-depth genome-wide characterization of evolutionary forces shaping genomes (Drosophila 12 

Genomes Consortium 2007). 

 

1.6 The Drosophila Genetic Reference Panel 

The Drosophila Genetic Reference Panel (DGRP) was conceived in order to reliably study quantita-

tive traits in a model organism. It is a set of Drosophila melanogaster lines derived from an out-crossed 

population in Raleigh, North Carolina (Mackay, Richards et al. 2012, Huang, Massouras et al. 2014). Insemi-

nated females were collected from the Raleigh State Farmer’s Market, then their progeny were subjected 

to full-sib mating in order to approach full heterozygosity. Subsequently, the genomes of 205 lines were 

sequenced and made available for the scientific community. By comparing the lines’ genome sequence to 

the Drosophila reference genome sequence, high quality genotype data is available which consists of 

4,853,802 single nucleotide polymorphisms (SNPs) and 1,296,080 non-SNP variants including insertions and 

deletions (indels) and structural variants (Huang, Massouras et al. 2014). The panel therefore constitutes a 

living library of natural genetic variation that can be used to understand the genetic basis of multiple quan-

titative traits. Importantly, repeated phenotypic measurements can be performed on individuals with the 

same genetic makeup, thus granting researchers the ability to estimate the within-strain variability of a 

trait. By coupling the phenotypic information with the genotyping data through Genome Wide Association 

Studies (GWAS), researchers can identify quantitative trait loci (QTLs) to gain an understanding of the ge-

netic basis of traits and the genes involved. The rapid decay in linkage disequilibrium and the lack of popu-

lation structure in the DGRP make them suitable for GWAS (Mackay, Richards et al. 2012). 

 

Several studies have already been published using the DGRP lines and a major theme emerged when com-

mon natural variants were investigated: most quantitative traits generally have complex genetic architec-

tures with many genetic loci of small effect. Chill coma recovery, startle response, and starvation stress 

were among the first to be studied (Mackay, Richards et al. 2012). Those traits exhibited high broad-sense 

heritabilities, indicating that they have a large genetic component. However, and rather counterintuitively, 

very few QTLs passed genome-wide significance. In most of the cases, these QTLs were in non-coding re-

gions or near genes that were not known to be involved in the quantitative trait of interest. The implica-

tions are two-fold. First, the results underline the possible importance of variation in non-coding regions 

and their possible impact on gene regulation. Second, the GWAS could identify novel players in a trait of 

interest. 
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On the other end of the spectrum, some traits in the DGRP appear to have a simpler genetic architecture. 

Resistance to viral infection is one example, with one common polymorphism explaining up to 47% of the 

heritability in susceptibility (Magwire, Fabian et al. 2012). Interestingly, many genetic loci identified in the 

DGRP lines were later identified in a multi-parent advanced intercross panel, the Drosophila Synthetic Pop-

ulation Resource (DSPR; (Long, Macdonald et al. 2014)), indicating that results from the DGRP are not spe-

cific to this panel (Cogni, Cao et al. 2016). The reason that some loci were not replicated is that the 8 

founder lines of the DSPR were not polymorphic with respect to them. It is not clear whether this simple 

genetic architecture is specific to viral infection or whether it is a hallmark of host-pathogen interactions, 

and therefore one of the aims of this thesis is to describe the genetic basis of resistance to enteric bacterial 

infection. 

 

1.7 The Immune System of Drosophila 

The immune system is the compendium of mechanisms and structures that protect a host from 

the pathogenesis caused by other organisms. The first line of defence in many organisms is the physical 

barrier, whether it is the skin in humans, exoskeleton of insects, or the mucous membranes covering epi-

thelial surfaces (Janeway, Travers et al. 1997). If and when these barriers are breached, a successful im-

mune strategy hinges on the recognition of pathogens, the deployment of a controlled response to neutral-

ize the threat, and the eventual restoration of homeostasis. Animal immune defence mechanisms against 

pathogens can be broadly classified into innate and adaptive responses. Innate immunity is the more an-

cient arm of the immune system (Bayne 2003, Litman, Rast et al. 2010). In the innate immune system, spe-

cific receptors, or pattern recognition receptors (PRRs) recognize specific pathogen-associated molecular 

patterns, or PAMPs (Akira, Uematsu et al. 2006, Takeuchi and Akira 2010). Following that, signalling cas-

cades are triggered, leading to the induction of a diverse array of antimicrobial peptides (AMPs) that typi-

cally target microbial membranes (Zasloff 2002). The signal transduction pathways involved typically con-

verge on transcription factors of the NF-κB family that share a common evolutionary origin (Kopp and 

Ghosh 1995, Huguet, Crepieux et al. 1997). Another aspect of the innate immune response is the produc-

tion of bursts of reactive oxygen species (ROS), nitric oxide (NO), and NO derivatives that are microbicidal 

as well as components of diverse signal transduction pathways (Bogdan, Röllinghoff et al. 2000). The adap-

tive arm of the immune response is a more recent evolutionary innovation that produces tailored PRRs 

specific to an infecting pathogen and keeps a memory for subsequent infections  (Janeway, Travers et al. 

1997). While in innate immunity, all the PRRs are encoded by the germline-encoded genes, organisms with 
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adaptive immunity utilize somatic mutation and recombination or receptor gene segments to produce nov-

el receptors (Schatz 2004). Not all animals have both arms of the immune system. Invertebrates, like Dro-

sophila, only possess an adaptive immune system, while vertebrates rely on a combination of both. It is 

important to note that the two systems are not mutually exclusive. There is considerable bidirectional 

crosstalk between the two arms and immune cells could possess both functions (Getz 2005). 

 

The Drosophila immune response has both cellular and cell-free (humoral) immune responses to patho-

gens, both of which have been extensively dissected and characterized (Lemaitre and Hoffmann 2007). The 

cellular immune response is mainly characterized by phagocytosis of small microbes and cellular encapsula-

tion and melanization of larger parasites. The cell-free response is the expression of a battery of antimicro-

bial peptides (AMPs) and other effectors after recognition of specific microbial molecules. The production 

of AMPs is mainly dependent on the Imd and Toll pathways, both of which rely on NF-κB transcription fac-

tors. The Imd pathway is activated in response to infection with bacteria having meso-diaminopimelic acid 

(DAP) type peptidoglycan (mostly gram negative bacteria), whereas the Toll pathway is activated upon in-

fection with bacteria having Lysine-type peptidoglycan (mostly gram positive bacteria), fungi, and yeast. 

The immune response could either be systemic or local, depending on the site of infection. The systemic 

immune response is mediated by the fat body, the fly’s equivalent of a vertebrate liver, while the local re-

sponse is mediated mainly by epithelial tissues that are in contact with the environment such as the gut. A 

potent local epithelial response is very important since flies feed on decaying material rich in potentially 

harmful microbes. This thesis is mainly concerned with the gut local response, which I will briefly introduce 

in the next section. 

 

1.7.1 The adult Drosophila Gut in the Normal and Infected State 

The gut is an early innovation that followed multicellularity (Stainier 2005). The presence of this 

body cavity allowed organisms to switch from intracellular to extracellular modes of digestion as well as for 

better control of the digestive process (Lemaitre and Miguel-Aliaga 2013). Guts of different animals have 

diversified to allow for different feeding habits and diets (Chapman, Simpson et al. 2013). Only recently 

have scientists started to explore the function and complexity of the long-neglected Drosophila gut. One 

important factor in sparking this interest is the discovery that the adult gut is maintained through the ac-

tion of pluripotent stem cells (Micchelli and Perrimon 2006, Ohlstein and Spradling 2006). The last decade 

has seen a surge in studies relating to the Drosophila gut, making it impossible to comprehensively address 
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here. The major axes of research into this organ are the morphological and developmental aspects, the 

digestive function, and the interaction of the gut with pathogens and commensals. 

 

In Drosophila, the gut is a simple epithelium that is surrounded by visceral muscles, trachea, and enteric 

nerves. Far from being a simple tube, the alimentary canal is a highly compartmentalized. At the highest 

anatomical level, it is organized into a foregut, midgut, and hindgut. The foregut and hindgut are composed 

of cells of ectodermal origin that are covered on the apical side by an impermeable cuticle. The midgut is of 

endodermal origin and is protected from the luminal environment by a peritrophic matrix, a physical barri-

er consisting of chitin and glycoproteins. The midgut is further regionalized into at least five regions with 

distinct cellular, chemical, and physiological characteristics (Buchon, Osman et al. 2013, Marianes and 

Spradling 2013). 

 

The enterocytes (ECs) and the enteroendocrine cells (EECs) are the main differentiated cell types of the 

adult midgut. ECs are large polyploid cells that have secretory and absorptive functions and constitute the 

majority of the midgut cells. EECs are less common and are thought to control the intestinal physiology 

through the secretion of short peptides (Veenstra, Agricola et al. 2008). The adult gut cell population is 

constantly replenished by a small pool of interspersed intestinal stem cells (ISCs). These stem cells can un-

dergo symmetric division, producing two identical ISCs, or asymmetric division to produce one ISC and a 

enteroblast. The enteroblast is a transient undifferentiated precursor of ECs and EECs. The choice between 

the two cellular identities is determined by Notch signaling activity (Ohlstein and Spradling 2007). Under 

normal physiological conditions, the midgut epithelium is renewed within one to two weeks (Micchelli and 

Perrimon 2006, Ohlstein and Spradling 2006). However, the mitotic activity of stem cells is affected by mul-

tiple cues such as nutritional status (O'Brien, Soliman et al. 2011), chemical agent-induced damage 

(Amcheslavsky, Jiang et al. 2009), and enteric infection (Buchon, Broderick et al. 2009, Chakrabarti, Liehl et 

al. 2012). A number of pathways are involved in the proliferation and differentiation of intestinal cells. Fol-

lowing biotic or abiotic stress, damaged cells release ligands to activate signaling pathways like the JAK-

STAT pathway, epidermal growth factor (EGF) receptor, decapentaplegic (DPP) and Wingless (Buchon, 

Broderick et al. 2013, Lemaitre and Miguel-Aliaga 2013). 

 

Given the constant exposure to potentially harmful pathogens, gut-bearing organisms developed an en-

semble of molecular and cellular processes that together constitute “gut immunocompetence” 
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(Woolhouse, Webster et al. 2002, Obbard, Welch et al. 2009, Barreiro and Quintana-Murci 2010). Phyloge-

netically distant species share similarities in innate immune pathways (Kimbrell and Beutler 2001) and ma-

jor structural and physiological gut features (Stainier 2005, Karasov, Martínez del Rio et al. 2011). The study 

of gut immunocompetence in one system can therefore shed light on general aspects throughout the phy-

logeny. In Drosophila, great strides have been made in elucidating the biological processes underlying gut 

immune defense. Notably, studies in the fly gut revealed that enteric infection leads to an intricate inter-

play between immunological, stress, and repair mechanisms (Lemaitre and Hoffmann 2007, Ryu, Kim et al. 

2008, Buchon, Broderick et al. 2009, Apidianakis and Rahme 2011, Charroux and Royet 2012, Lemaitre and 

Miguel-Aliaga 2013). After oral ingestion, Gram-negative bacteria are mainly recognized by two members 

of the peptidoglycan recognition protein (PGRP) family: the surface receptor PGRP-LC and the intracellular 

PGRP-LE. As in humoral immunity, these receptors activate the Imd pathway that leads to the induction the 

of AMP genes. In order to avoid over-activation or activation by harmless endogenous bacteria, Imd path-

way activity is fine-tuned at multiple levels by negative regulators. For instance, amidase PGRPs are secret-

ed to scavenge peptidoglycan, PIRK/PIMS disrupts the interaction between PGRP-LC and its downstream 

adaptor, the transcription factor Caudal restricts the expression of Imd targets (Lhocine, Ribeiro et al. 2008, 

Ryu, Kim et al. 2008, Paredes, Welchman et al. 2011), and ubiquitination leads to proteasomal degradation 

of the members of the cascade (Khush, Cornwell et al. 2002, Thevenon, Engel et al. 2009, Yagi, Lim et al. 

2013). 

 

Another pillar of the gut immune response is the generation of Reactive Oxygen Species (ROS) by the en-

terocytes, which neutralizes the infectious microbes but also leads to cellular damage (Tzou, Ohresser et al. 

2000, Ha, Oh et al. 2005). ROS is produced by the NADPH oxidase Duox, a surface receptor that activated by 

the Gαq-phospholipase C-ß-Ca2+ pathway, which is activated upon binding of bacterial-derived uracil to a 

yet unidentified G-protein coupled receptor (Ha, Lee et al. 2009, Lee, Kim et al. 2013). Unlike commensals, 

opportunistic bacteria produce uracil, an aspect that is exploited by the fly. Duox expression levels have 

been shown to be controlled by the p38 mitogen-activated protein (MAP) kinase through phosphorylation 

of Activating Transcription Factor ATF2 (Chakrabarti, Poidevin et al. 2014).  ROS induction leads to host cell 

damage and inhibition of protein translation (Chakrabarti, Liehl et al. 2012). It is therefore important that 

ROS levels are controlled. This is achieved either through the secretion of IRC, an extracellular catalase, or 

through control by the Gαq-phospholipase C-ß-Ca2+ pathway (Ha, Oh et al. 2005, Ha, Lee et al. 2009). In 

fact, while Imd pathway mutants are very sensitive to infection with Gram-negative bacterial infection, they 

are more tolerant to enteric infection compared to flies manipulated genetically or chemically to have high 

ROS levels (Ha, Oh et al. 2005, Chakrabarti, Liehl et al. 2012). 
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1.8 Objectives and Overview of the Thesis 

In this thesis, I use a panel of Drosophila melanogaster inbred lines (Huang, Massouras et al. 2014) 

as living snapshots of variations on the same theme (the “wild-type” fly) to understand the genetic basis of 

resistance to enteric infection. I employ a set of tools from classical to quantitative to systems genetics to 

dissect the gut response, specifically variations in that response. I first assess the extent of phenotypic vari-

ation and then try to explain it by examining at genetic, physiological, and molecular factors. The fly is sub-

jected mainly to two environments through feeding on either sucrose or the highly entomopathogenic 

Gram-negative bacterium, Pseudomonas entomophila. 

 

In Chapter 2, a systematic characterization of the phenotypic differences, namely survival to infection, be-

tween the different lines is performed then we perform a QTL analysis to find genetic variants associated 

with the trait.  We characterize some lines from the phenotypic extremes at the transcriptional, physiologi-

cal, and molecular levels to gain insights into some main determinants of variability in resistance. 

 

In Chapter 3, a more systematic study of gene expression is performed to shed light at the interplay be-

tween resistance to infection, gene expression differences, and genetic variation. We attempt to predict 

the phenotype from gene expression signatures and catalogue possible regulatory variants affecting gene 

expression, and ultimately the organism’s resistance to infection. 

 

In Chapter 4, a special focus on splicing differences that occur in the Drosophila gut after infection is pre-

sented. Then we explore genetic and molecular factors mediating variation in these differences.  

 

Chapter 5 summarizes the thesis and provides future directions and outlooks. 
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 Genetic, Molecular and Physiolog-

ical Basis of Variation in Drosophila Gut Immu-

nocompetence 

This chapter is based on the published article “Bou Sleiman MS, Osman D, et al. 
(2015). Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut 
Immunocompetence. Nature Communications 6(7829) doi:10.1038/ncomms8829” 
(Bou Sleiman, Osman et al. 2015) and was co-written by Dani Osman. The study 
explores how natural variation could lead to very different outcomes after enteric 
infection, with some individuals being inherently more susceptible or resistant 
than others. Using a wide gamut of approaches ranging from direct experimenta-
tion to bioinformatics, we attempt to identify genes and phenomena that contrib-
ute to the phenotypic differences. 

Abstract 

Gut immunocompetence involves immune, stress, and regenerative processes. To investigate the 

determinants underlying inter-individual variation in gut immunocompetence, we performed enteric infec-

tion of 140 Drosophila lines with the entomopathogenic bacterium Pseudomonas entomophila and ob-

served extensive variation in survival. Using genome-wide association analysis, we identified several novel 

immune modulators. Transcriptional profiling further showed that the intestinal molecular states of re-

sistant and susceptible lines differ, already pre-infection, with one transcriptional module involving genes 

linked to reactive oxygen species (ROS) metabolism contributing to this difference. We found that this ge-

netic and molecular variation is physiologically manifested in lower ROS activity, lower susceptibility to 

ROS-inducing agent, faster pathogen clearance and higher stem cell activity in resistant versus susceptible 

lines. Together, this study provides novel insights into the determinants underlying population-level varia-

bility in gut immunocompetence, revealing how relatively minor, but systematic genetic and transcriptional 

variation can mediate overt physiological differences that determine enteric infection susceptibility. 
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2.1 Introduction 

Gut immunocompetence is the repertoire of molecular and cellular processes that an organism 

employs in order to fight off harmful pathogens (Woolhouse, Webster et al. 2002, Obbard, Welch et al. 

2009, Barreiro and Quintana-Murci 2010). How host genetic variation impacts these processes and how this 

is specifically encoded at the molecular and cellular levels is however still poorly understood, even though 

there are multiple examples where genetic variation affects an organism’s susceptibility to infectious 

agents, including intestinal pathogens (Barreiro and Quintana-Murci 2010). This may have far-reaching im-

plications beyond acute disease. Indeed, the inability to effectively clear pathogens, to restrain the mount-

ed immune response, or to repair the damaged intestinal region may lead to chronic gut pathologies (Mann 

and Saeed 2012). Elucidating the genetic and molecular determinants that mediate variation in gut immu-

nocompetence is therefore of critical importance. 

 

To address this, we used Drosophila not only because it is quickly gaining importance as a useful model to 

study the etiology of inflammatory bowel diseases (Amcheslavsky, Jiang et al. 2009, Bonnay, Cohen-Berros 

et al. 2013), but also since it allows the analysis of molecular and organismal traits in a physiologically rele-

vant and highly accessible system. The use of inbred fly lines allows assessment of the impact of infection 

on distinct, but constant genetic backgrounds to tease out the effect of the genotype from environmental 

effects (Lazzaro, Sceurman et al. 2004, Tinsley, Blanford et al. 2006, Mackay, Stone et al. 2009, King, Merkes 

et al. 2012, Magwire, Fabian et al. 2012, Massouras, Waszak et al. 2012, Huang, Massouras et al. 2014). 

This ability has been previously exploited to examine naturally occurring variation in pathogen susceptibility 

at a systemic level (Lazzaro, Sceurman et al. 2004, Tinsley, Blanford et al. 2006, Magwire, Fabian et al. 

2012), albeit to our knowledge not yet in the gut. Specifically, we used the Drosophila Genetic Reference 

Panel (DGRP) (Mackay, Richards et al. 2012, Huang, Massouras et al. 2014) to explore variability in gut im-

munocompetence-related parameters and aimed to decipher the molecular and physiological determinants 
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driving them. We found striking variation in survival to enteric bacterial infection and identified key under-

lying genetic variants, transcriptional modules, and physiological signals. 

2.2 Results 

2.2.1 Genetic variation in susceptibility to enteric infection 

To assess the extent of gut immunocompetence variation in genetically-distinct individuals, we 

measured fly survival following enteric infection with the entomopathogenic bacterium Pseudomonas en-

tomophila (P.e.) (Vodovar, Vinals et al. 2005) in 140 DGRP lines whose genomes have been comprehensive-

ly characterized for single nucleotide polymorphisms (SNPs) and non-SNP variants (Massouras, Waszak et 

al. 2012, Zichner, Garfield et al. 2013, Huang, Massouras et al. 2014). We found striking and reproducible 

variation in the DGRP lines’ survival (Fig. 2:1a, Supplementary Fig. 2:1a, Supplementary Table 2:1), compa-

rable to previous observations regarding natural variation in systemic immunity in Drosophila (Lazzaro, 

Sceurman et al. 2004). While around 50% of the tested lines harbour the natural endosymbiont Wolbachia 

(Massouras, Waszak et al. 2012), this had no effect on susceptibility (Supplementary Fig. 2:1b). To elimi-

nate the possibility that the differential susceptibility of the lines is due to differences in commensal bacte-

ria (Buchon, Broderick et al. 2013), we infected five lines randomly chosen from each phenotypic class (re-

sistant or susceptible), in germ-free conditions. The loss of commensals did not alter their relative suscepti-

bility, indicating that the endogenous microbiota do not majorly impact on susceptibility class (Supplemen-

tary Fig. 2:1c). We also evaluated whether our results could be biased by differences in feeding behaviour 

between DGRP lines but found no consistent difference in food uptake between resistant and susceptible 

lines (Supplementary Fig. 2:1d). To determine if this variability in survival is specific to enteric infection, we 

assessed susceptibility of DGRP lines to systemic infection with Erwinia carotovora carotovora 15 (Ecc15) 

(Fig. 2:1b). We did not use P.e. since it leads to very fast lethality in this condition, which renders the scor-

ing of a meaningful phenotype difficult. We found little correlation between the two infection conditions 

and pathogens (r=0.23, n=78, p=0.0395). This observation suggests that the determinants of gut immuno-

competence are distinct from those that govern systemic immunity (Martins, Faria et al. 2013). However, 

one line, #25745, was highly susceptible in both infection conditions (Fig. 2:1b). We found that this fly line 

contains a null mutation in the dredd gene, a component of the immune deficiency (Imd) pathway required 

to resist Gram-negative bacterial infection (Leulier, Rodriguez et al. 2000, Lemaitre and Hoffmann 2007) 

(Supplementary Fig. 2:2a-d). Mutations with such a strong loss-of-function phenotype tend to be rare in a 

natural population and do not capture most of the underlying natural variation in gut immunocompetence 

(Mackay, Stone et al. 2009). For instance, the mutation we identified in dredd was found in only one of 205 

genotyped DGRP lines (Huang, Massouras et al. 2014). Moreover, in a natural population, such a rare reces-
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sive allele would be mostly found in heterozygous form, which could explain why it has not been eliminated 

by purifying selection. We next examined whether the observed differences in survival is specific to P.e. by 

orally infecting DGRP lines with a clinical isolate of Pseudomonas aeruginosa (PA14). Specifically, using a 

similar infection protocol as for P.e. (Methods), we infected four randomly selected lines from the lower 

10% in terms of survival to P.e. infection (i.e. resistant) and four randomly from the upper 90% (i.e. suscep-

tible, excluding the dredd mutant line discussed above) and compared survival after three days (Supple-

mentary Fig. 2:3). DGRP lines that were resistant to oral infection by P.e. were also resistant to PA14, while 

three of the four tested lines that were susceptible to P.e. were also susceptible to PA14. These results 

suggest that the DGRP phenotypes observed for P.e. infection may reflect a more general pattern in that 

they may be due to a common, likely bacterium-independent genetic and molecular mechanism that medi-

ates oral infection susceptibility. 
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Figure 2:1 Susceptibility to infection is highly variable among DGRP lines and multifactorial. 

(a) Bar graph showing for each of the 140 DGRP lines (x-axis) the percentage of dead female flies (y-axis) 3 days post-

enteric infection with P.e. (OD 100). Data shown are averages from three biological replicates (± SE of the proportion; 

n > 60 females/line). (b) A scatter plot of 78 DGRP lines revealing an absence of correlation in proportion death be-

tween enteric (by 3 days post P.e. ingestion) and systemic (by 10 days post septic injury with Ecc15) infection. DGRP 

line #25745 (red) is highly susceptible in both conditions and features a rare mutation in the dredd gene. (c) Quantifi-

cation of P.e.-specific monalysin genomic DNA by qPCR reveals differences in P.e. clearance between four susceptible 
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and four resistant DGRP lines over time (ANOVA p=0.00343 for the effect of susceptibility class; see Methods for de-

tails on statistics). (d) Quantification of PH3-positive cells per female midgut dissected 8 hours post enteric infection 

with P.e. reveals that infected resistant lines have more mitotically active stem cells than those of susceptible lines 

(n>30 guts/line; ANOVA p<0.00001 for difference between susceptibility classes). (e) Measurement of the incorpora-

tion of a methionine analog, L-azidohomoalanine (green staining), in the R2 region(Buchon, Osman et al. 2013) of the 

anterior midgut shows that susceptible lines are not able to synthetize proteins after infection in contrast to resistant 

lines. Note that while the same midgut region was sampled, no gross morphological differences in the shape or re-

gionalization of the gut can be observed between resistant and susceptible flies after infection. However, this does not 

rule out subtle differences at the cellular level. 

 

2.2.2 Characterization of lines from the phenotypic extremes 

We then assessed the dynamics of intestinal pathogen colonization and clearance in the same 

eight DGRP lines as used for the PA14 infection experiment. Here, we quantified P.e. genomic DNA in the 

guts of the flies at different time points post-infection (Fig. 2:1c), providing new insights into the coloniza-

tion behaviour of P.e. in the fly gut. Resistant and susceptible lines exhibited no significant difference in 

intestinal P.e. loads 30 minutes post infection, corroborating the results of the feeding assay. In addition, 

both classes of lines were able to clear P.e. from the gut after approximately 16h (Fig. 2:1c), suggesting that 

the impact of enteric infection with P.e. on survival is determined by the initial pathogen exposure and not 

persistence. Importantly, the rate of clearance was different between the two phenotypic classes with re-

sistant lines reducing intestinal P.e. levels much faster than susceptible lines (ANOVA p=0.0033 for suscep-

tibility class). This indicates that rapid eradication of P.e. as an immediate defence response could play a 

role in the final outcome of the infection. In Drosophila laboratory strains, P.e. infection causes severe irre-

versible intestinal epithelial damage in comparison to other pathogens (Jiang, Patel et al. 2009, Chakrabarti, 

Liehl et al. 2012). Specifically, P.e.-induced inhibition of protein synthesis in the gut impairs both immune 

and repair programs leading to low epithelial renewal (Chakrabarti, Liehl et al. 2012). We examined wheth-

er the two DGRP phenotypic classes exhibit differences in protein synthesis and, as a consequence, varia-

tions in gut regenerative capability by measuring intestinal stem cell division, a quantitative readout of epi-

thelial renewal. We found that guts of resistant lines are still able to translate proteins and induce a greater 

number of mitotic stem cells than those of susceptible lines (Fig. 2:1d and fig. 2:1e). Collectively, our find-

ings indicate that P.e. infection does not always lead to lethality caused by translation inhibition as previ-

ously suggested (Chakrabarti, Liehl et al. 2012), re-emphasizing the importance of host genetic background 

in determining the response to as well as outcome of infection.  
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2.2.3 Genetic architecture of susceptibility to enteric infection 

It is conceivable that physiological and survival differences between resistant and susceptible lines 

are a mere consequence of high genetic relatedness among lines from each phenotypic class. To explore 

this possibility, we used the available genetic relationship matrix for the eight DGRP lines 

(http://dgrp2.gnets.ncsu.edu/), but did not observe genetic clustering of phenotypic classes, as expected 

(Huang, Massouras et al. 2014) (Fig. 2:2a). However, a significant part of the observed variation in survival 

is due to genetic factors as the heritable component estimate is 0.61 (Methods). To gain insights into the 

genetic architecture of survival, we performed a complete diallel cross, where we generated all possible 

hybrid combinations by crossing the eight lines to each other. We then measured their susceptibility to P.e. 

infection. The F1 progeny from crosses between different resistant lines were resistant (Fig. 2:2b) and the 

F1 progeny from crosses between different susceptible lines were mainly susceptible, thus there was no 

evidence of consistent heterosis. The lack of resistance appearing in crosses between susceptible lines im-

plies that susceptibility is not a mere consequence of inbreeding depression. Moreover, F1 progeny from 

crosses between resistant and susceptible lines tended to exhibit an intermediate susceptibility phenotype 

as expected when there are additive effects. Indeed, an analysis of the diallel cross data (Supplementary 

Table 2:2) revealed both additive effects reflected in general combining ability (p=0.00001) and dominance 

effects reflected in specific combining ability (p<0.00001)(Griffing 1956). There were also various interac-

tions between strains due to male and female parental combinations (Supplementary Table 2:2), suggest-

ing that the extent of susceptibility depends on the specific combination of strains tested. In general, these 

patterns indicate that natural variation in survival to infection is partly additive, but also depends on the 

combination of strains being crossed, suggesting a complex genetic architecture. 

 

 

 

Figure 2:2 Gut immunocompetence is a largely additive, complex trait. 
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(a) The genomic relationship matrix shows an absence of genetic relatedness among either resistant or susceptible 

lines respectively. (b) Percentage death for F1 flies in a full diallel cross between four susceptible and four resistant 

DGRP lines (by 3 days post enteric infection with P.e. (OD 100)). 

 

2.2.4 Genome-wide association study for survival to infection 

To uncover genetic determinants underlying immunocompetence, we performed a genome-wide 

association study (GWAS) on survival using both a non-parametric (Fig. 2:3a) and parametric test (Supple-

mentary Fig. 2:4a). Unlike a previous study dealing with survival to viral infection in DGRP lines in which 

one quantitative trait locus (QTL) with large effect was identified (Magwire, Fabian et al. 2012), we ob-

tained 27 QTLs at an arbitrary p-value of 10-5, even though there was no clear point of departure from ex-

pectations in the Q-Q plot (Supplementary Fig. 2:4b). The results were largely consistent between both 

GWAS analysis procedures and a maximum of 19% of the phenotypic variance could be explained by a sin-

gle QTL (Supplementary Table 2:3). The small sample size and the truncated distribution from which QTLs 

are chosen to estimate effect sizes can result in an overestimation of the proportion of variance explained, 

a phenomenon known as the ‘Beavis effect’ (Beavis 1998). This could be further exacerbated by linkage 

between SNPs (Supplementary Fig. 2:4a). To account for redundancy between linked SNPs, we also per-

formed an iterative multiple-SNP regression (Harbison, McCoy et al. 2013). Interestingly, as few as four 

SNPs can explain ~50% of the phenotypic variance (Supplementary Table 2:4). Moreover, we performed a 

permutation analysis to evaluate the Beavis effect. In short, we sampled groups of lines of different sizes, 

ranging from 70 to 140, and performed multi-SNP regression. For each sample size, we performed 100 

permutations with random resampling (Supplementary Fig. 2:5). We found that the proportion of variance 

explained, R2, decreases as the sample size increases, as expected, yet starts levelling-off at larger sample 

sizes, suggesting that the correct proportion of variance accounted by the SNPs is being approached at the 

larger sample sizes. 

 

The most significant QTLs were located in the Neurospecific receptor kinase (Nrk) gene, which belongs to an 

evolutionarily conserved stress-response network from Drosophila to mammals (Kirienko and Fay 2010). 

One of the three linked Nrk QTLs (Supplementary Table 2:3), which explains 14% of the phenotypic vari-

ance, is a non-synonymous polymorphism (p=3.6×10-06) in residue 306 of the protein (G or V). The minor 

allele (15% frequency) appears to be the ancestral allele since it is found in the four closest sequenced Dro-

sophila species. Interestingly, lines harbouring this minor allele were mainly susceptible (Fig. 2:3b). To test 

if Nrk affects the antibacterial immune response, we measured the activity of the Imd pathway reporter 
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Diptericin-lacZ (Dpt-lacZ) (Tzou, Ohresser et al. 2000) in wild-type and Nrk knock-down flies. In contrast to 

infected control guts, where Dpt-LacZ reporter was induced in the cardia and anterior midgut, Nrk knock-

down flies have markedly reduced Dpt-lacZ activity (Fig. 2:3c). We also investigated the knockdown effect 

of several other genes that harboured strong QTLs with Gyc76C producing the most robust and greatest 

reduction in Dpt-lacZ activity (Supplementary Fig. 2:6c). Gyc76C contains a QTL (p=1.86×10-05) that explains 

15% of the variance (Supplementary Table 2:3), and has recently been described as a modulator of the Imd 

pathway in response to salt stress in the Malpighian tubules(Overend, Cabrero et al. 2012). Susceptible 

DGRP lines carrying the G-allele of the QTL expressed Gyc76C at higher levels than resistant lines (A-allele) 

post infection (Fig. 2:3d). Remarkably, endogenous Dpt transcript induction followed a similar trend (Fig. 

2:3e). Knocking down Gyc76C expression specifically in enterocytes of adults also showed that Gyc76C di-

minishes Dpt induction (Fig. 2:3e) and reduces fly survival after enteric infection (Fig. 2:3f). Since Gyc76C is 

a membrane receptor capable of the activation and nuclear translocation of the Imd transcription factor 

Relish(Overend, Cabrero et al. 2012), it may activate the Imd pathway in the gut independent of PGRP-LC, 

the canonical Imd pathway receptor. Taken together, these results suggest that our GWAS identified at 

least two novel genes that are capable of modulating gut immunocompetence and that were not previously 

implicated in canonical gut immune response pathways.  
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Figure 2:3 GWAS reveals genetic loci underlying susceptibility to infection. 

(a) Manhattan plot of the p-values (y-axis) for the association between genomic variants in DGRP lines and P.e. sus-

ceptibility. A non-parametric Kruskal-Wallis test was performed using proportion death at day 3 as phenotype. The x-

axis represents the genomic location. Multiple variants in a single gene are bounded by a box. (b) Susceptibility of 

DGRP lines grouped by the Nrk allele (GWAS p=3.6e-6) that changes the coding sequence at position 306 of the pro-

tein (at chr2R:9048897). Note that D. simulans, D. sechelia, D. yakuba, and D. erecta all have the variant G allele. (c) 

Knock-down of the top GWAS hit, Nrk, using a ubiquitous driver (da-gal4) highly reduces the activity of the immune 

activation reporter Dpt-lacZ in the gut as revealed with X-Gal staining (P.e. OD 50 was used to avoid the anticipated 

inhibition of translation effect of P.e. at OD 100(Chakrabarti, Liehl et al. 2012)). UC = unchallenged flies. (d) RT-qPCR 

experiments on gut total RNA from females show that four susceptible DGRP lines harbouring the G-allele at the 

Gyc76C locus (chr3L:19769316) express Gyc76C at higher levels after P.e. infection, in comparison to resistant lines 

carrying the A-allele. Dpt transcript induction is higher in susceptible DGRP lines carrying the G-allele in Gyc76C (ANO-

VA p for allele effect in the challenged condition for Gyc76C and Dpt is 0.00205 and 0.0344, respectively). (e) Gyc76C 
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knockdown in enterocytes using the thermosensitive MyoIA-gal4 driver shows that Gyc76C regulates the induction of 

Dpt transcript in the gut 4 and 16 hours post P.e. infection (ANOVA p=0.00741 for line effect; error bars represent 

standard deviation around the mean of three replicates). (f) Survival analysis of females that are orally infected with 

P.e. shows a lower survival rate of MyoIAts>Gyc76C-IR flies compared to wild-type (Log-Rank test p=0.0351 for com-

parison between Gyc76C knockdown and wild-type in challenged condition). For (d-f) data is based on at least three 

independent biological replicates. 

 

2.2.5 Transcriptomic analysis of phenotypic extremes 

Variability in survival and physiology among DGRP lines could in part be explained by system-

specific transcriptional differences. We therefore performed RNA-seq on 16 gut samples comprising the 

same four susceptible and four resistant lines as introduced above in the unchallenged condition and 4h 

after P.e. infection (Supplementary Fig. 2:7a). 1287 genes were differentially expressed 4h post-infection 

compared to the unchallenged condition when all eight lines were treated as replicates (FDR adjusted p-

value<0.05 and two-fold change, Supplementary Table 2:7). This set of genes overlaps with what we have 

previously shown when characterizing the gut transcriptional response to P.e. infection, even though that 

analysis was carried out using microarrays and on a different genetic background (OregonR)(Chakrabarti, 

Liehl et al. 2012). However, when we looked for differences in gene expression between the four resistant 

and four susceptible lines by pooling the samples of each susceptibility class, very few genes exhibited sig-

nificant differential gene expression. Specifically, the expression of only 5 and 34 genes were changed in 

the unchallenged and challenged guts respectively when comparing phenotypic classes (Fig. 4a, Supple-

mentary Table 2:8). This may reflect reduced statistical power given the large number of genes that are 

compared. In addition, it is possible that small but systematic differences in gene expression collectively 

differentiate resistant from susceptible profiles. We therefore performed principal component analysis 

(PCA) on the 2000 genes with the highest expression variance in the 16 transcriptomes. Since infection sta-

tus has a large impact on the transcriptome, expression profiles derived from infected samples were sepa-

rated from those of unchallenged samples on the first principal component (PC), which explains 53% of the 

variance (Fig. 2:4b). Strikingly, even prior to infection, profiles of resistant lines were separated from those 

of susceptible lines based on the second PC, which explains 7.3% of the variance (Fig. 2:4b). This separation 

implies that the basal intestinal transcriptional state of resistant lines is distinct from that of susceptible 

lines, which may either define or reflect a molecular pre-disposition to enteric infection susceptibility. To 

dissect the molecular signatures that underlie this transcriptional stratification of the two phenotypic clas-

ses, we performed modulated modularity clustering (Ayroles, Carbone et al. 2009) on the same 2000 genes. 

We identified 24 transcriptional modules including more than 15 correlated genes (Fig. 2:4c, Supplemen-
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tary Table 2:9). Based on Gene Ontology analysis and manual annotation(Huang da, Sherman et al. 2009), 

we assigned the genes within the modules to six functional groups (Fig. 2:4d). To identify those modules 

whose gene levels clearly separate the lines according to treatment and phenotypic class, we systematically 

performed PCA on each module by taking the expression levels of its genes (Fig. 2:4e). We found that in 

module #96, samples are clearly separated on the first PC, even though the probability for such a separa-

tion to spuriously occur is less than 3 in 10,000 (Fig. 2:4e, Supplementary Fig. 2:7b,c). This module contains 

20 genes, of which 9 are related to stress response and most notably to reactive oxygen species (ROS) me-

tabolism (Fig. 2:4e,f) and collectively explains 29% of the observed phenotypic variation (Supplementary 

Table 2:5). Other modules such as #102 (16 genes) also separated the samples on the first two PCs (Sup-

plementary Fig. 2:8). Interestingly, module #102 likewise contains several ROS-related genes such as 

Cyp6a9 and Thioredoxin-2 (Trx-2)(Tsuda, Ootaka et al. 2010). ROS are essential signalling molecules and 

immune effectors that are induced by the infected gut to neutralize pathogens (Ha, Oh et al. 2005) and 

promote intestinal renewal (Amcheslavsky, Jiang et al. 2009). However, a high ROS load can also cause in-

hibition of protein translation and consequently severe intestinal damage (Chakrabarti, Liehl et al. 2012), 

necessitating a finely tuned regulation of ROS production and metabolism (Schieber and Chandel). 
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Figure 2:4 Specific gene expression signatures define susceptibility to bacterial enteric infection. 

(a) Venn diagram showing differentially expressed genes (as revealed by RNA-seq experiments) between four resistant 

and four susceptible DGRP lines, in the unchallenged condition and 4 hours post P.e. infection (q-value<0.2, two-fold 

change). Genes in red and green have higher levels in susceptible and resistant lines respectively. The number of 

genes (black) indicated in the intersections represents the total number of non-differentially expressed genes. (b) 

Principal Component Analysis (PCA) on the top 2000 varying genes between the 16 samples reveals that resistant lines 
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cluster separately from susceptible lines, prior (UC) to and post P.e. infection (P.e.). PC1 separates samples based on 

treatment whereas PC2 separates them based on susceptibility class. (c) Modulated modularity clustering analysis on 

the top 2000 varying genes identifies 24 correlated transcriptional modules (n≥15 genes). Each coloured point repre-

sents the spearman correlation (rs) between two genes. (d) A selection of functional categories identified by GO analy-

sis of genes belonging to the different modules identified in c (excluding the largest module with n=523, Supplemen-

tary Table 9). For the GO analysis, we used the Database for Annotation, Visualization, and Integrated Discovery (DA-

VID). (e) PCA using the expression levels of genes within each of the 24 modules identifies module #96 as the only 

module for which the lines are clearly separated on the first principal component according to treatment and suscep-

tibility. (f) Heat map of gene expression levels in module #96 reveals important differences across susceptibility classes 

and treatment conditions. 

 

2.2.6 A role for ROS in variation in susceptibility 

To investigate the physiological relevance of ROS in mediating inter-individual differences in gut 

immunocompetence, we compared ROS levels in resistant versus susceptible lines (Fig. 2:5a,b). Important-

ly, ROS levels were significantly lower in resistant lines in both conditions (ANOVA p=2.98x10-7 for suscepti-

bility class in unchallenged condition, and p=1.43x10-11 in challenged condition). This may reflect a more 

efficient ROS metabolism in resistant lines, possibly mediated by the higher expression levels of the majori-

ty of genes in the focal module #96 compared to susceptible lines (Fig. 2:4f). Since too much ROS inhibits 

translation and epithelial renewal resulting in lethality (Chakrabarti, Liehl et al. 2012), it appears that re-

sistant lines utilize ROS in a more effective and less noxious manner than susceptible lines (Fig. 2:1c,e). To 

investigate this hypothesis, we evaluated the survival of the same lines to ingestion of paraquat, a ROS-

catalyzing chemical reagent. Most susceptible lines showed higher lethality compared to resistant lines (Fig. 

2:5c), supporting the role of ROS as one of the principal components underlying variation in gut immuno-

competence. 
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Figure 2:5 Diversity in ROS metabolism is a feature of variable susceptibility. 

(a-b) Measurement of ROS activity in flies before and after P.e. infection reveals lower ROS levels in resistant com-

pared to susceptible DGRP lines (mean normalized absorbance ± SD, n=5 females per line and replicate, 3 replicates, 

ANOVA p<0.0001 for difference between susceptibility classes in both conditions). The dashed line marks the maxi-

mum level in resistant lines.  (c) Percentage of dead female flies three days after Paraquat treatment. Percentages are 

averages from three experiments (± SD, n>60 females/line, ANOVA p<0.0001 for difference between susceptibility 

classes). 

 

 

2.3 Discussion 

Direct exposure to environmental insults such as pathogens has driven the alimentary canal to es-

tablish numerous protective and homeostatic mechanisms (Buchon, Broderick et al. 2013). Considerable 

efforts have been invested in characterizing mechanisms underlying intestinal immunity using model organ-

isms like Drosophila. However, most of these studies identified genes with large effects involved in canoni-

cal immune pathways (Lemaitre and Hoffmann 2007). The aim of our study was to go beyond these classi-

cal analyses to uncover first of all the extent of inter-individual variation in gut immunocompetence and in 

a subsequent step the underlying genetic and molecular determinants. We found striking differences in the 

overall susceptibility to enteric infection, not only in survival, but also in related physiological aspects in-

cluding bacterial load, stem cell activity, and infection-induced inhibition of translation. A first important 

implication of these findings is that the outcome of classical Drosophila genetics experiments involving 

standard laboratory strains may not always be generalizable to all wild-type strains. Indeed, while the use 

of such standard strains is valuable to increase reproducibility, a downside is that it may lead to conclusions 
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that are only true in specific genetic backgrounds (Linder 2001, Wolfer, Crusio et al. 2002) as we demon-

strate here for pathogen-induced inhibition of translation (or lack thereof) in DGRP lines.  

 

This phenomenon likely reflects the inherently complex nature of traits like gut immunocompetence since 

they are the result of the interplay of many biological processes, each of which could be affected by many 

genomic loci with small to medium effects. The results from our GWAS analysis are consistent with this 

hypothesis as they suggest that relatively common alleles located in various parts of the genome drive gut 

immunocompetence in additive manner. If rare variants resulted in reduced survival to infection in suscep-

tible lines, then crossing two susceptible lines should have resulted in a resistant hybrid. Moreover, delete-

rious mutations affecting gut immunocompetence could be under strong purifying selection, further rein-

forcing a genetic architecture of multiple loci with relatively small effects (Houle, Morikawa et al. 1996, 

Merila and Sheldon 1999).  

 

A consequence of such a genetic architecture is that it renders the prediction of a trait from genotypic in-

formation difficult. An attractive approach to improve phenotypic predictions is the complementation of 

genetic data with in vivo measurements of molecular parameters since the latter may yield mechanistic 

insights that may not be immediately obvious from GWAS analyses, which, similar to our study, are often 

performed on rather coarse-grained phenotypic read-outs (such as survival here)(Lehner 2013). Our finding 

that the transcriptomes of resistant and susceptible extremes can be separated by PCA even before infec-

tion is interesting in this regard, as it suggests that there are systematic molecular differences underlying 

susceptibility to enteric infection. This observation also implies that with a large-enough sample size, signa-

tures of susceptibility could be mined from the data for both a better biological understanding and predic-

tion of gut immunocompetence. In this study, we provide a proof of concept by clustering correlated tran-

scripts into modules and identifying a candidate module linked to ROS metabolism. While the involvement 

of ROS in intestinal infection and homeostasis has been previously established (Ha, Oh et al. 2005, Buchon, 

Broderick et al. 2009, Chakrabarti, Liehl et al. 2012, Buchon, Broderick et al. 2013, Lee, Kim et al. 2013), it is 

particularly intriguing that it may also be one of the important factors that either mediate (or reflect) natu-

rally occurring variation in gut immunocompetence, since lines from the phenotypic extremes contained 

significantly different intestinal ROS levels even before infection and reacted distinctly after exposure to 

the ROS-inducing chemical paraquat. As such, ROS levels, which are an indirect measure of stress, may have 

phenotype-predictive value, irrespective of whether differential ROS levels are a cause or a consequence of 

differences in gut immunity. Better utilization of ROS by the resistant lines may then constitute a tolerance 
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rather than an active resistance mechanism (Schneider and Ayres 2008). But clearly, alleles for low toler-

ance have persisted in the population and we speculate that the underlying mechanisms could be concep-

tually similar to variation in immunity, where environmental heterogeneity and fitness trade-offs limit the 

effect of natural selection(Lazzaro and Little 2009).  

 

Since enteric infection has a major impact on human and animal health, resolving the genetic and physio-

logical contributions underlying continuous variation is of great importance. This is particularly the case in 

the developing world where almost 20% of child deaths can be linked to a pathogenic invasion of the intes-

tine(Flores and Okhuysen 2009). In many cases, this invasion is by opportunistic pathogens on immuno-

compromised individuals, who might have a functioning innate immune system like AIDS patients 

(Amancio, Japiassu et al. 2013). In addition, enteric infections by opportunistic Pseudomonas species have 

been reported in hospitalized patients (Driscoll, Brody et al. 2007, Markou and Apidianakis 2013). Under-

standing the role of genetic variation in innate immunity could therefore shed more general light on sus-

ceptibility to opportunistic pathogens (Muszynski, Nofziger et al. 2014) including members of the Pseudo-

monas genus(Driscoll, Brody et al. 2007). Our study now reveals that identifying causal factors may present 

a substantial challenge in that the observed, overt physiological differences between resistant and suscep-

tible lines appear to be driven by multiple genetic effects. We therefore postulate that a promising strategy 

could be the identification of transcriptional modules as informative biomarkers of disease susceptibility 

given their inherent dependence on the interaction between a genome and its environment. Alternatively, 

since transcriptome analyses are expensive diagnostic tools, knowledge gained from the study of transcrip-

tional modules could be used in the discovery of novel biomarkers. Such insights into the molecular deter-

minants of gut immunocompetence may help in developing control programs in invertebrate disease vec-

tors as well in better understanding the mechanisms underlying variability in susceptibility to enteric infec-

tions in human populations. 

2.4 Materials and Methods 

2.4.1 Fly stocks 

DGRP lines were obtained from the Bloomington stock center and reared at room temperature on 

a standard fly medium. The fly medium recipe that we used is the following (for 1L water): 6.2g Agar pow-

der (ACROS N. 400400050), 58.8g Farigel wheat (Westhove N. FMZH1), 58.8g yeast (Springaline BA10), 

100ml grape juice; 4.9ml Propionic acid (Sigma N. P1386), 26.5 ml of Methyl 4-hydroxybenzoate (VWR N. 

ALFAA14289.0) solution (400g/l) in 95% ethanol, 1L Water. For RNAi (IR) studies, F1 progeny carrying one 
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copy of the da-Gal4 or MyoIA-Gal4 with tub-Gal80ts transgenes (and Diptericin-lacZ reporter in the case of 

da-Gal4) as well as one copy of UAS-IR (all in the w1118 background) were kept at 18°C for three days post-

eclosion, and then moved to 29°C for 8 days to activate the UAS-IR. The UAS-Gyc76C-IR line is a gift from 

Julien Dow, the UAS-Nrk-IR (CG4007 R2 and R3) fly lines were obtained from the DGRC stock center. Imd 

pathway mutants used are DreddB118 (Leulier, Rodriguez et al. 2000) and RelishE20 (Hedengren, BengtÅsling 

et al. 1999). 

 

2.4.2 Infection, Paraquat treatment, and Survival experiments 

Pseudomonas entomophila (P.e.) and Erwinia carrotovora carrotovora 15 (Ecc15) pathogens were 

cultured in LB medium at 29°C overnight. Pseudomonas aeruginosa clinical isolate PA14 was cultured in 

Brain Heart Infusion broth at 37°C overnight. For enteric infection, 3-5 day old females were first starved 2-

3h at 29°C, and then transferred into vials with fly medium covered with filter disks soaked in a mix of bac-

terial pellet at OD600 nm of 100 and 1.5% sucrose. For survival analysis, flies were transferred onto a fresh fly 

medium 24 hours post-infection, and maintained on a fresh and healthy medium during the survival assay. 

For Paraquat treatment, the same procedure as oral infection was followed except for the addition of a 

solution of 20mM Paraquat dichloride hydrate (FLUKA Analytical #36541) in 1.5% sucrose instead of the 

bacterial pellet. For systemic Ecc15 infection, adult flies were pricked in the thorax with a tungsten needle 

that had been dipped into a concentrated bacterial pellet with an OD600 nm of 200.  

 

2.4.3 RT-qPCR 

Total RNA was extracted from 20 guts including the crop, the cardia and the midgut using TRIzol 

reagent (Invitrogen). Malpighian tubules were removed from the samples. cDNA was then synthesized from 

1 ug total RNA using SuperScript II enzyme (Invitrogen). qPCR experiments were performed with a Light-

Cycler® 480 machine and the SYBR Green I kit (Roche). Relative gene expression was calculated after nor-

malization to the control RpL32 mRNA.  Given the polymorphic nature of the DGRP lines, we assured that 

the primers did not target sites with polymorphisms. The primer sequences are available in Supplementary 

Table 6. 
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2.4.4 Bacterial load measurement 

Flies were orally infected with P.e. and then transferred to a fresh medium 30 minutes post-

infection. The DNA fractions were then isolated at indicated time points using the TRIzol manufacturer’s 

protocol (Invitrogen). The bacterial load quantification was then assessed by qPCR with P.e. monalysin-

specific primers (Opota, Vallet-Gely et al. 2011) (Supplementary Table 6). Normalization has been per-

formed on the host RpL32 DNA. 

 

2.4.5 Assessment of nascent protein synthesis 

To assess the levels of protein translation in susceptible and resistant guts, we used the Click-iT 

AHA for Nascent Protein Synthesis commercial kit (Invitrogen). Flies were orally infected for 16 hours as 

described above, but by adding AHA reagent at 50 M as final concentration to the infection mix. Guts 

were then dissected in 1X PBS Triton 0.3%, fixed for a minimum of 30 min in PBS 4% paraformaldehyde, 

and finally washed with PBS Triton 0.3%. DAPI reagent (Sigma) was used to stain DNA. The R2 region 

(Buchon, Osman et al. 2013) of the gut was visualized with an Axioplot imager (Zeiss). 

 

2.4.6 PH3 staining  

Guts were dissected in Grace’s insect medium (life technologies) and fixed for 15-20 minutes in 

PBS 4% paraformaldehyde. They were subsequently washed in PBS 0,1 triton (PBT), blocked in PBT 0,1% 

BSA (PBTA) for 1 hour, and then incubated 2 hours at 4°C with primary and secondary antibodies in PBTA. 

Antibody used was 1/500 rabbit anti-PH3 (Millipore), 1/500 Alexa-594 anti-rabbit (life technologies).  

 

2.4.7 ROS measurement 

To assess homeostatic ROS level as well as P.e.-induced ROS, we used the Amplex Red reagent 

(Invitrogen # A12222) as described previously(Lee, Kim et al. 2013), by incubating 6 flies of each genotype 

with 100 μl of reaction buffer (pH 7,4) and 0,25 Unit/ml of horseradish peroxidase (Sigma) for 1 hour at 

37°C. The fluorescence was measured in a microplate reader at 550 nm.  
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2.4.8 Genome wide association analysis 

We performed two genome wide association studies. The first was performed on angle trans-

formed proportion death at day 3 using PLINK v1.07 (Purcell, Neale et al. 2007). Specifically, means of three 

repeats per line were taken as phenotype, and only biallelic SNP markers were considered. We calculated 

empirical p-values by using default adaptive permutation settings. The other GWAS was performed directly 

on the proportion data using a non-parametric Kruskal-Wallis one-way analysis of variance by ranks test. In 

this pipeline, all variants can be considered, including non-SNPs, even if they are not biallelic. Specifically, 

we grouped overlapping variants for each line, creating a list of loci with two or more alleles in the popula-

tion with a minimum allele count of 10. We then grouped the phenotypic measurement according to the 

allele of its line and performed a Kruskal-Wallis test. For each variant, 1000 permutations of the phenotype 

data were performed to estimate the false discovery rate. Since our GWAS hits are of marginal significance, 

the false discovery rate within this range of p-values is high (for example, at p-value ≤ 2e-05, the FDR is 

0.66). Nevertheless, the two approaches yielded very similar candidate lists. For the multiple-SNP GWAS, 

please refer to the legend in Supplementary table 4. 

  

2.4.9 RNAseq analysis 

Four resistant (Bloomington #28235, #28252, #25174, #25195) and four susceptible DGRP lines 

(Bloomington #28164, #28263, #29653, #28204) were selected for RNA-seq experiments. These eight lines 

were infected 4 hours with P.e. as indicated above, in parallel, the same eight lines were kept on 1.5% su-

crose as controls. 25 guts for each of the 16 samples were dissected and subsequent TRIzol RNA extraction 

was performed. We chose the 4h post-infection time point for multiple reasons. First, we have previously 

shown that major changes occur in the transcriptome as early as 4h post infection. Importantly, these 

changes are not restricted to immediate immune responses, but extend to the homeostatic mechanisms 

like intestinal stem cell-induced regeneration and repair. So we reasoned that differences between re-

sistant and susceptible lines could be resolved by that time. Another motivation for this choice stems from 

the fact that P.e. does not persist in the gut, and therefore, resistant lines could return to an uninfected 

state relatively quickly. In addition, fly mortality is still low to non-existent at 4h post-infection in suscepti-

ble lines. Libraries were prepared using the Illumina Truseq RNA kit and sequenced for 100 cycles on the 

Illumina HiSeq 2000 in the University of Lausanne Genomic Technologies Facility. Post processing was per-

formed using Casava 1.82. There was an average of 25 million reads per sample. Reads were mapped to 

individual DGRP-predicted transcriptomes (Massouras, Waszak et al. 2012). Count data was normalized 

using the Voom package in R. Each gene's RPKM value was calculated by averaging the RPKM values of its 



Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut Immunocompetence 

47 

associated transcripts. Analysis of differential expression was performed using limma (Smyth 2005). Gene 

RPKM values were used to perform principal component analysis using the FactoMineR package. Modulat-

ed modularity clustering was performed as in (Mackay, Stone et al. 2009) on the RPKM values of the 2000 

genes with the largest variance. We used the R built-in heatmap function with default settings for mean 

gene expression levels by phenotypic class in module #96. The raw and analysed expression data is availa-

ble on GEO through this accession: GSE59411 

 

2.4.10 Quantitative genetic and statistical analyses 

All statistical analyses were performed in R version 3.0.2 unless otherwise noted. We used angular 

transformation on percentage death data in all parametric analyses. For calculating the heritable compo-

nent, we treated the transformed percentage death at day 3 as a Gaussian response in a random effects 

model of the form Y = μ + L + R + ɛ where μ is the mean proportion death of all lines, L is a random variable 

representing deviation of each line from the mean, R is a random variable representing the deviation of 

each line’s biological replicate from the line mean, and ɛ is the residual error. We assumed that all variation 

is additive and that there is no epistasis and estimated the heritable component as VA/VA+VE, where VA is 

the additive genetic variance and is equal to half the between-line variance, VL, since the lines are almost 

entirely homozygous and VE is the environmental variance such that VE= VR+Vɛ. To estimate the proportion 

of variance accounted for by a certain QTL, we calculated R2 by performing linear regression taking the 

SNPs as factors. Pearson’s product moment correlation between oral infection and septic injury was per-

formed on the angular transformed line means between oral infection at day 3 and septic injury at day 10. 

For the bacterial load experiment, we analysed log2 relative ratios to Rpl32 values using ANOVA where the 

line was nested in susceptibility class and treated as a fixed effect, time post infection was treated as a fixed 

effect, and experimental replicate was treated as a random effect. Nested ANOVA, where line is nested 

within susceptibility class, was used to compare the log2 transformed PH3 counts of the susceptibility clas-

ses. For the analysis of the effect of RNAi knockdown of Gyc76C on Dpt induction, ANOVA was used with 

genotype and time post infection as fixed effects and experimental replicate as a random effect. Separate 

nested ANOVA by condition was used to determine the effect of susceptibility class on ROS levels (normal-

ized absorbance) where line was nested in susceptibility class and treated as a fixed effect and experi-

mental replicate was treated as a random effect. We used the R built-in heatmap function with default 

settings to plot the genetic relationship matrix data. 
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2.5 Supplementary Materials 

 

Supplementary Figure 2:1 Feeding behaviour, Wolbachia, and microbiota do not have a major influence on suscep-

tibility to enteric infection. 

(a) The three survival experiment repeats represented in a three-dimensional scatter plot showing proportion deaths 

(after angular transformation) three days post infection. Each red point is a DGRP line and the confidence ellipsoid is 

in grey. (b) Wolbachia infection status does not correlate with susceptibility (Nested ANOVA p=0.51 for Wolbachia 

status effect on survival). 68 lines and 70 lines are Wolbachia negative and positive, respectively. (c) Flies that were 

either resistant or susceptible to enteric infection in non-axenic conditions were infected with P.e. under axenic condi-

tions. Absence of the endogenous intestinal microbiota does not alter the relative susceptibility of the DGRP flies. (d) 

A Capillary Feeder (CAFE) assay shows that susceptible and resistant DGRP flies ingest a comparable volume of bacte-

ria during the first three hours post P.e. infection. 
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Supplementary Figure 2:2 Identification of a loss of function mutation in the dredd locus in one DGRP line. 

(a) Four isoforms related to the dredd gene have been previously described in (Di Fruscio, Styhler et al. 2003). γ and δ 

isoforms differ only by six amino acids. The α isoform lacks much of its prodomain and the β isoform lacks its catalytic 

domain. One SNP has been identified in the dredd locus of the DGRP line #25745, causing a change in the splicing 

donor site (G817A) in the α and γ mRNA, or an amino acid change (V273I) in δ and β isoforms. The light blue colours 

represent non-coding regions, the dark blue ones depict exons. (b) Survival analysis of females systemically infected 

with Ecc15 shows a lower survival rate of the #25745 line and relish mutant (RelE20) compared to controls (Log-Rank 

test p<0.05). (c) RT-qPCR experiments show that, similar to relish mutants, the #25745 line systemically infected with 

Ecc15 has no detectable diptericin (Dpt) expression as shown in w- and OregonR control flies. Data is normalized to 

100% ± S.D. w- flies consistently had the highest level of Dpt induction (100%), hence the missing error bar. (d) Per-

centage of dead female flies 50 hours post Ecc15 systemic infection is monitored. Only complementation of #25745 

line with a dredd mutant line fails to restore the wild-type survival, revealing that the identified SNP in the dredd gene 

is the causal locus of susceptibility to bacterial infection. Data presented in b and c are derived from three independ-

ent replicates. 
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Supplementary Figure 2:3 Lines resistant to P. entomophila are also resistant to a clinical isolate of Pseudomonas 

aeruginosa. 

Bar chart showing the proportion of dead flies after 7 days post-infection (± s.d.; three biological replicates). The lines 

in the susceptible and resistant classes were identified based on their susceptibility to P. entomophila oral infection. 

 

Supplementary Figure 2:4 Different statistical approaches yield highly similar GWAS top hits. 

(a) Above: Manhattan plot of the p-values (y-axis) for the association between genomic variants in DGRP lines and P.e. 

susceptibility. The x-axis represents the genomic location. A linear model was implemented in PLINK using angular-

transformed proportion death at day 3 as phenotype. Below: heatmap of pairwise LD between all SNPs with a p-value 

< 10-4 (n=188). (b) Q-Q plot of the linear association.  
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Supplementary Figure 2:5 Illustration of the Beavis effect. 

A plot of the adjusted R2 values obtained through random sampling of lines with different sample sizes (100 random 

samples per size group) and multi-SNP association (six rounds of association).  The curves are loess fits with 95% con-

fidence interval, and black points correspond to SNPs that have been identified in the full population. 

 

Supplementary Figure 2:6 Validation of candidate genes. 

(a) UAS-RNAi lines screened for an effect of dipt-LacZ reporter induction under a ubiquitous driver (da-gal4). “+” and 

“-“ indicate higher and lower induction than control (w1118), respectively, and the number of +’s scales with the extent 

of induction. (b) Knock-down of the top GWAS candidate gene, Gyc76C, using da-gal4 highly reduces the induction of 

the immune activation reporter Dpt-lacZ in the gut as revealed with X-Gal staining. 
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Supplementary Figure 2:7 Permutations of random sampling followed by PCA of the RNA-seq data. 

(a) RNA-seq library sizes of the 16 samples used in the study. (b) Random sampling of gene groups with sizes ranging 

from 10 to 2000 (10,000 permutations per group size), followed by PCA analysis on their gene expression levels re-

vealed that treated and untreated samples are always separated by the first PC for groups greater than 250. (c) The 

same random sampling and PCA as in b, but with different separation criteria (see legend). 
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Supplementary Figure 2:8 Principal component analysis of modules 

(a)#96 and (b)#102. (c) Heatmap of average expression levels of genes in module #102 by susceptibility/treatment 

(unchallenged = UC or infected = Pe) class. 

  



Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut Immunocompetence 

54 

2.6 Supplementary Tables 

Supplementary Table 2:1 Percentage death of tested DGRP lines 3 days post-infection with Pseudomonas ento-
mophila 

DGRP# 
Bloomington 
stock number Percentage dead at day 3 

DGRP-897 28260 0.5% 
DGRP-802 28235 1.8% 
DGRP-320 29654 4.3% 
DGRP-738 28223 4.8% 
DGRP-208 25174 7.6% 
DGRP-857 28252 4.5% 
DGRP-486 25195 10.0% 
DGRP-129 28141 7.2% 
DGRP-313 25180 7.2% 
DGRP-360 25186 2.4% 
DGRP-303 25176 10.5% 
DGRP-142 28144 9.7% 
DGRP-907 28262 15.0% 
DGRP-217 28154 12.7% 
DGRP-801 28234 16.3% 
DGRP-379 25189 20.8% 
DGRP-158 28147 24.4% 
DGRP-237 28160 16.6% 
DGRP-441 28198 16.9% 
DGRP-440 28197 22.0% 
DGRP-426 28196 11.7% 
DGRP-399 25192 24.7% 
DGRP-321 29655 23.1% 
DGRP-894 28259 23.1% 
DGRP-45 28128 20.3% 

DGRP-335 25183 20.7% 
DGRP-307 25179 25.2% 
DGRP-837 28246 27.2% 
DGRP-91 28136 21.5% 

DGRP-161 28148 25.8% 
DGRP-705 25744 35.5% 
DGRP-377 28186 29.3% 
DGRP-822 28244 22.0% 
DGRP-804 28236 30.9% 
DGRP-861 28253 21.8% 
DGRP-799 25207 32.7% 
DGRP-812 28240 37.4% 
DGRP-356 28178 23.1% 
DGRP-370 28182 27.9% 
DGRP-373 28184 40.8% 
DGRP-437 25194 33.5% 
DGRP-195 28153 26.3% 
DGRP-406 29657 24.1% 
DGRP-318 28168 45.0% 
DGRP-136 28142 34.3% 
DGRP-41 28126 42.7% 

DGRP-461 28200 27.7% 
DGRP-805 28237 25.7% 
DGRP-517 25197 46.7% 
DGRP-563 28211 46.1% 
DGRP-352 28177 53.6% 
DGRP-75 28132 51.4% 

DGRP-315 25181 50.4% 
DGRP-642 28216 49.3% 
DGRP-737 28222 50.1% 
DGRP-371 28183 56.3% 
DGRP-391 25191 48.8% 
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DGRP-859 25210 41.9% 
DGRP-256 28162 44.9% 
DGRP-42 28127 51.0% 

DGRP-855 28251 48.9% 
DGRP-362 25187 44.5% 
DGRP-884 28256 52.0% 
DGRP-350 28176 52.2% 
DGRP-513 29659 41.0% 
DGRP-808 28238 33.3% 
DGRP-177 28150 52.7% 
DGRP-786 25206 57.3% 
DGRP-783 28230 49.7% 
DGRP-375 25188 52.6% 
DGRP-374 28185 63.0% 
DGRP-381 28188 55.0% 
DGRP-508 28205 54.1% 
DGRP-820 25208 63.3% 
DGRP-832 28245 52.6% 
DGRP-57 29652 55.9% 
DGRP-83 28134 68.3% 

DGRP-492 28203 41.6% 
DGRP-589 28213 40.9% 
DGRP-239 28161 57.7% 
DGRP-309 28166 68.2% 
DGRP-796 28233 65.0% 
DGRP-427 25193 71.1% 
DGRP-304 25177 70.4% 
DGRP-555 25198 72.1% 
DGRP-26 28123 72.9% 

DGRP-324 25182 57.3% 
DGRP-491 28202 77.3% 
DGRP-310 28276 50.4% 
DGRP-712 25201 64.9% 
DGRP-892 28258 57.4% 
DGRP-380 25190 77.7% 
DGRP-332 28171 15.2% 
DGRP-409 28278 59.5% 
DGRP-595 28215 82.8% 
DGRP-776 28229 68.4% 
DGRP-338 28173 59.2% 
DGRP-392 28194 77.6% 
DGRP-181 28151 58.6% 
DGRP-509 28206 63.9% 
DGRP-730 25202 80.2% 
DGRP-732 25203 82.9% 
DGRP-233 28159 77.7% 
DGRP-109 28140 87.0% 
DGRP-176 28149 85.1% 
DGRP-911 28264 68.8% 
DGRP-358 25185 88.1% 
DGRP-365 25445 80.7% 
DGRP-879 28254 79.2% 
DGRP-28 28124 86.8% 

DGRP-359 28179 95.3% 
DGRP-531 28207 67.8% 
DGRP-790 28232 77.9% 
DGRP-502 28204 94.9% 
DGRP-228 28157 88.8% 
DGRP-405 29656 93.8% 
DGRP-153 28146 84.4% 
DGRP-639 25199 96.6% 
DGRP-818 28241 93.0% 
DGRP-882 28255 95.7% 
DGRP-714 25745 98.3% 
DGRP-535 28208 98.2% 
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DGRP-38 28125 89.4% 
DGRP-386 28192 96.0% 
DGRP-890 28257 93.4% 
DGRP-761 28227 66.8% 
DGRP-138 28143 80.5% 
DGRP-721 28220 93.6% 
DGRP-101 28138 96.8% 
DGRP-40 29651 99.4% 

DGRP-229 29653 99.5% 
DGRP-908 28263 99.6% 
DGRP-280 28164 100.0% 
DGRP-287 28165 100.0% 
DGRP-301 25175 100.0% 
DGRP-85 28274 100.0% 

DGRP-227 28156 65.8% 
DGRP-707 25200 100.0% 
DGRP-765 25204 64.4% 
DGRP-774 25205 93.5% 
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Supplementary Table 2:2 Analyses of variance for diallel survival data (after angular transformation).  

 

Effect           df Mean Square F P 
ANOVA on male/female effects due to resistant/susceptibility category 

Male resistance category 1 5.477 271.819 <0.001 
Female resistance category 1 2.266 38.159 0.001 

Male strain (nested within category) 6 .020 .275 0.946 
Female strain (nested within category) 6 .060 .807 0.570 

Male category x Female category 1 .814 11.025 0.002 
Male strain x Female strain 46 .075 2.813 <0.001 

Replication 63 1.715 64.183 <0.001 
 

Diallel ANOVA testing for general and specific combining ability 
General combining ability 7 0.264 6.682 <0.001 
Specific combining ability 28 0.215 5.444 <0.001 

Reciprocal  28 0.166 4.184 <0.001 
Maternal  7 0.13 0.735 0.64287 

Maternal interaction 21 0.177 4.481 <0.001 
Error 63 0.04     

 

The first ANOVA tests for effects due to male/female strain and susceptibility class (susceptible or resistant) and their 

interactions on survival. Strain was nested within the resistant or susceptible categories and treated as a random vari-

able. The second ANOVA represents the diallel analysis according to Griffing (1956)(Griffing 1956) testing for general 

combining ability (additive effects and their interactions) and specific combining ability (dominance effects and their 

interactions) as well as effects due to reciprocal differences in the crosses, maternal contributions, and their interac-

tions. 

 

Model for ANOVA: Yijklm = μ + mi + fj + sk(i) + tl(j) + mifj + sk(i)tl(j) + eijklm where μ is the population mean, mi is the ith male 

category, fj is the jth female category, sk(i) is the kth male strain within the male category, tl(j) is the lth female strain 

within the female category and eijklm is the residual. Strain within categories are random, other terms apart from repli-

cation are fixed. 

 

Model for diallel analysis: Yijklm = μ + gi(gj) + sij + rij + mi + nij + eijk where μ is the population mean, gi(gj) is the general 

combining ability for the ith (jth) parents, sij is the special combining ability for the cross between the ith and jth par-

ents, rij is the reciprocal effect, mi is the maternal effect, nij is the interaction of the ith maternal effect with the jth 

parent, and eijk is the error term. The analysis follows Method 1 (parents and reciprocal F1s measured) under Model 1 

of Griffing (1956)(Griffing 1956) with maternal terms added (Cockerham and Weir 1977, Kaushik and Puri 1984).  

  



Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut Immunocompetence 

58 

Supplementary Table 2:3 Summary of top QTLs obtained in common between parametric and non-parametric asso-
ciation studies. 

 

Genomic location Variant annotation 

Kruskal-
Wallis p 
valuea 

PLINK 
empirical p-

valueb 
Number of per-

mutationsc R2 d 

Chr2R:9048826 Nrk (intron) 3.60E-06 3.00E-06 1000000 0.14 

Chr2R:9048897 Nrk (exon V306G) 3.60E-06 3.00E-06 1000000 0.14 

Chr2R:9048840 Nrk (intron) 4.40E-06 2.00E-06 1000000 0.14 

Chr3R:26527712 Intergenic - Pka-C2(dist=4852),CG31010(dist=2770) 4.93E-06 4.00E-06 1000000 0.15 

Chr3R:26527703 Intergenic - Pka-C2(dist=4843),CG31010(dist=2779) 4.93E-06 4.00E-06 1000000 0.15 

Chr2L:3172873 Intergenic - CG34406(dist=123);CG31698(dist=411) 6.83E-06 3.10E-05 1000000 0.12 

Chr3R:10229978 cv-c (intron) 7.28E-06 1.70E-05 1000000 0.13 

Chr3L:6480167 CG10147 (exon, synonymous) 7.32E-06 1.20E-05 1000000 0.13 

Chr2R:9892328 mam (intron), CG30482 (exon) 9.10E-06 1.00E-06 1000000 0.16 

Chr3L:6076155 Intergenic - CG6619(dist=1520),CG13293(dist=4214) 1.35E-05 5.85E-05 752247 0.11 

Chr3R:10227723 cv-c (intron) 1.36E-05 2.20E-05 1000000 0.14 

ChrX:21324090 CG42343 (intron) 1.41E-05 1.00E-06 1000000 0.19 

Chr3L:9361423 CG4452 (intron) 1.45E-05 1.70E-05 1000000 0.12 

Chr3L:10570926 A2bp1 (intron) 1.55E-05 5.00E-06 1000000 0.17 

Chr2R:19991068 enok (exon, synonymous) 1.57E-05 1.60E-05 1000000 0.10 

Chr2R:14967476 5-HT1A (intron) 1.85E-05 5.11E-05 861138 0.10 

Chr3L:19769316 CG42637,Gyc76C (intron) 1.86E-05 9.00E-06 1000000 0.15 

ChrX:4208879 mei-9 (3' UTR) 1.89E-05 3.40E-05 1000000 0.10 

Chr2L:3794426 CG3921 (exon, synonymous) 1.90E-05 8.00E-06 1000000 0.15 

Chr2R:10603181 Intergenic - mspo(dist=2055),CG12865(dist=23043) 1.94E-05 8.09E-05 544000 0.11 

Chr2R:8613576 CG42663 (intron) 2.76E-05 1.00E-05 1000000 0.16 

Chr2R:8613586 CG42663 (intron) 4.34E-05 1.00E-05 1000000 0.16 

Chr2R:16288827 Intergenic - CG11192(dist=46270),CG12484(dist=23014) 5.18E-05 3.00E-06 1000000 0.15 

Chr3R:5045687 pum (intron) 7.31E-05 5.67E-05 776000 0.11 

Chr2R:12715416 CG34459(dist=1264), CG34460(dist=1013) 8.12E-05 2.80E-05 1000000 0.08 

ChrX:12947763 CG12715 (exon, synonymous) 9.30E-05 1.48E-04 298402 0.10 

Chr2L:8635001 Sema-1a (intron) 2.25E-04 2.70E-05 1000000 0.11 

  

a Non-parametric association p-value 

b Empirical p-value after adaptive permutation as implemented in PLINK(Purcell, Neale et al. 2007) 

c Number of permutations performed for each SNP 

d Linear model R2 for single SNPs 

  



Genetic, Molecular and Physiological Basis of Variation in Drosophila Gut Immunocompetence 

59 

Supplementary Table 2:4 Additive multiple-SNP model results 

 

GWAS Round Top SNP Coefficient p-value Adjusted  R2 

1 Chr3L:4668479 -0.3251 1.46E-07 0.18 

2 Chr2R:9892328 -0.2683 5.64E-07 0.32 

3 Chr2L:3355610 0.4201 1.54E-06 0.43 

4 Chr3L:13828661 -0.3401 1.90E-06 0.51 

5 Chr2L:3355661 -0.4183 7.30E-07 0.52 

6 Chr2L:2836880 0.3875 1.84E-06 0.59 

7 Chr2L:2836903 -0.3888 2.00E-06 0.58 

8 Chr3L:15759197 -0.1970 5.79E-06 0.64 

9 Chr3R:15278253 0.1810 5.08E-06 0.69 

10 Chr3R:15278255 -0.1810 5.08E-06 0.69 

11 Chr3L:9600645 0.1600 5.35E-06 0.74 

12 Chr2L:12809795 0.1499 1.25E-05 0.78 

13 Chr3L:9680631 -0.1815 3.66E-06 0.83 

14 Chr3R:9554355 -0.1739 2.10E-06 0.87 

15 Chr3R:9554381 -0.1739 2.10E-06 0.87 

16 Chr2L:18589931 0.1971 3.59E-05 0.90 

17 Chr2R:10000342 0.1574 0.000117 0.91 

18 Chr3L:3312435 -0.1575 0.000171 0.93 

19 Chr2R:16922817 -0.1419 5.25E-05 0.94 

20 ChrX:20010029 -0.1835 4.19E-05 0.95 

 

 

Successive iterations of the GWAS were performed using a linear model of the form Y = μ + SNP1 + SNP2 + SNP3 + … 

SNPN + ϵ, where SNP1, SNP2, SNP3, …, SNPN , are the most significant SNPs fitted in succession as in Harbison et al., 

2013(Harbison, McCoy et al. 2013). In short, for each round a GWAS is performed and the SNP with the most signifi-

cant QTL is recorded, which is then incorporated in the linear model of the next round. 
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Supplementary Table 2:5 Multiple-SNP regression for SNPs in module #96 

 

geneID GWAS p-value snpID Estimate Std. Error t 

 

value 

  

- - (Intercept) 0.33911 0.23743 1.428 

 

0.15611 

  

eas 1.40E-03 ChrX:16175381 0.13048 0.05661 2.305  0.02309 

rev7 6.54E-01 Chr3R:1414703 0.13655 0.11685 1.169 

 

0.24513 

  

CG33158 5.54E-05 Chr3L:16415271 -0.22319 0.06629 -3.367  0.00105 

Cyp6d2 1.11E-02 Chr2R:18540150 -0.10239 0.08927 -1.147 

 

0.25393 

  

CG10827 5.38E-03 Chr3R:16832600 -0.10546 0.07278 -1.449 

 

0.15022 

  

CG32669 7.07E-02 ChrX:10737211 0.06322 0.05821 1.086 

 

0.27986 

  

Gs2 4.12E-02 ChrX:11322919 -0.0274 0.06418 -0.427 

 

0.67023 

  

CG3625 8.59E-03 Chr2L:284365 -0.23906 0.0887 -2.695  0.00816 

GstD10 8.17E-02 Chr3R:8191081 -0.02762 0.06186 -0.446 

 

0.65618 

  

yip2 4.24E-02 Chr2L:9915438 0.16849 0.12498 1.348 

 

0.18044 

  

SMC2 9.89E-02 Chr2R:10736815 -0.13882 0.10309 -1.347 

 

0.18095 

  

lectin-37Da 1.71E-02 Chr2L:19418365 -0.14842 0.1091 -1.36 

 

0.17654 

  

Dgp-1 5.59E-02 Chr2R:14057889 0.02383 0.10814 0.22 

 

0.82603 

  

GstD9 1.25E-01 Chr3R:8192383 0.20098 0.10987 1.829  0.07014 

Ugt36Ba 1.01E-01 Chr2L:16794249 0.05927 0.06907 0.858 

 

0.39268 

  

CG11309 4.37E-02 Chr3L:21297350 0.08747 0.08353 1.047 

 

0.29735 

  

GstD1 1.42E-01 Chr3R:8194750 0.01066 0.1343 0.079 

 

0.93691 

  

gukh 3.36E-03 Chr3R:14827525 0.19141 0.09755 1.962  0.05233 

Sodh-2 3.97E-02 Chr3R:6702928 0.06843 0.11717 0.584 

 

0.56044 

  

RPA3 1.28E-01 ChrX:11615178 0.06898 0.06521 1.058 

 

0.29256 

  

Residual standard error: 0.3029 on 108 degrees of freedom 

(11 observations deleted due to missingness) 

Adjusted R-squared:  0.2961 
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F-statistic: 3.693 on 20 and 108 DF,  p-value: 5.569e-06 

One SNP with the lowest GWAS p-value in the GWAS was chosen for each of the 20 genes in the module. The 20 SNPs 

were fitted simultaneously in a linear model of the form Y = μ + SNP1 + SNP2 + SNP3 + … SNP20 + ϵ.  

 

Supplementary Table 2:6 List of primer sequences used in the study 

 

Target Forward primer Reverse primer 

diptericin ACCGCAGTACCCACTCAATC CACACCTTCTGGTGACCCTG 

RpL32 GACGCTTCAAGGGACAGTATCTG AAACGCGGTTCTGCATGAG 

Gyc76C AAACATCGGATGAGCAGGCA GTGTAGTCGCAGCCACAGAT 

monalysin CTGGGTAATGGCCGACAAGT ACAGAATGTGACGACCACCC 

 
 

 

Please refer to the online publication for the following tables: 

Supplementary Table 2:7 Differential expression analysis between all challenged and all unchallenged samples 

 

Supplementary Table 2:8 Analysis of genes differentially expressed in resistant versus susceptible lines. 

 

Supplementary Table 2:9 Modulated modularity clustering modules. 
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 The impact of gene expression cis-

regulatory variation on the outcome of enteric 

infection in Drosophila 

This chapter goes deeper into the dissection of systematic differences in gene ex-
pression between genetically distinct individuals before and after infection. Then it 
explores the effect of cis-regulatory variation, that is, genetic variations surround-
ing a gene, on gene expression levels. A special emphasis is placed on the predic-
tion of an individual’s susceptibility to infection based on gene expression levels, 
cis-variation, or a combination of the two. At the moment of writing this chapter, 
the project is still not complete, and there are several planned follow-ups with col-
leagues in the Deplancke lab. 

Abstract 

In a polymorphic population, complex traits like resistance to enteric infection can be affected by 

genetic variations affecting multiple genes and many pathways. Coming to grips with the molecular under-

pinnings of such traits in a variable world requires systems genetics approaches. Here, we use a Drosophila 

enteric infection model to study differences in gene expression between susceptible and resistant inbred 

lines in the naïve and infected state. With the exception of the gene Nutcracker (ntc), we find no consistent 

differences in gene expression levels between the two classes, indicating that the membership to a certain 

phenotypic class is mediated by small differences in many genes. By using statistical learning approaches, 

we identify gene signatures that reliably predict resistance class with 75% and 100% success in the naïve 

and infected state respectively. For each condition, we detect an equivalent number of expression quanti-

tative trait loci (eQTLs), with 40% of genes being shared. Finally, we show that ntc has infection-specific 

eQTLs that not only correlate with its expression level, but also to susceptibility of other DGRP lines for 

which we do not have expression data. The eQTLs overlap with putative transcription factor binding sites 

around the ntc locus, which could mechanistically explain their effect.  

Author Contributions and Acknowledgements 

Maroun Bou Sleiman, Dani Osman, and Bart Deplancke designed the study. Maroun Bou Sleiman 

and Dani Osman prepared the RNA-sequencing samples. Maroun Bou Sleiman performed the statistical and 
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computational analyses with assistance from Tommaso Andreani. Michael Frochaux and Maroun Bou Slei-

man performed infection and RT-qPCR experiments. The ntcms771 stock was a kind gift from Professor Her-

mann Steller. Sequencing was performed in the the University of Lausanne Genomic Technologies Facility. 

The computations were performed at the Vital-IT (http://www.vital-it.ch) Center for high-performance 

computing of the SIB Swiss Institute of Bioinformatics. 

3.1 Introduction 

Deciphering the relationship between genomic and phenotypic variability is one central question 

in genetics. Genome Wide Association Studies (GWAS) have been extensively used to address this question 

by looking for variations that could explain a certain fraction of the genetic variance of phenotypes 

(Manolio 2010). More often than not, those variants lie in non-coding regions of the genome, rendering the 

inference of their putative function very hard. Therefore, the study of intermediate traits, such as gene 

expression levels, and how they are affected by genomic variation is a powerful complementary tool to link 

genotype to phenotype (Nica and Dermitzakis 2013). 

 

Ever since the first expression quantitative trait locus (eQTL) report on yeast in 2002 (Brem, Yvert et al. 

2002), it was clear that eQTLs could explain variability in gene expression.  eQTLs are more likely to be pre-

sent in open chromatin regions and in transcription factor binding sites, and in cell-type specific regulatory 

elements (Gerrits, Li et al. 2009, Fairfax, Makino et al. 2012, Gaffney, Veyrieras et al. 2012). These observa-

tions collectively point to the importance of genetic variation in regulatory regions. Moreover, eQTLs can 

mediate different responses to external stimuli. For instance, studies in monocytes and dendritic cells that 

have been subjected to different stimuli have been successful in determining genetic variants that mediate 

the differential responses to stimulation (Lee, Ye et al. 2014). This has important implications in under-

standing the genetic basis of disease susceptibility since it could help pinpoint factors that mediate differ-

ences between individuals at a very high resolution, thus paving the way for personalized medical interven-

tions. 

 

In this study, we go beyond studies on cell lines and explore the effect of genetic variation on gene expres-

sion and the organismal phenotype in the context of enteric infection. We have previously shown that gut 

immunocompetence is highly variable and heritable in a set of 140 DGRP lines and characterized gene ex-

pression differences between 4 lines from each phenotypic extreme (Bou Sleiman, Osman et al. 2015). 

Here, we generated a larger set of gut transcriptomes in order to systematically investigate the link be-
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tween gut expression levels and genetic variation. We show that the genotype is a major determinant of 

gene expression levels and that the resistance class can be predicted based on specific gene signatures. 

Then we catalogue the eQTLs that are in cis with expressed genes and identify nutcracker (ntc) as a gene 

that is differentially expressed between the resistance classes, probably due to cis-regulatory variation in 

transcription factor binding sites. The genetic tractability of the fruitfly, the ability to replicate experiments 

on the same genetic backgrounds, and the study at the whole organism level render our approach very 

powerful to understand enteric infection variability. 

 

3.2 Results 

3.2.1 Few or no genes are significantly different between resistance classes 

We selected 38 DGRP lines, 20 of which are susceptible and 18 resistant to P.e. enteric infection 

(Fig. 3:1a), infected adult female flies, and performed RNA-sequencing on their dissected guts 4 hours post 

infection. For each line, we also sequenced guts of unchallenged, sucrose-fed flies. In total, we sequenced 

the poly-A enriched transcriptome of 76 samples. Since the lines have been shown to be highly polymor-

phic, we opted for analyses on individualized genomes. For that, we used the available genotype 

data(Huang, Massouras et al. 2014), including single nucleotide as well as indels and structural variations, 

to generate individualized genomes and gene annotations (see Methods) which we used throughout the 

analyses. 

 

7 of the lines were already included in one of our previous study (Bou Sleiman, Osman et al. 2015), which 

allowed us to assess the biological reproducibility of the RNA-sequencing experiment. For that, we com-

bined the expression count data from the two experiments, then performed normalization while account-

ing for the batch, and performed hierarchical clustering (Supplementary Fig. 3:1a). The samples from the 

same line and condition always cluster together, indicating that genotypic differences mediate expression-

level differences and that batch effects are weaker than the infection or genotype effect. Principal Compo-

nent Analysis (PCA) on the same data also supports this observation (Supplementary Fig. 3:1b-c). 

 

Using standard gene-based differential expression analysis, we identified around 2400 genes that are either 

up- or down-regulated 4 hours post Pe infection (FDR<0.05, log fold change > 2, Fig. 3:1b). This is consistent 

with previous findings using microarray data (Chakrabarti, Liehl et al. 2012), as well as our previous RNA-
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sequencing results (Bou Sleiman, Osman et al. 2015). In our previous study, however, we found very little 

differences between the resistance classes, and we had to relax the significance thresholds for exploratory 

purposes. This could have been due to either the small number of lines tested or to the possibility that 

there are few consistent differences between the classes at the single gene level. When comparing re-

sistance classes of the 38 lines, we find no differentially expressed genes in the naïve state, and only one 

gene, nutcracker (ntc), in the treated state (Fig. 3:1c). This observation supports the hypothesis that the 

differences between the classes, while being very clear at the physiological and organismal level, cannot be 

explained at the single gene level. 

 

To gain an unbiased overall insight into the retaledness of the transcriptomes, we performed PCA on the 

levels of expressed genes (Fig. 3:1d). While the infection effect is obvious and recapitulated by the first 

principal component (PC), lines from different resistance classes do not show any clear separation on the 

first two PCs. This is in contrast to our previous study, where we were able to see such separation on the 

second PC.  Furthermore, performing PCA on the expression levels within conditions yields a similar result, 

with no obvious separation of the resistance classes on the first two principal components. One explanation 

to why we no longer see such a clear separation is the fact that we expanded the number of lines, there-

fore reducing the phenotypic spread. Another possibility is that the selected lines in the previous study 

show this separation due to genotypic effects and not specifically resistance class, and since there were no 

other samples to compare with at the time, a biological interpretation was performed. Taken together, our 

findings suggest that while the effect of infection is similar among all the tested lines and the phenotypic 

differences are striking between the two resistance classes, the underlying transcriptomic differences are 

neither evident at the single-gene nor the transcriptome-wide level. This is in line with our previous findings 

that higher-level modules could explain differences between resistance classes. 
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Figure 3:1 Few or no genes are consistently different between fly resistance classes 

(a) Study design: Adult female flies from from two phenotypic extremes (18 resistant and 20 susceptible) of the DGRP 

were infected orally with Pe, or fed sucrose. Whole guts of ~30 flies were dissected per condition and line, then RNA-

sequencing was performed. Sequencing reads were mapped to individualized genomes, and the number of reads was 

counted per gene. (b) Infection leads to the differential expression of around 2400 genes (BH-corrected p-value < 

0.05, fold change > 2). (c) When lines of the two resistance classes are compared within condition, no genes are signif-

icantly differentially expressed in the naïve condition, and only one gene in the treated condition. (d) Principal com-

ponent analysis plots of all the samples (left), the naïve condition (middle), and the treated condition alone (right). 

The R package FactomineR was used to obtain the coordinates of each sample in the first two components, as well as 

the variance explained by each component (in parentheses).  
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3.2.2 Feature selection and prediction of treatment condition and susceptibil-

ity class from the gut transcriptome. 

Since differential gene expression analysis was unable to resolve clear differences between the 

susceptibility groups, we opted for a machine learning approach that capitalizes on the size of our dataset 

to look for differences across groups of genes. One basic limitation is that we do not have any prior 

knowledge of the potential number of features that could reliably lines from the phenotypic extremes. For 

that, we relied on elastic net regularization with cross validation on a training set of 31 lines from this da-

taset (7 lines were removed since they are also in the previous study), as well as prediction on the 8 lines 

from the previous study (test data). Briefly, we scanned possible values of the mixing parameter alpha 

(with alpha = 0 and alpha = 1 corresponding to ridge and lasso regression respectively) for the sparsest 

model that maximizes the prediction on a randomly-drawn validation set (size = 8 or 4) from the 31 lines. 

The best model for each alpha value was obtained through cross validation to select the model that mini-

mizes lambda, the elastic net shrinkage parameter (Fig. 3:2a, Supplementary Fig. 3:1). To account for sam-

pling variability in the selection of folds, we performed the analysis 100 times for each alpha value. 

 

We first tested our approach with the easiest scenario: predicting treatment condition. Only three genes 

were sufficient to obtain 100% prediction of the sample’s infection condition (Fig.3:2b). Interestingly, the 

three selected genes Kayak/Fos-related antigen, Relish/NFkB, and Supressor of cytikine signaling at 36E 

(Socs36E) are transcription factors involved in the Jun kinase (JNK), the Immunodeficiency (Imd), and the 

JAK/STAT pathways respectively. All three pathways have been previously implicated in the gut defense 

response, whether at the level of antimicrobial peptide induction(Lemaitre and Hoffmann 2007, Buchon, 

Broderick et al. 2013) (for the JNK and Imd pathways) or at the level of damage-induced stem cell prolifera-

tion(Jiang, Patel et al. 2009) (for the JAK/STAT pathway). The three genes are highly induced following in-

fection and are therefore very good predictors of infection status. One should note that given the dramatic 

differences caused by P.e. infection, other combinations of genes could also have the same predictive pow-

er. 
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Figure 3:2 Feature selection and prediction of treatment condition from the gut transcriptome. 

(a) The transcriptome data in this study was used as a training set, and the data from 8 lines from a previous 

study(Bou Sleiman, Osman et al. 2015) was used as a test set (see chapter 2). Samples from DGRP lines that are repli-

cated in the two studieswere removed from the training set. For each scenario, elastic net regularization was used to 

select the most predictive set of features. Specifically, values of the mixing parameter α, ranging from 0 (i.e. ridge-

regression) to 1 (i.e. lasso) were tested, and for each of those values, we used cross-validation within the training set 

to select the value of the elastic-net mixing parameter λ that minimizes the misclassification error in a logistic regres-

sion model. Then we selected the simplest model that could yield the best prediction on a validation set (chosen ran-

domly from the training set). We used the obtained α value in a new round of cross-validation containing all the train-

ing set, and performed prediction on the test set. (b) Predicting treatment condition, which could be done at 100% 

rate with as few as 3 genes. A PCA that is weighted by the absolute value of coefficients of the model is drawn to show 

relationships between the lines or samples. 
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3.2.3 Resistance class can be fully predicted based on specific gene signatures. 

Having established that our method could select a limited set of predictive genes from a full tran-

scriptome, we next applied it to predict susceptibility in three different scenarios: in the naïve condition, 

the treated condition, and on the fold changes in gene expression after infection. Our ability to predict re-

sistance class in the naïve state was modest, with 75% success based on 785 selected genes (Fig. 3:3a). The 

fact that so many genes were selected reflects that the resistance class signature in the naïve state is rather 

weak. Nevertheless, to gain insights into the possible function of the selected genes, we performed gene 

ontology (GO) enrichment analysis, and found that two of the most highly-enriched GO terms are pro-

teasome-mediated ubiquitin-dependent protein catabolic process and regulation of organ growth.  

 

Predicting resistance class in the treated condition was 100% successful based on a set of 409 genes en-

riched for ATP hydrolysis-coupled proton transport (Fig. 3:3b). The increased success could be due to slight-

ly different responses of resistant lines compared to the susceptible lines which uncover condition-specific 

differences that are not discernible in the uninfected state. Moreover, the enrichment for ATP-hydrolysis-

coupled proton transport is indicative of possible differences in Reactive Oxygen Species (ROS) metabolism. 

However, understanding the mechanistic basis of the contributions of each of those genes is a challenge, 

especially since they are numerous and subtle.  

 

Finally, we performed prediction based on the fold changes of each gene in each DGRP line. Our method 

was also 100% successful in classifying the test set, this time based on a set of 457 genes. Two of the most 

enriched GO categories are SCF-dependent proteasomal ubiquitin-dependent protein catabolic process, to 

which the gene ntc belongs, and the regulation of mitotic cell cycle.  Taken together, our analyses show 

that reliable predictive transcriptional signatures could be identified to predict susceptibility class yet the 

dissection of the relative roles of each gene is still a challenge. 
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Figure 3:3 Resistance class can be fully predicted based on specific gene signatures. 

(a)  Resistance class of 6/8 samples can be predicted correctly based on the gene expression levels of 785 genes in the 

naïve state. (b) Prediction of resistance based on the gene expression level after infection is at 100%. For each scenar-

io, a PCA that is weighted by the absolute value coefficients of the model is drawn to show relationships between the 

lines or samples. 

 

3.2.4 cis-eQTL analysis links natural variation to gene expression levels. 

After establishing that expression-level signatures could be predictive of resistance class, we 

sought to catalogue the effect of genetic variation on gene expression levels. For that, we used Matrix-eQTL 

(Shabalin 2012) to identify cis-Quantitative Trait Loci (QTLs) whose alleles correlate with the expression 

levels of nearby genes. We performed the analysis separately for the naïve and treated states and identi-

fied around 6700 cis-eQTLs for 1450 genes in each state (Fig. 3:3a). Interestingly, around 40% of the genes 
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with cis-eQTLs are shared between the two conditions, strongly supporting the notion that genomic varia-

tions indeed mediate transcriptomic differences.  

 

It has already been shown that variant density in 39 of the DGRP lines is lower in genes than the overall 

background, and that this density increases to background levels upstream of, and then drops sharply at 

the TSS site(Massouras, Waszak et al. 2012). On the other hand, the p-values of the cis-eQTLs based on 

whole-adult are, on average, higher at the TSS, with the highest being immediately downstream. Indeed, a 

metaplot of the density of the gut eQTL distances from their genes’ respective transcription start sites (TSS) 

shows that they are more likely to be present around the TSS, with a peak immediately downstream of the 

TSS (Fig. 3:3b). These observations are consistent with studies both on DGRPs and in other systems (Doss, 

Schadt et al. 2005, Stranger, Forrest et al. 2007, Massouras, Waszak et al. 2012).  

 

We found at least one eQTL in around 25% of the genes expressed in the gut. In order to explore whether 

genes involved in specific biological processes are more affected by natural variation than others, we per-

formed Gene Ontology enrichment analysis on three sets of genes: the naïve-only, treated-only, and the 

shared genes (Fig. 3:3c). The most enriched term in the shared genes is chitin metabolic process. We ob-

serve some degree of similarity in the terms enriched in the condition-specific genes, with a tendency of 

the naïve condition to have genes involved in the establishment of polarity.  Furthermore, some infection-

specific terms emerge, including response to endogenous stimulus and the regulation of the ERK1/ERK2 

cascade. Taken together, our analyses catalogue possible genomic loci that could be affecting the expres-

sion levels of genes, some of which could explain susceptibility to infection. An assessment of the effect of 

those variations on possible transcription factor binding sites could help isolate causal variants and give a 

better molecular understanding of their implication in the normal and diseased physiology of the gut.  
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Figure 3:4 cis-eQTL analysis links natural variation to gene expression levels. 

(a) Variants with a minor allele frequency greater than 5 in the 38 lines and that are within a 10kb window of each 

expressed gene were tested for their association with gene expression levels. Results of two cis-eQTL analyses (one for 

each infection condition) using Matrix eQTL (Shabalin 2012) are presented in a Venn diagram (FDR < 0.05). The num-

ber of genes with significant associations is indicated in parentheses. (b) Metaplot of locations of cis-eQTLs with re-

spect to their associated genes’ transcription start sites (TSS). Solid grey line and dashed orange line are for the naïve 

and treated states respectively. (c) Graphical representation of enriched biological process gene ontology terms based 

on the lists of genes with significant cis-eQTL associations. The GO analysis was performed using the GOstats(Falcon 

and Gentleman 2007) R package (Hypergeometric test p-value < 0.005), and REVIGO (Supek, Bo?njak et al. 2011) was 

used to reduce redundancy in the ontology groups and plot them by semantic similarity (allowed similarity = 0.7). The 

size of the circle indicates the number of genes belonging to a certain GO category, and the color indicates enrichment 

significance. 
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3.2.5 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is 

involved in the gut response. 

We have previously seen that nutcracker (ntc) is the only differentially expressed gene between 

the resistant and susceptible lines (Fig. 3:1b). The gene is mainly induced after infection, but more so in 

some resistant lines (Fig. 3:5a). In some susceptible lines, its expression level even decreases. This observa-

tion prompted us to investigate its possible involvement in the gut response. For that, we obtained lines 

that have P-element-induced mutations, ntcf03797 and ntcf07259, in or around the ntc locus, and tested their 

susceptibility to P.e. infection compared to a control line from the same genetic background, w1118. Both 

lines show increased susceptibility, with ntcf03797 having the more severe phenotype (Fig. 3:5b, log-rank test 

p-value < 0.05 when compared to w1118). Furthermore, we performed RT-qPCR on dissected guts and saw 

that ntc induction is reduced in those lines compared to control. Interestingly, diptericin induction is almost 

completely abolished in these lines, suggesting that the Imd pathway activation upon P.e. infection is com-

promised in those mutants (Supplementary Fig. 3:4a). We believe that this is not the case in the DGRP 

lines, where the difference in ntc activation between susceptible and resistant lines are not as severe as 

those in the P-element mutants. Furthermore, we also infected a line that is heterozygous for a point muta-

tion in the F-box domain of ntc, ntcms771, and also found that it is more susceptible than the control (Sup-

plementary Fig. 3:4b, log-rank test p-value < 0.05 when compared to w1118). Flies homozygous for this mu-

tation are fragile and have a short lifespan. 

Interestingly, we also identified 5 infection-specific eQTLs belonging to two linkage groups in ntc, 

two 7.6kb upstream and three 4.5kb downstream of its TSS (Fig. 3:5c). This raises the possibility that these 

variations affect ntc cis-regulatory elements that could partly explain differences between the resistance 

classes. For that, we predicted transcription factor binding sites (TFBS) in and around the ntc locus, and 

looked for overlaps with the eQTLs. Indeed, we find overlapping TFBS for the Broad Complex and Daughter-

less transcription factors in the upstream eQTLs, and a TFBS for Relish/NFkB in one of the downstream 

eQTLs. The alleles in both sites show good correlation with the ntc expression on 38 lines, but when associ-

ated with resistace of 140 DGRP lines, the allele at the Broad/Daughterless site had a lower p-value (6.1*10-

5
 vs. 0.0215). It is worthy to note that this allele was previously tested in our genome-wide association 

study, yet it did not pass the 1*10-5 p-value threshold that we used for reporting the results. In addition, 

since ntc is not the closest gene to it, there was no way of linking it to ntc. This illustrates how eQTL analysis 

could help explain and prioritize GWAS hits that would otherwise be ignored. Taken together, our data 

suggest that ntc could be a previously uncharacterized player in the gut immune response, and that differ-

ences in its induction could be due to a single variation affecting an upstream cis-regulatory element that 

could partly explain differences between susceptible and resistant individuals in a population.    
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Figure 3:5 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is involved in the gut response. 

(a) Left panel: Levels of expression (in log2(cpm)) of the ntc gene by resistane class and infection condition. Right pan-

el: Fold change of ntc by resistance class. (b) Survival of two P-element insertion lines to Pe infection compared to a 

w1118 control. (c) cis-eQTLs around the ntc locus, and their overlap with predicted transctiption factor binding sites 

(TFBS). TFBS prediction was done using FIMO(Bailey, Johnson et al. 2015) and motifs from the Fly Factor Survey 

(Enuameh, Asriyan et al. 2013) and OnTheFly (Shazman, Lee et al. 2013) databases. The expression fold change by 

resistance class and two of those alleles (termed the broad/daughterless allele, and the relish allele) is plotted, as well 

as the percentage death of 140 DGRP lines(Bou Sleiman, Osman et al. 2015). 
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3.3 Discussion 

Some of the most interesting findings in this study are the ones that we typically perceive as nega-

tive. It is surprising how DGRP lines with diametrically opposite resistance to infection all have a similar 

response after ingestion of a pathogenic bacterium (Fig. 3:1). We show that this is not due to our inability 

to detect genotype-specific differences, since lines of the same genotype cluster together at the transcrip-

tional level (Supplementary Fig. 3:1). It is therefore clear that genomic variation imparts line-specific sys-

temic differences on the transcriptome, yet only a subset of those differences is relevant in determining 

resistance. Furthermore, as are measuring a relatively early timepoint after infection, differences between 

resistance classes might increase afterwards. We used machine learning to identify sets of genes whose 

expression levels collectively define resistance class and validated them by predicting susceptibility of sam-

ples from a previous study with up to 100% success. The sizes of those sets are in the order of 400 or more 

genes, a number that is too large to be experimentally tractable. Nevertheless, considering that the guts 

were profiled only four hours post infection, and that the flies start dying well after that timepoint, this 

approach could be useful in predicting the prognosis of an ongoing infection. In a medical setting, such in-

formation, if obtained in a timely manner, could be very helpful in administering personalized treatments 

for patients.  

 

To directly assess the effect of genomic variation on gene expression levels, we catalogued the possible cis-

eQTLs around all expressed genes. eQTL analysis is a useful method to make sense of GWAS QTLs, prioritize 

candidates, and study GxE interactions (Gibson, Powell et al. 2015). Our study design is a very powerful 

one, since we have an organismal phenotype from inbred lines, gut-specific transcriptomes under two con-

trolled conditions, and the whole-genome information. In both the treated and naïve state, around a third 

of all associations are unchanged, confirming that genotypic differences indeed drive gene expression dif-

ferences.  For instance, the eQTLs around the ntc locus are only associated with ntc levels in the treated 

state, which could be an example of cryptic variation contributing to infection resistance (Gibson and 

Dworkin 2004, Gibson, Powell et al. 2015). Variants in ntc are not only associated with its expression level, 

but with the resistance level of the whole fly. Moreover, these variants overlap with predicted TFBS, imply-

ing that a causal role of their effect could be assigned through further experimentation. Allele-specific ex-

pression of F1 hybrids carrying the two alleles could show whether the two copies of ntc are being induced 

differently. Enhancer-trap lines for the different regions spanning the eQTLs could help identifying the en-

hancer involved in the induction. Finally, the effect of polymorphism on transcription factor-DNA binding 

would also serve as an in vitro validation. If causality is established, it could constitute a rare example of an 
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eQTL that modifies an ecologically-relevant complex trait through its effect on binding of a transcription 

factor in a specific environmental condition.  

 

Nutcracker was initially in a screen for mutants that fail to undergo sperm individualization due to inability 

to activate caspases (Bader, Arama et al. 2010). Through its F-box domain, ntc interacts with other partners 

to form an SCF (Skp, Cullin, F-box) ubiquitin ligase (E3) complex that controls caspase activity in Drosophila 

(Bader, Benjamin et al. 2011). Caspases play important roles in insect immunity and homeostasis through 

both apoptotic and non-apoptotic pathways. For instance, Dredd, the homolog of human Caspase-8 is re-

quired for Relish cleavage and activation (Leulier, Rodriguez et al. 2000). Futhermore, activation of the IKK 

complex is dependent on ubiquitination (Zhou, Silverman et al. 2005). In addition, studies in mammals have 

shown that commensal bacteria could affect ROS levels, leading to modification of the activity of the SCF 

complex, thus affecting NF-κB signaling (Kumar, Wu et al. 2007). Given all the possible mechanisms, the 

exact function of ntc in the gut and enteric infection is not clear and should be the subject of a more mech-

anistic study. 

 

The gut is a highly regionalized organ (Buchon, Osman et al. 2013, Marianes and Spradling 2013) that con-

sists of multiple cell types (Dutta, Dobson et al.). One limitation in our approach is that we profiled whole 

gut transcriptomes, without taking regional or cell-type differences into consideration. Future studies could 

address how different eQTLs mediate gene expression at a finer level, revealing conditional eQTLs whose 

function is restricted to a certain cell-type or environment. 

 

3.4 Materials and Methods 

3.4.1 Fly Stocks and infection experiments 

For fly medium composition and oral Infection procedures, see methods in Chapter 2. The ntcf03797 

and ntcf07259 stocks were obtained from the Bloomington Stock Center. The ntcms771 stock was a kind gift 

from the Hermann Steller lab.  
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3.4.2 RNAseq 

RNA extraction: RNA extraction was performed using Trizol Reagent (Invitrogen) using the standard proto-

col. 

 

Library preparation and sequencing: Standard Illumina Truseq libraries were prepared from 1ng total RNA 

as measured by a Nanodrop 1000 device (Thermo Scientific) by the Lausanne Genomic Technologies Facili-

ty. Single end sequencing was performed for 100 cycles. Initially, 80 samples from 40 lines were sequenced 

but we excluded 4 samples from two lines. One of the lines was contaminated, as its reads came from two 

genotypes and another DGRP line had a smaller library size in one condition, with led to its elimination 

from the analysis. 

 

Mapping to invidualized genome: For each DGRP line, we generated an individualized fasta genome se-

quence based homozygous variants in the published Freeze 2 DGRP genotypes and the Release 5 reference 

genome. We also generated individualized gene annotations by applying the offsetGTF tool included in the 

mmseq package (Turro, Su et al. 2011) on the Ensembl BDGP5.25 . For each sample, reads were mapped to 

the respective genome usint STAR aligner. Reads for each gene were counted using HTseq-count. 

 

Normalization and differential expression: We used the edgeR package to perform TMM normalization, 

followed by conversion to Counts Per Million Voom with quantile normalization. When we combined sam-

ples from this study and the previous study, we used the same approach, starting from combined gene 

counts, with the addiction of the removeBatchEffect function in the limma package. Differential expression 

was performed in limma using the weights obtained by voom while adjusting for intra-line correlations 

using the duplicatecorrelation function with the DGRP lines as the blocking factor. The following model was 

used: y = treatment + class + treatment:class. For each predictor variable, genes having a fold change of 2 

and a Benjamini-Hochberg corrected adjusted p-value of 0.05 were deemed differentially expressed. 

 

Principal component analyses: The FactoMineR package was used to perform the principal component 

analyses with scaling and centering. 
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3.4.3 Machine learning and prediction 

Gene expression CPM values of the combined experiments were used throughout the analyses. 

For the condition-specific predictions, the filtering and normalization of genes was performed separately. 

For the Fold Change and treatment effect analyses, the whole dataset was used. We used the GLMnet 

package for feature selection and prediction. For the selection of the best value of alpha, we tested all val-

ues of alpha from 0.05 to 1 with 0.05 increments. For each value of alpha, we randomly split the samples 

from the new study (that are not replicated) into a cross-validation set for lambda estimation and a valida-

tion set for prediction accuracy estimation. We then peformed cross-validation, selected the lambda that 

minimizes misclassification error, and used the corresponding model to predict the resistance class of the 

validation set. To circumvent any problems that could arise due to the random sampling, we repeated the 

process 100 times. We defined the best alpha value, which ultimately determines the number of selected 

features, as the one that yields the maximum mean prediction success in the validation set. We then used 

cross-validation again on the whole set of lines from the new study to re-estimate the minimum lambda 

value. Then we selected the features that will constitute the final prediction set. Finally, we used the result-

ing model to predict the resistance classes of the samples from the previous study. We performed PCA on 

the gene expression levels of the selected features, weighed by their coefficients to represent the relation-

ships between the samples. The GO analysis was performed using the GOstats (Falcon and Gentleman 

2007) R package (Hypergeometric test p-value < 0.005). 

 

3.4.4 cis-eQTL analysis 

We performed separate analyses for each infection condition using Matrix-eQTL. Variants that are 

within 10kb of an expressed gene and whose minor allele frequency is greater than 5 in the 38 tested lines 

were used. Cis-eQTL associations with an FDR corrected p-value that is less than 0.05 were considered sig-

nificant. Metaplots were plotted in R. The GO analysis was performed using the GOstats (Falcon and 

Gentleman 2007) R package (Hypergeometric test p-value < 0.005), and REVIGO (Supek, Bo?njak et al. 

2011) was used to reduce redundancy in the ontology groups and plot them by semantic similarity (allowed 

similarity = 0.7) 
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3.5 Supplementary Materials 

 

Supplementary Figure 3:1 Reproducibility of line-specific transcriptomes 

(a) Hierarchical clustering of the combined samples from this study and that of Bou Sleiman and Osman, 

2015. Hclust was used on the Euclidean distance matrix in R. (b) Principal component analysis based on the 

gene expression profiles of the combined samples. Samples from the new and old study are represented as 

circles and squares, respectively. (c) Three dimensional representation of the first three principal components 

based only on the samples that belong to lines replicated between the two studies. Corresponding samples 
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are connected by a segment that is colored based on susceptibility group. The sphere color indicates the 

batch (blue is new,  black is old). 

 

Supplementary Figure 3:2 Feature selection and prediction of resistance class 

(a) Results of 100 rounds of cross-validation with different levels of alpha and prediction on a validation set from the 

learning set. For each value of alpha, a subset of the training set is taken as validation set, then a cross-validation is 

performed to select the best value of lambda. Then the prediction success of each model is assess using the validation 

set. The best model is the one that has the highest mean prediction susccess. Cvm.min is the minimum mean cross 

validated error obtained after cross-validation, based on which lambda is selected. (b) Prediction of resistance class 

based on gene fold changes after infection. 
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Supplementary Figure 3:3 The gene nutcracker is induced in resistant lines, has cis-eQTLs, and is in-volved in the gut 
response. 

(a) Top: Expression levels of the nutcracker gene in adult female guts as measured by RT-qPCR in the unchallenged 

state (UC) and after 4hrs and 16hrs of P.e. oral infection. Bottom: Expression levels of the diptericin gene in the same 

samples. Error bars represent standard deviations. In both panels, the levels relative ratios to Rpl32, normalized to 

100%. (b) Top: Gene diagram of ntc showing the F-box domain in black, and the location of the substitution in the 

ntcms771 mutants. Bottom: Survival curve of the ntcms771 mutant compared to a w1118 wild-type after infection with P.e. 

(c) Plot of ntc fold changes by Rel and Broad alleles. 0 indicates reference, 1 indicates variant. (d) Similar plot to (c), 

but this time plotting the survival percentage after three days of P.e. infection among 140 DGRP lines.
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 The alternative splicing landscape 

of the Drosophila gut upon enteric infection 

This chapter explores the alternative splicing landscape of the Drosophila gut 
when it is exposed to an oral pathogen. This often-neglected aspect of gene ex-
pression not only generates protein diversity, but also fine-tunes how the tran-
scriptome is translated. A collaboration with the laboratory of Prof. Roderic Guigo 
through Tommaso Andreani, who was doing an internship there, has sparked the 
beginning of this project.  

Abstract 

RNA Splicing is a key mechanism that not only generates protein diversity, but contributes to the 

fine tuning of the transcriptome. This ability to diversify and control the transcriptional output of the ge-

nome may facilitate how the organism adapts to a changing environment. We employ a systems approach 

in the study of isoform ratios in the infected and uninfected guts of females from 38 inbred lines of Dro-

sophila melanogaster. We find that infection leads to extensive and consistent differences in isoform ratios, 

which result in a more diverse transcriptome, that is skewed toward longer transcripts, due to longer 

5’UTRs. Additionally, we establish a role for genetic variation in mediating inter-individual differences, with 

splicing Quantitative Trait Loci being more numerous in the infected state and preferentially located in the 

5’ end of transcripts and directly upstream of the splice donor sites. Moreover, we find a general increase 

in intron retention events concentrated in 5’ ends of transcripts. The length, CG content, and RNA Polymer-

ase II occupancy of the retained introns suggest that they have exon-like characteristics and are possibly 

being translated. Finally, we show that the sequences of retained introns are enriched with the Lark/RBM4 

RNA-binding motif, and establish a critical role of Lark in mediating the gut defense response. For the first 

time, we describe a link between splicing and the gut’s response to enteric infection, which could have 

general implications on gene regulation and protein translation. 
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4.1 Introduction 

The eukaryotic genome is expressed and regulated by diverse mechanisms that ensure robustness 

and flexibility to adapt to different conditions. RNA splicing is one major mechanism that contributes in 

achieving this complex task. One of its obvious functions is the increase in the repertoire of protein-coding 

genes through the production of multiple isoforms(Leoni, Le Pera et al. 2011). Moreover, alternative splic-

ing often generates transcript isoforms that have the same coding potential but diverse untranslated re-

gions, which could have implications on stability and translation efficiency of the transcripts(Hughes 2006). 

There has been a surge in available RNA sequencing data in the last years, yet the study of alternative splic-

ing has often been ignored. Estimating alternative transcript abundances is still challenging since most 

methods rely on annotations, many assumptions, and short sequencing reads (Ozsolak and Milos 2011). 

Perhaps more importantly, drawing biological conclusions from transcript-level data is conceptually more 

challenging since it adds another layer of complexity. 

 

There is a growing body of evidence that splicing is not an isolated process and that it interacts with tran-

scription and RNA export (Reed 2003). Specifically, it has been shown that the RNA polymerase II recruits 

splicing factors through its cytoplasmic tail domain (CTD) to promote splicing (David, Boyne et al. 2011). 

Moreover, it seems that there is a reciprocal link between co-transcriptional splicing and RNA-pol II kinetics 

(Nojima, Gomes et al. , Kornblihtt, De La Mata et al. 2004).  Alternative splicing has been shown to be af-

fected by external stressors, notably heat shock (Biamonti and Caceres , Lin, Hsu et al. 2007, Dutertre, 

Sanchez et al. 2011, Shalgi, Hurt et al. 2014). The first report of splicing being affected by heat shock was in 

the fly, where pre-mRNAs of Hsp83 and Adh accumulated at severe temperatures (Yost and Lindquist 

1986). On a genome-wide scale, posttranscriptional splicing seems to be inhibited after heat shock leading 

to widespread intron retention (Shalgi, Hurt et al. 2014). To our knowledge, however, no study has as-

sessed the effect of bacterial infection on splicing. 
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Here, we systematically assess splicing in the context of enteric infection in Drosophila melanogaster. While 

the Drosophila gut transcriptome under different physiological conditions has been studied by us and oth-

ers, to our knowledge, the extent and role of splicing has never been addressed. In addition to classical 

laboratory strains, we make use of a large RNA sequencing study of 38 lines from the Drosophila Genetic 

Reference Panel (DGRP) inbred lines to study this phenomenon under different environmental (infection) 

and genomic perturbations. This is the first study of its kind in the Drosophila gut, which has lately attracted 

a lot of attention in the scientific community, especially as a system to understand enteric infection 

(Lemaitre and Miguel-Aliaga 2013). 

 

4.2 Results 

4.2.1 Enteric infection with different pathogens leads to widespread changes 

in intron retention 

Initially, we sought to characterize potential infection-induced differences in splicing patterns at 

the single intron level. For that, we used high quality paired-end RNA-sequencing data of adult female guts 

of the widely used w1118 strain. Adult female flies were either fed sucrose (1.5X), Pseudomonas entomophila 

(OD600 = 100 and 1.5X sucrose), or Erwinia carotovora carotovora 15 (OD600 = 100 and 1.5X sucrose), then 

their whole guts were dissected, followed by RNA extraction and sequencing. We then mapped the result-

ing reads to the reference genome. Using an available annotation that is specific to intron retention events 

(McManus, Coolon et al. 2014), we estimated the percent spliced in (PSI or Ψ) value for each of the 32895 

introns, which is the number of retention reads (spanning the exon-intron boundary as well as the reads in 

the intron) divided by the sum of the number of retention and splicing reads (spanning the exon-exon 

boundary as well as in the flanking exons) using MISO (Katz, Wang et al. 2010) (Fig. 4:1a). When we com-

pared the two infection conditions to the uninfected state, we found that both conditions lead to differ-

ences in intron retention events (Fig. 4:1b-c, bayes factor > 10, delta psi > 0.2). Ecc15 infection, which is less 

pathogenic than Pe, leads to fewer differences overall, with around 40% being shared with the Pe condition 

(Supplementary Fig. 4:1a-b). Interestingly, the number of intron retention events with a positive delta PSI 

value in both infection conditions was around double that of those with a negative value, indicating an 

overall increase in retention post infection. This significant impact of infection on splicing prompted us to 

investigate the phenomenon and its possible consequences in more detail, both at the intron and the tran-

script level. Moreover, since it was not clear whether this effect is unique to the tested laboratory strain, 
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we decided to perform all our analyses on RNA-sequencing data from 38 lines from the Drosophila genetic 

reference panel (DGRP), a set of inbred lines derived from a natural population. 

 

Figure 4:1 Enteric infection with different pathogens leads to widespread changes in intron retention 

(a) Diagram depicting how intron retention changes are computed. For each sample, delta PSI values for different 

splicing events(McManus, Coolon et al. 2014) were calculated by subtracting the PSI value of the uninfected sample 

from that of the infected one. (b-c) Histogram of delta PSI values of intron retention events whose PSI values are sig-

nificantly different (Bayes factor > 10, delta PSI > 0.2) from the unchallenged (sucrose fed) state four hours after infec-

tion with (b) Pe and (c) Ecc 15 

 

4.2.2 Enteric infection leads to extensive changes in transcript isoform ratios 

We have previously measured the resistance of 140 DGRP lines to enteric infection with Pseudo-

monas entomophila (P.e.) (Bou Sleiman, Osman et al. 2015). In this study, we selected 38 DGRP lines, 20 of 
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which are susceptible and 18 resistant to P.e. enteric infection (Fig. 4:2a), infected adult female flies, and 

performed RNA-sequencing on their dissected guts 4 hours post infection. For each line, we also sequenced 

guts of unchallenged, sucrose-fed flies. In total, we sequenced the poly-A enriched transcriptome of 76 

samples. Since the lines have been shown to be highly polymorphic, we opted for analyses on individual-

ized genomes. For that, we used the available genotyping data (Huang, Massouras et al. 2014), including 

single nucleotide as well as indels and structural variations, to generate individualized genomes and gene 

annotations (see Methods) which we used throughout the analyses. 

 

To gain insight into the changes in the isoform composition of each gene after infection, we used a multiva-

tiate distance-based approach decribed in Gonzalez-Porta et al.  (2012) (Gonzàlez-Porta, Calvo et al. 2012). 

Briefly, we estimated the isoform composition of each gene using MISO(Katz, Wang et al. 2010) software. 

Then we used a non-parametric test as described in Anderson (2012)(Anderson 2001) with the Hellinger 

distance as a dissimilarity measure to identify genes that have condition-specific isoform ratios. Of the 1877 

genes that passed filtering (see Methods), 40% were significantly changed after infection (Fig. 4:2b, p-value 

of homogeneity > 0.05, BH-corrected p-value < 0.05, effect size > 0.2). Interestingly, only 25% of the signifi-

cant genes based on splicing ratios are known to be differentially expressed after infection (see Chapter 2 

and 3), suggesting that gene-level differential expression could overlook important aspects of the gut tran-

scriptional response to enteric infection. We were not able to find significantly different ratios between the 

resistance classes, yet some genes showed weak trends of such differences (Supplementary Fig. 4:2). A 

gene ontology analysis shows that genes associated with RNA-metabolism, organelle organization and bio-

genesis, and epithelial tissue development are enriched within this set (Fig. 4:2c). Interestingly, the set of 

genes we obtained is not enriched with immunity gene ontology terms. This could possibly be due to dif-

ferent regulatory restraints imposed on genes involved in the immediate immune response (i.e. in the re-

sistance mechanisms (Schneider and Ayres 2008)), many of which are typically switched on and massively 

produced after infection, versus genes involved in homeostasis (i.e. the tolerance mechanisms (Schneider 

and Ayres 2008)), which are required to function in both conditions, albeit with different dynamics. 
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Figure 4:2 Enteric infection leads to extensive changes in transcript isoform ratios 

(a) The general experimental design of the study. Adult female flies from 38 DGRP lines already known to belong to 

two susceptibility classes to P.e.(Bou Sleiman, Osman et al. 2015) were either fed P.e. or sucrose. After 4 hours, total 

RNA of whole guts was extracted and sequenced. The resulting data was mapped to individualized genomes that have 

been generated using the known DGRP freeze 2 genotypes(Huang, Massouras et al. 2014). The resulting alignments 

were used for further analyses. (b) Venn diagram of the number of genes whose isoform ratios are significantly al-

tered after infection. MISO(Katz, Wang et al. 2010) was used to calculate the ratios of different annotated isoforms 

and afterwards, the rasp package (Gonzàlez-Porta, Calvo et al. 2012) was used to determine significance (p-

homogeneity > 0.05, BH adjusted p-value < 0.05, effect size > 0.1). (c) Graphical representation of enriched biological 

process gene ontology terms based on the list of genes whose isoform ratios are differentially expressed after infec-

tion. The GO analysis was performed using the GOstats (Falcon and Gentleman 2007) R package (Hypergeometric test 

p-value < 0.005), and REVIGO(Supek, Bo?njak et al. 2011) was used to reduce redundancy in the ontology groups and 

plot them by semantic similarity (allowed similarity = 0.7). The size of the circle indicates the number of genes belong-

ing to a certain GO category, and the color indicates enrichment significance. 
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4.2.3 The transcriptional response is characterized by higher isoform diversity 

We next examined the effect of infection on the diversity of the transcriptome by calculating the 

gene-based Shannon entropy for each sample. We found that infection leads to a general increase in diver-

sity in the infected state (Fig. 4:3a-c, Supplementary Fig. 4:3a-b). The density plot of Shannon entropies 

shows that after infection, there is an increase in number of genes with a higher diversity, and consequent-

ly fewer genes with low diversity (Fig. 4:2a). The average diversity per sample also shows a trend towards 

higher diversity in the treated state (Fig. 4:2b). Interestingly, a breakdown by isoform number reveals that 

for genes with 2,3, or 4 isoforms, resistant lines exhibit a higher level of diversity than susceptible lines (Fig. 

4:2c, Supplementary Fig. 4:3b). These observations suggest that upon infection, the transcript output of 

many genes is less dominated by a single or few isoforms. The functional relevance of this increase in diver-

sity is not clear, and requires further study. It is important to note that transcript diversity does not neces-

sarily lead to protein diversity, since different isoforms could only differ in their UTRs but not necessarily 

the coding sequence. 
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Figure 4:3 The gut transcriptional response to infection is characterized by higher isoform diversity 

(a) The distribution of Shannon entropies of transcript ratios of each gene per sample. Uninfected and infected sam-

ples are in grey and brown, respectively. (b) Boxplot of the average Shannon entropy per sample treatment condition. 

(c) Breakdown of average Shannon entropy by isoform number, susceptibility class, and treatment condition. 

4.2.4 Post-infection transcripts tend to be longer, mainly due to the production 

of longer 5’ UTR 

We next sought to characterize the effect of the splicing differences on the length of the pro-

duced transcripts. In order to do that, we estimated an effective length measure for each gene. Briefly, for 

each gene in each sample, we estimated the effective transcript length weighted mean of its individual 

transcripts (taking into account the effect of insertions and deletions) by their expression ratios. Similarly, 

we extended this method to individual features within the transcript, namely the 5’UTR, 3’ UTR, and the 

coding sequence. Then we compared the effective lengths before and after infection to obtain the number 
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of genes who have an increased, decreased, and an unchanged effective length. Additionally, we generated 

a null distribution of effective length differences by performing 100 permutations of the data, by randomly 

assigning infection status to the samples, and compared this to our observed set using G-tests.  Interesting-

ly, while the effect of natural variation, namely insertions and deletions, on the coefficient of variation in 

feature length was most prominent in 3’ UTRs, the effect of infection on the effective length of genes was 

strongest in 5’ UTRs (Supplementary Fig. 4:4a). Furthermore, 3’ UTR lengths differed the most from the 

null expectation, but the proportion of those that increase in effective length is close to those that decrease 

(23.2% vs. 24.1 respectively, Fig. 4:4a). On the other hand, we found that there are around 7% more genes 

that increase in transcript and 5’ UTR effective length than those that decrease. Predicted polypeptide 

length, however, did not show differences from the null distribution nor any skew. The distribution of this 

shift in effective length is consistent across the DGRP lines, with transcripts and 5’UTRs having an excess of 

increased effective lengths (Supplementary Fig. 4:4b-c). To show which feature contributes to the effective 

length change the most, we performed a similar analysis, this time calculating the transcript length effec-

tive change differences after the removal of a certain feature. Indeed, the removal of 5’UTR length and not 

the predicted polypeptide or 3’ UTR abolished this skew in the proportions (Fig. 4:4b). Together, these re-

sults suggest that infection-induced differences in transcript ratios affect 5’ UTRs the most and favor the 

production of the isoforms with longer 5’UTRs.  
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Figure 4:4 Post-infection transcripts tend to be longer, mainly due to the production of longer 5’ UTR.  

(a)  The line specific effective length of each gene’s transcript, CDS, 5’ UTR, and 3’ UTR lengths was obtained by calcu-

lating the weighted mean of each feature by its isoform ratio. The difference in length between the P.e. infected state 

and the uninfected state was then calculated for each line. The figure shows whether the feature increased, de-

creased, or didn’t change in average length after infection. Error bars are the standard deviation. A null distribution 

was generated by performing 100 permutations by randomly shuffling the samples. The grey bars indicate the average 

obtained by permutations. Repeated G-tests were used to compare the feature length change in each line to the null 

distribution. The boxplots show the –log10(p-values) of the tests, with the dotted red line representing a Bonferroni-
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corrected p-value threshold (b) Similar to previous panel, but this time the effective length of each transcript without 

either the predicted polypeptide, 3’UTR, or 5’UTR was calculated. 

 

4.2.5 The effect of natural variation on splicing is increased after infection. 

We have thus far established that transcript ratios of a large set of genes is significantly affected 

by infection status, that diversity is increased, and that the effective length of multi-isoform genes is in-

creased. We next sought to establish a link between genetic variation and these transcript levels. To 

achieve this, we identified splicing quantitative trait loci (sQTLs) in the two infection states. Specifically, for 

each gene, we looked variations within a 10kb window, that correlate with the shift in its isoform ratios. For 

that, we used SQTLseekeR (Monlong, Calvo et al. 2014), which employs a similar statistical methodology as 

the one we used to detect significant differences in transcript ratios (see Methods). We identified 499 and 

839 naïve- and treated-specific sQTLs, and 395 sQTLs that are common to both conditions (Fig. 4:5a). Inter-

estingly, there were around 50% more sQTLs in the treated state. Additionally, the number of genes affect-

ed by sQTLs in the treated condition is almost double that of the naïve condition (108 vs. 65 genes). How-

ever, there is a similar number of genes with significantly different post-infection splicing ratios (as in Fig. 

4:5b) that are in the naïve (13), treated (16), and shared group (20), indicating that infection response 

genes are not more likely to be affected by sQTLs upon infection. Together, this suggests that the effect of 

natural variation on splicing is more pronounced after infection, and that line-specific differences can be 

more readily detected in the infected state. 

 

To obtain insights into which biological processes are affected by variation in splicing ratios, we performed 

separate gene ontology enrichment of the three sets of genes. Figure 4:5b shows a single graphical repre-

sentation of the three GO enrichment results. In the naïve state, GO terms related to transcription and 

splicing as well as development and nitrogen compound metabolic processes are enriched. In the treated 

state, other categories emerge, namely the detection of stimulus, cell adhesion, and carbohydrate metabol-

ic processes. Both conditions share categories related to cellular homeostasis (specifically ion homeostasis) 

and energy derivation by oxidation of organic compounds.  

 

Next, we examined the locations of the sQTLs in relation to the gene they are associated with. We used two 

approaches to obtain metaplots: a gene-centric and intron-centric approach. Since natural variation density 
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along genes is not uniform, and tends to be higher towards the 5’ ends, we generated sets of randomly 

selected variants with a matching allele frequency spectrum to the sQTLs 10kb around genes. Indeed, both 

the random samples and the observed sQTL distribution show a peak around the TSS of genes (Fig. 4:5c). 

However, while the random sample distribution shows a single symmetrical peak with wide tails, the sQTL 

density shows a higher density at the main 5’ peak, as well as an elevated plateau along the metagene 

body. These results suggest that it is more likely to find sQTLs at 5’ ends of genes, as well as within the gene 

bodies. The density distribution could be intuitively explained as being a mixture of two sQTL classes. The 

first class could be mediating differences in alternative TSS selection as well as splicing, hence the 5’ peak. 

The second class could be acting through co- or post-transcriptional splicing choices in the nascent tran-

script, where variations within transcript sequence are likely to affect splicing. 

 

To gain insights into how a causal sQTL could be mediating differences in splicing, we calculated the density 

distribution around the closest intron to each sQTL as well as a suitable null-distribution. Interestingly, we 

observe a pattern that is very distinct from the random sample. While the random random sample shows a 

wide peak that is centered around the 5’ end of the intron, the sQTLs exhibit a sharp peak at the 5’ end, 

with the highest peak immediately upstream of the intron (Fig. 4:5d). There are more sQTLs upstream than 

downstream, and the number of sQTLs drops sharply right after the intron. This data suggests that natural 

variation affecting splicing could be doing so by causing differences in the signals required for splicing, pre-

dominantly around the 5’ splice site. One such example of sQTL is in the gene fbl6, which has multiple 

sQTLs, one of which is exactly at the 5’ splice site (Fig 4:5e-g). The lines with different alleles at that locus 

show markedly different splicing patterns, with a clear shift in the major isoform produced in both condi-

tions. However, not all sQTLs could be assigned such a direct mechanism of action as this example, and 

some might have subtler effects by affecting exonic and intronic splicing enhancers (ESEs and ISEs). To as-

sess this possibility, we asked whether it is more likely that an sQTL overlaps with an ESE or ISE than other 

random variations. Since these splicing enhancer sequences are short hexamers and numerous in Drosophi-

la (Brooks, Aspden et al. 2011), predicting them along the genome leads to many false positives. Neverthe-

less, we took a set of 330 published enhancers (Brooks, Aspden et al. 2011), and looked for matches along 

all the gene bodies. Then we counted the overlaps between the sQTLs and a 100 random sets of variants 

with a matching allele frequency spectrum. Interestingly, 70% of the sQTLs overlapped a predicted enhanc-

er, which is 10% higher than the maximum predicted through permutations (Supplementary Fig. 5). This 

enrichment suggests that it is possible that some sQTLs that lie within ESEs and ISEs could be affecting their 

enhancer functions. Taken together, our sQTL data shows that we can detect effects of natural variation on 



The alternative splicing landscape of the Drosophila gut upon enteric infection 

 

95 

splicing, even more in the infected state, and that these effects could be due to direct changes in splice 

sites, as well as other mechanisms predominantly at or around the splice donor site. 

 

Figure 4:5 The effect of natural variation on splicing is increased after infection. 
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(a)  Venn diagram showing the result of the cis-sQTL analysis (and number of associated genes) using 

sQTLseekeR(Monlong, Calvo et al. 2014) (BH adjusted p-value < 0.01, maximum difference in ratio > 0.1). (b) GO en-

richment of the genes in the cis-sQTL results. The analysis is similar to that in figure 1, but the three groups in (a) were 

tested separately, then the GO categories were pooled in REVIGO. The shape of the point indicates the gene subset 

that is enriched with a specific term. (c) Metaplot of the pooled cis-sQTL results with respect to normalized gene 

length, and (d) intron length. Solid lines represent the density of cis-sQTLs, while dashed lines represent a random 

sample of 500,000 variants that are within 10kb of a gene. (e) The isoform ratios of a gene (fbl6) that has a cis-sQTL on 

one of its splice sites. The expression levels are grouped by allele of the sQTL, with 0,1,2 being reference, heterozy-

gous, and alternate alleles, respectively. N and T are naïve and treated conditions respectively. (f) The isoform ratios 

by DGRP line in the two conditions. The shape of the point indicates the isoform and the colour of the dashed line 

indicates genotype. (g) Gene diagram of fbl6 showing its multiple linked cis-sQTLs (blue dashed line corresponds to the 

cis-sQTL plotted in the previous panels.). 

 

 

4.2.6 Intron retention is increased following infection across a natural popula-

tion 

To show that intron retention differences are not unique to the w1118 strain, we performed the 

same analyses for intron retention as in Fig. 4:1, this time on each DGRP line. Interestingy, the same pat-

tern emerges across all lines, with more intron retention occurring after infection. Fig. 4:6a shows intron 

retention events that are significant in more than 4 lines (also see Supplementary Fig. 4:6a). There is a high 

degree of overlap among the DGRP lines, as well as between the DGPR and the w1118 data (Supplementary 

Fig. 4:6b), suggesting that this phenomenon is not random across the genome, but affects a specific set of 

introns. Interstingly, a metaplot of the location of retained and spliced introns shows that the density of 

retained introns is very high at the 5’ end of transcripts, which could at least partly explain why longer UTRs 

are being produced after infection (Fig. 4:6c). 

 

4.2.7 Retained introns have exon-like characteristics 

We next opted to characterize the retained and spliced introns. Specifically, we sought to com-

pare their length and GC content, both of which are known signals determining exon and intron specifica-

tion (Amit, Donyo et al. 2012, De Conti, Baralle et al. 2013). In terms of length, retained introns tended to 

be shorter than their spliced counterparts (Fig. 4:6d, Supplementary Fig. 4:6b). In addition to that, their GC 
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contents were higher than those of the spliced introns, and consequently the difference in GC content be-

tween the intons and their flanking exons is lower (Fig. 4:6e). Interestingly, the retained introns also had a 

higher RNA polymerase II occupancy before and after infection (Fig. 4:6f, Supplementary Fig. 4:6c, see 

Methods). These observations suggest that the retained introns have exon-like characteristics which might 

explain why they are more prone to be retained.  

 

Exactly why infection leads to more retention of those introns is still not evident. One possibility is 

that RNA-binding proteins could be differentially reacting to infection, thus leading to the observed differ-

ences. RNA-binding proteins contribute to splicing by binding specific targets in nascent transcripts in a 

context dependent manner (Glisovic, Bachorik et al. 2008, Fu and Ares Jr 2014). This is why we next sought 

to assess enrichment of RNA-binding motif (RBM) sites in the retained and spliced introns, compared to all 

the introns that do not change significantly. We used AME (McLeay and Bailey 2010), from the MEME suite 

(Bailey, Johnson et al. 2015),  to look for enrichment of experimentally-derived RBMs (Ray, Kazan et al. 

2013). Interestingly, we found enrichment of many RBMs in the spliced introns, but very few RBMs in the 

retained ones (Fig. 4:6g). This is in line with our previous findings that retained introns generally have 

weaker splicing signals and thus their splicing could be compromised by the radical infection-induced dif-

ferences in transcription. Interestingly, Braunschweig and colleagues have shown that there is widerspread 

intron retention in humans and mouse samples (under steady-state conditions) that is coupled to RNA Pol II 

pausing (Braunschweig, Barbosa-Morais et al. 2014). In addition, they show that reduced intron length and 

higher GC content are predictors of intron retention. These parallels suggest that intron-retention is a con-

served mechanism that has functional implication in normal and diseased physiology. 
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Figure 4:6 Retained introns have exon-like characteristics  

Throughout the figure, blue and grey represent retained and spliced out introns, respectively. For each sample DGRP 

line, delta PSI values for different splicing events (McManus, Coolon et al. 2014) were calculated by subtracting the PSI 

value of the uninfected sample from that of the infected one. (a) Histogram of delta PSI values of intron retention 

events whose PSI values are significantly different after infection in at least 4 DGRP lines. (b) Venn diagram of the 

overlap between the sets of events that are significant in 1 DGRP line, at least 4 DGRP lines, w1118 strain infected with 

Pe, and w1118 strain infected with Ecc15. (c) The density of the intron retention events along the normalized length of 

the gene. (d) Length of introns (in log2) in significant intron retention events. (e) GC content of those introns and their 

flanking exons. (f) Normalized PolII ChIP-seq signal of these introns and their flanking exons in the P.e. infected state. 

(g) The enrichment of Drosophila melanogaster RNA binding motifs (Ray, Kazan et al. 2013) calculated using AME 

(McLeay and Bailey 2010), in the MEME suite (Bailey, Johnson et al. 2015). Blue and grey points indicate enrichment 

among the sequences of retained introns and spliced introns, respectively. 
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4.2.8 The RNA-binding protein lark/RBM4 is involved in the defense response 

Since the Lark RBM was the most enriched in the sequences of the retained introns, we sought to 

investigate its possible involvement in the gut response. Lark is the ortholog of human RBM4, a protein that 

is implicated in splicing, translation, and the stress response. In humans, it has been shown to be activated 

through phosphorylation by the p38 MAPK pathway in response to stress, where it shuttles out of the nu-

cleus and affects translation of different proteins. In Drosophila, the MAPK pathway, specifically through 

p38c has been shown to mediate the gut immune response to enteric infection through its effect on Atf-2 

transcription factor (Chakrabarti, Poidevin et al. 2014). In the DGRP lines, lark seems to be mainly induced 

following infection, with a subset of the susceptible lines having higher induction (Fig. 4:7a).  

 

We pursued two strategies to investigate Lark’s involvement. The first is by looking at the effect of 

p-element insertions within or upstream of the lark locus on infection susceptibility and the second by 

overexpressing it and knocking it down specifically in the adult gut enterocytes. We observed that a reduc-

tion in lark levels due to p-element insertions in either its 5’UTR or around 300 bases upstream lead to en-

hanced survival to infection (Fig. 4:7b). We used RT-qPCR to show that lark induction is reduced in these 

lines compared to a wild-type control (Fig. 4:7b). However, we were surprised to see that both knockdown 

and overexpression of lark in adult enterocytes resulted in strikingly enhanced survival (Fig. 4:7c). We vali-

dated lark knockdown and overexpression by performing RT-qPCR on dissected guts and found that indeed, 

there was up to 80% knockdown and 80-100 times overexpression in comparison to control levels. Collec-

tively, the observations point to a significant contribution of lark in the gut response to infection, however 

the mechanism of action of this gene remains to be elucidated. 
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Figure 4:7 The RNA-binding protein lark/RBM4 is involved in the defence response 

(a) Change in log2(cpm) of lark levels upon infection in the 38 DGRP lines separated by resistance class. (b) Top panel: 

diagram showing the locations of the p-element insertions in or around the lark locus. Lower left: Survival curves of 

the lark p-element lines compared to a yw wildtype. Lower right: RT-qPCR-based fold change of lark levels in dissected 

guts of those flies four hours post infection with Pe. (c) Survival of lark overexpression and knockdown flies driven by 

the Myo1Ats Gal4 driver. Myo1Ats virgins were crossed to either UAS-lark RNAi, UAS-lark-3HA, or w1118 males and their 

F1 progeny were maintained at 18°C. After eclosion, adults were kept at 29°C for 7 days, then infected with Pe. Left 

panel: Survival curves the F1 flies after infection with Pe. Right panel: relative ratio of lark in dissected guts of those 

flies 4 hours after infection with Pe. The left and right graphs are based on the same data, but the right one excludes 

the overexpression construct for visual clarity. (All experiments were performed with three biological replicates and 

n>30 flies or guts) 
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4.3 Discussion 

The gut response to infection and stress is a collection of concerted mechanisms that optimally 

lead to the clearance of the pathogen and the restoration of homeostasis. An organism must quickly and 

reversibly adapt to the challenge to ensure survival. Transcription factors that act in response to stimuli, 

such as Relish (the IMD pathway), Atf-2 (MAPK pathway), STAT92E (JAK/STAT pathway) have all been stud-

ied in the context of gut infection, damage, and regeneration (Lemaitre and Hoffmann 2007, Buchon, 

Broderick et al. 2009, Buchon, Broderick et al. 2013, Kuraishi, Hori et al. 2013, Lemaitre and Miguel-Aliaga 

2013). We and others have catalogued possible targets of those transcription factors by using high-

throughput techniques as well as classical ones. However, a major aspect of gene regulation, splicing, has 

largely been ignored. The fact that only 25% of the genes in our data that have significant splicing differ-

ences are also differentially expressed is strong motivation to comprehensively explore the role of splicing.  

 

While there are several examples of interactions between splicing and cell stress (Biamonti and Caceres , 

Lin, Hsu et al. 2007, Dutertre, Sanchez et al. 2011, Ip, Schmidt et al. 2011, Shalgi, Hurt et al. 2014), there 

have been very few genome-wide studies addressing the issue (Shalgi, Hurt et al. 2014). In this study, we 

show that infection leads to a widespread and consistent splicing changes in 39 Drosophila strains. Many of 

the major differences we observe are at the level of 5’ UTRs, which means that infection-induced splicing 

changes could have consequences on regulation, rather than strictly generating protein diversity. In times 

of stress, the gut might be producing transcripts coding for the same protein species, albeit with different 

spatial and temporal dynamics. 

 

One important aspect of the gut response to pathogenic bacteria is the general inhibition of translation, 

which has been previously shown to be dependent on the activation of GCN2 kinase. Activated GCN2 ki-

nase phosphorylates the alpha subunit of the eukaryotic initiation factor (eIF2α), which leads to inhibition 

of translation initiation. Paradoxically, and specifically after cellular stress, some proteins like ATF4 and 

ATF5 rely on upstream open reading frames (uORFs) to circumvent translational inhibition (Vattem and 

Wek 2004, Watatani, Ichikawa et al. 2008, Hatano, Umemura et al. 2013). The presence of uORFs generally 

inhibits the main ORF, unless they are found in specific configurations and in certain cellular conditions, like 

in the cases of ATF4 and ATF5 after stress-induced eiF2α phosphorylation. It is possible that the production 

of longer 5’ UTRs, through intron retention or alternative TSS choice, could introduce upstream open read-

ing frames (uORFs), as well as other elements, further contributing to this inhibition of translation (Calvo, 
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Pagliarini et al. 2009, Waern and Snyder 2013, Wethmar 2014, Johnstone, Bazzini et al. 2016). This also 

opens the possibility for the production of isoforms that are resistant to inhibition of translation or even 

isoforms whose translation efficiency is enhanced in stress conditions. For instance, it has been shown that 

the presence of uORFs in 5’UTRs could affect the recruitment of an isoform to polyribosomes, thus contrib-

uting the the translation efficiency (Sterne-Weiler, Martinez-Nunez et al. 2013). Therefore, the poor corre-

lations observed between transcript levels and protein abundances in other systems, could be due to the 

fact that splicing has been consistently ignored. Therefore, proteomics and ribosomal profiling studies on 

the fly gut in the infected and non-infected state, paired to the extensive transcriptomic knowledge we 

have amassed, would be very helpful in bridging the gap between the transcriptomic and proteomic as-

pects of the gut response. 

 

 

The observation that retained introns were enriched for the lark motif lead us to investigate the involve-

ment of lark/RBM4 in the gut defense response. In the fly, this gene has mostly been studied in the context 

of the circadian clock and eye development (Newby and Jackson 1996, Huang, McNeil et al. 2014). In 

mammals, however, many reports have been published implicating it in regulation of splicing, transcript 

stability, and translation control. Importantly, it has been shown to be phosphorylated by the p38 MAPK in 

response to stress, where it translocates out of the nucleus and inhibits Cap-dependent translation while 

enhancing IRES-dependent translation (Lin, Hsu et al. 2007). Our intuition that higher lark levels would lead 

to infection susceptibility were proven wrong, as we saw that both lower levels and higher levels of lark, 

compared to the wild-type, significantly enhanced resistance. Lark/RBM4 seems to be intimately involved 

in the gut response, yet its exact mechanism of action is still unclear, and merits further investigation. Spe-

cifically, the genome-wide effect of lark overexpression and knockdown on intron retention would be a 

good starting point, followed by cross-linking immunoprecipitation and sequencing (CLIP-seq) to identify 

lark targets, especially at the intron level in nascent transcripts. 
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4.4 Materials and Methods 

4.4.1 Fly Stocks and infection experiments 

For the RNA-seq on the DGRP lines, the same samples of Chapter 3 were used. We used w1118 

and yw flies as wildtype. The UAS-lark RNAi line was obtained from the Transgenic RNAi Project 

(TRiP.JF02783) and the UAS-lark-3HA line was obtained from Bloomington stock center (stock # 7125). For 

specific knockdown or overexpression of lark in the adult gut enterocyte, F1 lines carrying a copy of the 

MyoIA-Gal4 and tub-Gal80ts transgenes (Jiang, Patel et al. 2009), as well as one copy of either the UAS-IR or 

the UAS-ORF were kept at 18°C for three days post-eclosion, and then moved to 29°C for 8 days to activate 

the UAS transgenes. Flies were subsequently infected with P.e. using the standard oral infection protocol. 

The P-element insertion lines in lark were obtained from Bloomington stock center (stock #15287 and 

#22604). Survival was counted every 24 hours as previously described. 

 

4.4.2 RNA extraction 

For the all samples, guts from 30 adult female flies were freshly dissected in PBS after four hours 

of treatment. RNA extraction was performed using Trizol Reagent (Invitrogen) using the standard protocol. 

 

4.4.3 RT-qPCR 

cDNA was then synthesized from 1 ug total RNA using SuperScript II enzyme (Invitrogen). qPCR 

experiments were performed on a StepOnePlus Real-Time PCR system (Applied Biosystems) using Power 

SYBR® Green PCR Master Mix (Applied Biosystems). Relative gene expression was calculated after normali-

zation to the control RpL32 mRNA.   

 

4.4.4 RNA-seq 

Library preparation and sequencing: For the w1118 samples, paired-end Illumina Truseq libraries were gen-

erated and sequenced on an Illumina HiSeq 2500 for 75 cycles in the Gene Expression Core Facility at EPFL. 

As for the 80 DGRP samples, single-end Illumina Truseq libraries were sequenced for 100 cycles on an Illu-

mina HiSeq 2000 at the Genomics Technology Platform of the University of Lausanne. 
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Quality control: For the 76 single end DGRP samples, the same quality control measures were applied as in 

Chapter 2. As for the paired-end w1118 samples, we used cutadapt version 1.8 to remove adapter se-

quences as well as bases with a quality score inferior to 20. FastQC version 0.11.2 was used to assess the 

result of the trimming. 

 

Mapping to individualized transcriptomes: Refer to Chapter 3 Methods 

Transcript ratio estimation and comparisons: We used MISO version 0.5.3 to obtain transcript ratios (PSI 

values) from each of the individualized genomes and annotations. We used the Ensembl BDGP 5.25 as an-

notation. We also extracted the assigned counts for each transcript from the MISO outputs. For the detec-

tion of genes with significantly altered isoform ratios after infection, we used the rasp package 

(https://www.isglobal.org/en/web/guest/statistical-software), a distance-based non-parametric multivari-

ate approach as described in (Gonzàlez-Porta, Calvo et al. 2012). We slightly modified the package script in 

order to obtain the effect sizes of infection on the isoform ratios of each gene, which are normally calculat-

ed but not reported. 

 

Intron retention analyses: We used available annotations for intron retention analysis from the Graveley 

lab (McManus, Coolon et al. 2014) to estimate the PSI value of each event in MISO. Then we used the miso-

compare function on each sample pair (treated and naïve) to detect statistically significant differences due 

to infection. Events with a Bayes factor greater than 10 and a PSI difference greater than 0.2 were consid-

ered significant. 

 

4.4.5 ChIP-seq 

RNA Polymerase II ChIP-seq: For each condition, 100 w1118 adult female flies were killed by submerging 

them in liquid nitrogen. Guts were dissected on ice and stored at -80°C. On the day of the experiments, guts 

were homogenized in NE Buffer (15mM HEPES, 10mM KCl, 0.1mM EDTA, 0.5 mM EGTA, 350mM Sucrose, 

0.1% Tween-20, 5mM MgCl2, 1mM DTT, 1mM PMSF, protease inhibitor tablet) supplemented with 1% for-

maldehyde using a douncer and pestle. After 10 minutes, crosslinking was quenched by the addition of 

Glycine for a final concentration of 0.125M.  Samples were cleared by centrifugating for 4 min at 4000 rpm 
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and 4°C. Samples were washed twice with ice-cold NE buffer and twice with ice-cold RIPA buffer (25mM 

Tris-HCl pH7.6, 150mM NaCl, 0.5% Na-deoxycholate, 0.5mM DTT, 0.1% SDS, 1% NP-40, protease inhibitor 

tablet). Finally, samples were resuspended in 130 μl RIPA buffer and sonicated in Covaris E-220 (30 sec-

onds, Intensity: 175, Cycles per burst 200, Duty 20%, Water level: 10). Samples were then cleared by cen-

trifugation for 10 min, 4°C max speed. At this point, 1% of the total volume was separated as input and 

stored at 4°C, then, the remaining amount was diluted 1:5 in IP Dilution buffer (2.8 ml H2O, 3 μl 10% SDS, 

7.2 μl 0.5M EDTA, 33 μl Triton X-100, 50.1 μl Tris-HCl pH 8.1, 100.2 μl 5M NaCl). We then added 1 μg of 

antibody (Abcam ab5408) and incubated the sample overnight at 4°C on a rotating platform. The next day, 

the sample was transferred to a tube containing 50 μl of magnetic beads (M-280 Sheep Anti-Mouse IgG) 

blocked overnight in Beads Blocking Buffer (8.77ml PBS 1x, 1 ml BSA 1%, 10 μl Triton X-100, 220 μl 45% Fish 

Gelatin) and the mixture was incubated for 2 hours at 4°C on a magnetic platform. Using a magnetic racks, 

beads were washed once with Low Salt Buffer (20mM Tris-HCl pH 8.1, 150 mM NaCl, 2mM EDTA, 0.1% SDS, 

1% Triton X-100), twice with High Salt Buffer (20mM Tris-HCl pH 8.1, 500 mM NaCl, 2mM EDTA, 0.1% SDS, 

1% Triton X-100), LiCl Buffer (10 mM Tris-HCl pH 8.1, 250 mM LiCl, 1mM EDTA, 1% NP-40, 1% NA-

deoxycholate) and TE-NaCl buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 50 mM NaCl). In between each 

wash, beads were incubated 10 min at 4°C on a rotating platform. After the last wash, beads are resus-

pended in 500 μl of Elution Buffer (3.24 mL H2O, 50 μl Tris-HCl pH 7.5 1M, 10 μl EDTA 0.5M, 1 mL NaHCO3 

0.5M, 500 μl 10% SDS, 200 μl NaCl 5M) and the input sample was supplemented with the same amount. 

From then on, both the input and the IP were treated similarly. We first incubated them at 37°C for 30 min 

with 900 rpm shaking in the presence of 7.5 μl RNAse A 20 mg/ml. We then added 10 μl of Proteinase K and 

incubated the sample at 55°C overnight. The next day, we added 10 μl of Proteinase K and incubated for 1h 

at 45°C.  Samples were then spin down for 5 min at room temperature and 2000 rpm, finally, we used 500 

μl of samples as starting material for Qiagen PCR purification kit, following the manufacturer instructions. 

We eluted the the IP and the inpiut in 30 μl. We used the Qubit dsDNA HS kit to measure the DNA load. 

 

Library preparation: 10 ng of DNA were transferred to a low binding tube and completed to 55.5 μl with 

H2O. We added 3 μl of NEBNext Ultra End Repair / dA-Tailing Module Enzyme mix and 6.5 μl of Reaction 

buffer and incubated each tube at 20°C for 30 min, then 65°C for 30 min. The product of the reaction was 

purified using the Qiagen MinElute PCR Purification Kit, elution was made in 12.5 μl of Elution Buffer. For 

each tube, an adapter with a different barcode was selected. We used the DNA Quick ligase kit, using 15 μl 

of 2x buffer, 1.5 μl of DNA quick ligase and 1 μl of adapter hybrid primer. Mixture was incubated at 22°C for 

30 min. The reaction was purified using the Qiagen MinElute PCR Purification Kit, elution was made in 50 μl 

of Elution Buffer. Samples were purified using AMPure beads in a 1:1 ratio, washed twice with 80% EtOH 
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and resuspended in 20 μl of Elution Buffer. Using 1 μl, we perfrom a qPCR using the KAPA SYBR green kit 50 

μl total volume to determine the number of cycle for each samples. We then amplify each sample by PCR 

using the KAPA master mix. We then perform a size selection using AMPure beads, first using a 0.6.1 ratio 

and excluding the bound fraction followed by a 1:1 ratio selection, washing twice with 80% EtOH and re-

suspending in 20 μl Elution Buffer. We used in 1 μl to measure the DNA load with Qubit dsDNA HS assay 

and 1 μl to assess the fragment profile using the Agilent Bio-analyzer DNA 12000 kit. 

 

Sequencing: All 6 samples were sequenced on Illumina HiSeq 2500. 

 

Mapping and analysis: The sequencing reads were mapped to the reference genome using STAR, then the 

counts for every intron retention event (the flanking exons as well as the intron) was counted using the 

regionCounts function in the R csaw package. The count data was converted to RPKM and quantile normal-

ized prior to the analyses. Since the RNA pol II coverage decays from the 5’ to the 3’ end of a gene, we con-

verted the RPKM values to the standard normal distribution for each intron retention event (the flanking 

exons and intron) when we were comparing the retained and the spliced events. 

 

4.4.6 Statistical and Computational analyses 

Shannon diversity: For each gene, the Shannon diversity was calculated based on the transcript ratios of its 

annotated isoforms in R. This was done for each RNA-seq sample. The Delta Shannon for each DGRP line 

was calculated by subtracting the Naïve Shannon diversity from the treated one. 

 

Effective length calculations: We first generated tables of transcript, 5’ UTR, 3’ UTR, and CDS lengths for 

each line, taking into account the insertions and deletions in those lines. Then, for each line and condition, 

we calculated the effective length of a gene as the sum of the products of the length and the corresponding 

isoform ratio (Fig. 4:3). 

 

sQTL analysis: sQTL analysis was performed using sQTLSeekR (Monlong, Calvo et al. 2014) using the tran-

script ratios and genetic variants 10 kb around each expressed gene with multiple isoforms. We performed 
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slight modifications on the package script in order to extract information about the effect size of sQTLs 

which was normally calculated but not reported. 

 

ESE and ISE analyses: We used a published set of 330 intronic and exonic splicing enhancers and pattern 

matching through the BSgenome and Biostrings R packages to catalogue all the possible locations of those 

elements within the gene bodies of the reference genome. We then calculated the percentage of sQTLs 

that overlap with a predicted element. To assess the overlap expected by chance, we randomly sampled, 

100 times, sets of variants that are within 10kb of expressed genes that have a similar allele frequency 

spectrum as the sQTLs. 

 

RNA-binding motif analyses: We used AME, from the MEME suite, to look for all binding motifs of RNA 

binding proteins using Drosophila-specific PWM scores from (Ray, Kazan et al. 2013) in retained or spliced 

introns. For both searches, we used the of introns that do not change significantly after infection as back-

ground.     
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4.5 Supplementary Materials 

 

Supplementary Figure 4:1 Enteric infection with different pathogens leads to widespread changes in intron retention 

(a) Venn diagram showing the intersection of the significant intron retention events under the two conditions (Pe and 

Ecc15). (b)  Illustration of multiple intron retention events within a single gene Cyp309a1. Snapshot was obtained 

using IGV. 
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Supplementary Figure 4:2 Enteric infection leads to extensive changes in transcript isoform ratios 

Examples of gene isoform ratios in the different conditions and susceptibility groups. Atg7 shows a shift in isoform 

usage upon infection, whereas mthl10 exhibits a slight difference in isoform usage between resistant and susceptible 

lines in the uninfected (sucrose) state. 
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Supplementary Figure 4:3 The transcriptional response is characterized by higher isoform diversity 

(a) Distribution of delta Shannon entropy values (Shannon entropy in infected minus uninfected state) per gene per 

DGRP line. (b) Boxplot of average delta Shannon entropy per DGRP line, separated by resistance class (one-tailed t-

test p-value < 0.05). 
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Supplementary Figure 4:4 Post-infection transcripts tend to be longer, mainly due to the production of longer 5’ 
UTRs 

(a) Left panel: The distribution of coefficients of variation in length of each transcript or feature due to natural varia-

tion within the DGRP lines. Right panel: The distribution of coefficients of variation in effective length of each gene 

due to natural variation within the DGRP lines, isoform transcript ratios, and infection. (b) Breakdown of number of 

genes whose effective length increases (in green), decreases (in red) or stays constant (in grey) based on a certain 

feature (From left to right: the predicted polypeptide- (cds), 3’ UTR-, 5’ UTR-, and the transcript-based effective length 

change). (c) The per-gene frequency distribution among the DGRP lines of the number of genes that increase (green) 
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or decrease (red) in effective length based on the features (from left to right: 3’ UTR, transcript, 5’ UTR, and predicted 

polypeptide)  

 

 

Supplementary Figure 4:5 Predicted Exonic and Intronic Splicing Enhancers (ESE and ISE) are enriched for sQTLs. 

ESE and ISE locations were predicted along all gene bodies using pattern matching to the reference genome. Then the 

percentage of the sQTLs that overlap a predicted element was computed and plotted in red. A null distribution of the 

percentage overlap was produced by randomly picking variants within gene bodies with a similar allele frequency 

distribution as the sQTLs. This was repeated 100 times and the percentage, as well as the mean (solid line) and stand-

ard deviations (dashed lines) were computed. A solid line shows the maximum overlap obtained through random 

permutations. 
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Supplementary Figure 4:6 Retained introns have exon-like characteristics 

(a) Histograms of delta PSI values of significantly different intron retention events after infection in the pooled align-

ments of all DGRP sequencing data aligned to the reference sequence (top left), significantly different events in align-

ments to individualized genomes in at least 1 DGRP line (bottom left), 2 DGRP lines (top right), and 4 DGRP lines (bot-

tom right). (b) Distribution of intron lengths (in log2 scale) as a function of location within the transcript for non-

significant (upped panel, red) and significant in at least 4 DGRP lines (lowe panel, blue) as well as retained (positive 

delta PSI, right) and spliced (negative delta PSI, left) introns. The blue lines are loess smoothing curves with 95% confi-

dence intervals. (c) Standardized RNA polymerase II signal density in log2(rpkm) in introns and flanking exons for all 

significant intron retention events in the uninfected state. 
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 Conclusion 

 

 

Understanding how information in the genome gives rise to complex phenotypes is a major ques-

tion in modern biology. Specifically, a good understanding of how genetic variation mediates quantitative 

differences in traits is of great interest. Insights from such studies are highly relevant in human complex 

disease risk research, animal and plant breeding, and pest control. 

 

A systems genetics study of the variability in the Drosophila gut response to enteric infection was presented 

in this thesis. The genetic architecture of this response was unraveled and novel mediators of resistance to 

enteric infection are presented. Using GWAS, many loci with modest effect on the phenotype were identi-

fied, some of which we validated experimentally. Using transcriptomic module analysis, as well as experi-

mental validation, ROS metabolism was identified as an important determinant of resistance class. Large-

scale transcriptomics on phenotypic extremes were analysed and used to predict the survival phenotype of 

Drosophila lines. The effect of natural variation on RNA expression and splicing was assessed. A novel play-

er in the gut defense response, nutcracker, was identified. Finally, an in-depth analysis of splicing differ-

ences after infection was performed and a light was cast on lark/RBM4 as a potentially important mediator 

in response to enteric infection. 

 

The presented studies are mostly hypothesis-generating, and are not designed to understand the mecha-

nism of action of a certain gene or pathway. This is why more focused studies should be designed in order 

to gain a deeper understanding of the biology involved. In addition, the results of the analyses allow the 

greater scientific community to adopt and validate some of the hypotheses and candidates. 
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5.1 The Reductionist Approach versus Systems Genetics 

One of the most valuable lessons learned from the phenotypic diversity in Drosophila lines is that 

biologists should adopt a holistic as well as the standard reductionist approach. Conclusions based on one 

genetic background might not be generalizable since they completely disregard natural genetic variation 

(Hartman, Garvik et al. 2001). For example, we show that many DGRP lines are highly resistant to Pseudo-

monas entomophila infection, with infection-induced inhibition of translation occuring in susceptible but 

not resistant lines. Thinking retrospectively, the Pseudomonas entomophila L48 strain, which was part of a 

panel of isolates from fruit flies or decaying fruits from the Island of Guadeloupe (Vodovar, Vinals et al. 

2005), might have not been identified as a lethal bacterium if a strain other than OregonR – for instance a 

resistant DGRP line - were to have been used in the screen. For the same reason, it is equally possible that 

some other pathogenic bacteria were missed in the screen. This reasoning could be applied on almost eve-

ry genetic study or screen performed in the last century.  

 

One has to acknowledge that testing on several strains increases cost and complexity of experiments, espe-

cially large scale screening, and that it is not clear whether the advantage would outweigh the added cost. 

It is also impossible to estimate the knowledge that was not acquired after a century of reductionist ap-

proach. Including multiple genetic backgrounds in every study might prove to be counterproductive, lead-

ing to slower research progress on all fronts. What is certain is that scientists should be open to results that 

challenge their understanding of some basic phenomena. One pertinent example in human genetics is that 

some humans carrying known mutations leading to severe Mendelian childhood diseases do not have clini-

cal manifestations (Chen, Shi et al. 2016). The simplest explanation for this resilience is the existence of 

variants with large effect that buffer the deleterious effect of the loss of function mutation. This is not a 

new biological concept. In fact, classical modifier screens in Drosophila and other systems exploit the inter-

action between alleles to identify novel members of a genetic pathway (St Johnston 2002). While these 

screens rely on artificial induction of mutations, this phenomenon might be pervasive in natural popula-

tions and systems genetics could be help understanding it. 

 

For all those reasons, twenty-first century biological research should exploit as many high-throughput tech-

niques as possible to reach generalizable conclusions. 
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5.2 Lessons from the Genetic Architecture of Resistance to Enteric Infection 

Results in this thesis show that pathways expected or known to be involved in a certain process 

do not necessarily have to play a role in phenotypic differences at the population level. This is one of the 

most striking take-home messages in this thesis. In contrast to studies in which different fly lines (from a 

panel of chromosome 2 substitution lines) were inoculated with a Gram-negative bacterium, where re-

sistance to the bacterium was shown to be mediated by variations in signal transduction and pathogen 

recognition genes (Lazzaro, Sceurman et al. 2004, Lazzaro, Sackton et al. 2006), we were consistently failing 

to detect genetic or transcriptomic differences in canonical immune response pathways of resistant and 

susceptible flies. Except for one tested susceptible line with a loss-of-function mutation in the Dredd gene, 

all lines responded very similarly to infection at the transcriptomic level, even though they had very differ-

ent survival rates. It is therefore likely that the major players in resistance processes, such as the response 

to Gram-negative bacteria, behave similarly across the population due to evolutionary and functional re-

straints, so that many secondary or tolerance processes collectively contribute to the inter-individual dif-

ferences. Taken individually, these secondary processes or factors might contribute very little to the pheno-

type and would therefore be very hard to detect with a reductionist approach. 

 

It is not clear to what extent this genetic architecture could be generalized to other enteric infection mod-

els or other host-pathogen interactions, such as septic injury or natural fungal infections. The lack of canon-

ical immune pathways in the genetic association or transcriptomic results could mean that susceptibility to 

enteric infection with P.e. is a proxy to susceptibility to general stress, specifically ROS-induced stress. It 

therefore suggests that tolerance, and not resistance, mechanisms are the dominant players determining 

resistance. Indeed, when we measured resistance to paraquat in eight lines from the phenotypic extremes, 

the lines susceptible to P.e. where also susceptible to paraquat treatment. Our survival data on the full 

DGRP panel, however, does not correlate with resistance to paraquat-induced oxidative stress (Weber, 

Khan et al. 2012). This is not surprising, since in the same study, the genetic correlation between resistance 

to two oxidative stress-inducing agents, namely paraquat and menadione sodium bisulfite were not high. 

Additionally, the GWAS results of the two treatments had very little overlap, indicating that different ge-

nomic loci contribute to the resistance to the two substances. In the light of this, the lack of correlation 

with P.e. resistance is not surprising, knowing that enteric infection not only induces a burst in ROS but also 

activates the immune response. What is common, however, is the complex genetic architecture of both 

treatments, and indeed that of survival to P.e. infection. 
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This complex genetic architecture is in stark contrast to that of resistance to viral infection. Studies in the 

DGRP as well as another unrelated panel of flies showed that the genetic architecture is much simpler 

(Magwire, Fabian et al. 2012, Cogni, Cao et al. 2016). This is consistent with theoretical models where selec-

tion pressures exerted by pathogens lead the increase in frequency of major-effect resistance alleles, and 

consequently to a simple resistance genetic architecture (Hill 2012). These resistance alleles are expected 

to be specific to a certain pathogen and therefore this model only applies to co-evolved pathogens, like the 

Drosophila C virus and the Sigma virus. Host-pathogen co-evolution and its effect on the genetic architec-

ture of resistance is not specific to viruses and flies. For example, a study on cholera susceptibility in a hu-

man population from the Granges River Delta, the historic epicenter of cholera, showed that many of the 

genes that are positively-selected are also associated with cholera susceptibility (Karlsson, Harris et al. 

2013). On the other hand, P.e. is not a Drosophila melanogaster-specific pathogen and like other members 

of the Pseudomonas genus, is an opportunistic pathogen (Boucias and Pendland 1998). Consequently, it is 

conceivable that no specific large effect resistance alleles have been selected for in the fly. We believe that 

small-effect variants predominantly affecting tolerance mechanisms, including ROS metabolism, mediate 

variation in resistance. 

 

Another argument as to why variability in resistance to enteric infection is not mediated by immune pro-

cesses is that since the fly has no adaptive immune system (Lemaitre and Hoffmann 2007), and conse-

quently limited specificity in the response, it has to maintain the balance between the response to infec-

tious bacteria and tolerance to gut microbiota (Ryu, Kim et al. 2008, Paredes, Welchman et al. 2011, Bosco-

Drayon, Poidevin et al. 2012, Lee, Kim et al. 2013). Any genetic variation causing high variability in the 

population could therefore interfere with this finely-tuned system, leading to undesirable consequences. 

For these reasons, variation in immune capability, like Imd pathway activation, is likely to be highly re-

strained, only leaving room for variation in other aspects such as stress tolerance mechanisms like ROS 

metabolism. 

 

In conclusion, the origin, history, and specificity of the host-pathogen interaction defines the genetic archi-

tecture of host resistance. Understanding those aspects using systems genetics could lead to a more com-

plete and unbiased understanding of resistance to infectious disease.   
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5.3 Lessons from Gene Expression Profiling and Prospects 

We were initially interested in finding genes that could explain the differences between suscepti-

ble and resistant lines. To our dismay, we found that molecular differences even between phenotypic ex-

tremes do not have to be consistent. Despite the clear phenotypic differences, differential gene expression 

surprisingly failed to detect genes that are consistently different between susceptible and resistant lines. 

We had to resort to module-level analyses and to machine-learning approaches to identify gene signatures 

of resistance class. We believe that different lines have various combinations of risk factors that collectively 

lead to a certain survival phenotype. It is the system as a whole, and not one or few genes that define re-

sistance to infection. A departure from a one-gene-at-a-time approach such as module analysis should 

therefore be standard procedure for studying gene expression. 

 

We identified many associations between gene expression levels and genomic variants in the eQTL anal-

yses, many of which were shared between the infected and non-infected state. To what extent does genet-

ic variation lead to variation in resistance through its effect on gene expression has yet to be systematically 

assessed. Nevertheless, we focus on ntc, as it is the most differentially expressed gene with respect to re-

sistance class. Interestingly, mutants in ntc are more susceptible to P.e. infection. Also, the fact that it has 

cis-eQTLs around it suggest that we might be close to indentifying a causal variant in an enhancer element 

affecting resistance to infection. The specific cell type(s) where ntc exerts its effects are still unknown. For 

this reason, cell-specific knockdown and overexpression of ntc is underway. Furthermore, the ntc eQTLs will 

be validated using reporter assays, transcription factor-DNA interaction assays, and allele specific RT-qPCR. 

Allele-specific GAL4 reporters of the regions around the cis-eQTLs would be useful to implicate variations in 

the putative ntc cis-regulatory elements in the determination of ntc levels. Furthermore, the interaction 

between the polymorphic DNA sequences around the eQTLs and the respective predicted transcription 

factors using MITOMI microfluidic technology will be measured (Rockel, Geertz et al. 2012). This will allow 

the assessment of the effect of the eQTL variants on binding affinity. Allele-specific RT-qPCR on DGRP F1 

hybrids harboring the two alleles of each of the eQTLs will help confirm the cis-effect of the regions around 

the eQTLs. ChIP sequencing of the daughterless, broad-complex, and relish transcription factors in the gut 

before and after infection would also show whether these transcription factors bind to the regions over-

lapping the eQTLs. The characterization of the function and regulation of ntc will provide a unique example 

of regulatory variation affecting an ecologically-relevant complex trait like enteric infection susceptibility. 
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Another aspect of gene expression that should not be ignored is RNA splicing (Levanon and Sorek 2003). 

Not only it is plays an important part in general gene expression, but also in gene regulation during stress 

responses (Biamonti and Caceres , Yost and Lindquist 1986, Ali and Reddy 2008, Dutertre, Sanchez et al. 

2011). In this thesis, the potential importance of splicing is brought forward due to many interesting obser-

vations. First enteric infection leads to widespread differences in isoforms of genes, disproportionately 

affecting splice sites at the 5’ end of transcripts, and leading to generally longer 5’ UTRs. The functional 

relevance of these observations, however, remains to be assessed in future work, especially since splicing is 

not isolated from transcription and nuclear RNA export (Reed 2003, Kornblihtt, De La Mata et al. 2004). 

Furthermore, the impact of splicing changes on the gut proteome is still not measured. We (Michael Fro-

chaux and I) have recently started generating large-scale gut proteomics data (up to 4500 proteins) for the 

DGRP lines as well as for reference strains in the normal and infected condition. Since the projects are still 

in their infancies, I chose not to present the preliminary data in this thesis. The results of this project will 

add a missing link between the genotype and phenotype. Studies in other systems, as well as our prelimi-

nary studies, show little correlation between transcript levels and protein levels. Integrating the RNA-

sequencing data with the proteomics data will therefore be of great interest to the scientific community 

working on the gut. Furthermore, it will open the door for validating many hypotheses relating to the alter-

nate 5’ UTR-mediated effect on translation efficiency. In addition to that, my colleague Michael Frochaux is 

working on optimizing ribosomal profiling experiments in order to directly assess ribosomal occupancy of 

different transcripts. This will open many avenues in understanding the role that splicing has in enteric in-

fection, specifically exploring whether different isoforms are preferentially recruited to ribosomes after 

infection. 

 

We also focus on lark/RBM4 as a potentially relevant factor in post-infection splicing regulation. First, we 

find that sequences with retained introns after infection are enriched for its binding motif and depleted of 

other, more common motifs. Second, lark overexpression and knockdown lead to increased resistance to 

P.e. infection. Last but not least, the mammalian ortholog of lark, RBM4, has already been implicated in 

RNA splicing and regulation of translation in normal and stressed conditions. In order to understand the 

effect of lark on splicing, RNA-sequencing lark knockdown and overexpression will be especially important. 

CLIP-sequencing could identify and validate its binding partners, specifically the introns it binds before and 

after infection.  
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